Sample records for mirror fusion test

  1. Diagnostic control, data acquisition and data processing at MFTF-B (Mirror Fusion Test Facility)

    SciTech Connect (OSTI)

    Preckshot, G.G.

    1986-01-01T23:59:59.000Z

    Diagnostic instruments at the Mirror Fusion Test Facility (MFTF-B) are operated by a distributed computer system which provides an integrated control, data acquisition and data processing interface. Instrument control settings, operator inputs and lists of data to be acquired are combined with data acquired by instrument data recorders, to be used downstream by data processing codes; data processing programs are automatically informed of operator control and setpoint actions without operator intervention. The combined diagnostic control and results presentation interface is presented to experimentalist users by a network of high-resolution graphics workstations. Control coordination, data processing and database management are handled by a shared-memory network of 32-bit super minicomputers. Direct instrument control, data acquisition, data packaging and instrument status monitoring are performed by a network of dedicated local control microcomputers.

  2. Integrated operations plan for the MFTF-B Mirror Fusion Test Facility. Volume II. Integrated operations plan

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    This document defines an integrated plan for the operation of the Lawrence Livermore National Laboratory (LLNL) Mirror Fusion Test Facility (MFTF-B). The plan fulfills and further delineates LLNL policies and provides for accomplishing the functions required by the program. This plan specifies the management, operations, maintenance, and engineering support responsibilities. It covers phasing into sustained operations as well as the sustained operations themselves. Administrative and Plant Engineering support, which are now being performed satisfactorily, are not part of this plan unless there are unique needs.

  3. Photo of the Week: The Mirror Fusion Test Facility | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO Overview OCHCO OCHCOControlGuide to aEnergy Living LargeThe Mirror

  4. Potential of Mirror Systems as Future Fusion Power Reactors

    SciTech Connect (OSTI)

    Kessler, Guenter; Kulcinski, Gerald L. [University of Madison (United States)

    2005-01-15T23:59:59.000Z

    Mirror based fusion reactors - as other fusion reactor concepts - have considerable environmental and safety advantages. They could make available energy resources for many 1000 years. Mirror type fusion reactors have additional technical advantages over other fusion reactor concepts. These are: simple design topology, steady state power generation, decoupling of end plugs from central power producing regions, small power units as demonstration facilities.

  5. Study of fusion product effects in field-reversed mirrors

    SciTech Connect (OSTI)

    Driemeyer, D.E.

    1980-01-01T23:59:59.000Z

    The effect of fusion products (fps) on Field-Reversed Mirror (FRM) reactor concepts has been evaluated through the development of two new computer models. The first code (MCFRM) treats fps as test particles in a fixed background plasma, which is represented as a fluid. MCFRM includes a Monte Carlo treatment of Coulomb scattering and thus provides an accurate treatment of fp behavior even at lower energies where pitch-angle scattering becomes important. The second code (FRMOD) is a steady-state, globally averaged, two-fluid (ion and electron), point model of the FRM plasma that incorporates fp heating and ash buildup values which are consistent with the MCFRM calculations. These codes have been used extensively in the development of an advanced-fuel FRM reactor design (SAFFIRE). A Catalyzed-D version of the plant is also discussed along with an investigation of the steady-state energy distribution of fps in the FRM. User guides for the two computer codes are also included.

  6. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    SciTech Connect (OSTI)

    Werner, R.W.; Ribe, F.L.

    1981-01-21T23:59:59.000Z

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  7. Fusion Test Facilities John Sheffield

    E-Print Network [OSTI]

    Fusion Test Facilities John Sheffield ISSE - University of Tennessee FPA meeting Livermore December Stambaugh, and their colleagues #12;Destructive Testing · It is common practice to test engineered components to destruction prior to deployment of a system e.g., - Automobile crash tests - Airplane wing

  8. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect (OSTI)

    Moiseenko, V. E.; Agren, O. [Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology', Akademichna St. 1, 61108 Kharkiv (Ukraine); Uppsala University, Angstroem Laboratory, Division of Electricity, Box 534, SE-7512 Uppsala (Sweden)

    2012-06-19T23:59:59.000Z

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  9. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B)

    SciTech Connect (OSTI)

    Karpenko, V.N.; Ng, D.S.

    1985-03-04T23:59:59.000Z

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects.

  10. Elliptical magnetic mirror generated via resistivity gradients for fast ignition inertial confinement fusion

    SciTech Connect (OSTI)

    Robinson, A. P. L.; Schmitz, H. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2013-06-15T23:59:59.000Z

    The elliptical magnetic mirror scheme for guiding fast electrons for Fast Ignition proposed by Schmitz et al. (Plasma Phys. Controlled Fusion 54, 085016 (2012)) is studied for conditions on the multi-kJ scale which are much closer to full-scale Fast Ignition. When scaled up, the elliptical mirror scheme is still highly beneficial to Fast Ignition. An increase in the coupling efficiency by a factor of 3–4 is found over a wide range of fast electron divergence half-angles.

  11. Magnetic mirror fusion-fission early history and applicability to other systems

    SciTech Connect (OSTI)

    Moir, R

    2009-08-24T23:59:59.000Z

    In the mid 1970s to mid 1980s the mirror program was stuck with a concept, the Standard Mirror that was Q {approx} 1 where Q=P{sub fusion}/P{sub injection}. Heroic efforts were put into hybridizing thinking added energy and fuel sales would make a commercial product. At the same time the tokamak was thought to allow ignition and ultrahigh Q values of 20 or even higher. There was an effort to use neutral beams to drive the tokamak just like the mirror machines were driven in which case the Q value plunged to a few, however this was thought to be achievable decades earlier than the high Q versions. Meanwhile current drive and other features of the tokamak have seen the projected Q values come down to the range of 10. Meanwhile the mirror program got Q enhancement into high gear and various tandem mirrors projected Q values up towards 10 and with advanced features over 10 with axi-symmetric magnets (See R. F. Post papers), however the experimental program is all but non-existent. Meanwhile, the gas dynamic trap mirror system which is present day state-of-the-art can with low risk produce Q of {approx}0.1 useful for a low risk, low cost neutron source for materials development useful for the development of materials for all fusion concepts (see Simonen white paper: 'A Physics-Based Strategy to Develop a Mirror Fusion-Fission Hybrid' and D.D. Ryutov, 'Axisymmetric MHD-stable mirror as a neutron source and a driver for a fusion-fission hybrid'). Many early hybrid designs with multi-disciplinary teams were carried out in great detail for the mirror system with its axi-symmetric blanket modules. It is recognized that most of these designs are adaptable to tokamak or inertial fusion geometry. When Q is low (1 to 2) economics gives a large economic penalty for high recirculating power. These early studies covered the three design types: Power production, fuel production and waste burning. All three had their place but power production fell away because every study showed fusion machines that were extensively studied by multidisciplinary teams came up with power costs much higher than for existing fission plants except in very large sizes (3 GWe). There was lots of work on waste burning - Ted Parrish - comes to mind. However, fuel production along with power production became nearly everyone's goals. First, fast-fission blankets were favored but later to enhance safety, fission-suppressed blankets came into vogue. Both fuel producing and waste burning hybrid studies were terminated with the advent of accidents, high interest rates, rising 'green like' movement and cheap natural gas for power production. For waste burning and fast-fission fuel producing designs, the blanket energy multiplication was about 10 and economics was OK relative to recirculating power for Q over 2. For fission-suppressed fuel producers, where the blanket multiplication is under 2, the Q needed was over 5. In the mirror program we came at this problem by trying to find a product for mirror fusion technology. We hoped we had a product and studied and promoted it. There was no market pull and when the mirror program collapsed in the US, so did both hybrid programs for mirrors and tokamaks and IFE by the mid 1980s. Today, the problem of what to do with wastes that were supposed to be accepted by the government appears to be a high value market pull. It remains to be shown if fusion neutrons can be generated at low enough cost so that economics will not be a showstopper. For burning only the minor actinides, the economics will be the most favorable. Burning the Pu as well will lower the number of fission reactors supported by each burner fusion machine and hurt economics of the system. The fuel-producing role of fusion to fuel fission reactors remains an important possible use of fusion especially in the early stages of fusion development. It is not clear that burning fission wastes in a fusion machine is more appropriate than burning these wastes in specially designed fission machines. Fusion can produce U-233 along with over 2.4%U-232 making the material large

  12. Optical durability testing of candidate solar mirrors

    SciTech Connect (OSTI)

    Jorgensen, G.; Kennedy, C.; King, D.; Terwilliger, K.

    2000-03-24T23:59:59.000Z

    Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the Concentrated Solar Power (CSP) Program. Outdoor exposure testing (OET) at up to eight outdoor, worldwide exposure sites has been underway for several years. This includes collaboration under the auspices of the International Energy Agency (IEA) Solar Power and Chemical Energy Systems (SolarPACES) agreement. Outdoor sites are fully instrumented in terms of monitoring meteorological conditions and solar irradiance. Candidate materials are optically characterized prior to being subjected to exposure in real and simulated weathering environments. Optical durability is quantified by periodically re-measuring hemispherical and specular reflectance as a function of exposure time. By closely monitoring the site- and time-dependent environmental stress conditions experienced by the material samples, site-dependent loss of performance may be quantified. In addition, accelerated exposure testing (AET) of these materials in parallel under laboratory-controlled conditions may permit correlating the outdoor results with AET, and subsequently predicting service lifetimes. Test results to date for a large number of candidate solar reflector materials are presented in this report. Acronyms are defined. Based upon OET and AET results to date, conclusions can be drawn about the optical durability of the candidate reflector materials. The optical durability of thin glass, thick glass, and two metallized polymers can be characterized as excellent. The all-polymeric construction, several of the aluminized reflectors, and a metallized polymer can be characterized as having intermediate durability and require further improvement, testing and evaluation, or both.

  13. Standardization of Solar Mirror Reflectance Measurements - Round Robin Test: Preprint

    SciTech Connect (OSTI)

    Meyen, S.; Lupfert, E.; Fernandez-Garcia, A.; Kennedy, C.

    2010-10-01T23:59:59.000Z

    Within the SolarPaces Task III standardization activities, DLR, CIEMAT, and NREL have concentrated on optimizing the procedure to measure the reflectance of solar mirrors. From this work, the laboratories have developed a clear definition of the method and requirements needed of commercial instruments for reliable reflectance results. A round robin test was performed between the three laboratories with samples that represent all of the commercial solar mirrors currently available for concentrating solar power (CSP) applications. The results show surprisingly large differences in hemispherical reflectance (sh) of 0.007 and specular reflectance (ss) of 0.004 between the laboratories. These differences indicate the importance of minimum instrument requirements and standardized procedures. Based on these results, the optimal procedure will be formulated and validated with a new round robin test in which a better accuracy is expected. Improved instruments and reference standards are needed to reach the necessary accuracy for cost and efficiency calculations.

  14. AVTA: 2010 Ford Fusion HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.transportation.anl.gov/D3/2010_fusion_hybrid.html). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  15. Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser inertial fusion energy power plants*

    E-Print Network [OSTI]

    California at Los Angeles, University of

    1 Grazing incidence liquid metal mirrors (GILMM) for radiation hardened final optics for laser final optics in a laser inertial fusion energy (IFE) power plant. The amount of laser light the GILMM substrate, adaptive (deformable) optics, surface tension and low Reynolds number, laminar flow in the film

  16. Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles

    SciTech Connect (OSTI)

    Ribe, F.L.; Werner, R.W.

    1981-01-21T23:59:59.000Z

    This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li/sub 2/O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H/sub 2/ and O/sub 2/.

  17. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B). Revision 1

    SciTech Connect (OSTI)

    Karpenko, V.N.; Ng, D.S.

    1985-08-15T23:59:59.000Z

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. 13 refs.

  18. AVTA: Ford Fusion HEV 2010 Testing Results | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric vehicle. The baseline performance testing provides a point of comparison...

  19. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect (OSTI)

    Krikorian, O.H. (ed.)

    1982-02-09T23:59:59.000Z

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

  20. Further Analysis of Accelerated Exposure Testing of Thin-Glass Mirror Matrix

    SciTech Connect (OSTI)

    Kennedy, C. E.; Terwilliger, K.; Jorgensen, G. J.

    2007-01-01T23:59:59.000Z

    Concentrating solar power (CSP) companies have deployed thin-glass mirrors produced by wet-silver processes on {approx}1-mmthick, relatively lightweight glass. These mirrors are bonded to metal substrates in commercial installations and have the confidence of the CSP industry. Initial hemispherical reflectance is {approx}93%-96%, and the cost is {approx}$16.1/m{sup 2}-$43.0/m{sup 2}. However, corrosion was observed in mirror elements of operational solar systems deployed outdoors for 2 years. National Renewable Energy Laboratory (NREL) Advanced Materials Team has been investigating this problem. First, it was noted that this corrosion is very similar to the corrosion bands and spots observed on small (45 mm x 67 mm) thin-glass mirrors laminated to metal substrates with several different types of adhesives and subjected to accelerated exposure testing (AET) at NREL. The corrosion appears as dark splotches in the center of the mirror, with a corresponding 5%-20% loss in reflectivity. Secondly, two significant changes in mirror manufacture have occurred in the wet-chemistry process because of environmental concerns. The first is the method of forming a copper-free reflective mirror, and the second is the use of lead-free paints. However, the copper-free process requires stringent quality control and the lead-free paints were developed for interior applications. A test matrix of 84 combinations of sample constructions (mirror type/backprotective paint/adhesive/substrate) was devised for AET as a designed experiment to identify the most-promising mirrors, paints, and adhesives for use with concentrator designs. Two types of accelerated exposure were used: an Atlas Ci5000 WeatherOmeter (CI5000) and a BlueM damp-heat chamber. Based on an analysis of variance (ANOVA), the various factors and interactions were modeled. These samples now have more than 36 months of accelerated exposure, and most samples have completed their test cycle. We will discuss the results of the final exposure testing of these mirror samples. Glass mirrors with copper back-layers and heavily leaded paints have been considered robust for outdoor use. However, the basic mirror composition of the new mirrors is radically different from that of historically durable solar mirrors, and the outdoor durability must be determined.

  1. Mechanical and Thermal Tests of the Containers of Liquid Mirrors

    E-Print Network [OSTI]

    E. F. Borra; R. Content; G. Tremblay; A. Daigle; Y. Huot

    2004-03-25T23:59:59.000Z

    We give a generic description of a liquid mirror system and summarize some practical information useful to making them. We compare laboratory measurements of deformations, due to the weight of mercury on the container of a 3.7-m mirror and to temperature changes on a 1-m container, to finite element computer simulations. We find that the measurements agree reasonably well with the numerical simulations. The measurements on the 1-m container show no evidence of fatigue after a few thermal cycles. These results validate the computer models of containers described in a companion article.

  2. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28T23:59:59.000Z

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  3. Fusion reactor control study. Volume 3. Tandem mirror reactors. Final report

    SciTech Connect (OSTI)

    Chang, F.R.; DeCanio, F.; Fisher, J.L.; Madden, P.A.

    1982-03-01T23:59:59.000Z

    A study of the control requirements of the Tandem Mirror Reactor concept is reported. The study describes the development of a control simulator that is based upon a spatially averaged physics code of the reactor concept. The simulator portrays the evolution of the plasma through the complete reactor operating cycle; it includes models of the control and measurement system, thus allowing the exploration of various strategies for reactor control. Startup, shutdown, and control during the quasi-steady-state power producing phase were explored. Configurations are described which use a variety of control effectors including modulation of the refueling rate, beam current, and electron cyclotron resonance heating. Multivariable design techniques were used to design the control laws and compensators for the feedback controllers and presume the practical measurement of only a subset of the plasma and machine variables. Performance of the various controllers is explored using the nonlinear control simulator. Derivative control strategies using new or developed sensors and effectors appropriate to a power reactor environment are postulated, based upon the results of the control configurations tested. Research and development requirements for these controls are delineated.

  4. Testing the scaling of thermal transport models: predicted and measured temperatures in the Tokamak Fusion Test

    E-Print Network [OSTI]

    in the Tokamak Fusion Test Reactor dimensionless scaling experiments D. R. Mikkelsen, S. D. Scott Princeton the Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] nondimensional to International Tokamak Experimental Reactor [2] (ITER) class tokamaks. This paper compares the predictions

  5. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test...

    Broader source: Energy.gov (indexed) [DOE]

    1 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy National...

  6. Fusion Rules in Navier-Stokes Turbulence: First Experimental Tests

    E-Print Network [OSTI]

    Adrienne L. Fairhall; Brindesh Dhruva; Victor S. L'vov; Itamar Procaccia; Katepalli R. Sreenivasan

    1997-01-16T23:59:59.000Z

    We present the first experimental tests of the recently derived fusion rules for Navier-Stokes (N-S) turbulence. The fusion rules address the asymptotic properties of many-point correlation functions as some of the coordinates coalesce, and form an important ingredient of the nonperturbative statistical theory of turbulence. Here we test the fusion rules when the spatial separations lie within the inertial range, and find good agreement between experiment and theory. An unexpected result is a simple linear law for the Laplacian of the velocity fluctuation conditioned on velocity increments across large separations.

  7. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect (OSTI)

    Werner, R.W. (ed.)

    1982-11-01T23:59:59.000Z

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  8. NEUTRON ACTIVATION COOLDOWN OF THE TOKAMAK FUSION TEST REACTOR

    E-Print Network [OSTI]

    involved the safe handling and processing about 100g of tritium. This resulted in manageable long concrete Test Cell showing the relative locations of the vessel, neutral beam injection systems, the vacuum. INTRODUCTION The Tokamak Fusion Test Reactor (TFTR) began high power deuterium­tritium (D­T) fueled operations

  9. Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)

    SciTech Connect (OSTI)

    Lee, J.; Elmore, R.; Kennedy, C.; Gray, M.; Jones, W.

    2011-09-01T23:59:59.000Z

    This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solar Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.

  10. I. INTRODUCTION The Tokamak Fusion Test Reactor (TFTR) is a

    E-Print Network [OSTI]

    research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Ã?Facility SafetyÃ?) and e) provide data The Decommissioning and Decontamination of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics

  11. I. INTRODUCTION The Tokamak Fusion Test Reactor (TFTR) is a

    E-Print Network [OSTI]

    research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D­site complex as a non­nuclear facility as defined in DOE Order 420.1 (``Facility Safety'') and e) provide data The Decommissioning and Decontamination of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics

  12. Special topics reports for the reference tandem mirror fusion breeder. Volume 2. Reactor safety assessment

    SciTech Connect (OSTI)

    Maya, I.; Hoot, C.G.; Wong, C.P.C.; Schultz, K.R.; Garner, J.K.; Bradbury, S.J.; Steele, W.G.; Berwald, D.H.

    1984-09-01T23:59:59.000Z

    The safety features of the reference fission suppressed fusion breeder reactor are presented. These include redundancy and overcapacity in primary coolant system components to minimize failure probability, an improved valve location logic to provide for failed component isolation, and double-walled coolant piping and steel guard vessel protection to further limit the extent of any leak. In addition to the primary coolant and decay heat removal system, reactor safety systems also include an independent shield cooling system, the module safety/fuel transfer coolant system, an auxiliary first wall cooling system, a psssive dump tank cooling system based on the use of heat pipes, and several lithium fire suppression systems. Safety system specifications are justified based on the results of thermal analysis, event tree construction, consequence calculations, and risk analysis. The result is a reactor design concept with an acceptably low probability of a major radioactivity release. Dose consequences of maximum credible accidents appear to be below 10CFR100 regulatory limits.

  13. Neoclassical simulations of fusion alpha particles in pellet charge exchange experiments on the Tokamak Fusion Test Reactor

    E-Print Network [OSTI]

    on the Tokamak Fusion Test Reactor M. H. Redi a , S. H. Batha, M. G. Bell, R. V. Budny, D. S. Darrow, F. M on the Tokamak Fusion Test Reactor (TFTR) [Phys. Plas. 5 , 1577 (1998)] are found to be in good agreement code which includes the neoclassical transport processes, a recent first­principles model

  14. Neoclassical simulations of fusion alpha particles in pellet charge exchange experiments on the Tokamak Fusion Test Reactor

    E-Print Network [OSTI]

    on the Tokamak Fusion Test Reactor M. H. Redia , S. H. Batha, M. G. Bell, R. V. Budny, D. S. Darrow, F. M on the Tokamak Fusion Test Reactor (TFTR) [Phys. Plas. 5, 1577 (1998)] are found to be in good agreement code which includes the neoclassical transport processes, a recent first-principles model

  15. Plan for decommissioning the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Spampinato, P.T.; Walton, G.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Commander, J.C. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1993-12-31T23:59:59.000Z

    The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D&D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D&D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D&D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D&D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates.

  16. Plan for decommissioning the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Spampinato, P.T.; Walton, G.R. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Commander, J.C. (EG and G Idaho, Inc., Idaho Falls, ID (United States))

    1993-01-01T23:59:59.000Z

    The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates.

  17. Testing the ae \\Lambda scaling of thermal transport models: predicted and measured temperatures in the Tokamak Fusion Test

    E-Print Network [OSTI]

    in the Tokamak Fusion Test Reactor dimensionless scaling experiments D. R. Mikkelsen, S. D. Scott Princeton the Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] nondimensional to extrapo­ late [1] from current experiments to International Tokamak Experimental Reactor [2] (ITER) class

  18. Model year 2010 Ford Fusion Level-1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

    2010-11-23T23:59:59.000Z

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

  19. Tandem mirror technology demonstration facility

    SciTech Connect (OSTI)

    Not Available

    1983-10-01T23:59:59.000Z

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  20. HEV Fleet Testing - 2010 Ford Fusion VIN:4699 - Fleet Testing...

    Broader source: Energy.gov (indexed) [DOE]

    699 Fleet Testing Results To Date Operating Statistics Distance Driven: 73,490 Average Trip Distance: 10.8 mi Stop Time with Engine Idling: 13% Trip Type CityHighway: 86%...

  1. Electron beams in material testing for fusion reactors

    SciTech Connect (OSTI)

    Ganley, J.T.; McDonald, J.M.; Youchison, D.L. [Sandia National Laboratories, Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    The Plasma Material Test Facility at Sandia National Laboratory is currently involved in a multi-year program of thermally testing materials and high heat flux components for eventual use in fusion reactors. The major test system in the facility is the EB-1200 System, which uses two EH600S Von Ardenne electron guns to provide up to 1.2 MW of heating for large material samples and components. In this paper, the advantages of using electron guns for this type of testing will be discussed. Gun performance characteristics will be presented, as well as electronic techniques used to provide the rapidly varying power levels and complex scan patterns required for complicated targets. Diagnostic capabilities of importance to the experimental program will also be discussed.

  2. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect (OSTI)

    Molvik, A W; Simonen, T C

    2009-07-17T23:59:59.000Z

    This report summarizes discussions and conclusions of the workshop to 'Assess The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification'. The workshop was held at LBNL, Berkeley, CA on March 12, 2009. Most workshop attendees have worked on magnetic mirror systems, several have worked on similar neutron source designs, and others are knowledgeable of materials, fusion component, and neutral beams The workshop focused on the gas dynamic trap DT Neutron Source (DTNS) concept being developed at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia. The DTNS may be described as a line source of neutrons, in contrast to a spallation or a D-Lithium source with neutrons beaming from a point, or a tokamak volume source. The DTNS is a neutral beam driven linear plasma system with magnetic mirrors to confine the energetic deuterium and tritium beam injected ions, which produce the 14 MeV neutrons. The hot ions are imbedded in warm-background plasma, which traps the neutral atoms and provides both MHD and micro stability to the plasma. The 14 MeV neutron flux ranges typically at the level of 1 to 4 MW/m2.

  3. Optimization and test of a 120mm LARP Nb3Sn quadrupole coil using magnetic mirror structure

    SciTech Connect (OSTI)

    Bossert, R.; Ambrosio, G.; Andreev, N.; /Fermilab; Anerella, M.; /Brookhaven; Barzi, E.; /Fermilab; Caspi, S.; /LBL, Berkeley; Cheng, D.; Chlachidze, G.; /Fermilab; Dietderich, D.; Felice, H.; Ferracin, P.; /LBL, Berkeley /Brookhaven /LBL, Berkeley /Fermilab /LBL, Berkeley /Brookhaven

    2011-09-01T23:59:59.000Z

    The US-LARP collaboration is developing a new generation of large-aperture high-field quadrupoles based on Nb{sub 3}Sn superconductor for the LHC upgrades. The development and implementation of this new technology involves the fabrication and testing of series of model magnets, coils and other components with various design and processing features. New 120-mm HQ coils made of Rutherford cable, one with an interlayer resistive core, and both with optimized reaction processes, were fabricated and tested using a quadrupole mirror structure under operating conditions similar to those in a real magnet. The coils were instrumented with voltage taps and strain gauges to study the mechanical and quench performance. Quench antenna and temperature gauges were installed in the mirror structure to measure the coil temperature and locate quench origins. This paper presents details of the coil design and fabrication procedures, coil assembly and pre-stress in the quadrupole mirror structure, and coil test results.

  4. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14T23:59:59.000Z

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  5. Systemic Test and Evaluation of a Hard+Soft Information Fusion Framework

    E-Print Network [OSTI]

    Shapiro, Stuart C.

    Systemic Test and Evaluation of a Hard+Soft Information Fusion Framework Challenges and Current". Developed on this program is a fully integrated research prototype hard+soft fusion system in which raw hard with the research issues in developing a baseline hard+soft fusion system, while identifying a number of design

  6. Proposal for a Universal Test Mirror for Characterization of SlopeMeasuring Instruments

    SciTech Connect (OSTI)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Warwick, Tony; Noll,Tino; Siewert, Frank; Zeschke, Thomas; Geckeler, Ralf D.

    2007-07-31T23:59:59.000Z

    The development of third generation light sources like theAdvanced Light Source (ALS) or BESSY II brought to a focus the need forhigh performance synchrotron optics with unprecedented tolerances forslope error and micro roughness. Proposed beam lines at Free ElectronLasers (FEL) require optical elements up to a length of one meter,characterized by a residual slope error in the range of 0.1murad (rms),and rms values of 0.1 nm for micro roughness. These optical elements mustbe inspected by highly accurate measuring instruments, providing ameasurement uncertainty lower than the specified accuracy of the surfaceunder test. It is essential that metrology devices in use at synchrotronlaboratories be precisely characterized and calibrated to achieve thistarget. In this paper we discuss a proposal for a Universal Test Mirror(UTM) as a realization of a high performance calibration instrument. Theinstrument would provide an ideal calibration surface to replicate aredundant surface under test of redundant figure. The application of asophisticated calibration instrument will allow the elimination of themajority of the systematic error from the error budget of an individualmeasurement of a particular optical element. We present the limitationsof existing methods, initial UTM design considerations, possiblecalibration algorithms, and an estimation of the expectedaccuracy.

  7. Neoclassical simulations of fusion alpha particles in pellet charge exchange experiments on the Tokamak Fusion Test Reactor

    E-Print Network [OSTI]

    Redi, Martha H.

    on the Tokamak Fusion Test Reactor M. H. Redia , S. H. Batha, R. V. Budny, D. S. Darrow, F. M. Levinton, D. C. Mc Test Reactor [Phys. Plas. 5, 1577 (1998)] are found to be in good agreement with measurements includes the neoclassical transport processes, a recent first-principles model for stochastic ripple loss

  8. Application of reliability analysis method to fusion component testing

    SciTech Connect (OSTI)

    Ying, A.Y.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

    1994-12-31T23:59:59.000Z

    The term reliability here implies that a component satisfies a set of performance criteria while under specified conditions of use over a specified period of time. For fusion nuclear technology, the reliability goal to be pursued is the development of a mean time between failures (MTBF) for a component which is longer than its lifetime goal. While the component lifetime is mainly determined by the fluence limitation (i.e., damage level) which leads to performance degradation or failure, the MTBF represents an arithmetic average life of all units in a population. One method of assessing the reliability goal involves determining component availability needs to meet the goal plant availability, defining a test-analyze-fix development program to improve component reliability, and quantifying both test times and the number of test articles that would be required to ensure that a specified target MTBF is met. Statistically, constant failure rates and exponential life distributions are assumed for analyses and blanket component development is used as an example. However, as data are collected the probability distribution of the parameter of interest can be updated in a Bayesian fashion. The nuclear component testing program will be structured such that reliability requirements for DEMO can be achieved. The program shall not exclude the practice of a good design (such as reducing the complexity of the system to the minimum essential for the required operation), the execution of high quality manufacturing and inspection processes, and the implication of quality assurance and control for component development. In fact, the assurance of a high quality testing/development program is essential so that there is no question left for reliability.

  9. A New Interpretation of Alpha-Particle-Driven Instabilities in Deuterium-Tritium Experiments on the Tokamak Fusion Test Reactor

    E-Print Network [OSTI]

    A New Interpretation of Alpha-Particle-Driven Instabilities in Deuterium-Tritium Experiments on the Tokamak Fusion Test Reactor

  10. Issues and test requirements in radiation shielding of fusion reactors

    SciTech Connect (OSTI)

    Nakagawa, M.; Abdou, M.A.

    1986-11-01T23:59:59.000Z

    Radiation shield issues for fusion reactors have been investigated and the experiments and facilities required to resolve the issues have been identified and characterized as part of the FINESSE program. This paper summarizes the recommended approach to fusion shield research and development, provides a summary of the necessary experiments and facilities, and presents the results of technical analyses involved.

  11. Issues and test requirements in radiation shielding of fusion reactors

    SciTech Connect (OSTI)

    Nakagawa, M.; Abdou, M.A.

    1986-01-01T23:59:59.000Z

    Radiation shield issues for fusion reactors have been investigated and the experiments and facilities required to resolve the issues have been identified and characterized as part of the FINESSE program. This paper summarizes the recommended approach to fusion shield R and D, provides a summary of the necessary experiments and facilities, and presents the results of technical analyses involved.

  12. Testing the mirror world hypothesis for the close-in extrasolar planets

    E-Print Network [OSTI]

    R. Foot

    2004-06-10T23:59:59.000Z

    Because planets are not expected to be able to form close to stars due to the high temperatures, it has been suggested that the observed close orbiting ($\\sim 0.05$ AU) large mass planets ($\\sim M_J$) might be mirror worlds -- planets composed predominately of mirror matter. The accretion of ordinary matter onto the mirror planet (from e.g. the solar wind from the host star) will make the mirror planet opaque to ordinary radiation with an effective radius $R_p$. It was argued in a previous paper, astro-ph/0101055, that this radius was potentially large enough to explain the measured size of the first transiting close-in extrasolar planet, HD209458b. Furthermore, astro-ph/0101055, made the rough prediction: $R_p \\propto \\sqrt{{T_s \\over M_p}}$, where $T_s$ is the surface temperature of the ordinary matter in the mirror planet and $M_p$ is the mass of the planet (the latter dependence being the more robust prediction). We compare this prediction with the recently discovered transiting planets, OGLE-TR-56b and OGLE-TR-113b.

  13. HEV Fleet Testing - Summary Fact Sheet for 2010 Ford Fusion

    Broader source: Energy.gov (indexed) [DOE]

    Ford Fusion VIN 3FADP0L32AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features:...

  14. PPPL to launch major upgrade of key fusion energy test facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to launch major upgrade of key fusion energy test facility NSTX project will produce most powerful spherical torus in the world By John Greenwald January 9, 2012 Tweet Widget...

  15. HEV Fleet Testing - Summary Fact Sheet 2010 Ford Fusion vin#4757

    Broader source: Energy.gov (indexed) [DOE]

    insurance, fuel, and registration costs Advanced Vehicle Testing Activity 2010 Ford Fusion VIN 3FADP0L34AR144757 Description: This vehicle is operated throughout the valley of...

  16. Speciation by monobrachial centric fusions: A test of the model using nuclear DNA sequences from the bat genus Rhogeessa

    E-Print Network [OSTI]

    Hillis, David

    Speciation by monobrachial centric fusions: A test of the model using nuclear DNA sequences from chromosomal rearrangements in a model termed speciation by monobrachial centric fusions. Recently a more comprehensive test of speciation by monobrachial centric fusions in Rhogeessa. Our analysis

  17. A Fusion Test Facility for Inertial Fusion Presented by Stephen Obenschain

    E-Print Network [OSTI]

    target designs consistent with the energy application. · Development of economical mass production with direct laser drive NRL Laser Fusion DT ice (fuel) ablator D Pellet shell imploded by laser ablation to v 300 km/sec for >MJ designs Hot fuel Cold fuel · Reduce pellet mass while increasing implosion velocity

  18. Fusion Engineering and Design 81 (2006) 659664 Solid breeder test blanket module design and analysis

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01T23:59:59.000Z

    Fusion Engineering and Design 81 (2006) 659­664 Solid breeder test blanket module design This paper presents the design and analysis for the US ITER solid breeder blanket test articles. Objectives of solid breeder blanket testing during the first phase of the ITER operation focus on exploration

  19. Hydrogen Hydrogen FusionFusionFusionFusionFusionFusion

    E-Print Network [OSTI]

    Heiz, Ulrich

    100.000 years LNGS Laboratori Nazionali del Gran Sasso Borexino THE THERMONUCLEAR FUSION REACTIONHydrogen Hydrogen Fusion Deuterium FusionFusionFusionFusionFusionFusion THE SUN AS BOREXINO SEES

  20. Standard Test Method for Shear Strength of Fusion Bonded Polycarbonate Aerospace Glazing Material

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1995-01-01T23:59:59.000Z

    1.1 This test method determines the shear yield strength Fsy and shear ultimate strength Fsu of fusion bonds in polycarbonate by applying torsional shear loads to the fusion-bond line. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. NEUTRON ACTIVATION COOL-DOWN OF THE TOKAMAK FUSION TEST REACTOR

    E-Print Network [OSTI]

    involved the safe handling and processing about 100g of tritium. This resulted in manageable long concrete Test Cell showing the relative locations of the vessel, neutral beam injection systems, the vacuum. INTRODUCTION The Tokamak Fusion Test Reactor (TFTR) began high power deuterium-tritium (D-T) fueled operations

  2. AVTA: 2013 Ford Fusion Energi PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  3. OPTIMIZING CENTRIFUGAL BARREL POLISHING FOR MIRROR FINISH SRF CAVITY AND RF TESTS AT JEFFERSON LAB

    SciTech Connect (OSTI)

    Ari Palczewski, Rongli Geng, Hui Tian

    2012-07-01T23:59:59.000Z

    We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E{sub ACC} thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

  4. Alpha Channeling in Mirror Machines

    SciTech Connect (OSTI)

    Fisch N.J.

    2005-10-19T23:59:59.000Z

    Because of their engineering simplicity, high-?, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.

  5. Sandia National Laboratories: Solar Mirrors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Mirrors Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software & Tools Resources Contacts News Concentrating Solar Power...

  6. High poloidal beta long-pulse experiments in the Tokamak Fusion Test Reactor*

    E-Print Network [OSTI]

    Mauel, Michael E.

    High poloidal beta long-pulse experiments in the Tokamak Fusion Test Reactor* J. Kesner+ Plasma stability and confinement. As the current profile evolved, a significantly reduced beta limit was observed after the current ramp-down carried negative current. At later times in lower flN discharges, beta

  7. Comment on Li pellet conditioning in tokamak fusion test reactor R. V. Budny

    E-Print Network [OSTI]

    Budny, Robert

    Comment on Li pellet conditioning in tokamak fusion test reactor R. V. Budny Princeton Plasma; published online 9 September 2011) Li pellet conditioning in TFTR results in a reduction of the edge technique for introducing Li is via pellet injection. This was pioneered in ALCATOR- CMOD where it was first

  8. 2010 Ford Fusion-4699 Hybrid BOT Battery Test Results

    Broader source: Energy.gov (indexed) [DOE]

    of Motors 1 : 1 Motor Power Rating 2 : 60 kW VIN : 3FADP0L32AR194699 Static Capacity Test Measured Average Capacity: 5.29 Ah Measured Average Energy Capacity: 1,370 Wh Vehicle...

  9. HEV Fleet Testing - 2010 Ford Fusion vin#4757

    Broader source: Energy.gov (indexed) [DOE]

    757 Fleet Testing Results To Date Operating Statistics Distance Driven: 145,595 Average Trip Distance: 11.3 mi Stop Time with Engine Idling: 11% Trip Type CityHighway:...

  10. Mirror Advanced Reactor Study interim design report

    SciTech Connect (OSTI)

    Not Available

    1983-04-01T23:59:59.000Z

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  11. Mirror mount

    DOE Patents [OSTI]

    Kuklo, T.C.; Bender, D.A.

    1994-10-04T23:59:59.000Z

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  12. Plasma Phys. Control. Fusion 39 (1997) A275A283. Printed in the UK PII: S0741-3335(97)81172-4 Alpha-particle physics in the tokamak fusion test reactor

    E-Print Network [OSTI]

    Plasma Phys. Control. Fusion 39 (1997) A275­A283. Printed in the UK PII: S0741-3335(97)81172-4 Alpha-particle physics in the tokamak fusion test reactor DT experiment S J Zwebena , V Arunasalama fusion test reactor. Alpha particles are generally well confined in MHD-quiescent discharges, and alpha

  13. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  14. The LLNL HFTF (High-Field Test Facility): A flexible superconducting test facility for fusion magnet development

    SciTech Connect (OSTI)

    Miller, J.R.; Chaplin, M.R.; Leber, R.L.; Rosdahl, A.R.

    1987-09-17T23:59:59.000Z

    The High-Field Test Facility (HFTF) is a flexible and, in many ways, unique facility at Lawrence Livermore National Laboratory (LLNL) for providing the test capabilities needed to develop the superconducting magnet systems of the next generation fusion machines. The superconducting coil set in HFTF has been operated successfully at LLNL, but in its original configuration, its utility as a test facility was somewhat restricted and cryogenic losses were intolerable. A new cryostat for the coil set allows the magnet system to remain cold indefinitely so the system is available on short notice to provide high fields (about 11 T) inside a reasonably large test volume (0.3-m diam). The test volume is physically and thermally isolated from the coil volume, allowing test articles to be inserted and removed without disturbing the coil cryogenic volume, which is maintained by an on-line refrigerator. Indeed, with the proper precautions, it is even unnecessary to drop the field in the HFTF during such an operation. The separate test volume also allows reduced temperature operation without the expense and complication of subcooling the entire coil set (about 20-t cold mass). The HFTF has thus become a key facility in the LLNL magnet development program, where the primary goal is to demonstrate the technology for producing fields to 15 T with winding-pack current densities of 40 A.mm/sup -2/ in coils sized for fusion applications. 4 refs., 4 figs., 1 tab.

  15. VNS: A volumetric neutron source for fusion nuclear technology testing and development

    SciTech Connect (OSTI)

    Abdou, M.A.; Peng, Y.K.; Ying, A.Y. [Univ. of California, Los Angeles, CA (United States)] [and others

    1994-12-31T23:59:59.000Z

    Recent progress in fusion plasma research and the initiation of the Engineering Design Activity for ITER provide incentives to seriously explore technically sound and logically consistent pathways toward development of fusion as a practical and attractive energy source. A critical goal is the successful construction and operation of a fusion power demonstration plant (DEMO). Major world program strategies call for DEMO operation by the year 2025. Such a date is important in order for fusion to play a significant role in the energy supply market in the second half of the twenty-first century. Without such a DEMO goal, it will be very hard to justify major financial commitments in the near term for major projects such as ITER. The major question is whether a DEMO goal by the year 2025 is attainable from a technical standpoint. This has been the central question being addressed in a study, called VENUS. Results to date show that a DEMO by the year 2025 can be realized if three major facilities begin operation in parallel by the year 2005. These facilities are: (1) ITER, (2) VNS, and (3) IFMIF. Results show that VNS is a necessary element toward DEMO in a strategy consistent with present world program plans. The key requirements to test and develop fusion nuclear components (e.g. blanket) are 1 MW/m{sup 2} neutron wall load, >10 m{sup 2} of test area at the first wall, steady state or long burn plasma operation, fluence of {approx}6MWy/m{sup 2} at the first wall in {approx}10-12 year period, and duty cycle x availability factor of {approx}0.3. Results of the study show that an attractive design envelope for VNS that satisfies the nuclear testing and development requirements exists. Within this design envelope, the most attractive design points for VNS appear to be driven plasma (Q{approx}1) in tokamak configuration with normal toroidal-field copper coils, major radius 1.5-2.0m, fusion power {approx}100MW, and neutron wall load {approx}1.5MW/m{sup 2}.

  16. Mirror mount

    DOE Patents [OSTI]

    Humpal, H.H.

    1986-03-21T23:59:59.000Z

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  17. Mirror mount

    DOE Patents [OSTI]

    Humpal, H.H.

    1987-11-10T23:59:59.000Z

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  18. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    M.E. Lumia; C.A. Gentile

    2002-01-18T23:59:59.000Z

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  19. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    E-Print Network [OSTI]

    Lumia, M E

    2002-01-01T23:59:59.000Z

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  20. Seismic analysis of the Mirror Fusion Test Facility: soil structure interaction analyses of the Axicell vacuum vessel. Revision 1

    SciTech Connect (OSTI)

    Maslenikov, O.R.; Mraz, M.J.; Johnson, J.J.

    1986-03-01T23:59:59.000Z

    This report documents the seismic analyses performed by SMA for the MFTF-B Axicell vacuum vessel. In the course of this study we performed response spectrum analyses, CLASSI fixed-base analyses, and SSI analyses that included interaction effects between the vessel and vault. The response spectrum analysis served to benchmark certain modeling differences between the LLNL and SMA versions of the vessel model. The fixed-base analysis benchmarked the differences between analysis techniques. The SSI analyses provided our best estimate of vessel response to the postulated seismic excitation for the MFTF-B facility, and included consideration of uncertainties in soil properties by calculating response for a range of soil shear moduli. Our results are presented in this report as tables of comparisons of specific member forces from our analyses and the analyses performed by LLNL. Also presented are tables of maximum accelerations and relative displacements and plots of response spectra at various selected locations.

  1. Are mirror planets opaque?

    E-Print Network [OSTI]

    R. Foot

    2001-05-11T23:59:59.000Z

    Over the last few years, many close orbiting ($\\sim 0.05$ A.U.) large mass planets ($\\sim M_{J}$) of nearby stars have been discovered. Their existence has been inferred from tiny Doppler shifts in the light from the star and in one case a transit has been observed. Because ordinary planets are not expected to be able to form this close to ordinary stars due to the high temperatures, it has been speculated that the close-in large planets are in fact exotic heavenly bodies made of mirror matter. We show that the accretion of ordinary matter onto the mirror planet (from e.g.the solar wind from the host star) should make the mirror planet opaque to ordinary radiation with an effective radius ($R_p$) large enough to explain the measured size of the transiting close-in extrasolar planet, HD209458b. Furthermore we obtain the rough prediction that $R_{p} \\propto \\sqrt{{T_s\\over M_p}}$ (where $T_s$, is the surface temperature of the ordinary matter in the mirror planet and $M_p$ is the mass of the mirror planet) which will be tested in the near future as more transiting planets are found. We also show that the mirror world interpretation of the close-in extra solar planets explains the low albedo of $\\tau$ Boo b because the large estimated mass of $\\tau$ Boo b ($\\sim 7M_J$) implies a small effective radius of $R_p \\approx 0.5R_J$ for $\\tau$ Boo.

  2. Fiber optic hydrophone sensor arrays using low reflectance internal mirrors 

    E-Print Network [OSTI]

    Lee, Jong-Seo

    1998-01-01T23:59:59.000Z

    A new design of fiber optic hydrophone sensor arrays phics. using low reflectance internal mirrors in optical fibers is investigated. The mirrors are produced by fusion arc splicing of two fibers, one of which has a thin film of TiO2 on the end. A...

  3. ECR-GDM Thruster for Fusion Propulsion

    SciTech Connect (OSTI)

    Brainerd, Jerome J.; Reisz, Al [Reisz Engineers 2909 Johnson Rd. Huntsville, Alabama 35805 256-325-2531 (United States)

    2009-03-16T23:59:59.000Z

    The concept of the Gasdynamic Mirror (GDM) device for fusion propulsion was proposed by and Lee (1995) over a decade ago and several theoretical papers has supported the feasibility of the concept. A new ECR plasma source has been built to supply power to the GDM experimental thruster previously tested at the Marshall Space Flight Center (MSFC). The new plasma generator, powered by microwaves at 2.45 or 10 GHz. is currently being tested. This ECR plasma source operates in a number of distinct plasma modes, depending upon the strength and shape of the local magnetic field. Of particular interest is the compact plasma jet issuing form the plasma generator when operated in a mirror configuration. The measured velocity profile in the jet plume is bimodal, possibly as a result of the GDM effect in the ECR chamber of the thruster.

  4. An Advanced Fast Steering Mirror for optical communication

    E-Print Network [OSTI]

    Kluk, Daniel Joseph

    2007-01-01T23:59:59.000Z

    I describe in this thesis the design, fabrication, assembly, and testing of an Advanced Fast Steering Mirror (AFSM) for precision optical platforms. The AFSM consists of a mirror driven in two rotational axes by normal ...

  5. Technology of mirror machines: LLL facilities for magnetic mirror fusion

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu, Stephen G" Name NameRealexperiments | SciTech

  6. Modeling of divertor geometry effects in China fusion engineering testing reactor by SOLPS/B2-Eirene

    SciTech Connect (OSTI)

    Zhao, M. L., E-mail: zml812@mail.ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Chen, Y. P.; Li, G. Q.; Luo, Z. P. [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Guo, H. Y. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China) [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Ye, M. Y. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China) [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027 (China); Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Tendler, M. [Alfven Laboratory, Royal Institute of Technology, Stockholm (Sweden)] [Alfven Laboratory, Royal Institute of Technology, Stockholm (Sweden)

    2014-05-15T23:59:59.000Z

    The China Fusion Engineering Testing Reactor (CFETR) is currently under design. The SOLPS/B2-Eirene code package is utilized for the design and optimization of the divertor geometry for CFETR. Detailed modeling is carried out for an ITER-like divertor configuration and one with relatively open inner divertor structure, to assess, in particular, peak power loading on the divertor target, which is a key issue for the operation of a next-step fusion machine, such as ITER and CFETR. As expected, the divertor peak heat flux greatly exceeds the maximum steady-state heat load of 10?MW/m{sup 2}, which is a limit dictated by engineering, for both divertor configurations with a wide range of edge plasma conditions. Ar puffing is effective at reducing divertor peak heat fluxes below 10?MW/m{sup 2} even at relatively low densities for both cases, favoring the divertor configuration with more open inner divertor structure.

  7. Thermal loading considerations for synchrotron radiation mirrors

    SciTech Connect (OSTI)

    Holdener, F.R.; Berglin, E.J.; Fuchs, B.A.; Humpal, H.H.; Karpenko, V.P.; Martin, R.W.; Tirsell, K.G.

    1986-03-26T23:59:59.000Z

    Grazing incidence mirrors used to focus synchrotron radiation beams through small distant apertures have severe optical requirements. The surface distortion due to heat loading of the first mirror in a bending magnet beam line is of particular concern when a large fraction of the incident beam is absorbed. In this paper we discuss mirror design considerations involved in minimizing the thermal/mechanical loading on vertically deflecting first surface mirrors required for SPEAR synchrotron radiation beam lines. Topics include selection of mirror material and cooling method, the choice of SiC for the substrate, optimization of the thickness, and the design of the mirror holder and cooling mechanism. Results obtained using two-dimensional, finite-element thermal/mechanical distortion analysis are presented for the case of a 6/sup 0/ grazing incidence SiC mirror absorbing up to 260 W at Beam Line VIII on the SPEAR ring. Test descriptions and results are given for the material used to thermally couple this SiC mirror to a water-cooled block. The interface material is limited to applications for which the equivalent normal heat load is less than 20 W/cm/sup 2/.

  8. aspheric mirror fabrication: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We explore the possibility that these slow moving dark matter particles are small mirror matter dust particles originating from our solar system. Ways of further testing our...

  9. Electrons and Mirror Symmetry

    SciTech Connect (OSTI)

    Kumar, Krishna (University of Massachusetts, Amherst) [University of Massachusetts, Amherst

    2007-04-04T23:59:59.000Z

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  10. Erected mirror optical switch

    DOE Patents [OSTI]

    Allen, James J.

    2005-06-07T23:59:59.000Z

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  11. In China's Mirror

    E-Print Network [OSTI]

    Barros de Castro, Antônio

    2012-01-01T23:59:59.000Z

    of California, Berkeley In China’s Mirror * Antônio Barrosthe article “No Espelho da China,” which originally appearedThomas, “Produtos Baratos da China Facilitam a Vida de

  12. Laser correcting mirror

    DOE Patents [OSTI]

    Sawicki, Richard H. (Danville, CA)

    1994-01-01T23:59:59.000Z

    An improved laser correction mirror (10) for correcting aberrations in a laser beam wavefront having a rectangular mirror body (12) with a plurality of legs (14, 16, 18, 20, 22, 24, 26, 28) arranged into opposing pairs (34, 36, 38, 40) along the long sides (30, 32) of the mirror body (12). Vector force pairs (49, 50, 52, 54) are applied by adjustment mechanisms (42, 44, 46, 48) between members of the opposing pairs (34, 36, 38, 40) for bending a reflective surface 13 of the mirror body 12 into a shape defining a function which can be used to correct for comatic aberrations.

  13. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect (OSTI)

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23T23:59:59.000Z

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  14. Stable mirror mount

    DOE Patents [OSTI]

    Cutburth, R.W.

    1983-11-04T23:59:59.000Z

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  15. Engineering problems of tandem-mirror reactors

    SciTech Connect (OSTI)

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-10-22T23:59:59.000Z

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.

  16. High-Level Fusion Physics and Materials Interface Challenges July 27, 2012

    E-Print Network [OSTI]

    High-Level Fusion Physics and Materials Interface Challenges July 27, 2012 a Fusion Nuclear Science Facility (FNSF), to test materials under severe and fusion.S. fusion program complete the near term critical research and development (R

  17. Experience with operation of a large magnet system in the international fusion superconducting magnet test facility

    SciTech Connect (OSTI)

    Fietz, W.A.; Ellis, J.F.; Haubenreich, P.N.; Schwenterly, S.W.; Stamps, R.E.

    1985-01-01T23:59:59.000Z

    Superconducting toroidal field systems, including coils and ancillaries, are being developed through international collaboration in the Large Coil Task. Focal point is a test facility in Oak Ridge where six coils will be tested in a toroidal array. Shakedown of the facility and preliminary tests of the first three coils (from Japan, Switzerland, and the US) were accomplished in 1984. Useful data were obtained on performance of the helium refrigerator and distribution system, power supplies, control and data acquisition systems and voltages, currents, strains, and acoustic emission in the coils. Performance was generally gratifying except for the helium system, where improvements are being made.

  18. Nanolaminate deformable mirrors

    DOE Patents [OSTI]

    Papavasiliou, Alexandros P. (Oakland, CA); Olivier, Scot S. (Santa Cruz, CA)

    2009-04-14T23:59:59.000Z

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  19. Nanolaminate deformable mirrors

    SciTech Connect (OSTI)

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06T23:59:59.000Z

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  20. EIS-0017: Fusion Materials Irradiation Testing Facility, Hanford Reservation, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts associated with proposed construction and operation of an irradiation test facility, the Deuterium-Lithium High Flux Neutron Source Facility, at the Hanford Reservation.

  1. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    SciTech Connect (OSTI)

    Ritschel, A.J.; White, W.L.

    1985-05-01T23:59:59.000Z

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices.

  2. Perspectives of Use of Diagnostic Mirrors with Transparent Protection Layer in Burning Plasma Experiments

    SciTech Connect (OSTI)

    Mukhin, Eugene E.; Razdobarin, Gennadiy T.; Semenov, Vladimir V.; Tolstyakov, Sergey Yu.; Kochergin, Mikhail M.; Kurskiev, Gleb S.; Podushnikova, Klara A. [Department of Plasma Physics, Nuclear Physics and Astrophysics, A.F. Ioffe Physico-Technical lnstitute, SPb, 194021 (Russian Federation); Andreev, Alexandr N.; Davydov, Denis V.; Rastegaeva, Marina G. [Division of Solid State Physics, A.F. Ioffe Physico-Technical Institute, SPb, 194021 (Russian Federation); Khimich, Yuriy P.; Gorshkov, Vladimir N.; Nikitin, Dmitriy B. [Research Institute of Optical Design, Federal Research Center Vavilov State Optical Institute, SPb, 199034 (Russian Federation); Litnovsky, Andrej M. [Institute fur Plasmaphysik, Forschungszentrum Julich, Partner in the Trilateral Euregio Cluster, Ass EURATOM-FZ Julich, D-52425 Julich (Germany)

    2008-03-12T23:59:59.000Z

    We evaluate using of metal mirrors over-coated with transparent protection layer for the in-vessel diagnostic systems in reactor-grade fusion devices. Ideally, these should satisfy the contradictory demands of high reflectivity and small rate degradation when being bombarded by CX atoms. The serious threat to the performance of diagnostic mirrors is surface contamination with carbon-based material eroded from carbon tiles. Via coupling the protective layer to a bulk mirror we can mitigate the deposit infiuence on the reflectance spectra. The regards are given to survivability in plasma environment of protected coated metallic mirrors.

  3. Fusion Engineering and Design 81 (2006) 433441 An overview of US ITER test blanket module program

    E-Print Network [OSTI]

    Abdou, Mohamed

    2006-01-01T23:59:59.000Z

    blankets: (1) a helium-cooled solid breeder concept with ferritic steel structure and Be neutron multiplierLi liquid breeder blanket concepts in ITER are identified. © 2005 Elsevier B.V. All rights reserved. Keywords: ITER test blanket module program; Helium-cooled solid breeder blanket; Dual-coolant lead

  4. Composite mirror facets for ground based gamma ray astronomy

    E-Print Network [OSTI]

    Brun, P; Durand, D; Glicenstein, J-F; Jeanney, C; Medina, M C; Micolon, P; Peyaud, B

    2013-01-01T23:59:59.000Z

    Composite mirrors for gamma-ray astronomy have been developed to fulfill the specifications required for the next generation of Cherenkov telescopes represented by CTA (Cherenkov Telescope Array). In addition to the basic requirements on focus and reflection efficiency, the mirrors have to be stiff, lightweight, durable and cost efficient. In this paper, the technology developed to produce such mirrors is described, as well as some tests that have been performed to validate them. It is shown that these mirrors comply with the needs of CTA, making them good candidates for use on a significant part of the array.

  5. Thermonuclear fusion

    E-Print Network [OSTI]

    Thermonuclear fusion is a way to achieve nuclear fusion by using extremely high temperatures. There are two forms of thermonuclear fusion: uncontrolled, in which the resulting energy is released in an uncontrolled manner, as it is in thermonuclear weapon...

  6. After many years of fusion research, the conditions needed for a DT fusion reactor have been approached on the Tokamak Fusion Test Reactor (TFTR). For the first time the

    E-Print Network [OSTI]

    Hammett, Greg

    , is observed to increase in D­T, relative to D plasmas, by 20% and the n i (0) T i (0) t E product by 55 supershot and limiter­H­mode discharges. Extensive lithium pellet injection increased the confinement time. Demonstrating the production of »10 MW of fusion power. In this paper, a brief description will be given

  7. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01T23:59:59.000Z

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  8. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  9. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  10. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    None

    2009-01-01T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  11. Transition Metal Switchable Mirror

    SciTech Connect (OSTI)

    2009-08-21T23:59:59.000Z

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  12. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O. (Golden, CO); Kennedy, Cheryl E. (Lafayette, CO); Jorgensen, Gary J. (Pine, CO); Shinton, Yvonne D. (Northglenn, CO); Goggin, Rita M. (Englewood, CO)

    1994-01-01T23:59:59.000Z

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  13. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01T23:59:59.000Z

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  14. Mirror Symmetry Constructions

    E-Print Network [OSTI]

    Emily Clader; Yongbin Ruan

    2014-12-03T23:59:59.000Z

    These expository notes are based on lectures by Yongbin Ruan during a special semester on the B-model at the University of Michigan in Winter 2014. They outline and compare the mirror symmetry constructions of Batyrev-Borisov, Hori-Vafa, and Bergland-Hubsch-Krawitz.

  15. Nuclear Engineeringand Design/Fusion 2 (1985) 19-27 North-Holland, Amsterdam

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    Nuclear Engineeringand Design/Fusion 2 (1985) 19-27 North-Holland, Amsterdam 19 INELASTIC for blankets that will give maximum nuclear and thermodynamic performance in a given reactor concept. Fusion STRUCTURAL ANALYSIS OF THE MARS TANDEM MIRROR REACTOR J.P. BLANCHARD and N.M. GHONIEM Fusion Engineering

  16. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    NONE

    1994-05-27T23:59:59.000Z

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  17. Wave-driven Rotation in Supersonically Rotating Mirrors

    SciTech Connect (OSTI)

    A. Fetterman and N.J. Fisch

    2010-02-15T23:59:59.000Z

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  18. National Research Centre "Kurchatov Institute" Progress in Magnetic Fusion TechnologyProgress in Magnetic Fusion Technology

    E-Print Network [OSTI]

    :Tokamak Cooling Water System (US) First delivery of Plant Components Test Convoys Test Convoys #12National Research Centre "Kurchatov Institute" Progress in Magnetic Fusion TechnologyProgress, INTEGRATION&POWER PLANT DESIGN FUSION NUCLEAR SCIENCE MATERIAL TECHNOLOGY SYSTEMS SAFETY ECONOMIC

  19. Magnetic Fusion Pilot Plant Studies

    E-Print Network [OSTI]

    FNSF = Fusion Nuclear Science Facility CTF = Component Test Facility · Powerplantlike maintenance. · Targeted ultimate capabilities: ­ Fusion nuclear S&T development, component testing · Steady applicable to power plant · Demonstrate methods for fast replacement of in-vessel components ­ Net

  20. Plasma heating and hot ion sustaining in mirror based hybrids

    SciTech Connect (OSTI)

    Moiseenko, V. E.; Agren, O. [Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology', Akademichna St. 1, 61108 Kharkiv (Ukraine); Uppsala University, Angstroem Laboratory, Division of Electricity, Box 534, SE-75121 Uppsala (Sweden)

    2012-06-19T23:59:59.000Z

    Possibilities of plasma heating and sloshing ion sustaining in mirror based hybrids are briefly reviewed. Sloshing ions, i.e. energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement and generation of fusion neutrons in mirror machines. Neutral beam injection (NBI) is first discussed as a method to generate sloshing ions. Numerical results of NBI modeling for a stellarator-mirror hybrid are analyzed. The sloshing ions could alternatively be sustained by RF heating. Fast wave heating schemes, i.e. magnetic beach, minority and second harmonic heating, are addressed and their similarities and differences are described. Characteristic features of wave propagation in mirror hybrid devices including both fundamental harmonic minority and second harmonic heating are examined. Minority heating is efficient for a wide range of minority concentration and plasma densities; it allows one to place the antenna aside from the hot ion location. A simple-design strap antenna suitable for this has good performance. However, this scenario is appropriate only for light minority ions. The second harmonic heating can be applied for the heavy ion component. Arrangements are similar for minority and second harmonic heating. The efficiency of second harmonic heating is influenced by a weaker wave damping than for minority heating. Numerical calculations show that in a hybrid reactor scaled mirror machine the deuterium sloshing ions could be heated within the minority heating scheme, while the tritium ions could be sustained by second harmonic heating.

  1. Quantum Mirrors and Crossing Symmetry as Heart of Ghost Imaging

    E-Print Network [OSTI]

    D. B. Ion; M. L. Ion; L. Rusu

    2009-04-27T23:59:59.000Z

    In this paper it is proved that the key to understanding the ghost imaging mystery are the crossing symmetric photon reactions in the nonlinear media. Hence, the laws of the plane quantum mirror (QM) and that of spherical quantum mirror, observed in the ghost imaging experiments, are obtained as natural consequences of the energy-momentum conservation laws. So, it is shown that the ghost imaging laws depend only on the energy-momentum conservation and not on the photons entanglement. The extension of these results to the ghost imaging with other kind of light is discussed. Some fundamental experiments for a decisive tests of the [SPDC-DFG]-quantum mirror are suggested.

  2. Exhibitions Fusion Expo and Eindhoven University

    E-Print Network [OSTI]

    Exhibitions Fusion Expo and Eindhoven University Culham Publication Services was asked to produce with plasma for the Fusion Test Centre at Eindhoven University. These were well received by both clients. "The

  3. Lithium-based electrochromic mirrors

    E-Print Network [OSTI]

    Richardson, Thomas J.; Slack, Jonathan L.

    2003-01-01T23:59:59.000Z

    LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson*with pure antimony films. Electrochromic cycling speed andand silver. INTRODUCTION Electrochromic devices that exhibit

  4. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect (OSTI)

    C.A. Gentile, W.R. Blanchard, T.A. Kozub, M. Aristova, C. McGahan, S. Natta, K. Pagdon, J. Zelenty

    2010-01-14T23:59:59.000Z

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber wall acts as the primary heat exchanger. During removal, gas is pumped through the laser ports by turbo molecular-drag pumps (TM-DP). For the purpose of reducing organic based lubricants and seals, a magnetically levitated TM-DP is being investigated with pump manufacturers. Currently, magnetically levitated turbo molecular pumps are commercially available. The pumps will be exposed to thermal loads and ionizing radiation (tritium, Ar-41, post detonation neutrons). Although the TM-DP's will be subjected to these various radiations, current designs for similar pumping devices have been hardened and have the ability of locating control electronics in remote radiation shielded enclosures4. The radiation hardened TM-DP's will be 5 required to operate with minimal maintenance for periods of up to 18 continuous months. As part of this initial investigation for developing a conceptual engineering strategy for a gas fill solution, commercial suppliers of low pressure gas pumping systems have been contacted and engaged in this evaluation. Current technology in the area of mechanical pumping systems indicates that the development of a robust pumping system to meet the requirements of the FTF gas fill concept is within the limits of COTS equipment3,4.

  5. Acquisition, tracking, pointing, and line-of-sight control laboratory experiments for a space-based bifocal relay mirror

    E-Print Network [OSTI]

    as well as the development of a test bed for a bifocal relay mirror spacecraft. Figure 1. Bifocal Relay-based bifocal relay mirror M. G. Spencer*, B. N. Agrawal, M. Romano Spacecraft Research and Design Center Naval ABSTRACT Space based bifocal relay mirrors are potentially an enabling/enhancing piece of any architecture

  6. Tilted-mirror semiconductor lasers

    SciTech Connect (OSTI)

    Salzman, J.; Lang, R.; Margalit, S.; Yariv, A.

    1985-07-01T23:59:59.000Z

    Broad-area GaAs heterostructure lasers with a tilted mirror were demonstrated for the first time, with the tilted mirror fabricated by etching. These lasers operate in a smooth and stable single lateral mode with a high degree of spatial coherence. The suppression of filamentation manifests itself in a high degree of reproducibility in the near-field pattern.

  7. Heat-pipe liquid-pool-blanket concept for the Tandem Mirror Reactor

    SciTech Connect (OSTI)

    Hoffman, M.A.; Werner, R.W.; Johnson, G.L.

    1981-10-01T23:59:59.000Z

    The blanket concept for the tandem mirror reactor described in this paper was developed to produce the medium temperature heat (approx. 850 to 950 K) for the General Atomic sulfur-iodine thermochemical process for producing hydrogen. This medium temperature heat from the blanket constitutes about 81% of the total power output of the fusion reactor.

  8. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, D.L.

    1987-09-04T23:59:59.000Z

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  9. A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations

    E-Print Network [OSTI]

    Brousseau, D; Parent, J; Ruel, H J; Borra, Ermanno F.; Brousseau, Denis; Parent, Jocelyn; Ruel, Hubert-Jean

    2006-01-01T23:59:59.000Z

    We present a new class of magnetically shaped deformable liquid mirrors made of a magnetic liquid (ferrofluid). Deformable liquid mirrors offer advantages with respect to deformable solid mirrors: large deformations, low costs and the possibility of very large mirrors with added aberration control. They have some disadvantages (e.g. slower response time). We made and tested a deformable mirror, producing axially symmetrical wavefront aberrations by applying electric currents to 5 concentric coils made of copper wire wound on aluminum cylinders. Each of these coils generates a magnetic field which combines to deform the surface of a ferrofluid to the desired shape. We have carried out laboratory tests on a 5 cm diameter prototype mirror and demonstrated defocus as well as Seidel and Zernike spherical aberrations having amplitudes up to 20 microns, which was the limiting measurable amplitude of our equipment

  10. A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations

    E-Print Network [OSTI]

    Denis Brousseau; Ermanno F. Borra; Hubert-Jean Ruel; Jocelyn Parent

    2006-11-15T23:59:59.000Z

    We present a new class of magnetically shaped deformable liquid mirrors made of a magnetic liquid (ferrofluid). Deformable liquid mirrors offer advantages with respect to deformable solid mirrors: large deformations, low costs and the possibility of very large mirrors with added aberration control. They have some disadvantages (e.g. slower response time). We made and tested a deformable mirror, producing axially symmetrical wavefront aberrations by applying electric currents to 5 concentric coils made of copper wire wound on aluminum cylinders. Each of these coils generates a magnetic field which combines to deform the surface of a ferrofluid to the desired shape. We have carried out laboratory tests on a 5 cm diameter prototype mirror and demonstrated defocus as well as Seidel and Zernike spherical aberrations having amplitudes up to 20 microns, which was the limiting measurable amplitude of our equipment

  11. Fusion power production in TFTR

    SciTech Connect (OSTI)

    Bell, M.G.; Budny, R.V. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States)] [and others

    1994-11-01T23:59:59.000Z

    Up to 9.3 MW of fusion power has been produced from deuterium-tritium (DT) fusion reactions in the Tokamak Fusion Test Reactor (TFTR). The total fusion yield from a single plasma pulse has reached 6.5 MJ. The experiments in TFTR with deuterium-tritium plasmas fueled and heated by neutral beam injection span wide ranges in plasma and operating conditions. Through the use of lithium pellet conditioning to control the edge recycling, the plasma confinement in TFTR has been improved to the point where the stability of the plasma to pressure driven modes is limiting the fusion power for plasma currents up to 2.5 MA. The central energy and fusion power densities in these plasmas are comparable to those expected in a thermalized DT reactor, such as ITER.

  12. Glass-Coated Beryllium Mirrors for the LHCb RICH1 Detector

    E-Print Network [OSTI]

    Barber, G J; Cameron, W; D'Ambrosio, C; Frei, C; Harnew, N; Head, R; Khimitch, Y P; Khmelnikov, V A; Loveridge, P W; Metlica, F; Obraztsov, V F; Piedigrossi, D; Sizenev, V; Kompozit Joint Stock Company, Moscow, Russia; Szczypka, P M; Ullaland, O; Vygosky, E; Websdale, D M

    2007-01-01T23:59:59.000Z

    The design, manufacture and testing of lightweight glass-coated beryllium spherical converging mirrors for the RICH1 detector of LHCb are described. The mirrors need to be lightweight to minimize the material budget and fluorocarbon-compatible to avoid degradation in the RICH1 C4F10 gas radiator. Results of the optical measurements for the small-sized prototypes and for the first full-sized prototype mirror are reported.

  13. Assisted fusion

    E-Print Network [OSTI]

    German Kälbermann

    2009-10-19T23:59:59.000Z

    A model of nuclear fusion consisting of a wave packet impinging into a well located between square one dimensional barriers is treated analytically. The wave function inside the well is calculated exactly for the assisted tunneling induced by a perturbation mimicking a constant electric field with arbitrary time dependence. Conditions are found for the enhancement of fusion.

  14. Modeling for deformable mirrors and the adaptive optics optimization program

    SciTech Connect (OSTI)

    Henesian, M.A.; Haney, S.W.; Trenholme, J.B. [Lawrence Livermore National Lab., CA (United States); Thomas, M. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center

    1997-03-18T23:59:59.000Z

    We discuss aspects of adaptive optics optimization for large fusion laser systems such as the 192-arm National Ignition Facility (NIF) at LLNL. By way of example, we considered the discrete actuator deformable mirror and Hartmann sensor system used on the Beamlet laser. Beamlet is a single-aperture prototype of the 11-0-5 slab amplifier design for NIF, and so we expect similar optical distortion levels and deformable mirror correction requirements. We are now in the process of developing a numerically efficient object oriented C++ language implementation of our adaptive optics and wavefront sensor code, but this code is not yet operational. Results are based instead on the prototype algorithms, coded-up in an interpreted array processing computer language.

  15. High stroke pixel for a deformable mirror

    DOE Patents [OSTI]

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20T23:59:59.000Z

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  16. Have mirror planets been observed?

    E-Print Network [OSTI]

    R. Foot

    1999-11-23T23:59:59.000Z

    Over the last few years, several close orbiting ($\\sim 0.05$ AU) large mass planets ($M \\sim M_{Jupiter}$) of nearby stars have been discovered. Their existence has been inferred from tiny doppler shifts in the light from the star. We suggest that these planets may be made of mirror matter. We also suggest that some stars such as our sun may have a similar amount of mirror matter which has escaped detection.

  17. International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization

    SciTech Connect (OSTI)

    Gobin, R., E-mail: rjgobin@cea.fr; Bogard, D.; Chauvin, N.; Chel, S.; Delferrière, O.; Harrault, F.; Mattei, P.; Senée, F. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France)] [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France); Cara, P. [Fusion for Energy, BFD Department, Garching (Germany)] [Fusion for Energy, BFD Department, Garching (Germany); Mosnier, A. [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France) [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, 91191-Gif/Yvette (France); Fusion for Energy, BFD Department, Garching (Germany); Shidara, H. [IFMIF/EVEDA Project Team, Obuchi-Omotedate 2-166, Rokkasho, Aomori (Japan)] [IFMIF/EVEDA Project Team, Obuchi-Omotedate 2-166, Rokkasho, Aomori (Japan); Okumura, Y. [JAEA, Division of Rokkasho BA Project, Obuchi-Omotedate 2-166, Rokkasho, Aomori (Japan)] [JAEA, Division of Rokkasho BA Project, Obuchi-Omotedate 2-166, Rokkasho, Aomori (Japan)

    2014-02-15T23:59:59.000Z

    In the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam. Involved in the LIPAc project for several years, specialists from CEA/Saclay designed the injector based on a SILHI type ECR source operating at 2.45 GHz and a 2 solenoid low energy beam line to produce such high intensity beam. The whole injector, equipped with its dedicated diagnostics, has been then installed and tested on the Saclay site. Before shipment from Europe to Japan, acceptance tests have been performed in November 2012 with 100 keV deuteron beam and intensity as high as 140 mA in continuous and pulsed mode. In this paper, the emittance measurements done for different duty cycles and different beam intensities will be presented as well as beam species fraction analysis. Then the reinstallation in Japan and commissioning plan on site will be reported.

  18. Fiber optic hydrophone sensor arrays using low reflectance internal mirrors

    E-Print Network [OSTI]

    Lee, Jong-Seo

    1998-01-01T23:59:59.000Z

    -Perot Interferometer 4 The Quadrature Point Page 5 Phase Fading in a 2x2 Coupler 6 Phase Fading a 3x3 Coupler 7 The Configuration of Electric Arc Fusion Splicer 8 The Theoretical Calculation of the Thin Film Thickness 10 15 17 9 Thin Film Thickness... film of Ti02 is used for making a mirror on a cleaved end surface of a fiber [3, 4], because this material has a high refractive index over visible and infrared ranges and strong molecular bonding on glass-based materials [5]. In addition, it has low...

  19. Fusion energy

    ScienceCinema (OSTI)

    Baylor, Larry

    2014-05-23T23:59:59.000Z

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  20. Fusion energy

    SciTech Connect (OSTI)

    Baylor, Larry

    2014-05-02T23:59:59.000Z

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  1. Simulation of Fusion Plasmas

    ScienceCinema (OSTI)

    Chris Holland

    2010-01-08T23:59:59.000Z

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  2. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Fusion Hydrogen Fusion - Mark Uhran Safe, Clean and Virtually Unlimited Energy Hydrogen fusion, the process that powers our sun and the stars, is the most fundamental...

  3. Dynamic Instruction Fusion

    E-Print Network [OSTI]

    Lee, Ian

    2012-01-01T23:59:59.000Z

    SANTA CRUZ DYNAMIC INSTRUCTION FUSION A thesis submitted in4 2.2 Instruction Fusion & Complex10 3.1 Fusion Selection

  4. Fusion Power Demonstrations I and II

    SciTech Connect (OSTI)

    Doggett, J.N. (ed.)

    1985-01-01T23:59:59.000Z

    In this report we present a summary of the first phase of the Fusion Power Demonstration (FPD) design study. During this first phase, we investigated two configurations, performed detailed studies of major components, and identified and examined critical issues. In addition to these design specific studies, we also assembled a mirror-systems computer code to help optimize future device designs. The two configurations that we have studied are based on the MARS magnet configuration and are labeled FPD-I and FPD-II. The FPD-I configuration employs the same magnet set used in the FY83 FPD study, whereas the FPD-II magnets are a new, much smaller set chosen to help reduce the capital cost of the system. As part of the FPD study, we also identified and explored issues critical to the construction of an Engineering Test Reactor (ETR). These issues involve subsystems or components, which because of their cost or state of technology can have a significant impact on our ability to meet FPD's mission requirements on the assumed schedule. General Dynamics and Grumman Aerospace studied two of these systems, the high-field choke coil and the halo pump/direct converter, in great detail and their findings are presented in this report.

  5. Compact neutron imaging system using axisymmetric mirrors

    DOE Patents [OSTI]

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27T23:59:59.000Z

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  6. Fusion Power Associates Fusion Energy Sciences Program

    E-Print Network [OSTI]

    Fusion Power Associates Fusion Energy Sciences Program www.ofes.fusion.doe.gov U.S. Department for ITER Decision Making (IAEA, November 8-9, 2004) Delegations from China, European Union, Japan

  7. Mirror-induced decoherence in hybrid quantum-classical theory

    E-Print Network [OSTI]

    Aniello Lampo; Lorenzo Fratino; Hans-Thomas Elze

    2014-10-16T23:59:59.000Z

    We re-analyse the optomechanical interferometer experiment proposed by Marshall, Simon, Penrose and Bouwmeester with the help of a recently developed quantum-classical hybrid theory. This leads to an alternative evaluation of the mirror induced decoherence. Surprisingly, we find that it behaves essentially in the same way for suitable initial conditions and experimentally relevant parameters, no matter whether the mirror is considered a classical or quantum mechanical object. We discuss the parameter ranges where this result holds and possible implications for a test of spontaneous collapse models, for which this experiment has been designed.

  8. Compaction managed mirror bend achromat

    DOE Patents [OSTI]

    Douglas, David (Yorktown, VA)

    2005-10-18T23:59:59.000Z

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  9. ELSEVIER Fusion Engineering and Design 27 (1995) 111-153 Engineering

    E-Print Network [OSTI]

    Abdou, Mohamed

    neutron source for fusion nuclear technology testing and development Mohamed A. Abdou Mechanical.A. Abdou / Fusion Engineering and Design 27 (1995) 111-153 1. Introduction Fusion nuclear technology (FNT

  10. Mirror with thermally controlled radius of curvature

    DOE Patents [OSTI]

    Neil, George R.; Shinn, Michelle D.

    2010-06-22T23:59:59.000Z

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  11. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    SciTech Connect (OSTI)

    C.P.C. Wong; B. Merrill

    2014-10-01T23:59:59.000Z

    ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  12. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity fromFusion Links Fusion

  13. CubeSat deformable mirror demonstration

    E-Print Network [OSTI]

    Cahoy, Kerri

    The goal of the CubeSat Deformable Mirror Demonstration (DeMi) is to characterize the performance of a small deformable mirror over a year in low-Earth orbit. Small form factor deformable mirrors are a key technology needed ...

  14. Mirror-Augmented Photovoltaic Designs and Performance

    E-Print Network [OSTI]

    Rollins, Andrew M.

    or area of PV panels'. Replex Plastics has developed a high performance, low-cost solar mirror made seeks to provide low cost power, using flat-panel PV modules, which have mirror augmented irradiance through the addition of low cost solar mirrors. In order to harvest more incident solar irradiance

  15. (Fusion energy research)

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1988-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  16. Fusion reactor theory and conceptual design. (Latest citations from the INSPEC: Information Services for the Physics and Engineering Communities database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    The bibliography contains citations concerning theoretical and conceptual aspects of fusion reactor physics and designs. A variety of fusion reactors is discussed, including Tokamak, experimental, commercial, tandem mirror, and superconducting magnetic. Topics also include fusion reactor materials, Tokamak devices, blanket design, divertors, fusion plasma production, superconducting magnets, and cryogenic systems. (Contains a minimum of 159 citations and includes a subject term index and title list.)

  17. Development and Testing of Manufacturing Methods for a Piezoelectric Composite Stacked Generator to Improve the Success Rate of Interbody Spinal Fusion

    E-Print Network [OSTI]

    Tobaben, Eric

    2014-08-31T23:59:59.000Z

    to the transverse processes. The current is supplied by an implantable battery pack placed in the soft tissue 5-10 cm away from the electrodes [8, 9]. While these devices have been clinically shown to increase fusion success, there are drawbacks to using such a... proven to be successful, but require the use of a battery to provide power. Removing the battery after fusion has occurred requires a second surgery. A piezoelectric composite stacked generator has been developed to provide electrical stimulation...

  18. Fusion materials irradiations at MaRIE's fission fusion facility

    SciTech Connect (OSTI)

    Pitcher, Eric J [Los Alamos National Laboratory

    2010-10-06T23:59:59.000Z

    Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

  19. Some Calculations for Cold Fusion Superheavy Elements

    E-Print Network [OSTI]

    Zhong, X H; Ning, P Z

    2004-01-01T23:59:59.000Z

    The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

  20. Some Calculations for Cold Fusion Superheavy Elements

    E-Print Network [OSTI]

    X. H. Zhong; L. Li; P. Z. Ning

    2004-10-18T23:59:59.000Z

    The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

  1. Radius of curvature controlled mirror

    DOE Patents [OSTI]

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17T23:59:59.000Z

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  2. Introduction Minimal Fusion Systems

    E-Print Network [OSTI]

    Thévenaz, Jacques

    Introduction Minimal Fusion Systems Maximal Parabolics Results Minimal Fusion Systems Ellen Henke University of Birmingham Ellen Henke Minimal Fusion Systems #12;Introduction Minimal Fusion Systems Maximal Parabolics Results Contents 1 Introduction 2 Minimal Fusion Systems 3 Maximal Parabolics 4 Results Ellen

  3. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect (OSTI)

    Donovan, D. C. [Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550 (United States); Boris, D. R. [Naval Research Laboratory, 4555 Overlook Avenue, South West, Washington, DC 20375 (United States); Kulcinski, G. L.; Santarius, J. F. [Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Piefer, G. R. [Phoenix Nuclear Labs, 2555 Industrial Drive, Madison, Wisconsin 53713 (United States)

    2013-03-15T23:59:59.000Z

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  4. HEAVY ION INERTIAL FUSION

    E-Print Network [OSTI]

    Keefe, D.

    2008-01-01T23:59:59.000Z

    Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

  5. American Institute of Aeronautics and Astronautics BIFOCAL RELAY MIRROR EXPERIMENTS ON THE NPS THREE AXIS SPACECRAFT SIMULATOR

    E-Print Network [OSTI]

    1 American Institute of Aeronautics and Astronautics BIFOCAL RELAY MIRROR EXPERIMENTS ON THE NPS. The Bifocal Relay Mirror spacecraft system is composed of two optically coupled telescopes used to redirect was integrated onto the TASS as an auxiliary payload. The objective of this research was to develop and test

  6. Passivation coating for flexible substrate mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

    1990-01-01T23:59:59.000Z

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  7. Mirror Development for the Cherenkov Telescope Array

    E-Print Network [OSTI]

    Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Micha?owski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wi?niewski, ?; Wörnlein, A; Yoshida, T

    2013-01-01T23:59:59.000Z

    The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

  8. Process for preparing improved silvered glass mirrors

    DOE Patents [OSTI]

    Buckwalter, C.Q. Jr.

    1980-01-28T23:59:59.000Z

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  9. On the Classification of Low-Rank Braided Fusion Categories

    E-Print Network [OSTI]

    Bruillard, Paul Joseph

    2013-05-23T23:59:59.000Z

    ON THE CLASSIFICATION OF LOW-RANK BRAIDED FUSION CATEGORIES A Dissertation by PAUL JOSEPH BRUILLARD Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of DOCTOR...+=p . BFC Braided Fusion Category. C0 The M uger center of the category C. Cad The adjoint subcategory. Cpt The pointed subcategory. Cop Opposite (mirror) category to C. coevX Coevaluation I! X X . C2 (G;K ) 2-cochains of G with coe cients in K . C...

  10. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81

    E-Print Network [OSTI]

    Johnson Ed, R.K.

    2010-01-01T23:59:59.000Z

    Cooling System Designs Component Development and Testing Theory Cited Reference Magnetic Fusion Energy Neutral Beam Development Positive-Ion Beam Research

  11. 359-06/RDS/rs A Fusion Nuclear Science Facility, ITER, Superconducting Tokamaks, and a Materials Test Facility Enable Demo 359-06/RDS/rs FDF is Viewed as a Direct Follow-on of DIII-D (50 % larger)

    E-Print Network [OSTI]

    R. D. Stambaugh

    2008-01-01T23:59:59.000Z

    By using conservative Advanced Tokamak physics to run steady-state and produce 100-250 MW fusion power – Modest energy gain (Q<5) – Continuous operation for 30 % of a year in 2 weeks periods – Test materials with high neutron fluence (3-8 MW-yr/m 2) – Further develop all elements of Advanced Tokamak physics, qualifying them for an advanced performance DEMO With ITER and IFMIF, provide the basis for a fusion DEMO Power Plant

  12. Fusion Residues

    E-Print Network [OSTI]

    Kenneth Intriligator

    1991-08-19T23:59:59.000Z

    We discuss when and how the Verlinde dimensions of a rational conformal field theory can be expressed as correlation functions in a topological LG theory. It is seen that a necessary condition is that the RCFT fusion rules must exhibit an extra symmetry. We consider two particular perturbations of the Grassmannian superpotentials. The topological LG residues in one perturbation, introduced by Gepner, are shown to be a twisted version of the $SU(N)_k$ Verlinde dimensions. The residues in the other perturbation are the twisted Verlinde dimensions of another RCFT; these topological LG correlation functions are conjectured to be the correlation functions of the corresponding Grassmannian topological sigma model with a coupling in the action to instanton number.

  13. LED structure with enhanced mirror reflectivity

    DOE Patents [OSTI]

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A

    2014-04-01T23:59:59.000Z

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  14. Trapping Light With Mirrors David Milovich Jr.

    E-Print Network [OSTI]

    Milovich, David

    Trapping Light With Mirrors David Milovich Jr. February 20, 2004 Abstract. We show that, given finitely many line-segment mirrors in the plane, that do not touch, and an arbitrary point source of light emitted light beams escape. This result is shown to imply that, for a given point source of light

  15. Three-point spherical mirror mount

    DOE Patents [OSTI]

    Cutburth, R.W.

    1984-01-23T23:59:59.000Z

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  16. Sandia National Laboratories: New Sandia Mirror Isn't Shiny:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & CapabilitiesCapabilitiesNew Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light Using a Metamaterial New Sandia Mirror Isn't Shiny: Instead It Reflects...

  17. ancient bronze mirrors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydraulic system, the mirror is coupled to the cell structure with three degree 247 Mirror Mode Structures in the Solar Wind: STEREO Observations Physics Websites Summary:...

  18. Cost Accounting System for fusion studies

    SciTech Connect (OSTI)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01T23:59:59.000Z

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program.

  19. Fusion Energy Sciences Network Requirements

    E-Print Network [OSTI]

    Dart, Eli

    2014-01-01T23:59:59.000Z

    Division, and the Office of Fusion Energy Sciences. This isFusion Energy Sciences NetworkRequirements Office of Fusion Energy Sciences Energy

  20. Durable silver coating for mirrors

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Discovery Bay, CA); Thomas, Norman L. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.

  1. Mirror Modes in the Heliosheath

    SciTech Connect (OSTI)

    Tsurutani, B. T. [Jet Propulsion Lab., Calif. Inst. Tech., Pasadena, CA (United States); Guarnieri, F. L. [UNIVAP, Sao Jose dos Campos, SP (Brazil); Echer, E. E. [INPE, Sao Jose dos Campos, SP (Brazil); Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Verkhoglyadova, O. P. [CSPAR, Univ. Alabama, Huntsville, AL (United States)

    2011-01-04T23:59:59.000Z

    Mirror mode (MM) structures are identified in the Voyager 1 heliosheath magnetic field data. Their characteristics are: (1) quasiperiodic structures with a typical scale size of {approx}57 {rho}{sub p}(proton gyroradii), (2) little or no angular changes across the structures ({approx}3 deg. longitude and {approx}3 deg. latitude), and (3) a lack of sharp boundaries at the magnetic dip edges. It is proposed that the pickup of interstellar neutrals in the upstream region of the termination shock (TS) is the likely cause of MM instability during intervals when the IMF is nearly orthogonal to the solar wind flow direction. Concomitant (quasiperpendicular) shock compression of the MM structures at the TS and additional injection of pickup ions (PUIs) throughout the heliosheath will enhance MM growth.

  2. Bemerkungen zur "kalten Fusion"

    E-Print Network [OSTI]

    Kuehne, R W

    2006-01-01T23:59:59.000Z

    Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

  3. Bemerkungen zur "kalten Fusion"

    E-Print Network [OSTI]

    Rainer W. Kuehne

    2006-04-14T23:59:59.000Z

    Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

  4. Two-stream cyclotron radiative instabilities due to the marginally mirror-trapped fraction for fustion alphas in tokamaks

    SciTech Connect (OSTI)

    Arunasalam, V.

    1995-07-01T23:59:59.000Z

    It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency {omega}{sub c{alpha}}. This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies {omega} {approx} m{omega}{sub c{alpha}}.

  5. Nuclear elastic scattering effects on fusion product transport in the FRM

    SciTech Connect (OSTI)

    DeVeaux, J.C.; Greenspan, E.; Miley, G.H.

    1981-01-01T23:59:59.000Z

    Large energy transfer (LET) events such as nuclear elastic scatterng (NES) are shown to have significant effects on fusion product transport in the field-reversed mirror. The method used and preliminary results obtained from the study on NES effects on f/sub p/ orbits are described. (MOW)

  6. Fusion Power Associates, 2012 Annual Meeting 1 General Fusion

    E-Print Network [OSTI]

    Fusion Power Associates, 2012 Annual Meeting 1 General Fusion #12;Fusion Power Associates, 2012 Annual Meeting 2 General Fusion Making affordable fusion power a reality. · Founded in 2002, based to demonstrate the first fusion system capable of "net gain" 3 years after proof · Validated by leading experts

  7. Coating considerations for mirrors of CPV devices

    SciTech Connect (OSTI)

    Schmauder, Torsten; Sauer, Peter; Ickes, Gerd [Leybold Optics GmbH, Siemensstr. 88, D-63755 Alzenau (Germany)

    2014-09-26T23:59:59.000Z

    One of the different optical concepts for concentrator devices is to place a focussing primary mirror behind a transparent front plate. In addition (also in case of Fresnel-diffractive main optics), further 'secondary' reflectors may be used further along the beam path. Such mirrors are usually implemented as coating stacks of a highly reflective metal - usually silver - and protective layers. The protective layers are preferably designed as reflection enhancing interference stack. The design of such protective layer stacks yields two difficulties, which are addressed in this paper: (a) vacuum coating of three-dimensional parts will result in a thickness distribution and the optical design of the stack should thus be tolerant to layer thickness variations, and (b) different places of the mirror will have different angle-of-incidence of the sunlight under operating conditions. As result, the layer stack has a different design at different places of the mirror.

  8. Fusion Energy Sciences Program Mission

    E-Print Network [OSTI]

    Fusion Energy Sciences Program Mission The Fusion Energy Sciences (FES) program leads the national for an economically and environmentally attractive fusion energy source. The National Energy Policy states that fusion-heated) plasma, and the Fusion Energy Sciences Advisory Committee (FESAC) has concluded that the fusion program

  9. Motorized control for mirror mount apparatus

    DOE Patents [OSTI]

    Cutburth, Ronald W. (Tracy, CA)

    1989-01-01T23:59:59.000Z

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  10. The mirror effect: Virginia Woolf's war writings

    E-Print Network [OSTI]

    Murchison, Marcia Wilkens

    2013-02-22T23:59:59.000Z

    THE MIRROR EFFECT: VIRGINIA WOOLF'S WAR WRITINGS A Semor Honors Thesis By MARCIA WILKENS MURCHISON Submitted to the Office of Honors Programs & Academic Scholarships Texas A&M University In partial fulfillment of the requirements... of the UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS April 2000 Group: Humanities THE MIRROR EFFECT: VIRGINIA WOOLF'S WAR WRITINGS A Senior Honors Thesis By MARCIA WILKENS MURCHISON Submitted to the Office of Honors Programs & Academic Scholarships Texas Ak...

  11. Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals

    SciTech Connect (OSTI)

    Anglart, Henryk [Div. of Nuclear Technology, School of Engineering Sciences, Royal Institute of Technology Roslagstullsbacken 21, 106-91 Stockholm (Sweden)

    2012-06-19T23:59:59.000Z

    This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

  12. Implications of Theoretical Ideas Regarding Cold Fusion

    E-Print Network [OSTI]

    Afsar Abbas

    1995-03-29T23:59:59.000Z

    A lot of theoretical ideas have been floated to explain the so called cold fusion phenomenon. I look at a large subset of these and study further physical implications of the concepts involved. I suggest that these can be tested by other independent physical means. Because of the significance of these the experimentalists are urged to look for these signatures. The results in turn will be important for a better understanding and hence control of the cold fusion phenomenon.

  13. Coulomb cluster explosion boosted by a quasi-dc pulse -- diagnostic tool and ultimate test of laser fusion efficiency in clusters

    E-Print Network [OSTI]

    Kaplan, A E

    2015-01-01T23:59:59.000Z

    To greatly enhance output of nuclear fusion produced neutrons in a laser-initiated Coulomb explosion of Deuterium clusters, we propose to subject the ions produced by the explosion to quasi-dc electrical pulse, to accelerate them to the energies where the D+D collision cross-section is the highest. With D+ ions shepherded then to bombard a Deuterium-rich solid-state cathode, this allows one to solve a few problems simultaneously by (a) completely removing electron cloud hindering the Coulomb explosion of ionic core, (b) utilizing up to $100 \\%$ of the cluster ions to collide with the high-density packed nuclei, and (c) reaching maximum cross-section of neutron production in a single D+D collision. We also consider the use of E-pulse acceleration for diagnostic purposes.

  14. The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies

    E-Print Network [OSTI]

    E. I. Moses

    2001-11-09T23:59:59.000Z

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

  15. Metrology for x-ray telescope mirrors in a vertical configuration

    SciTech Connect (OSTI)

    Li, Haizhang; Li, Xiaodan; Grindel, M.W.

    1995-09-01T23:59:59.000Z

    Mirrors used in x-ray telescope systems for observations outside of the earth`s atmosphere are usually made of several thin nested shells, each formed by a pair of paraboloidal and hyperboloidal surfaces. The thin shells are very susceptible to self-weight deflection caused by gravity and are nearly impossible to test by conventional interferometric techniques. The metrology requirements for these mirrors are extremely challenging. This paper presents a prototype of a Vertical Scanning Long Trace Profiler (VSLTP) which is optimized to measure the surface figure of x-ray telescope mirrors in a vertical orientation. The optical system of the VSLTP is described. Experimental results from measurements on an x-ray telescope mandrel and tests of the accuracy and repeatability of the prototype VSLTP are presented. The prototype instrument has achieved a height measurement accuracy of about 50 nanometers with a repeatability of better than 20 nanometers, and a slope measurement accuracy of about 1 microradian.

  16. Laser Inertial Fusion Energy Control Systems

    SciTech Connect (OSTI)

    Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

    2011-03-18T23:59:59.000Z

    A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

  17. Tape-Drive Based Plasma Mirror

    SciTech Connect (OSTI)

    Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei; vanTilborg, Jeroen; Lin, Chen; Toth, Csaba; Leemans, Wim

    2011-07-22T23:59:59.000Z

    We present experimental results on a tape-drive based plasma mirror which could be used for a compact coupling of a laser beam into a staged laser driven electron accelerator. This novel kind of plasma mirror is suitable for high repetition rates and for high number of laser shots. In order to design a compact, staged laser plasma based accelerator or collider [1], the coupling of the laser beam into the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters (cf. Fig 1). The fluence of the laser pulse several centimeters away from the acceleration stage (focus) exceeds the damage threshold of any available mirror coating. Therefore, in reference [2] a plasma mirror was suggested for this purpose. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage. Plasma mirrors composed of antireflection coated glass substrates are usually used to improve the temporal laser contrast of laser pulses by several orders of magnitudes [3,4]. This is particularly important for laser interaction with solid matter, such as ion acceleration [5,6] and high harmonic generation on surfaces [7]. Therefore, the laser pulse is weekly focused onto a substrate. The main pulse generates a plasma and is reflected at the critical surface, whereas the low intensity pre-pulse (mainly the Amplified Spontaneous Emission pedestal) will be transmitted through the substrate before the mirror has been triggered. Several publications [3,4] demonstrate a conservation of the spatial beam quality and a reflectivity of about 70 %. The drawback of this technique is the limited repetition rate since for every shot a fresh surface has to be provided. In the past years several novel approaches for high repetition rate plasma mirrors have been developed [2, 8]. Nevertheless, for the staged accelerator scheme a second important requirement has to be considered. Since the electron beam has to propagate through the mirror, the thickness of the substrate has to be as thin as possible to reduce the distortion of the electron beam. A tape of only several micrometer thickness can overcome these disadvantages. It can be used with a sufficient repetition rate while it allows the electron beam to propagate through with a minimum of scattering.

  18. Fusion Power Associates, 2011 Annual Meeting 1 General Fusion

    E-Print Network [OSTI]

    7 Plasma Injector 10 people $3M 1 year #12;Fusion Power Associates, 2011 Annual Meeting 8 Density people $3.5M 14 months #12;Fusion Power Associates, 2011 Annual Meeting 11 Plasma Compression ExperimentsFusion Power Associates, 2011 Annual Meeting 1 General Fusion #12;Fusion Power Associates, 2011

  19. 50 Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    , .... · Controlled Thermonuclear Fusion had great potential ­ Uncontrolled Thermonuclear fusion demonstrated in 19521 50 Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ SOFE 2009 June 1, 2009 San Diego, CA 92101 #12;2 #12;2 #12;3 Fusion Prior to Geneva 1958 · A period of rapid

  20. Reflections on Fusion's History and Implications for Fusion's Future*

    E-Print Network [OSTI]

    Reflections on Fusion's History and Implications for Fusion's Future* Robert Conn Fusion Energy, "Opportunities and Directions in Fusion Energy Science for the Next Decade", held July 11-23, 1999 in Snowmass, Colorado. #12;2 Abstract History shows that all the major opportunities to advance fusion research were

  1. MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division

    E-Print Network [OSTI]

    Fusion Technology & Engineering Division 1. Costing of 4 "Reference" Options 2. Equalization of TF;MIT Plasma Science and Fusion Center Fusion Technology & Engineering Division Total Cost (M$) vs. A; MMIT Plasma Science and Fusion Center Fusion Technology & Engineering Division J.H. Schultz M

  2. Investigation into Fusion Feasibility of a Magnetized Target Fusion Reactor

    E-Print Network [OSTI]

    Wetton, Brian

    Investigation into Fusion Feasibility of a Magnetized Target Fusion Reactor Michael Lindstrom fusion en- ergy known as a magnetized target fusion reactor, in which an intense pressure wave the fusion reactor design we have chosen to model. In section 2, we present a simplified model and set

  3. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001 (13pp) doi:10.1088/0029-5515/48/8/084001

    E-Print Network [OSTI]

    Heidbrink, William W.

    2008-01-01T23:59:59.000Z

    IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001] and created a vacuum leak in the tokamak fusion test reactor (TFTR) [4]. The damage was explained comparisons between theory and experiment [5­7], wave amplitudes an order of magnitude larger than

  4. Optical performance of the TBC-2 solar collector before and after the 1993 mirror lustering

    SciTech Connect (OSTI)

    Houser, R.; Strachan, J. [Sandia National Labs., Albuquerque, NM (United States). Solar Thermal Test Dept.

    1995-02-01T23:59:59.000Z

    In 1993, the mirror facets of one of Sandia`s point-focusing solar collectors, the Test Bed Concentrator {number_sign}2 (TBC-2), were reconditioned. The concentrator`s optical performance was evaluated before and after this operation. This report summarizes and compares the results of these tests. The tests demonstrated that the concentrator`s total power and peak flux were increased while the overall flux distribution in the focal plane remained qualitatively the same.

  5. Alignment and focus of mirrored facets of a heliosat

    DOE Patents [OSTI]

    Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B; Moss, Timothy A

    2013-11-12T23:59:59.000Z

    Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoretical image.

  6. alloy mirrors obtained: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a large region of the sky Astrophysics (arXiv) Summary: We investigate whether a three-mirror system, having secondary and the tertiary mirrors with surfaces warped by Zernike...

  7. The European Fusion Programme

    SciTech Connect (OSTI)

    Antidormi, R.; Bartlett, D.; Bruhns, H. [European Commission (Belgium)

    2004-03-15T23:59:59.000Z

    The long-term objective of the European fusion programme is the harnessing of the power of fusion to help meet mankind's future energy needs.This paper describes the current research programme, the unique organisational character of the fusion programme, and European and world-wide co-operation. The future evolution of the programme as part of the European Research Area and the developments currently taking place in preparation for the possible construction of ITER, the next major step towards the realisation of fusion power, are discussed.

  8. Indecomposable Fusion Products

    E-Print Network [OSTI]

    Matthias R. Gaberdiel; Horst G. Kausch

    1996-04-04T23:59:59.000Z

    We analyse the fusion products of certain representations of the Virasoro algebra for c=-2 and c=-7 which are not completely reducible. We introduce a new algorithm which allows us to study the fusion product level by level, and we use this algorithm to analyse the indecomposable components of these fusion products. They form novel representations of the Virasoro algebra which we describe in detail. We also show that a suitably extended set of representations closes under fusion, and indicate how our results generalise to all (1,q) models.

  9. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

  10. Quantum radiation from a partially reflecting moving mirror

    E-Print Network [OSTI]

    Nistor Nicolaevici

    2000-03-29T23:59:59.000Z

    We consider the quantum radiation from a partially reflecting moving mirror for the massless scalar field in 1+1 Minkowski space. Partial reflectivity is achieved by localizing a delta-type potential at the mirror's position. The radiated flux is exactly obtained for arbitrary motions as an integral functional of the mirror's past trajectory. Partial reflectivity corrections to the perfect mirror result are discussed.

  11. Mirror Symmetry, D-Branes and Counting Holomorphic Discs

    E-Print Network [OSTI]

    Mina Aganagic; Cumrun Vafa

    2000-12-05T23:59:59.000Z

    We consider a class of special Lagrangian subspaces of Calabi-Yau manifolds and identify their mirrors, using the recent derivation of mirror symmetry, as certain holomorphic varieties of the mirror geometry. This transforms the counting of holomorphic disc instantons ending on the Lagrangian submanifold to the classical Abel-Jacobi map on the mirror. We recover some results already anticipated as well as obtain some highly non-trivial new predictions.

  12. Decision Fusion Rules in Multi-Hop Wireless Sensor

    E-Print Network [OSTI]

    Chen, Biao

    to be relayed through multi-hop transmission in order to reach a fusion center. Each relay node employs a binary relay scheme whereby the relay output is inferred from the channel impaired observation received from optimum decision fusion statistics for both cases reduce to respective simple linear test statistics

  13. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect (OSTI)

    Frank, A M; Bartolick, J M

    2006-08-25T23:59:59.000Z

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  14. Distribution Category: Magnetic Fusion Energy

    E-Print Network [OSTI]

    Abdou, Mohamed

    . Abdou Fusion Power Program October 1982 Invited paper presented at the International Conference by Mohamed A. Abdou ABSTRACT Key technological problems that influence tritium breeding in fusion blankets

  15. Modulating the Neutron Flux from a Mirror Neutron Source

    SciTech Connect (OSTI)

    Ryutov, D D

    2011-09-01T23:59:59.000Z

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  16. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01T23:59:59.000Z

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  17. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01T23:59:59.000Z

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  18. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01T23:59:59.000Z

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  19. Fusion Plasma Performance Required for Fusion Power The performance achieved on MFE and IFE fusion experiments using DT fuel is compared with the fusion performance

    E-Print Network [OSTI]

    Fusion Plasma Performance Required for Fusion Power The performance achieved on MFE and IFE fusion experiments using DT fuel is compared with the fusion performance required for a Fusion Power Plant. Const. Cost $B Date

  20. Fusion Chamber Technology Publications

    E-Print Network [OSTI]

    California at Los Angeles, University of

    1. Abdou, M.A., The APEX Team, Ying, A., Morley, N., Gulec, K., Smolentsev, S., Kotschenreuther, M-248, 2001. 2. Mohamed Abdou and the APEX Team, Exploring novel high power density concepts for attractive fusion systems, Fusion Engineering and Design, vol. 45, pp. 145-167, 1999. 3. Abdou, M. A., Ying, A., Lu

  1. Fusion Power Deployment

    SciTech Connect (OSTI)

    J.A. Schmidt; J.M. Ogden

    2002-02-06T23:59:59.000Z

    Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

  2. Use of data fusion to optimize contaminant transport predictions

    SciTech Connect (OSTI)

    Eeckhout, E. van

    1997-10-01T23:59:59.000Z

    The original data fusion workstation, as envisioned by Coleman Research Corp., was constructed under funding from DOE (EM-50) in the early 1990s. The intent was to demonstrate the viability of fusion and analysis of data from various types of sensors for waste site characterization, but primarily geophysical. This overall concept changed over time and evolved more towards hydrogeological (groundwater) data fusion after some initial geophysical fusion work focused at Coleman. This initial geophysical fusion platform was tested at Hanford and Fernald, and the later hydrogeological fusion work has been demonstrated at Pantex, Savannah River, the US Army Letterkenny Depot, a DoD Massachusetts site and a DoD California site. The hydrogeologic data fusion package has been spun off to a company named Fusion and Control Technology, Inc. This package is called the Hydrological Fusion And Control Tool (Hydro-FACT) and is being sold as a product that links with the software package, MS-VMS (MODFLOW-SURFACT Visual Modeling System), sold by HydroGeoLogic, Inc. MODFLOW is a USGS development, and is in the public domain. Since the government paid for the data fusion development at Coleman, the government and their contractors have access to the data fusion technology in this hydrogeologic package for certain computer platforms, but would probably have to hire FACT (Fusion and Control Technology, Inc.,) and/or HydroGeoLogic for some level of software and services. Further discussion in this report will concentrate on the hydrogeologic fusion module that is being sold as Hydro-FACT, which can be linked with MS-VMS.

  3. Fusion excitation function revisited

    E-Print Network [OSTI]

    Ph. Eudes; Z. Basrak; F. Sébille; V. de la Mota; G. Royer; M. Zori?

    2012-09-28T23:59:59.000Z

    We report on a comprehensive systematics of fusion-evaporation and/or fusion-fission cross sections for a very large variety of systems over an energy range 4-155 A.MeV. Scaled by the reaction cross sections, fusion cross sections do not show a universal behavior valid for all systems although a high degree of correlation is present when data are ordered by the system mass asymmetry.For the rather light and close to mass-symmetric systems the main characteristics of the complete and incomplete fusion excitation functions can be precisely determined. Despite an evident lack of data above 15A.MeV for all heavy systems the available data suggests that geometrical effects could explain the persistence of incomplete fusion at incident energies as high as 155A.MeV.

  4. Photo of the Week: Controlling Chaos with Magnetic Fields | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Favorites from Photo of the Week This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence...

  5. Simultaneous imaging/reflectivity measurements to assess diagnostic mirror cleaning

    SciTech Connect (OSTI)

    Skinner, C. H.; Gentile, C. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Doerner, R. [University of California at San Diego, La Jolla, California 92093-0417 (United States)

    2012-10-15T23:59:59.000Z

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We describe a technique to assess the efficacy of mirror cleaning techniques and detect any damage to the mirror surface. The method combines microscopic imaging and reflectivity measurements in the red, green, and blue spectral regions and at selected wavelengths. The method has been applied to laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150-420 nm thick. It is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber.

  6. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin (Golden, CO); Benson, David K. (Golden, CO)

    1988-01-01T23:59:59.000Z

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  7. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.

    1984-07-20T23:59:59.000Z

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  8. Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual

    E-Print Network [OSTI]

    82 kV #12;7 Outline · Refurbished Z · Pulsed power fusion · Advances in pulsed power technology · Z-pinch;10 Outline · Refurbished Z · Pulsed power fusion · Advances in pulsed power technology · Z-pinch IFE Linear1 Z-Pinch Inertial Fusion Energy Fusion Power Associates Annual Meeting and Symposium December 4

  9. "50" Years of Fusion Research Fusion Innovation Research and Energy

    E-Print Network [OSTI]

    Classified US Program on Controlled Thermonuclear Fusion (Project Sherwood) carried out until 1958 when"50" Years of Fusion Research Dale Meade Fusion Innovation Research and Energy® Princeton, NJ Fi P th SFusion Fire Powers the Sun "W d t if k f i k ""We need to see if we can make fusion work

  10. Fusion for Neutrons as a Necessary Step to Commercial Fusion

    E-Print Network [OSTI]

    reactors are limited Fast reactors as the basis for future large-scale nuclear industry with acceptable1 Fusion for Neutrons as a Necessary Step to Commercial Fusion B. Kuteev Head of Fusion Reactor MWe #12; Fast track to Fusion for Energy is defined: ITER ~2020 DEMO ~2035 FPP ~2050 New products

  11. Fusion Nuclear Science Pathways Assessment

    SciTech Connect (OSTI)

    C.E. Kessel, et. al.

    2012-02-23T23:59:59.000Z

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  12. Do mirror planets exist in our solar system?

    E-Print Network [OSTI]

    R. Foot; Z. K. Silagadze

    2001-04-15T23:59:59.000Z

    Mirror matter is predicted to exist if parity is an unbroken symmetry of nature. Currently, there is a large amount of evidence that mirror matter actually exists coming from astrophysics and particle physics. One of the most fascinating (but speculative) possibilities is that there is a significant abundance of mirror matter within our solar system. If the mirror matter condensed to form a large body of planatary or stellar mass then there could be interesting observable effects. Indeed studies of long period comets suggest the existence of a solar companion which has escaped direct detection and is therefore a candidate for a mirror body. Nemesis, hypothetical "death star" companion of the Sun, proposed to explain biological mass extinctions, may potentially be a mirror star. We examine the prospects for detecting these objects if they do indeed exist and are made of mirror matter.

  13. Not So Permafrost Viewport for Nuclear Fusion

    E-Print Network [OSTI]

    nuclear weapons. Nuclear weapons brought the war to a rapid and decisive close, and played an important ceased nuclear testing and the Laboratory entered an era of stockpile stewardship. Today, the LaboratoryNot So Permafrost Under Fire Viewport for Nuclear Fusion Hassle-Free Uranium 1663 LOS ALAMOS

  14. Accelerator and Fusion Research Division: 1987 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1988-04-01T23:59:59.000Z

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  15. Inertial Fusion Program. Progress report, January-December 1980

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO/sub 2/-laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized.

  16. Fusion Energy Program Presentation to

    E-Print Network [OSTI]

    International Thermonuclear Experimental Reactor Plasma Technologies Fusion Technologies Advanced MaterialsFusion Energy Program Presentation to Field Work Proposals Washington, D.C. N. Anne Davies Associate Director for Fusion energy Office of Energy Research March23, 1994 #12;FUSION ENERGY PROGRAM FYI

  17. Silicon carbide mirrors for high power applications

    SciTech Connect (OSTI)

    Takacs, P.Z.

    1981-11-01T23:59:59.000Z

    The advent of synchrotron radiation (SR) sources and high energy lasers (HEL) in recent years has brought about the need for optical materials that can withstand the harsh operating conditions in such devices. SR mirrors must be ultra-high vacuum compatible, must withstand intense x-ray irradiation without surface damage, must maintain surface figure under thermal loading and must be capable of being polished to an extremely smooth surface finish. Chemical vapor deposited (CVD) silicon carbide in combination with sintered substrate material meets these requirements and offers additional benefits as well. It is an extremely hard material and offers the possibility of being cleaned and recoated many times without degradation of the surface finish, thereby prolonging the lifetime of expensive optical components. It is an extremely strong material and offers the possibility of weight reduction over conventional mirror materials.

  18. Mirror Symmetry in Physics: The Basics

    E-Print Network [OSTI]

    Callum Quigley

    2014-12-28T23:59:59.000Z

    These notes are aimed at mathematicians working on topics related to mirror symmetry, but are unfamiliar with the physical origins of this subject. We explain the physical concepts that enable this surprising duality to exist, using the torus as an illustrative example. Then, we develop the basic foundations of conformal field theory so that we can explain how mirror symmetry was first discovered in that context. Along the way we will uncover a deep connection between conformal field theories with (2,2) supersymmetry and Calabi-Yau manifolds. (Based on lectures given during the "Thematic Program on Calabi-Yau Varieties: Arithmetic, Geometry and Physics" at the Fields Institute in Toronto, October 10-11, 2013.)

  19. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03T23:59:59.000Z

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  20. Fiber optics welder having movable aligning mirror

    DOE Patents [OSTI]

    Higgins, Robert W. (Los Alamos, NM); Robichaud, Roger E. (Jemez Springs, NM)

    1981-01-01T23:59:59.000Z

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  1. Transport Phenomena in Stochastic Magnetic Mirrors

    SciTech Connect (OSTI)

    Malyshkin, Leonid; Kulsrud; Russell

    2000-08-31T23:59:59.000Z

    Parallel thermal conduction along stochastic magnetic field lines may be reduced because the heat conducting electrons become trapped and detrapped between regions of strong magnetic field (magnetic mirrors). The problem reduces to a simple but realistic model for diffusion of mono-energetic electrons based on the fact that when there is a reduction of diffusion, it is controlled by a subset of the mirrors, the principle mirrors. The diffusion reduction can be considered as equivalent to an enhancement of the pitch angle scattering rate. Therefore, in deriving the collision integral, the authors modify the pitch angle scattering term. They take into account the full perturbed electron-electron collision integral, as well as the electron-proton collision term. Finally, they obtain the four plasma transport coefficients and the effective thermal conductivity. They express them as reductions from the classical values. They present these reductions as functions of the ratio of the magnetic field decorrelation length to the electron mean free path at the thermal speed V{sub T} = {radical}2kT/m{sub e}. They briefly discuss an application of the results to clusters of galaxies.

  2. Fusion safety program Annual report, Fiscal year 1995

    SciTech Connect (OSTI)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J. [and others

    1995-12-01T23:59:59.000Z

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities.

  3. Mechanical Loss in Tantala/Silica Dielectric Mirror Coatings

    E-Print Network [OSTI]

    Steven D. Penn; Peter H. Sneddon; Helena Armandula; Joseph C. Betzwieser; Gianpietro Cagnoli; Jordan Camp; D. R. M. Crooks; Martin M. Fejer; Andri M. Gretarsson; Gregory M. Harry; Jim Hough; Scott E. Kittelberger; Michael J. Mortonson; Roger Route; Sheila Rowan; Christophoros C. Vassiliou

    2003-02-24T23:59:59.000Z

    Current interferometric gravitational wave detectors use test masses with mirror coatings formed from multiple layers of dielectric materials, most commonly alternating layers of SiO2 (silica) and Ta2O5 (tantala). However, mechanical loss in the Ta2O5/SiO2 coatings may limit the design sensitivity for advanced detectors. We have investigated sources of mechanical loss in the Ta2O5/SiO2 coatings, including loss associated with the coating-substrate interface, with the coating-layer interfaces, and with the bulk material. Our results indicate that the loss is associated with the bulk coating materials and that the loss of Ta2O5 is substantially larger than that of SiO2.

  4. How Fusion Energy Works

    Broader source: Energy.gov [DOE]

    Fusion energy is the energy source of the sun and all of the stars. As part of How Energy Works, we'll cover everything from fuel sources to plasma physics and beyond.

  5. Fusion-breeder program

    SciTech Connect (OSTI)

    Moir, R.W.

    1982-11-19T23:59:59.000Z

    The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

  6. Cold nuclear fusion

    SciTech Connect (OSTI)

    Tsyganov, E. N., E-mail: edward.tsyganov@utsouthwestern.edu [University of Texas Southwestern Medical Center at Dallas (United States)

    2012-02-15T23:59:59.000Z

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  7. Generalized Fusion Potentials

    E-Print Network [OSTI]

    Ofer Aharony

    1993-01-31T23:59:59.000Z

    Recently, DiFrancesco and Zuber have characterized the RCFTs which have a description in terms of a fusion potential in one variable, and proposed a generalized potential to describe other theories. In this note we give a simple criterion to determine when such a generalized description is possible. We also determine which RCFTs can be described by a fusion potential in more than one variable, finding that in fact all RCFTs can be described in such a way, as conjectured by Gepner.

  8. Inertial fusion program. Progress report, July 1-December 31, 1978

    SciTech Connect (OSTI)

    Perkins, R.B.

    1980-11-01T23:59:59.000Z

    Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO/sub 2/ lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization.

  9. LBNL perspective on inertial fusion energy

    E-Print Network [OSTI]

    Bangerter, Roger O.

    1995-01-01T23:59:59.000Z

    LBNL Perspective on Inertial Fusion Energy Roger Bangerter1990) and the last Fusion Energy Advisory Committee (1993)year 2005, the Inertial Fusion Energy Program must grow to

  10. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08T23:59:59.000Z

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  11. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01T23:59:59.000Z

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  12. HEV Fleet Testing Advanced Vehicle Testing Activities - 2010...

    Broader source: Energy.gov (indexed) [DOE]

    Testing Advanced Vehicle Testing Activity Maintenance Sheet for 2010 Ford Fusion VIN 3FADP0L32AR194699 Date Mileage Description Cost 1012009 5915 Changed oil and filter 28.77...

  13. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    E-Print Network [OSTI]

    Yuan, Sheng

    2010-01-01T23:59:59.000Z

    stabilization based on a Peltier element attached directlyof the mirror with a Peltier element attached directly tostabilization based on a Peltier element have shown a

  14. Electrocurtain coating process for coating solar mirrors | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Electrocurtain coating process for coating solar mirrors Re-direct Destination: An electrically conductive protective coating or film is provided over the surface of a reflective...

  15. Nondispersive neutron focusing method beyond the critical angle of mirrors

    DOE Patents [OSTI]

    Ice, Gene E. (Oak Ridge, TN)

    2008-10-21T23:59:59.000Z

    This invention extends the Kirkpatrick-Baez (KB) mirror focusing geometry to allow nondispersive focusing of neutrons with a convergence on a sample much larger than is possible with existing KB optical schemes by establishing an array of at least three mirrors and focusing neutrons by appropriate multiple deflections via the array. The method may be utilized with supermirrors, multilayer mirrors, or total external reflection mirrors. Because high-energy x-rays behave like neutrons in their absorption and reflectivity rates, this method may be used with x-rays as well as neutrons.

  16. Achievement of a record electron temperature for a magnetic mirror device

    E-Print Network [OSTI]

    Bagryansky, P A; Lizunov, A A; Maximov, V V; Prikhodko, V V; Shalashov, A G; Soldatkina, E I; Solomakhin, A L; Yakovlev, D V

    2014-01-01T23:59:59.000Z

    We demonstrate plasma discharges with extremely high temperature of bulk electrons at the large axially symmetric magnetic mirror device GDT (Budker Institute, Novosibirsk). According to Thomson scattering measurements, the on-axis electron temperature averaged over several sequential shots is 660 $\\pm$ 50 eV with peak values exceeding 900 eV in few shots. This corresponds to at least threefold increase as compared to previous experiments both at the GDT and at other comparable machines, thus demonstrating the maximum quasi-stationary (~1 ms) electron temperature achieved in open traps. The breakthrough is made possible with application of sophisticated electron cyclotron resonance heating in addition to standard heating by neutral beams. The reported increase of the electron temperature along with previous experiments, which demonstrated high-density plasma confinement with $\\beta\\approx$ 60%, provide a firm basis for extrapolating to fusion relevant applications of open magnetic systems.

  17. Feasibility study of a fission supressed blanket for a tandem-mirror hybrid reactor

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.; Barr, W.L.

    1981-10-05T23:59:59.000Z

    A study of fission suppressed blankets for the tandem mirror not only showed such blankets to be feasible but also to be safer than fissioning blankets. Such hybrids could produce enough fissile material to support up to 17 light water reactors of the same nuclear power rating. Beryllium was compared to /sup 7/Li for neutron multiplication; both were considered feasible but the blanket with Li produced 20% less fissile fuel per unit of nuclear power in the reactor. The beryllium resource, while possibly being too small for extensive pure fusion application, would be adequate (with carefully planned industrial expansion) for the hybrid because of the large support ratio, and hence few hybrids required. Radiation damage and coatings for beryllium remain issues to be resolved by further study and experimentation.

  18. Electrocurtain coating process for coating solar mirrors

    DOE Patents [OSTI]

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15T23:59:59.000Z

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  19. Imperfect relativistic mirrors in the quantum regime

    SciTech Connect (OSTI)

    Mendonça, J. T., E-mail: titomend@ist.utl.pt [IPFN, Instituto Superior Técnico, 1049-001 Lisboa (Portugal); Serbeto, A., E-mail: serbeto@if.uff.br [Instituto de Física, Universidade Federal Fluminense, 24210-340 RJ (Brazil); Galvão, R. M. O., E-mail: rgalvao@if.usp.br [Instituto de Física, Universidade de São Paulo, 05508-090 SP (Brazil)

    2014-05-15T23:59:59.000Z

    The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.

  20. X-ray beam-shaping via deformable mirrors: analytical computation of the required mirror profile

    E-Print Network [OSTI]

    Spiga, Daniele; Svetina, Cristian; Zangrando, Marco; 10.1016/j.nima.2012.10.117

    2013-01-01T23:59:59.000Z

    X-ray mirrors with high focusing performances are in use in both mirror mod- ules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser) beamlines. A degradation of the focus sharpness arises in general from geo- metrical deformations and surface roughness, the former usually described by geometrical optics and the latter by physical optics. In general, technological developments are aimed at a very tight focusing, which requires the mirror profile to comply with the nominal shape as much as possible and to keep the roughness at a negligible level. However, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators as done at the EIS-TIMEX beamline of FERMI@Elettra. The resulting profile can be characterized with a Long Trace Profilometer and correlated with the expected optical quality via a wavefront propagation code. However, if the roughness contribution can be neglected, the com- putation can be performed via a ray-tracin...

  1. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01T23:59:59.000Z

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  2. Historical Perspective on the United States Fusion Program

    SciTech Connect (OSTI)

    Dean, Stephen O

    2005-04-15T23:59:59.000Z

    Progress and Policy is traced over the approximately 55 year history of the U. S. Fusion Program. The classified beginnings of the effort in the 1950s ended with declassification in 1958. The effort struggled during the 1960s, but ended on a positive note with the emergence of the tokamak and the promise of laser fusion. The decade of the 1970s was the 'Golden Age' of fusion, with large budget increases and the construction of many new facilities, including the Tokamak Fusion Test Reactor (TFTR) and the Shiva laser. The decade ended on a high note with the passage of the Magnetic Fusion Energy Engineering Act of 1980, overwhelming approved by Congress and signed by President Carter. The Act called for a '$20 billion, 20 year' effort aimed at construction of a fusion Demonstration Power Plant around the end of the century. The U. S. Magnetic Fusion Energy program has been on a downhill slide since 1980, both in terms of budgets and the construction of new facilities. The Inertial Confinement Fusion program, funded by Department of Energy Defense Programs, has faired considerably better, with the construction of many new facilities, including the National Ignition Facility (NIF)

  3. Realization of Fusion Energy: An alternative fusion roadmap

    E-Print Network [OSTI]

    Realization of Fusion Energy: An alternative fusion roadmap Farrokh Najmabadi Professor of Electrical & Computer Engineering Director, Center for Energy Research UC San Diego International Fusion Road of emerging nations, energy use is expected to grow ~ 4 fold in this century (average 1.6% annual growth rate

  4. FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF)

    E-Print Network [OSTI]

    FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF): UPDATE · It was well recognized there were also critical materials and technology issues that needed to be addressed in order to apply the knowledge we gained about burning plasma state #12;FUSION NUCLEAR SCIENCE PROGRAM

  5. CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Fusion Technology at

    E-Print Network [OSTI]

    more of an engineering challenge than a scientific one, is to build economically viable nuclear fusion self-sufficiency is vital to viable power station operation · The Test Blanket Programme of components will be inevitable · Manned access to in-vessel components and support systems

  6. Fusion technology status and requirements

    SciTech Connect (OSTI)

    Thomassen, K.I.

    1982-01-26T23:59:59.000Z

    This paper summarizes the status of fusion technology and discusses the requirements to be met in order to build a demonstration fusion plant. Strategies and programmatic considerations in pursuing engineering feasibility are also outlined.

  7. data fusion 15 June 2012

    E-Print Network [OSTI]

    Dobigeon, Nicolas

    real world data fusion Fred Daum 15 June 2012 data fusion Copyright © 2012 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. 1 #12;PATRIOT

  8. Fusion reactor control

    SciTech Connect (OSTI)

    Plummer, D.A.

    1995-12-31T23:59:59.000Z

    The plasma kinetic temperature and density changes, each per an injected fuel density rate increment, control the energy supplied by a thermonuclear fusion reactor in a power production cycle. This could include simultaneously coupled control objectives for plasma current, horizontal and vertical position, shape and burn control. The minimum number of measurements required, use of indirect (not plasma parameters) system measurements, and distributed control procedures for burn control are to be verifiable in a time dependent systems code. The International Thermonuclear Experimental Reactor (ITER) has the need to feedback control both the fusion output power and the driven plasma current, while avoiding damage to diverter plates. The system engineering of fusion reactors must be performed to assure their development expeditiously and effectively by considering reliability, availability, maintainability, environmental impact, health and safety, and cost.

  9. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M. (Oak Ridge, TN)

    1989-01-01T23:59:59.000Z

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  10. Fusion welding process

    DOE Patents [OSTI]

    Thomas, Kenneth C. (Export, PA); Jones, Eric D. (Salem, PA); McBride, Marvin A. (Hempfield Township, Westmoreland County, PA)

    1983-01-01T23:59:59.000Z

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  11. Fusion Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity fromFusion Links Fusion Energy

  12. Fusion Science to Prepare

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity fromFusion Links FusionDIII-D

  13. Mirror contamination and secondary electron effects during EUV reflectivity analysis

    E-Print Network [OSTI]

    Harilal, S. S.

    Mirror contamination and secondary electron effects during EUV reflectivity analysis M. Catalfanoa, USA; b SEMATECH Inc., Albany, NY 12203, USA ABSTRACT We investigated Ru mirror contamination film at different angles. During the contamination process, the EUV reflectivity of the Ru film

  14. MEASUREMENT OF MIRROR PANELS USING COLOURED PATTERN DEFLECTOMETRY

    E-Print Network [OSTI]

    and parabolic dish solar concentrators. Factory production of mirror panels also requires accurate measurementsMEASUREMENT OF MIRROR PANELS USING COLOURED PATTERN DEFLECTOMETRY Paul M. Scott1 , and Greg Burgess2 1 Research Assistant, Solar Thermal Group, Australian National University (ANU), Building 32 North

  15. THORIUM-BASED MIRRORS IN THE EXTREME ULTRAVIOLET Nicole Farnsworth

    E-Print Network [OSTI]

    Hart, Gus

    THORIUM-BASED MIRRORS IN THE EXTREME ULTRAVIOLET by Nicole Farnsworth Submitted to Brigham Young Ultraviolet and Thorium-based Mirrors . . . 1 1.2 Project Background the Optical Constants of Thorium Oxide 34 3.1 Reflectance and Transmittance Measurements

  16. Waves for alpha channeling in mirror machines A. I. Zhmoginova

    E-Print Network [OSTI]

    instabilities,10,11 par- ticle injection,12,13 and plasma diagnostics.14­17 Alpha chan- neling is a recently and fuel ion injection.24,33 The -channeling effect in a mirror machine was shown24­26 to be possible-dimensional ray-tracing equations to study wave propa- gation in the central cell of a mirror machine. Assuming

  17. Thermoptic analysis of bimetallic mirrors Daniel Vukobratovich and Allen Gerzoff

    E-Print Network [OSTI]

    plated with electroless nickel to reduce light scattering. The thermal coefficient of expansion of electroless nickel, 13.5 x 10 ­6 m/m­K, is significantly different from that of a typical mirror substrate in an electroless nickel plated mirror, which can induce optical surface distortion. Possible solutions to the ``bi

  18. Requirements and Design Envelope for Volumetric Neutron Source Fusion Facilities for Fusion Nuclear Technology Development

    SciTech Connect (OSTI)

    Abdou, M [University of California, Los Angeles] [University of California, Los Angeles; Peng, Yueng Kay Martin [ORNL] [ORNL

    1995-01-01T23:59:59.000Z

    The paper shows that timely development of fusion nuclear technology (FNT) components, e.g. blanket, for DEMO requires the construction and operation of a fusion facility parallel to ITER. This facility, called VNS, will be dedicated to testing, developing and qualifying FNT components and material combinations. Without VNS, i.e. with ITER alone, the confidence level in achieving DEMO operating goals has been quantified and is unacceptably low (< 1 %). An attractive design envelope for VNS exists. Tokamak VNS designs with driven plasma (Q ~ 1-3), steady state plasma operation and normal copper toroidal field coils lead to small sized devices with moderate cost.

  19. Developing inertial fusion energy - Where do we go from here?

    SciTech Connect (OSTI)

    Meier, W.R.; Logan, G.

    1996-06-11T23:59:59.000Z

    Development of inertial fusion energy (IFE) will require continued R&D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work.

  20. Engineering and manufacturing of ITER first mirror mock-ups

    SciTech Connect (OSTI)

    Joanny, M.; Travere, J. M.; Salasca, S.; Corre, Y. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Marot, L. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Thellier, C.; Gallay, G.; Cammarata, C.; Passier, B.; Ferme, J. J. [SESO, 305 Rue Louis Armand CS 30504, 13593 Aix-en-Provence Cedex 3 (France)

    2010-10-15T23:59:59.000Z

    Most of the ITER optical diagnostics aiming at viewing and monitoring plasma facing components will use in-vessel metallic mirrors. These mirrors will be exposed to a severe plasma environment and lead to an important tradeoff on their design and manufacturing. As a consequence, investigations are carried out on diagnostic mirrors toward the development of optimal and reliable solutions. The goals are to assess the manufacturing feasibility of the mirror coatings, evaluate the manufacturing capability and associated performances for the mirrors cooling and polishing, and finally determine the costs and delivery time of the first prototypes with a diameter of 200 and 500 mm. Three kinds of ITER candidate mock-ups are being designed and manufactured: rhodium films on stainless steel substrate, molybdenum on TZM substrate, and silver films on stainless steel substrate. The status of the project is presented in this paper.

  1. Background-reducing X-ray multilayer mirror

    DOE Patents [OSTI]

    Bloch, Jeffrey J. (Los Alamos, NM); Roussel-Dupre', Diane (Los Alamos, NM); Smith, Barham W. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

  2. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    SciTech Connect (OSTI)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01T23:59:59.000Z

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis.

  3. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-A. Commercial fusion electric plant

    SciTech Connect (OSTI)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01T23:59:59.000Z

    Volume 1-A contains the following chapters: (1) plasma engineering, (2) magnets, (3) ecr heating systems, (4) anchor ion-cyclotron resonance heating system, (5) sloshing ion neutral beam, (6) end cell structure, (7) end plasma technology, (8) fueling, (9) startup ion cyclotron resonant heating systems, and (10) end cell radiation analysis. (MOW)

  4. Application Of The Phase Shifting Diffraction Interferometer For Measuring Convex Mirrors And Negative Lenses

    DOE Patents [OSTI]

    Sommargren, Gary E. (Santa Cruz, CA); Campbell, Eugene W. (Livermore, CA)

    2005-06-21T23:59:59.000Z

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  5. Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses

    DOE Patents [OSTI]

    Sommargren, Gary E.; Campbell, Eugene W.

    2004-03-09T23:59:59.000Z

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second, measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  6. Fusion potentials I

    E-Print Network [OSTI]

    P. Di Francesco; J. -B. Zuber

    1992-11-30T23:59:59.000Z

    We reconsider the conjecture by Gepner that the fusion ring of a rational conformal field theory is isomorphic to a ring of polynomials in $n$ variables quotiented by an ideal of constraints that derive from a potential. We show that in a variety of cases, this is indeed true with {\\it one-variable} polynomials.

  7. About sponsorship Fusion power

    E-Print Network [OSTI]

    using the energy released when two light atomic nuclei are brought together to make a heavier one are needed. Unlike existing nuclear reactors, which produce nasty long-lived radioactive waste, the radioactive processes involved with fusion are relatively short- lived and the waste products benign. Unlike

  8. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01T23:59:59.000Z

    drive targets for inertial fusion energy. 1. Introduction Adensity matter and fusion energy. Previously, experiments inHeavy ion fusion science research for high energy density

  9. Vectorial velocity filter for ultracold neutrons based on a surface-disordered mirror system

    E-Print Network [OSTI]

    L. A. Chizhova; S. Rotter; T. Jenke; G. Cronenberg; P. Geltenbort; G. Wautischer; H. Filter H. Abele; J. Burgdörfer

    2014-03-19T23:59:59.000Z

    We perform classical three-dimensional Monte Carlo simulations of ultracold neutrons scattering through an absorbing-reflecting mirror system in the Earth's gravitational field. We show that the underlying mixed phase space of regular skipping motion and random motion due to disorder scattering can be exploited to realize a vectorial velocity filter for ultracold neutrons. The absorbing-reflecting mirror system proposed allows beams of ultracold neutrons with low angular divergence to be formed. The range of velocity components can be controlled by adjusting the geometric parameters of the system. First experimental tests of its performance are presented. One potential future application is the investigation of transport and scattering dynamics in confined systems downstream of the filter.

  10. Potential of the neutron lloyd's mirror interferometer for the search for new interactions

    SciTech Connect (OSTI)

    Pokotilovski, Yu. N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2013-04-15T23:59:59.000Z

    We discuss the potential of the neutron Lloyd's mirror interferometer in a search for new interactions at small scales. We consider three hypothetical interactions that may be tested using the interferometer. The chameleon scalar field proposed to solve the enigma of accelerating expansion of the Universe produces interaction between particles and matter. The axion-like spin-dependent coupling between a neutron and nuclei or/and electrons may result in a P- and T-noninvariant interaction with matter. Hypothetical non-Newtonian gravitational interactions mediates an additional short-range potential between neutrons and bulk matter. These interactions between the neutron and the mirror of a Lloyd-type neutron interferometer cause a phase shift of neutron waves. We estimate the sensitivity and systematic effects of possible experiments.

  11. Performance of 3-Sun Mirror Modules on Sun Tracking Carousels on Flat Roof Buildings

    SciTech Connect (OSTI)

    Fraas, Dr. Lewis [JX Crystals, Inc.; Avery, James E. [JX Crystals, Inc.; Minkin, Leonid M [ORNL; Maxey, L Curt [ORNL; Gehl, Anthony C [ORNL; Hurt, Rick A [ORNL; Boehm, Robert F [ORNL

    2008-01-01T23:59:59.000Z

    Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

  12. New mechanism of membrane fusion

    E-Print Network [OSTI]

    M. Mueller; K. Katsov; M. Schick

    2001-10-10T23:59:59.000Z

    We have carried out Monte Carlo simulation of the fusion of bilayers of single chain amphiphiles which show phase behavior similar to that of biological lipids. The fusion mechanism we observe is very different from the ``stalk'' hypothesis. Stalks do form on the first stage of fusion, but they do not grow radially to form a hemifused state. Instead, stalk formation destabilizes the membranes and results in hole formation in the vicinity of the stalks. When holes in each bilayer nucleate spontaneously next to the same stalk, an incomplete fusion pore is formed. The fusion process is completed by propagation of the initial connection, the stalk, along the edges of the aligned holes.

  13. Fusion Probability in Dinuclear System

    E-Print Network [OSTI]

    Juhee Hong

    2015-03-26T23:59:59.000Z

    Fusion can be described by the time evolution of a dinuclear system with two degrees of freedom, the relative motion and transfer of nucleons. In the presence of the coupling between two collective modes, we solve the Fokker-Planck equation in a locally harmonic approximation. The potential of a dinuclear system has the quasifission barrier and the inner fusion barrier, and the escape rates can be calculated by the Kramers' model. To estimate the fusion probability, we calculate the quasifission rate and the fusion rate. We investigate the coupling effects on the fusion probability and the cross section of evaporation residue.

  14. Stau-catalyzed Nuclear Fusion

    E-Print Network [OSTI]

    K. Hamaguchi; T. Hatsuda; T. T. Yanagida

    2006-10-06T23:59:59.000Z

    We point out that the stau may play a role of a catalyst for nuclear fusions if the stau is a long-lived particle as in the scenario of gravitino dark matter. In this letter, we consider d d fusion under the influence of stau where the fusion is enhanced because of a short distance between the two deuterons. We find that one chain of the d d fusion may release an energy of O(10) GeV per stau. We discuss problems of making the stau-catalyzed nuclear fusion of practical use with the present technology of producing stau.

  15. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13T23:59:59.000Z

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  16. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2004-07-13T23:59:59.000Z

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  17. Magnetized Target Fusion Collaboration. Final report

    SciTech Connect (OSTI)

    John Slough

    2012-04-18T23:59:59.000Z

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T{sub ion} ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than 1 meter, and the time from the initiation of formation to the establishment of the final equilibrium was less than 10 microseconds. With some modification, each accelerator can be made capable of producing FRCs suitable for the production of the target plasma for the MTF liner experiment. Based on the initial FRC merging/compression results, the design and methodology for an experimental realization of the target plasma for the MTF liner experiment can now be defined. The construction and testing of the key components for the formation of the target plasma at the Air Force Research Laboratory (AFRL) will be performed on the IPA experiment, now at MSNW. A high density FRC plasmoid will be formed and accelerated out of each IPA into a merging/compression chamber similar to the imploding liner at AFRL. The properties of the resultant FRC plasma (size, temperature, density, flux, lifetime) will be obtained. The process will be optimized, and a final design for implementation at AFRL will be carried out. When implemented at AFRL it is anticipated that the colliding/merging FRCs will then be compressed by the liner. In this manner it is hoped that ultimately a plasma with ion temperatures reaching the 10 keV range and fusion gain near unity can be obtained.

  18. AVTA: 2012 Mitsubishi i-MiEV All-Electric Vehicle Testing Reports...

    Broader source: Energy.gov (indexed) [DOE]

    AVTA: 2013 Ford Focus All-Electric Vehicle Testing Reports AVTA: 2013 Nissan Leaf All-Electric Vehicle Testing Reports AVTA: 2013 Ford Fusion Energi PHEV Testing Results...

  19. anterior cervical fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  20. alkaline phosphatase fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  1. antibody fusion proteins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  2. abl fusion gene: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  3. acyltransferase gfp fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  4. albumin fusion proteins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  5. anatomical information fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  6. antigen fusion proteins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  7. affects myoblast fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  8. anterior spinal fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  9. anterior vertebral fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  10. anterior interbody fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  11. acquired motor fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  12. angiography fusion images: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  13. alloy fusion safety: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  14. altered fusion transcript: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  15. artificial gene fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  16. activate membrane fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Energy Plasma Physics and Fusion Websites Summary: , .... Controlled Thermonuclear Fusion had great potential - Uncontrolled Thermonuclear fusion...

  17. Contained Modes In Mirrors With Sheared Rotation

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2010-10-08T23:59:59.000Z

    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  18. Design of a helium-cooled molten salt fusion breeder

    SciTech Connect (OSTI)

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; DeVan, J.H.

    1985-02-01T23:59:59.000Z

    A new conceptual blanket design for a fusion reactor produces fissile material for fission power plants. Fission is suppressed by using beryllium, rather than uranium, to multiply neutrons and also by minimizing the fissile inventory. The molten-salt breeding media (LiF + BeF/sub 2/ + TghF/sub 4/) is circulated through the blanket and on to the online processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket including the steel pipes containing the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion rate by molten salt. We estimate the breeder, having 3000 MW of fusion power, produces 6400 kg of /sup 233/U per year, which is enough to provide make up for 20 GWe of LWR per year (or 14 LWR plants of 4440 MWt) or twice that many HTGRs or CANDUs. Safety is enhanced because the afterheat is low and the blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times an LWR of the same power. The estimated present value cost of the /sup 2/anumber/sup 3/U produced is $40/g if utility financed or $16/g if government financed.

  19. IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012) 013005 (11pp) doi:10.1088/0029-5515/52/1/013005

    E-Print Network [OSTI]

    Farge, Marie

    #12;IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 52 (2012-vaguelette decomposition. After validation of the new method using an academic test case and numerical data obtained, but the associated vessel erosion also impairs the awaited viability of long lasting discharges. It is thus

  20. Stainless steel submerged arc weld fusion line toughness

    SciTech Connect (OSTI)

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M. [Battelle, Columbus, OH (United States)

    1995-04-01T23:59:59.000Z

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.

  1. Laser fusion research. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The bibliography contains citations concerning design concepts and constraints of laser fusion systems. Design techniques of laser fusion reactors, targets, drivers, blankets, and pellets are evaluated and tested. Topics include conceptual design and evaluation of laser fusion power plants and energy systems for electricity generation and industrial applications. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Magnetic moments of T=3/2 mirror pairs

    SciTech Connect (OSTI)

    Perez, S. M. [Department of Physics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa); iThemba LABS, P. O. Box 722, Somerset West 7129 (South Africa); Richter, W. A. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Brown, B. A. [Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321 (United States); Horoi, M. [Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859 (United States)

    2010-12-15T23:59:59.000Z

    We predict values of the magnetic moments of T=3/2 proton-rich fp-shell nuclei in the mass range A=43-53, by using known values for their neutron-rich mirrors together with shell-model estimates for small quantities. We extend the analysis to those T=3/2 sd-shell mirror pairs for which both the T{sub z}=-3/2 and T{sub z}=+3/2 magnetic moments have been measured. We find that these obey the same linear relation as previously deduced for T=1/2 mirror pairs.

  3. Gamma-ray Bursts Produced by Mirror Stars

    E-Print Network [OSTI]

    S. Blinnikov

    1999-02-21T23:59:59.000Z

    I argue that cosmic Gamma-ray Bursts (GRB) may be produced by collapses or mergers of stars made of `mirror' matter. The mirror neutrinos (which are sterile for our matter) produced at these events can oscillate into ordinary neutrinos. The annihilations or decays of the latter create an electron-positron plasma and subsequent relativistic fireball with a very low baryon load needed for GRBs. The concept of mirror matter is able to explain several key problems of modern astrophysics: neutrino anomalies, the missing mass, MACHO microlensing events and GRBs. Thus this concept becomes very appealing and should be considered quite seriously and attentively.

  4. Data fusion in neutron and X-ray computed tomography

    SciTech Connect (OSTI)

    Schrapp, Michael J. [Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich (Germany); Physik Department E21, Technische Universität München, James-Franck-Strasse 1, 85747 Garching (Germany); Goldammer, Matthias [Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich (Germany); Schulz, Michael [Physik Department E21, Technische Universität München, James-Franck-Strasse 1, 85747 Garching (Germany); Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85747 Garching (Germany); Issani, Siraj; Bhamidipati, Suryanarayana [Siemens AG, Corporate Technology, Bangalore (India); Böni, Peter [Physik Department E21, Technische Universität München, James-Franck-Strasse 1, 85747 Garching (Germany)

    2014-10-28T23:59:59.000Z

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  5. The stochastic entry of enveloped viruses: Fusion vs. endocytosis

    E-Print Network [OSTI]

    Tom Chou

    2007-04-13T23:59:59.000Z

    Viral infection requires the binding of receptors on the target cell membrane to glycoproteins, or ``spikes,'' on the viral membrane. The initial entry is usually classified as fusogenic or endocytotic. However, binding of viral spikes to cell surface receptors not only initiates the viral adhesion and the wrapping process necessary for internalization, but can simultaneously initiate direct fusion with the cell membrane. Both fusion and internalization have been observed to be viable pathways for many viruses. We develop a stochastic model for viral entry that incorporates a competition between receptor mediated fusion and endocytosis. The relative probabilities of fusion and endocytosis of a virus particle initially nonspecifically adsorbed on the host cell membrane are computed as functions of receptor concentration, binding strength, and number of spikes. We find different parameter regimes where the entry pathway probabilities can be analytically expressed. Experimental tests of our mechanistic hypotheses are proposed and discussed.

  6. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, D.S.

    1987-07-31T23:59:59.000Z

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  7. Still Flying Fusion Edition

    E-Print Network [OSTI]

    2013-11-27T23:59:59.000Z

    please either join the Yahoo Group (http://uk.groups.yahoo.com/group/stillflying) or email the editor (stillflying@bitwiser.com - subject heading "Contribution"). Disclaimer This publication is not affiliated with Joss Whedon ; Mutant Enemy, Inc.... This abridged edition is available only at Fusion, Issue Two will be available soon, complete with an Adam Baldwin interview! If you wish to subscribe (for free) please email stillflying@bitwiser.com with the subject heading "Subscribe" and you...

  8. Fusion Policy Advisory Committee FINAL REPORT

    E-Print Network [OSTI]

    Fusion Policy Advisory Committee (FPAC) FINAL REPORT September 1990 Report of the Technical Panel on Magnetic Fusion of the Energy Research Advisory Board Washington, D .C. 20585 #12;#12;Fusion Policy of your Fusion Policy Advisory Committee. It presents a fusion policy that the Committee believes

  9. Development of Hard X-ray Imaging Optics with Two Pairs of Elliptical and Hyperbolic Mirrors

    SciTech Connect (OSTI)

    Matsuyama, S.; Fujii, M.; Wakioka, T.; Mimura, H.; Handa, S.; Kimura, T. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishino, Y.; Tamasaku, K.; Makina, Y.; Ishikawa, T. [SPring-8/RIKEN, 1-1-1 Kouto, Sayoucho, Sayogun, Hyogo 679-5148 (Japan); Yamauchi, K. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2010-06-23T23:59:59.000Z

    To form a magnified hard X-ray image with a 50 nm resolution, we have studied total reflection mirror optics with two pairs of elliptical and hyperbolic mirrors, which is called 'Advanced Kirkpatrick-Baez system'. A designed optical system has 200x and 300x magnifications in vertical and horizontal directions. Also diffraction limit size in the optical system is 40 nmx45 nm. We fabricated a pair of elliptical and hyperbolic mirrors for horizontal imaging with a figure accuracy of 2 nm using elastic emission machining (EEM), microstitching interferometry (MSI) and relative-angle-determinable stitching interferometry (RADSI). One-dimensional tests for forming a demagnified image of a slit were carried out at an X-ray energy of 11.5 keV at BL29XUL (EH2) of SPring-8. As a result, a shape beam with a FWHM of 78 nm was observed. This demonstrates that we realized one-dimensional Wolter optics that has a spatial resolution of 78 nm.

  10. Two-Mirror Apodization for High-Contrast Imaging Wesley A. Traub

    E-Print Network [OSTI]

    Vanderbei, Robert J.

    " the secondary mirror in designs of large two- mirror telescopes with fast spherical primaries. As an applicationTwo-Mirror Apodization for High-Contrast Imaging Wesley A. Traub Harvard-Smithsonian Center times needed for planet detection. A recently proposed alternative is to use two mirrors to accomplish

  11. Design and Implementation of the Primary and Secondary Mirror Control System for NST

    E-Print Network [OSTI]

    Design and Implementation of the Primary and Secondary Mirror Control System for NST G. Yang*a a by adjusting the figure of primary mirror and the position of the secondary mirror. The Active Optics Control the wavefront sensor and corresponding corrections will be applied to the primary mirror and the secondary

  12. Degradation of Back-Surface Acrylic Mirrors for Low Concentration and

    E-Print Network [OSTI]

    Rollins, Andrew M.

    : Mirror Augmentation, Acrylic Mirror, Degradation, Scattering, Photovoltaics, Stress and Response 1Degradation of Back-Surface Acrylic Mirrors for Low Concentration and Mirror-Augmented Photovoltaics Myles P Murray1 , Laura S. Bruckman1 , Devin Gordon1 , Samuel Richardson1 , Greg Reinbolt2 , Mark

  13. Inertial Confinement Fusion R&D and Nuclear Proliferation

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28T23:59:59.000Z

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  14. Electroless nickel and ion-plated protective coatings for silvered glass mirrors

    SciTech Connect (OSTI)

    Lind, M.A.; Chaudiere, D.A.; Stewart, T.L.

    1982-01-01T23:59:59.000Z

    Two methods of protecting second surface silvered glass mirrors from environmental degradation have been evaluated. One method employed silver mirrors overcoated with Al, Ni, 304 stainless steel, Cr, and an Al/Cu alloy prepared by ion-plating. The other method used conventional wet process silver mirrors protected with a thin electroless nickel coating. These mirrors were compared with conventional paint backed silver/copper mirrors after exposure to elevated temperatures and water vapor. The electroless nickel mirrors showed consistently more resistance to these stresses than either the conventional or ion-plated mirrors suggesting that they may provide more durable field service.

  15. Vibroacoustic launch analysis and alleviation of lightweight, active mirrors

    E-Print Network [OSTI]

    Cohan, Lucy E.

    Lightweight, active, silicon carbide mirrors can increase the capability of space-based optical systems. However, launch survival is a serious concern for such systems, with the vibrations and acoustics from launch threatening ...

  16. Mystic Self: Margery Kempe and the Mirror of Narrative

    E-Print Network [OSTI]

    Yates, Julian

    1995-01-01T23:59:59.000Z

    MYSTIC SELF: MARGERY KEMPE AND T H E MIRROR OF NARRATIVEend o f The Book of Margery Kempe, as Margery cries and sobsAll references will be to Margery Kempe, The Book of Margery

  17. Minimizing High Spatial Frequency Residual in Active Space Telescope Mirrors

    E-Print Network [OSTI]

    . Miller June 2008 SSL # 4-08 #12;#12;Minimizing High Spatial Frequency Residual in Active Space Telescope Mirrors Thomas Gray, David W. Miller June 2008 SSL # 4-08 This work is based on the unaltered text

  18. Lightweight diaphragm mirror module system for solar collectors

    DOE Patents [OSTI]

    Butler, Barry L. (Golden, CO)

    1985-01-01T23:59:59.000Z

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  19. Lightweight diaphragm mirror module system for solar collectors

    DOE Patents [OSTI]

    Butler, B.L.

    1984-01-01T23:59:59.000Z

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  20. asymmetric mirror dark: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 GeV Scale Asymmetric Dark Matter from Mirror Universe: Direct Detection and LHC Signatures HEP - Experiment (arXiv)...

  1. Integrated modeling for design of lightweight, active mirrors

    E-Print Network [OSTI]

    Cohan, Lucy E.

    Lightweight, active, silicon carbide mirrors have the potential to enable larger primary aperture, space-based optical systems, hence improving the resolution and sensitivity of such systems. However, due to the lack of ...

  2. The Use of Genetic Algorithms in Multilayer Mirror Optimization

    E-Print Network [OSTI]

    Hart, Gus

    The Use of Genetic Algorithms in Multilayer Mirror Optimization by Shannon Lunt March 1999.3 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 Local Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Global Optimizers

  3. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    SciTech Connect (OSTI)

    Daly, Edward F.; /SLAC; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.; /SLAC

    2011-09-14T23:59:59.000Z

    This paper describes the mechanical design of the primary mirror that images the visible portion of the synchrotron radiation (SR) extracted from the High Energy Ring (HER) of the PEP-II B-Factory. During off-axis operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm2. When on-axis imaging occurs, the heat flux due to scattered SR, resistive wall losses and Higher-Order-Mode (HOM) heating is estimated at 1 W/cm2. The imaging surface is plated with Electroless Nickel to improve its optical characteristics. The design requirements for the primary mirror are listed and discussed. Calculated mechanical distortions and stresses experienced by the mirror during on-axis and off-axis operation will be presented.

  4. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOE Patents [OSTI]

    Jorgensen, G. J.; Gee, R.

    2006-01-24T23:59:59.000Z

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  5. Wave-particle Interactions In Rotating Mirrors

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11T23:59:59.000Z

    Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  6. NUCLEAR STRUCTURE AND HEAVY-ION FUSION

    E-Print Network [OSTI]

    Stokstad, R.G.

    2010-01-01T23:59:59.000Z

    Nuclear Structure and Heavy-Ton Fusion* A series of lecturesthe cross section for fusion in the experiments consideredEffects g in III. Subharrier Fusion Cross Sections for Light

  7. Edmund J. Synakowski Fusion Power Associates Meeting

    E-Print Network [OSTI]

    Edmund J. Synakowski Fusion Power Associates Meeting September 27 - 28, 2006 The LLNL Fusion Energy Fusion Energy Program: leadership roles in both MFE and IFE, buoyed by ITER, NIF science, and LLNL

  8. NUCLEAR STRUCTURE AND HEAVY-ION FUSION

    E-Print Network [OSTI]

    Stokstad, R.G.

    2010-01-01T23:59:59.000Z

    mechanisms leading to fusion, nuclear structure is affectingknoi,. A [he "nuclear structure" in fusion will consist ofCI i CO I0 + Be fusion I0 ' -cm Nuclear reaction S-factors

  9. Annual Report of the EURATOM/CCFE Fusion Programme 2013 6 Materials

    E-Print Network [OSTI]

    Annual Report of the EURATOM/CCFE Fusion Programme 2013 6.1 6 Materials 6 Materials 6.1 INTRODUCTION A major challenge in fusion research is identifying and testing materials for power plant of neutrons and heat. For this reason, materials development is an important and growing part of CCFE

  10. Isomer ratio measurements as a probe of the dynamics of breakup and incomplete fusion

    SciTech Connect (OSTI)

    Gasques, L. R.; Dasgupta, M.; Hinde, D. J.; Peatey, T.; Diaz-Torres, A.; Newton, J. O. [Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2006-12-15T23:59:59.000Z

    The incomplete fusion mechanism following breakup of {sup 6,7}Li and {sup 9}Be projectiles incident on targets of {sup 209}Bi and {sup 208}Pb is investigated through isomer ratio measurements for the {sup 212}At and {sup 211}Po products. The phenomenological analysis presented in this paper indicates that incomplete fusion brings relatively more angular momentum into the system than equivalent reactions with a direct beam of the fused fragment. This is attributed to the trajectories of breakup fragments. Calculations with a 3D classical trajectory model support this. Isomer ratio measurements for incomplete fusion reactions can provide a test of new theoretical models of breakup and fusion.

  11. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    E-Print Network [OSTI]

    Kwan, J.W.

    2008-01-01T23:59:59.000Z

    Fusion Science, Magnetic Fusion Energy, and Related Fieldsof Science, Office of Fusion Energy Sciences, of the U.S.Fusion Science, Magnetic Fusion Energy, and Related Fields

  12. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31T23:59:59.000Z

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

  13. Study of internal magnetic field via polarimetry in fusion plasmas

    E-Print Network [OSTI]

    Zhang, Jie

    2013-01-01T23:59:59.000Z

    Motivation Controlled thermonuclear fusion is a promising2007]. Controlled thermonuclear fusion is based on the

  14. Fusion Electricity A roadmap to the realisation of fusion energy

    E-Print Network [OSTI]

    Fusion Electricity A roadmap to the realisation of fusion energy #12;28 European countries signed association EURaToM ­ University of latvia LATVIA lithuanian Energy Institute LITHUANIA Ministry of Education and Research ROMANIA Ministry of Education, science, culture and sport SLOVENIA centro de Investigaciones

  15. Systematics of fusion probability in "hot" fusion reactions

    E-Print Network [OSTI]

    Ning Wang; Junlong Tian; Werner Scheid

    2011-12-28T23:59:59.000Z

    The fusion probability in "hot" fusion reactions leading to the synthesis of super-heavy nuclei is investigated systematically. The quasi-fission barrier influences the formation of the super-heavy nucleus around the "island of stability" in addition to the shell correction. Based on the quasi-fission barrier height obtained with the Skyrme energy-density functional, we propose an analytical expression for the description of the fusion probability, with which the measured evaporation residual cross sections can be reproduced acceptably well. Simultaneously, some special fusion reactions for synthesizing new elements 119 and 120 are studied. The predicted evaporation residual cross sections for 50Ti+249Bk are about 10-150fb at energies around the entrance-channel Coulomb barrier. For the fusion reactions synthesizing element 120 with projectiles 54Cr and 58Fe, the cross sections fall to a few femtobarns which seems beyond the limit of the available facilities.

  16. Fusion and Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and Methane |science Fusion

  17. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummer gasoline price0US Fusion Research

  18. Fusion Power Associates Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell is theOpportunities HighFusion Power

  19. Fusion Communication Summit cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFunding Opportunity from NOAA'sFusion

  20. Course: FUSION SCIENCE AND ENGINEERING Universit degli Studi di Padova

    E-Print Network [OSTI]

    Cesare, Bernardo

    the subject of controlled thermonuclear fusion in magnetically confined plasmas. Both fusion science of Controlled Thermonuclear Fusion, b) Engineering of a Magnetically Confined Fusion Reactor, c) ExperimentalCourse: FUSION SCIENCE AND ENGINEERING Università degli Studi di Padova in agreement

  1. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect (OSTI)

    Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M. [Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM/CCFE Fusion Association, Culham Science Center, Abingdon OX14 3DB (United Kingdom); Collaboration: JET-EFDA Team

    2014-11-15T23:59:59.000Z

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium D?, D?, D? line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  2. Cleanable and Hardcoat Coatings for Increased Durability of Silvered Polymeric Mirrors

    SciTech Connect (OSTI)

    Padiyath, Raghunath

    2013-04-01T23:59:59.000Z

    We have successfully developed coating formulations which significantly increasethe abrasion resistance of mirror films. We have demonstrated manufacturing scale-up of these films to full width andproduction volumes. Implementation of these films in commercial test sites is planned for Q2 2013(Abengoa, Gossamer Space Frames). This slide show outlines the background and objectives of the project, technical approach and results, and key lessons. It also presents the need and opportunity for reduction of costs for CSP and collectors. It also presents an approach for a large aperture parabolic trough collector with reflective film and a high concentration factor, including demonstration and results.

  3. Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has adopted: achieving a fusion gain of 1 as

    E-Print Network [OSTI]

    Scientific Breakeven for Fusion Energy For the past 40 years, the IFE fusion research community has as fusion energy produced divided the external energy incident on the fusion reaction chamber. Typical fusion power plant design concepts require a fusion gain of 30 for MFE and 70 for IFE. Fusion energy

  4. Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    Fusion Nuclear Science Facility (FNSF) ­ Motivation, Role, Required Capabilities YK Martin Peng;1 Managed by UT-Battelle for the Department of Energy Example: fusion nuclear-nonnuclear coupling effects-composites; Nano-structure alloy; PFC designs, etc. · Nuclear-nonnuclear coupling in PFC: - Plasma ion flux induces

  5. The Fusion Machine (extended abstract)

    E-Print Network [OSTI]

    Gardner, Philippa

    directly. In the fusion machine, only channels exist at runtime. Channels may be remote, or co to rendezvous at the chan- nel. Execution amounts to the heating of a term (a directed implementation, rendezvous can result in explicit fusions, namely equational concurrent constraints on names. Upon heating

  6. Quasi-rational fusion products

    E-Print Network [OSTI]

    Werner Nahm

    1994-02-08T23:59:59.000Z

    Fusion is defined for arbitrary lowest weight representations of $W$-algebras, without assuming rationality. Explicit algorithms are given. A category of quasirational representations is defined and shown to be stable under fusion. Conjecturally, it may coincide with the category of representations of finite quantum dimensions.

  7. su(3)k fusion coefficients

    E-Print Network [OSTI]

    L. Begin; P. Mathieu; M. A. Walton

    1992-06-08T23:59:59.000Z

    A closed and explicit formula for all $\\su{(3)}_k$ fusion coefficients is presented which, in the limit $k \\rightarrow \\infty$, turns into a simple and compact expression for the $su(3)$ tensor product coefficients. The derivation is based on a new diagrammatic method which gives directly both tensor product and fusion coefficients.

  8. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17T23:59:59.000Z

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  9. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1998-01-01T23:59:59.000Z

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  10. Fusion algebra of critical percolation

    E-Print Network [OSTI]

    Jorgen Rasmussen; Paul A. Pearce

    2007-08-08T23:59:59.000Z

    We present an explicit conjecture for the chiral fusion algebra of critical percolation considering Virasoro representations with no enlarged or extended symmetry algebra. The representations we take to generate fusion are countably infinite in number. The ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of these representations decomposes into a finite direct sum of these representations. The fusion rules are commutative, associative and exhibit an sl(2) structure. They involve representations which we call Kac representations of which some are reducible yet indecomposable representations of rank 1. In particular, the identity of the fusion algebra is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the recent results of Eberle-Flohr and Read-Saleur. Notably, in agreement with Eberle-Flohr, we find the appearance of indecomposable representations of rank 3. Our fusion rules are supported by extensive numerical studies of an integrable lattice model of critical percolation. Details of our lattice findings and numerical results will be presented elsewhere.

  11. Fusion Energy 101 Jeff Freidberg

    E-Print Network [OSTI]

    : · Huge resources ­ a renewable · No CO2 emissions · No pollution · Inherently safe · No proliferation be in the future? 2 #12;Consumption of Energy by Sector Transportation Electricity Heating EIA ­ DOE 2010 3 #12;Where does fusion fit in? · Goal of fusion: make electricity · Lots of it! · Base load electricity ­ 24

  12. Frontiers of Fusion Materials Science

    E-Print Network [OSTI]

    migration Radiation damage accumulation kinetics · 1 D vs. 3D diffusion processes · ionization Insulators · Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term · Is the concept of a liquid valid

  13. Fusion Ignition Research Experiment Highlights

    E-Print Network [OSTI]

    of the FIRE pre-conceptual design study is to define a low-cost (~$1B) burning plasma experiment to attain to the burning plasma step because of the progress made in fusion science and fusion technology. Progress toward design and fabrication of FIRE, and that there is confidence that FIRE will achieve burning plasma

  14. Fusion - 2050 perspective (in Polish)

    E-Print Network [OSTI]

    Romaniuk, R S

    2013-01-01T23:59:59.000Z

    The results of strongly exothermic reaction of thermonuclear fusion between nuclei of deuterium and tritium are: helium nuclei and neutrons, plus considerable kinetic energy of neutrons of over 14 MeV. DT nuclides synthesis reaction is probably not the most favorable one for energy production, but is the most advanced technologically. More efficient would be possibly aneutronic fusion. The EU by its EURATOM agenda prepared a Road Map for research and implementation of Fusion as a commercial method of thermonuclear energy generation in the time horizon of 2050.The milestones on this road are tokomak experiments JET, ITER and DEMO, and neutron experiment IFMIF. There is a hope, that by engagement of the national government, and all research and technical fusion communities, part of this Road Map may be realized in Poland. The infrastructure build for fusion experiments may be also used for material engineering research, chemistry, biomedical, associated with environment protection, power engineering, security, ...

  15. Clean steels for fusion

    SciTech Connect (OSTI)

    Gelles, D.S.

    1995-03-01T23:59:59.000Z

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

  16. Information integration for data fusion

    SciTech Connect (OSTI)

    Bray, O.H.

    1997-01-01T23:59:59.000Z

    Data fusion has been identified by the Department of Defense as a critical technology for the U.S. defense industry. Data fusion requires combining expertise in two areas - sensors and information integration. Although data fusion is a rapidly growing area, there is little synergy and use of common, reusable, and/or tailorable objects and models, especially across different disciplines. The Laboratory-Directed Research and Development project had two purposes: to see if a natural language-based information modeling methodology could be used for data fusion problems, and if so, to determine whether this methodology would help identify commonalities across areas and achieve greater synergy. The project confirmed both of the initial hypotheses: that the natural language-based information modeling methodology could be used effectively in data fusion areas and that commonalities could be found that would allow synergy across various data fusion areas. The project found five common objects that are the basis for all of the data fusion areas examined: targets, behaviors, environments, signatures, and sensors. Many of the objects and the specific facts related to these objects were common across several areas and could easily be reused. In some cases, even the terminology remained the same. In other cases, different areas had their own terminology, but the concepts were the same. This commonality is important with the growing use of multisensor data fusion. Data fusion is much more difficult if each type of sensor uses its own objects and models rather than building on a common set. This report introduces data fusion, discusses how the synergy generated by this LDRD would have benefited an earlier successful project and contains a summary information model from that project, describes a preliminary management information model, and explains how information integration can facilitate cross-treaty synergy for various arms control treaties.

  17. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOE Patents [OSTI]

    Hamilton, G.W.

    1981-10-26T23:59:59.000Z

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  18. Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror

    SciTech Connect (OSTI)

    Yoshikawa, M.; Morimoto, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Yasuhara, R.; Yamada, I.; Kawahata, K.; Funaba, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2012-10-15T23:59:59.000Z

    In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TS system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.

  19. Synchrotron radiation damage observations in normal incidence copper mirrors

    SciTech Connect (OSTI)

    Takacs, P.Z.; Melendez, J.; Colbert, J.

    1985-08-01T23:59:59.000Z

    Water-cooled copper mirrors used at near-normal incidence on two beam lines at the NSLS are observed to undergo severe degradation upon exposure to the direct SR beam. These mirrors are used on beam lines designed to utilize radiation in the wavelength regions longer than 100 nm and are coated with a uv reflection-enhancing coating, consisting of one or more bilayers of aluminum with a MgF/sub 2/ overcoat. Beamline performance degrades very rapidly following installation of a new set of mirrors. Analysis of the mirror surfaces by various non-destructive techniques indicates severe degradation of the coating and surface along the central strip where most of the x-ray power is absorbed from the beam. In one case where the mirror had three bilayer coatings, the outer coating layer has disappeared along the central strip. Rutherford backscatter measurements indicate compositional changes between layers and confirm the existence of a carbon deposit on the surface. Thermal modeling suggests that most of the damage is caused by direct photon interaction, since the temperature rise in the energy deposition region is small.

  20. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect (OSTI)

    L.E. Zakharov

    2011-01-12T23:59:59.000Z

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  1. Organic materials for fusion-reactor applications

    SciTech Connect (OSTI)

    Hurley, G.F.; Coltman, R.R. Jr.

    1983-09-01T23:59:59.000Z

    Organic materials requirements for fusion-reactor magnets are described with reference to the temperature, radiation, and electrical and mechanical stress environment expected in these magnets. A review is presented of the response to gamma-ray and neutron irradiation at low temperatures of candidate organic materials; i.e. laminates, thin films, and potting compounds. Lifetime-limiting features of this response as well as needed testing under magnet operating conditions not yet adequately investigated are identified and recomendations for future work are made.

  2. Status of the HAPL Program Laser Fusion Energy

    E-Print Network [OSTI]

    -optics Government Labs 1. NRL 2. LLNL 3. SNL 4. LANL 5. ORNL 6. PPPL 7. SRNL Industry 1. General Atomics 2. L3/PSD 3 still need to do Electricity or Hydrogen Generator Reaction chamber Spherical pellet Pellet factory* Threat spectra Fusion Test Facility: Gain > 50 @ 500 kJ 2 different simulations** Simulations Codes

  3. Poxvirus entry and membrane fusion

    SciTech Connect (OSTI)

    Moss, Bernard [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445 (United States)]. E-mail: bmoss@nih.gov

    2006-01-05T23:59:59.000Z

    The study of poxvirus entry and membrane fusion has been invigorated by new biochemical and microscopic findings that lead to the following conclusions: (1) the surface of the mature virion (MV), whether isolated from an infected cell or by disruption of the membrane wrapper of an extracellular virion, is comprised of a single lipid membrane embedded with non-glycosylated viral proteins; (2) the MV membrane fuses with the cell membrane, allowing the core to enter the cytoplasm and initiate gene expression; (3) fusion is mediated by a newly recognized group of viral protein components of the MV membrane, which are conserved in all members of the poxvirus family; (4) the latter MV entry/fusion proteins are required for cell to cell spread necessitating the disruption of the membrane wrapper of extracellular virions prior to fusion; and furthermore (5) the same group of MV entry/fusion proteins are required for virus-induced cell-cell fusion. Future research priorities include delineation of the roles of individual entry/fusion proteins and identification of cell receptors.

  4. Magnetized Target Fusion: Input to the 35-yr Fusion Long-Range Electric Plan

    E-Print Network [OSTI]

    controlled thermonuclear fusion in the laboratory -- Intermediate between MFE and IFE · Presently only fundedMagnetized Target Fusion: Input to the 35-yr Fusion Long-Range Electric Plan G. A. Wurden Fusion Energy Program Office Los Alamos National Laboratory Jan. 14, 2003 #12;Magnetized Target Fusion: Input

  5. Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century

    E-Print Network [OSTI]

    Fusion EnergyFusion Energy Powering the XXI centuryPowering the XXI century Carlos Matos Ferreira, Fusion Energy Conference, Vilamoura, Portugal #12;OutlineOutline ·· World Energy ConsumptionWorld Energy Consumption ·· Global WarmingGlobal Warming ·· Advantages of Fusion energyAdvantages of Fusion energy

  6. Science/Fusion Energy Sciences FY 2006 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    community. Benefits Fusion is the energy source that powers the sun and stars. In the fusion process, formsScience/Fusion Energy Sciences FY 2006 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2005 Comparable Appropriation FY 2006 Request Fusion Energy Sciences Science

  7. Electron Screening Effect on Stellar Thermonuclear Fusion

    E-Print Network [OSTI]

    K. -h. Spatschek; M. Bonitz; T. Klinger; U. Ebert; C. Franck; A. V. Keudell; D. Naujoks; M. Dewitz; A. Y. Potekhin; G. Chabrier

    2012-01-01T23:59:59.000Z

    thermonuclear fusions and show that these scenarios do not apply to stellar conditions. c ? 2013 WILEY

  8. Magnetic Confinement Fusion at the Crossroads

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Matterhorn initiated at Princeton 1950s Classified US Project Sherwood on controlled thermonuclear fusionMagnetic Confinement Fusion at the Crossroads Michael Bell Princeton Plasma Physics Laboratory #12;MGB / UT / 070307 2 The Beginnings of Fusion Energy Research 1928 Concept of fusion reactions

  9. Fusion rules in conformal field theory

    E-Print Network [OSTI]

    J. Fuchs

    1993-07-09T23:59:59.000Z

    Several aspects of fusion rings and fusion rule algebras, and of their manifestations in twodimensional (conformal) field theory, are described: diagonalization and the connection with modular invariance; the presentation in terms of quotients of polynomial rings; fusion graphs; various strategies that allow for a partial classification; and the role of the fusion rules in the conformal bootstrap programme.

  10. Temperature & Nuclear Fusion 4 October 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class-Boltzmann equation: L = 4R2 T4 . (d) In fusion energy generation: T . #12;temperature & nuclear fusion 2 Nuclear

  11. Temperature & Nuclear Fusion 4 October 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class temperature. #12;temperature & nuclear fusion 2 Nuclear Fusion 2. There are a few different energy scales

  12. Muon catalyzed fusion

    SciTech Connect (OSTI)

    Breunlich, W.H.; Cargnelli, M.; Marton, J.; Naegele, N.; Pawlek, P.; Scrinzi, A.; Werner, J.; Zmeskal, J.; Bistirlich, J.; Crowe, K.M.

    1986-01-01T23:59:59.000Z

    This paper presents an overview of the program and results of our experiment performed by a European-American collatoration at the Swiss Institute of Nuclear Research. Systematic investigations of the low temperature region (23K to 300K) reveal a surprisingly rich physics of mesoatomic and mesomolecular processes, unparalleled in other systems of isotopic hydrogen mixtures. A dramatic density dependence of the reaction rates is found. The rich structure in the time spectra of the fusion neutrons observed at low gas density yields first evidence for new effects, most likely strong contributions from reactions of hot muonic atoms. The important question of muon losses due to He sticking is investigated by different methods and over a wide range of tritium concentrations.

  13. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  14. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  15. Fusion Power Demonstration III

    SciTech Connect (OSTI)

    Lee, J.D. (ed.)

    1985-07-01T23:59:59.000Z

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  16. Method for providing mirror surfaces with protective strippable polymeric film

    DOE Patents [OSTI]

    Edwards, Charlene C. (Powell, TN); Day, Jack R. (Oak Ridge, TN)

    1980-01-01T23:59:59.000Z

    This invention is a method for forming a protective, strippable, elastomeric film on a highly reflective surface. The method is especially well suited for protecting diamond-machined metallic mirrors, which are susceptible not only to abrasion and mechanical damage but also to contamination and corrosion by various fluids. In a typical use of the invention, a diamond-machined copper mirror surface is coated uniformly with a solution comprising a completely polymerized and completely cured thermoplastic urethane elastomer dissolved in tetrahydrofuran. The applied coating is evaporated to dryness, forming a tough, adherent, impermeable, and transparent film which encapsulates dust and other particulates on the surface. The film may be left in place for many months. When desired, the film may be stripped intact, removing the entrapped particulates and leaving no residue on the mirror surface.

  17. Method for providing mirror surfaces with protective strippable polymeric film

    SciTech Connect (OSTI)

    Edwards, C.C.; Day, J.R.

    1980-04-22T23:59:59.000Z

    This invention is a method for forming a protective, strippable, elastomeric film on a highly reflective surface. The method is especially well suited for protecting diamond-machined metallic mirrors, which are susceptible not only to abrasion and mechanical damage but also to contamination and corrosion by various fluids. In a typical use of the invention, a diamond-machined copper mirror surface is coated uniformly with a solution comprising a completely polymerized and completely cured thermoplastic urethane elastomer dissolved in tetrahydrofuran. The applied coating is evaporated to dryness, forming a tough, adherent, impermeable, and transparent film which encapsulates dust and other particulates on the surface. The film may be left in place for many months. When desired, the film may be stripped intact, removing the entrapped particulates and leaving no residue on the mirror surface.

  18. Switchable mirrors based on nickel-magnesium films

    SciTech Connect (OSTI)

    Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

    2001-01-16T23:59:59.000Z

    A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

  19. High repetition rate plasma mirror device for attosecond science

    SciTech Connect (OSTI)

    Borot, A.; Douillet, D.; Iaquaniello, G.; Lefrou, T.; Lopez-Martens, R. [Laboratoire d'Optique Appliquée, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquée, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France); Audebert, P.; Geindre, J.-P. [Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)] [Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex (France)

    2014-01-15T23:59:59.000Z

    This report describes an active solid target positioning device for driving plasma mirrors with high repetition rate ultra-high intensity lasers. The position of the solid target surface with respect to the laser focus is optically monitored and mechanically controlled on the nm scale to ensure reproducible interaction conditions for each shot at arbitrary repetition rate. We demonstrate the target capabilities by driving high-order harmonic generation from plasma mirrors produced on glass targets with a near-relativistic intensity few-cycle pulse laser system operating at 1 kHz. During experiments, residual target surface motion can be actively stabilized down to 47?nm (root mean square), which ensures sub-300-as relative temporal stability of the plasma mirror as a secondary source of coherent attosecond extreme ultraviolet radiation in pump-probe experiments.

  20. Class II virus membrane fusion proteins

    SciTech Connect (OSTI)

    Kielian, Margaret [Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461 (United States)]. E-mail: kielian@aecom.yu.edu

    2006-01-05T23:59:59.000Z

    Enveloped animal viruses fuse their membrane with a host cell membrane, thus delivering the virus genetic material into the cytoplasm and initiating infection. This critical membrane fusion reaction is mediated by a virus transmembrane protein known as the fusion protein, which inserts its hydrophobic fusion peptide into the cell membrane and refolds to drive the fusion reaction. This review describes recent advances in our understanding of the structure and function of the class II fusion proteins of the alphaviruses and flaviviruses. Inhibition of the fusion protein refolding reaction confirms its importance in fusion and suggests new antiviral strategies for these medically important viruses.

  1. Advanced fusion concepts: project summaries

    SciTech Connect (OSTI)

    None

    1980-12-01T23:59:59.000Z

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  2. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-09-01T23:59:59.000Z

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  3. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect (OSTI)

    Niranjan, Ram, E-mail: niranjan@barc.gov.in; Rout, R. K., E-mail: niranjan@barc.gov.in; Srivastava, R., E-mail: niranjan@barc.gov.in; Gupta, Satish C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Chakravarthy, Y. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Patel, N. N. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Alex, P. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24T23:59:59.000Z

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  4. Can mirror matter solve the the cosmological lithium problem?

    SciTech Connect (OSTI)

    Coc, Alain [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Université Paris Sud 11, UMR 8609, Bâtiment 104, 91405 Orsay Campus (France); Uzan, Jean-Philippe; Vangioni, Elisabeth [Institut d'Astrophysique de Paris, UMR-7095 du CNRS, Université Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France and Sorbonne Universités, Institut Lagrange de Paris, 98 bis bd Arago, 75014 Paris (France)

    2014-05-02T23:59:59.000Z

    The abundance of lithium-7 confronts cosmology with a long lasting inconsistency between the predictions of standard Big Bang Nucleosynthesis with the baryonic density determined from the Cosmic Microwave Background observations on the one hand, and the spectroscopic determination of the lithium-7 abundance on the other hand. We investigated the influence of the existence of a mirror world, focusing on models in which mirror neutrons can oscillate into ordinary neutrons. Such a mechanism allows for an effective late time neutron injection, which induces an increase of the destruction of beryllium-7and thus a lower final lithium-7 abundance.

  5. Fusion Rules for Extended Current Algebras

    E-Print Network [OSTI]

    Ernest Baver; Doron Gepner

    1996-01-30T23:59:59.000Z

    The initial classification of fusion rules have shown that rational conformal field theory is very limited. In this paper we study the fusion rules of extend ed current algebras. Explicit formulas are given for the S matrix and the fusion rules, based on the full splitting of the fixed point fields. We find that in s ome cases sensible fusion rules are obtained, while in others this procedure lea ds to fractional fusion constants.

  6. EURATOM/CCFE Fusion Association

    E-Print Network [OSTI]

    - Public Understanding and Education Outreach 7 - Training 7 JET Operations 8 JET Studies 11 MAST 14 - MAST to capture heat from the fusion core to generate electricity in a power station. In this Executive Summary

  7. Pulsed Power Driven Fusion Energy

    SciTech Connect (OSTI)

    SLUTZ,STEPHEN A.

    1999-11-22T23:59:59.000Z

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  8. Virasoro Representations on Fusion Graphs

    E-Print Network [OSTI]

    J. Kellendonk; A. Recknagel

    1992-10-01T23:59:59.000Z

    For any non-unitary model with central charge c(2,q) the path spaces associated to a certain fusion graph are isomorphic to the irreducible Virasoro highest weight modules.

  9. Cell fusion in Neurospora crassa 

    E-Print Network [OSTI]

    Lichius, Alexander

    2010-11-24T23:59:59.000Z

    The primary research aims of this thesis were the identification of novel cell fusion mutants of Neurospora crassa and the subsequent functional characterization of selected candidate proteins during conidial anastomosis ...

  10. The reality of cold fusion

    SciTech Connect (OSTI)

    Case, L.C. (Eltron, Inc., Winchester, MA (US))

    1991-12-01T23:59:59.000Z

    Despite the unreproducibility, doubt, and controversy involved in the question of the cold fusion of deuterium, enough good data have been published to clearly indicate the reality of some sort of nuclear fusion. Yamaguchi and Niushioka reported a thrice-repeated event in which large amounts of heat and definite bursts of neutrons evolved simultaneously with considerable out-gassing of absorbed deuterium. These results are consistent with nuclear fusion and not with a chemical reaction. In this paper a detailed mechanism is proposed that is consistent with these events and that also generally explains many of the scattered indications of cold fusion that have been reported. There must be an adventitiously large enough presence of tritium to initiate the nuclear reaction. The results of previously successful experiments cannot now be reproduced because currently available D{sub 2}O (and D{sub 2}) is so low in adventitious tritium as to preclude initiation of the nuclear reaction.

  11. Condensed hydrogen for thermonuclear fusion

    SciTech Connect (OSTI)

    Kucheyev, S. O.; Hamza, A. V. [Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2010-11-15T23:59:59.000Z

    Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

  12. Fusion Engineering and Design xxx (2006) xxxxxx Overview of fusion nuclear technology in the US

    E-Print Network [OSTI]

    Raffray, A. René

    2006-01-01T23:59:59.000Z

    Fusion Engineering and Design xxx (2006) xxx­xxx Overview of fusion nuclear technology in the US N.B. Morley et al. / Fusion Engineering and Design xxx (2006) xxx­xxx · firstwall

  13. Heavy ion fusion science research for high energy density physics and fusion applications

    E-Print Network [OSTI]

    Logan, B.G.

    2007-01-01T23:59:59.000Z

    1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

  14. Inverse Compton scattering from plasma mirror experiment Hai-En Tsai, Joseph Shaw, Xiaoming Wang

    E-Print Network [OSTI]

    Shvets, Gennady

    Inverse Compton scattering from plasma mirror experiment Hai-En Tsai, Joseph Shaw, Xiaoming Wang 1 experiment, we tried to generate inverse Compton x-ray by reflecting driving pulse from plasma mirrors

  15. Minimizing actuator-induced residual error in active space telescope primary mirrors

    E-Print Network [OSTI]

    Smith, Matthew William, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    Heritage space telescope mirror technology-i.e. large, monolithic glass primary mirrors-has reached an upper limit on allowable aperture diameter given launch vehicle volume and mass constraints. The next generation of ...

  16. On the Kinematics of Solar Mirrors Using Massively Parallel Binary Actuation

    E-Print Network [OSTI]

    Dubowsky, Steven

    Precision mirrors are required for effective solar energy collectors. Manufacturing such mirrors and making them robust to disturbances such as thermal gradients is expensive. In this paper, the use of parallel binary ...

  17. A color spatial display based on a Raster framebuffer and varifocal mirror

    E-Print Network [OSTI]

    Carson, Kenneth M

    1985-01-01T23:59:59.000Z

    A very simple 30 color display has been constructed. It consists of a 20 display viewed in a rapidly vibrating varifocal mirror. The changing focal length of the mirror is responsible for providing the depth; when the ...

  18. Ion implantation for figure correction of high-resolution x-ray telescope mirrors

    E-Print Network [OSTI]

    Chalifoux, Brandon D

    2014-01-01T23:59:59.000Z

    Fabricating mirrors for future high-resolution, large-aperture x-ray telescopes continues to challenge the x-ray astronomy instrumentation community. Building a large-aperture telescope requires thin, lightweight mirrors; ...

  19. Japanese magnetic confinement fusion research

    SciTech Connect (OSTI)

    Davidson, R.C.; Abdou, M.A.; Berry, L.A.; Horton, C.W.; Lyon, J.F.; Rutherford, P.H.

    1990-01-01T23:59:59.000Z

    Six U.S. scientists surveyed and assessed Japanese research and development in magnetic fusion. The technical accomplishments from the early 1980s through June 1989 are reviewed, and the Japanese capabilities and outlook for future contributions are assessed. Detailed evaluations are provided in the areas of basic and applied plasma physics, tokamak confinement, alternate confinement approaches, plasma technology, and fusion nuclear technology and materials.

  20. Fusion burn dynamics in dense Z-pinches (DZP)

    SciTech Connect (OSTI)

    Krakowski, R.A.; Miller, R.L.; Bathke, C.G.; Werley, K.A.; Hagenson, R.L. (Los Alamos National Lab., NM (USA); Phillips Petroleum Co., Bartlesville, OK (USA))

    1989-01-01T23:59:59.000Z

    The fusion burn dynamics and energy yield of the dense Z-pinch (DZP) are examined using a profile-averaged, zero-dimensional time-dependent model. A range of conditions (fuel, line density, voltage, fusion-product heating, enthalpy endless, density and temperature profiles, current rise rate, electrode impurities) are examined. Magneto-hydrodynamic stability is assumed, and initial conditions are based on those ideally existing after the melting and ionization of a solid fiber of fusion fuel. Plasma-conditions required of neutron sources for materials testing ({dot S}{sub n} {ge} 10{sup 19} n/s) and for possible commercial power production are examined. 25 refs., 9 figs.

  1. Life Pure Fusion Target Designs: Status and Prospects

    SciTech Connect (OSTI)

    Amendt, P; Dunne, M; Ho, D; Lindl, J

    2011-10-20T23:59:59.000Z

    Analysis and radiation-hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant are presented. The required laser energy driver is 2.2 MJ at a 0.351-{mu}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for near-term experimental resolution of the key physics uncertainties on the National Ignition Facility.

  2. Fusion Rules and Conditional Statistics in Turbulent Advection

    E-Print Network [OSTI]

    Emily S. C. Ching; Victor S. L'vov; Itamar Procaccia

    1996-07-02T23:59:59.000Z

    Fusion rules in turbulence address the asymptotic properties of many-point correlation functions when some of the coordinates are very close to each other. Here we put to experimental test some non-trivial consequences of the fusion rules for scalar correlations in turbulence. To this aim we examine passive turbulent advection as well as convective turbulence. Adding one assumption to the fusion rules one obtains a prediction for universal conditional statistics of gradient fields. We examine the conditional average of the scalar dissipation field $\\left$ for $R$ in the inertial range, and find that it is linear in $T(\\B.r+\\B.R)-T(\\B.r)$ with a fully determined proportionality constant. The implications of these findings for the general scaling theory of scalar turbulence are discussed.

  3. Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator

    E-Print Network [OSTI]

    Lee, Seung Kyu; Kim, Gi-Dong; Kim, Yong-Kyun

    2011-01-01T23:59:59.000Z

    Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutr...

  4. ash fusion temperature: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Fusion Performance Plasma Physics and Fusion Websites Summary: Inst. for Plasma Research 3 Univ. of Texas Inst for Fusion Studies (October 6, 1999) The physics in a...

  5. alternate magnetic fusion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Long-Range Electric Plan Plasma Physics and Fusion Websites Summary: controlled thermonuclear fusion in the laboratory -- Intermediate between MFE and IFE Presently...

  6. Using Radio Waves to Control Fusion Plasma Density

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics...

  7. ION ACCELERATORS AS DRIVERS FOR INERTIAL CONFINEMENT FUSION

    E-Print Network [OSTI]

    Faltens, A.

    2010-01-01T23:59:59.000Z

    and Controlled Nuclear Fusion Research, Brussels, Belgium,of the Heavy Ion Fusion Workshop held at Brookhaven NationalReport, Hearthfire Heavy Ion Fusion, October 1, 1979 - March

  8. Fusion systems and biset functors via ghost algebras

    E-Print Network [OSTI]

    O'Hare, Shawn Michael

    2013-01-01T23:59:59.000Z

    2.2 Fusion Preserving1 Background 1.1 Fusion System Basics . . . . . . 1.2A. Craven. The theory of fusion systems. Vol. 131. Cambridge

  9. Prospects for improved fusion reactors

    SciTech Connect (OSTI)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1986-01-01T23:59:59.000Z

    Ideally, a new energy source must be capable of displacing old energy sources while providing both economic opportunities and enhanced environmental benefits. The attraction of an essentially unlimited fuel supply has generated a strong impetus to develop advanced fission breeders and, even more strongly, the exploitation of nuclear fusion. Both fission and fusion systems trade a reduced fuel charge for a more capital-intensive plant needed to utilize a cheaper and more abundant fuel. Results from early conceptual designs of fusion power plants, however, indicated a capital intensiveness that could override cost savings promised by an inexpensive fuel cycle. Early warnings of these problems appeared, and generalized routes to more economically attractive systems have been suggested; specific examples have also recently been given. Although a direct reduction in the cost (and mass) of the fusion power core (FPC, i.e., plasma chamber, first wall, blanket, shield, coils, and primary structure) most directly reduces the overall cost of fusion power, with the mass power density (MPD, ratio of net electric power to FPC mass, kWe/tonne) being suggested as a figure-of-merit in this respect, other technical, safety/environmental, and institutional issues also enter into the definition of and direction for improved fusion concepts. These latter issues and related tradeoffs are discussed.

  10. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect (OSTI)

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06T23:59:59.000Z

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  11. Debris and Radiation-Induced Damage Effects on EUV Nanolithography Source Collector Mirror Optics Performance

    E-Print Network [OSTI]

    Harilal, S. S.

    Debris and Radiation-Induced Damage Effects on EUV Nanolithography Source Collector Mirror Optics, Argonne, Illinois ABSTRACT Exposure of collector mirrors facing the hot, dense pinch plasma in plasma region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector

  12. AlGaAs lasers with micro-cleaved mirrors suitable for monolithic integration

    SciTech Connect (OSTI)

    Blauvelt, H.; Bar-Chaim, N.; Fekete, D.; Margalit, S.; Yariv, A.

    1982-02-15T23:59:59.000Z

    A technique has been developed for cleaving the mirrors of AlGaAs lasers without cleaving the substrate. Micro-cleaving involves cleaving a suspended heterostructure cantilever by ultrasonic vibrations. Lasers with microcleaved mirrors have threshold currents and quantum efficiencies identical to those of similar devices with conventionally cleaved mirrors.

  13. Doppler-induced dynamics of fields in FabryPerot cavities with suspended mirrors

    E-Print Network [OSTI]

    Florida, University of

    The Doppler effect in Fabry­Perot cavities with suspended mirrors is analyzed. The Doppler shift, which by the Doppler effect that appears in a Fabry­Perot cavity with moving mirrors. The Doppler shift, whichDoppler-induced dynamics of fields in Fabry­Perot cavities with suspended mirrors Malik Rakhmanov

  14. Low energy electron bombardment induced surface contamination of Ru mirrors

    E-Print Network [OSTI]

    Harilal, S. S.

    Low energy electron bombardment induced surface contamination of Ru mirrors A. Al-Ajlonya , A., Albany, NY 12203, USA ABSTRACT The impact of secondary electrons induced contamination of the Ru surface, carbon contamination, Ruthenium capping 1. INTRODUCTION Extreme ultraviolet (EUV) radiation induced

  15. Mirror Film Company Has 'Concentrated' Plans for Expansion

    Broader source: Energy.gov [DOE]

    ReflecTech Inc. is using a silvered polymer-based film -- instead of glass -- to make mirror panels for focusing sunlight onto a heat generator. Their innovation helped them land a Recovery Act tax credit to expand their Colorado company.

  16. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    E-Print Network [OSTI]

    Kramer, Kevin James

    2010-01-01T23:59:59.000Z

    of Con- trolled Nuclear Fusion, CONF-760975-P3, pages 1061–more effective solution, nuclear fusion. Fission Energy Thethe development of nuclear fusion weapons, humankind has

  17. Deep Inelastic Electron Scattering Off the Helium and Tritium Mirror Nuclei

    SciTech Connect (OSTI)

    Holt, Roy J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Petratos, Gerassimos G. [Department of Physics, Kent State University, Kent, OH 44242 (United States)

    2011-09-21T23:59:59.000Z

    We discuss a possible measurement of the ratio of nucleon structure functions, F{sub 2}{sup n}/F{sub 2}{sup p}, and the ratio of up to down quark distributions, u/d, at large Bjorken x, by performing deep inelastic electron scattering from the {sup 3}H and {sup 3}He mirror nuclei with the 11 GeV upgraded beam of Jefferson Lab. The measurement is expected to be almost free of nuclear effects, which introduce a significant uncertainty in the extraction of these two ratios from deep inelastic scattering off the proton and deuteron. The results are expected to test perturbative and non-perturbative mechanisms of spin-flavor symmetry breaking in the nucleon, and constrain the structure function parametrizations needed for the interpretation of high energy collider and neutrino oscillations data. The precision of the expected data can also test models of the nuclear EMC effect and provide valuable input for its full explanation.

  18. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect (OSTI)

    Guo Xiaoming [Physics and Computer Science Department, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5 (Canada)

    2012-09-26T23:59:59.000Z

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  19. Conformal nets III: fusion of defects

    E-Print Network [OSTI]

    Arthur Bartels; Christopher L. Douglas; André Henriques

    2015-02-21T23:59:59.000Z

    Conformal nets provides a mathematical model for conformal field theory. We define a notion of defect between conformal nets, formalizing the idea of an interaction between two conformal field theories. We introduce an operation of fusion of defects, and prove that the fusion of two defects is again a defect, provided the fusion occurs over a conformal net of finite index. There is a notion of sector (or bimodule) between two defects, and operations of horizontal and vertical fusion of such sectors. Our most difficult technical result is that the horizontal fusion of the vacuum sectors of two defects is isomorphic to the vacuum sector of the fused defect. Equipped with this isomorphism, we construct the basic interchange isomorphism between the horizontal fusion of two vertical fusions and the vertical fusion of two horizontal fusions of sectors.

  20. Overview of Fusion-Fission Hybrid Reactor Design Study in China

    SciTech Connect (OSTI)

    Huang Jinhua [Southwestern Institute of Physics (China); Feng Kaiming [Southwestern Institute of Physics (China); Deng Baiquan [Southwestern Institute of Physics (China); Deng, P.Zh. [Southwestern Institute of Physics (China); Zhang Guoshu [Southwestern Institute of Physics (China); Hu Gang [Southwestern Institute of Physics (China); He Kaihui [Southwestern Institute of Physics (China); Wu Yican [Institute of Plasma Physics (China); Qiu Lijian [Institute of Plasma Physics (China); Huang Qunying [Institute of Plasma Physics (China); Xiao Bingjia [Institute of Plasma Physics (China); Liu Xiaoping [Institute of Plasma Physics (China); Chen Yixue [Institute of Plasma Physics (China); Kong, M.H. [Institute of Plasma Physics (China)

    2002-07-15T23:59:59.000Z

    The motivation for developing fusion-fission hybrid reactors is discussed in the context of electricity power requirements by 2050 in China. A detailed conceptual design of the Fusion Experimental Breeder (FEB) was developed from 1986-1995. The FEB has a subignited tokamak fusion core with a major radius of 4.0 m, a fusion power of 145 MW, and a fusion energy gain Q of 3. Based on this, an engineering outline design study of the FEB, FEB-E, has been performed. This design study is a transition from conceptual to engineering design in this research. The main results beyond that given in the detailed conceptual design are included in this paper, namely, the design studies of the blanket, divertor, test blanket, and tritium and environment issues. In-depth analyses have been performed to support the design. Studies of related advanced concepts such as the waste transmutation blanket concept and the spherical tokamak core concept are also presented.

  1. The Path to Magnetic Fusion Energy

    SciTech Connect (OSTI)

    Prager, Stewart (PPPL) [PPPL

    2011-05-04T23:59:59.000Z

    When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

  2. ICF Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Programs Research, Development, Test, and Evaluation Inertial Confinement Fusion ICF Facilities ICF Facilities Nike mirror array and lens array ICF operates a set...

  3. Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings

    SciTech Connect (OSTI)

    Genin, F.Y.; Stolz, C.J.

    1996-08-01T23:59:59.000Z

    Hafnium-silica multilayer mirrors and polarizers were deposited by e-beam evaporation onto BK7 glass substrates. The mirrors and polarizers were coated for operation at 1053 nm at 45{degree} and at Brewster`s angle (56{degree}), respectively. They were tested with a single 3-ns laser pulse. Morphology of the laser-induced damage was characterized by optical and scanning electron microscopy. Four distinct damage morphologies were found: pits, flatbottom pits, scalds, and delaminates. The pits and flat bottom pits (<30{mu}m dia) were detected at lower fluences (as low as 5 J/cm{sup 2}). The pits seemed to result from ejection of nodular defects by causing local enhancement of the electric field. Scalds and delaminates could be observed at higher fluences (above 13 J/cm{sup 2}) and seemed to result from the formation of plasmas on the surface. These damage types often originated at pits and were less than 300 {mu}m diameter; their size increased almost linearly with fluence. Finally, effects of the damage on the beam (reflectivity degradation and phase modulations) were measured.

  4. Fusion Engineering and Design 87 (2012) 777781 Contents lists available at SciVerse ScienceDirect

    E-Print Network [OSTI]

    Abdou, Mohamed

    2012-01-01T23:59:59.000Z

    Li) loop at UCLA, including testing and calibration of its components (electro- magnetic (EM) pump, EM flow-meterFusion Engineering and Design 87 (2012) 777­781 Contents lists available at SciVerse ScienceDirect Fusion Engineering and Design journal homepage: www.elsevier.com/locate/fusengdes Status of "TITAN" Task

  5. ACCELERATOR & FUSION RESEARCH DIV. ANNUAL REPORT, OCT. 80 - SEPT. 81

    E-Print Network [OSTI]

    Johnson Ed, R.K.

    2010-01-01T23:59:59.000Z

    were derived from a MAGNETIC FUSION ENERGY STAFF W, Kunkel (H. 1. F. Staff, Heavy Ion Fusion Half-year Report October 1,LBL-12594 (1981). Heavy Ion Fusion Staff, Heavy Ion Fusion

  6. Electroless nickel and ion-plated protective coatings for silvered glass mirrors

    SciTech Connect (OSTI)

    Lind, M.A.; Chaudiere, D.A.; Dake, L.S.; Stewart, T.L.

    1982-04-01T23:59:59.000Z

    A preliminary examination of two methods of protecting second surface silvered glass mirrors from environmental degradation is presented. One method employed silver mirrors overcoated with Al, Ni, 304 stainless steel, Cr, or an Al/Cu alloy prepared by ion-plating. The other method used conventional wet process silver mirrors protected with a thin electroless nickel coating. No attempt was made to optimize the coatings for either method. These experimental mirrors were compared with conventional paint backed silver/copper mirrors after exposure to elevated temperatures and water vapor in order to estimate their relative environmental stability. The electroless nickel mirrors showed consistently more resistance to these stresses than either the conventional or ion-plated mirrors, suggesting that they may provide more durable field service.

  7. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect (OSTI)

    None, None

    2003-03-05T23:59:59.000Z

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  8. A1.5 Fusion Performance

    SciTech Connect (OSTI)

    Amendt, P

    2011-03-31T23:59:59.000Z

    Analysis and radiation hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant in the mid-2030s timeframe are presented. The required laser energy driver is 2.2 MJ at a 0.351-{micro}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for a near-term experimental resolution of the key physics uncertainties on the National Ignition Facility (NIF). The NIF is poised to demonstrate ignition by 2012 based on the central hot spot (CHS) mode of ignition and propagating thermonuclear burn [1]. This immediate prospect underscores the imperative and timeliness of advancing inertial fusion as a carbon-free, virtually limitless source of energy by the mid-21st century to substantially offset fossil fuel technologies. To this end, an intensive effort is underway to leverage success at the NIF and to provide the foundations for a prototype 'LIFE.1' engineering test facility by {approx}2025, followed by a commercially viable 'LIFE.2' demonstration power plant operating at 1 GWe by {approx}2035. The current design goal for LIFE.2 is to accommodate {approx}2.2 MJ of laser energy (entering the high-Z radiation enclosure or 'hohlraum') at a 0.351-{micro}m wavelength operating at a repetition rate of 16 Hz and to provide a fusion target yield of 132 MJ. To achieve this design goal first requires a '0-d' analytic gain model that allows convenient exploration of parameter space and target optimization. This step is then followed by 2- and 3-dimensional radiation-hydrodynamics simulations that incorporate laser beam transport, x-ray radiation transport, atomic physics, and thermonuclear burn [2]. These simulations form the basis for assessing the susceptibility to hydrodynamic instability growth, target performance margins, laser backscatter induced by plasma density fluctuations within the hohlraum, and the threat spectrum emerging from the igniting capsule, e.g., spectra, fluences and anisotropy of the x rays and ions, for input into the chamber survivability calculations. The simulations follow the guidelines of a 'point design' methodology, which formally designates a well-defined milestone in concept development that meets established criteria for experimental testing. In Section 2, the 0-d analytic gain model to survey gain versus laser energy parameter space is discussed. Section 3 looks at the status of integrated hohlraum simulations and the needed improvements in laser-hohlraum coupling efficiency to meet the LIFE.2 threshold (net) target gain of {approx}60. Section 4 considers advanced hohlraum designs to well exceed the LIFE.2 design goal for satisfactory performance margins. We summarize in Sec. 5.

  9. Role of atomic collisions in fusion

    SciTech Connect (OSTI)

    Post, D.E.

    1982-04-01T23:59:59.000Z

    Atomic physics issues have played a large role in controlled fusion research. A general discussion of the present role of atomic processes in both magnetic and inertial controlled fusion work is presented.

  10. Image fusion for a nighttime driving display

    E-Print Network [OSTI]

    Herrington, William Frederick

    2005-01-01T23:59:59.000Z

    An investigation into image fusion for a nighttime driving display application was performed. Most of the image fusion techniques being investigated in this application were developed for other purposes. When comparing the ...

  11. Idaho National Laboratory Fusion Safety Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information: Brad Merrill 208-526-0395 Email Contact Fusion Safety Program Thermonuclear fusion powers the Sun and the stars and is the most powerful energy source known....

  12. FUSION-3792; No.of Pages15 Fusion Engineering and Design xxx (2006) xxxxxx

    E-Print Network [OSTI]

    Raffray, A. René

    2006-01-01T23:59:59.000Z

    FUSION-3792; No.of Pages15 Fusion Engineering and Design xxx (2006) xxx­xxx Recent progress.07.087 #12;FUSION-3792; No.of Pages15 2 F. Najmabadi, A.R. Raffray / Fusion Engineering and Design xxx (2006) xxx­xxx of any stellarator configuration represents a large number of trade-offs among physics

  13. Inside ITER seminar on History of Fusion Page 1 History of Fusion

    E-Print Network [OSTI]

    Union thermonuclear explosion 400kT #12;Inside ITER seminar on History of Fusion Page 4 Big IvanInside ITER seminar on History of Fusion Page 1 History of Fusion Personal view V. Chuyanov 9 July 2009 Special thanks to ITER Communication Division. #12;Inside ITER seminar on History of Fusion Page 2

  14. Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2008 Congressional Budget Fusion Energy Sciences Funding Profile by Subprogram (dollars in thousands) FY 2006 Current Appropriation FY 2007 Request FY 2008 Request Fusion Energy,182 31,317 Total, Fusion Energy Sciences 280,683a 318,950 427,850 Public Law Authorizations: Public Law

  15. A Strategic Program Plan for Fusion Energy Sciences Fusion Energy Sciences

    E-Print Network [OSTI]

    A Strategic Program Plan for Fusion Energy Sciences 1 Fusion Energy Sciences #12;2 Bringing independence. Fusion power plants will provide economical and abundant energy without greenhouse gas emissions, while creating manageable waste and little risk to public safety and health. Making fusion energy a part

  16. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

  17. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges on MFE Roadmapping in the ITER Era Princeton, NJ 7-10 September 2011 1 #12;Fusion Nuclear Science never done any experiments on FNST in a real fusion nuclear environment we must be realistic on what

  18. 2002 Summer Fusion Study 1 July 19, 2002 2002 Fusion Summer Study

    E-Print Network [OSTI]

    2002 Summer Fusion Study 1 July 19, 2002 2002 Fusion Summer Study Snowmass Village, CO. July 19, 2002 For Immediate Release Fusion energy shows great promise to contribute to securing the energy leading scientists from the U.S. and international fusion community concluded a two-week forum assessing

  19. Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2011 Congressional Budget Fusion Energy Sciences Funding Profile FY 2010 Current Appropriation FY 2011 Request Fusion Energy Sciences Science 163,479 +57,399 182, Fusion Energy Sciences 394,518b +91,023 426,000 380,000 Public Law Authorizations: Public Law 95

  20. Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences

    E-Print Network [OSTI]

    Science/Fusion Energy Sciences FY 2007 Congressional Budget Fusion Energy Sciences Funding Profile Adjustments FY 2006 Current Appropriation FY 2007 Request Fusion Energy Sciences Science,182 Total, Fusion Energy Sciences........... 266,947b 290,550 -2,906 287,644 318,950 Public Law

  1. Report ofReport of Nuclear Fusion Section,Nuclear Fusion Section,

    E-Print Network [OSTI]

    Report ofReport of Nuclear Fusion Section,Nuclear Fusion Section, National Committee for NuclearJapan Atomic Energy Research Institute On the New Way of Nuclear Fusion ResearchOn the New Way of Nuclear on the new way of developing nuclear fusion under the new circumstances (chair: Prof. A. Koyama) under

  2. JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER

    E-Print Network [OSTI]

    JJ, IAP Cambridge January 20101 Fusion Energy & ITER:Fusion Energy & ITER: Challenges Billions ITERITER startsstarts DEMODEMO decisiondecision:: Fusion impact? Energy without greenEnergy Fusion fuel: deuterium et tritium Deuterium: plenty in the ocean Tritium: made in situ from Lithium

  3. Laser fusion experiments at LLL

    SciTech Connect (OSTI)

    Ahlstrom, H.G.

    1980-06-16T23:59:59.000Z

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  4. Automated interferometric alignment system for paraboloidal mirrors

    DOE Patents [OSTI]

    Maxey, L. Curtis (Powell, TN)

    1993-01-01T23:59:59.000Z

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aigning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront.

  5. Automated interferometric alignment system for paraboloidal mirrors

    DOE Patents [OSTI]

    Maxey, L.C.

    1993-09-28T23:59:59.000Z

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aligning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront. 14 figures.

  6. Development and Testing of Solar Reflectors

    SciTech Connect (OSTI)

    Kennedy, C.; Terwilliger, K.; Milbourne, M.

    2005-01-01T23:59:59.000Z

    To make concentrating solar power technologies more cost competitive, it is necessary to develop advanced reflector materials that are low in cost and maintain high reflectance for extended lifetimes under severe outdoor environments. The Advanced Materials Team performs durability testing of candidate solar reflectors at outdoor test sites and in accelerated weathering chambers. Several materials being developed by industry have been submitted for evaluation. These include silvered glass mirrors, aluminized reflectors, and front-surface mirrors. In addition to industry-supplied materials, NREL is funding the development of new, innovative reflectors, including a new commercial laminate reflector and an advanced solar reflective mirror (ASRM). To help commercialize the ASRM, a cost analysis was performed; it shows the total production cost could meet the goal. The development, performance, and durability of these candidate solar reflectors and cost analysis results will be described.

  7. Z-Pinch Fusion for Energy Applications

    SciTech Connect (OSTI)

    SPIELMAN,RICK B.

    2000-01-01T23:59:59.000Z

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  8. Breakthrough: Neutron Science for the Fusion Mission

    ScienceCinema (OSTI)

    McGreevy, Robert

    2014-06-03T23:59:59.000Z

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  9. Exo-endo cellulase fusion protein

    DOE Patents [OSTI]

    Bower, Benjamin S. (Palo Alto, CA); Larenas, Edmund A. (Palo Alto, CA); Mitchinson, Colin (Palo Alto, CA)

    2012-01-17T23:59:59.000Z

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  10. The automorphisms of affine fusion rings

    E-Print Network [OSTI]

    T. Gannon

    2000-02-07T23:59:59.000Z

    The fusion rings associated to affine Kac-Moody algebras appear in several different contexts in math and mathematical physics. In this paper we find all automorphisms of all affine fusion rings, or equivalently the symmetries of the corresponding fusion coefficients. Most of these are directly related to symmetries of the corresponding Coxeter-Dynkin diagram. We also find all pairs of isomorphic affine fusion rings.

  11. Polynomial Fusion Rings of Logarithmic Minimal Models

    E-Print Network [OSTI]

    Jorgen Rasmussen; Paul A. Pearce

    2007-09-21T23:59:59.000Z

    We identify quotient polynomial rings isomorphic to the recently found fundamental fusion algebras of logarithmic minimal models.

  12. Breakthrough: Neutron Science for the Fusion Mission

    SciTech Connect (OSTI)

    McGreevy, Robert

    2012-04-24T23:59:59.000Z

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  13. 1994 International Sherwood Fusion Theory Conference

    SciTech Connect (OSTI)

    NONE

    1994-04-01T23:59:59.000Z

    This report contains the abstracts of the paper presented at the 1994 International Sherwood Fusion Theory Conference.

  14. Method for vacuum fusion bonding

    DOE Patents [OSTI]

    Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

    2001-01-01T23:59:59.000Z

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  15. Fusion bonding and alignment fixture

    DOE Patents [OSTI]

    Ackler, Harold D. (Sunnyvale, CA); Swierkowski, Stefan P. (Livermore, CA); Tarte, Lisa A. (Livermore, CA); Hicks, Randall K. (Stockton, CA)

    2000-01-01T23:59:59.000Z

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  16. Pionic Fusion of Heavy Ions

    E-Print Network [OSTI]

    D. Horn; G. C. Ball; D. R. Bowman; W. G. Davies; D. Fox; A. Galindo-Uribarri; A. C. Hayes; G. Savard; L. Beaulieu; Y. Larochelle; C. St-Pierre

    1996-08-13T23:59:59.000Z

    We report the first experimental observation of the pionic fusion of two heavy ions. The 12C(12C,24Mg)pi0 and 12C(12C,24Na)pi+ cross sections have been measured to be 208 +/- 38 and 182 +/- 84 picobarns, respectively, at E_cm = 137 MeV. This cross section for heavy-ion pion production, at an energy just 6 MeV above the absolute energy-conservation limit, constrains possible production mechanisms to incorporate the kinetic energy of the entire projectile-target system as well as the binding energy gained in fusion.

  17. Modal analysis of semiconductor lasers with nonplanar mirrors

    SciTech Connect (OSTI)

    Lang, R.J.; Salzman, J.; Yariv, A.

    1986-03-01T23:59:59.000Z

    The authors present a formalism for analyzing laser resonators which possess nonplanar mirrors and lateral waveguiding (e.g., and unstable resonator semiconductor laser (URSL)). The electric field is expanded in lateral modes of the complex-index waveguide and is required to reproduce itself after one roundtrip of the cavity. They show how the waveguide modes, their gain and loss, and hence the criterion for truncation of the infinite set of modes can be derived from the Green's function of the one-dimensional eigenvalue equation for the waveguide. Examples are presented for three cases of interest-a purely gain-guided URSL, and index-guided URSL, and a gain-guided tilted-mirror resonator. They compare theoretical calculations to previous experiments.

  18. Figure and finish characterization of high performance metal mirrors

    SciTech Connect (OSTI)

    Takacs, P.Z. [Brookhaven National Lab., Upton, NY (United States); Church, E.L. [Army Armament Research and Development Command, Dover, NJ (United States)

    1991-10-01T23:59:59.000Z

    Most metal mirrors currently used in synchrotron radiation (SR) beam lines to reflect soft x-rays are made of electroless nickel plate on an aluminum substrate. This material combination has allowed optical designers to incorporate exotic cylindrical aspheres into grazing incidence x-ray beam-handling systems by taking advantage of single-point diamond machining techniques. But the promise of high-quality electroless nickel surfaces has generally exceeded the performance. We will examine the evolution of electroless nickel surfaces through a study of the quality of mirrors delivered for use at the National Synchrotron Light Source over the past seven years. We have developed techniques to assess surface quality based on the measurement of surface roughness and figure errors with optical profiling instruments. It is instructive to see how the quality of the surface is related to the complexity of the machine operations required to produce it.

  19. 2002 Fusion Summer Study Executive Summary

    E-Print Network [OSTI]

    in a plasma dominated by self-heating from fusion reactions and filling this crucial and now missing element the possibility of discoveries in a plasma dominated by self- heating from fusion reactions. This exciting next are summarized the principal conclusions: 1. The study of burning plasmas, in which self-heating from fusion

  20. Introduction to Magnetic Thermonuclear Fusion and

    E-Print Network [OSTI]

    Shihadeh, Alan

    Introduction to Magnetic Thermonuclear Fusion and Related Research Projects Ghassan Antar Fusion 2. Research on Turbulence (Theory and Experiment) 3. Research on Disruptions 4. Research on Plasma Facing Components #12;Ghassan Y. ANTAR 3 Fusion Occurs when Two Nuclei Unite to Form One The Energy

  1. *****I* ****f?* Fusion Programme Evaluation Board

    E-Print Network [OSTI]

    of the Community's programme in the field of Controlled Thermonuclear Fusion; to appraise the environmental, safety*****I* ****f?* Report of the Fusion Programme Evaluation Board prepared for the Commission . . . . . . . . . . . . 11 CHAPTER ONE: NUCLEAR FUSION AND ITS POTENTIAL CONTRIBUTION TO THE WORLD'S ENERGY NEEDS 1

  2. White Paper on Magnetic Fusion Program Strategies

    E-Print Network [OSTI]

    of the international fusion program, the International Thermonuclear Experimental Reactor (ITER), is now halfwayWhite Paper on Magnetic Fusion Program Strategies Prepared for The President's Committee of Advisors on Science and Technology Prepared by David E. Baldwin Senior Vice President for Fusion General

  3. Fusion Energy Sciences Advisory Committee Strategic Planning

    E-Print Network [OSTI]

    D R A F T Fusion Energy Sciences Advisory Committee Report on Strategic Planning: Priorities ............................................................................................................... 68 #12; iii Preface Fusion, the energy source that powers our sun and the stars. Fusion energy could therefore fulfill one of the basic needs of modern civili- zation: abundant energy

  4. Energy Sources Used for Fusion Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Energy Sources Used for Fusion Welding Thomas W. Eagar, Massachusetts Institute of Technology reliability. The Section "Fusion Welding Processes" in this Volume provides details about equipment and systems for the major fusion welding proc- esses. The purpose of this Section of the Volume is to discuss

  5. Introduction to Fusion Energy Jerry Hughes

    E-Print Network [OSTI]

    Introduction to Fusion Energy Jerry Hughes IAP @ PSFC January 8, 2013 Acknowledgments: Catherine) a practical energy source on earth 2 mcE #12;Fusion is a form of nuclear energy · A huge amount of energy;Terrestrial energy sources have their origin in the nuclear fusion reactions of stars Supernova produces

  6. FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical for fusion power plants is given and their economic, safety, and environmental features are explored. Concep- tual design studies predict that fusion power plants will be capital intensive and will be used

  7. Fusion rules for N=2 superconformal modules

    E-Print Network [OSTI]

    Minoru Wakimoto

    1998-07-22T23:59:59.000Z

    In this note we calculate the fusion coefficients for minimal series representations of the N=2 superconformal algebra by using a modified Verlinde's formula, and obtain associative and commutative fusion algebras with non-negative integral fusion coefficients at each level. Some references are added.

  8. Fusion in a Staged Z-pinch

    E-Print Network [OSTI]

    Rahman, H. U.; Ney, P.; Rostoker, N.; Wessel, F. J.

    2009-01-01T23:59:59.000Z

    York (1978) Teller, E. : Fusion. Academic Press, New York (O R I G I N A L A RT I C L E Fusion in a Staged Z-pinch H.U.implosion the sim- ulated fusion-energy yield is 7.6 MJ,

  9. the fusion trend line Stan Milora (ORNL)

    E-Print Network [OSTI]

    ­materials and fusion nuclear science and technology ReNeW findings VLT Virtual Laboratory for Technology://vlt.ornl.gov/ VLT Virtual Laboratory for Technology For Fusion Energy Science #12;2 Managed by UT-Battelle for the U: Greenwald report on Priorities, Gaps and Opportunities identifies glaring gaps in materials, fusion nuclear

  10. Criteria for Practical Fusion Power Systems

    E-Print Network [OSTI]

    Criteria for Practical Fusion Power Systems: Report from the EPRI Fusion Panel By Jack Kaslow1 development of commercially vi- able fusion systems, the Electric Power Re- search Institute (EPRI) -- the R developers toward practical power systems that can obtain the financial, public, and regulatory support

  11. A Roadmap to Laser Fusion Energy

    E-Print Network [OSTI]

    the radioactive environment, for easier maintenance. · No ultra-high vacuum or superconducting magnets. LaserA Roadmap to Laser Fusion Energy Stephen E. Bodner Retired (former head of the NRL laser fusion Energy Systems January 30, 2011 #12;In 1971-1972 LLNL announced that they had an idea for laser fusion

  12. Culham Centre for Fusion Energy Fusion -A clean future

    E-Print Network [OSTI]

    , scientists and engineers are working to make fusion a real option for our electricity supply.At the forefront consumption is expected to grow dramatically over the next fifty years as the world's population expands; Governments are divided over whether to include nuclear fission in their energy portfolios; and renewable

  13. Global sound modes in mirror traps with anisotropic pressure

    SciTech Connect (OSTI)

    Skovorodin, D. I.; Zaytsev, K. V.; Beklemishev, A. D. [Budker Institute of Nuclear Physics, Novosibirsk State University, Novosibirsk 630090 (Russian Federation)] [Budker Institute of Nuclear Physics, Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2013-10-15T23:59:59.000Z

    Global oscillations of inhomogeneous plasma with frequencies close to the bounce frequency of ions in mirror traps have been studied. It has been shown that, in some cases, the sound can be reflected from the axial plasma inhomogeneity. The ideal magnetohydrodynamic (MHD) model with Chew-Goldberger-Low approximation has been utilized to determine conditions of existence of the standing waves in the mirror-confined plasma. Linearized wave equation for the longitudinal plasma oscillations in thin anisotropic inhomogeneous plasma with finite ? has been derived. The wave equation has been treated numerically. The oscillations are studied for the case of the trap with partially filled loss-cone and the trap with sloshing ions. It has been shown that in cells of the multiple-mirror trap standing waves can exist. The frequency of the wave is of the order of the mean bounce-frequency of ions. In the trap with sloshing ions, the mode supported by the pressure of fast ions could exist. The results of oscillations observation in the experiment on the Gas Dynamic Trap have been presented.

  14. Optimal alignment of mirror based pentaprisms for scanning deflectometric devices

    SciTech Connect (OSTI)

    Barber, Samuel K.; Geckeler, Ralf D.; Yashchuk, Valeriy V.; Gubarev, Mikhail V.; Buchheim, Jana; Siewert, Frank; Zeschke, Thomas

    2011-03-04T23:59:59.000Z

    In the recent work [Proc. of SPIE 7801, 7801-2/1-12 (2010), Opt. Eng. 50(5) (2011), in press], we have reported on improvement of the Developmental Long Trace Profiler (DLTP), a slope measuring profiler available at the Advanced Light Source Optical Metrology Laboratory, achieved by replacing the bulk pentaprism with a mirror based pentaprism (MBPP). An original experimental procedure for optimal mutual alignment of the MBPP mirrors has been suggested and verified with numerical ray tracing simulations. It has been experimentally shown that the optimally aligned MBPP allows the elimination of systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of the bulk pentaprism. In the present article, we provide the analytical derivation and verification of easily executed optimal alignment algorithms for two different designs of mirror based pentaprisms. We also provide an analytical description for the mechanism for reduction of the systematic errors introduced by a typical high quality bulk pentaprism. It is also shown that residual misalignments of an MBPP introduce entirely negligible systematic errors in surface slope measurements with scanning deflectometric devices.

  15. Equations of a Moving Mirror and the Electromagnetic Field

    E-Print Network [OSTI]

    Luis Octavio Castaños; Ricardo Weder

    2014-10-28T23:59:59.000Z

    We consider a slab of a material that is linear, isotropic, non-magnetizable, ohmic, and electrically neutral when it is at rest. The slab interacts with the electromagnetic field through radiation pressure. Using a relativistic treatment, we deduce the exact equations governing the dynamics of the field and of the slab, as well as, approximate equations to first order in the velocity and the acceleration of the slab. As a consequence of the motion of the slab, the field must satisfy a wave equation with damping and slowly varying coefficients plus terms that are small when the time-scale of the evolution of the mirror is much smaller than that of the field. Moreover, the dynamics of the mirror involve a time-dependent mass arising from the interaction with the field and it is related to the effective mass of mechanical oscillators used in optomechanics. By the same reason, the mirror is subject to a velocity dependent force which is related to the much sought cooling of mechanical oscillators in optomechanics.

  16. Development of oxide dispersion strengthened ferritic steels for fusion

    SciTech Connect (OSTI)

    Mukhopadhyay, D.K. [Vista Metals, Inc., McKeesport, PA (United States); Froes, F.H. [Univ. of Idaho, ID (United States); Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01T23:59:59.000Z

    An oxide dispersion strengthened (ODS) ferritic steel with high temperature strength has been developed in line with low activation criteria for application in fusion power systems. The composition Fe-13.5Cr-2W-0.5Ti-0.25Y{sub 2}O{sup 3} was chosen to provide a minimum chromium content to insure fully delta-ferrite stability. High temperature strength has been demonstrated by measuring creep response of the ODS alloy in uniaxial tension at 650 and 900 C in an inert atmosphere chamber. Results of tests at 900 C demonstrate that this alloy has creep properties similar to other alloys of similar design and can be considered for use in high temperature fusion power system designs. The alloy selection process, materials production, microstructural evaluation and creep testing are described.

  17. Induction linacs for heavy ion fusion research

    SciTech Connect (OSTI)

    Fessenden, T.J.

    1984-05-01T23:59:59.000Z

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  18. Reduced activation ferritic alloys for fusion

    SciTech Connect (OSTI)

    Gelles, D.S. [Pacific Northwest Lab., Richland, VA (United States)

    1992-12-31T23:59:59.000Z

    Reduced activation martensitic alloys can now be developed with properties similar to commercial counterparts, and oxide dispersion strengthened alloys are under consideration. However, low chromium Bainitic alloys with vanadium additions undergo severe irradiation hardening at low irradiation temperatures and excessive softening at high temperatures, resulting in a very restricted application window. Manganese additions result in excessive embrittlement, as demonstrated by post-irradiation Charpy impact testing. The best composition range for martensitic alloys appears to be 7 to 9 Cr and 2 W, with swelling of minor concern and low temperature irradiation embrittlement perhaps eliminated. Therefore, reduced activation martensitic steels in the 7 to 9 Cr range should be considered leading contenders for structural materials applications in power-producing fusion machines.

  19. Maintenance FUSION IGNITION RESEARCH EXPERIMENT

    E-Print Network [OSTI]

    Insulation Enclosure Remote Maintenance Module FUSION IGNITION RESEARCH EXPERIMENT SYSTEM coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex

  20. newsletternewsletter EUROPEAN FUSION DEVELOPEMENT AGREEMENT

    E-Print Network [OSTI]

    , the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Malta, Poland, the Slovak Republic, and Slovenia Association EURATOM/ University of Latvia Institute of Solid State Physics, Riga http://www.cfi.lu.lv/ Poland, it is essential to present fusion research within the general context of energy research and to explain societal