Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Photo of the Week: The Mirror Fusion Test Facility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Mirror Fusion Test Facility The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory. This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an

2

Mirror fusion--fission hybrids  

SciTech Connect

The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described.

Lee, J.D.

1978-05-01T23:59:59.000Z

3

Sustaining neutral beam power supply system for the Mirror Fusion Test Facility  

SciTech Connect

In late August 1978, a fixed price procurement contract for $25,000,000 was awarded to Aydin Energy Division, Palo Alto, California, for the design, manufacture, installation and acceptance testing of the Lawrence Livermore National Laboratory Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS). This system of 24 power supply sets will provide the conditioned power for the 24 neutral beam source modules. Each set will provide the accel potential the arc power, the filament power, and the suppressor power for its associated neutral beam source module. The design and development of the SNBPSS has progressed through the final design phase and is now in production. Testing of the major sub-assembly power supply is proceeding at Aydin and the final acceptance testing of the first two power supplies at LLNL is expected to be completed this year.

Eckard, R.D.; Wilson, J.H.; Van Ness, H.W.

1980-01-01T23:59:59.000Z

4

A spheromak ignition experiment reusing Mirror Fusion Test Facility (MFTF) equipment  

Science Conference Proceedings (OSTI)

Based on available experimental results and theory, a scenario is presented to achieve ohmic ignition in a spheromak by slow ({approximately} 10 sec.) helicity injection using power from the Mirror Fusion Test Facility (MFTF) substation. Some of the other parts needed (vacuum vessel, coils, power supplies, pumps, shielded building space) might also be obtained from MFTF or other salvage, as well as some components needed for intermediate experiments for additional verification of the concept (especially confinement scaling). The proposed ignition experiment would serve as proof-of-principle for the spheromak DT fusion reactor design published by Hagenson and Krakowski, with a nuclear island cost about ten times less than a tokamak of comparable power. Designs at even higher power density and lower cost might be possible using Christofilos` concept of a liquid lithium blanket. Since all structures would be protected from neutrons by the lithium blanket and the tritium inventory can be reduced by continuous removal from the liquid blanket, environmental and safety characteristics appear to be favorable.

Fowler, T.K.

1993-09-28T23:59:59.000Z

5

Advances in Tandem Mirror fusion power reactors  

DOE Green Energy (OSTI)

The Tandem Mirror exhibits several distinctive features which make the reactor embodiment of the principle very attractive: Simple low-technology linear central cell; steady-state operation; high-..beta.. operation; no driven current or disruptions; divertorless operation; direction conversion of end-loss power; low-surface heat loads; and advanced fusion fuel capability. In this paper, we examine these features in connection with two tandem mirror reactor designs, MARS and MINIMARS, and several advanced reactor concepts including the wall-stabilized reactor and the field-reversed mirror. With a novel compact end plug scheme employing octopole stabilization, MINIMARS is expressly designed for short construction times, factory-built modules, and a small (600 MWe) but economic reactor size. We have also configured the design for low radioactive afterheat and inherent/passive safety under LOCA/LOFA conditions, thereby obviating the need for expensive engineered safety systems. In contrast to the complex and expensive double-quadrupole end-cell of the MARS reactor, the compact octopole end-cell of MINIMARS enables ignition to be achieved with much shorter central cell lengths and considerably improves the economy of scale for small (approx.250 to 600 MWe) tandem mirror reactors. Finally, we examine the prospects for realizing the ultimate potential of the tandem mirror with regard to both innovative configurations and novel neutron energy conversion schemes, and stress that advanced fuel applications could exploit its unique reactor features.

Perkins, L.J.; Logan, B.G.

1986-05-20T23:59:59.000Z

6

Magnetic mirror fusion systems: Characteristics and distinctive features  

SciTech Connect

A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power.

Post, R.F.

1987-08-10T23:59:59.000Z

7

Modeling and optimization of operating parameters for a test-cell option of the Fusion Power Demonstration-II tandem mirror design  

SciTech Connect

Models of tandem mirror devices operated with a test-cell insert have been used to calculate operating parameters for FPD-II+T, an upgrade of the Fusion Power Demonstration-II device. Two test-cell configurations were considered, one accommodating two 1.5 m blanket test modules and the other having four. To minimize the cost of the upgrade, FPD-II+T utilizes the same coil arrangement and machine dimensions outside of the test cell as FPD-II, and the requirements on the end cell systems have been held near or below those for FPD-II. The maximum achievable test cell wall loading found for the short test-cell was 3.5 MW/m/sup 2/ while 6.0 MW/m/sup 2/ was obtainable in the long test-cell configuration. The most severe limitation on the achievable wall loading is the upper limit on test-cell beta set by MHD stability calculations. Modification of the shape of the magnetic field in the test-cell by improving the magnet design could raise this beta limit and lead to improved test-cell performance.

Haney, S.W.; Fenstermacher, M.E.

1985-04-03T23:59:59.000Z

8

Mechanical-engineering aspects of mirror-fusion technology  

DOE Green Energy (OSTI)

The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design.

Fisher, D.K.; Doggett, J.N.

1982-07-15T23:59:59.000Z

9

Axisymmetric Magnetic Mirror Fusion-Fission Hybrid  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

R. W. Moir; N. N. Martovetsky; A. W. Molvik; D. D. Ryutov; T. C. Simonen

10

Some implications for mirror research of the coupling between fusion economics and fusion physics  

SciTech Connect

The thesis is made that physics understanding and innovation represent two of the most important ingredients of any program to develop fusion power. In this context the coupling between these and the econmics of yet-to-be realized fusion power plants is explored. The coupling is two-way: realistic evaluations of the economic (and environmental) requirements for fusion power systems can influence the physics objectives of present-day fusion research programs; physics understanding and innovative ideas can favorably impact the future economics of fusion power systems. Of equal importance is the role that physics/innovation can have on the time scale for the first practical demonstration of fusion power. Given the growing worldwide need for long-term solutions to the problem of energy it is claimed to be crucial that fusion research be carried out on a broad base and in a spirit that both facilitates the growth of physics understanding and fosters innovation. Developing this theme, some examples of mirror-based fusion system concepts are given that illustrate the coupling here described.

Post, R.F.

1980-01-01T23:59:59.000Z

11

Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles  

DOE Green Energy (OSTI)

This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

Werner, R.W.; Ribe, F.L.

1981-01-21T23:59:59.000Z

12

The Status of Research Regarding Magnetic Mirrors as a Fusion Neutron Source or Power Plant  

SciTech Connect

Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

Simonen, T

2008-12-23T23:59:59.000Z

13

EUV testing of multilayer mirrors: critical issues  

DOE Green Energy (OSTI)

Recently, while performing extensive EUV irradiation endurance testing on Ru-capped multilayer mirrors in the presence of elevated partial pressures of water and hydrocarbons, NIST has observed that the amount of EUV-induced damage actually decreases with increasing levels of water vapor above {approx} 5 x 10{sup -7} Torr. It is thought that the admitted water vapor may interact with otherwise stable, condensed carbonaceous species in an UHV vacuum system to increase the background levels of simple gaseous carbon-containing molecules. Some support for this hypothesis was demonstrated by observing the mitigating effect of very small levels of simple hydrocarbons with the intentional introduction of methyl alcohol in addition to the water vapor. It was found that the damage rate decreased by at least an order of magnitude when the partial pressure of methyl alcohol was just one percent of the water partial pressure. These observations indicate that the hydrocarbon components of the vacuum environment under actual testing conditions must be characterized and controlled to 10{sup -11} Torr or better in order to quantify the damage caused by high levels of water vapor. The possible effects of exposure beam size and out-of-band radiation on mirror lifetime testing will also be discussed.

Hill, S B; Ermanoski, I; Grantham, S; Tarrio, C; Lucatorto, T B; Madey, T E; Bajt, S; Chandhok, M; Yan, P; Wood, O; Wurn, S; Edwards, N V

2006-02-24T23:59:59.000Z

14

Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection  

SciTech Connect

In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

Moiseenko, V. E.; Agren, O. [Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology', Akademichna St. 1, 61108 Kharkiv (Ukraine); Uppsala University, Angstroem Laboratory, Division of Electricity, Box 534, SE-7512 Uppsala (Sweden)

2012-06-19T23:59:59.000Z

15

A Fusion Hybrid Reactor Based on the Gasdynamic Mirror (GDM)  

Science Conference Proceedings (OSTI)

Fusion-Fission Hybrids and Transmutation / Proceedings of the Fifteenth International Conference on Emerging Nuclear Energy Systems

Terry Kammash

16

Radiological design criteria for fusion power test facilities  

Science Conference Proceedings (OSTI)

The quest for fusion power and understanding of plasma physics has resulted in planning, design, and construction of several major fusion power test facilities, based largely on magnetic and inertial confinement concepts. We have considered radiological design aspects of the Joint European Torus (JET), Livermore Mirror and Inertial Fusion projects, and Princeton Tokamak. Our analyses on radiological design criteria cover acceptable exposure levels at the site boundary, man-rem doses for plant personnel and population at large, based upon experience gained for the fission reactors, and on considerations of cost-benefit analyses.

Singh, M.S.; Campbell, G.W.

1982-02-12T23:59:59.000Z

17

An Inherently Safe Tandem Mirror Fusion Blanket Concept  

Science Conference Proceedings (OSTI)

Blanket Design and Evaluation / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

J.K. Garner; C.F. Carson; J.D. Gordon; R.H. Whitley

18

Some applications of mirror-generated electric potentials to alternative fusion concepts  

Science Conference Proceedings (OSTI)

Transient electrical potentials can be generated in plasmas by utilizing impulsive mirror-generated forces acting on the plasma electrons together with ion inertia to cause momentary charge imbalance. In the Mirrortron such potentials are generated by applying a rapidly rising (tens of nanoseconds) localized mirror field to the central region of a hot-electron plasma confined between static mirrors. Because of the loss-cone nature of the electron distribution the sudden appearance of the pulsed mirror tends to expel electrons, whereas the ion density remains nearly constant. The quasi-neutrality condition then operates to create an electrical potential the equipotential surfaces of which can be shown theoretically to be congruent with surfaces of constant B. An alternative way of generating transient potentials is to apply a pulse of high-power microwaves to a plasma residing on a magnetic field with a longitudinal gradient. This technique resembles one employed in the Pleiade experiments. At gigawatt power levels, such as those produced by a Free Electron Laser, the production of very high transient potentials is predicted. Fusion-relevant applications of these ideas include heavy-ion drivers for inertial fusion, and the possibility of employing these techniques to enhance the longitudinal confinement of fusion plasmas in multiple-mirror systems. 23 refs., 3 figs.

Post, R.F.

1990-09-24T23:59:59.000Z

19

Magnetic fusion energy. [Lectures on status of tokamak and magnetic mirror research  

SciTech Connect

A brief review of fusion research during the last 20 years is given. Some highlights of theoretical plasma physics are presented. The role that computational plasma physics is playing in analyzing and understanding the experiments of today is discussed. The magnetic mirror program is reviewed. (MOW)

McNamara, B.

1977-06-14T23:59:59.000Z

20

Magnetic mirror fusion-fission early history and applicability to other systems  

Science Conference Proceedings (OSTI)

In the mid 1970s to mid 1980s the mirror program was stuck with a concept, the Standard Mirror that was Q {approx} 1 where Q=P{sub fusion}/P{sub injection}. Heroic efforts were put into hybridizing thinking added energy and fuel sales would make a commercial product. At the same time the tokamak was thought to allow ignition and ultrahigh Q values of 20 or even higher. There was an effort to use neutral beams to drive the tokamak just like the mirror machines were driven in which case the Q value plunged to a few, however this was thought to be achievable decades earlier than the high Q versions. Meanwhile current drive and other features of the tokamak have seen the projected Q values come down to the range of 10. Meanwhile the mirror program got Q enhancement into high gear and various tandem mirrors projected Q values up towards 10 and with advanced features over 10 with axi-symmetric magnets (See R. F. Post papers), however the experimental program is all but non-existent. Meanwhile, the gas dynamic trap mirror system which is present day state-of-the-art can with low risk produce Q of {approx}0.1 useful for a low risk, low cost neutron source for materials development useful for the development of materials for all fusion concepts (see Simonen white paper: 'A Physics-Based Strategy to Develop a Mirror Fusion-Fission Hybrid' and D.D. Ryutov, 'Axisymmetric MHD-stable mirror as a neutron source and a driver for a fusion-fission hybrid'). Many early hybrid designs with multi-disciplinary teams were carried out in great detail for the mirror system with its axi-symmetric blanket modules. It is recognized that most of these designs are adaptable to tokamak or inertial fusion geometry. When Q is low (1 to 2) economics gives a large economic penalty for high recirculating power. These early studies covered the three design types: Power production, fuel production and waste burning. All three had their place but power production fell away because every study showed fusion machines that were extensively studied by multidisciplinary teams came up with power costs much higher than for existing fission plants except in very large sizes (3 GWe). There was lots of work on waste burning - Ted Parrish - comes to mind. However, fuel production along with power production became nearly everyone's goals. First, fast-fission blankets were favored but later to enhance safety, fission-suppressed blankets came into vogue. Both fuel producing and waste burning hybrid studies were terminated with the advent of accidents, high interest rates, rising 'green like' movement and cheap natural gas for power production. For waste burning and fast-fission fuel producing designs, the blanket energy multiplication was about 10 and economics was OK relative to recirculating power for Q over 2. For fission-suppressed fuel producers, where the blanket multiplication is under 2, the Q needed was over 5. In the mirror program we came at this problem by trying to find a product for mirror fusion technology. We hoped we had a product and studied and promoted it. There was no market pull and when the mirror program collapsed in the US, so did both hybrid programs for mirrors and tokamaks and IFE by the mid 1980s. Today, the problem of what to do with wastes that were supposed to be accepted by the government appears to be a high value market pull. It remains to be shown if fusion neutrons can be generated at low enough cost so that economics will not be a showstopper. For burning only the minor actinides, the economics will be the most favorable. Burning the Pu as well will lower the number of fission reactors supported by each burner fusion machine and hurt economics of the system. The fuel-producing role of fusion to fuel fission reactors remains an important possible use of fusion especially in the early stages of fusion development. It is not clear that burning fission wastes in a fusion machine is more appropriate than burning these wastes in specially designed fission machines. Fusion can produce U-233 along with over 2.4%U-232 making the material large

Moir, R

2009-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Safety and power multiplication aspects of mirror fusion-fission hybrids  

SciTech Connect

Recently, in a research project at Uppsala University a simplified neutronic model for a straight field line mirror hybrid has been devised and its most important operation parameters have been calculated under the constraints of a fission power production of 3 GW and that the effective multiplication factor k{sub eff} does not exceed 0.95. The model can be considered as representative for hybrids driven by other types of mirrors too. In order to reduce the demand on the fusion power of the mirror, a modified option of the hybrid has been considered that generates a reduced fission power of 1.5 GW with an increased maximal value k{sub eff}=0.97. The present paper deals with nuclear safety aspects of this type of hybrids. It presents and discusses calculation results of reactivity effects as well as of driver effects.

Noack, Klaus; Agren, Olov; Kaellne, Jan; Hagnestal, Anders; Moiseenko, Vladimir E. [Uppsala University, Angstroem Laboratory, Division of Electricity, Box 534, SE-751 21 Uppsala (Sweden); Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology', Akademichna St. 1, 61108 Kharkiv (Ukraine)

2012-06-19T23:59:59.000Z

22

Progress on the conceptual design of a mirror hybrid fusion--fission reactor  

SciTech Connect

A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel. (MOW)

Moir, R.W.; Lee, J.D.; Burleigh, R.J.

1975-06-25T23:59:59.000Z

23

Optical durability testing of candidate solar mirrors  

DOE Green Energy (OSTI)

Durability testing of a variety of candidate solar reflector materials at outdoor test sites and in laboratory accelerated weathering chambers is the main activity within the Advanced Materials task of the Concentrated Solar Power (CSP) Program. Outdoor exposure testing (OET) at up to eight outdoor, worldwide exposure sites has been underway for several years. This includes collaboration under the auspices of the International Energy Agency (IEA) Solar Power and Chemical Energy Systems (SolarPACES) agreement. Outdoor sites are fully instrumented in terms of monitoring meteorological conditions and solar irradiance. Candidate materials are optically characterized prior to being subjected to exposure in real and simulated weathering environments. Optical durability is quantified by periodically re-measuring hemispherical and specular reflectance as a function of exposure time. By closely monitoring the site- and time-dependent environmental stress conditions experienced by the material samples, site-dependent loss of performance may be quantified. In addition, accelerated exposure testing (AET) of these materials in parallel under laboratory-controlled conditions may permit correlating the outdoor results with AET, and subsequently predicting service lifetimes. Test results to date for a large number of candidate solar reflector materials are presented in this report. Acronyms are defined. Based upon OET and AET results to date, conclusions can be drawn about the optical durability of the candidate reflector materials. The optical durability of thin glass, thick glass, and two metallized polymers can be characterized as excellent. The all-polymeric construction, several of the aluminized reflectors, and a metallized polymer can be characterized as having intermediate durability and require further improvement, testing and evaluation, or both.

Jorgensen, G.; Kennedy, C.; King, D.; Terwilliger, K.

2000-03-24T23:59:59.000Z

24

Standardization of Solar Mirror Reflectance Measurements - Round Robin Test: Preprint  

DOE Green Energy (OSTI)

Within the SolarPaces Task III standardization activities, DLR, CIEMAT, and NREL have concentrated on optimizing the procedure to measure the reflectance of solar mirrors. From this work, the laboratories have developed a clear definition of the method and requirements needed of commercial instruments for reliable reflectance results. A round robin test was performed between the three laboratories with samples that represent all of the commercial solar mirrors currently available for concentrating solar power (CSP) applications. The results show surprisingly large differences in hemispherical reflectance (sh) of 0.007 and specular reflectance (ss) of 0.004 between the laboratories. These differences indicate the importance of minimum instrument requirements and standardized procedures. Based on these results, the optimal procedure will be formulated and validated with a new round robin test in which a better accuracy is expected. Improved instruments and reference standards are needed to reach the necessary accuracy for cost and efficiency calculations.

Meyen, S.; Lupfert, E.; Fernandez-Garcia, A.; Kennedy, C.

2010-10-01T23:59:59.000Z

25

A Computational Magnetohydrodynamic Model of a Gasdynamic Fusion Space Propulsion System.  

E-Print Network (OSTI)

??This work advances the gasdynamic mirror (GDM) fusion space propulsion system concept by testing the potential of an advanced aneutronic fusion fuel combination of proton?11boron… (more)

Ohlandt, Chad J. R.

2011-01-01T23:59:59.000Z

26

Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles  

DOE Green Energy (OSTI)

This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li/sub 2/O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H/sub 2/ and O/sub 2/.

Ribe, F.L.; Werner, R.W.

1981-01-21T23:59:59.000Z

27

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site |  

Open Energy Info (EERE)

Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Author U.S. Geological Survey Published U.S. Geological Survey, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site [Internet]. 2013. U.S. Geological Survey. [cited 2013/10/16]. Available from: http://water.usgs.gov/ogw/bgas/toxics/ml_bips.html Retrieved from "http://en.openei.org/w/index.php?title=Borehole_Imaging_of_In_Situ_Stress_Tests_at_Mirror_Lake_Research_Site&oldid=688729"

28

Photo of the Week: Inside the Tandem Mirror Experiment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inside the Tandem Mirror Experiment Inside the Tandem Mirror Experiment Photo of the Week: Inside the Tandem Mirror Experiment December 28, 2012 - 2:22pm Addthis This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at both ends of a central magnetic tube. Very hot and dense plasmas inside each mirror enhanced the confinement of another plasma inside the central tube, where the bulk of the fusion would occur. | Photo courtesy of Lawrence Livermore National Laboratory. This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at

29

Fusion Test Facilities John Sheffield  

E-Print Network (OSTI)

flexing tests - Testing nuclear fuel assemblies to meltdown--PHEBUS reactor #12;#12;Released on February REACTOR--CADARACHE · Purpose: studies of hypothetical accidents in pressurized water reactors · Type: pool.78% · The reactor was transformed into a miniature PWR (scale 1/5000) for the program Phébus PFF, a study

30

Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen  

DOE Green Energy (OSTI)

This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

Krikorian, O.H. (ed.)

1982-02-09T23:59:59.000Z

31

2012 Ford Fusion V6 Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion V6 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input...

32

Decommissioning of the Tokamak Fusion Test Reactor  

SciTech Connect

The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

2003-10-28T23:59:59.000Z

33

Optimizing the mirror (fusion--fission) hybrid reactor for plutonium production  

SciTech Connect

An analytic model of the fusion components is used to generate a consistent set of fusion parameters, and component costs as parameters are varied. A model of the blanket, based on neutronic and thermal hydraulics, is then used to analyze the trade-offs of energy production vs plutonium production dictated by blanket type and management. An economic discussion of fuel cost is also given. (MOW)

Lee, J.D.; Bender, D.J.; Moir, R.W.

1975-11-17T23:59:59.000Z

34

Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen  

Science Conference Proceedings (OSTI)

This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

Werner, R.W. (ed.)

1982-11-01T23:59:59.000Z

35

Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)  

DOE Green Energy (OSTI)

This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solar Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.

Lee, J.; Elmore, R.; Kennedy, C.; Gray, M.; Jones, W.

2011-09-01T23:59:59.000Z

36

Technology issues for decommissioning the Tokamak Fusion Test Reactor  

SciTech Connect

The approach for decommissioning the Tokamak Fusion Test Reactor has evolved from a conservative plan based on cutting up and burying all of the systems, to one that considers the impact tritium contamination will have on waste disposal, how large size components may be used as their own shipping containers, and even the possibility of recycling the materials of components such as the toroidal field coils and the tokamak structure. In addition, the project is more carefully assessing the requirements for using remotely operated equipment. Finally, valuable cost database is being developed for future use by the fusion community.

Spampinato, P.T.; Walton, G.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Commander, J.C. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1994-07-01T23:59:59.000Z

37

Tandem mirror technology demonstration facility  

Science Conference Proceedings (OSTI)

This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

Not Available

1983-10-01T23:59:59.000Z

38

Model year 2010 Ford Fusion Level-1 testing report.  

SciTech Connect

As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

2010-11-23T23:59:59.000Z

39

DIAMOND WIRE CUTTING OF THE TOKAMAK FUSION TEST REACTOR  

Science Conference Proceedings (OSTI)

The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the techno logy was improved and redesigned for the actual cutting of the vacuum vessel. 10 complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D activity.

Rule, Keith; Perry, Erik; Parsells, Robert

2003-02-27T23:59:59.000Z

40

Diamond Wire Cutting of the Tokamak Fusion Test Reactor  

Science Conference Proceedings (OSTI)

The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D (Decontamination and Decommissioning) activity.

Keith Rule; Erik Perry; Robert Parsells

2003-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2012 Ford Fusion V6 Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion V6 Fusion V6 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input Document Date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3744 33.84 Target B [lb/mph] Target C [lb/mph^2] -0.2066 0.02372 3.0-liter V6 FFV -6 spd standard transmission Revision Number 3 Notes: Test Fuel Information 3.0-liter V6 FFV -6 spd standard transmission Fuel type Tier II EEE HF437 3.0-liter V6 FFV -6 spd standard transmission Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.743 18344 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m

42

Development of mirror specifications  

DOE Green Energy (OSTI)

The work performed by PNL for Sandia Laboratories under a contract titled Survey and Analysis of Mirror Silvering Technology and Heliostat Glass Evaluation is described. The primary purpose for the work was to develop specifications that will enhance the durability and lifetime of heliostat mirrors. The contract was initiated with a technical survey of the present commercial silvered glass mirror industry and an analytical investigation of the degradation phenomena experienced by the heliostat mirrors at Sandia's Livermore test facility. The main thrust was to evaluate the present methods of silver deposition and protection in order to recommend a specification for the heliostat mirror silvering process that would extend the lifetime of the Barstow mirror field. In addition, several advanced concepts for enhancing mirror lifetime were investigated. Technical and measurement support for evaluation of the Barstow heliostat glass and updating the glass specification was also provided. (WHK)

Lind, M.A.

1979-09-01T23:59:59.000Z

43

Testing the mirror world hypothesis for the close-in extrasolar planets  

E-Print Network (OSTI)

Because planets are not expected to be able to form close to stars due to the high temperatures, it has been suggested that the observed close orbiting ($\\sim 0.05$ AU) large mass planets ($\\sim M_J$) might be mirror worlds -- planets composed predominately of mirror matter. The accretion of ordinary matter onto the mirror planet (from e.g. the solar wind from the host star) will make the mirror planet opaque to ordinary radiation with an effective radius $R_p$. It was argued in a previous paper, astro-ph/0101055, that this radius was potentially large enough to explain the measured size of the first transiting close-in extrasolar planet, HD209458b. Furthermore, astro-ph/0101055, made the rough prediction: $R_p \\propto \\sqrt{{T_s \\over M_p}}$, where $T_s$ is the surface temperature of the ordinary matter in the mirror planet and $M_p$ is the mass of the planet (the latter dependence being the more robust prediction). We compare this prediction with the recently discovered transiting planets, OGLE-TR-56b and OGLE-TR-113b.

R. Foot

2004-06-10T23:59:59.000Z

44

The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group  

SciTech Connect

Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

2008-10-24T23:59:59.000Z

45

Time resolved neutron spectrum measurements at the Mirror Fusion Test Facility  

SciTech Connect

An advanced neutron diagnostic system has been developed for spectrum measurements on MFTF. Its collimated field of view allows spatially resolved neutron spectrum measurements. The 10 Mhz pulse height analysis and particle identification capability allow spectrum measurements in intervals as short as 10 ms. These capabilities will be used for space and time resolved determinations of ion energy from measurements of neutron Doppler width.

Slaughter, D.

1985-10-01T23:59:59.000Z

46

Controlled fusion physics: experimental  

SciTech Connect

A historical review is given of the experimental thermonuclear research program. The role of pinch devices, mirror machines, tokamak devices, and laser fusion is discussed. (MOW)

Post, R.F.

1975-10-23T23:59:59.000Z

47

Fusion of hypothesis testing for nonlinearity detection in small time series  

Science Conference Proceedings (OSTI)

The performances of parametric or non-parametric Hypothesis Testing (HT) for nonlinearity detection are fairly weak for small time series (typically between 128 and 512 samples). A natural idea to improve the results is to merge several HT to make a ... Keywords: Decision fusion, HOS methods, Hypothesis testing fusion, Mutual information, Nonlinearity detection, Signal modelling

Jean-Marc Le Caillec; Julien Montagner

2013-05-01T23:59:59.000Z

48

Fusion devices  

SciTech Connect

Three types of thermonuclear fusion devices currently under development are reviewed for an electric utilities management audience. Overall design features of laser fusion, tokamak, and magnetic mirror type reactors are described and illustrated. Thrusts and trends in current research on these devices that promise to improve performance are briefly reviewed. Twenty photographs and drawings are included. (RME)

Fowler, T.K.

1977-10-11T23:59:59.000Z

49

OPTIMIZING CENTRIFUGAL BARREL POLISHING FOR MIRROR FINISH SRF CAVITY AND RF TESTS AT JEFFERSON LAB  

SciTech Connect

We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E{sub ACC} thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

Ari Palczewski, Rongli Geng, Hui Tian

2012-07-01T23:59:59.000Z

50

Alpha Channeling in Mirror Machines  

SciTech Connect

Because of their engineering simplicity, high-?, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.

Fisch N.J.

2005-10-19T23:59:59.000Z

51

Tandem mirror reactor as a synthetic fuel producer  

DOE Green Energy (OSTI)

A scoping design is reported of a fusion reactor based on tandem mirror physics coupled to thermochemical processes for the production of hydrogen.

Werner, R.W.

1980-01-01T23:59:59.000Z

52

Fusion Nuclear Science Facility-AT: A Material and Component Testing Device  

Science Conference Proceedings (OSTI)

Fusion Technology Facilities / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

C. P. C. Wong; V. S. Chan; A. M. Garofalo; R. Stambaugh; M. E. Sawan; R. Kurtz; B. Merrill

53

The Suitability of the Materials Test Station for Fusion Materials Irradiations  

Science Conference Proceedings (OSTI)

Fusion Technology Facilities / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

E. J. Pitcher; C. T. Kelsey IV; S. A. Maloy

54

LLNL-PRES-463228 FUSION PERSPECTIVES*  

E-Print Network (OSTI)

LLNL-PRES-463228 FUSION PERSPECTIVES* LLNL Fusion Energy Sciences Program D.D. Ryutov Fusion, Novosibirsk, July 1988: working together with the LLNL team #12;Axisymmetric mirrors can serve as a basis

55

Mirror Advanced Reactor Study interim design report  

DOE Green Energy (OSTI)

The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

Not Available

1983-04-01T23:59:59.000Z

56

Switchable Mirrors  

NLE Websites -- All DOE Office Websites (Extended Search)

Switchable Mirrors Switchable Mirrors Speaker(s): Ronald Griessen Date: July 17, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Thomas Richardson Switchable mirrors based on rare earth hydrides were discovered in my laboratory in 1994. PhD student J.N. Huiberts observed a reversible metal-to-insulator transition when a thin film (150 to 500 nm) of yttrium or lanthanum coated with a thin layer of palladium was exposed to hydrogen gas. The transition accompanies conversion of a metallic dihydride phase to a semiconducting trihydride. Since then, our group has carried out fundamental research that has elucidated many important aspects of switchable mirror phenomena. This talk will include demonstrations of the spectacular changes in optical properties in rare earth hydride films, and

57

Mirror Confinement Systems: project summaries  

SciTech Connect

This report contains descriptions of the projects supported by the Mirror Confinement Systems (MCS) Division of the Office of Fusion Energy. The individual project summaries were prepared by the principal investigators, in collaboration with MCS staff office, and include objectives and milestones for each project. In addition to project summaries, statements of Division objectives and budget summaries are also provided.

1980-07-01T23:59:59.000Z

58

Long-Term Leaching Tests With High Ash Fusion Maryland Coal Slag  

Science Conference Proceedings (OSTI)

Extraction-procedure toxicity tests showed that the solid residue materials resulting from the Texaco coal gasification process using fluxed high ash fusion Maryland coal were nonhazardous. Contaminant concentration in the leachate was below or only slightly above the primary maximum contaminant limits (PMCL) established for public drinking water supplies.

1991-04-04T23:59:59.000Z

59

Recognition and Classification of the Wolf Motor Function Test Items using Multimode Sensor Fusion  

E-Print Network (OSTI)

using Multimode Sensor Fusion A thesis submitted in partialusing Multimode Sensor Fusion by Yan Wang Master of Scienceby proposing a new sensor fusion method. Chapter 2 System

Wang, Yan

2012-01-01T23:59:59.000Z

60

Fusion Nuclear Science Facility (FNSF) before Upgrade to Component Test Facility (CTF)  

SciTech Connect

The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, understand, and innovate scientific and technical solutions for the challenges facing DEMO, by addressing the multi-scale synergistic interactions involving fusion plasma material interactions, tritium fuel cycle, power extraction, and the nuclear effects on materials. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of 19 MW. If and when this research operation is successful, its performance can be extended to 1 MW/m2 and 76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate- plasmas would minimize plasma-induced disruptions, helping to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all components using extensive remote handling (RH). This in turn requires modular designs for all internal components, including the single-turn toroidal field coil center-post with RH-compatible bi-directional sliding joints. Such device goals would further dictate placement of support structures and vacuum seal welds behind the internal and shielding components. If these further goals could be achieved, the FNSF would provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, at higher neutron fluence and duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF strategy would be complementary to the ITER and the Broader Approach programs, and thereby help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

Peng, Yueng Kay Martin [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

62

Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*  

Science Conference Proceedings (OSTI)

The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. [bold 21], 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert[sup TM] system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of [approx]10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of [alpha]-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined [alpha] particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed.

Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Ja

1994-05-01T23:59:59.000Z

63

Initial confinement studies of ohmically heated plasmas in the tokamak fusion test reactor  

DOE Green Energy (OSTI)

Initial operation of the tokamak fusion test reactor has concentrated upon confinement studies of ohmically heated hydrogen and deuterium plasmas. Total energy confinement times (tau/sub E/) are 0.1--0.2 s for a line-average density range (n-bar/sub e/) of (1--2.5) x 10/sup 19/ m/sup -3/ with electron temperatures of T/sub e/(o)approx.1.2--2.2 keV, ion temperatures of T/sub i/(0)approx.0.9--1.5 keV, and Z/sub eff/approx.3. A comparison of Princeton large torus, poloidal divertor experiment, and tokamak fusion test reactor plasma confinement supports a dimension-cubed scaling law.

Efthimion, P.C.; Bell, M.; Blanchard, W.R.; Bretz, N.; Cecchi, J.L.; Coonrod, J.; Davis, S.; Dylla, H.F.; Fonck, R.; Furth, H.P.

1984-04-23T23:59:59.000Z

64

Engineering considerations in the selection of the tokamak to follow the Tokamak Fusion Test Reactor (TFTR)  

SciTech Connect

The tokamak to follow the Tokamak Fusion Test Reactor (TFTR) should satisfy two important objectives. First, it should be a significant step in physics and engineering goals in order to maintain the level of progress which the US has established as the world leader in fusion energy development. The second objective should be to provide the information necessary to support the strategy and goals of the long-range Department of Energy (DOE) Fusion Program. In their Comprehensive Program Management Plan, the DOE identifies the need for a reactor technology program in the 1990s in which the major goal is to prove engineering feasibility. In this paper, the specific engineering needs are identified which have been developed through the tokamak design studies over the past decade. On the basis of these needs, it appears that several options are available for the next tokamak to follow TFTR. The final choice of the concept will involve consideration of the technical needs and the reality of the Fusion Program budget.

Shannon, T.E.

1983-01-01T23:59:59.000Z

65

A tritium-compatible piezoelectric valve for the tokamak fusion test reactor  

SciTech Connect

This work describes modifications made to a commercial piezoelectric valve to make it sufficiently tritium compatible for the TFTR trritium injection scenario. The results of testing the valve for leakage and performance following a series of progressively more severe tritium exposures are also presented. Finally, a proposal for a totally radiation-compatible piezoelectric valve, suitable for tritium-burning fusion machines of the future, is decribed. 9 refs., 2 figs., 1 tab.

Coffin, D.O.; Cole, S.P.; Wilhelm, R.C.

1988-02-01T23:59:59.000Z

66

Are mirror planets opaque?  

E-Print Network (OSTI)

Over the last few years, many close orbiting ($\\sim 0.05$ A.U.) large mass planets ($\\sim M_{J}$) of nearby stars have been discovered. Their existence has been inferred from tiny Doppler shifts in the light from the star and in one case a transit has been observed. Because ordinary planets are not expected to be able to form this close to ordinary stars due to the high temperatures, it has been speculated that the close-in large planets are in fact exotic heavenly bodies made of mirror matter. We show that the accretion of ordinary matter onto the mirror planet (from e.g.the solar wind from the host star) should make the mirror planet opaque to ordinary radiation with an effective radius ($R_p$) large enough to explain the measured size of the transiting close-in extrasolar planet, HD209458b. Furthermore we obtain the rough prediction that $R_{p} \\propto \\sqrt{{T_s\\over M_p}}$ (where $T_s$, is the surface temperature of the ordinary matter in the mirror planet and $M_p$ is the mass of the mirror planet) which will be tested in the near future as more transiting planets are found. We also show that the mirror world interpretation of the close-in extra solar planets explains the low albedo of $\\tau$ Boo b because the large estimated mass of $\\tau$ Boo b ($\\sim 7M_J$) implies a small effective radius of $R_p \\approx 0.5R_J$ for $\\tau$ Boo.

R. Foot

2001-01-04T23:59:59.000Z

67

Heliostat mirror survey and analysis  

DOE Green Energy (OSTI)

The mirrors used on concentrating solar systems must be able to withstand severe and sustained environmental stresses for long periods of time if they are to be economically acceptable. Little is known about how commercially produced wet process silvered second surface mirrors will withstand the test of time in solar applications. Field experience in existing systems has shown that the performance of the reflective surface varies greatly with time and is influenced to a large extent by the construction details of the mirror module. Degradation of the reflective layer has been seen that ranges from non-observable to severe. The exact mechanisms involved in the degradation process are not well understood from either the phenomenological or microanalytical points of view and are thus subject to much debate. The three chapters of this report summarize the work recently performed in three general areas that are key to understanding and ultimately controlling the degradation phenomena. These areas are: a survey of the present commercial mirroring industry, the microanalytical examination of numerous degraded and nondegraded mirrors, and an investigation of several novel techniques that might be used to extend the life of heliostat mirrors. Appendices include: (a) list of mirror manufacturers and (b) recommended specifications for second surface silvered mirrors for central receiver heliostat applications. (WHK)

Lind, M.A.; Buckwalter, C.Q.; Daniel, J.L.; Hartman, J.S.; Thomas, M.T.; Pederson, L.R.

1979-09-01T23:59:59.000Z

68

Status and Plan of the System Codes Development for ITER Test Blanket Module and Fusion Breeding Blanket in Korea  

Science Conference Proceedings (OSTI)

Test Blanket, Fuel Cycle, and Breeding / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

Dong Won Lee et al.

69

Design studies of mirror machine reactors  

SciTech Connect

An overview is presented of a mirror fusion reactor design study. The general methodology used in the study is discussed, the reactor is described, and some design alternatives to the present approach are enumerated. The system chosen for this design study is a mirror machine with direct conversion using D- T fuel. The nominal power output is 200 MW. The coil geometry is the Yin Yang, minimum B with a vacuum mirror ratio of 3. The coil is of particular utility because of its simple conductor shapes and because the two separate conductors, by proper B-field biasing, allow the charged particles to escape preferentially through one mirror only and through a relatively small window'' of that mirror. This is necessary for direct converter economy. (auth)

Werner, R.W.; Carlson, G.A.; Hovingh, J.; Lee, J.D.; Peterson, M.A.

1973-12-01T23:59:59.000Z

70

Design and testing of the magnetic quadrupole for the Heavy Ion Fusion Program  

SciTech Connect

The Heavy Ion Fusion Program at the Lawrence Berkeley Laboratory is conducting experiments in the transport and acceleration of ``driverlike`` beams. The single beam coming from the four-to-one beam combiner will be transported in a lattice of pulsed magnetic quadrupoles. The present beam transport consists of high field, short aspect ratio magnetic quadrupoles to maximize the transportable current. This design could also be converted to be superconducting for future uses in a driver. The pulsed quadrupole will develop a maximum field of two Tesla and will be housed within the induction accelerator cells at the appropriate lattice period. Hardware implementation of the physics requirements and full parameter testing is described.

Benjegerdes, R.; Faltens, A.; Fawley, W.; Peters, C.; Reginato, L.; Stuart, M.

1995-04-01T23:59:59.000Z

71

Measurements of Nonlinear Energy Transfer in Turbulence in the Tokamak Fusion Test Reactor  

SciTech Connect

The application of a new bispectral analysis technique to density fluctuation measurements in the core of the Tokamak Fusion Test Reactor indicates that the peak in the autopower spectrum usually lies in a region of linear stability. Large changes in the linear and nonlinear characteristics of the turbulence are observed as the plasma toroidal rotation and/or confinement properties are varied, while estimates of the turbulence-driven diffusivity varies only slightly with rotation. These observations are consistent with the operation of a global organizing property that may be related to the observation of Bohm-like scaling of ion thermal transport. {copyright} {ital 1997} {ital The American Physical Society}

Kim, J.S.; Fonck, R.J.; Durst, R.D. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Fernandez, E.; Terry, P.W. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Paul, S.F.; Zarnstorff, M.C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

1997-08-01T23:59:59.000Z

72

Dielectric Coatings for IACT Mirrors  

E-Print Network (OSTI)

Imaging Atmospheric Cherenkov Telescopes for very-high energy gamma-ray astronomy need mirror with high reflectance roughly in the wavelength between 300 and 550 nm. The current standard reflective layer of such mirrors is aluminum. Being permanently exposed to the environment they show a constant degradation over the years. New and improved dielectric coatings have been developed to enhance their resistance to environmental impact and to extend their possible lifetime. In addition, these customized coatings have an increased reflectance of over 95% and are designed to significantly lower the night-sky background contribution. The development of such coatings for mirrors with areas up to 2 m2 and low application temperatures to suite the composite materials used for the new mirror susbtrates of the Cherenkov Telescope Array (CTA) and the results of extensive durability tests are presented.

Förster, A; Chadwick, P; Held, M

2013-01-01T23:59:59.000Z

73

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

in the Tokamak Fusion Test Reactor which will be completedDrivers and Reactors for Inertial Confinement Fusion, K.A.

Keefe, D.

2008-01-01T23:59:59.000Z

74

Fusion Nuclear Science Facility (FNSF) Before Upgrade to Component Test Facility (CTF)  

Science Conference Proceedings (OSTI)

Power Plant, Demo, and FNSF / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

Y. K. M. Peng et al.

75

Investigation of global Alfven instabilities in the Tokamak Fusion Test Reactor  

SciTech Connect

Toroidal Alfven eigenmodes (TAE) were excited by the energetic neutral beam ions tangentially injected into plasmas at low magnetic field in the Tokamak Fusion Test Reactor (TFTR) ({ital Proceedings} {ital of} {ital the} 11{ital th} {ital International} {ital Conference} {ital on} {ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Fusion} {ital Research} (IAEA, Vienna, 1987), Vol. 1, p. 51). The injection velocities were comparable to the Alfven speed. The modes were identified by measurements from Mirnov coils and beam emission spectroscopy (BES). TAE modes appear in bursts whose repetition rate increases with beam power. The neutron emission rate exhibits sawtoothlike behavior and the crashes always coincide with TAE bursts. This indicates ejection of fast ions from the plasma until these modes are stabilized. The dynamics of growth and stabilization were investigated at various plasma currents and magnetic fields. The results indicate that the instability can effectively clamp the number of energetic ions in the plasmas. The observed instability threshold is discussed in light of recent theories. In addition to these TAE modes, intermittent oscillations at three times the fundamental TAE frequency were observed by Mirnov coils, but no corresponding signal was found in BES. It appears that these high-frequency oscillations do not have a direct effect on the plasma neutron source strength.

Wong, K.L.; Durst, R.; Fonck, R.J.; Paul, S.F.; Roberts, D.R.; Fredrickson, E.D.; Nazikian, R.; Park, H.K.; Bell, M.; Bretz, N.L.; Budny, R.; Cheng, C.Z.; Cohen, S.; Hammett, G.W.; Jobes, F.C.; Johnson, L.; Meade, D.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Sabbagh, S.; Synakowski, E.J. (Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States))

1992-07-01T23:59:59.000Z

76

GDT-based neutron source with multiple-mirror end plugs  

SciTech Connect

We present a new linear trap to be built at the Budker Institute. It combines gasdynamictype central cell with sloshing ions for beam fusion and the multiple-mirror end plugs for improved axial confinement. Thus it is designed as an efficient neutron source and a testbed for future development of mirror-based fusion reactors.

Beklemishev, A.; Anikeev, A.; Burdakov, A.; Ivanov, A.; Ivanov, I.; Postupaev, V.; Sinitsky, S. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

2012-06-19T23:59:59.000Z

77

Initial confinement studies of ohmically heated plasmas in the Tokamak Fusion Test Reactor  

DOE Green Energy (OSTI)

Initial operation of the Tokamak Fusion Test Reactor (TFTR) has concentrated upon confinement studies of ohmically heated hydrogen and deuterium plasmas. Total energy confinement times (tau/sub E/) are 0.1 to 0.2 s for a line-average density range (anti n/sub e/) of 1 to 2.5 x 10/sup 19/ m/sup -3/ with electron temperatures of T/sub e/(o) approx. 1.2 to 2.2 keV, ion temperatures of T/sub i/(o) approx. 0.9 to 1.5 keV, and Z/sub eff/ approx. 3. A comparison of PLT, PDX, and TFTR plasma confinement supports a dimension-cubed scaling law.

Efthimion, P.C.; Bell, M.; Blanchard, W.R.; Bretz, N.; Cecchi, J.L.; Coonrod, J.; Davis, S.; Dylla, H.F.; Fonck, R.; Furth, H.P.

1984-06-01T23:59:59.000Z

78

An Advanced Fast Steering Mirror for optical communication  

E-Print Network (OSTI)

I describe in this thesis the design, fabrication, assembly, and testing of an Advanced Fast Steering Mirror (AFSM) for precision optical platforms. The AFSM consists of a mirror driven in two rotational axes by normal ...

Kluk, Daniel Joseph

2007-01-01T23:59:59.000Z

79

Final report of the Ad Hoc Experts Group on Fusion  

SciTech Connect

The objectives and strategy of the fusion program are reviewed. In particular, tokamaks, mirrors, alternate concepts, plasma physics, and inertial confinement options are reviewed. (MOW)

1978-06-01T23:59:59.000Z

80

ECR-GDM Thruster for Fusion Propulsion  

SciTech Connect

The concept of the Gasdynamic Mirror (GDM) device for fusion propulsion was proposed by and Lee (1995) over a decade ago and several theoretical papers has supported the feasibility of the concept. A new ECR plasma source has been built to supply power to the GDM experimental thruster previously tested at the Marshall Space Flight Center (MSFC). The new plasma generator, powered by microwaves at 2.45 or 10 GHz. is currently being tested. This ECR plasma source operates in a number of distinct plasma modes, depending upon the strength and shape of the local magnetic field. Of particular interest is the compact plasma jet issuing form the plasma generator when operated in a mirror configuration. The measured velocity profile in the jet plume is bimodal, possibly as a result of the GDM effect in the ECR chamber of the thruster.

Brainerd, Jerome J.; Reisz, Al [Reisz Engineers 2909 Johnson Rd. Huntsville, Alabama 35805 256-325-2531 (United States)

2009-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a US Component Testing Facility  

Science Conference Proceedings (OSTI)

The use of a fusion component testing facility to study and establish, during the ITER era, the remaining scientific and technical knowledge needed by fusion Demo is considered and described in this paper. This use aims to lest components in an integrated fusion nuclear environment, for the first time, to discover and understand the underpinning physical properties, and to develop improved components for further testing, in a time-efficient manner. It requires a design with extensive modularization and remote handling of activated components, and flexible hot-cell laboratories. It further requires reliable plasma conditions to avoid disruptions and minimize their impact, and designs to reduce the divertor heat flux to the level of ITER design. As the plasma duration is extended through the planned ITER level (similar to 10(3) s) and beyond, physical properties with increasing time constants, progressively for similar to 10(4) s, similar to 10(5) s, and similar to 10(6) s, would become accessible for testing and R&D. The longest time constants of these are likely to be of the order of a week ( 106 S). Progressive stages of research operation are envisioned in deuterium, deuterium-tritium for the ITER duration, and deuterium-tritium with increasingly longer plasma durations. The fusion neutron fluence and operational duty factor anticipated for this "scientific exploration" phase of a component test facility are estimated to be up to 1 MW-yr/m(2) and up to 10%, respectively.

Peng, Yueng Kay Martin [ORNL; Burgess, Thomas W [ORNL; Carroll, Adam J [ORNL; Neumeyer, C. L. [Princeton Plasma Physics Laboratory (PPPL); Canik, John [ORNL; Cole, Michael J [ORNL; Dorland, W. D. [University of Maryland; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Grisham, L. [Princeton Plasma Physics Laboratory (PPPL); Hillis, Donald Lee [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Kotschenreuther, M. [University of Texas, Austin; LaHaye, R. [General Atomics, San Diego; Mahajan, S. [University of Texas, Austin; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Nelson, Brad E [ORNL; Patton, Bradley D [ORNL; Rasmussen, David A [ORNL; Sabbagh, S. A. [Columbia University; Sontag, Aaron C [ORNL; Stoller, Roger E [ORNL; Tsai, C. C. [Oak Ridge National Laboratory (ORNL); Vanlanju, P. [University of Texas, Austin; Wagner, Jill C [ORNL; Yoder, III, Graydon L [ORNL

2009-08-01T23:59:59.000Z

82

New electrochromic mirror systems  

New electrochromic mirror systems ... recorded using a fiber optic spectrometer (Ocean Optics). ... transmittance modulation of infrared light could lead

83

Tandem-mirror program: status and projection  

SciTech Connect

Construction of MFTF-B is scheduled for completion in 1985. Results of experiments in TMX-U and MFTF-B will permit the design of the D-T burning tandem-mirror next-step facility (TMNS) in which physics issues will not be at issue. TMNS will be a facility for engineering research and development. The end cells of TMNS are expected to be appropriate for a tandem-mirror demonstration fusion reactor (TMR), construction of which should begin about 1986 for operation in the 1990's.

Van Atta, C.M.

1981-03-12T23:59:59.000Z

84

Neutron diagnostics for mirror hybrids  

SciTech Connect

Fusion-fission (FuFi) hybrids will need instrumentation to diagnose the deuteriumtritium plasma, whose 14-MeV neutron emission is the driver of the sub-critical fission core. While the fission neutron yield rate (Y{sub fi} and hence power P{sub fi}) can be monitored with standard instrumentation, fusion plasmas in hybrids require special diagnostics where the determination of Y{sub th} ({proportional_to}P{sub fu}) is a challenge. Information on Y{sub fu} is essential for assessing the fusion plasma performance which together with Y{sub fi} allows for the validation of the neutron multiplication factor (k) of the subcritical fission core. Diagnostics for hybrid plasmas are heuristically discussed with special reference to straight field line mirror (SFLM). Relevant DT plasma experience from JET and plans for ITER in the main line of fusion research were used as input. It is shown that essential SFLM plasma information can potentially be obtained with proposed instrumentation, but the state of the hybrid plasma must be predictably robust as derived from fully diagnosed dedicated experiments without interface restrictions of the hybrid application.

Kaellne, Jan; Noack, Klaus; Agren, Olov; Gorini, Giuseppe; Tardocchi, Marco; Grosso, Giovanni [Department of Engineering Sciences, Uppsala University, Box 256, SE-751 21 Uppsala (Sweden); Universita degli Studi di Milano - Bicocca, Dip. di Fisica 'G. Occhialini', Piazza della Scienza 3, 20126, Milan (Italy)

2012-06-19T23:59:59.000Z

85

Applying Alpha-Channeling to Mirror Machines  

SciTech Connect

The ?-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic ?- particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefi t open-ended fusion devices. Here, the fundamental theory and practical aspects of ?- channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the ?-channeling mechanism. For practical implementation of the ? -channeling effect in mirror geometry, suitable contained weakly-damped modes are identifi ed. In addition, the parameter space of candidate waves for implementing the ? -channeling effect can be signi cantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the ?-channeling wave to the fuel ions.

A.I. Zhmoginov and N.J. Fisch

2012-03-16T23:59:59.000Z

86

Mirror hybrid reactors  

SciTech Connect

The fusion-fission hybrid is a combination of the fusion and fission processes, having features which are complementary. Fission energy is running out of readily available fuel, and fusion has extra neutrons which can be used to breed that fission fuel. Fusion would have to take on an extra burden of radioactivity, but this early application would give fusion, which does not work well enough now to make power, practical experience which may accelerate development of pure fusion.

Moir, R.W.

1978-09-11T23:59:59.000Z

87

Electrons and Mirror Symmetry  

SciTech Connect

The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

Kumar, Krishna (University of Massachusetts, Amherst)

2007-04-04T23:59:59.000Z

88

Tandem mirror plasma confinement apparatus  

DOE Patents (OSTI)

Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

Fowler, T. Kenneth (Walnut Creek, CA)

1978-11-14T23:59:59.000Z

89

Rf heating of mirrors  

SciTech Connect

A brief overview is presented of potential uses for rf heating of plasmas in mirror devices. While some discussion relating to past experiments is given, the main emphasis is devoted to a review of potential experiments in presently existing devices, and devices under construction or planning. Some predictions are made for plasmas in mirror reactors.

Porkolab, M.

1980-04-09T23:59:59.000Z

90

Lithium-Based Electrochromic Mirrors  

NLE Websites -- All DOE Office Websites (Extended Search)

Lithium-Based Electrochromic Mirrors Title Lithium-Based Electrochromic Mirrors Publication Type Conference Paper LBNL Report Number LBNL-52870 Year of Publication 2003 Authors...

91

Measurements of electromagnetic properties of LCT (Large Coil Task) coils in IFSMTF (International Fusion Superconducting Magnet Test Facility)  

Science Conference Proceedings (OSTI)

Participants in the international Large Coil Task (LCT) have designed, built, and tested six different toroidal field coils. Each coil has a 2.5- by 3.5-m, D-shaped bore and a current between 10 and 18 kA and is designed to demonstrate stable operation at 8 T, with a superimposed averaged pulsed field of 0.14 T in 1.0 s and simulated nuclear heating. Testing of the full six-coil toroidal array began early in 1986 and was successfully completed on September 3, 1987, in the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL). This paper summarizes electromagnetic properties of LCT coils measured in different modes of energization and fast dump. Effects of mutual coupling and induced eddy currents are analyzed and discussed. Measurements of the ac loss caused by the superimposed pulsed fields are summarized. Finally, the interpretation of the test results and their relevance to practical fusion are presented. 11 refs., 10 figs., 4 tab.

Shen, S.S.; Baylor, L.R.; Dresner, L.; Fehling, D.T.; Lubell, M.S.; Lue, J.W.; Luton, J.N.; McManamy, T.J.; Wilson, C.T.; Wintenberg, R.E.

1987-01-01T23:59:59.000Z

92

Simulation of Alpha-Channeling in Mirror Machines  

SciTech Connect

Applying ?-channeling techniques to mirror machines can significantly increase their effective reactivity, thus making open configurations more advantageous for practical fusion. A large fraction of ? particle energy can be extracted using rf waves. Effects employed to cool ? particles can also in principle be used to heat the fusion ions; the possibility to design a configuration of rf waves which could be used to perform both tasks is demonstrated.

A.I. Zhmoginov, N.J. Fisch

2008-03-17T23:59:59.000Z

93

Review of deuterium--tritium results from the Tokamak Fusion Test Reactor  

SciTech Connect

The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-{beta}{sub {ital p}} discharge following a current rampdown. The fusion power density in a core of the plasma is {approx}2.8 MW m{sup {minus}3}, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) at 1500 MW total fusion power. The energy confinement time, {tau}{sub {ital E}}, is observed to increase in D--T, relative to D plasmas, by 20% and the {ital n}{sub {ital i}}(0) {ital T}{sub {ital i}}(0) {tau}{sub {ital E}} product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-{beta}{sub {ital p}} discharges. Ion cyclotron range of frequencies (ICRF) heating of a D--T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. D--T experiments on TFTR will continue to explore the assumptions of the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.

McGuire, K.M.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.; Barnes, C.W.; Barnes, G.; Batha, S.; Bateman, G.; Beer, M.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Cauffman, S.; Chang, Z.; Chang, C.S.; Cheng, C.Z.; Chrzanowski, J.; Collins, J.; Coward, G.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Dendy, R.; Dorland, W.; Dudek, L.; Duong, H.; Durst, R.; Efthimion, P.C.; Ernst, D.; Evenson, H.; Fisch, N.; Fisher, R.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Fujita, T.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gilbert, J.; Gioia, J.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Hughes, M.; Hulse, R.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kalish, M.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Labik, G.; Lam, N.T.; LaMarche, P.H.; Lawson, E.; LeBlanc, B.; Levine, J.; Levinton, F.M.; Loesser, D.; Long, D.; Loughlin, M.J.; Machuzak, J.; Majeski, R.; Mansfield, D.K.; Marmar, E.S.; Marsala, R.; Martin, A.; Martin, G.; Mazzucato, E.; Mauel, M.; McCarthy, M.P.; McChesney, J.; McCormack, B.; McCune, D.C.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Murakami, M.; Murphy, J.A.; Nagy, A.; Navratil, G.A.; Nazikian, R.; Newman, R.; Norris, M.; O`Connor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D.K.; Park, H.; Park, W.; Parks, P.; Paul, S.F.; Pearson, G.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C.K.; Phillips, M.; Pitcher, S.; Pysher, R.; Qualls, A.L.; Raftopoulos, S.; Ramakrishnan, S.; Ramsey, A.; Rasmussen, D.A.; Redi, M.H.; Renda, G.; Rewoldt, G.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A.L.; Ruskov, E.; Sabbagh, S.A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G.

1995-06-01T23:59:59.000Z

94

Mirror plasma apparatus  

DOE Patents (OSTI)

A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

Moir, Ralph W. (Livermore, CA)

1981-01-01T23:59:59.000Z

95

Applications of intelligent-measurement systems in controlled-fusion research  

SciTech Connect

The paper describes the control and instrumentation for the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory, California, USA. This large-scale scientific experiment in controlled thermonuclear fusion, which is currently being expanded, originally had 3000 devices to control and 7000 sensors to monitor. A hierarchical computer control system, is used with nine minicomputers forming the supervisory system. There are approximately 55 local control and instrumentation microcomputers. In addition, each device has its own monitoring equipment, which in some cases consists of a small computer. After describing the overall system a more detailed account is given of the control and instrumentation for two large superconducting magnets.

Owen, E.W.; Shimer, D.W.; Lindquist, W.B.; Peterson, R.L.; Wyman, R.H.

1981-06-22T23:59:59.000Z

96

Alpha Channeling in Mirror Machines N. J. Fisch  

E-Print Network (OSTI)

.20.Ăżj, 52.55.Jd, 52.55.Pi Because of their engineering simplicity, high-#12;, and steady-state operation- state operation [9]. These effects would lower significantly the cost of electricity by tokamak fusion through uses of rf heating. Coupling rf power into the mirror tends to pump-out plasma [3,4], but it might

97

Remote Handling and Plasma Conditions to Enable Fusion Nuclear Science R&D Using a Component Testing Facility  

Science Conference Proceedings (OSTI)

Power Plants, Demo, and Next Steps / Eighteenth Topical Meeting on the Technology of Fusion Energy (Part 2)

Y. K. M. Peng et al.

98

High poloidal beta equilibria in the Tokamak Fusion Test Reactor limited by a natural inboard poloidal field null  

DOE Green Energy (OSTI)

Recent operation of the Tokamak Fusion Test Reactor (TFTR) (Plasma Phys. Controlled Nucl. Fusion Research {bold 1}, 51 (1986)) has produced plasma equilibria with values of {Lambda}{equivalent to}{beta}{sub {ital p} eq}+{ital l}{sub {ital i}}/2 as large as 7, {epsilon}{beta}{sub {ital p} dia}{equivalent to}2{mu}{sub 0}{epsilon}{l angle}{ital p}{sub {perpendicular}}{r angle}/{l angle}{l angle}{ital B}{sub {ital p}}{r angle}{r angle}{sup 2} as large as 1.6, and Troyon normalized diamagnetic beta (Plasma Phys. Controlled Fusion {bold 26}, 209 (1984); Phys. Lett. {bold 110A}, 29 (1985)), {beta}{sub {ital N}dia}{equivalent to}10{sup 8}{l angle}{beta}{sub {ital t}{perpendicular}}{r angle}{ital aB}{sub 0}/{ital I}{sub {ital p}} as large as 4.7. When {epsilon}{beta}{sub {ital p} dia}{approx gt}1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge that was sustained for many energy confinement times, {tau}{sub {ital E}}. The largest values of {epsilon}{beta}{sub {ital p}} and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and {tau}{sub {ital E}} greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L-mode predictions have been achieved. The fusion power gain {ital Q}{sub DD} reached a value of 1.3{times}10{sup {minus}3} in a discharge with {ital I}{sub {ital p}}=1 MA and {epsilon}{beta}{sub {ital p} dia}=0.85. A large, sustained negative loop voltage during the steady-state portion of the discharge indicates that a substantial noninductive component of {ital I}{sub {ital p}} exists in these plasmas. Transport code analysis indicates that the bootstrap current constitutes up to 65% of {ital I}{sub {ital p}}.

Sabbagh, S.A.; Gross, R.A.; Mauel, M.E.; Navratil, G.A. (Department of Applied Physics, Columbia University, New York, New York 10027 (USA)); Bell, M.G.; Bell, R.; Bitter, M.; Bretz, N.L.; Budny, R.V.; Bush, C.E.; Chance, M.S.; Efthimion, P.C.; Fredrickson, E.D.; Hatcher, R.; Hawryluk, R.J.; Hirshman, S.P.; Janos, A.C.; Jardin, S.C.; Jassby, D.L.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Okabayashi, M.; Park, H.K.; Ramsey, A.T.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.; Wieland, R.M.; Zarnstorff, M.C. (Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (USA)); Kesner, J.; Marmar, E.S.; Terry, J.L. (MIT Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (USA))

1991-08-01T23:59:59.000Z

99

Measurements of the radial structure and poloidal spectra of toroidal Alfven eigenmodes in the Tokamak Fusion Test Reactor  

SciTech Connect

Toroidal Alfven eigenmodes (TAE) have been excited by tangential neutral beam injection in the Tokamak Fusion Test Reactor (TFTR) [[ital Proceedings] [ital of] [ital the] [ital Thirteenth] [ital International] [ital Conference] [ital on] [ital Plasma] [ital Physics] [ital and] [ital Controlled] [ital Nuclear] [ital Fusion] [ital Research], 1990, Washington, D.C. (International Atomic Energy Agency, Vienna, 1990), Vol. I, p. 9]. Beam emission spectroscopy (BES) has been used to study the radial structure and the poloidal power spectra of these modes. Radial profiles show a global, standing wave structure with a node near [ital r]/[ital a]=0.6 and a maximum displacement of about 5--10 mm. The cross-phase profiles and the power spectra both imply that the mode is composed of a mixture of components with various poloidal and toroidal mode numbers, as expected for the TAE. Measurements of the poloidal mode spectrum via BES show good agreement with theoretical simulations performed by a nonvariational, kinetic magnetohydrodynamics stability code (NOVA[minus]K [Cheng, Phys. Rep. [bold 211], 1 (1992)]). In particular, the dominant harmonics in the poloidal spectrum obey the expected relation [ital m]+1/2[approx][ital q]([ital r])[ital n].

Durst, R.D.; Fonck, R.J. (University of Wisconsin, Madison, Wisconsin 53706 (United States)); Wong, K.L.; Cheng, C.Z.; Fredrickson, E.D.; Paul, S.F. (Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States))

1992-11-01T23:59:59.000Z

100

Wave-Driven Rotation In Centrifugal Mirrors  

SciTech Connect

Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

Abraham J. Fetterman and Nathaniel J. Fisch

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Low Activation Joining of SiC/SiC Composites for Fusion Applications: Miniature Torsion Specimen Shear Testing  

Science Conference Proceedings (OSTI)

The use of SiC composites in fusion environments likely requires joining of plates using reactive joining or brazing. One promising reactive joining method uses solid-state displacement reactions between Si and TiC to produce Ti3SiC2 + SiC. We continue to explore the processing envelope for this joint for the TITAN collaboration in order to produce optimal joints to undergo irradiation studies in HFIR. The TITAN collaboration has designed miniature torsion joints for preparation, testing, and irradiation in HFIR. PNNL synthesized 40 miniature torsion joints and several were tested for shear strength prior to irradiation testing in HFIR. The resulting tests indicated that (1) joint fixture alignment problems cause joint strengths to be lower than optimal, (2) that non-planar torsion test failures limit the effectiveness of the miniature specimen design, and (3) that several joints that were well aligned had high shear strengths and promising mechanical properties. In summary, we now show conclusively that high joint strengths cause non-planar shear fracture and complicate strength analysis for miniature torsion specimens.

Henager, Charles H.; Kurtz, Richard J.; Ventrella, Andrea; Ferraris, Monica

2011-04-17T23:59:59.000Z

102

ALPHA CHANNELING IN MIRROR MACHINES AND IN TOKAMAKS Nathaniel J. Fisch  

E-Print Network (OSTI)

Particles by Waves," Nuclear Fusion 34, 1541 (1994). [4] N. J. FISCH, "Theory of RF Current-Drive," Reviews as a way of achieving considerably higher performance in tokamak fusion reactors, and similar possibilities might be expected in mirror reactors. I. Introduction In tokamaks, operation in the hot ion mode, where

103

Verifying Mirror Technology for NGST with a Space-Qualified, Cryogenic 3.5 M Mirror  

E-Print Network (OSTI)

The lightweighting and surface accuracy targeted for NGST's 8 m primary mirror has been demonstrated in a 0.5 m prototype. Now a second, 2 m prototype weighing 40 kg in total is being fabricated at the University of Arizona under the NGST NMSD program. It will be tested in cryogenic operation in spring 1999. A third, advanced mirror system demonstrator (AMSD) is needed, the full size of an NGST segment, for flight qualification, including launch survival and extremely high reliability. The 3.5 m mirror, 1/6 the weight of HST's primary, would be made with a 2 mm thick glass face-sheet attached by adjustable screws to a carbon composite support. It would be figured as a fast telescope primary, and fully tested cryogenically to verify closed loop figure stability with simulated infrared starlight. If started in early 1999, this could be completed in 2001. Construction of the NGST mirror panels could then be undertaken on the basis of proven technology, and in time for a 2007 launch. With a diameter of 3.5 m and a weight of only 140 kg, the mirror could be incorporated into a telescope and launched to a high orbit by the Shuttle or number of other vehicles. Such a space mission would complement those already planned for scaled down tests of the unfolding of the NGST mirror segments (NEXUS) and the sunshade (ISIS). Much would be learned by running the mirror at cryogenic temperature, with a new infrared array to make preliminary observations in the 2 - 4 microns dark sky window, and a CCD to check optical image quality. This mission would be independent of the NGST, but would lay the scientific groundwork for the much more powerful telescope, as well as giving practical experience of mirror operation.

Roger Angel; Jim Burge

1998-08-11T23:59:59.000Z

104

Durable metallized polymer mirror  

DOE Patents (OSTI)

A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

1994-11-01T23:59:59.000Z

105

First-wall, blanket, and shield engineering test program for magnetically confined fusion power reactors  

Science Conference Proceedings (OSTI)

The key engineering areas identified for early study relate to FW/B/S system thermal-hydraulics, thermomechnics, nucleonics, electromagnetics, assembly, maintenance, and repair. Programmatic guidance derived frm planning exercises involving over thirty organizations (laboratories, industries, and universities) has indicated (1) that meaningful near term engineering testing should be feasible within the bounds of a modest funding base, (2) that there are existing facilities and expertise which can be profitably utilized in this testing, and (3) that near term efforts should focus on the measurement of engineering data and the verification/calibration of predictive methods for anticipated normal operational and transient FW/B/S conditions. The remainder of this paper discusses in more detail the planning strategies, proposed approach to near term testing, and longer range needs for integrated FW/B/S test facilities.

Maroni, V.A.

1980-01-01T23:59:59.000Z

106

SUPERGLASS. Engineering field tests - Phase 3. Production, market planning, and product evaluation for a high-thermal-performance insulating glass design utilizing HEAT MIRROR transparent insulation. Final report  

DOE Green Energy (OSTI)

HEAT MIRROR transparent window insulation consists of a clear polyester film two mils (.002'') thick with a thin, clear low-emissivity (.15) coating deposited on one side by state-of-the-art vacuum deposition processes. This neutral-colored invisible coating reflects long-wave infrared energy (heat). When mounted by being stretched with a 1/2'' air-gap on each side of the film, the resulting unit reduces heat loss by 60% compared to dual insulating glass. Southwall Corporation produces HEAT MIRROR transparent insulation and markets it to manufacturers of sealed insulating glass (I.G.) units and window and building manufacturers who make their own I.G. These companies build and sell the SUPERGLASS sealed glazing units. Units made and installed in buildings by six customers were visited. These units were located in many geographic regions, including the Pacific Northwest, Rocky Mountains, New England, Southeast, and West Coast. As much as could be obtained of their history was recorded, as was their current condition and performance. These units had been in place from two weeks to over a year. All of the units were performing thermally very well, as measured by taking temperature profiles through them and through adjacent conventional I.G. units. Some units had minor visual defects (attributed to I.G. assembly techniques) which are discussed in detail. Overall occupant acceptance was enthusiastically positive. In addition to saving energy, without compromise of optical quality or appearance, the product makes rooms with large glazing areas comfortable to be in in cold weather. All defects observed were present when built; there appears to be no in-field degradation of quality at this time.

Tilford, C L

1982-11-01T23:59:59.000Z

107

Tritium experiments on components for fusion fuel processing at the Tritium Systems Test Assembly  

SciTech Connect

Under a collaborative agreement between US and Japan, two tritium processing components, a palladium diffuser and a ceramic electrolysis cell have been tested with tritium for application to a Fuel Cleanup System (FCU) for plasma exhaust processing at the Los Alamos National Laboratory. The fundamental characteristics, compatibility with tritium, impurities effects with tritium, and long-term behavior of the components, were studied over a three year period. Based on these studies, an integrated process loop, JAERI Fuel Cleanup System'' equipped with above components was installed at the TSTA for full scale demonstration of the plasma exhaust reprocessing.

Konishi, S.; Yoshida, H.; Naruse, Y. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Carlson, R.V.; Binning, K.E.; Bartlit, J.R.; Anderson, J.L. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

108

Coil system for a mirror-based hybrid reactor  

SciTech Connect

Two different superconducting coil systems for the SFLM Hybrid study - a quadrupolar mirror based fusion-fission reactor study - are presented. One coil system is for a magnetic field with 2 T at the midplane and a mirror ratio of four. This coil set consists of semiplanar coils in two layers. The alternative coil system is for a downscaled magnetic field of 1.25 T at the midplane and a mirror ratio of four, where a higher {beta} is required to achieve sufficient the neutron production. This coil set has one layer of twisted 3D coils. The 3D coils are expected to be considerably cheaper than the semiplanar, since NbTi superconductors can be used for most coils instead of Nb3Sn due to the lower magnetic field.

Hagnestal, A.; Agren, O.; Moiseenko, V. E. [Uppsala University, Angstroem laboratory, Division of Electricity, Box 534, SE-751 21 Uppsala (Sweden); Institute of Plasma Physics, National Science Center 'Kharkov Institute of Physics and Technology', Akademichna st. 1, 61108 Kharkiv (Ukraine)

2012-06-19T23:59:59.000Z

109

Feasibility Studies of Alpha-Channeling in Mirror Machines  

SciTech Connect

The linear magnetic trap is an attractive concept both for fusion reactors and for other plasma applications due to its relative engineering simplicity and high-beta operation. Applying the ?- channeling technique to linear traps, such as mirror machines, can benefit this concept by efficiently redirecting ? particle energy to fuel ion heating or by otherwise sustaining plasma confinement, thus increasing the effective fusion reactivity. To identify waves suitable for ?-channeling a rough optimization of the energy extraction rate with respect to the wave parameters is performed. After the optimal regime is identified, a systematic search for modes with similar parameters in mirror plasmas is performed, assuming quasi-longitudinal or quasi-transverse wave propagation. Several modes suitable for ? particle energy extraction are identified for both reactor designs and for proof- of-principle experiments.

A. I. Zhmoginov and N. J. Fisch

2010-03-19T23:59:59.000Z

110

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

Jassby, Daniel L. (Princeton, NJ)

1988-01-01T23:59:59.000Z

111

Wave-driven Rotation in Supersonically Rotating Mirrors  

SciTech Connect

Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

A. Fetterman and N.J. Fisch

2010-02-15T23:59:59.000Z

112

Variable focal length deformable mirror  

DOE Patents (OSTI)

A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

Headley, Daniel (Albuquerque, NM); Ramsey, Marc (Albuquerque, NM); Schwarz, Jens (Albuquerque, NM)

2007-06-12T23:59:59.000Z

113

Temporal behavior of neutral particle fluxes in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors  

SciTech Connect

Data from an E {parallel} B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs.

Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.; Grisham, L.R.; Kugel, H.W.; Medley, S.S.; O' Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

1989-09-01T23:59:59.000Z

114

Fusion Breeder Program interim report  

Science Conference Proceedings (OSTI)

This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83.

Moir, R.; Lee, J.D.; Neef, W.

1982-06-11T23:59:59.000Z

115

Monte Carlo simulation of neutral beam injection into fusion reactors  

SciTech Connect

Motivations and techniques for the Monte Carlo computer simulation of energetic neutral beam injection for fusion reactors are described. The versatility of this approach allows a significantly more sophisticated treatment of charge transfer collision phenomena and consequent effects on engineering design than available from prior work. Exemplary results for a mirror Fusion Engineering Research Facility (FERF) are discussed. (auth)

Miller, R.L.

1975-09-15T23:59:59.000Z

116

Fusion safety regulations in the United States: Progress and trends  

SciTech Connect

This paper explores the issue of regulations as they apply to current and future fusion experimental machines. It addresses fusion regulatory issues, current regulations used for fusion, the Tokamak Fusion Test Reactor experience with regulations, and future regulations to achieve fusion`s safety and environmental potential.

DeLooper, J.

1994-07-01T23:59:59.000Z

117

Alignment mirror mechanisms for space use  

Science Conference Proceedings (OSTI)

The paper describes an optical Alignment Mirror Mechanism (AMM), and discusses its control scheme. The mirror's angular positioning accuracy requirement is ± 0.2 arc-sec. This requires the mirror's linear positioning actuators to have a positioning accuracy ...

Bruno M. Jau; Colin M. McKinney; Robert F. Smythe; Dean Palmer

2011-03-01T23:59:59.000Z

118

ACDOS1: A COMPUTER CODE TO CALCULATE DOSE RATES FROM NEUTRON ACTIVATION OF NEUTRAL BEAMLINES AND OTHER FUSION REACTOR COMPONENTS  

E-Print Network (OSTI)

BEAMLINES AND OTHER FUSION--REACTOR COMPONENTS Gregory S.Beamlines and Other Fusion-Reactor Compon­ ents By Gregoryin the Tokamak Fusion Test Reactor Test Cell", Nucl.

Keney, G.S.

2010-01-01T23:59:59.000Z

119

Multisensor data fusion algorithm development  

Science Conference Proceedings (OSTI)

This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

1995-12-01T23:59:59.000Z

120

Extensive remote handling and conservative plasma conditions to enable fusion nuclear science R&D using a component testing facility  

E-Print Network (OSTI)

FT/P3-14 Page 1 Extensive remote handling and conservative plasma conditions to enable fusion modularization and remote handling, and allow conservative plasma assumptions including an extended divertor component modularization and capability for remote handling, and estimate the replacement times of various

Princeton Plasma Physics Laboratory

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Trapped Ion Imaging with a High Numerical Aperture Spherical Mirror  

E-Print Network (OSTI)

Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.

G Shu; M R Dietrich; N Kurz; B B Blinov

2009-01-29T23:59:59.000Z

122

Trapped Ion Imaging with a High Numerical Aperture Spherical Mirror  

E-Print Network (OSTI)

Efficient collection and analysis of trapped ion qubit fluorescence is essential for robust qubit state detection in trapped ion quantum computing schemes. We discuss simple techniques of improving photon collection efficiency using high numerical aperture (N.A.) reflective optics. To test these techniques we placed a spherical mirror with an effective N.A. of about 0.9 inside a vacuum chamber in the vicinity of a linear Paul trap. We demonstrate stable and reliable trapping of single barium ions, in excellent agreement with our simulations of the electric field in this setup. While a large N.A. spherical mirror introduces significant spherical aberration, the ion image quality can be greatly improved by a specially designed aspheric corrector lens located outside the vacuum system. Our simulations show that the spherical mirror/corrector design is an easy and cost-effective way to achieve high photon collection rates when compared to a more sophisticated parabolic mirror setup.

Shu, G; Kurz, N; Blinov, B B

2009-01-01T23:59:59.000Z

123

Fusion research: the past is prologue  

SciTech Connect

At this juncture fusion research can be viewed as being at a turning point, a time to review its past and to imagine its future. Today, almost 50 years since the first serious attempts to address the daunting problem of achieving controlled fusion, we have both an opportunity and a challenge. Some predictions place fusion research today at a point midway between its first inception and its eventual maturation - in the middle of the 21st century - when fusion would become a major source of energy. Our opportunity therefore is to assess what we have learned from 50 years of hard work and use that knowledge as a starting point for new and better approaches to solving the fusion problem. Our challenge is to prove the "50 more years" prophesy wrong, by finding ways to shorten the time when fusion power becomes a reality. The thesis will be advanced that in the magnetic confinement approach to fusion open-ended magnetic confinement geometries offer much in responding to the challenge. A major advantage of open systems is that, owing to their theoretically and experimentally demonstrated ability to suppress plasma instabilities of both the MHD and the high-frequency wave-particle variety, the confinement becomes predictable from "classical," i.e., Fokker-Planck-type analysis. In a time of straitened budgetary circumstances for magnetic fusion research now being faced in the United States, the theoretical tractability of mirror-based systems is a substantial asset. In pursuing this avenue it is also necessary to keep an open mind as to the forms that mirror-based fusion power plants might take. For example, one can look to the high-energy physics community for a possible model: This community has shown the feasibility of constructing large and complex particle accelerators using superconducting magnets, vacuum chambers and complicated particle-handling technology, housed in underground tunnels that are 20 or more kilometers long. In the paper examples of mirror-based fusion power systems resembling long "linear colliders" will be discussed. It is not the intent of this paper to present detailed proposals for next-generation experiments in magnetic fusion research, but rather to encourage a return to the ambiance of an earlier era of fusion research, when innovative thinking and a spirit of scientific adventure prevailed. In that way we can realistically build a new era of fusion research, an era that would be firmly undergirded by the scientific and technological foundation that was laid in fusion's first half-century.

Post, R F

1998-10-14T23:59:59.000Z

124

Development of mirror manipulator for hard-x-ray nanofocusing at sub-50-nm level  

Science Conference Proceedings (OSTI)

X-ray focusing using Kirkpatrick-Baez (KB) mirrors is promising owing to their capability of highly efficient and energy-tunable focusing. We report the development of a mirror manipulator which enables KB mirror alignment with a high degree of accuracy. Mirror alignment tolerances were estimated using two types of simulators. On the basis of the simulation results, the mirror manipulator was developed to achieve an optimum KB mirror setup. As a result of focusing tests at BL29XUL of SPring-8, the beam size of 48x36 nm{sup 2} (VxH) was achieved in the full width at half maximum at an x-ray energy of 15 keV. Spatial resolution tests showed that a scanning x-ray microscope equipped with the KB focusing system could resolve line-and-space patterns of 80 nm linewidth in a high visibility of 60%.

Matsuyama, S.; Mimura, H.; Yumoto, H.; Hara, H.; Yamamura, K.; Sano, Y.; Endo, K.; Mori, Y.; Yabashi, M.; Nishino, Y.; Tamasaku, K.; Ishikawa, T.; Yamauchi, K. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); SPring-8/Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Mikazuki, Hyogo 679-5148 (Japan); SPring-8/RIKEN, 1-1-1 Kouto, Mikazuki, Hyogo 679-5148 (Japan); Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2006-09-15T23:59:59.000Z

125

Shielding of mirror FERF plasma by arc discharges  

SciTech Connect

The feasibility of shielding a mirror-confined fusion plasma against erosion by incident neutrals with a plasma blanket generated by an array of hollow-cathode arc discharges was studied. Such a plasma blanket could also be used for linetying stabilization of a single mirror confined plasma as well as to provide a warm plasma stream for stabilization of microinstabilities. The requirements for the plasma blanket are dependent on the parameter ..gamma.., the ratio of the actual cross-field diffusion coefficient to the classical value. The power requirement compares favorably with power loss due to change exchange without shielding. More importantly, the blanket permits a relaxation of vacuum requirements to prevent erosion of the hot plasma by background neutrals.

Woo, J.T.

1976-12-08T23:59:59.000Z

126

Particle beam fusion  

SciTech Connect

Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

1980-12-31T23:59:59.000Z

127

Heavy ion fusion--Using heavy ions to make electricity  

E-Print Network (OSTI)

for a practical fusion power reactor. HIF is the only fusionenter the reactor chamber, and focus Heavy Ion Fusion ontoengineering test reactor. The promise of fusion as a power

Celata, C.M.

2004-01-01T23:59:59.000Z

128

Fusion Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Intro Fusion Education Research DIII-D Internal Site Opportunities Virtual DIII-D Collaborators Countries Physics Eng Physics Operations Diagnostics Computing IFT IFT Site ITER ITER Site FDF Theory Collaborators Conferences GA-Hosted Room Reservations Fusion Meetings Plasma Publications Presentations Images Brochures Posters Movies Corporate General Atomics Products Visitor GA Fusion Hotels Internal Users GA Internal Site DIII-D General Experimental Science Experimental Science Home 2013 Experimental Campaign Burning Plasma Physics Dynamics & Control Boundary and Pedestal ELM Control Operations Diagnostics Computing Support Visitors DIII-D Web Access Help IFT ITER-GA Theory Research Highlights Personnel Links Policies Safety Comp Support Trouble Ticket Eng/Design Fusion Webmail Phone Book

129

Fusion breeder  

SciTech Connect

The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

Moir, R.W.

1982-02-22T23:59:59.000Z

130

Fusion breeder  

SciTech Connect

The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the US fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the US fusion program and the US nuclear energy program. The purpose of this paper is to suggest this policy change be made and tell why it should be made, and to outline specific research and development goals so that the fusion breeder will be developed in time to meet fissile fuel needs.

Moir, R.W.

1982-04-20T23:59:59.000Z

131

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

132

Magnetic fusion 1985: what next  

SciTech Connect

Recent budget reductions for magnetic fusion have led to a re-examination of program schedules and objectives. Faced with delays and postponement of major facilities as previously planned, some have called for a near-term focus on science, others have stressed technology. This talk will suggest a different focus as the keynote for this conference, namely, the applications of fusion. There is no doubt that plasma science is by now mature and fusion technology is at the forefront. This has and will continue to benefit many fields of endeavor, both in actual new discoveries and techniques and in attracting and training scientists and engineers who move on to make significant contributions in science, defense and industry. Nonetheless, however superb the science or how challenging the technology, these are means, not ends. To maintain its support, the magnetic fusion program must also offer the promise of power reactors that could be competitive in the future. At this conference, several new reactor designs will be described that claim to be smaller and economically competitive with fission reactors while retaining the environmental and safety characteristics that are the hallmark of fusion. The American Nuclear Society is an appropriate forum in which to examine these new designs critically, and to stimulate better ideas and improvements. As a preview, this talk will include brief discussions of new tokamak, tandem mirror and reversed field pinch reactor designs to be presented in later sessions. Finally, as a preview of the session on fusion breeders, the talk will explore once again the economic implications of a new nuclear age, beginning with improved fission reactors fueled by fusion breeders, then ultimately evolving to reactors based solely on fusion.

Fowler, T.K.

1985-03-01T23:59:59.000Z

133

Fusion Implementation  

SciTech Connect

If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

J.A. Schmidt

2002-02-20T23:59:59.000Z

134

Producing thermochemical hydrogen with the tandem-mirror reactor  

SciTech Connect

Fusion power holds the promise to supply not only electricity but also fuels to meet the balance of our energy needs. A new integrated power and breeding blanket design is described for tandem mirror reactors. The blanket incorporates features that make it suitable for synthetic fuel production. In particular, it is matched to the thermal and electrical power requirements of the General Atomic water-splitting process for production of hydrogen. Some improvements to the high temperature chemical process steps are described. These improvements are expected to allow production of hydrogen at about $13/GJ wholesale, including financing costs, capital amortization, and profit.

Werner, R.W.; Hickman, R.G.

1982-05-07T23:59:59.000Z

135

Mirror Advanced Reactor Study (MARS)  

DOE Green Energy (OSTI)

Progress in a two year study of a 1200 MWe commercial tandem mirror reactor (MARS - Mirror Advanced Reactor Study) has reached the point where major reactor system technologies are identified. New design features of the magnets, blankets, plug heating systems and direct converter are described. With the innovation of radial drift pumping to maintain low plug density, reactor recirculating power fraction is reduced to 20%. Dominance of radial ion and impurity losses into the halo permits gridless, circular direct converters to be dramatically reduced in size. Comparisons of MARS with the Starfire tokamak design are made.

Logan, B.G.

1983-03-28T23:59:59.000Z

136

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

137

Assisted fusion  

E-Print Network (OSTI)

A model of nuclear fusion consisting of a wave packet impinging into a well located between square one dimensional barriers is treated analytically. The wave function inside the well is calculated exactly for the assisted tunneling induced by a perturbation mimicking a constant electric field with arbitrary time dependence. Conditions are found for the enhancement of fusion.

German Kälbermann

2009-10-19T23:59:59.000Z

138

EA-0813; Environmental Assessment and (FONSI) The Tokamak Fusion Test Reactor Decontamination and Decommissioning Project and The Tokamak Physics Experiment at the PPPL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13; Environmental Assessment and (FONSI) The Tokamak Fusion 13; Environmental Assessment and (FONSI) The Tokamak Fusion Test Reactor Decontamination and Decommissioning Project and The Tokamak Physics Experiment at the PPPL Table of Contents EXECUTIVE SUMMARY ACRONYMS Glossary of Radiological Terms SCIENTIFIC NOTATION 1.0 PURPOSE AND NEED FOR THE PROPOSED ACTIONS 1.1 TFTR D&D Project 1.2 TPX Project 1.3 Scope of Document 1.4 Local Community Relations Program 1.5 References 2.0 DESCRIPTION OF THE PROPOSED ACTIONS AND ALTERNATIVES 2.1 TFTR D&D Project 2.2 TPX Project 2.3 Environmental Monitoring 2.4 References 3.0 DESCRIPTION OF THE AFFECTED ENVIRONMENT 3.1 PPPL Proposed Site 3.2 ORR Alternative Site 3.3 References 4.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTIONS AND ALTERNATIVES 4.1 TFTR D&D Project 4.1.1 Impacts of Normal D&D Operations

139

and Enable Development of Fusion’s Energy Applications  

E-Print Network (OSTI)

Demonstrate advanced physics operation of a tokamak in steadystate with Burn – Utilize conservative expressions of all elements of Advanced Tokamak physics to produce 100-250 MW fusion power with modest energy gain (Q 2 weeks – Further develop all elements of Advanced Tokamak physics, qualifying them for an advanced performance DEMO Develop fusion’s nuclear technology – Test materials with high neutron fluence (3-6 MW-yr/m 2) with duty factor 0.3 on a year – Demonstrate Tritium self-sufficiency – Develop fusion blankets that make both tritium and electricity at 1-2 MW/m 2 neutron fluxes – Develop fusion blankets that produce hydrogen With ITER and IFMIF, provide the basis for a fusion DEMO Power Plant

R. D. Stambaugh

2007-01-01T23:59:59.000Z

140

arXiv.org help - arXiv mirror sites  

NLE Websites -- All DOE Office Websites (Extended Search)

mirror sites arXiv mirror sites Set of flags, one for each mirror site China France Germany India Japan Spain United Kingdom USA mirror hosted by LANL Main site at Cornell...

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CubeSat deformable mirror demonstration  

E-Print Network (OSTI)

The goal of the CubeSat Deformable Mirror Demonstration (DeMi) is to characterize the performance of a small deformable mirror over a year in low-Earth orbit. Small form factor deformable mirrors are a key technology needed ...

Cahoy, Kerri

142

Fusion power production in TFTR  

SciTech Connect

Up to 9.3 MW of fusion power has been produced from deuterium-tritium (DT) fusion reactions in the Tokamak Fusion Test Reactor (TFTR). The total fusion yield from a single plasma pulse has reached 6.5 MJ. The experiments in TFTR with deuterium-tritium plasmas fueled and heated by neutral beam injection span wide ranges in plasma and operating conditions. Through the use of lithium pellet conditioning to control the edge recycling, the plasma confinement in TFTR has been improved to the point where the stability of the plasma to pressure driven modes is limiting the fusion power for plasma currents up to 2.5 MA. The central energy and fusion power densities in these plasmas are comparable to those expected in a thermalized DT reactor, such as ITER.

Bell, M.G.; Budny, R.V. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Barnes, C.W. [Los Alamos National Lab., NM (United States)] [and others

1994-11-01T23:59:59.000Z

143

Interlinked Test Results for Fusion Fuel Processing and Blanket Tritium Recovery Systems Using Cryogenic Molecular Sieve Bed  

Science Conference Proceedings (OSTI)

A simulated fuel processing (cryogenic distillation columns and a palladium diffuser) and CMSB (cryogenic molecular sieve bed) systems were linked together, and were operated. The validity of the CMSB was discussed through this experiment as an integrated system for the recovery of blanket tritium. A gas stream of hydrogen isotopes and He was supplied to the CMSB as the He sweep gas in blanket of a fusion reactor. After the breakthrough of tritium was observed, regeneration of the CMSB was carried out by evacuating and heating. The hydrogen isotopes were finally recovered by the diffuser. At first, only He gas was sent by the evacuating. The hydrogen isotopes gas was then rapidly released by the heating. The system worked well against the above drastic change of conditions. The amount of hydrogen isotopes gas finally recovered by the diffuser was in good agreement with that adsorbed by the CMSB. The dynamic behaviors (breakthrough and regeneration) of the system were explained well by a set of basic codes.

Yamanishi, Toshihiko; Hayashi, Takumi; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; Uzawa, Masayuki; Nishi, Masataka [Japan Atomic Energy Research Institute (Japan)

2005-07-15T23:59:59.000Z

144

Draft Submitted for Review to 14th ANS Fusion Topical Meeting, Park City, Utah, Oct. 2000.  

E-Print Network (OSTI)

for the "damage limit" of a liquid metal surface used as a final optic for laser fusion power plants Mirror (GILMM) is a potentially attractive, but highly speculative, concept for laser fusion power plants of surface waves resulting from surface ablation recoil is also presented, where large waves are seen damp

California at Los Angeles, University of

145

1 DEMONSTRATION OF NUCLEAR FUSION IN AN ORDINARY CLAY FLOWER POT  

E-Print Network (OSTI)

This work demonstrates a sustainable nuclear fusion reaction of hydrogen using a clay flower port as a reactor vessel. Our novel approach uses a “charge mirror ” that reduces the electromagnetic repulsion between nuclei enough to allow fusion initiation at room temperature. The device can also be used as a secure error-free transgalactic communications pipe with zero latency and near infinite bandwidth. I.

Albert Einstein; Er Bell; Richard Feynman

2002-01-01T23:59:59.000Z

146

LITHIUM-BASED ELECTROCHROMIC MIRRORS  

NLE Websites -- All DOE Office Websites (Extended Search)

870 870 rd Presented at the 203 Meeting of the Electrochemical Society, April 28-30, 2003 in Paris, France and published in the Proceedings. Lithium-Based Electrochromic Mirrors Thomas J. Richardson and Jonathan L. Slack Lawrence Berkeley National Laboratory April 2003 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson* and Jonathan L. Slack Building Technologies Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA

147

Dynamic Instruction Fusion  

E-Print Network (OSTI)

SANTA CRUZ DYNAMIC INSTRUCTION FUSION A thesis submitted in4 2.2 Instruction Fusion & Complex10 3.1 Fusion Selection

Lee, Ian

2012-01-01T23:59:59.000Z

148

Minimal fusion systems.  

E-Print Network (OSTI)

??We define minimal fusion systems in a way that every non-solvable fusion system has a section which is minimal. Minimal fusion systems can also be… (more)

Henke, Ellen

2010-01-01T23:59:59.000Z

149

Fusion Power Demonstrations I and II  

SciTech Connect

In this report we present a summary of the first phase of the Fusion Power Demonstration (FPD) design study. During this first phase, we investigated two configurations, performed detailed studies of major components, and identified and examined critical issues. In addition to these design specific studies, we also assembled a mirror-systems computer code to help optimize future device designs. The two configurations that we have studied are based on the MARS magnet configuration and are labeled FPD-I and FPD-II. The FPD-I configuration employs the same magnet set used in the FY83 FPD study, whereas the FPD-II magnets are a new, much smaller set chosen to help reduce the capital cost of the system. As part of the FPD study, we also identified and explored issues critical to the construction of an Engineering Test Reactor (ETR). These issues involve subsystems or components, which because of their cost or state of technology can have a significant impact on our ability to meet FPD's mission requirements on the assumed schedule. General Dynamics and Grumman Aerospace studied two of these systems, the high-field choke coil and the halo pump/direct converter, in great detail and their findings are presented in this report.

Doggett, J.N. (ed.)

1985-01-01T23:59:59.000Z

150

Fusion-breeder-reactor design studies  

SciTech Connect

Studies of the technical and economic feasibility of producing fissile fuel in tandem mirrors and in tokamaks for use in fission reactors are presented. Fission-suppressed fusion breeders promise unusually good safety features and can provide make-up fuel for 11 to 18 LWRs of equal nuclear power depending on the fuel cycle. The increased revenues from sales of both electricity and fissile material might allow the commercial application of fusion technology significantly earlier than would be possible with electricity production from fusion alone. Fast-fission designs might allow a fusion reactor with a smaller fusion power and lower Q value to be economical and thus make this application of fusion even earlier. A demonstration reactor with a fusion power of 400 MW could produce 600 kg of fissile material per year at a capacity factor of 50%. The critical issues, for which small scale experiments are either being carried out or planned, are: (1) material compatibility, (2) beryllium feasibility, (3) MHD effects, and (4) pyrochemical reprocessing.

Moir, R.W.; Lee, J.D.; Coops, M.S.

1983-04-05T23:59:59.000Z

151

Road map for a modular magnetic fusion program  

SciTech Connect

During the past several decades magnetic fusion has made outstanding progress in understanding the science of fusion plasmas, the achievement of actual fusion plasmas and the development of key fusion technologies. Magnetic fusion is now technically ready to take the next step: the study of high gain fusion plasmas, the optimization of fusion plasmas and the continued development and integration of fusion technology. However, each of these objectives requires significant resources since the tests are now being done at the energy production scale. This paper describes a modular approach that addresses these objectives in specialized facilities that reduces the technical risk and lowers cost for near term facilities needed to address critical issues.

Dale M. Meade

2000-07-18T23:59:59.000Z

152

Ceramics for fusion devices  

SciTech Connect

Ceramics are required for a number of applications in fusion devices, among the most critical of which are magnetic coil insulators, windows for RF heating systems, and structural uses. Radiation effects dominate consideration of candidate materials, although good pre-irradiation properties are a requisite. Materials and components can be optimized by careful control of chemical and microstructural content, and application of brittle material design and testing techniques. Future directions for research and development should include further extension of the data base in the areas of electrical, structural, and thermal properties; establishment of a fission neutron/fusion neutron correlation including transmutation gas effects; and development of new materials tailored to meet the specific needs of fusion reactors.

Clinard, F.W. Jr.

1984-01-01T23:59:59.000Z

153

Production of field-reversed mirror plasma with a coaxial plasma gun  

SciTech Connect

The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

Hartman, Charles W. (Alamo, CA); Shearer, James W. (Livermore, CA)

1982-01-01T23:59:59.000Z

154

Is there hope for fusion  

SciTech Connect

From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025--2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 4 figs., 3 tabs.

Fowler, T.K. (California Univ., Berkeley, CA (USA). Dept. of Nuclear Engineering)

1990-04-12T23:59:59.000Z

155

Mirror Development for the Cherenkov Telescope Array  

E-Print Network (OSTI)

The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Micha?owski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wi?niewski, ?; Wörnlein, A; Yoshida, T

2013-01-01T23:59:59.000Z

156

Passivation coating for flexible substrate mirrors  

DOE Patents (OSTI)

A protective diffusion barrier for metalized mirror structures is provided by a layer of coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, light-weight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention. 13 figs.

Tracy, C.E.; Benson, D.K.

1988-10-19T23:59:59.000Z

157

Search for fusion power  

SciTech Connect

A brief review of the basics of fusion power is given. Both inertial confinement and magnetic confinement fusion are discussed.

Post, R.F.

1978-10-12T23:59:59.000Z

158

Process for preparing improved silvered glass mirrors  

DOE Patents (OSTI)

Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

Buckwalter, C.Q. Jr.

1980-01-28T23:59:59.000Z

159

Plasma confinement apparatus using solenoidal and mirror coils  

DOE Patents (OSTI)

A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

Fowler, T. Kenneth (Walnut Creek, CA); Condit, William C. (Livermore, CA)

1979-01-01T23:59:59.000Z

160

Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas  

SciTech Connect

It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

2009-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Honda Insight Fleet and Accelerated Reliability Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Fusion Hybrid Electric Vehicle Accelerated Testing - May 2012 Two model year 2010 Ford Fusion hybrid electric vehicles (HEVs) entered Accelerated testing during August 2009 in...

162

Cold fusion, Alchemist's dream  

SciTech Connect

In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

Clayton, E.D.

1989-09-01T23:59:59.000Z

163

Laser fusion monthly -- August 1980  

SciTech Connect

This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

Ahlstrom, H.G. [ed.

1980-08-01T23:59:59.000Z

164

(Fusion energy research)  

SciTech Connect

This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

Phillips, C.A. (ed.)

1988-01-01T23:59:59.000Z

165

Mirror Advanced Reactor Study (MARS): executive summary and overview  

DOE Green Energy (OSTI)

Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes (<10 W/cm/sup 2/), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li/sub 17/Pb/sub 83/) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000/sup 0/C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter.

Logan, B.G.; Perkins, L.J.; Gordon, J.D.

1984-07-01T23:59:59.000Z

166

Concentrating Solar Power: Energy from Mirrors  

NLE Websites -- All DOE Office Websites (Extended Search)

Mirror mirror on the wall, what's the Mirror mirror on the wall, what's the greatest energy source of all? The sun. Enough energy from the sun falls on the Earth everyday to power our homes and businesses for almost 30 years. Yet we've only just begun to tap its potential. You may have heard about solar electric power to light homes or solar thermal power used to heat water, but did you know there is such a thing as solar thermal-electric power? Electric utility companies are using mirrors to concentrate heat from the sun to produce environmentally friendly electricity for cities, especially in the southwestern United States. The southwestern United States is focus- ing on concentrating solar energy because it's one of the world's best areas for sun- light. The Southwest receives up to twice the sunlight as other regions in the coun-

167

Prospects for Tokamak Fusion Reactors  

SciTech Connect

This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

Sheffield, J.; Galambos, J.

1995-04-01T23:59:59.000Z

168

Economic significance of Q for mirror reactors: combinations of Q and M which look promising  

SciTech Connect

This term Q is the ratio of the fusion powder produced to the power input. It is a driven device. Q is truly the success parameter for mirrors--widely discussed but not succinctly specified as to required value. The problem is that Q can be treated as a subjective parameter--there are many milestone Qs; for scientific demonstration, for breakeven power, etc. Yet for a successful reactor, there is only one Q and that is the Q which produces mirror fusion power at the busbar that is less than the cost of delivered power in mills/kwhr by other means. We call this Q/sub PRACTICAL/ and believe there is a convincing argument that says this Q/sub PRACTICAL/ can be about 5.0 even assuming modest efficiencies for system components. A direct convertor is necessary. If the direct convertor were deleted, a Q/sub PRACTICAL/ of approximately 7.5 would be required. If we wish to soften the value of Q further, then the technical logic for the fusion fission hybrid is very powerful. With the hybrid a Q/sub PRACTICAL/ of 1.5 to 2.0 appears to be a very reasonable value. The key in being able to specify values of Q/sub PRACTICAL/ lies in economically comparing the capital cost of fusion power to the sum of the capital cost and the present value of all the fuel costs for the competitive fuel intensive plants.

Werner, R.W.

1978-09-11T23:59:59.000Z

169

Performance requirements of an inertial-fusion-energy source for hydrogen production  

DOE Green Energy (OSTI)

Performance of an inertial fusion system for the production of hydrogen is compared to a tandem-mirror-system hydrogen producer. Both systems use the General Atomic sulfur-iodine hydrogen-production cycle and produce no net electric power to the grid. An ICF-driven hydrogen producer will have higher system gains and lower electrical-consumption ratios than the design point for the tandem-mirror system if the inertial-fusion-energy gain eta Q > 8.8. For the ICF system to have a higher hydrogen production rate per unit fusion power than the tandem-mirror system requires that eta Q > 17. These can be achieved utilizing realistic laser and pellet performances.

Hovingh, J.

1983-01-01T23:59:59.000Z

170

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

for Passive Passive Solar Heating Applications StephenHEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS StephenMIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS Stephen

Selkowitz, S.

2011-01-01T23:59:59.000Z

171

Mirror Modes in the Heliosheath  

SciTech Connect

Mirror mode (MM) structures are identified in the Voyager 1 heliosheath magnetic field data. Their characteristics are: (1) quasiperiodic structures with a typical scale size of {approx}57 {rho}{sub p}(proton gyroradii), (2) little or no angular changes across the structures ({approx}3 deg. longitude and {approx}3 deg. latitude), and (3) a lack of sharp boundaries at the magnetic dip edges. It is proposed that the pickup of interstellar neutrals in the upstream region of the termination shock (TS) is the likely cause of MM instability during intervals when the IMF is nearly orthogonal to the solar wind flow direction. Concomitant (quasiperpendicular) shock compression of the MM structures at the TS and additional injection of pickup ions (PUIs) throughout the heliosheath will enhance MM growth.

Tsurutani, B. T. [Jet Propulsion Lab., Calif. Inst. Tech., Pasadena, CA (United States); Guarnieri, F. L. [UNIVAP, Sao Jose dos Campos, SP (Brazil); Echer, E. E. [INPE, Sao Jose dos Campos, SP (Brazil); Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Verkhoglyadova, O. P. [CSPAR, Univ. Alabama, Huntsville, AL (United States)

2011-01-04T23:59:59.000Z

172

Future of Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

Nuckolls, J H; Wood, L L

2002-09-04T23:59:59.000Z

173

ACDOS1: A COMPUTER CODE TO CALCULATE DOSE RATES FROM NEUTRON ACTIVATION OF NEUTRAL BEAMLINES AND OTHER FUSION REACTOR COMPONENTS  

E-Print Network (OSTI)

the Tokamak Fusion Test Reactor Test Cell", Nucl. Technol.BEAMLINES AND OTHER FUSION--REACTOR COMPONENTS Gregory S.Beamlines and Other Fusion-Reactor Compon­ ents By Gregory

Keney, G.S.

2010-01-01T23:59:59.000Z

174

Thermochemical hydrogen production based on magnetic fusion  

DOE Green Energy (OSTI)

Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO/sub 3/ decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars.

Krikorian, O.H.; Brown, L.C.

1982-06-10T23:59:59.000Z

175

Fusion materials irradiations at MaRIE's fission fusion facility  

SciTech Connect

Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

Pitcher, Eric J [Los Alamos National Laboratory

2010-10-06T23:59:59.000Z

176

Tokamak Fusion Test Reactor experiment  

SciTech Connect

A brief review of the TFTR is given in terms of the physical size of the experiment in relation to existing and future tokamaks. Some break-even criteria are mentioned. (MOW)

Furth, H.P.

1976-01-01T23:59:59.000Z

177

Evaluation of the impact of a committed site on fusion reactor development  

SciTech Connect

The technical and economic merits of a committed fusion site for development of tokamak, mirror, and EBT reactor from ignition through demo phases were evaluated. Schedule compression resulting from evolving several reactor concepts and/or phases on a committed site as opposed to sequential use of independent sites was estimated. Land, water, and electrical power requirements for a committed fusion site were determined. A conceptual plot plan for siting three fusion reactors on a committed site was configured. Reactor support equipment common to the various concepts was identified as candidates for sharing. Licensing issues for fusion plants were briefly addressed.

Reid, R.L.; Nagy, A.

1979-01-01T23:59:59.000Z

178

Program for alloy development for irradiation performance in fusion reactors  

SciTech Connect

The use of fission reactors as irradiation test facilities for structural materials for a fusion environment is discussed. A comparison is made of displacement damage and helium production in fast fission and fusion reactors for stainless steel. (MOW)

Stiegler, J.O.; Reuther, T.C.

1977-01-01T23:59:59.000Z

179

HEAVY ION INERTIAL FUSION  

E-Print Network (OSTI)

Accelerators as Drivers for Inertially Confined Fusion, W.B.LBL-9332/SLAC-22l (1979) Fusion Driven by Heavy Ion Beams,OF CALIFORNIA f Accelerator & Fusion Research Division

Keefe, D.

2008-01-01T23:59:59.000Z

180

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network (OSTI)

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

X. H. Zhong; L. Li; P. Z. Ning

2004-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Present status of mirror stability theory  

SciTech Connect

A status report of microinstability as it applies to 2XIIB and MX theory for mirror machines is presented. It is shown that quasilinear computations reproduce many of the parameters observed in the 2XIIB experiment. In regard to large mirror machines, there are presented detailed calculations of the linear theory of the drift cyclotron loss-cone mode, with inhomogeneous geometry and nonlinear diffusive effects. Further, the stability of a mirror machine to the Alfven ion-cyclotron instability is assessed, and the Baldwin- Callen diffusion is estimated for a spatially varying plasma. (auth)

Baldwin, D. E.; Berk, H. L.; Byers, J. A.

1976-02-11T23:59:59.000Z

182

Latent Matcher Fusion  

Science Conference Proceedings (OSTI)

Page 1. Latent Matcher Fusion -- Lessons Learned IAI ... 14 Page 15. The Fusion was in Two Steps • Step 1 – a reduced working candidate list was ...

2012-08-07T23:59:59.000Z

183

The hybrid reactor project based on the straight field line mirror concept  

SciTech Connect

The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with 'semi-poor' plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Q{sub r} = P{sub fis}/P{sub fus}>>1. The upper bound on Q{sub r} is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Q{sub r} Almost-Equal-To 150, corresponding to a neutron multiplicity of k{sub eff}=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement T{sub e} Almost-Equal-To 10 keV for a fusion reactor. Power production in the SFLM seems possible with Q Almost-Equal-To 0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on the implications of the geometry for possible diagnostics. Reactor safety issues are addressed and a vertical orientation of the device could assist passive coolant circulation. Specific attention is put to a device with a 25 m long confinement region and 40 cm plasma radius in the mid-plane. In an optimal case (k{sub eff}= 0.97) with a fusion power of only 10 MW, such a device may be capable of producing a power of 1.5 GW{sub th}.

Agren, O.; Noack, K.; Moiseenko, V. E.; Hagnestal, A.; Kaellne, J.; Anglart, H. [Uppsala University, Angstroem Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology', 61108 Kharkiv (Ukraine); Uppsala University, Angstroem Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Royal Institute of Technology, Nuclear Reactor Technology, SE 100 44 Stockholm (Sweden)

2012-06-19T23:59:59.000Z

184

LLNL-TR-408176 The Axisymmetric Tandem Mirror: A  

E-Print Network (OSTI)

LLNL-TR-408176 The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror of Magnetic Mirror Status #12;Berkeley Workshop Participants Others Interested David Baldwin, LLNL/GA Rick, LLNL George Miley, U. Illinois Ron Cohen, LLNL Gary Porter, LLNL Don Correll, LLNL John Santarius, U

185

Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions  

Science Conference Proceedings (OSTI)

A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

Donovan, D. C. [Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550 (United States); Boris, D. R. [Naval Research Laboratory, 4555 Overlook Avenue, South West, Washington, DC 20375 (United States); Kulcinski, G. L.; Santarius, J. F. [Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Piefer, G. R. [Phoenix Nuclear Labs, 2555 Industrial Drive, Madison, Wisconsin 53713 (United States)

2013-03-15T23:59:59.000Z

186

Conformance and mirroring for timed asychronous circuits  

Science Conference Proceedings (OSTI)

Conformance has been used as a correctness criterion for asynchronous circuits. In the case of untimed systems, conformance of an implementation to a specification is equivalent to the failure-freeness between the implementation and the mirror of the ...

Bin Zhou; Tomohiro Yoneda; Bernd-Holger Schlingloff

2001-01-01T23:59:59.000Z

187

Motorized control for mirror mount apparatus  

DOE Patents (OSTI)

A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

Cutburth, Ronald W. (Tracy, CA)

1989-01-01T23:59:59.000Z

188

Recent results from the carbon fusion project at Notre Dame  

Science Conference Proceedings (OSTI)

The carbon fusion project at Notre Dame is aimed towards measuring the {sup 12}C+{sup 12}C fusion cross section and its decay branches relevant to astrophysics down to the lowest possible energies. To complement this approach, we are also exploring new techniques for providing more reliable extrapolations of the cross sections in the energy ranges where experimental data are unavailable. In this paper, we report two recent results: 1) an upper limit for the {sup 12}C+{sup 12}C fusion cross section, and 2) a new measurement of {sup 12}C({sup 12}C,n) along with an improved extrapolation technique based on the mirror reaction channel, {sup 12}C({sup 12}C,p). The outlook for astrophysical heavy-ion fusion studies at Notre Dame is also discussed.

Bucher, Brian; Notani, Masahiro; Alongi, Adam; Browne, Justin; Cahillane, Craig; Dahlstrom, Erin; Davies, Paul; Fang Xiao; Lamm, Larry; Ma Chi; Moncion, Alexander; Tan Wanpeng; Tang Xiaodong; Thomas, Spencer [Institute for Structure and Nuclear Astrophysics, Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556-5670 (United States)

2012-11-12T23:59:59.000Z

189

Rigid laser mirror mount and protection assembly  

SciTech Connect

A mounting assembly for supporting a Brewster window and mirror to intercept a laser beam at the end of a gas laser envelope includes an elongated tubular member having one end opening into the gas laser envelope and an opposite end closed by the Brewster window. A rigid housing supporting the mirror is joined to the tubular member close to the end having the Brewster window by a flexible sealed joint that permits limited movement of the housing relative to the tubular member generally along the length of the tubular member while inhibiting flow of contaminants from the exterior into the passage formed by the rigid housing between the Brewster window and mirror. A seal is placed between the rigid housing and mirror to inhibit flow of such contaminants into the passage from the mirror location. A mounting structure joins the rigid housing to the gas laser envelope to secure them together and includes an adjustment mechanism that permits the housing to be moved relative to the envelope for adjusting the angular orientation of the supported mirror relative to the intercepted laser beam.

Mohler, G.E.

1984-03-27T23:59:59.000Z

190

Geometry and heterogeneous effects on the neutronic performance of a Yin Yang mirror-reactor blanket  

SciTech Connect

From 5th symposium on engineering problems of fusion research; Princeton, New Jersey, USA (6 Nov 1973). Two-dimensional models and Monte Carlo neutron transport techniques were used to calculate the tritium breeding and energy generation in a mirror-reactor blanket. Results indicate that blanket performance should be quite insensitive to variations in overall geometry as long as there are no large neutron-leakage paths. Injection and leakage penetration can be accommodated as long as the first-wall peneiration area subtends less than 25% of the first wall's spherical area. Heterogeneous and streaming effects in a tubular blanket can be important, but are negligible for closely packed arrays of tubes. The one-dimensional homogeneous spherical-shell model appears to be a useful tool for predicting performance of a tubular blanket conforming to the YinYang mirror geometry. (auth)

Lee, J.D.

1973-10-17T23:59:59.000Z

191

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY  

E-Print Network (OSTI)

MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY Mission Gerald Navratil Need Mohamed Abdou and Symposium 1-2 December 2010 #12;FUSION NUCLEAR SCIENCE FACILITY: COMMENTS ON MISSION Gerald A. Navratil Component Test Facility Theory & Simulation FESAC/Snowmass Report: ITER-Based Development Path #12;FUSION

192

Fusion energy  

Science Conference Proceedings (OSTI)

The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

Not Available

1990-09-01T23:59:59.000Z

193

Principles of passive and active cooling of mirror-based hybrid systems employing liquid metals  

SciTech Connect

This paper presents principles of passive and active cooling that are suitable to mirrorbased hybrid, nuclear fission/fusion systems. It is shown that liquid metal lead-bismuth cooling of the mirror machine with 25 m height and 1.5 GW thermal power is feasible both in the active mode during the normal operation and in the passive mode after the reactor shutdown. In the active mode the achievable required pumping power can well be below 50 MW, whereas the passive mode provides enough coolant flow to keep the clad temperature below the damage limits.

Anglart, Henryk [Div. of Nuclear Technology, School of Engineering Sciences, Royal Institute of Technology Roslagstullsbacken 21, 106-91 Stockholm (Sweden)

2012-06-19T23:59:59.000Z

194

Bemerkungen zur "kalten Fusion"  

E-Print Network (OSTI)

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Rainer W. Kuehne

2006-04-14T23:59:59.000Z

195

Bemerkungen zur "kalten Fusion"  

E-Print Network (OSTI)

Steven Jones et al. reported to have observed nuclear fusion at room temperature. They observed this "cold fusion" by electrolyzing heavy water. Later experiments confirmed these observations. These experiments confirmed the generation of strong electric fields within the deuterided metals. These electric fields accelerate the deuterons to keV energies and allow the observed nuclear fusion. Roman Sioda and I suggested a theoretical description of this nuclear fusion. Our "extended micro hot fusion" scenario explains how nuclear fusion can be generated over a long time within deuterided metals. Moreover we predicted the explosion of large pieces of deuterided metals. This article reviews the "cold fusion" work of Steven Jones et al. and discusses the fracto-fusion scenario. I show that the extended micro hot fusion scenario can explain the observed neutron emissions, neutron bursts, and heat bursts.

Kuehne, R W

2006-01-01T23:59:59.000Z

196

Fusion of visual and thermal signatures with eyeglass removal for robust face recognition  

E-Print Network (OSTI)

Abstract – This paper describes a fusion of visual and thermal infrared (IR) images for robust face recognition. Two types of fusion methods are discussed: data fusion and decision fusion. Data fusion produces an illumination-invariant face image by adaptively integrating registered visual and thermal face images. Decision fusion combines matching scores of individual face recognition modules. In the data fusion process, eyeglasses, which block thermal energy, are detected from thermal images and replaced with an eye template. Three fusion-based face recognition techniques are implemented and tested: Data fusion of visual and thermal images (Df), Decision fusion with highest matching score (Fh), and Decision fusion with average matching score (Fa). A commercial face recognition software FaceIt ® is used as an individual recognition module. Comparison results show that fusion-based face recognition techniques outperformed individual visual and thermal face recognizers under illumination variations and facial expressions. I.

Jingu Heo; Seong G. Kong; Besma R. Abidi; Mongi A. Abidi

2004-01-01T23:59:59.000Z

197

Technology of direct conversion for mirror reactor end-loss plasma  

DOE Green Energy (OSTI)

Design concepts are presented for plasma direct convertors (PDC) intended primarily for use on the end-loss plasma from tandem-mirror reactors. Recent experimental results confirm most of these design concepts. Both a one-stage and a two-stage PDC were tested in reactor-like conditions using a 100-kV, 6-kW ion beam. In a separate test on the end of the TMX machine, a single stage PDC recovered 79 W for a net efficiency of 50%. Tandem mirror devices are well suited to PDC. The high minimum energy of the end-loss ions, the magnetic expansion outside the mirrors, and the vacuum conditions in the end tanks required by the confined plasma, all preexist. The inclusion of a PDC is therefore a rather small addition. These facts and the scale parameters for a PDC are discussed.

Barr, W.L.; Moir, R.W.

1980-10-07T23:59:59.000Z

198

Metrology for x-ray telescope mirrors in a vertical configuration  

Science Conference Proceedings (OSTI)

Mirrors used in x-ray telescope systems for observations outside of the earth`s atmosphere are usually made of several thin nested shells, each formed by a pair of paraboloidal and hyperboloidal surfaces. The thin shells are very susceptible to self-weight deflection caused by gravity and are nearly impossible to test by conventional interferometric techniques. The metrology requirements for these mirrors are extremely challenging. This paper presents a prototype of a Vertical Scanning Long Trace Profiler (VSLTP) which is optimized to measure the surface figure of x-ray telescope mirrors in a vertical orientation. The optical system of the VSLTP is described. Experimental results from measurements on an x-ray telescope mandrel and tests of the accuracy and repeatability of the prototype VSLTP are presented. The prototype instrument has achieved a height measurement accuracy of about 50 nanometers with a repeatability of better than 20 nanometers, and a slope measurement accuracy of about 1 microradian.

Li, Haizhang; Li, Xiaodan; Grindel, M.W.

1995-09-01T23:59:59.000Z

199

Analysis of the requirements for economic magnetic fusion  

SciTech Connect

A generic reactor model is used to examine the economic viability of electricity generation by magnetic fusion. The simple model uses components which are representative of those used in previous reactor studies of deuterium-tritium burning tokamaks, stellarators, bumpy tori, reverse field pinches and tandem mirrors. Conservative costing assumptions are made. The generic reactor is not a tokamak but rather it is intended to emphasize what is common to all magnetic fusion reactors. The reactor uses a superconducting toroidal coil set to produce the dominant magnetic field. To this extent it is a less good approximation to systems, such as the reversed field pinch in which the main field is produced by a plasma current. The main output of the study is the cost of electricity as a function of the weight and size of the fusion core - blanket, shield, structure and coils. The model shows that a 1200 MW/sub e/ power plant with a fusion core weight of about 10,000 tonnes should be competitive in the future with fission and fossil plants. Sensitivity studies of varying the assumptions show that this result is not sensitively dependent on any given assumption. Of particular importance is the result that this scale of fusion reactor may be realized with only moderate advances in physics and technology capabilities. For a fusion-fission hybrid with a high support ratio for fission reactors, the fusion island is not such a critical driver as for electricity production. 19 refs., 5 figs., 3 tabs.

Sheffield, J.

1986-01-01T23:59:59.000Z

200

359-06/RDS/rs A Fusion Nuclear Science Facility, ITER, Superconducting Tokamaks, and a Materials Test Facility Enable Demo 359-06/RDS/rs FDF is Viewed as a Direct Follow-on of DIII-D (50 % larger)  

E-Print Network (OSTI)

By using conservative Advanced Tokamak physics to run steady-state and produce 100-250 MW fusion power – Modest energy gain (Q<5) – Continuous operation for 30 % of a year in 2 weeks periods – Test materials with high neutron fluence (3-8 MW-yr/m 2) – Further develop all elements of Advanced Tokamak physics, qualifying them for an advanced performance DEMO With ITER and IFMIF, provide the basis for a fusion DEMO Power Plant

R. D. Stambaugh

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Review of fusion synfuels  

DOE Green Energy (OSTI)

Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high-temperature electrolysis of approx. 50 to 65% are projected for fusion reactors using high-temperatures blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

Fillo, J.A.

1980-01-01T23:59:59.000Z

202

Scientists discuss progress toward magnetic fusion energy at...  

NLE Websites -- All DOE Office Websites (Extended Search)

world's most populous nation is pushing ahead with plans for a device called China's Fusion Engineering Test Reactor (CFETR) that would develop the technology for a...

203

Office of Inertial Confinement Fusion | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > Office of Inertial Confinement Fusion Office of Inertial...

204

Ultra-Thin Highly Deformable Composite Mirrors John Steeves  

E-Print Network (OSTI)

primary mirrors consisting of a silicon carbide structure supporting a precision optical face-sheet, whose-thin carbon-fiber shell bonded to a piezo-ceramic active layer coated with patterned electrodes. Mirrors based

Pellegrino, Sergio

205

Nuclear fusion advances  

Science Conference Proceedings (OSTI)

The last decade has seen advances in the shaping and confinement of plasmas, and in approaches to noninductive current drive. Here, the author presents an overview of nuclear fusion advances between 1983-93 examining: fusion milestones; plasma shaping; ...

W. Sweet

1994-02-01T23:59:59.000Z

206

Blackbody radiation drag on a relativistically moving mirror  

E-Print Network (OSTI)

We compute the drag force on a mirror moving at relativistic velocity relative to blackbody radiation background.

N. R. Balasanyan; V. E. Mkrtchian

2009-07-14T23:59:59.000Z

207

Edge diagnostics for tandem mirror machines  

SciTech Connect

The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed.

Allen, S.L.

1984-09-14T23:59:59.000Z

208

An Intelligent Chilled Mirror Humidity Instrument  

Science Conference Proceedings (OSTI)

An intelligent, chilled mirror humidity instrument has been designed for use on buoys and ships. Our design goal is for the instrument to make high-quality dewpoint temperature measurements for a period of up to one year from an unattended ...

David S. Hosom; Gennaro H. Crescenti; Clifford L. Winget; Sumner Weisman; Donald P. Doucet; James F. Price

1991-08-01T23:59:59.000Z

209

LLNL-PRES-407935 Mirror Status Workshop  

E-Print Network (OSTI)

LLNL-PRES-407935 Mirror Status Workshop September 8-9, 2008 Lawrence Berkeley National Laboratory; #12; #12; #12;LLNL-PRES-406923 Comments-9 September 2008 R. F. Post, LLNL MW08-01 #12;The Kinetic Stabilizer concept allows the use of axisymmetric

210

Fusion Forum 1981  

SciTech Connect

This review covers the basics of the fusion process. Some research programs and their present status are mentioned. (MOW)

Fowler, T.K.

1981-07-28T23:59:59.000Z

211

Atomic hydrogen density measurements in the Tara tandem mirror experiment  

DOE Green Energy (OSTI)

Neutral and plasma density have been measured in the north well of the central cell of the Tara tandem mirror (Nucl. Fusion {bold 22}, 549 (1982)). The electron plasma density and temperature on the magnetic axis were measured by Thomson scattering to be about 3{times}10{sup 12} cm{sup {minus}3} and 70 eV, respectively. The corresponding axial neutral hydrogen density was found to be 1 {times}10{sup 9} cm{sup {minus}3}, while near the plasma edge at {ital r}=15 cm it reached 1{times}10{sup 10} cm{sup {minus}3}. The fill gas density at {ital r}{ge}22.5 cm was {approx}10{sup 11} cm{sup {minus}3}. Additional information from secondary electron detectors was used to estimate the radial ion temperature distribution, which was found to have about the same width, 12 cm, as the plasma density. The resulting ion pressure profile is peaked compared to the electron pressure profile. Charge exchange losses in the well are found to have a maximum at a radius equal to half the {ital e}-folding distance of the plasma density and ion temperature distributions.

Guss, W.C.; Yao, X.Z.; Pocs, L.; Mahon, R.; Casey, J.; Horne, S.; Lane, B.; Post, R.S.; Torti, R.P. (Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (USA))

1990-09-01T23:59:59.000Z

212

Method for making mirrored surfaces comprising superconducting material  

DOE Patents (OSTI)

Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

Early, J.T.; Hargrove, R.S.

1989-12-12T23:59:59.000Z

213

Fusion Plasmas Martin Greenwald  

E-Print Network (OSTI)

. Despite the cold war, which raged for another 30 years, controlled fusion research became a modelFusion Plasmas Martin Greenwald Encyclopedia of Electrical and Electronic Engineering, John Webster - editor, published by John Wiley & Sons, New York (1999) #12;Controlled Fusion For half a century

Greenwald, Martin

214

Slow liner fusion  

SciTech Connect

{open_quotes}Slow{close_quotes} liner fusion ({approximately}10 ms compression time) implosions are nondestructive and make repetitive ({approximately} 1 Hz) pulsed liner fusion reactors possible. This paper summarizes a General Atomics physics-based fusion reactor study that showed slow liner feasibility, even with conservative open-line axial magnetic field confinement and Bohm radial transport.

Shaffer, M.J.

1997-08-01T23:59:59.000Z

215

Technological implications of fusion power: requirements and status  

SciTech Connect

The major technological requirements for fusion power, as implied by current conceptual designs of fusion power plants, are identified and assessed relative to the goals of existing technology programs. The focus of the discussion is on the tokamak magnetic confinement concept; however, key technological requirements of mirror magnetic confinement systems and of inertial confinement concepts will also be addressed. The required technology is examined on the basis of three general areas of concern: (a) the power balance, that is, the unique power handling requirements associated with the production of electrical power by fusion; (b) reactor design, focusing primarily on the requirements imposed by a tritium-based fuel cycle, thermal hydraulic considerations, and magnet systems; and (c) materials considerations, including radiation damage effects, neutron-induced activation, and resource limitations.

Steiner, D.

1978-01-01T23:59:59.000Z

216

Neutronic analysis of a fusion hybrid reactor  

SciTech Connect

In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

Kammash, T. [Univ. of Michigan, NERS, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

2012-07-01T23:59:59.000Z

217

Optical performance of the TBC-2 solar collector before and after the 1993 mirror lustering  

DOE Green Energy (OSTI)

In 1993, the mirror facets of one of Sandia`s point-focusing solar collectors, the Test Bed Concentrator {number_sign}2 (TBC-2), were reconditioned. The concentrator`s optical performance was evaluated before and after this operation. This report summarizes and compares the results of these tests. The tests demonstrated that the concentrator`s total power and peak flux were increased while the overall flux distribution in the focal plane remained qualitatively the same.

Houser, R.; Strachan, J. [Sandia National Labs., Albuquerque, NM (United States). Solar Thermal Test Dept.

1995-02-01T23:59:59.000Z

218

Office of Inertial Confinement Fusion | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Inertial Confinement Fusion | National Nuclear Security Inertial Confinement Fusion | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Inertial Confinement Fusion Office of Inertial Confinement Fusion Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement Fusion

219

Laser Inertial Fusion Energy Control Systems  

Science Conference Proceedings (OSTI)

A Laser Inertial Fusion Energy (LIFE) facility point design is being developed at LLNL to support an Inertial Confinement Fusion (ICF) based energy concept. This will build upon the technical foundation of the National Ignition Facility (NIF), the world's largest and most energetic laser system. NIF is designed to compress fusion targets to conditions required for thermonuclear burn. The LIFE control systems will have an architecture partitioned by sub-systems and distributed among over 1000's of front-end processors, embedded controllers and supervisory servers. LIFE's automated control subsystems will require interoperation between different languages and target architectures. Much of the control system will be embedded into the subsystem with well defined interface and performance requirements to the supervisory control layer. An automation framework will be used to orchestrate and automate start-up and shut-down as well as steady state operation. The LIFE control system will be a high parallel segmented architecture. For example, the laser system consists of 384 identical laser beamlines in a 'box'. The control system will mirror this architectural replication for each beamline with straightforward high-level interface for control and status monitoring. Key technical challenges will be discussed such as the injected target tracking and laser pointing feedback. This talk discusses the the plan for controls and information systems to support LIFE.

Marshall, C; Carey, R; Demaret, R; Edwards, O; Lagin, L; Van Arsdall, P

2011-03-18T23:59:59.000Z

220

Magnetized target fusion and fusion propulsion.  

DOE Green Energy (OSTI)

Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion conditions is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion.

Kirkpatrick, R. C. (Ronald C.)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

AFRD - Fusion Energy Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Fusion Virtual National Laboratory Heavy Ion Fusion Virtual National Laboratory AFRD - Fusion Energy Sciences AFRD - Home Fusion - Home HIF-VNL Website Ion Beam Technology Group website Artist's conception of a heavy ion fusion power plant Artist's conception of an IFE powerplant We further inertial fusion energy as a future power source, primarily through R&D on heavy-ion induction accelerators. Our program is part of a "Virtual National Laboratory," headquartered in AFRD, that joins us with Lawrence Livermore National Laboratory and the Princeton Plasma Physics Laboratory in close collaboration on inertial fusion driven by beams of heavy ions. The related emergent science of high-energy-density physics (HEDP) has become a major focus. For further synergy, we have combined forces with the former Ion Beam

222

Information fusion in multimedia information retrieval  

E-Print Network (OSTI)

In retrieval, indexing and classification of multimedia data an efficient information fusion of the different modalities is essential for the system’s overall performance. Since information fusion, its influence factors and performance improvement boundaries have been lively discussed in the last years in different research communities, we will review their latest findings. They most importantly point out that exploiting the feature’s and modality’s dependencies will yield to maximal performance. In data analysis and fusion tests with annotated image collections this is undermined.

Jana Kludas; Eric Bruno; Stephane Marchand-Maillet

2007-01-01T23:59:59.000Z

223

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

224

Evaluation of cellular glasses for solar mirror panel applications  

DOE Green Energy (OSTI)

An analytic technique is developed to compare the structural and environmental performance of various materials considered for backing of second surface glass solar mirrors. Metals, ceramics, dense molded plastics, foamed plastics, forest products and plastic laminates are surveyed. Cellular glass is determined to be a prime candidate due to its low cost, high stiffness-to-weight ratio, thermal expansion match to mirror glass, evident minimal environmental impact and chemical and dimensional stability under conditions of use. While applications could employ this material as a foam core or compressive member of a composite material system, the present analysis addresses the bulk material only, allowing a basis for simple extrapolations. The current state of the art and anticipated developments in cellular glass technology are discussed. Material properties are correlated to design requirements using a Weibull weakest link statistical method appropriate for describing the behavior of such brittle materials. A mathematical model is presented which suggests a design approach which allows minimization of life cycle cost; given adequate information for a specific aplication, this would permit high confidence estimates of the cost/performance factor. A mechanical and environmental testing program is outlined, designed to providea material property basis for development of cellular glass hardware, together with methodology for collecting lifetime predictive data required by the mathematical treatment provided herein. Preliminary material property data from measurements is given.

Giovan, M.; Adams, M.

1979-06-15T23:59:59.000Z

225

Implications of Theoretical Ideas Regarding Cold Fusion  

E-Print Network (OSTI)

A lot of theoretical ideas have been floated to explain the so called cold fusion phenomenon. I look at a large subset of these and study further physical implications of the concepts involved. I suggest that these can be tested by other independent physical means. Because of the significance of these the experimentalists are urged to look for these signatures. The results in turn will be important for a better understanding and hence control of the cold fusion phenomenon.

Afsar Abbas

1995-03-29T23:59:59.000Z

226

Mirrors for synchrotron-radiation beamlines  

Science Conference Proceedings (OSTI)

The authors consider the role of mirrors in synchrotron-radiation beamlines and discuss the optical considerations involved in their design. They discuss toroidal, spherical, elliptical, and paraboloidal mirrors in detail with particular attention to their aberration properties. They give a treatment of the sine condition and describe its role in correcting the coma of axisymmetric systems. They show in detail how coma is inevitable in single-reflection, grazing-incidence systems but correctable in two-reflection systems such as those of the Wolter type. In an appendix, they give the theory of point aberrations of reflectors of a general shape and discuss the question of correct naming of aberrations. In particular, a strict definition of coma is required if attempts at correction are to be based on the sine condition.

Howells, M.R.

1993-09-01T23:59:59.000Z

227

Fiber optics welder having movable aligning mirror  

SciTech Connect

A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

Higgins, Robert W. (Los Alamos, NM); Robichaud, Roger E. (Jemez Springs, NM)

1981-01-01T23:59:59.000Z

228

Security on the US Fusion Grid  

E-Print Network (OSTI)

TEMPLATE for Submission in Fusion Engineering and Design)et al. , “Building the US National Fusion Grid: Resultsfrom the National Fusion Collaboratory Project,” Fusion Eng.

Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

2005-01-01T23:59:59.000Z

229

Data security on the national fusion grid  

E-Print Network (OSTI)

TEMPLATE for Submission in Fusion Engineering and Design)et al. , “Building the US National Fusion Grid: Resultsfrom the National Fusion Collaboratory Project,” Fusion Eng.

Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

2005-01-01T23:59:59.000Z

230

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Creating the Conditions for Fusion PLASMA CONFINEMENT AND HEATING Fusion requires high...

231

Modulating the Neutron Flux from a Mirror Neutron Source  

Science Conference Proceedings (OSTI)

A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

Ryutov, D D

2011-09-01T23:59:59.000Z

232

RESEARCH HIGHLIGHTS State of fusion  

E-Print Network (OSTI)

RESEARCH HIGHLIGHTS State of fusion In the 1950s,the promise of controlled nuclear fusion, although there is still some way to go to realize the dream,the latest status report on fusion research compiled by the International Fusion Research Council (Nucl. Fusion 45,A1­A28; 2005) provides good reason

Loss, Daniel

233

Status of fusion maintenance  

SciTech Connect

Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission.

Fuller, G.M.

1984-01-01T23:59:59.000Z

234

Fusion Science at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Rotating Plasma Finding is Key for ITER Heavy-Ion Fusion Science (HIFS) Math & Computer Science Nuclear Science Science Highlights HPC Requirements Reviews NERSC HPC Achievement...

235

Fusion Communication Summit cover  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMUNICATIONS SUMMIT for U.S. Magnetic Fusion September 12-13, 2012 Princeton University - Frist Campus Center Princeton, New Jersey, USA Mission Statement Announcements...

236

Fusion Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017 The NERSC Program Requirements Review "Large Scale Production Computing and...

237

Fusion Energy Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Energy Division http:www.ornl.govscinseddivisionfed.shtml Please click link above if you were not already redirected to the page....

238

Nuclear Fusion Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Nuclear fusion reactors, if they can be made to work, promise virtually unlimited power for the indefinite future. This is because the fuel, isotopes of hydrogen, are...

239

Magnetic fusion reactor economics  

SciTech Connect

An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

Krakowski, R.A.

1995-12-01T23:59:59.000Z

240

Path toward fusion energy  

SciTech Connect

A brief history of the fusion research program is given. Some of the problems that plagued the developmental progress are described. (MOW)

Furth, H.P.

1985-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fusion Energy Division  

NLE Websites -- All DOE Office Websites (Extended Search)

and engineering activities. Our plasma theorists develop the fundamental plasma theory and computational base needed to understand plasma behavior in fusion devices, to...

242

Mirror Film Company Has 'Concentrated' Plans for Expansion | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mirror Film Company Has 'Concentrated' Plans for Expansion Mirror Film Company Has 'Concentrated' Plans for Expansion Mirror Film Company Has 'Concentrated' Plans for Expansion September 10, 2010 - 1:19pm Addthis Lorelei Laird Writer, Energy Empowers In concentrating solar power, glass is king-but it's fighting to hold on to its crown. The reflectivity of glass mirrors makes them a great choice for focusing sunlight onto a heat generator. However, the glass mirrors can be expensive and heavy -- reducing their ability to compete with conventional energy sources. ReflecTech Inc. has an option: a silvered polymer-based film that does the same job, but with half the weight and cost. Using that film, the company can make 100,000 square feet of mirror panels per year at its factory in Arvada, Colo. Through an Advanced Manufacturing 48C tax credit through the Recovery Act,

243

Intelligent mirror monitor and controller for synchrotron radiation beam lines  

SciTech Connect

A microprocessor-based, stand-alone mirror monitor and control system has been developed for synchrotron radiation beam lines. The operational requirements for mirror position and tilt angle, including the parameters for controlling the number of steps, direction, speed and acceleration of the driving motors, may be programmed into EPROMS. The instruction sequence to carry out critical motions will be stored in a program buffer. A manual control knob is also provided to fine tune the mirror position if desired. A synchronization scheme for the height and tilt motions maintains a fixed mirror angle during insertion. Absolute height and tilt angle are displayed. Electronic (or programmable) tilt angle limits are provided to protect against damage from misalignment of high power beams such as focussed wiggler beams. A description of mirror drives with a schematic diagram is presented. Although the controller is made for mirror movers, it can be used in other applications where multiple stepping motors perform complex synchronized motions.

Xu, X.L.; Yang, J.

1983-01-01T23:59:59.000Z

244

Using MCNP for fusion neutronics.  

E-Print Network (OSTI)

??Any fusion reactor using tritium-deuterium fusion will be a prolific source of 14 MeV neutrons. In fact, 80% of the fusion energy will be carried… (more)

Wasastjerna, Frej

2008-01-01T23:59:59.000Z

245

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001 (13pp) doi:10.1088/0029-5515/48/8/084001  

E-Print Network (OSTI)

IOP PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION Nucl. Fusion 48 (2008) 084001] and created a vacuum leak in the tokamak fusion test reactor (TFTR) [4]. The damage was explained comparisons between theory and experiment [5­7], wave amplitudes an order of magnitude larger than

Heidbrink, William W.

246

Electrons Confined with an Axially Symmetric Magnetic Mirror Field  

Science Conference Proceedings (OSTI)

Low energy non-neutral electron plasmas were confined with an axially symmetric magnetic mirror field and an electrostatic potential to investigate the basic confinement properties of a simple magnetic mirror trap. As expected the confinement time became longer as a function of the mirror ratio. The axial electrostatic oscillations of a confined electron plasma were also observed. Obtained results suggested an improved scheme to accumulate low energy charged particles with the use of a magnetic mirror field, which would enable the investigation of electron-positron plasmas.

Higaki, H.; Ito, K.; Kira, K.; Okamoto, H. [Graduate School of Advanced Sciences of Matter, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530 (Japan)

2008-08-08T23:59:59.000Z

247

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network (OSTI)

deposition rates and production costs were reviewed todiscussion of heat mirror production cost Most of our effortcoating plastic film. Production costs for coating glass

Selkowitz, S.

2011-01-01T23:59:59.000Z

248

Nondispersive neutron focusing method beyond the critical angle of mirrors  

DOE Patents (OSTI)

This invention extends the Kirkpatrick-Baez (KB) mirror focusing geometry to allow nondispersive focusing of neutrons with a convergence on a sample much larger than is possible with existing KB optical schemes by establishing an array of at least three mirrors and focusing neutrons by appropriate multiple deflections via the array. The method may be utilized with supermirrors, multilayer mirrors, or total external reflection mirrors. Because high-energy x-rays behave like neutrons in their absorption and reflectivity rates, this method may be used with x-rays as well as neutrons.

Ice, Gene E. (Oak Ridge, TN)

2008-10-21T23:59:59.000Z

249

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Data Tools & Models ... Oil production growth in the Bakken shale play mirrors somewhat the growth in natural gas production ... U.S. Department of Energy USA.gov

250

FUSION ENERGY Position Statement  

E-Print Network (OSTI)

The American Nuclear Society (ANS) supports a vigorous research and development program for fusion energy. Fusion represents a potential energy source that is sustainable and has favorable safety and environmental features. Like fission, fusion offers the opportunity to generate substantial quantities of energy while producing no CO2 or other “greenhouse gases” that may contribute to global warming. Even with substantial conservation efforts and improvements in end-use efficiency, the future world demand for energy is expected to increase as a result of population growth and economic development. The timely advent of fusion as a practical energy source may be crucial. In particular, the ANS believes the following: 1. The long-term benefits of fusion energy warrant a sustained effort aimed at advancing fusion science and technology. International cooperation is a cost-effective complement to strong national programs. 2. Recent scientific progress in fusion research has been encouraging and warrants an enhanced and expanded fusion engineering and technology development program. 3. Based on the continuing success of physics and technology development programs, it appears

unknown authors

2008-01-01T23:59:59.000Z

251

About sponsorship Fusion power  

E-Print Network (OSTI)

project to build a nuclear-fusion reactor came a step closer to reality when politicians agreed it should are needed. Unlike existing nuclear reactors, which produce nasty long-lived radioactive wasteAbout sponsorship Fusion power Nuclear ambitions Jun 30th 2005 From The Economist print edition

252

Fusion Power Deployment  

DOE Green Energy (OSTI)

Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

J.A. Schmidt; J.M. Ogden

2002-02-06T23:59:59.000Z

253

Antiproton catalyzed fusion  

SciTech Connect

Because of the potential application to power production, it is important to investigate a wide range of possible means to achieve nuclear fusion, even those that may appear initially to be infeasible. In antiproton catalyzed fusion, the negative antiproton shields the repulsion between the positively charged nuclei of hydrogen isotopes, thus allowing a much higher level of penetration through the repulsive Coulomb barrier, and thereby greatly enhancing the fusion cross section. Because of their more compact wave function, the more massive antiprotons offer considerably more shielding than do negative muons. The effects of the shielding on fusion cross sections are most predominate, at low energies. If the antiproton could exist in the ground state with a nucleus for a sufficient time without annihilating, the fusion cross sections are so enhanced that at room temperature energies, values up to about 1,000 barns (that for d+t) would be possible. Unfortunately, the cross section for antiproton annihilation with the incoming nucleus is even higher. A model that provides an upper bound for the fusion to annihilation cross section for all relevant energies indicates that each antiproton will catalyze no more than about one fusion. Because the energy required to make one antiproton greatly exceeds the fusion energy that is released, this level of catalysis is far from adequate for power production.

Morgan, D.L. Jr.; Perkins, L.J.; Haney, S.W.

1995-05-15T23:59:59.000Z

254

Characterizing solar mirror materials using portable reflectometers  

DOE Green Energy (OSTI)

Currently available portable instrumentation for hemispherical and specular reflectance measurements of solar mirror materials is discussed. Particular attention is given to the wavelength dependence of the measurement spectrum, which in most cases does not approximate a solar spectral distribution, and to other limitations of each instrument. Because a portable instrument is not available that can determine the solar averaged specular reflectance from a single measurement, two procedures are recommended for obtaining a reasonable estimate for this quantity using the existing portable equipment. Finally, future developments in this area are briefly discussed.

Pettit, R.B.

1982-09-01T23:59:59.000Z

255

Fusion of Giant Unilamellar Liposomes  

Science Conference Proceedings (OSTI)

Fusion of Giant Unilamellar Liposomes. ... Our main aim is to demonstrate whether a stalk forms during the fusion process or not. ...

256

Heavy Ion Fusion development plan  

SciTech Connect

Some general cnsiderations in the fusion development program are given. The various factors are considered that must be determined before heavy ion fusion can be assessed. (MOW)

Maschke, A.W.

1978-01-01T23:59:59.000Z

257

Open-ended magnetic confinement systems for fusion  

Science Conference Proceedings (OSTI)

Magnetic confinement systems that use externally generated magnetic fields can be divided topologically into two classes: ``closed`` and `open``. The tokamak, the stellarator, and the reversed-field-pinch approaches are representatives of the first category, while mirror-based systems and their variants are of the second category. While the recent thrust of magnetic fusion research, with its emphasis on the tokamak, has been concentrated on closed geometry, there are significant reasons for the continued pursuit of research into open-ended systems. The paper discusses these reasons, reviews the history and the present status of open-ended systems, and suggests some future directions for the research.

Post, R.F.; Ryutov, D.D.

1995-05-01T23:59:59.000Z

258

TEST  

Science Conference Proceedings (OSTI)

This is an abstract. TEST Lorem ipsum dolor sit amet, consectetur adipiscing elit. Cras lacinia dui et est venenatis lacinia. Vestibulum lacus dolor, adipiscing id mattis sit amet, ultricies sed purus. Nulla consectetur aliquet feugiat. Maecenas ips

259

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour How Fusion Reactions Work THE NUCLEAR PHYSICS OF FUSION Fusion of light (low-mass)...

260

Effects of Fusion Mass Density and Fusion Location on the Strength of a Lumbar Interbody Fusion.  

E-Print Network (OSTI)

??The location and elastic modulus of a fusion mass are important factors for clinical assessment of the adequacy of interbody fusion. Various finite element models… (more)

Shelly, Cassi Elizabeth

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Performance testing of the Acurex solar-collector Model 3001-03  

DOE Green Energy (OSTI)

Results are summarized of tests conducted at the Collector Module Test Facility on an Acurex Model 3001-03 Parabolic Trough Concentrating Solar Collector. Test temperaure range was 100/sup 0/C to 300/sup 0/C. Tests were conducted with the collector axis oriented east-west and again with the collector axis oriented north-south. Three collectors were tested: one using polished aluminum mirrors, one using glass mirrors, and another using an aluminized acrylic film mirror.

Dudley, V.E.; Workhoven, R.M.

1982-03-01T23:59:59.000Z

262

Implications of high efficiency power cycles for fusion reactor design  

SciTech Connect

The implications of the High Efficiency Power Cycle for fusion reactors are examined. The proposed cycle converts most all of the high grade CTR heat input to electricity. A low grade thermal input (T approximately 100$sup 0$C) is also required, and this can be supplied at low cost geothermal energy at many locations in the U. S. Approximately 3 KW of low grade heat is required per KW of electrical output. The thermodynamics and process features of the proposed cycle are discussed. Its advantages for CTR's are that low Q machines (e.g. driven Tokamaks, mirrors) can operate with a high (approximately 80 percent) conversion of CTR fusion energy to electricity, where with conventional power cycles no plant output could be achieved with such low Q operation. (auth)

Powell, J.R.; Usher, J.; Salzano, F.J.

1975-01-01T23:59:59.000Z

263

Inertial Fusion Program. Progress report, January-December 1980  

Science Conference Proceedings (OSTI)

This report summarizes research and development effort in support of the Inertial Confinement Fusion program, including absorption measurements with an integrating sphere, generation of high CO/sub 2/-laser harmonics in the backscattered light from laser plasmas, and the effects of hydrogen target contamination on the hot-electron temperature and transport. The development of new diagnostics is outlined and measurements taken with a proximity-focused x-ray streak camera are presented. High gain in phase conjugation using germanium was demonstrated, data were obtained on retropulse isolation by plasmas generated from metal shutters, damage thresholds for copper mirrors at high fluences were characterized, and phase conjugation in the ultraviolet was demonstrated. Significant progress in the characterization of targets, new techniques in target coating, and important advances in the development of low-density, small-cell-size plastic foam that permit highly accurate machining to any desired shape are presented. The results of various fusion reactor system studies are summarized.

Not Available

1982-05-01T23:59:59.000Z

264

Lab Breakthrough: Neutron Science for the Fusion Mission | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Science for the Fusion Mission Neutron Science for the Fusion Mission Lab Breakthrough: Neutron Science for the Fusion Mission May 16, 2012 - 9:52am Addthis An accelerator team lead by Robert McGreevy at Oak Ridge National Laboratory is testing material - a critical role in building an experimental fusion reactor for commercial use. As part of the international coalition, they expect to have an operational reactor by 2050. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is the difference between fusion and fission? Fission pulls molecules apart. This type of reactor runs nuclear power plants. Fusion puts molecules together. This type of reaction powers the Sun. Oak Ridge National Laboratory scientist Robert McGreevy explains the

265

Chemical engineering challenges in driving thermochemical hydrogen processes with the tandem mirror reactor  

DOE Green Energy (OSTI)

The Tandem Mirror Reactor is described and compared with Tokamaks, both from a basic physics viewpoint and from the suitability of the respective reactor for synfuel production. Differences and similarities between the TMR as an electricity producer or a synfuel producer are also cited. The Thermochemical cycle chosen to link with the fusion energy source is the General Atomic Sulfur-Iodine Cycle, which is a purely thermal-driven process with no electrochemical steps. There are real chemical engineering challenges of getting this high quality heat into the large thermochemical plant in an efficient manner. We illustrate with some of our approaches to providing process heat via liquid sodium to drive a 1050 K, highly-endothermic, catalytic and fluidized-bed SO/sub 3/ Decomposition Reactor. The technical, economic, and safety tradeoffs that arise are discussed.

Galloway, T.R.; Werner, R.W.

1980-01-01T23:59:59.000Z

266

Shima-uta : of windows, mirrors, and the adventures of a traveling song  

E-Print Network (OSTI)

5. “Shima-Uta” as Window, “Shima-Uta” as Mirror . . . 5.1.THESIS “SHIMA-UTA:” OF WINDOWS, MIRRORS, AND THE ADVENTURESDIEGO “SHIMA-UTA:” OF WINDOWS, MIRRORS, AND THE ADVENTURES

Alarcón-Jiménez, Ana-María

2009-01-01T23:59:59.000Z

267

Ground State Magnetic Moments of Mirror Nuclei Studied at NSCL  

E-Print Network (OSTI)

Progress in the measurement of the ground state magnetic moments of mirror nuclei at NSCL is presented. The systematic trend of the spin expectation value $$ and the linear behavior of $\\gamma_p$ versus $\\gamma_n$, both extracted from the magnetic moments of mirror partners, are updated to include all available data.

P. F. Mantica; K. Minamisono

2009-01-22T23:59:59.000Z

268

Magic mirror: a new VR platform design and its applications  

Science Conference Proceedings (OSTI)

This paper describes a case study of VR platform Magic Mirror and its applications that are economic in development process and cost, flexible by contents and installation conditions, and that has business potential for consumer market. Magic Mirror ... Keywords: IR, VR, composition, distant learning, interaction, tangible interface, vision tracking

Ig-Jae Kim; Hyun Jin Lee; Hyoung-Gon Kim

2004-09-01T23:59:59.000Z

269

Metaphor or diagram?: comparing different representations for group mirrors  

Science Conference Proceedings (OSTI)

This paper aims at answering the question how ambient displays can be used as group mirrors to support collaborative (learning) activities. Our research question is to what extent the type of feedback representation affects collaborative processes. Two ... Keywords: ambient display, collaborative learning, group mirror, metaphor

Sara Streng; Karsten Stegmann; Heinrich Hußmann; Frank Fischer

2009-11-01T23:59:59.000Z

270

Minimum-mirror-area single-stage solar concentrators  

SciTech Connect

A means of generating a comcentrating mirror of minimum size for a given average flux-concentration output is outlined. The method is useful for acceptance angles typical of those required for tilting and tracking solar concentrators and can result in substantial cost savings when expensive mirrors (i.e.,glass) are used. Comparisons are made with compound parabolic concentrators.

Mills, D.; Harting, E.; Giutronich, J.E.; Cellich, W.; Morton, A.; Walker, I.

1980-12-01T23:59:59.000Z

271

Fusion Nuclear Science Pathways Assessment  

Science Conference Proceedings (OSTI)

With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

C.E. Kessel, et. al.

2012-02-23T23:59:59.000Z

272

Spherical torus fusion reactor  

DOE Patents (OSTI)

The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

Martin Peng, Y.K.M.

1985-10-03T23:59:59.000Z

273

Hot-electron plasma formation and confinement in the tandem mirror experiment-upgrade  

Science Conference Proceedings (OSTI)

The tandem mirror experiment-upgrade (TMX-U) at the Lawrence Livermore National Laboratory (LLNL) is the first experiment to investigate the thermal-barrier tandem-mirror concept. One attractive feature of the tandem magnetic mirror as a commercial power reactor is that the fusion reactions occur in an easily accessible center-cell. On the other hand, complicated end-cells are necessary to provide magnetohydrodynamic (MHD) stability and improved particle confinement of the center-cell plasma. In these end-cells, enhanced confinement is achieved with a particular axial potential profile that is formed with electron-cyclotron range-of-frequency heating (ECRF heating, ECRH). By modifying the loss rates of electrons at spatially distinct locations within the end-cells, the ECRH can tailor the plasma potential profile in the desired fashion. Specifically, the thermal-barrier concept requires generation of a population of energetic electrons near the midplane of each end-cell. To be effective, the transverse (to the magnetic field) spatial structure of the hot-electron plasma must be fairly uniform. In this dissertation we characterize the spatial structure of the ECRH-generated plasma, and determine how the structure builds up in time. Furthermore, the plasma should efficiently absorb the ECRF power, and a large fraction of the electrons must be well confined near the end-cell midplane. Therefore, we also examine in detail the ECRH power balance, determining how the ECRF power is absorbed by the plasma, and the processes through which that power is confined and lost. 43 refs., 69 figs., 6 tabs.

Ress, D.B.

1988-06-01T23:59:59.000Z

274

Fusion-reactor blanket and coolant material compatibility  

Science Conference Proceedings (OSTI)

Fusion reactor blanket and coolant compatibility tests are being conducted to aid in the selection and design of safe blanket and coolant systems for future fusion reactors. Results of scoping compatibility tests to date are reported for blanket material and water interactions at near operating temperatures. These tests indicate the quantitative hydrogen release, the maximum temperature and pressures produced and the rates of interactions for selected blanket materials.

Jeppson, D.W.; Keough, R.F.

1981-01-01T23:59:59.000Z

275

Use of data fusion to optimize contaminant transport predictions  

SciTech Connect

The original data fusion workstation, as envisioned by Coleman Research Corp., was constructed under funding from DOE (EM-50) in the early 1990s. The intent was to demonstrate the viability of fusion and analysis of data from various types of sensors for waste site characterization, but primarily geophysical. This overall concept changed over time and evolved more towards hydrogeological (groundwater) data fusion after some initial geophysical fusion work focused at Coleman. This initial geophysical fusion platform was tested at Hanford and Fernald, and the later hydrogeological fusion work has been demonstrated at Pantex, Savannah River, the US Army Letterkenny Depot, a DoD Massachusetts site and a DoD California site. The hydrogeologic data fusion package has been spun off to a company named Fusion and Control Technology, Inc. This package is called the Hydrological Fusion And Control Tool (Hydro-FACT) and is being sold as a product that links with the software package, MS-VMS (MODFLOW-SURFACT Visual Modeling System), sold by HydroGeoLogic, Inc. MODFLOW is a USGS development, and is in the public domain. Since the government paid for the data fusion development at Coleman, the government and their contractors have access to the data fusion technology in this hydrogeologic package for certain computer platforms, but would probably have to hire FACT (Fusion and Control Technology, Inc.,) and/or HydroGeoLogic for some level of software and services. Further discussion in this report will concentrate on the hydrogeologic fusion module that is being sold as Hydro-FACT, which can be linked with MS-VMS.

Eeckhout, E. van

1997-10-01T23:59:59.000Z

276

Why and how of fusion  

SciTech Connect

The potential advantages of fusion power are listed. The approaches to plasma containment are mentioned and the status of the fusion program is described. The ERDA and EPRI programs are discussed. The Fusion Energy Foundation's activities are mentioned. Fusion research at the U. of Ill. is described briefly. (MHR)

Miley, G.H.

1977-01-01T23:59:59.000Z

277

Comparison of the effect of outdoor exposure on the optical properties of solar mirrors and transparent encapsulant materials  

DOE Green Energy (OSTI)

The effects of outdoor exposure on solar mirrors and transparent encapsulant materials are assessed and compared. The encapsulant materials tested included glasses, polymers and silicones. Samples of the materials were placed on stationary exposure racks in six locations that represented urban, desert, oceanside and high altitude mountain areas. Samples were removed periodically for optical characterizations. The spectral hemispherical and diffuse reflectance of the mirror samples and the spectral hemispherical transmittance and diffuse reflectance of the encapsulant materials was measured. The relative normal hemispherical transmittance of the encapsulant materials was measured. Correlations between the glass and mirror data showed that the average diffuse reflectance losses were six times larger for the mirrors than for the glass samples. The average specular reflectance losses for the mirror samples were seven times as large as the average hemispherical transmittance losses for the glass samples. These correlations may enable one to predict the performance of mirrors made using the other encapsulant materials for superstrates. It was found that the urban and oceanside sites were the dirtiest, while the desert and mountain sites were the cleanest. Average specular reflectance losses varied from 4% at the cleanest site to 50% at the dirtiest site. The range in hemispherical transmittance losses for the encapsulant materials varied between 0% and 6%. At one site, the average daily specular reflectance losses were .04% for the mirror samples and average daily hemispherical transmittance losses were about .01% for the glass samples. The polymer materials degraded somewhat more rapidly than the glasses, and the silicones irreversible degraded too rapidly and severely to be useful for either photovoltaic or solar thermal applications.

Dake, L.S.; Lind, M.A.; Maag, C.R.

1981-09-01T23:59:59.000Z

278

Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror  

DOE Patents (OSTI)

A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

Lerner, Scott A. (Corvalis, OR)

2006-01-10T23:59:59.000Z

279

Coating thermal noise of a finite-size cylindrical mirror  

E-Print Network (OSTI)

Thermal noise of a mirror is one of the limiting noise sources in the high precision measurement such as gravitational-wave detection, and the modeling of thermal noise has been developed and refined over a decade. In this paper, we present a derivation of coating thermal noise of a finite-size cylindrical mirror based on the fluctuation-dissipation theorem. The result agrees to a previous result with an infinite-size mirror in the limit of large thickness, and also agrees to an independent result based on the mode expansion with a thin-mirror approximation. Our study will play an important role not only to accurately estimate the thermal-noise level of gravitational-wave detectors but also to help analyzing thermal noise in quantum-measurement experiments with lighter mirrors.

Kentaro Somiya; Kazuhiro Yamamoto

2009-03-17T23:59:59.000Z

280

Silicon nitride protective coatings for silvered glass mirrors  

DOE Patents (OSTI)

A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

Tracy, C.E.; Benson, D.K.

1984-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Background-reducing X-ray multilayer mirror  

DOE Patents (OSTI)

Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

Bloch, Jeffrey J. (Los Alamos, NM); Roussel-Dupre' , Diane (Los Alamos, NM); Smith, Barham W. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

282

Background-reducing x-ray multilayer mirror  

DOE Patents (OSTI)

This invention is comprised of a background-reducing x-ray multilayer mirror. A multiple-layer ``wavetrap`` deposited over the surface of a layered synthetic microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 {Angstrom} wavelengths have been optimized, while that at 304 {Angstrom} has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, their number and distance for the ``wavetrap.``

Bloch, J.J.; Roussel-Dupre, D.; Smith, B.W.

1990-08-03T23:59:59.000Z

283

Engineering and manufacturing of ITER first mirror mock-ups  

SciTech Connect

Most of the ITER optical diagnostics aiming at viewing and monitoring plasma facing components will use in-vessel metallic mirrors. These mirrors will be exposed to a severe plasma environment and lead to an important tradeoff on their design and manufacturing. As a consequence, investigations are carried out on diagnostic mirrors toward the development of optimal and reliable solutions. The goals are to assess the manufacturing feasibility of the mirror coatings, evaluate the manufacturing capability and associated performances for the mirrors cooling and polishing, and finally determine the costs and delivery time of the first prototypes with a diameter of 200 and 500 mm. Three kinds of ITER candidate mock-ups are being designed and manufactured: rhodium films on stainless steel substrate, molybdenum on TZM substrate, and silver films on stainless steel substrate. The status of the project is presented in this paper.

Joanny, M.; Travere, J. M.; Salasca, S.; Corre, Y. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Marot, L. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Thellier, C.; Gallay, G.; Cammarata, C.; Passier, B.; Ferme, J. J. [SESO, 305 Rue Louis Armand CS 30504, 13593 Aix-en-Provence Cedex 3 (France)

2010-10-15T23:59:59.000Z

284

Lower Cost CPV 3-Sun Mirror Modules  

SciTech Connect

In a series of patent applications filed between 2002 and 2005, JX Crystals Inc described a evolutionary lower-cost low-concentration planar solar photovoltaic module that uses multiple linear rows of silicon cells and standard one-sun circuit laminations incorporating glass and EVA weather proofing encapsulations. The three novel features that we described are interdependent and integrated together to yield lower cost PV modules. These 3 novel features are: (1) The use of rows of linear mirrors or linear Fresnel lenses aligned with the cell rows and concentrating the sunlight onto the cell rows. (2) The addition of a thin aluminum sheet heat spreader on the back of the circuit lamination to spread the heat away from the cell rows so that the cell operating temperature remains acceptably low. (3) The incorporation of slots in the back of the aluminum sheet heat spreader to accommodate the differences in thermal expansion between the silicon cells, the glass, and the aluminum so that the circuit interconnectivity is maintained over time. Various embodiments of this planar linear concentrator panel are shown in figures 1 to 5. Figures 1 and 2 show the original planar linear concentrator module concept from July of 2002 with either mirrors (figure 1) or linear Fresnel lenses (figure 2). The idea was expanded in 2003 with the idea of an aluminum sheet heat spreader added to the back of a standard PV circuit lamination as shown in figure 3. In 2003, we also transitioned from half cells to third cells using SunPower cells as shown in figure 4. JX Crystals Inc then received funding for the 3-sun PV mirror module concept from the Shanghai Science and Technology Commission in 2003 and from the Shanghai Flower Port and the Shanghai Import and Export Trading Company in 2005. This funding led to a 800 panel pilot production run of our JX Crystals designed 3-sun module in 2006. 672 of these panels were installed in a 100 kW demonstration and an additional 24 panels were installed in a second 4 kW demonstration both at the Flower Port in Shanghai. Both of these systems were completed in 2006. Our 3-sun PV Panel concept has been described previously (see references 1, 2, & 3 available at www.jxcrystals.com under publication tab). We are now interested in bringing this potentially lower cost 3-sun technology back to the US. For any new technology, three issues need to be addressed. They are performance, durability, and cost. These topics are addressed in the next 3 sections.

Fraas, Dr. Lewis [JX Crystals, Inc.; Avery, James E. [JX Crystals, Inc.; Minkin, Leonid M [ORNL; Huang, H, [JX Crystals, Inc.; Gehl, Anthony C [ORNL; Maxey, L Curt [ORNL

2007-01-01T23:59:59.000Z

285

Fusion Science to Prepare  

NLE Websites -- All DOE Office Websites (Extended Search)

DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The...

286

Fusion-breeder program  

SciTech Connect

The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

Moir, R.W.

1982-11-19T23:59:59.000Z

287

Fusion Energy Division: Annual progress report, period ending December 31, 1987  

Science Conference Proceedings (OSTI)

The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

1988-11-01T23:59:59.000Z

288

Fusion Energy Division progress report, 1 January 1990--31 December 1991  

Science Conference Proceedings (OSTI)

The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1994-03-01T23:59:59.000Z

289

France, Japan vie for fusion site From AFP 21feb04  

E-Print Network (OSTI)

, it said. ITER aims to test technology for nuclear fusion, billed as the clean, safe, inexhaustible energy-billion dollar nuclear fusion reactor, officials said. But no final decision was expected on breaking. Earlier Friday, the Japanese Nihon Keizai Shimbun said that Japan might start a new nuclear fusion plan

290

Fusion Energy Division annual progress report, period ending December 31, 1989  

SciTech Connect

The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

1991-07-01T23:59:59.000Z

291

Spin Chains as Perfect Quantum State Mirrors  

E-Print Network (OSTI)

Quantum information transfer is an important part of quantum information processing. Several proposals for quantum information transfer along linear arrays of nearest-neighbor coupled qubits or spins were made recently. Perfect transfer was shown to exist in two models with specifically designed strongly inhomogeneous couplings. We show that perfect transfer occurs in an entire class of chains, including systems whose nearest-neighbor couplings vary only weakly along the chain. The key to these observations is the Jordan-Wigner mapping of spins to noninteracting lattice fermions which display perfectly periodic dynamics if the single-particle energy spectrum is appropriate. After a half-period of that dynamics any state is transformed into its mirror image with respect to the center of the chain. The absence of fermion interactions preserves these features at arbitrary temperature and allows for the transfer of nontrivially entangled states of several spins or qubits.

Peter Karbach; Joachim Stolze

2005-01-03T23:59:59.000Z

292

Contained Modes In Mirrors With Sheared Rotation  

SciTech Connect

In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

Abraham J. Fetterman and Nathaniel J. Fisch

2010-10-08T23:59:59.000Z

293

Cold nuclear fusion  

SciTech Connect

Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

Tsyganov, E. N., E-mail: edward.tsyganov@utsouthwestern.edu [University of Texas Southwestern Medical Center at Dallas (United States)

2012-02-15T23:59:59.000Z

294

Cluster-Impact Fusion  

Science Conference Proceedings (OSTI)

This report considers the theoretical interpretation of cluster-impact fusion (CIF). The proton energy spectrum of CIF shows it to be hot fusion on a microscopic atomic scale. The temperature of the reaction can be determined by the Doppler-like broadening of the 3.025 MeV proton line. The spectrum also indicates that the high temperature results from a one-dimensional rather than a three-dimensional velocity distribution.

1992-05-01T23:59:59.000Z

295

Inertial fusion program. Progress report, July 1-December 31, 1978  

DOE Green Energy (OSTI)

Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO/sub 2/ lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization.

Perkins, R.B.

1980-11-01T23:59:59.000Z

296

Fusion component design for the moving-ring field-reversed mirror reactor  

DOE Green Energy (OSTI)

This partial report on the reactor design contains sections on the following: (1) burner section magnet system design, (2) plasma ring energy recovery, (3) vacuum system, (4) cryogenic system, (5) tritium flows and inventories, and (6) reactor design and layout. (MOW)

Carlson, G.A.

1981-01-28T23:59:59.000Z

297

Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant  

DOE Green Energy (OSTI)

Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen. (MOW)

Donohue, M.L.; Price, M.E. (eds.)

1984-07-01T23:59:59.000Z

298

Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant  

SciTech Connect

Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis.

Donohue, M.L.; Price, M.E. (eds.)

1984-07-01T23:59:59.000Z

299

Mirror Advanced Reactor Study (MARS). Final report. Volume 1-A. Commercial fusion electric plant  

SciTech Connect

Volume 1-A contains the following chapters: (1) plasma engineering, (2) magnets, (3) ecr heating systems, (4) anchor ion-cyclotron resonance heating system, (5) sloshing ion neutral beam, (6) end cell structure, (7) end plasma technology, (8) fueling, (9) startup ion cyclotron resonant heating systems, and (10) end cell radiation analysis. (MOW)

Donohue, M.L.; Price, M.E. (eds.)

1984-07-01T23:59:59.000Z

300

Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90 deg. off-axis parabolic mirrors  

Science Conference Proceedings (OSTI)

Gas Cherenkov detectors (GCDs) have been used to convert fusion gamma into photons to achieve gamma bang time and reaction history measurements. The GCDs designed for OMEGA used Cassegrain reflector optics in order to fit inside a 10 in. manipulator. A novel design for the National Ignition Facility using 90 deg. off-axis parabolic mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO{sub 2} gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100 mm diameter by 500 mm long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO{sub 2} gas volume. A cluster of four channels will allow for increased dynamic range as well as for different gamma energy threshold sensitivities.

Malone, R. M. [National Security Technologies, P.O. Box 809, Los Alamos, New Mexico 87544 (United States); Herrmann, H. W.; Mack, J. M.; Young, C. S. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2008-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Impact of Thermo-Oxidative Wall Conditioning on the Performance of Diagnostic Mirrors for ITER  

Science Conference Proceedings (OSTI)

Diagnostics / Proceedings of the Fifteenth International Conference on Fusion Reactor Materials, Part A: Fusion Technology

A. Litnovsky; M. Matveeva; D. L. Rudakov; C. P. Chrobak; S. L. Allen; A. W. Leonard; P. L. Taylor; C. P. C. Wong; B. W. N. Fitzpatrick; J. W. Davis; A. A. Haasz; P. C. Stangeby; U. Breuer; V. Philipps; S. Möller

302

Quantum dissipative effects in graphene-like mirrors  

E-Print Network (OSTI)

We study quantum dissipative effects due to the accelerated motion of a single, imperfect, zero-width mirror. It is assumed that the microscopic degrees of freedom on the mirror are confined to it, like in plasma or graphene sheets. Therefore, the mirror is described by a vacuum polarization tensor $\\Pi_{\\alpha\\beta}$ concentrated on a time-dependent surface. Under certain assumptions about the microscopic model for the mirror, we obtain a rather general expression for the Euclidean effective action, a functional of the time-dependent mirror's position, in terms of two invariants that characterize the tensor $\\Pi_{\\alpha\\beta}$. The final result can be written in terms of the TE and TM reflection coefficients of the mirror, with qualitatively different contributions coming from them. We apply that general expression to derive the imaginary part of the `in-out' effective action, which measures dissipative effects induced by the mirror's motion, in different models, in particular for an accelerated graphene sheet.

C. D. Fosco; F. C. Lombardo; F. D. Mazzitelli; M. L. Remaggi

2013-07-02T23:59:59.000Z

303

On the Structure of the Fusion Ideal  

E-Print Network (OSTI)

On the Structure of the Fusion Ideal 4. Bouwknegt, P. ,of Wess-Zumino-Witten fusion rings. Rev. Math. Phys.A conjectural presentation of fusion algebras. Preprint,

Douglas, Christopher L.

2009-01-01T23:59:59.000Z

304

Solenoid transport for heavy ion fusion  

E-Print Network (OSTI)

Transport for Heavy Ion Fusion* Edward Lee** LawrenceHm Heavy Ion Inertial Fusion Abstract Solenoid transport ofseveral stages of a heavy ion fusion driver. In general this

Lee, Edward

2004-01-01T23:59:59.000Z

305

Performance of 3-Sun Mirror Modules on Sun Tracking Carousels on Flat Roof Buildings  

Science Conference Proceedings (OSTI)

Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

Fraas, Dr. Lewis [JX Crystals, Inc.; Avery, James E. [JX Crystals, Inc.; Minkin, Leonid M [ORNL; Maxey, L Curt [ORNL; Gehl, Anthony C [ORNL; Hurt, Rick A [ORNL; Boehm, Robert F [ORNL

2008-01-01T23:59:59.000Z

306

Study And Comparison Of Silver Mirrors Deposited On Different Substrates By Electron-Beam Gun Method  

SciTech Connect

Choosing the right substrate is one of the important factors for improving quality parameters of thin films such as adhesion between layers and substrates. The selected substrate should have proper physical and chemical compatibility with deposited thin film. In this paper, we have been investigated four different types of high reflective laser mirrors that were produced in similar conditions on four different kinds of substrates including copper, stainless steel, brass, and nickel. We used electron-beam gun method for deposition of silver layers. At the end we compared theoretical results with practical results that were yielded by laser damage threshold test. It was shown that brass is the best choice for silver metal mirrors as a substrate.

Asl, Jahanbakhsh Mashaiekhy; Shafieizadeh, Zahra; Sabbaghzadeh, Jamshid; Anaraki, Mahdi [Iranian National Center for Laser Science and Technology, PO Box 14665-576, Tehran (Iran, Islamic Republic of)

2010-12-23T23:59:59.000Z

307

US-DOE Fusion-Breeder Program: blanket design and system performance  

SciTech Connect

Conceptual design studies are being used to assess the technical and economic feasibility of fusion's potential to produce fissile fuel. A reference design of a fission-suppressed blanket using conventional materials is under development. Theoretically, a fusion breeder that incorporates this fusion-suppressed blanket surrounding a 3000-MW tandem mirror fusion core produces its own tritium plus 5600 kg of /sup 233/U per year. The /sup 233/U could then provide fissile makeup for 21 GWe of light-water reactor (LWR) power using a denatured thorium fuel cycle with full recycle. This is 16 times the net electric power produced by the fusion breeder (1.3 GWe). The cost of electricity from this fusion-fission system is estimated to be only 23% higher than the cost from LWRs that have makeup from U/sub 3/O/sub 8/ at present costs (55 $/kg). Nuclear performance, magnetohydrodynamics (MHD), radiation effects, and other issues concerning the fission-suppressed blanket are summarized, as are some of the present and future objectives of the fusion breeder program.

Lee, J.D.

1983-01-01T23:59:59.000Z

308

Gamma-ray Bursts Produced by Mirror Stars  

E-Print Network (OSTI)

I argue that cosmic Gamma-ray Bursts (GRB) may be produced by collapses or mergers of stars made of `mirror' matter. The mirror neutrinos (which are sterile for our matter) produced at these events can oscillate into ordinary neutrinos. The annihilations or decays of the latter create an electron-positron plasma and subsequent relativistic fireball with a very low baryon load needed for GRBs. The concept of mirror matter is able to explain several key problems of modern astrophysics: neutrino anomalies, the missing mass, MACHO microlensing events and GRBs. Thus this concept becomes very appealing and should be considered quite seriously and attentively.

S. Blinnikov

1999-02-21T23:59:59.000Z

309

Summary of the MARS tandem-mirror reactor design  

SciTech Connect

A recently completed two-year study of a commercial tandem-mirror reactor design (Mirror Advanced Reactor Study (MARS)) is briefly reviewed. The end plugs are designed for trapped-particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24 T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted. General characteristics of the MARS tandem mirror and STARFIRE tokamak reactor design are compared. A design of an upgrade of MFTF-B incorporating many of the MARS features is discussed.

Logan, B.G.

1983-09-01T23:59:59.000Z

310

Magnetic moments of T=3/2 mirror pairs  

Science Conference Proceedings (OSTI)

We predict values of the magnetic moments of T=3/2 proton-rich fp-shell nuclei in the mass range A=43-53, by using known values for their neutron-rich mirrors together with shell-model estimates for small quantities. We extend the analysis to those T=3/2 sd-shell mirror pairs for which both the T{sub z}=-3/2 and T{sub z}=+3/2 magnetic moments have been measured. We find that these obey the same linear relation as previously deduced for T=1/2 mirror pairs.

Perez, S. M. [Department of Physics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa); iThemba LABS, P. O. Box 722, Somerset West 7129 (South Africa); Richter, W. A. [Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa); Brown, B. A. [Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321 (United States); Horoi, M. [Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859 (United States)

2010-12-15T23:59:59.000Z

311

Fusion safety program Annual report, Fiscal year 1995  

Science Conference Proceedings (OSTI)

This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities.

Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J. [and others

1995-12-01T23:59:59.000Z

312

Causality detection and turbulence in fusion plasmas  

E-Print Network (OSTI)

This work explores the potential of an information-theoretical causality detection method for unraveling the relation between fluctuating variables in complex nonlinear systems. The method is tested on some simple though nonlinear models, and guidelines for the choice of analysis parameters are established. Then, measurements from magnetically confined fusion plasmas are analyzed. The selected data bear relevance to the all-important spontaneous confinement transitions often observed in fusion plasmas, fundamental for the design of an economically attractive fusion reactor. It is shown how the present method is capable of clarifying the interaction between fluctuating quantities such as the turbulence amplitude, turbulent flux, and Zonal Flow amplitude, and uncovers several interactions that were missed by traditional methods.

van Milligen, B Ph; Ramisch, M; Estrada, T; Hidalgo, C; Alonso, A

2013-01-01T23:59:59.000Z

313

Spherical torus fusion reactor  

DOE Patents (OSTI)

A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

Peng, Yueng-Kay M. (Oak Ridge, TN)

1989-01-01T23:59:59.000Z

314

Ceramics for fusion applications  

SciTech Connect

Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

Clinard, F.W. Jr.

1986-01-01T23:59:59.000Z

315

Peaceful uses of fusion  

SciTech Connect

Applications a thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and when once brought under control are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low--specific-yield formations are also suggested.

Teller, E.

1958-07-01T23:59:59.000Z

316

Inverse Fusion PCR Cloning  

E-Print Network (OSTI)

Inverse fusion PCR cloning (IFPC) is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 59-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

Markus Spiliotis

2012-01-01T23:59:59.000Z

317

Is There a Switchable Mirror in Your Future?  

NLE Websites -- All DOE Office Websites (Extended Search)

Is There a Switchable Mirror in Your Future? Is There a Switchable Mirror in Your Future? Speaker(s): Thomas Richardson Date: February 10, 2005 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Venkat Srinivasan Electrochromic devices (switchable mirrors) that exhibit large dynamic ranges for reflectance in the visible and infrared regimes can now be made using a variety of materials. Devices incorporating these films can be used to improve energy efficiency in buildings and vehicles by controlling the flow of heat not only through windows and skylights, but also through opaque roof and wall panels. Switchable mirrors based on three completely different chemical reactions have been developed at LBNL. The best known example utilizes conversion of a thin metal film to an insulating and transparent metal hydride by either direct exposure to hydrogen gas

318

SLAC National Accelerator Laboratory - K-B Mirrors Harness X...  

NLE Websites -- All DOE Office Websites (Extended Search)

B Mirrors Harness X-rays for Science By Mike Ross October 11, 2011 Up close, they look simple as can be: a pair of metal bars, each with one side polished to a brilliant shine. One...

319

Windows and mirrors needed for a laser-driven photoneutralizer  

SciTech Connect

Rough estimates of the neutral fraction obtainable from a photoneutralizer and of the power required to operate it are presented as functions of the window and mirror performance. More precise information will become available in the future.

Fink, J.H.

1983-06-22T23:59:59.000Z

320

Lightweight diaphragm mirror module system for solar collectors  

DOE Patents (OSTI)

A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

Butler, B.L.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lightweight diaphragm mirror module system for solar collectors  

DOE Patents (OSTI)

A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

Butler, Barry L. (Golden, CO)

1985-01-01T23:59:59.000Z

322

Wavefront control in space with MEMS deformable mirrors  

E-Print Network (OSTI)

To meet the high contrast requirement of 1 × 10[superscript ?10] to image an Earth-like planet around a Sun-like star, space telescopes equipped with coronagraphs require wavefront control systems. Deformable mirrors (DMs) ...

Cahoy, Kerri L.

323

Aerosols: Smoke and Mirrors of the Climate System  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols: Smoke and Mirrors of the Climate System Speaker(s): Dr. Harshvardhan Date: May 16, 2011 - 3:00pm Location: 90-3075 Seminar HostPoint of Contact: Surabi Menon Solid and...

324

Fusion welding process  

DOE Patents (OSTI)

A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

Thomas, Kenneth C. (Export, PA); Jones, Eric D. (Salem, PA); McBride, Marvin A. (Hempfield Township, Westmoreland County, PA)

1983-01-01T23:59:59.000Z

325

Atomic data for fusion  

DOE Green Energy (OSTI)

This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.) [eds.; Barnett, C.F.

1990-07-01T23:59:59.000Z

326

Durable Corrosion and Ultraviolet-Resistant Silver Mirror  

DOE Patents (OSTI)

A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

Jorgensen, G. J.; Gee, R.

2006-01-24T23:59:59.000Z

327

Kinetic effects on ballooning modes in mirror machines  

SciTech Connect

A general procedure for examining the influence of kinetic effects on the stability of magnetohydrodynamic ballooning modes in mirror machines is presented. In particular, the basic kinetic ballooning mode equation for a nonaxisymmetric, arbitrary beta system with anisotropic pressure is derived. Considering a long-thin equilibrium typical of the tandem mirror, it is shown that this governing eigenmode equation reduces to a simple form independent of wave-particle resonant effects.

Tang, W.M.; Catto, P.J.

1981-07-01T23:59:59.000Z

328

Fusion Categories and Homotopy Theory  

E-Print Network (OSTI)

We apply the yoga of classical homotopy theory to classification problems of G-extensions of fusion and braided fusion categories, where G is a finite group. Namely, we reduce such problems to classification (up to homotopy) ...

Etingof, Pavel I.

329

Fusion Development Facility (A26455)  

E-Print Network (OSTI)

Proc. Of 23rd IEEE/NPSS Symposium On Fusion Engineering, San Diego, California; To Be Published In The Proceedings23rd IEEE/NPSS Symposium on Fusion Engineering San Diego California, US, 2009999616325

Smith, J.P.

2009-06-17T23:59:59.000Z

330

Fusion technology status and requirements  

SciTech Connect

This paper summarizes the status of fusion technology and discusses the requirements to be met in order to build a demonstration fusion plant. Strategies and programmatic considerations in pursuing engineering feasibility are also outlined.

Thomassen, K.I.

1982-01-26T23:59:59.000Z

331

Fusion Energy [Corrosion and Mechanics of Materials] - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Energy Fusion Energy Capabilities Materials Testing Environmentally Assisted Cracking (EAC) of Reactor Materials Corrosion Performance/Metal Dusting Overview Light Water Reactors Fossil Energy Fusion Energy Metal Dusting Publications List Irradiated Materials Steam Generator Tube Integrity Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Corrosion and Mechanics of Materials Fusion Energy Bookmark and Share Since 1995, Argonne has had primary responsibility for the development of new design rules regarding various components in a fusion reactor, particularly those subject to irradiation embrittlement. During 1998, Argonne issued the final draft of the structural design criteria for in-vessel components in the International Thermonuclear Reactor (ITER).

332

Switchable Mirrors Based on Nickel-Magnesium Films  

NLE Websites -- All DOE Office Websites (Extended Search)

Switchable Mirrors Based on Nickel-Magnesium Films Switchable Mirrors Based on Nickel-Magnesium Films Title Switchable Mirrors Based on Nickel-Magnesium Films Publication Type Journal Article LBNL Report Number LBNL-47180 Year of Publication 2001 Authors Richardson, Thomas J., Jonathan L. Slack, Robert D. Armitage, Robert Kostecki, Baker Farangis, and Michael D. Rubin Journal Applied Physics Letters Volume 78 Pagination 3047 Call Number LBNL-47180 Abstract An electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin, magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on cathodic polarization in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction, and to protect the metal surface against oxidation.

333

Whisper gallery mirrors reflectivities from 100 [angstrom] to 500 [angstrom  

SciTech Connect

We have examined optical constants and predicted reflectivities of candidate surface coatings for whisper gallery mirrors in the extreme ultraviolet (100 [Angstrom] to 500 [Angstrom]). Previous work of Vinogradov and coworkers have identified the spectral regime near 100-150 [Angstrom] as particularly promising due to the high whisper gallery mirror reflectivities of the noble metals in the vicinity of their Cooper minima in this regime. We confirm this basic result using newer optical data, and we have sought surface materials which would extend the range over which the whisper gallery mirrors may be used: between 100 to 500 [Angstrom]. We find that substantial whisper gallery mirror reflectivities (near or greater than 50%) are predicted for a variety of elements, and that the TE peak reflection is larger than TM peak reflection by on the order of 10%. However, most of the elements which do reflect well have surfaces that are vulnerable to oxygen contamination, which seriously degrades mirror performance. A cryogenic mirror design using a dynamic solid rare gas surface which has the potential to defeat such surface contaminations is described: it has peak reflectivity of more than 50% centered near 280 [Angstrom]. 8 figs, 18 refs.

Hung, Tsen-Yu; Hagelstein, P.L.

1990-01-01T23:59:59.000Z

334

Whisper gallery mirrors reflectivities from 100 {angstrom} to 500 {angstrom}  

Science Conference Proceedings (OSTI)

We have examined optical constants and predicted reflectivities of candidate surface coatings for whisper gallery mirrors in the extreme ultraviolet (100 {Angstrom} to 500 {Angstrom}). Previous work of Vinogradov and coworkers have identified the spectral regime near 100-150 {Angstrom} as particularly promising due to the high whisper gallery mirror reflectivities of the noble metals in the vicinity of their Cooper minima in this regime. We confirm this basic result using newer optical data, and we have sought surface materials which would extend the range over which the whisper gallery mirrors may be used: between 100 to 500 {Angstrom}. We find that substantial whisper gallery mirror reflectivities (near or greater than 50%) are predicted for a variety of elements, and that the TE peak reflection is larger than TM peak reflection by on the order of 10%. However, most of the elements which do reflect well have surfaces that are vulnerable to oxygen contamination, which seriously degrades mirror performance. A cryogenic mirror design using a dynamic solid rare gas surface which has the potential to defeat such surface contaminations is described: it has peak reflectivity of more than 50% centered near 280 {Angstrom}. 8 figs, 18 refs.

Hung, Tsen-Yu; Hagelstein, P.L.

1990-12-31T23:59:59.000Z

335

Optical losses of solar mirrors due to atmospheric contamination at Liberal, Kansas and Oologah, Oklahoma  

DOE Green Energy (OSTI)

An assessment is presented of the effect of outdoor exposure on mirrors located at two sites selected for potential solar cogeneration/repowering facilities: Liberal, Kansas and Oologah, Oklahoma. Mirror coupons were placed on tracking heliostat simulators located in the proposed heliostat fields and were removed periodically. The spectral hemispherical and diffuse reflectances of these coupons were measured. Representative samples were analyzed for the chemical composition of the dust particulates using SEM/EDX. Other samples were washed with a high pressure spray and recharacterized to determine the effects of the residual dust. Average specular reflectance losses over the entire test period (up to 504 days) were 6 to 12%, with a range of 1 to 30%. Specular reflectance losses varied widely from day to day depending on local weather conditions. The losses due to scattering were 2 to 5 times greater than the losses due to absorptance. The average degradation rate over the first thirty days was an order of magnitude larger than the average degradation rate over the entire sampling period. Specular reflectance loss rates averaged 0.5% per day and greater between periods of natural cleaning. The chemical composition of the dust on the mirrors was characteristic of the indigenous soil, with some samples also showing the presence of sulfur and chlorine, possibly from cooling tower drift.

Dake, L.S.; Lind, M.A.

1981-09-01T23:59:59.000Z

336

Fusion Energy Division progress report, January 1, 1992--December 31, 1994  

Science Conference Proceedings (OSTI)

The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

1995-09-01T23:59:59.000Z

337

Flexible data fusion (& fission)  

Science Conference Proceedings (OSTI)

An approach is described for developing methods for "data fusion": given how events A & B occurring by themselves influence some measure, estimate the influence (on that measure) of A and B occurring together. An example is "combine the effects of evidence ...

Alexander Yeh

1985-08-01T23:59:59.000Z

338

Status of inertial fusion  

SciTech Connect

The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs rf linacs, synchrotrons, and storage rings - although the use the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program.

Keefe, D.

1987-04-01T23:59:59.000Z

339

Controlled thermonuclear fusion reactors  

SciTech Connect

Controlled production of energy by fusion of light nuclei has been the goal of a large portion of the physics community since the 1950's. In order for a fusion reaction to take place, the fuel must be heated to a temperature of 100 million degrees Celsius. At this temperature, matter can exist only in the form of an almost fully ionized plasma. In order for the reaction to produce net power, the product of the density and energy confinement time must exceed a minimum value of 10/sup 20/ sec m/sup -3/, the so-called Lawson criterion. Basically, two approaches are being taken to meet this criterion: inertial confinement and magnetic confinement. Inertial confinement is the basis of the laser fusion approach; a fuel pellet is imploded by intense laser beams from all sides and ignites. Magnetic confinement devices, which exist in a variety of geometries, rely upon electromagnetic forces on the charged particles of the plasma to keep the hot plasma from expanding. Of these devices, the most encouraging results have been achieved with a class of devices known as tokamaks. Recent successes with these devices have given plasma physicists confidence that scientific feasibility will be demonstrated in the next generation of tokamaks; however, an even larger effort will be required to make fusion power commercially feasible. As a result, emphasis in the controlled thermonuclear research program is beginning to shift from plasma physics to a new branch of nuclear engineering which can be called fusion engineering, in which instrumentation and control engineers will play a major role. Among the new problem areas they will deal with are plasma diagnostics and superconducting coil instrumentation.

Walstrom, P.L.

1976-01-01T23:59:59.000Z

340

Directions for improved fusion reactors  

SciTech Connect

Conceptual fusion reactor studies over the past 10 to 15 years have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points towards smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. A generic fusion physics/engineering/costing model is used to provide a quantiative basis for these arguments for specific fusion concepts.

Krakowski, R.A.; Miller, R.L.; Delene, J.G.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Commercial application of laser fusion  

SciTech Connect

The fundamentals of laser-induced fusion, some laser-fusion reactor concepts, and attendant means of utilizing the thermonuclear energy for commercial electric power generation are discussed. Theoretical fusion-pellet microexplosion energy release characteristics are described and the effects of pellet design options on pellet-microexplosion characteristics are discussed. The results of analyses to assess the engineering feasibility of reactor cavities for which protection of cavity components is provided either by suitable ablative materials or by diversion of plasmas by magnetic fields are presented. Two conceptual laser-fusion electric generating stations, based on different laser-fusion reactor concepts, are described.

Booth, L.A.

1976-01-01T23:59:59.000Z

342

Accelerators for heavy ion fusion  

SciTech Connect

Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

Bangerter, R.O.

1985-10-01T23:59:59.000Z

343

Research on fusion neutron sources  

SciTech Connect

The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements for economic power generation and uses the already achieved knowledge of Fusion physics and developed Fusion technologies. 'Fusion for Neutrons' (F4N), has now been re-visited, inspired by recent progress achieved on comparably compact fusion devices, based on the Spherical Tokamak (ST) concept. Freed from the requirement to produce much more electricity than used to drive it, a fusion neutron source could be efficiently used for many commercial applications, and also to support the goal of producing energy by nuclear power. The possibility to use a small or medium size ST as a powerful or intense steady-state fusion neutron source (FNS) is discussed in this paper in comparison with the use of traditional high aspect ratio tokamaks. An overview of various conceptual designs of compact fusion neutron sources based on the ST concept is given and they are compared with a recently proposed Super Compact Fusion Neutron Source (SCFNS), with major radius as low as 0.5 metres but still able to produce several MW of neutrons in a steady-state regime.

Gryaznevich, M. P. [Tokamak Solutions UK, Culham Science Centre, Abingdon, OXON, OX133DB (United Kingdom)

2012-06-19T23:59:59.000Z

344

Requirements and Design Envelope for Volumetric Neutron Source Fusion Facilities for Fusion Nuclear Technology Development  

SciTech Connect

The paper shows that timely development of fusion nuclear technology (FNT) components, e.g. blanket, for DEMO requires the construction and operation of a fusion facility parallel to ITER. This facility, called VNS, will be dedicated to testing, developing and qualifying FNT components and material combinations. Without VNS, i.e. with ITER alone, the confidence level in achieving DEMO operating goals has been quantified and is unacceptably low (< 1 %). An attractive design envelope for VNS exists. Tokamak VNS designs with driven plasma (Q ~ 1-3), steady state plasma operation and normal copper toroidal field coils lead to small sized devices with moderate cost.

Abdou, M [University of California, Los Angeles; Peng, Yueng Kay Martin [ORNL

1995-01-01T23:59:59.000Z

345

The kinetic stabilizer: a route to simpler tandem mirror systems  

SciTech Connect

As we enter the new millennium there is a growing urgency to address the issue of finding long-range solutions to the world's energy needs. Fusion offers such a solution, provided economically viable means can be found to extract useful energy from fusion reactions. While the magnetic confinement approach to fusion has a long and productive history, to date the mainline approaches to magnetic confinement, namely closed systems such as the tokamak, appear to many as being too large and complex to be acceptable economically, despite the impressive progress that has made toward the achievement of fusion-relevant confinement parameters. Thus there is a growing feeling that it is imperative to search for new and simpler approaches to magnetic fusion, ones that might lead to smaller and more economically attractive fusion power plants.

Post, R F

2001-02-02T23:59:59.000Z

346

Evaluation of solar mirror figure by moire contouring  

DOE Green Energy (OSTI)

Moire topography is applied to the figure assessment of solar mirrors. The technique is demonstrated on component facets of a six-meter diameter, four-meter focal length, parabolic dish collector. The relative ease of experimental implementation and subsequent data analysis suggests distinct advantages over the more established laser ray trace or BCS/ICS technique for many applications. The theoretical and experimental considerations necessary to fully implement moire topography on mirror surfaces are detailed. A procedure to de-specularize the mirror is demonstrated which conserves the surface morphology without damaging the reflective surface. The moire fringe patterns observed for the actual mirror facets are compared with theoretical contours generated for representative dish facets using a computer simulation algorithm. A method for evaluating the figure error of the real facet is presented in which the error parameter takes the form of an average absolute deviation of the surface slope from theoretical. The experimental measurement system used for this study employs a 200 line/inch Ronchi transmission grating. The mirror surface is illuminated by a collimated beam at 60/sup 0/. The fringe observation is performed normal to the grating. These parameters yield contour intervals for the fringe patterns of 0.073 mm. The practical considerations for extending the techniques to higher resolution are discussed.

Griffin, J.W.; Lind, M.A.

1980-06-01T23:59:59.000Z

347

IMPLICATIONS OF THEORETICAL IDEAS REGARDING COLD FUSION  

E-Print Network (OSTI)

A lot of theoretical ideas have been floated to explain the so called cold fusion phenomenon. I look at a large subset of these and study further physical implications of the concepts involved. I suggest that these can be tested by other independent physical means. Because of the significance of these the experimentalists are urged to look for these signatures. The results in turn will be important for a better understanding and hence control of the cold fusion phenomenon. 1 Since the initial claims, counterclaims and confusion of 1989 the field of ” cold fusion ” has settled down as a reasonably well pursued field all over the world as evidenced by several recent conferences and publications [1-7]. Perhaps not surprisingly it has turned out to be a tough field experimentally as much as the results viewed globally are quite sporadic and the optimum conditions are still unknown. However the bottomline is that whether conventional cold fusion or not excess heat and/or neutron and/or He 4 etc are

unknown authors

1995-01-01T23:59:59.000Z

348

Radiation effects in materials for fusion reactors  

DOE Green Energy (OSTI)

The 14-MeV neutrons produced in a fusion reactor result in different irradiation damage than the equivalent fluence in a fast breeded reactor, not only because of the higher defect generation rate, but because of the production of significant concentrations of helium and hydrogen. Although no fusion test reactor exists, the effects of combined displacement damage plus helium can be studied in mixed-spectrum fission reactors for alloys containing nickel (e.g., austenitic stainless steels). The presence of helium appears to modify vacancy and interstitial recombination such that microstructural development in alloys differs between the fusion and fission reactor environments. Since mechanical properties of alloys are related to the microstructure, the simultaneous production of helium and displacement damage impacts upon key design properties such as tensile, fatigue, creep, an crack growth. Through an understanding of the basic phenomena occurring during irradiation and the relationships between microstructure and properties, alloys can be tailored to minimize radiation-induced swelling and improve mechanical properties in fusion reactor service.

Scott, J.L.; Grossbeck, M.L.; Maziasz, P.J.

1981-01-01T23:59:59.000Z

349

Cooling Fusion in a Flash | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Fusion in a Flash American Fusion News Category: U.S. Universities Link: Cooling Fusion in a Flash...

350

Experiments in cold fusion  

DOE Green Energy (OSTI)

The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

Palmer, E.P.

1986-03-28T23:59:59.000Z

351

Fusion pumped laser  

DOE Patents (OSTI)

The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

Pappas, D.S.

1987-07-31T23:59:59.000Z

352

Cleanable and Hardcoat Coatings for Increased Durability of Silvered Polymeric Mirrors  

SciTech Connect

We have successfully developed coating formulations which significantly increasethe abrasion resistance of mirror films. We have demonstrated manufacturing scale-up of these films to full width andproduction volumes. Implementation of these films in commercial test sites is planned for Q2 2013(Abengoa, Gossamer Space Frames). This slide show outlines the background and objectives of the project, technical approach and results, and key lessons. It also presents the need and opportunity for reduction of costs for CSP and collectors. It also presents an approach for a large aperture parabolic trough collector with reflective film and a high concentration factor, including demonstration and results.

Padiyath, Raghunath

2013-04-01T23:59:59.000Z

353

Modular Aneutronic Fusion Engine  

SciTech Connect

NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

2012-05-11T23:59:59.000Z

354

Laser fusion overview. [Forecasting of laser fusion feasibility  

SciTech Connect

Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages.

Nuckolls, J.

1976-05-17T23:59:59.000Z

355

COLLABORATIVE: FUSION SIMULATION PROGRAM  

SciTech Connect

New York University, Courant Institute of Mathematical Sciences, participated in the ���¢��������Fusion Simulation Program (FSP) Planning Activities���¢������� [http://www.pppl.gov/fsp], with C.S. Chang as the institutional PI. FSP���¢��������s mission was to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. Specific institutional goal of the New York University was to participate in the planning of the edge integrated simulation, with emphasis on the usage of large scale HPCs, in connection with the SciDAC CPES project which the PI was leading. New York University successfully completed its mission by participating in the various planning activities, including the edge physics integration, the edge science drivers, and the mathematical verification. The activity resulted in the combined report that can be found in http://www.pppl.gov/fsp/Overview.html. Participation and presentations as part of this project are listed in a separation file.

Chang, Choong Seock

2012-06-05T23:59:59.000Z

356

Thermal characteristics of a classical solar telescope primary mirror  

E-Print Network (OSTI)

We present a detailed thermal and structural analysis of a 2m class solar telescope mirror which is subjected to a varying heat load at an observatory site. A 3-dimensional heat transfer model of the mirror takes into account the heating caused by a smooth and gradual increase of the solar flux during the day-time observations and cooling resulting from the exponentially decaying ambient temperature at night. The thermal and structural response of two competing materials for optical telescopes, namely Silicon Carbide -best known for excellent heat conductivity and Zerodur -preferred for its extremely low coefficient of thermal expansion, is investigated in detail. The insight gained from these simulations will provide a valuable input for devising an efficient and stable thermal control system for the primary mirror.

Banyal, Ravinder K

2011-01-01T23:59:59.000Z

357

Switchable mirrors based on nickel-magnesium films  

DOE Green Energy (OSTI)

A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

Richardson,Thomas J.; Slack, Jonathan L.; Armitage, Robert D.; Kostecki, Robert; Farangis, Baker; Rubin, Michael D.

2001-01-16T23:59:59.000Z

358

Towards all-optical optomechanics: An optical spring mirror  

E-Print Network (OSTI)

The dominant hurdle to the operation of optomechanical systems in the quantum regime is the coupling of the vibrating element to a thermal reservoir via mechanical supports. Here we propose a scheme that uses an optical spring to replace the mechanical support. We show that the resolved-sideband regime of cooling can be reached in a configuration using a high-reflectivity disk mirror held by an optical tweezer as one of the end-mirrors of a Fabry-Perot cavity. We find a final phonon occupation number of the trapped mirror ${\\bar n}$= 0.14 for reasonable parameters, well within the quantum regime. This demonstrates the promise of dielectric disks attached to optical springs for the observation of quantum effects in macroscopic objects.

S. Singh; G. A. Phelps; D. S. Goldbaum; E. M. Wright; P. Meystre

2010-05-19T23:59:59.000Z

359

Fusion power: the transition from fundamental science to fusion reactor engineering  

SciTech Connect

The historical development of fusion research is outlined. The basics of fusion power along with fuel cost and advantages of fusion are discussed. Some quantitative requirements for fusion power are described. (MOW)

Post, R.F.

1975-07-25T23:59:59.000Z

360

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Achieving Fusion Conditions Achieving Fusion Conditions CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Achieving Fusion Conditions EXPERIMENTAL RESULTS IN FUSION RESEARCH Both inertial and magnetic confinement fusion research have focused on understanding plasma confinement and heating. This research has led to increases in plasma temperature, T, density, n, and energy confinement

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Stainless steel submerged arc weld fusion line toughness  

SciTech Connect

This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations.

Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M. [Battelle, Columbus, OH (United States)

1995-04-01T23:59:59.000Z

362

A Single Atom as a Mirror of an Optical Cavity  

E-Print Network (OSTI)

By tightly focussing a laser field onto a single cold ion trapped in front of a far-distant dielectric mirror, we could observe a quantum electrodynamic effect whereby the ion behaves as the optical mirror of a Fabry-P\\'erot cavity. We show that the amplitude of the laser field is significantly altered due to a modification of the electromagnetic mode structure around the atom in a novel regime in which the laser intensity is already changed by the atom alone. e propose a direct application of this system as a quantum memory for single photons.

G. Hétet; L. Slodi?ka; M. Hennrich; R. Blatt

2011-05-10T23:59:59.000Z

363

ATLAS and CMS hints for a mirror Higgs boson  

Science Conference Proceedings (OSTI)

ATLAS and CMS have provided hints for the existence of a Higgs-like particle with mass of about 144 GeV with production cross section into standard decay channels which is about 50% that of the standard model Higgs boson. We show that this 50% suppression is exactly what the mirror matter model predicts when the two scalar mass eigenstates, each required to be maximal admixtures of a standard and mirror-Higgs boson, are separated in mass by more than their decay widths but less than the experimental resolution. We discuss prospects for the future confirmation of this interesting hint for nonstandard Higgs physics.

Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R. [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, Victoria 3010 (Australia)

2011-11-01T23:59:59.000Z

364

Intitutional constraints to fusion commercialization  

SciTech Connect

The major thrust of this report is that the long time frame associated with the development of commercial fusion systems in the context of the commercialization and institutional history of an allied technology, fission-power, suggests that fusion commercialization will not occur without active and broad-based support on the part of the Nation's political leaders. Its key recommendation is that DOE fusion planners devote considerable resources to analytical efforts aimed at determining the need for fusion and the timing of that need, in order to convince policymakers that they need do more than preserve fusion as an option for application at some indefinite point in the future. It is the thesis of the report that, in fact, an act of political vision on the part of the Nation's leaders will be required to accomplish fusion commercialization.

1979-10-01T23:59:59.000Z

365

Laser fusion experiment yields record energy at Lawrence Livermore's  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 08/26/2013 | NR-13-08-04 High Resolution Image All NIF experiments are controlled and orchestrated by the integrated computer control system in the facility's control room. It consists of 950 front-end processors attached to about 60,000 control points, including mirrors, lenses, motors, sensors, cameras, amplifiers, capacitors and diagnostic instruments. Laser fusion experiment yields record energy at Lawrence Livermore's National Ignition Facility Breanna Bishop, LLNL, (925) 423-9802, bishop33@llnl.gov High Resolution Image The preamplifiers of the National Ignition Facility are the first step in increasing the energy of laser beams as they make their way toward the target chamber. LIVERMORE, Calif. -- In the early morning hours of Aug.13, Lawrence

366

Helium-cooled molten-salt fusion breeder  

Science Conference Proceedings (OSTI)

We present a new conceptual design for a fusion reactor blanket that is intended to produce fissile material for fission power plants. Fast fission is suppressed by using beryllium instead of uranium to multiply neutrons. Thermal fission is suppressed by minimizing the fissile inventory. The molten-salt breeding medium (LiF + BeF/sub 2/ + ThF/sub 4/) is circulated through the blanket and to the on-line processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket and the austenitic steel tubes that contain the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion by molten salt. We estimate that a breeder having 3000 MW of fusion power will produce 6500 kg of /sup 233/U per year. This amount is enough to provide makeup for 20 GWe of light-water reactors per year or twice that many high-temperature gas-cooled reactors or Canadian heavy-water reactors. Safety is enhanced because the afterheat is low and blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times a light-water reactor of the same power. The estimated cost of the /sup 233/U produced is $40/g for fusion plants costing 2.35 times that of a light-water reactor if utility owned or $16/g if government owned.

Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; Devan, J.H.

1984-12-01T23:59:59.000Z

367

Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror  

Science Conference Proceedings (OSTI)

In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TS system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.

Yoshikawa, M.; Morimoto, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Yasuhara, R.; Yamada, I.; Kawahata, K.; Funaba, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

2012-10-15T23:59:59.000Z

368

Fusion reactors for synthetic fuels  

DOE Green Energy (OSTI)

Some of the types of processes now being considered for synthetic fuels production from fusion energy, together with an example of each type are listed. The process efficiency is defined as the chemical energy in the generated hydrogen (at the higher heating value (HHV)) divided by the total fusion energy release, including alpha particles and secondary neutron reactions in the blanket. Except where specifically noted, both high and low temperature blanket heats are counted as part of total fusion energy release.

Powell, J.R.

1979-01-01T23:59:59.000Z

369

Fusion Energy Division Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

of Agreement with UT-Battelle to collaborate with Japan's National Institute for Fusion Science. Division Director Stanley L. Milora Oak Ridge National Laboratory P.O. Box...

370

Fusion rings for quantum groups  

E-Print Network (OSTI)

We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [KS] and give a similar description of the sp(2n)-fusion ring in terms of noncommutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings extending known results in special cases. Finally we also compute the fusion rings for type G2.

Henning Haahr Andersen; Catharina Stroppel

2012-12-22T23:59:59.000Z

371

Economic potential of inertial fusion  

SciTech Connect

Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

Nuckolls, J.H.

1984-04-01T23:59:59.000Z

372

Stockpile tritium production from fusion  

SciTech Connect

A fusion breeder holds the promise of a new capability - ''dialable'' reserve capacity at little additional cost - that offers stockpile planners a new way to deal with today's uncertainties in forecasting long range needs. Though still in the research stage, fusion can be developed in time to meet future military requirements. Much of the necessary technology will be developed by the ongoing magnetic fusion energy program. However, a specific program to develop the nuclear technology required for materials production is needed if fusion is to become a viable option for a new production complex around the turn of the century.

Lokke, W.A.; Fowler, T.K.

1986-03-21T23:59:59.000Z

373

NREL: TroughNet - Parabolic Trough System and Component Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

System and Component Testing System and Component Testing Here you'll find information about parabolic trough system and components testing, as well facilities and laboratories used for testing. Tests include those for: Concentrator thermal efficiency Receiver thermal performance Mirror contour and collector alignment Mirror reflectivity and durability Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Concentrator Thermal Efficiency Testing Researchers and industry use the following facilities for testing parabolic trough collectors. AZTRAK Rotating Platform At Sandia National Laboratories' National Solar Thermal Test Facility (NSTTF), the AZTRAK rotating platform has been used to test several parabolic trough modules and receivers. Initially, researchers tested a

374

Integrated modeling and design of lightweight, active mirrors for launch survival and on-orbit performance  

E-Print Network (OSTI)

Lightweight, active mirrors are an enabling technology for large aperture, space-based optical systems. These mirrors have the potential to improve the optical resolution and sensitivity beyond what is currently possible. ...

Cohan, Lucy Elizabeth

2010-01-01T23:59:59.000Z

375

A color spatial display based on a Raster framebuffer and varifocal mirror  

E-Print Network (OSTI)

A very simple 30 color display has been constructed. It consists of a 20 display viewed in a rapidly vibrating varifocal mirror. The changing focal length of the mirror is responsible for providing the depth; when the ...

Carson, Kenneth M

1985-01-01T23:59:59.000Z

376

Floer cohomology in the mirror of the projective plane and a binodal cubic curve  

E-Print Network (OSTI)

We construct a family of Lagrangian submanifolds in the Landau-Ginzburg mirror to the projective plane equipped with a binodal cubic curve as anticanonical divisor. These objects correspond under mirror symmetry to the ...

Pascaleff, James Thomas

2011-01-01T23:59:59.000Z

377

Processing on Information Fusion of Weak Electrical Signals in Plants  

Science Conference Proceedings (OSTI)

Information transmission of weak electrical signals in Bellis perennis was inosculated by a touching test system of self-made double shields with platinum sensors. Tested data of electrical signals denoised by the wavelet soft threshold and using Gaussian ... Keywords: intelligent control, information fusion, RBF neural networks, wavelet soft threshold denoising, weak electrical signal, Bellis perennis

Lanzhou Wang; Jinli Ding

2010-06-01T23:59:59.000Z

378

Microstructural Characterization of Test Reactor Irradiated RPV ...  

Science Conference Proceedings (OSTI)

Presentation Title, Microstructural Characterization of Test Reactor Irradiated RPV ... Evolution in High Purity Reference V-4Cr-4Ti Alloy for Fusion Reactor.

379

Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature  

E-Print Network (OSTI)

Mirror thermal noise is and will remain one of the main limitations to the sensitivity of gravitational wave detectors based on laser interferometers. We report about projected mirror thermal noise due to losses in the mirror coatings and substrates. The evaluation includes all kind of thermal noises presently known. Several of the envisaged substrate and coating materials are considered. The results for mirrors operated at room temperature and at cryogenic temperature are reported.

Janyce Franc; Nazario Morgado; Raffaele Flaminio; Ronny Nawrodt; Iain Martin; Liam Cunningham; Alan Cumming; Sheila Rowan; James Hough

2009-12-01T23:59:59.000Z

380

Fusion 2.0 the next generation of fusion in California : aligning state and regional fusion centers .  

E-Print Network (OSTI)

??A growing number of states have created multiple fusion centers, including California. In addition to having a state fusion center, California has four regional centers… (more)

MacGregor, David S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A 3 MEGAJOULE HEAVY ION FUSION DRIVER  

E-Print Network (OSTI)

Research, Office of Inertia! Fusion, Research Division ofA 3 MEGAJOULE HEAVY ION FUSION DRIVER* A. Faltens, E. Hoyer,Research, Office of Inertial Fusion, Research Division of

Faltens, A.

2010-01-01T23:59:59.000Z

382

NUCLEAR STRUCTURE AND HEAVY-ION FUSION  

E-Print Network (OSTI)

Nuclear Structure and Heavy-Ton Fusion* A series of lecturesthe cross section for fusion in the experiments consideredEffects g in III. Subharrier Fusion Cross Sections for Light

Stokstad, R.G.

2010-01-01T23:59:59.000Z

383

On the infinity Laplacian and Hrushovski's fusion  

E-Print Network (OSTI)

Definable rank and degree 4.1.2 Fusion . . . . . . . . . .s example . . . . . 4.2 A new fusion construction . . . .4.2.1 Free fusion . . . . . . . . . 4.2.2 Codes . . . . . .

Smart, Charles Krug

2010-01-01T23:59:59.000Z

384

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Confinement Fusion Magnetic Confinement Fusion FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Fusion by Magnetic Confinement The image above is an artistic rendering of a tokamak, a donut-shaped magnetic vacuum chamber in which wispy vapors of fusion fuel are

385

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Two Important Fusion Reactions D + T > He-4 + n D-T reaction graphic For first...

386

RAPPORTEUR TALK FOR IAEA FUSION MEETING, BRUSSELS  

E-Print Network (OSTI)

Ion Fusion Papers: The Argonne Heavy Ion Fusion Program:to the target. 3. The Argonne Heavy Ion Fusion Program:ring system developed at Argonne National Laboratory shows

Watson, J.M.

2010-01-01T23:59:59.000Z

387

Ion Rings for Magnetic Fusion  

Science Conference Proceedings (OSTI)

This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a reactor-scale FRC, and the FIREX program was intended to test the ideas behind this approach. We will describe in this report the technological development path and advances in physics understanding that allowed FIREX to reach a regime in which ion rings were reproducibly created with up to about half the current necessary to produce field reversal. Unfortunately, the experiments were limited to this level by a fundamental, unanticipated aspect of the physics of strong ion rings in plasma. The FIREX ring is a strongly anisotropic, current-carrying population of ions moving faster than the Alfven speed in the background plasma. The rapidly changing ring current excites very large-amplitude Alfven waves in the plasma, and these waves strongly affect the ring, causing rapid energy loss in a way that is not compatible with the success of the ring trapping scenario around which FIREX was designed. The result was that FIREX rings were always very short-lived. We will discuss the implication of these results for possible future use of large-orbit ions in FRCs. In short, it appears that a certain range of the parameters characterizing the ring Alfven mach number and distribution function must be avoided to allow the existence of a long-lived energetic ion component in an FRC. This report will explain why FIREX experimental results cannot be directly scaled to quantitatively predict this range for a particular FRC configuration. This will require accurate, three-dimensional simulations. FIREX results do constitute a very good dataset for validating such a code, and simulations already carried out during this program provide a guide to the important physics involved.

Greenly, John, B.

2005-07-31T23:59:59.000Z

388

Transparent heat mirrors for passive solar heating applications  

DOE Green Energy (OSTI)

Recent progress in the development of transparent heat mirror coatings for energy-efficient windows and passive solar applications is reviewed. It appears that cost-efficient coatings promising savings of 25 to 75%, depending upon application, may be available to window manufacturers and homeowners in the next one to three years. Performance, applications, and limitations are discussed.

Selkowitz, S.

1978-03-01T23:59:59.000Z

389

EFFECT OF TIN BOMBARDMENT AND DEPOSITION ON COLLECTOR MIRROR  

E-Print Network (OSTI)

Ultraviolet (EUV) reflective properties of candidate mirror materials is a critical issue for the commercial regarding optics lifetime during EUV source operation. Two types of Sn exposures were performed in IMPACT due to vapor condensation, while the energetic source simulates bombardment due to energetic ions

Harilal, S. S.

390

Mirror stability of a hot electron ring plasma  

SciTech Connect

The free energy associated with the anisotropy in the velocity space of a microwave-heated hot electron distribution can drive the mirror mode unstable. The real frequency of this instability is of the same order as the diamagnetic drift frequency of the hot electrons.

Tsang, K.T.

1983-01-01T23:59:59.000Z

391

Thermal instability of thermonuclear plasma in a mirror field  

SciTech Connect

In this paper, the thermal stability of a thermonuclear plasma in a mirror reactor is obtained by a simple model. The effect of the loss of thermonuclear alpha particles due to collisional pitch-angel scattering into loss cones is included in this analysis. The effect of the collisional loss is significant, and it has a stabilizing effect on the thermal instability.

Mizuno, N. (Nihon Univ., Tokyo (Japan). Coll. of Science and Engineering)

1990-11-01T23:59:59.000Z

392

Thin?film conducting microgrids as transparent heat mirrors  

Science Conference Proceedings (OSTI)

A new type of transparent heat mirror for solar?energy applications has been fabricated by chemically etching a Sn?doped In2O3 film to form a transparent conducting microgrid. For square openings 2.5 ?m on a side

John C. C. Fan; Frank J. Bachner; R. A. Murphy

1976-01-01T23:59:59.000Z

393

Inertial Confinement Fusion R&D and Nuclear Proliferation  

Science Conference Proceedings (OSTI)

In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

Robert J. Goldston

2011-04-28T23:59:59.000Z

394

Cellulose binding domain fusion proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

1998-01-01T23:59:59.000Z

395

Fusion Policy Advisory Committee (FPAC)  

Science Conference Proceedings (OSTI)

This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

Not Available

1990-09-01T23:59:59.000Z

396

Civilian applications of laser fusion  

SciTech Connect

The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. We have found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser fusion studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

1978-08-14T23:59:59.000Z

397

Cellulose binding domain fusion proteins  

DOE Patents (OSTI)

A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

1998-02-17T23:59:59.000Z

398

Fusion algebra of critical percolation  

E-Print Network (OSTI)

We present an explicit conjecture for the chiral fusion algebra of critical percolation considering Virasoro representations with no enlarged or extended symmetry algebra. The representations we take to generate fusion are countably infinite in number. The ensuing fusion rules are quasi-rational in the sense that the fusion of a finite number of these representations decomposes into a finite direct sum of these representations. The fusion rules are commutative, associative and exhibit an sl(2) structure. They involve representations which we call Kac representations of which some are reducible yet indecomposable representations of rank 1. In particular, the identity of the fusion algebra is a reducible yet indecomposable Kac representation of rank 1. We make detailed comparisons of our fusion rules with the recent results of Eberle-Flohr and Read-Saleur. Notably, in agreement with Eberle-Flohr, we find the appearance of indecomposable representations of rank 3. Our fusion rules are supported by extensive numerical studies of an integrable lattice model of critical percolation. Details of our lattice findings and numerical results will be presented elsewhere.

Jorgen Rasmussen; Paul A. Pearce

2007-06-19T23:59:59.000Z

399

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

1996-2000 Editions of the CPEP Fusion Chart English plus Dutch (Flemish), French, German, Italian, Portuguese and Spanish (European) Created by the Fusion Group of the Contemporary...

400

Radiation Effects on Structural Ceramics in Fusion  

Science Conference Proceedings (OSTI)

Fusion Materials—Radiation Effects and Activation / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986)

G. R. Hopkins; R. J. Price; P. W. Trester

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National...

402

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview | The Guided Tour Click anywhere on this picture to go to the relevant fusion topic, or try the Guided Tour. Fusion Chart These introductory educational materials on...

403

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Energy Sources & Conversion An Overview of Energy Conversion Processes One of the...

404

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

- Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Plasmas - the Fourth State of Matter CHARACTERISTICS OF TYPICAL PLASMAS Plasmas consist...

405

Role Of Calcium In Membrane Fusion.  

E-Print Network (OSTI)

??This project is focused on understanding the role of calcium in membrane fusion at the atomic level. Membrane fusion is an intense area of experimental… (more)

Issa, Zeena Kas

2010-01-01T23:59:59.000Z

406

Apparatus and method for removing particle species from fusion-plasma-confinement devices  

DOE Patents (OSTI)

In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

Hamilton, G.W.

1981-10-26T23:59:59.000Z

407

Longitudinal Tracking of Direct Drive Inertial Fusion Targets  

Science Conference Proceedings (OSTI)

Technical Paper / The Technology of Fusion Energy - Inertial Fusion Technology: Targets and Chambers

J. D. Spalding; L. C. Carlson; M. S. Tillack; N. B. Alexander; D. T. Goodin; R. W. Petzoldt

408

Gamma Bang Time/Reaction History Diagnostics for the National Ignition Facility (NIF) Using 90-degree Off-axis Parabolic Mirrors  

SciTech Connect

Gas Cherenkov detectors (GCD) have been used to convert fusion gamma into photons to achieve gamma bang time (GBT) and reaction history measurements. The GCD designed for Omega used Cassegrain reflector optics in order to fit inside a 10-inch manipulator. A novel design for the National Ignition Facility (NIF) using 90ş off-axis parabolic (OAP) mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO2 gas volume, the detector is positioned at the stop position rather than an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100-mm-diameter by 500-mm-long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO2 gas volume. A cluster of four channels will allow for increased dynamic range, as well as different gamma energy threshold sensitivities.

R.M. Malone, H.W. Herrmann, J.M. Mack, C.S. Young, W. Stoeffl

2008-10-01T23:59:59.000Z

409

Gamma Bang Time/Reaction History Diagnostics for the National Ignition Facility (NIF) Using 90-degree Off-axis Parabolic Mirrors  

SciTech Connect

Gas Cherenkov detectors (GCD) have been used to convert fusion gamma into photons to achieve gamma bang time (GBT) and reaction history measurements. The GCD designed for Omega used Cassegrain reflector optics in order to fit inside a ten-inch manipulator. A novel design for the National Ignition Facility (NIF) using 90ş Off-Axis Parabolic (OAP) mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO2 gas volume, the detector is positioned at the stop position rather than an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100-mm diameter by 500-mm-long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO2 gas volume. A cluster of four channels will allow for increased dynamic range as well as different gamma energy threshold sensitivities. 52.70.La, 29.40.Ka, 42.15.Eq, 07.60.-j, 07.85.-m

H.W. Herrmann, R.M. Malone, W. Stoeffl, J.M. Mack, C.S. Young

2008-06-01T23:59:59.000Z

410

Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields  

E-Print Network (OSTI)

Fusion Science, Magnetic Fusion Energy, and Related FieldsFusion Science, Magnetic Fusion Energy, and Related Fieldscalled, in the magnetic fusion energy community, a tandem

Kwan, J.W.

2008-01-01T23:59:59.000Z

411

FED-R: a fusion engineering device utilizing resistive magnets  

Science Conference Proceedings (OSTI)

The principal purpose of the FED-R tokamak facility is to provide a substantial quasi-steady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies having a variety of configurations, compositions, and purposes. The design of the FED-R device also suggests potential for an upgrade that could be employed as a full-scale demonstration reactor for some specific fusion-neutron application when required.

Jassby, D.L.; Kalsi, S.S. (eds.)

1983-04-01T23:59:59.000Z

412

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

FAQ FAQ FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Answers to Frequently Asked Questions about Fusion Research An updated, searchable Fusion FAQ is being prepared. In the meantime, the incomplete public-domain Fusion FAQ from 1994-1995 is still available

413

LiWall Fusion - The New Concept of Magnetic Fusion  

Science Conference Proceedings (OSTI)

Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

L.E. Zakharov

2011-01-12T23:59:59.000Z

414

Fusion pumped laser  

SciTech Connect

Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

415

Multiple shell fusion targets  

DOE Patents (OSTI)

Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

Lindl, J.D.; Bangerter, R.O.

1975-10-31T23:59:59.000Z

416

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the lasing medium. 3 figs.

Pappas, D.S.

1988-09-01T23:59:59.000Z

417

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

418

Civilian applications of laser fusion  

DOE Green Energy (OSTI)

The commercial aspects of laser fusion were evaluated in an attempt to relate the end products (neutrons and energy) to significant commercial applications. It was found that by far the largest markets and highest payoffs for laser fusion are associated with electric power production. Hence, much of this report evaluates the prospects of producing commercial electricity with laser fusion. To this end, we have described in detail a new and promising laser fusion concept--the liquid lithium waterfall reactor. In addition, we have taken the most attractive features from our laser studies and used them to compare laser fusion to other long-range sources of energy (breeder reactors and solar energy). It is our contention that all three sources of electrical energy should be developed to the point where the final selections are primarily based on economic competitiveness. The other potential applications of laser fusion (fissile fuel production, synthetic fuel production, actinide burning, and propulsion) are also discussed, and our preliminary plan for the engineering development of laser fusion is presented.

Maniscalco, J.; Blink, J.; Buntzen, R.; Hovingh, J.; Meier, W.; Monsler, M.; Walker, P.

1977-11-17T23:59:59.000Z

419

Near-field enhancement of metal nano-particle based on the light focusing by the micro-parabolic mirror  

E-Print Network (OSTI)

Near-field enhancement of metal nano-particle based on the light focusing by the micro-parabolic mirror , , , , Abstract We propose to use a micro-parabolic mirror, in order to improve the near- parabolic mirror, the mirror-reflected light can be efficiently transformed into the near-field of the nano

Park, Namkyoo

420

Lasers without Mirrors, Designed by Supercomputer - NERSC SCience News  

NLE Websites -- All DOE Office Websites (Extended Search)

Lasers without Lasers without Mirrors, Designed by Supercomputer Lasers without Mirrors, Designed by Supercomputer October 14, 2009 | Tags: Lasers, Life Sciences, Materials Science Contact: Ji Qiang | Lawrence Berkeley National Laboratory | JQiang@lbl.gov John Corlett | Lawrence Berkeley National Laboratory, Center for Beam Physics | JNCorlett@lbl.gov Sometimes it takes a big machine to understand the tiniest details. That's the case with free electron lasers (FELs). The powerful X-rays they generate can probe matter directly at the level of atomic interactions and chemical-bond formation, letting scientists observe such phenomena as chemical reactions in trace elements, electric charges in photosynthesis and the structure of microscopic machines. FELs have the potential to

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Distributed Multisensor Fusion Lucy Y. Pao \\Lambda  

E-Print Network (OSTI)

Distributed Multisensor Fusion Lucy Y. Pao \\Lambda Northwestern University Evanston, IL 60208. The distributed fusion prob­ lem is more complex than the centralized fusion problem due to correlation across track estimates for the same object. We propose an approach for distributed sen­ sor fusion

Pao, Lucy Y.

422

Temperature & Nuclear Fusion 4 October 2011  

E-Print Network (OSTI)

Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class-Boltzmann equation: L = 4R2 T4 . (d) In fusion energy generation: T . #12;temperature & nuclear fusion 2 Nuclear

Militzer, Burkhard

423

Temperature & Nuclear Fusion 4 October 2011  

E-Print Network (OSTI)

Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class temperature. #12;temperature & nuclear fusion 2 Nuclear Fusion 2. There are a few different energy scales

Militzer, Burkhard

424

Fusion of Loops for Parallelism and Locality  

Science Conference Proceedings (OSTI)

AbstractżLoop fusion improves data locality and reduces synchronization in data-parallel applications. However, loop fusion is not always legal. Even when legal, fusion may introduce loop-carried dependences which prevent parallelism. In addition, performance ... Keywords: Locality enhancement, loop fusion, cache conflicts, loop transformations, data-parallel applications, scalable shared-memory multiprocessors.

Naraig Manjikian; Tarek S. Abdelrahman

1997-02-01T23:59:59.000Z

425

Super-high density laser fusion CTR  

SciTech Connect

From sixth European conference on controlled fusion and plasma physics; Moscow, USSR (30 Jul 1973). A basic discussion of laser-induced fusion is presented. Implosion development and applications are described. Implosion and thermonuclear physics are discussed in some detail along with laser technology, laser fusion reactors, and fusion energy conversion. (MOW)

Thiessen, A.; Zimmerman, G.; Weaver, T.; Emmett, J.; Nuckolls, J.; Wood, L.

1973-09-01T23:59:59.000Z

426

X-ray microscopy of laser fusion targets in four energy bands from 0.7 to 4.0 keV  

SciTech Connect

A grazing x-ray microscope was shown to be able to photograph the x-ray emission from laser-produced plasmas between 0.8 and 4.0 keV with a spatial resolution of approximately 3 microns. The calibration of the x-ray mirror energy response functions and the x-ray film allow absolute measurements of the spatial and spectral distribution of the x-ray emission from laser fusion targets. (MOW)

Boyle, M.J.; Seward, F.D.; Harper, T.L.; Koppel, L.N.; Pettipiece, K.J.; Ahlstrom, H.G.

1975-10-15T23:59:59.000Z

427

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Sun Our Sun FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Sun Runs on Fusion Energy How the sun looks through x-ray eyes! Like all stars, the sun is a huge fusion reactor, pumping out 100 million times as much energy in a single second as the entire population of Earth

428

Fusion/Plasma Physics materials  

NLE Websites -- All DOE Office Websites (Extended Search)

FusionPlasma Physics materials 71958-00 Large Chart 107 150 cm 17. 71958-01 Package of 30 Three-hole-punched Notebook Charts, chart size 43 28 cm, folded size 22 28 cm...

429

Maintenance FUSION IGNITION RESEARCH EXPERIMENT  

E-Print Network (OSTI)

to refine the system details, interfaces and the requirements for remote handling. Table 1. FIRE RadialInsulation Enclosure Remote Maintenance Module FUSION IGNITION RESEARCH EXPERIMENT SYSTEM objectives and subsystem requirements in an arrangement that allows remote maintenance of in

430

U. S. Fusion Energy Future  

SciTech Connect

Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

2000-10-12T23:59:59.000Z

431

Possible fusion reactor. [Movable plasmas  

SciTech Connect

A scheme to improve performance characteristics of a tokamak-type fusion reactor is proposed. Basically, the tokamak-type plasma could be moved around so that the plasma could be heated by compression, brought to the region where the blanket surrounds the plasma, and moved so as to keep wall loading below the acceptable limit. This idea should be able to help to economize a fusion reactor.

Yoshikawa, S.

1976-05-01T23:59:59.000Z

432

Advanced synfuel production with fusion  

SciTech Connect

An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers a nearly inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets.

Powell, J.R.; Fillo, J.

1979-01-01T23:59:59.000Z

433

Fusion power and the environment  

SciTech Connect

Environmental characteristics of conceptual fusion-reactor systems based on magnetic confinement are examined quantitatively, and some comparisons with fission systems are made. Fusion, like all other energy sources, will not be completely free of environmental liabilities, but the most obvious of these-- tritium leakage and activation of structural materials by neutron bombardment-- are susceptible to significant reduction by ingenuity in choice of materials and design. Large fusion reactors can probably be designed so that worst-case releases of radioactivity owing to accident or sabotage would produce no prompt fatalities in the public. A world energy economy relying heavily on fusion could make heavy demands on scarce nonfuel materials, a topic deserving further attention. Fusion's potential environmental advantages are not entirely ''automatic'', converting them into practical reality will require emphasis on environmental characteristics throughout the process of reactor design and engineering. The central role of environmental impact in the long-term energy dilemma of civilization justifies the highest priority on this aspect of fusion. (auth)

Holdren, J.P.; Fowler, T.K.; Post, R.F.

1975-06-01T23:59:59.000Z

434

Laser fusion diagnostics  

SciTech Connect

The current status of the capability of laser fusion diagnostics is reviewed. Optical and infrared streak cameras provide one time resolution measurement capability of less than 10 ps, while x-ray streak cameras provide 15 ps time resolution in the range of about 1--30 keV presently. Time integrated spatial resolutions of 1 ..mu..m are provided with a variety of optical techniques. Ultraviolet holographic interferometry has measured electron densities above 10/sup 21/ cm/sup -3/ with 1 ..mu..m spatial resolution and 15 ps temporal resolution. X-ray microscopes provide 3 ..mu..m time integrated resolution and the x-ray streak pinhole camera has 6 ..mu..m spatial resolution. Development of the framing camera has thus far provided 50 ..mu..m spatial resolution with 125 ps frame duration and the third order reconstruction of zone plate images has provided 3 ..mu..m resolutions for alpha particles. Time integrated measurements of x-rays span the range shown. Finally, the new Shiva neutron spectrometer increases the energy resolution capability of that technique to 25 keV for 14-MeV neutrons. These combined capabilities provide a unique set of diagnostics for the detailed measurement of the interaction of laser light with targets and a subsequent performance of those targets.

Coleman, L.W.

1978-05-09T23:59:59.000Z

435

2002 Fusion Summer Study Subgroup E4 -Development Pathway Subgroup  

E-Print Network (OSTI)

from various sources of energy in 2020 (date from Fusion Summer Study 1998). Geothermal energy 0.1 0 of superior access for test-modules and a 400-sec flattop in inductive operation, which is long enough - advanced divertor - pulse length sufficient for first wall and blanket thermal equilibrium - superior

Najmabadi, Farrokh

436

Heavy ion fusion science research for high energy density physics and fusion applications  

E-Print Network (OSTI)

1665. [38] B G Logan, 1993 Fusion Engineering and Design 22,J Perkins, (June 2007), to be submitted to Nuclear Fusion. [36] M Tabak 1996 Nuclear Fusion 36, No 2. [37] S Atzeni, and

Logan, B.G.

2007-01-01T23:59:59.000Z

437

../fusion/templates/mapguide/maroon/css/maroon_fusion.css background-image: url(../images/background.gif);  

E-Print Network (OSTI)

../fusion/templates/mapguide/maroon/css/maroon_fusion.css body { background-image: url(../images/background.gif); ../fusion/templates/mapguide/maroon/css/ maroon_fusion.css body { background-color: #3e5c5f; ../fusion/templates/mapguide/maroon/css/ maroon_fusion.css #ToolbarVertical { background: #500000; maroon_fusion.css #Toolbar { background

Ahmad, Sajjad

438

NUCLEAR FUSION doi:10.1088/0029-5515/50/1/014004  

E-Print Network (OSTI)

Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million ? C in the laboratory was appreciated. Fusion research has followed two main paths— inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas. PACS numbers: 52.55.?s, 52.57.?z, 28.52.?s, 89.30.Jj (Some figures in this article are in colour only in the electronic version) 1. Introduction—fusion energy prior to 1958 The 1950s were a period of rapid progress and high expectations in science and technology. Nuclear weapons were advanced with the first fusion assisted nuclear weapons being tested in 1952. Peaceful uses of nuclear energy in

Dale Meade

2009-01-01T23:59:59.000Z

439

ION ACCELERATORS AS DRIVERS FOR INERTIAL CONFINEMENT FUSION  

E-Print Network (OSTI)

and Controlled Nuclear Fusion Research, Brussels, Belgium,of the Heavy Ion Fusion Workshop held at Brookhaven NationalReport, Hearthfire Heavy Ion Fusion, October 1, 1979 - March

Faltens, A.

2010-01-01T23:59:59.000Z

440

General Atomics (GA) Fusion News: A New Spin on Understanding...  

NLE Websites -- All DOE Office Websites (Extended Search)

General Atomics (GA) Fusion News: A New Spin on Understanding Plasma Confinement American Fusion News Category: General Atomics (GA) Link: General Atomics (GA) Fusion News: A New...

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Placing Fusion Power on a Pedestal | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Placing Fusion Power on a Pedestal American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Placing Fusion Power on a Pedestal...

442

Knudsen Layer Reduction of Fusion Reactivity Kim Molvig and Nelson...  

NLE Websites -- All DOE Office Websites (Extended Search)

fusion cross section determine Gamow peak in the fusion reactivity. 2 Inertially confined fusion systems typically have plasma fuel enveloped by a cold non-reacting region or...

443

Fusion Education | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Benefits of FES Fusion Education Fusion Energy Sciences (FES) FES Home About FES Research Facilities Science Highlights Benefits of FES Fusion Education Funding Opportunities...

444

Praise and suggestions for fusion research from a utility industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Select and View High Resolution Images to Download Learn More Engineering Fusion energy Fusion reactor design Inertial confinement fusion Nuclear energy Plasma physics Tokamaks...

445

Plasma Blobs and Filaments: Fusion Scientists Discover Secrets...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Blobs and Filaments: Fusion Scientists Discover Secrets of Turbulent Edge Transport American Fusion News Category: U.S. Universities Link: Plasma Blobs and Filaments: Fusion...

446

Fusion systems and biset functors via ghost algebras  

E-Print Network (OSTI)

2.2 Fusion Preserving1 Background 1.1 Fusion System Basics . . . . . . 1.2A. Craven. The theory of fusion systems. Vol. 131. Cambridge

O'Hare, Shawn Michael

2013-01-01T23:59:59.000Z

447

Applying physics, teamwork to fusion energy science | Princeton...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy...

448

Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment American Fusion News Category: General Atomics (GA) Link: Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...

449

Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned Carbon Walls American Fusion News Category: U.S. Universities Link: Deuterium Uptake in Magnetic Fusion Devices...

450

TWO IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPORTANT FUSION PROCESSES CREATING THE CONDITIONS FOR FUSION F u s i o n Physics of a Fundamental Energy Source C o n f i n e m e n t Q u a l i t y , n τ ( m - 3 s ) 1970-75 1990s 1975-80 1980s Ion Temperature (K) 10 21 10 20 10 19 10 18 10 17 10 6 10 7 10 8 10 9 Inertial Magnetic Expected reactor regime Expected reactor regime Useful Nuclear Masses (The electron's mass is 0.000549 u.) Label Species Mass (u*) n ( 1 n) neutron 1.008665 p ( 1 H) proton 1.007276 D ( 2 H) deuteron 2.013553 T ( 3 H) triton 3.015500 3 He helium-3 3.014932 α ( 4 He) helium-4 4.001505 * 1 u = 1.66054 x 10 -27 kg = 931.466 MeV/c 2 Nuclear Mass (u) B i n d i n g E n e r g y P e r N u c l e o n ( M e V ) 1 200 150 100 50 10 0 5 62 Ni Fusion Reactions Release Energy Fission Reactions Release Energy EXPERIMENTAL RESULTS IN FUSION RESEARCH Fusion requires high tempera- ture plasmas confined long enough at high density

451

Gas-cooled, Li/sub 2/O moderator/breeder canister blanket for fusion-synfuels  

DOE Green Energy (OSTI)

A new integrated power and breeding blanket is described. The blanket incorporates features that make it suitable for synthetic fuel production. It is matched to the thermal and electrical requirements of the General atomic water-splitting process for producing hydrogen. The fusion reaction is the Tandem Mirror Reactor (TMR) using Mirror Advanced Reactor Study (MARS) physics. The canister blanket is a high temperature, pressure balanced, cross-flow heat exchanger contained within a low activity, independently cooled, moderate temperature, first wall structural envelope. The canister uses Li/sub 2/O as the moderator/breeder and helium as the coolant. In situ tritium control, combined with slip stream processing and self-healing permeation barriers, assures a hydrogen product essentially free of tritium. The blanket is particularly adapted to synfuels production but is equally useful for electricity production or co-generation.

Werner, R.W.; Hoffman, M.A.

1983-03-24T23:59:59.000Z

452

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us About Us FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Webby Honoree graphic graphic Key Resource Snap editors choice new scientist DrMatrix Webby Awards Honoree, April 10, 2007 The Alchemist - WebPick, January 29, 1999 Links2Go - Fusion, November 9, 1998 October 19, 1998 - October 19, 1999 Site of the Day, September 24, 1998. Hot spot. Student Science Resource, April 16, 1997

453

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement The Glossary of Plasma Physics and Fusion Energy Research Browse | Search | Submit an Entry Introduction, Sources and Contributors This Glossary seeks to provide plain-language definitions of over 3600

454

FusEdWeb | Fusion Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Home> Student and Teacher Resources > For Introductory Students Home> Student and Teacher Resources > For Introductory Students FusEdWeb: Discover Fusion CPEP's Online Fusion Course Fusion FAQ Fusion and Plasma Glossary Plasma Dictionary Student and Teacher Resources Education and Outreach Ideas Other Fusion and Plasma Sites Great Sites Internet Plasma Physics EXperience GA's Fusion Energy Slide Show International Thermonuclear Experimental Reactor National Ignition Facility Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Our Sun | Other Stars and Galaxies | Inertial Confinement | Magnetic Confinement Guide to Fusion Education Resources for Introductory Physics Students This is a compilation of online and offline education resources for

455

Kinetic advantage of controlled intermediate nuclear fusion  

SciTech Connect

The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

Guo Xiaoming [Physics and Computer Science Department, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5 (Canada)

2012-09-26T23:59:59.000Z

456

Conformal nets III: fusion of defects  

E-Print Network (OSTI)

Conformal nets provides a mathematical model for conformal field theory. We define a notion of defect between conformal nets, formalizing the idea of an interaction between two conformal field theories. We introduce an operation of fusion of defects, and prove that the fusion of two defects is again a defect, provided the fusion occurs over a conformal net of finite index. There is a notion of sector (or bimodule) between two defects, and operations of horizontal and vertical fusion of such sectors. Our most difficult technical result is that the horizontal fusion of the vacuum sectors of two defects is isomorphic to the vacuum sector of the fused defect. Equipped with this isomorphism, we construct the basic interchange isomorphism between the horizontal fusion of two vertical fusions and the vertical fusion of two horizontal fusions of sectors.

Arthur Bartels; Christopher L. Douglas; André Henriques

2013-10-30T23:59:59.000Z

457

Mirror mounts designed for the Advanced Photon Source SRI-CAT  

SciTech Connect

Use of a mirror for beamlines at third-generation synchrotron radiation facilities, such as the Advanced Photon Source (APS) at Argonne National laboratory, has many advantages. A mirror as a first optical component provides significant reduction in the beam peak heat flux and total power on the downstream monochromator and simplifies the bremsstrahlung shielding design for the beamline transport. It also allows one to have a system for multibeamline branching and switching. More generally, a mirror is used for beam focusing and/or low-pass filtering. Six different mirror mounts have been designed for the SRI-CAT beamlines. Four of them are designed as water-cooled mirrors for white or pink beam use, and the other two are for monochromatic beam use. Mirror mount designs, including vacuum vessel structure and precision supporting stages, are presented in this paper.

Shu, D.; Benson, C.; Chang, J. [and others

1997-09-01T23:59:59.000Z

458

A.: Sparse fusion frames: existence and construction  

E-Print Network (OSTI)

Abstract. Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. A fusion frame is a frame-like collection of subspaces in a Hilbert space, thereby generalizing the concept of a frame for signal representation. In this paper, we study the existence and construction of fusion frames. We first present a complete characterization of a special class of fusion frames, called Parseval fusion frames. The value of Parseval fusion frames is that the inverse fusion frame operator is equal to the identity and therefore signal reconstruction can be performed with minimal complexity. We then introduce two general methods – the spatial complement and the Naimark complement – for constructing a new fusion frame from a given fusion frame. We then establish existence conditions for fusion frames with desired properties. In particular, we address the following question: Given M, N, m ? N and {?j} M j=1, does there exist a fusion frame in RM with N subspaces of dimension m for which {?j} M j=1 are the eigenvalues of the associated fusion frame operator? We address this problem by providing an algorithm which computes such a fusion frame for almost any collection of parameters M, N, m ? N and {?j} M j=1. Moreover, we show how this procedure can be applied, if subspaces are to be added to a given fusion frame to force it to become Parseval. 1.

Robert Calderbank; Peter G. Casazza; Andreas Heinecke; Gitta Kutyniok; Ali Pezeshki

2011-01-01T23:59:59.000Z

459

Deployable telescope having a thin-film mirror and metering structure  

Science Conference Proceedings (OSTI)

A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

Krumel, Leslie J. (Cedar Crest, NM); Martin, Jeffrey W. (Albuquerque, NM)

2010-08-24T23:59:59.000Z

460

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

for magnetic fusion reactors and IFMIF. Journal of NuclearFusion reactors blanket nucleonics. In Progress in NuclearFusion-Fission hybrid reactors. In Advances in Nuclear

Kramer, Kevin James

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mirror fusion test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System  

E-Print Network (OSTI)

32] E. Greenspan. Fusion reactors blanket nucleonics. Intemperature windows for fusion reactor structural materials.steels for magnetic fusion reactors and IFMIF. Journal of

Kramer, Kevin James

2010-01-01T23:59:59.000Z

462

Fast Neutron Detector for Fusion Reactor KSTAR Using Stilbene Scintillator  

E-Print Network (OSTI)

Various neutron diagnostic tools are used in fusion reactors to evaluate different aspects of plasma performance, such as fusion power, power density, ion temperature, fast ion energy, and their spatial distributions. The stilbene scintillator has been proposed for use as a neutron diagnostic system to measure the characteristics of neutrons from the Korea Superconducting Tokamak Advanced Research (KSTAR) fusion reactor. Specially designed electronics are necessary to measure fast neutron spectra with high radiation from a gamma-ray background. The signals from neutrons and gamma-rays are discriminated by the digital charge pulse shape discrimination (PSD) method, which uses total to partial charge ratio analysis. The signals are digitized by a flash analog-to-digital convertor (FADC). To evaluate the performance of the fabricated stilbene neutron diagnostic system, the efficiency of 10 mm soft-iron magnetic shielding and the detection efficiency of fast neutrons were tested experimentally using a 252Cf neutr...

Lee, Seung Kyu; Kim, Gi-Dong; Kim, Yong-Kyun

2011-01-01T23:59:59.000Z

463

Life Pure Fusion Target Designs: Status and Prospects  

Science Conference Proceedings (OSTI)

Analysis and radiation-hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant are presented. The required laser energy driver is 2.2 MJ at a 0.351-{mu}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for near-term experimental resolution of the key physics uncertainties on the National Ignition Facility.

Amendt, P; Dunne, M; Ho, D; Lindl, J

2011-10-20T23:59:59.000Z

464

Fusion Safety Program annual report, Fiscal Year 1993  

Science Conference Proceedings (OSTI)

This report summarizes the major activities of the Fusion Safety Program in Fiscal Year 1993. The Idaho National Engineering Laboratory (INEL) has been designated by DOE as the lead laboratory for fusion safety, and EG&G Idaho, Inc., is the prime contractor for INEL operations. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL and in participating organizations, including universities and private companies. Technical areas covered in the report include tritium safety, beryllium safety, activation product release, reactions involving potential plasma-facing materials, safety of fusion magnet systems, plasma disruptions and edge physics modeling, risk assessment failure rates, computer codes for reactor transient analysis, and regulatory support. These areas include work completed in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed at the INEL for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor projects at the Princeton Plasma Physics Laboratory and a summary of the technical support for the ARIES/PULSAR commercial reactor design studies.

Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

1993-12-01T23:59:59.000Z

465

The Path to Magnetic Fusion Energy  

Science Conference Proceedings (OSTI)

When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

Prager, Stewart (PPPL)

2011-05-04T23:59:59.000Z

466

Measurement and modeling of mirror distortion in a high power FEL  

Science Conference Proceedings (OSTI)

Mirror heating in a high power FEL can alter the optical mode and affect the gain of the laser. This can lead to a large reduction of the laser power from ideal values. Measurements of the power and mode size in the Jefferson Lab IR Demo laser have shown clear evidence of mirror distortion at high average power leading (up to 17 kW incident on the mirrors and over 40 W absorbed per mirror). The measurements and comparisons with modeling will be presented. Both steady state and transient analyses and measurements are considered.

Benson, S.; Neil, G.; Michelle D. Shinn

2000-01-01T23:59:59.000Z

467

Underwater Mirror Exposure to Free-Ranging Naďve Atlantic Spotted Dolphins (Stenella frontalis) in the Bahamas  

E-Print Network (OSTI)

Vocalizations and associated underwater behavior of free-Comparative Psychology Underwater Mirror Exposure to Free-frontalis) has been studied underwater in the Bahamas. We

Delfour, Fabienne; Herzing, Denise

2013-01-01T23:59:59.000Z

468

Quantum state transfer between a Bose-Einstein condensate and an optomechanical mirror  

E-Print Network (OSTI)

In this paper we describe a scheme for state transfer between a trapped atomic Bose condensate and an optomechanical end-mirror mediated by a cavity field. Coupling between the mirror and the cold gas arises from the fact that the cavity field can produce density oscillations in the gas which in turn acts as an internal Bragg mirror for the field. After adiabatic elimination of the cavity field we find that the hybrid system of the gas and mirror is described by a beam splitter Hamiltonian that allows for state transfer, but only if the quantum nature of the cavity field is retained.

S. Singh; H. Jing; E. M. Wright; P. Meystre

2012-02-28T23:59:59.000Z

469

HEPDATA: High Energy Physics Reaction Database (SLAC Mirror)  

DOE Data Explorer (OSTI)

HEPDATA: Reaction Data Database contains numerical values of HEP scattering data such as total and differential cross sections, fragmentation functions, structure functions, and polarisation measurements, from a wide range of experiments. It is compiled by the Durham Database Group (UK) with help from the COMPAS group (Russia,) and is updated at regular intervals.[copied from http://www.slac.stanford.edu/spires/hepdata/index.html] While DOE does not fund this resource, the database does contain data generated by various DOE groups. SLAC hosts the mirror of the Durham database on its website in California.

470

Effect of hydrogen-switchable mirrors on the Casimir force  

E-Print Network (OSTI)

We present systematic measurements of the Casimir force between a gold-coated plate and a sphere coated with a Hydrogen Switchable Mirror (HSM). HSMs are shiny metals that can become transparent by hydrogenation. In spite of such a dramatic change of the optical properties of the sphere, we did not observe any significant decrease of the Casimir force after filling the experimental apparatus with hydrogen. This counterintuitive result can be explained by the Lifshitz theory that describes the Casimir attraction between metallic and dielectric materials.

Davide Iannuzzi; Mariangela Lisanti; Federico Capasso

2004-03-19T23:59:59.000Z

471

Single-photon single-ion interaction in free space configuration in front of a parabolic mirror  

E-Print Network (OSTI)

The efficient interaction between single photons and single matter objects in free space is of key importance for quantum technologies. An experimental setup for testing this possibility involves single two-level ion trapped at the focus of a parabolic metallic mirror. We study the conditions for the setup, under which the assumption about the free-space mode structure of the radiation field in the vicinity of the atom is justified. In our analysis we apply vectorial properties of light by including polarization degree of freedom. We look for possible changes in the spontaneous emission rate of the atom resulting from the presence of the parabolic boundary conditions.

Magdalena Stobi?ska; Robert Alicki

2009-05-25T23:59:59.000Z

472

Laser fusion experiments at LLL  

Science Conference Proceedings (OSTI)

These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it