National Library of Energy BETA

Sample records for mirror fusion test

  1. Photo of the Week: The Mirror Fusion Test Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Mirror Fusion Test Facility Photo of the Week: The Mirror Fusion Test Facility July 19, 2013 - 4:17pm Addthis This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel

  2. Cryogenic systems for the Mirror Fusion Test Facility

    SciTech Connect (OSTI)

    Slack, D.S.; Nelson, R.L.; Chronis, W.C.

    1985-08-01

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems.

  3. AXISYMMETRIC MAGNETIC MIRROR APPLICATIONS - DIVERTER TEST STAND...

    Office of Scientific and Technical Information (OSTI)

    APPLICATIONS - DIVERTER TEST STAND TO FUSION POWER PLANT Citation Details In-Document Search Title: AXISYMMETRIC MAGNETIC MIRROR APPLICATIONS - DIVERTER TEST STAND TO FUSION POWER ...

  4. The Mirror Fusion Test Facility cryogenic system: Performance, management approach, and present equipment status

    SciTech Connect (OSTI)

    Slack, D.S.; Chronis, W.C.

    1987-06-08

    The cryogenic system for the Mirror Fusion Test Facility (MFTF) is a 14-kW, 4.35-K helium refrigeration system that proved to be highly successful and cost-effective. All operating objectives were met, while remaining within a few percent of initial cost and schedule plans. The management approach used in MFTF allowed decisions to be made quickly and effectively, and it helped keep costs down. Manpower levels, extent and type of industrial participation, key aspects of subcontractor specifications, and subcontractor interactions are reviewed, as well as highlights of the system tests, operation, and present equipment status. Organizations planning large, high-technology systems may benefit from this experience with the MFTF cryogenic system.

  5. Diagnostic control, data acquisition and data processing at MFTF-B (Mirror Fusion Test Facility)

    SciTech Connect (OSTI)

    Preckshot, G.G.

    1986-01-01

    Diagnostic instruments at the Mirror Fusion Test Facility (MFTF-B) are operated by a distributed computer system which provides an integrated control, data acquisition and data processing interface. Instrument control settings, operator inputs and lists of data to be acquired are combined with data acquired by instrument data recorders, to be used downstream by data processing codes; data processing programs are automatically informed of operator control and setpoint actions without operator intervention. The combined diagnostic control and results presentation interface is presented to experimentalist users by a network of high-resolution graphics workstations. Control coordination, data processing and database management are handled by a shared-memory network of 32-bit super minicomputers. Direct instrument control, data acquisition, data packaging and instrument status monitoring are performed by a network of dedicated local control microcomputers.

  6. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details In-Document Search Title: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Authors: Moir, R ...

  7. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    Magnetic Fusion Energy Power Plant with Thick Liquid-Walls Citation Details In-Document Search Title: Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant with Thick ...

  8. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  9. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Axisymmetric Magnetic Mirror Fusion-Fission Hybrid Citation Details ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  10. Axisymmetric Tandem Mirror Magnetic Fusion Energy Power Plant...

    Office of Scientific and Technical Information (OSTI)

    A fusion power plant is described that utilizes a new version of the tandem mirror device including spinning liquid walls. The magnetic configuration is evaluated with an ...

  11. Mirror fusion. Quarterly report, April-June 1981

    SciTech Connect (OSTI)

    Not Available

    1981-09-11

    The information in each Quarterly is presented in the same sequence as in the Field Work Package Proposal and Authorization System (WPAS) submissions prepared for the U.S. Department of Energy; the main sections are Applied Plasma Physics, Confinement Systems, Development and Technology, and Mirror Fusion Test Facility (Planning and Projects). On occasion, we shall include information pertaining to the LLNL role as Lead Laboratory for the Open Systems Mirror Fusion Program. Each of these sections is introduced by an overall statement of the goals and purposes of the groups reporting in it. As appropriate within each section, statements of the goals of individual programs and projects are followed by articles containing summaries of significant recent activity and descriptive text.

  12. Astrophysical tests of mirror dark matter

    SciTech Connect (OSTI)

    Ciarcelluti, P.

    2008-08-29

    Mirror matter is a self-collisional dark matter candidate. If exact mirror parity is a conserved symmetry of the nature, there could exist a parallel hidden (mirror) sector of the Universe which has the same kind of particles and the same physical laws of our (visible) sector. The two sectors interact each other only via gravity, therefore mirror matter is naturally 'dark'. The most promising way to test this dark matter candidate is to look at its astrophysical signatures, as Big Bang nucleosynthesis, primordial structure formation and evolution, cosmic microwave background and large scale structure power spectra.

  13. Rhodium coated mirrors deposited by magnetron sputtering for fusion applications

    SciTech Connect (OSTI)

    Marot, L.; De Temmerman, G.; Oelhafen, P.; Covarel, G.; Litnovsky, A.

    2007-10-15

    Metallic mirrors will be essential components of all optical spectroscopy and imaging systems for ITER plasma diagnostics. Any change in the mirror performance, in particular, its reflectivity, due to erosion of the surface by charge exchange neutrals or deposition of impurities will influence the quality and reliability of the detected signals. Due to its high reflectivity in the visible wavelength range and its low sputtering yield, rhodium appears as an attractive material for first mirrors in ITER. However, the very high price of the raw material calls for using it in the form of a film deposited onto metallic substrates. The development of a reliable technique for the preparation of high reflectivity rhodium films is therefore of the highest importance. Rhodium layers with thicknesses of up to 2 {mu}m were produced on different substrates of interest (Mo, stainless steel, Cu) by magnetron sputtering. Produced films exhibit a low roughness and crystallite size of about 10 nm with a dense columnar structure. No impurities were detected on the surface after deposition. Scratch tests demonstrate that adhesion properties increase with substrate hardness. Detailed optical characterizations of Rh-coated mirrors as well as results of erosion tests performed both under laboratory conditions and in the TEXTOR tokamak are presented in this paper.

  14. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    SciTech Connect (OSTI)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  15. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Design and analysis summary. Volume 1

    SciTech Connect (OSTI)

    Heathman, J.H.; Wohlwend, J.W.

    1985-05-01

    This report summarizes the designs and analyses produced by General Dynamics Convair for the four Axicell magnets (A1 and A20, east and west), the four Transition magnets (T1 and T2, east and west), and the twelve Solenoid magnets (S1 through S6, east and west). Over four million drawings and specifications, in addition to detailed stress analysis, thermal analysis, electrical, instrumentation, and verification test reports were produced as part of the MFTF-B design effort. Significant aspects of the designs, as well as key analysis results, are summarized in this report. In addition, drawing trees and lists off detailed analysis and test reports included in this report define the locations of the detailed design and analysis data.

  16. Fusion neutron generation computations in a stellarator-mirror hybrid with neutral beam injection

    SciTech Connect (OSTI)

    Moiseenko, V. E.; Agren, O.

    2012-06-19

    In the paper [Moiseenko V.E., Noack K., Agren O. 'Stellarator-mirror based fusion driven fission reactor' J Fusion Energy 29 (2010) 65.], a version of a fusion driven system (FDS), i.e. a sub-critical fast fission assembly with a fusion plasma neutron source, is proposed. The plasma part of the reactor is based on a stellarator with a small mirror part. Hot ions with high perpendicular energy are assumed to be trapped in the magnetic mirror part. The stellarator part which connects to the mirror part and provides confinement for the bulk (deuterium) plasma. In the magnetic well of the mirror part, fusion reactions occur from collisions between a of hot ion component (tritium) with cold background plasma ions. RF heating is one option to heat the tritium. A more conventional method to sustain the hot ions is neutral beam injection (NBI), which is here studied numerically for the above-mentioned hybrid scheme. For these studies, a new kinetic code, KNBIM, has been developed. The code takes into account Coulomb collisions between the hot ions and the background plasma. The geometry of the confining magnetic field is arbitrary for the code. It is accounted for via a numerical bounce averaging procedure. Along with the kinetic calculations the neutron generation intensity and its spatial distribution are computed.

  17. Technology of mirror machines: LLL facilities for magnetic mirror...

    Office of Scientific and Technical Information (OSTI)

    The second facility, MFTF (Mirror Fusion Test Facility), is currently in preliminary design with line item approval anticipated for FY 78. MFTF is designed primarily to exploit the ...

  18. AXISYMMETRIC MAGNETIC MIRROR APPLICATIONS - DIVERTER TEST STAND...

    Office of Scientific and Technical Information (OSTI)

    RADIOACTIVE WASTES AND NON-RACIOACTIVE WASTER FROM NUCLEAR FACILITIES; 29 ENERGY PLANNING, POLICY AND ECONOMY; 70 PLASMA PHYSICS AND FUSION Word Cloud More Like This Full Text ...

  19. The Tokamak Fusion Test Reactor (TFTR) Story

    SciTech Connect (OSTI)

    2015-08-05

    Princeton Plasma Physics Laboratory provides an overview of the purpose, mission, and progress of the Tokamak Fusion Test Reactor experiment.

  20. Tokamak Fusion Test Reactor (TFTR) Closing

    SciTech Connect (OSTI)

    2015-08-05

    Closing remarks are provided in honor of the scientists whom worked diligently on the Tokamak Fusion Test Reactor (TFTR) experiment.

  1. Tokamak Fusion Test Reactor (TFTR) First Plasma

    SciTech Connect (OSTI)

    2015-08-05

    The Tokamak Fusion Test Reactor (TFTR) First Plasma experiment was implemented at the Princeton Plasma Physics Laboratory.

  2. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research...

    Open Energy Info (EERE)

    at Mirror Lake Research Site Citation U.S. Geological Survey. Borehole Imaging of In Situ Stress Tests at Mirror Lake Research Site Internet. 2013. U.S. Geological Survey. cited...

  3. Application of structural-mechanics methods to the design of large tandem-mirror fusion devices (MFTF-B). Revision 1

    SciTech Connect (OSTI)

    Karpenko, V.N.; Ng, D.S.

    1985-08-15

    The Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory requires state-of-the-art structural-mechanics methods to deal with access constraints for plasma heating and diagnostics, alignment requirements, and load complexity and variety. Large interactive structures required an integrated analytical approach to achieve a reasonable level of overall system optimization. The Tandem Magnet Generator (TMG) creates a magnet configuration for the EFFI calculation of electromagnetic-field forces that, coupled with other loads, form the input loading to magnet and vessel finite-element models. The analytical results provide the data base for detailed design of magnet, vessel, foundation, and interaction effects. 13 refs.

  4. Photo of the Week: Inside the Tandem Mirror Experiment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Tandem Mirror Experiment Photo of the Week: Inside the Tandem Mirror Experiment December 28, 2012 - 2:22pm Addthis This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at both ends of a central magnetic tube. Very hot and dense plasmas inside each mirror enhanced the confinement of another plasma inside the central

  5. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect (OSTI)

    Krikorian, O.H.

    1982-02-09

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

  6. Mirror fusion test facility magnet system. Final design report

    SciTech Connect (OSTI)

    Henning, C.D.; Hodges, A.J.; VanSant, J.H.; Dalder, E.N.; Hinkle, R.E.; Horvath, J.A.; Scanlan, R.M.; Shimer, D.W.; Baldi, R.W.; Tatro, R.E.

    1980-09-03

    Information is given on each of the following topics: (1) magnet description, (2) superconducting manufacture, (3) mechanical behavior of conductor winding, (4) coil winding, (5) thermal analysis, (6) cryogenic system, (7) power supply system, (8) structural analysis, (9) structural finite element analysis refinement, (10) structural case fault analysis, and (11) structural metallurgy. (MOW)

  7. AVTA: 2010 Ford Fusion HEV Testing Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ford Fusion HEV Testing Results AVTA: 2010 Ford Fusion HEV Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Ford Fusion hybrid-electric

  8. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect (OSTI)

    Werner, R.W.

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  9. Adhesion and chemical vapor testing of second surface silver/glass solar mirrors

    SciTech Connect (OSTI)

    Dake, L.S.; Lind, M.A.

    1980-09-01

    Second surface silvered glass mirrors supplied by four different commercial manufacturers were evaluated for silver-to-glass adhesion and resistance to chemical vapor attack. The mirrors were chemically silvered on identical substrates of low iron float glass. Experiments were performed in order to assess the viability of using adhesion and chemical attack as screening tests for predicting the relative long-term durability of solar mirrors. The results of these tests will be compared at a future time with the survivability of field mirrors deployed in stationary exposure racks at ten locations throughout the United States. The adhesion tests were performed using a commercially-available thin film tensile pull tester in which a stud bonded to the film is pulled and the yield load recorded. Numerous subtleties regarding the selection of the adhesive used to bond the study and the validity of the testing procedure are discussed. Several different methods of normalizing the results were attempted in an effort to reduce the scatter in the data. The same set of samples were exposed to salt spray, water, HCl, H/sub 2/SO/sub 4/, and HNO/sub 3/ vapors and then ranked according to their performance. Visual comparison of tested samples did not yield consistent results; however, definite trends were observed favoring one of the manufacturers. Some SEM/EDX analysis was performed on these mirrors subject to accelerated degradation in order to compare them to mirrors subject to natural degradation. However, insufficient data has been collected to show that any of the tests performed will accurately predict the relative life expectancy of the mirrors in an outdoor environment.

  10. PPPL to launch major upgrade of key fusion energy test facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to launch major upgrade of key fusion energy test facility NSTX project will produce most ... of nuclear fusion as a clean, safe and abundant fuel for generating electricity. ...

  11. Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor

    SciTech Connect (OSTI)

    Tsai, H.; Gomes, I.C.; Smith, D.L.; Palmer, A.J.; Ingram, F.W.; Wiffen, F.W.

    1998-09-01

    The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.

  12. Anomalous fast ion losses at high β on the tokamak fusion test...

    Office of Scientific and Technical Information (OSTI)

    Anomalous fast ion losses at high on the tokamak fusion test reactor Citation Details In-Document Search Title: Anomalous fast ion losses at high on the tokamak fusion test ...

  13. Model year 2010 Ford Fusion Level-1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Bocci, D.; Duoba, M.; Lohse-Busch, H.; Energy Systems

    2010-11-23

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Ford Fusion was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of vehicle-level testing in support of the Advanced Vehicle Testing Activity. Data was acquired during testing using non-intrusive sensors, vehicle network information, and facilities equipment (emissions and dynamometer). Standard drive cycles, performance cycles, steady-state cycles, and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database. The major results are shown in this report. Given the benchmark nature of this assessment, the majority of the testing was done over standard regulatory cycles and sought to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from an exhaust emissions bench, high-voltage and accessory current/voltage from a DC power analyzer, and CAN bus data such as engine speed, engine load, and electric machine operation. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Fusion and provide insight into unique features of its operation and design.

  14. Diamond Wire Cutting of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Keith Rule; Erik Perry; Robert Parsells

    2003-01-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D (Decontamination and Decommissioning) activity.

  15. DIAMOND WIRE CUTTING OF THE TOKAMAK FUSION TEST REACTOR

    SciTech Connect (OSTI)

    Rule, Keith; Perry, Erik; Parsells, Robert

    2003-02-27

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the techno logy was improved and redesigned for the actual cutting of the vacuum vessel. 10 complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D activity.

  16. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvn eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  17. Tandem mirror technology demonstration facility

    SciTech Connect (OSTI)

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  18. High-accuracy Aspheric X-ray Mirror Metrology Using Software Configurable Optical Test System/deflectometry

    SciTech Connect (OSTI)

    Huang, Run; Su, Peng; Burge, James H.; Huang, Lei; Idir, Mourad

    2015-08-05

    The Software Configurable Optical Test System (SCOTS) uses deflectometry to measure surface slopes of general optical shapes without the need for additional null optics. Careful alignment of test geometry and calibration of inherent system error improve the accuracy of SCOTS to a level where it competes with interferometry. We report a SCOTS surface measurement of an off-axis superpolished elliptical x-ray mirror that achieves <1 nm<1 nm root-mean-square accuracy for the surface measurement with low-order term included.

  19. Fokker-Planck equation in mirror research

    SciTech Connect (OSTI)

    Post, R.F.

    1983-08-11

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror.

  20. Mirror mount

    DOE Patents [OSTI]

    Kuklo, Thomas C.; Bender, Donald A.

    1994-01-01

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for "X" and "Y" tilts of the mirror only. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time.

  1. AVTA: 2013 Ford Fusion Energi PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  2. OPTIMIZING CENTRIFUGAL BARREL POLISHING FOR MIRROR FINISH SRF CAVITY AND RF TESTS AT JEFFERSON LAB

    SciTech Connect (OSTI)

    Ari Palczewski, Rongli Geng, Hui Tian

    2012-07-01

    We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E{sub ACC} thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

  3. Mirror mount

    DOE Patents [OSTI]

    Kuklo, T.C.; Bender, D.A.

    1994-10-04

    A unique lens or mirror mount having adjustable constraints at two key locations to allow for ''X'' and ''Y'' tilts of the mirror only is disclosed. The device uses two pair of flexures of a type such that the pivots of the mirror gimble are rigidly fixed in all planes allowing the device to have zero stacking tolerance and zero wear over time. 4 figs.

  4. Development of a universal diagnostic probe system for Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Mastronardi, R.; Cabral, R.; Manos, D.

    1982-05-01

    The Tokamak Fusion Test Reactor (TFTR), the largest such facility in the U.S., is discussed with respect to instrumentation in general and mechanisms in particular. The design philosophy and detailed implementation of a universal probe mechanism for TFTR is discussed.

  5. Mirror Advanced Reactor Study interim design report

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  6. Mirror mount

    DOE Patents [OSTI]

    Humpal, Harold H.

    1987-01-01

    A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).

  7. Mirror mount

    DOE Patents [OSTI]

    Humpal, H.H.

    1987-11-10

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.

  8. Mirror mount

    DOE Patents [OSTI]

    Humpal, H.H.

    1986-03-21

    A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.

  9. 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  10. PPPL to launch major upgrade of key fusion energy test facility | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab to launch major upgrade of key fusion energy test facility NSTX project will produce most powerful spherical torus in the world By John Greenwald January 9, 2012 Tweet Widget Google Plus One Share on Facebook NSTX-U cross section. NSTX-U cross section. Gallery: (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of Communications) (Photo by Elle Starkman, PPPL Office of

  11. Summary of TFTR (Tokamak Fusion Test Reactor) diagnostics, including JET (Joint European Torus) and JT-60

    SciTech Connect (OSTI)

    Hill, K.W.; Young, K.M.; Johnson, L.C.

    1990-05-01

    The diagnostic instrumentation on TFTR (Tokamak Fusion Test Reactor) and the specific properties of each diagnostic, i.e., number of channels, time resolution, wavelength range, etc., are summarized in tables, grouped according to the plasma parameter measured. For comparison, the equivalent diagnostic capabilities of JET (Joint European Torus) and the Japanese large tokamak, JT-60, as of late 1987 are also listed in the tables. Extensive references are given to publications on each instrument.

  12. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    M.E. Lumia; C.A. Gentile

    2002-01-18

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  13. Anomalous fast ion losses at high β on the tokamak fusion test reactor

    SciTech Connect (OSTI)

    Fredrickson, E. D.; Bell, M. G.; Budny, R. V.; Darrow, D. S.; White, R.

    2015-03-15

    This paper describes experiments carried out on the Tokamak Fusion Test Reactor (TFTR) [R. J. Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] to investigate the dependence of β-limiting disruption characteristics on toroidal field strength. The hard disruptions found at the β-limit in high field plasmas were not found at low field, even for β's 50% higher than the empirical β-limit of β{sub n} ≈ 2 at high field. Comparisons of experimentally measured β's to TRANSP simulations suggest anomalous loss of up to half of the beam fast ions in the highest β, low field shots. The anomalous transport responsible for the fast ion losses may at the same time broaden the pressure profile. Toroidal Alfvén eigenmodes, fishbone instabilities, and Geodesic Acoustic Modes are investigated as possible causes of the enhanced losses. Here, we present the first observations of high frequency fishbones [F. Zonca et al., Nucl. Fusion 49, 085009 (2009)] on TFTR. The interpretation of Axi-symmetric Beam-driven Modes as Geodesic Acoustic Modes and their possible correlation with transport barrier formation are also presented.

  14. Images of plasma disruption effects in the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Maqueda, R.J.; Wurden, G.A.

    1999-02-01

    Fast-framing imaging of visible radiation from magnetically confined plasmas has lately become a useful tool for both machine operation and physics studies. Using an intensified, commercial Kodak Ektapro imaging system, the effects of a plasma disruption were observed in the Tokamak Fusion Test Reactor (TFTR). The high-energy runaway electrons created soon after the disruption collide with the plasma facing components damaging this surface and producing a shower of debris that traverses the toroidal vessel and falls over the inner bumper limiter.

  15. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    SciTech Connect (OSTI)

    Darrow, D.S.; Zweben, S.J.; Batha, S.

    1996-01-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario.

  16. Mirror monochromator

    SciTech Connect (OSTI)

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOIs MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90 and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam energy of

  17. Deuterium-Tritium Simulations of the Enhanced Reversed Shear Mode in the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    Mikkelsen, D.R.; Manickam, J.; Scott, S.D.; Zarnstorff

    1997-04-01

    The potential performance, in deuterium-tritium plasmas, of a new enhanced con nement regime with reversed magnetic shear (ERS mode) is assessed. The equilibrium conditions for an ERS mode plasma are estimated by solving the plasma transport equations using the thermal and particle dif- fusivities measured in a short duration ERS mode discharge in the Tokamak Fusion Test Reactor [F. M. Levinton, et al., Phys. Rev. Letters, 75, 4417, (1995)]. The plasma performance depends strongly on Zeff and neutral beam penetration to the core. The steady state projections typically have a central electron density of {approx}2:5x10 20 m{sup -3} and nearly equal central electron and ion temperatures of {approx}10 keV. In time dependent simulations the peak fusion power, {approx} 25 MW, is twice the steady state level. Peak performance occurs during the density rise when the central ion temperature is close to the optimal value of {approx} 15 keV. The simulated pressure profiles can be stable to ideal MHD instabilities with toroidal mode number n = 1, 2, 3, 4 and {infinity} for {beta}{sub norm} up to 2.5; the simulations have {beta}{sub norm} {le} 2.1. The enhanced reversed shear mode may thus provide an opportunity to conduct alpha physics experiments in conditions imilar to those proposed for advanced tokamak reactors.

  18. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect (OSTI)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  19. Modeling and Testing Miniature Torsion Specimens for SiC Joining Development Studies for Fusion

    SciTech Connect (OSTI)

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.; Ferraris, Monica; Ventrella, Andrea; Katoh, Yutai

    2015-08-19

    The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. Miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with CVD-SiC and tested in torsion-shear prior to and after neutron irradiation. However, many of these miniature torsion specimens fail out-of-plane within the CVD-SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated joint strengths to determine the effects of the irradiation. Finite element elastic damage and elastic-plastic damage models of miniature torsion joints are developed that indicate shear fracture is likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated joint test data for a variety of joint materials. The unirradiated data includes Ti3SiC2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. The implications for joint data based on this sample design are discussed.

  20. BN-350 "Mirror System".

    SciTech Connect (OSTI)

    Thornton, A. L.; Halbig, J. K.

    2004-01-01

    The BN-350 Unattended Monitoring System plays an important role for the Safeguards Department of the International Atomic Energy Agency (IAEA). In 1998, the Los Alamos National Laboratory, in conjunction with the IAEA and sponsored by the US Department of Energy, designed and installed an integrated multi-instrument safeguards system at the BN-350 reactor in Aktau, Kazakhstan, to monitor spent-fuel and blanket assembly conditioning and canning activities. The purpose of the system was to provide effective safeguards at this facility while reducing the manpower load on the IAEA. The system is composed of many individual nondestructive analysis and surveillance components, each having a unique function and working together to provide fully unattended measurement of spent-fuel assemblies. The BN-350 ''Mirror System'' was built to provide a similar system with like components at the IAEA Headquarters in Vienna to facilitate analysis and/or simulation of problems that might occur in the field and for training inspectors and other technical staff in preparation for their work in the field. In addition, the system is used to test new equipment and qualify new or modified software. This paper describes the main components of the Mirror System, how the components are integrated, and how the Mirror System has benefited the IAEA.

  1. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  2. Design of tritium breeding experiments for the tokamak fusion test reactor

    SciTech Connect (OSTI)

    Jassby, D.L.; Caldwell, C.S.; Lewis, R.H.; Pettus, W.G.; Schmotzer, J.K.; Thornton, T.A.; Welfare, F.G.; Womack, R.E.

    1981-01-01

    Among intense fusion-neutron generators of the 1980's, the unique features of the TFTR are a geometrically extended D-T fusion-neutron source and a neutron spectrum, including backscattered neutrons, characteristic of a practical toroidal fusion reactor. It is planned to install a tritium-breeding module on the TFTR in order to take advantage of this opportunity to obtain reactor-relevant integral neutronics data and breeding rate profiles. These data will be combined with the measured neutron source parameters and the spatially dependent fusion-neutron fluence for comparison with the predictions of neutronics design codes. The results of this program will help determine the blanket coverage factors needed to achieve tritium self-sufficiency in future toroidal reactors. A preliminary conceptual design of a TFTR blanket module has been completed, utilizing lithium oxide as the tritium breeding material.

  3. Modeling of divertor geometry effects in China fusion engineering testing reactor by SOLPS/B2-Eirene

    SciTech Connect (OSTI)

    Zhao, M. L.; Chen, Y. P.; Li, G. Q.; Luo, Z. P.; Guo, H. Y.; Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031; General Atomics, P.O. Box 85608, San Diego, California 92186 ; Ye, M. Y.; Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 ; Tendler, M.

    2014-05-15

    The China Fusion Engineering Testing Reactor (CFETR) is currently under design. The SOLPS/B2-Eirene code package is utilized for the design and optimization of the divertor geometry for CFETR. Detailed modeling is carried out for an ITER-like divertor configuration and one with relatively open inner divertor structure, to assess, in particular, peak power loading on the divertor target, which is a key issue for the operation of a next-step fusion machine, such as ITER and CFETR. As expected, the divertor peak heat flux greatly exceeds the maximum steady-state heat load of 10 MW/m{sup 2}, which is a limit dictated by engineering, for both divertor configurations with a wide range of edge plasma conditions. Ar puffing is effective at reducing divertor peak heat fluxes below 10 MW/m{sup 2} even at relatively low densities for both cases, favoring the divertor configuration with more open inner divertor structure.

  4. High-Heat-Flux Testing of Irradiated Tungsten-Based Materials for Fusion Applications Using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36-× 36-× 18-cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  5. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  6. Water Cooled Mirror Design

    SciTech Connect (OSTI)

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  7. Cathode cooling by expansion of hydrogen in calorimetric tests for cold fusion

    SciTech Connect (OSTI)

    Gammon, B.E. )

    1993-05-01

    Expansion of hydrogen and its isotopes from hydrogen-absorbing cathodes can transfer significant amounts of energy to the surrounding aqueous media. In calorimetric efforts to confirm cold fusion, allowance must be made for thermal conduction along electrical leads. In conjunction with consideration of the extent of cathode cooling by expansion of hydrogen, the rupturing of the cavities within the cathodes and limitations to charging of the electrode by hydrogen flowing from fresh cracks are briefly addressed. 11 refs., 1 tab.

  8. A New Interpretation of Alpha-particle-driven Instabilities in Deuterium-Tritium Experiments on the Tokamak Fusion Test Reactor

    SciTech Connect (OSTI)

    R. Nazikian; G.J. Kramer; C.Z. Cheng; N.N. Gorelenkov; H.L. Berk; S.E. Sharapov

    2003-03-26

    The original description of alpha-particle-driven instabilities in the Tokamak Fusion Test Reactor (TFTR) in terms of Toroidal Alfvin Eigenmodes (TAEs) remained inconsistent with three fundamental characteristics of the observations: (i) the variation of the mode frequency with toroidal mode number, (ii) the chirping of the mode frequency for a given toroidal mode number, and (iii) the anti-ballooning density perturbation of the modes. It is now shown that these characteristics can be explained by observing that cylindrical-like modes can exist in the weak magnetic shear region of the plasma that then make a transition to TAEs as the central safety factor decreases in time.

  9. Electrons and Mirror Symmetry

    SciTech Connect (OSTI)

    Kumar, Krishna

    2007-04-04

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  10. Electrons and Mirror Symmetry

    ScienceCinema (OSTI)

    Kumar, Krishna

    2009-09-01

    The neutral weak force between an electron and a target particle, mediated by the Z boson, can be isolated by measuring the fractional change under a mirror reflection of the scattering probability of relativistic longitudinally polarized electrons off unpolarized targets. This technique yields neutral weak force measurements at a length scale of 1 femtometer, in contrast to high energy collider measurements that probe much smaller length scales. Study of the variation of the weak force over a range of length scales provides a stringent test of theory, complementing collider measurements. We describe a recent measurement of the neutral weak force between two electrons by the E158 experiment at the Stanford Linear Accelerator Center. While the weak force between an electron and positron has been extensively studied, that between two electrons had never directly been measured. We conclude by discussing prospects for even more precise measurements at future facilities.

  11. Hot and cold fusion

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    This article presents an overview of research in cold fusion research and development in cold fusion at the Tokomak Fusion Test Reactor at the Princeton Plasma Physics Lab, and at the inertial containment facility at Lawrence Livermore National Lab. is described.

  12. Erected mirror optical switch

    DOE Patents [OSTI]

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  13. High heat flux testing of HIP bonded DS-Cu/316SS first wall panel for fusion experimental reactors

    SciTech Connect (OSTI)

    Hatano, Toshihisa; Sato, Kazuyoshi; Dairaku, Masayuki

    1996-12-31

    A shielding blanket design in a fusion reactor such as ITER has been proposed to be a modulator structure integrated with the first wall. In terms of the fabrication, HIP (Hot Isostatic Pressing) method has been proposed for the joining of dispersion strengthened copper (DS-Cu) and type 316L stainless steel (SS316L) at FW. High heat flux tests of HIP bonded DS-Cu/SS316L first wall panel were performed at particle Beam Engineering Facility in JAERI to investigate its thermo-mechanical performance. After four campaigns of high heat flux testing, the FW panel was cut to observe the HIP bonded interface and heated surface of DS-Cu. Though melting of DS-Cu surface was observed, there were no cracks at the HIP bonded interface. 2 refs., 11 figs., 1 tab.

  14. Stable mirror mount

    DOE Patents [OSTI]

    Cutburth, R.W.

    1983-11-04

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and means for simultaneously locking said post assembly and said key assembly in a fixed position.

  15. Stable mirror mount

    DOE Patents [OSTI]

    Cutburth, Ronald W. (Bulls Gap, TN)

    1990-01-01

    An improved mirror mount assembly is disclosed. The mirror mount assembly provides a post assembly slidable in a Y-axis orientation and a nut plate assembly slidable in an X-axis orientation and a device for simultaneously locking the post assembly and the key assembly in a fixed position.

  16. Partially segmented deformable mirror

    DOE Patents [OSTI]

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  17. Partially segmented deformable mirror

    DOE Patents [OSTI]

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  18. Tandem mirror plasma confinement apparatus

    DOE Patents [OSTI]

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  19. Parametric systems analysis for tandem mirror hybrids

    SciTech Connect (OSTI)

    Lee, J.D.; Chapin, D.L.; Chi, J.W.H.

    1980-09-01

    Fusion fission systems, consisting of fissile producing fusion hybrids combining a tandem mirror fusion driver with various blanket types and net fissile consuming LWR's, have been modeled and analyzed parametrically. Analysis to date indicates that hybrids can be competitive with mined uranium when U/sub 3/O/sub 8/ cost is about 100 $/lb., adding less than 25% to present day cost of power from LWR's. Of the three blanket types considered, uranium fast fission (UFF), thorium fast fission (ThFF), and thorium fission supressed (ThFS), the ThFS blanket has a modest economic advantage under most conditions but has higher support ratios and potential safety advantages under all conditions.

  20. The Mission and Technology of a Gas Dynamic Trap Neutron Source for Fusion Material and Component Testing and Qualification

    SciTech Connect (OSTI)

    Ivanov, A; Kulcinski, J; Molvik, A; Ryutov, D; Santarius, J; Simonen, T; Wirth, B D; Ying, A

    2009-11-23

    The successful operation (with {beta} {le} 60%, classical ions and electrons with Te = 250 eV) of the Gas Dynamic Trap (GDT) device at the Budker Institute of Nuclear Physics (BINP) in Novosibirsk, Russia, extrapolates to a 2 MW/m{sup 2} Dynamic Trap Neutron Source (DTNS), which burns only {approx}100 g of tritium per full power year. The DTNS has no serious physics, engineering, or technology obstacles; the extension of neutral beam lines to steady state can use demonstrated engineering; and it supports near-term tokamaks and volume neutron sources. The DTNS provides a neutron spectrum similar to that of ITER and satisfies the missions specified by the materials community to test fusion materials (listed as one of the top grand challenges for engineering in the 21st century by the U.S. National Academy of Engineering) and subcomponents (including tritium-breeding blankets) needed to construct DEMO. The DTNS could serve as the first Fusion Nuclear Science Facility (FNSF), called for by ReNeW, and could provide the data necessary for licensing subsequent FSNFs.

  1. High-Heat Flux Testing of Irradiated Tungsten based Materials for Fusion Applications using Infrared Plasma Arc Lamps

    SciTech Connect (OSTI)

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans Jr, James O; Schaich, Charles Ross; Ueda, Yoshio; Harper, David C; Katoh, Yutai; Snead, Lance Lewis; Byun, Thak Sang

    2014-01-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat flux conditions, while historically a mainstay of fusion research has proved challenging, especially for irradiated materials. A new high-heat flux testing facility based on water-wall Plasma Arc Lamps (PALs) is now being used for materials and small component testing. Two PAL systems, utilizing a 12,000 C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, are currently in use. The first PAL system provides a maximum incident heat flux of 4.2 MW/m2 over an area of 9x12 cm2. The second PAL available at ORNL provides a maximum incident heat flux of 27 MW/m2 over an area of 1x10 cm2. The absorbed heat fluxes into a tungsten target for the two PALs are approximately 1.97 and 12.7 MW/m2, respectively. This paper will present the overall design of the new PAL facilities as well as the design and implementation of the Irradiated Material Target Station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interested, such as those for plasma facing components. Moreover, IMTS designs are underway to extend the testing of small mock-ups for assessing the combined heating and thermomechanical effects of cooled, irradiated components. For the testing of material coupons , the specimens are placed in a shallow recess within the molybdenum holder that is attached to a water-cooled copper alloy rod. As the measurement of the specimen temperature for PAL is historically challenging since traditional approaches of temperature measurement cannot be employed due to the infrared heating and proximity of the PAL reflector to the specimen that does not allow a direct line of site, experiments for temperature calibration are presented. Finally, results for the high-heat flux testing of tungsten-based materials using the PAL are presented. As a demonstration of the system, results will be

  2. Universally oriented renewable liquid mirror

    DOE Patents [OSTI]

    Ryutov, Dmitri D.; Toor, Arthur

    2004-07-20

    A universally oriented liquid mirror. A liquid and a penetrable unit are operatively connected to provide a mirror that can be universally oriented.

  3. Review of alternative concepts for magnetic fusion

    SciTech Connect (OSTI)

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given.

  4. Mirror plasma apparatus

    DOE Patents [OSTI]

    Moir, Ralph W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

  5. Nanolaminate deformable mirrors

    DOE Patents [OSTI]

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  6. Nanolaminate deformable mirrors

    DOE Patents [OSTI]

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2010-04-06

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  7. Engineering problems of tandem-mirror reactors

    SciTech Connect (OSTI)

    Moir, R.W.; Barr, W.L.; Boghosian, B.M.

    1981-10-22

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability. This paper discusses some of the many engineering problems facing the designer. We estimated the direct cost to be 2$/W/sub e/. Assuming total (direct and indirect) costs to be twice this number, we need to reduce total costs by factors between 1.7 and 2.3 to compete with future LWRs levelized cost of electricity. These reductions may be possible by designing magnets producing over 20T made possible by use of combinations of superconducting and normal conducting coils as well as improvements in performance and cost of neutral beam and microwave power systems. Scientific and technological understanding and innovation are needed in the area of thermal barrier pumping - a process by which unwanted particles are removed (pumped) from certain regions of velocity and real space in the end plug. Removal of exhaust fuel ions, fusion ash and impurities by action of a halo plasma and plasma dump in the mirror end region is another challenging engineering problem discussed in this paper.

  8. High field Nb/sub 3/Sn Axicell insert coils for the Mirror Fusion Test Facility-B (MFTF-B) axicell configuration. Final report

    SciTech Connect (OSTI)

    Baldi, R.W.; Tatro, R.E.; Scanlan, R.M.; Agarwal, K.L.; Bailey, R.E.; Burgeson, J.E.; Kim, I.K.; Magnuson, G.D.; Mallett, B.D.; Pickering, J.L.

    1984-03-01

    Two 12-tesla superconducting insert coils are being designed by General Dynamics Convair Division for the axicell regions of MFTF-B for Lawrence Livermore National Laboratory. A major challenge of this project is to ensure that combined fabrication and operational strains induced in the conductor are within stringent limitations of the relatively brittle Nb/sub 3/Sn superconductor filaments. These coils are located in the axicell region of MFTF-B. They have a clear-bore diameter of 36.195cm (14.25 inches) and consist of 27 double pancakes (i.e., 54 pancakes per coil) would on an electrically insulated 304LN stainless steel/bobbin helium vessel. Each pancake has 57 turns separated by G-10CR insulation. The complete winding bundle has 4.6 million ampere-turns and uniform current density of 2007 A/cm/sup 2/. In conjunction with the other magnets in the system, they produce a 12-tesla central field and a 12.52-tesla peak field. A multifilamentary Nb/sub 3/Sn conductor was selected to meet these requirements. The conductor consists of a monolithic insert soldered into a copper stabilizer. Sufficient cross-sectional area and work-hardening of the copper stabilizer has been provided for the conductor to self-react the electromagnetic Lorentz force induced hoop stresses with normal operational tensile strains less than 0.07 percent.

  9. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    SciTech Connect (OSTI)

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices.

  10. EIS-0017: Fusion Materials Irradiation Testing Facility, Hanford Reservation, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts associated with proposed construction and operation of an irradiation test facility, the Deuterium-Lithium High Flux Neutron Source Facility, at the Hanford Reservation.

  11. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2013-05-29

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  12. Transition Metal Switchable Mirror

    ScienceCinema (OSTI)

    None

    2010-01-08

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  13. Barstow heliostat mirror glass characterization

    SciTech Connect (OSTI)

    Lind, M.A.; Buckwalter, C.Q.

    1980-09-01

    The technical analysis performed on the special run of low iron float glass procured from the Ford Glass Division for the ten megawatt solar thermal/electric pilot power plant to be constructed at Barstow, California is discussed. The topics that are addressed include the optical properties and the relative durability of the glass. Two optical parameters, solar transmittance and optical flatness, were measured as referenced in the specification and found to be better than the stated tolerances. The average solar transmittance exceeded 0.890 transmittance units. The glass also exhibited optical angular flatness deviations less than +-1.0 mrad as required. Both qualitative and quantitative accelerated weathering tests were performed on the glass in order to compare its durability to other soda lime float glass and alternate composition glasses of interest to the solar community. In both the quantitative leaching experiments and the more qualitative room temperature and elevated temperature water vapor exposure experiments the heliostat glass exhibited the same characteristics as the other soda-lime silicate float glasses. As a final test for mirroring compatability, selected samples of the production run of the glass were sent to four different commercial manufacturers for mirror coating. None of the manufacturers reported any difficulty silvering the glass. Based on the tests performed, the glass meets or exceeds all optical specifications for the Barstow heliostat field.

  14. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  15. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    SciTech Connect (OSTI)

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-31

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  16. Long-term leaching tests with high ash fusion Maryland coal slag

    SciTech Connect (OSTI)

    Browman, M.G. )

    1991-03-01

    The main objective of this project was to investigate the potential environmental impact of the storage or disposal of coal gasification residues. In this regard, this investigation examined the quality of leachate produced during the long-term outdoor storage slag generated at the TVA 200-t/d Texaco gasifier in Muscle Shoals, Alabama. Evaluative laboratory extraction tests were also conducted on both the coarse and fine slag. Leachate quality was tracked in both the surface water and the water at depth after it percolated through the slag pile (leachate well water) by measuring pH and conductivity on a weekly basis and toxic trace elements and other chemical species quarterly or at longer intervals. The major species observed in the leachate well water were Ca and Mg cations as well as sulfate anions. The average electrical conductivity measured in the leachate well water was 2503 {mu}mhos/cm. The measured pH decreased from an initial value of 8.2 and stabilized at about 7.1 with occasional excursions to values as low as 6.3 during dry periods. Concurrently, sulfate concentrations averaged 1083 mg/l with occasional peaks as high as 2600 mg/l. Fe and Mn concentrations measured in the leachate well waters averaged 2.0 and 1.68 mg/l, respectively. Concentrations of species for which Primary Maximum Contaminant Limits (MCLs) for public drinking water supplies have been established were generally below the primary limits with the exception of Se and F which exceeded the limits occasionally. Concentrations of Fe, Mn, sulfate, and total dissolved solids were markedly above the Secondary MCLs set for these species. 35 refs., 2 figs., 21 tabs.

  17. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  18. Durable metallized polymer mirror

    DOE Patents [OSTI]

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  19. FEM calculation of eddy current losses and forces in thin conducting sheets of test facilities for fusion reactor components

    SciTech Connect (OSTI)

    Biro, O.; Preis, K.; Richter, K.R. ); Heller, R.; Komarek, P.; Maurer, W. )

    1992-03-01

    The eddy current carrying conducting parts in fusion reactor models are frequently relatively thin sheets. To avoid the associated numerical problems, the surface current density is represented in this paper by a scalar quantity and, as a novelty, the magnetic field is described overall by a magnetic vector potential to treat multiply connected conductors easily. The method is applied to several problems involving fusion reactor components.

  20. Complex/Symplectic Mirrors

    SciTech Connect (OSTI)

    Chuang, Wu-yen; Kachru, Shamit; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  1. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  2. Low Cost, Stable Switchable Mirrors: Lithium Ion Mirrors with Improved

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stability - Energy Innovation Portal Low Cost, Stable Switchable Mirrors: Lithium Ion Mirrors with Improved Stability Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummarySwitchable mirrors are a new generation of electrochromic windows that can alternate between a reflecting state and a transparent or absorbing state when a small voltage is applied. These energy saving devices have advantages over traditional absorbing electrochromics for

  3. Variable focal length deformable mirror

    SciTech Connect (OSTI)

    Headley, Daniel; Ramsey, Marc; Schwarz, Jens

    2007-06-12

    A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.

  4. Developmental long trace profiler using optimally aligned mirror based pentaprism

    SciTech Connect (OSTI)

    Barber, Samuel K; Morrison, Gregory Y; Yashchuk, Valeriy V; Gubarev, Mikhail V; Geckeler, Ralf D.; Buchheim, Jana; Siewert, Frank; Zeschke, Thomas

    2010-12-20

    A low-budget surface slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought into operation at the Advanced Light Source Optical Metrology Laboratory. The instrument is based on a precisely calibrated autocollimator and a movable pentaprism. The capability of the DLTP to achieve sub-microradian surface slope metrology has been verified via cross-comparison measurements with other high-performance slope measuring instruments when measuring the same high-quality test optics. In the present work, a further improvement of the DLTP is achieved by replacing the existing bulk pentaprism with a specially designed mirror based pentaprism. A mirror based pentaprism offers the possibility to eliminate systematic errors introduced by inhomogeneity of the optical material and fabrication imperfections of a bulk pentaprism. We provide the details of the mirror based pentaprism design and describe an original experimental procedure for precision mutual alignment of the mirrors. The algorithm of the alignment procedure and its efficiency are verified with rigorous ray tracing simulations. Results of measurements of a spherically curved test mirror and a flat test mirror using the original bulk pentaprism are compared with measurements using the new mirror based pentaprism, demonstrating the improved performance.

  5. Concentrating Solar Power Mirror Coating

    Broader source: Energy.gov [DOE]

    This photograph features Cheryl Kennedy, a senior scientist at the National Renewable Energy Laboratory. She holds a sample of an experimental mirror coating to increase the efficiency of...

  6. Mirror profile optimization for nano-focusing KB mirror

    SciTech Connect (OSTI)

    Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves

    2010-06-23

    A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 {mu}rad, peak-to-valley, compared to the bent slope of 3000 {mu}rad.

  7. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    SciTech Connect (OSTI)

    Gentile, C. A.; Blanchard, W. R.; Kozub, T. A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-14

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  8. Plasma fusion and cold fusion

    SciTech Connect (OSTI)

    Hideo, Kozima

    1996-12-31

    Fundamental problems of plasma fusion (controlled thermonuclear fusion) due to the contradicting demands of the magnetic confinement of plasma and suppression of instabilities occurring on and in plasma are surveyed in contrast with problems of cold fusion. Problems in cold fusion due to the complicated constituents and types of force are explained. Typical cold fusion events are explained by a model based on the presence of trapped neutrons in cold fusion materials. The events include Pons-Fleishmann effect, tritium anomaly, helium 4 production, and nuclear transmutation. Fundamental hypothesis of the model is an effectiveness of a new concept--neutron affinity of elements. The neutron affinity is defined and some bases supporting it are explained. Possible justification of the concept by statistical approach is given.

  9. Catalyzing Alpha-Channeling by Minority Ion Injection in Mirror Machines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inventors Andrey Zhmoginov and Nathaniel Fisch | Princeton Plasma Physics Lab Catalyzing Alpha-Channeling by Minority Ion Injection in Mirror Machines Inventors Andrey Zhmoginov and Nathaniel Fisch Maintaining fuel ions hotter than electrons would greatly facilitate controlled nuclear fusion. Alpha channeling is a technique that can potentially extract energy from fusion alpha particles before the energy is lost to the electrons, through collisions and transfer to the background fuel ions,

  10. Fusion reactor pumped laser

    DOE Patents [OSTI]

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  11. Fueling of tandem mirror reactors

    SciTech Connect (OSTI)

    Gorker, G.E.; Logan, B.G.

    1985-01-01

    This paper summarizes the fueling requirements for experimental and demonstration tandem mirror reactors (TMRs), reviews the status of conventional pellet injectors, and identifies some candidate accelerators that may be needed for fueling tandem mirror reactors. Characteristics and limitations of three types of accelerators are described; neutral beam injectors, electromagnetic rail guns, and laser beam drivers. Based on these characteristics and limitations, a computer module was developed for the Tandem Mirror Reactor Systems Code (TMRSC) to select the pellet injector/accelerator combination which most nearly satisfies the fueling requirements for a given machine design.

  12. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid (Conference...

    Office of Scientific and Technical Information (OSTI)

    D D ; Simonen, T C Publication Date: 2011-05-12 OSTI Identifier: 1113461 Report ... CA, United States, May 15 - May 19, 2011 Research Org: Lawrence Livermore National ...

  13. Mirror fusion. Quarterly report, October-December 1981

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    Research during this period is described for the following areas: (1) simulation of long-timescale plasma phenomena, (2) analytic model of radiation-dominated decay of a compact toroid, (3) hf microinstabilities in hot-electron plasma, (4) improved heating with two-frequency ecrh, (5) exact and approximate configurational invariants, (6) negative ion formation in hydrogen discharges, (7) confinement systems, (8) development and technology, and (9) MFTF. (MOW)

  14. Fusion energy

    SciTech Connect (OSTI)

    Baylor, Larry

    2014-05-02

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  15. Fusion energy

    ScienceCinema (OSTI)

    Baylor, Larry

    2014-05-23

    Larry Baylor explains how the US ITER team is working to prevent solar flare-like events at a fusion energy reactor that will be like a small sun on earth

  16. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  17. High stroke pixel for a deformable mirror

    DOE Patents [OSTI]

    Miles, Robin R.; Papavasiliou, Alexandros P.

    2005-09-20

    A mirror pixel that can be fabricated using standard MEMS methods for a deformable mirror. The pixel is electrostatically actuated and is capable of the high deflections needed for spaced-based mirror applications. In one embodiment, the mirror comprises three layers, a top or mirror layer, a middle layer which consists of flexures, and a comb drive layer, with the flexures of the middle layer attached to the mirror layer and to the comb drive layer. The comb drives are attached to a frame via spring flexures. A number of these mirror pixels can be used to construct a large mirror assembly. The actuator for the mirror pixel may be configured as a crenellated beam with one end fixedly secured, or configured as a scissor jack. The mirror pixels may be used in various applications requiring high stroke adaptive optics.

  18. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photons fusion 2012 Photons & Fusion Newsletter August 2012 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science ...

  19. Experimental Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Fusion Research PPPL fusion research centers on the National Spherical Torus Experiment (NSTX), which is undergoing a $94 million upgrade that will make it the most powerful experimental fusion facility, or tokamak, of its type in the world when work is completed in 2014. Experiments will test the ability of the upgraded spherical facility to maintain a high-performance plasma under conditions of extreme heat and power. Results could strongly influence the design of future fusion

  20. Simulation of Fusion Plasmas

    ScienceCinema (OSTI)

    Holland, Chris [UC San Diego, San Diego, California, United States

    2010-01-08

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the ?burning plasma? regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  1. Compact neutron imaging system using axisymmetric mirrors

    DOE Patents [OSTI]

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  2. Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power www.pppl.gov FACT SHEET FUSION POWER Check us out on YouTube. http://www.youtube.com/ppplab Find us on Facebook. http://www.facebook.com/PPPLab Follow us on Twitter. @PPPLab Access our RSS feed @PPPLab Deuterium Electron Proton Hydrogen Tritium Neutron For centuries, the way in which the sun and stars produce their energy remained a mystery to man. During the twentieth century, scientists discovered that they produce their energy by the fusion process. E=mc 2 , Albert Einstein's familiar

  3. Compaction managed mirror bend achromat

    DOE Patents [OSTI]

    Douglas, David

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  4. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  5. Fusion Power Demonstrations I and II

    SciTech Connect (OSTI)

    Doggett, J.N.

    1985-01-01

    In this report we present a summary of the first phase of the Fusion Power Demonstration (FPD) design study. During this first phase, we investigated two configurations, performed detailed studies of major components, and identified and examined critical issues. In addition to these design specific studies, we also assembled a mirror-systems computer code to help optimize future device designs. The two configurations that we have studied are based on the MARS magnet configuration and are labeled FPD-I and FPD-II. The FPD-I configuration employs the same magnet set used in the FY83 FPD study, whereas the FPD-II magnets are a new, much smaller set chosen to help reduce the capital cost of the system. As part of the FPD study, we also identified and explored issues critical to the construction of an Engineering Test Reactor (ETR). These issues involve subsystems or components, which because of their cost or state of technology can have a significant impact on our ability to meet FPD's mission requirements on the assumed schedule. General Dynamics and Grumman Aerospace studied two of these systems, the high-field choke coil and the halo pump/direct converter, in great detail and their findings are presented in this report.

  6. Intense fusion neutron sources

    SciTech Connect (OSTI)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-15

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 10{sup 15}-10{sup 21} neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 10{sup 20} neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the

  7. Mirror with thermally controlled radius of curvature

    DOE Patents [OSTI]

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  8. Cold fusion, Alchemist's dream

    SciTech Connect (OSTI)

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  9. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities

    SciTech Connect (OSTI)

    C.P.C. Wong; B. Merrill

    2014-10-01

    ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a system code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.

  10. Conceptual Engineering Method for Attenuating He Ion Interactions on First Wall Components in the Fusion Test Facility (FTF) Employing a Low-Pressure Noble Gas

    SciTech Connect (OSTI)

    C.A.Gentile, W.R.Blanchard, T.Kozub, C.Priniski, I.Zatz, S.Obenschain

    2009-09-21

    It has been shown that post detonation energetic helium ions can drastically reduce the useful life of the (dry) first wall of an IFE reactor due to the accumulation of implanted helium. For the purpose of attenuating energetic helium ions from interacting with first wall components in the Fusion Test Facility (FTF) target chamber, several concepts have been advanced. These include magnetic intervention (MI), deployment of a dynamically moving first wall, use of a sacrificial shroud, designing the target chamber large enough to mitigate the damage caused by He ions on the target chamber wall, and the use of a low pressure noble gas resident in the target chamber during pulse power operations. It is proposed that employing a low-pressure (~ 1 torr equivalent) noble gas in the target chamber will thermalize energetic helium ions prior to interaction with the wall. The principle benefit of this concept is the simplicity of the design and the utilization of (modified) existing technologies for pumping and processing the noble ambient gas. Although the gas load in the system would be increased over other proposed methods, the use of a "gas shield" may provide a cost effective method of greatly extending the first wall of the target chamber. An engineering study has been initiated to investigate conceptual engineering metmethods for implementing a viable gas shield strategy in the FTF.

  11. The role of the neutral beam fueling profile in the performance of the Tokamak Fusion Test Reactor and other tokamak plasmas

    SciTech Connect (OSTI)

    Park, H.K.; Batha, S.; Sabbagh, S.A. |

    1997-02-01

    Scalings for the stored energy and neutron yield, determined from experimental data are applied to both deuterium-only and deuterium-tritium plasmas in different neutral beam heated operational domains in Tokamak Fusion Test Reactor. The domain of the data considered includes the Supershot, High poloidal beta, Low-mode, and limiter High-mode operational regimes, as well as discharges with a reversed magnetic shear configuration. The new important parameter in the present scaling is the peakedness of the heating beam fueling profile shape. Ion energy confinement and neutron production are relatively insensitive to other plasma parameters compared to the beam fueling peakedness parameter and the heating beam power when considering plasmas that are stable to magnetohydrodynamic modes. However, the stored energy of the electrons is independent of the beam fueling peakedness. The implication of the scalings based on this parameter is related to theoretical transport models such as radial electric field shear and Ion Temperature Gradient marginality models. Similar physics interpretation is provided for beam heated discharges on other major tokamaks.

  12. (Fusion energy research)

    SciTech Connect (OSTI)

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  13. Laser fusion monthly -- August 1980

    SciTech Connect (OSTI)

    Ahlstrom, H.G.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  14. Prospects for Tokamak Fusion Reactors

    SciTech Connect (OSTI)

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  15. US ITER | Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why Fusion? US Fusion Research Educational Resources Why Fusion? Home > Why Fusion? What is Fusion? Fusion is a key element in long-term US energy plans. ITER will allow scientists to explore the physics of a burning plasma at energy densities close to that of a commercial power plant. This is a critical step towards producing and delivering electricity from fusion to the grid. Nuclear fusion occurs naturally in stars, like our sun. When hydrogen gets hot enough, the process of fusion

  16. Radius of curvature controlled mirror

    DOE Patents [OSTI]

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  17. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOE Patents [OSTI]

    Hartman, Charles W.; Shearer, James W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  18. Production of field-reversed mirror plasma with a coaxial plasma gun

    DOE Patents [OSTI]

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  19. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Sciences Fusion Energy Sciences Expanding the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundation ...

  20. Thermochemical hydrogen production based on magnetic fusion

    SciTech Connect (OSTI)

    Krikorian, O.H.; Brown, L.C.

    1982-06-10

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO/sub 3/ decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars.

  1. Passivation coating for flexible substrate mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin; Benson, David K.

    1990-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  2. Process for preparing improved silvered glass mirrors

    DOE Patents [OSTI]

    Buckwalter, C.Q. Jr.

    1980-01-28

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  3. Deformable mirror for short wavelength applications

    DOE Patents [OSTI]

    Chapman, Henry N.; Sweeney, Donald W.

    1999-01-01

    A deformable mirror compatible with short wavelength (extreme ultraviolet) radiation that can be precisely controlled to nanometer and subnanometer accuracy is described. Actuators are coupled between a reaction plate and a face plate which has a reflective coating. A control system adjusts the voltage supplied to the actuators; by coordinating the voltages supplied to the actuators, the reflective surface of the mirror can be deformed to correct for dimensional errors in the mirror or to produce a desired contour.

  4. Process for preparing improved silvered glass mirrors

    DOE Patents [OSTI]

    Buckwalter, Jr., Charles Q. (Benton, WA)

    1981-01-01

    Glass mirrors having improved weathering properties are prepared by an improvement in the process for making the mirrors. The glass surface after it has been cleaned but before it is silvered, is contacted with a solution of lanthanide rare earths in addition to a sensitization solution of tin or palladium. The addition of the rare earths produces a mirror which has increased resistance to delamination of the silver from the glass surface in the presence of water.

  5. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions

    SciTech Connect (OSTI)

    Donovan, D. C.; Boris, D. R.; Kulcinski, G. L.; Santarius, J. F.; Piefer, G. R.

    2013-03-15

    A new diagnostic has been developed that uses the time of flight (TOF) of the products from a nuclear fusion reaction to determine the location where the fusion reaction occurred. The TOF diagnostic uses charged particle detectors on opposing sides of the inertial electrostatic confinement (IEC) device that are coupled to high resolution timing electronics to measure the spatial profile of fusion reactions occurring between the two charged particle detectors. This diagnostic was constructed and tested by the University of Wisconsin-Madison Inertial Electrostatic Confinement Fusion Group in the IEC device, HOMER, which accelerates deuterium ions to fusion relevant energies in a high voltage ({approx}100 kV), spherically symmetric, electrostatic potential well [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, T. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. The TOF diagnostic detects the products of D(d,p)T reactions and determines where along a chord through the device the fusion event occurred. The diagnostic is also capable of using charged particle spectroscopy to determine the Doppler shift imparted to the fusion products by the center of mass energy of the fusion reactants. The TOF diagnostic is thus able to collect spatial profiles of the fusion reaction density along a chord through the device, coupled with the center of mass energy of the reactions occurring at each location. This provides levels of diagnostic detail never before achieved on an IEC device.

  6. Plasma confinement apparatus using solenoidal and mirror coils

    DOE Patents [OSTI]

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  7. Fusion Power Associates Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fpa awards Fusion Power Associates Awards Fusion Power Associates is "a non-profit, tax-exempt research and educational foundation, providing information on the status of fusion development and other applications of plasma science and fusion research". The Association makes awards in four categories: Distinguished Career Awards, Leadership Awards, Excellence in Fusion Engineering, and Special Awards. Since 1987, Distinguished Career Awards have been presented "to individuals who

  8. Mirror Advanced Reactor Study (MARS): executive summary and overview

    SciTech Connect (OSTI)

    Logan, B.G.; Perkins, L.J.; Gordon, J.D.

    1984-07-01

    Two self-consistent MARS configurations are discussed - a 1200-MWe commercial electricity-generating plant and a synguels-generating plant that produces hydrogen with an energy equivalent to 26,000 barrels of oil per day. The MARS machine emphasizes the attractive features of the tandem mirror concept, including steady-state operation, a small-diameter high-beta plasma, a linear central cell with simple low-maintenance blankets, low first-wall heat fluxes (<10 W/cm/sup 2/), no driven plasma currents or associated disruptions, natural halo impurity diversion, and direct conversion of end-loss charged-particle power. The MARS electric plant produces 2600 MW of fusion power in a 130-m-long central cell. Advanced tandem-mirror plasma-engineering concepts, a high-efficiency liquid lithium-lead (Li/sub 17/Pb/sub 83/) blanket, and efficient direct electrical conversion of end loss power combine to produce a high net plant efficiency of 36%. With a total capital cost of $2.9 billion (constant 1983 dollars), the MARS electric plant produces busbar electricity at approx. 7 cents/kW-hour. The MARS synfuels plant produces 3500 MW of fusion power in a 150-m-long central cell. A helium-gas-cooled silicon carbide pebble-bed blanket provides high-temperature (1000/sup 0/C) heat to a thermochemical water-splitting cycle and the resulting hydrogen is catalytically converted to methanol for distribution. With a total capital cost of $3.6 billion (constant 1983 dollars), the synfuels plant produces methanol fuel at about $1.7/gal. The major features of the MARS reactor include sloshing-ion thermal barrier plugs for efficient plasma confinement, a high efficiency blanket, high-field (24-T) choke cells, drift pumping for trapped plasma species, quasi-optical electron-cyclotron resonant heating (ECRH) systems, and a component gridless direct converter.

  9. Three-point spherical mirror mount

    DOE Patents [OSTI]

    Cutburth, R.W.

    1984-01-23

    A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

  10. LED structure with enhanced mirror reflectivity

    DOE Patents [OSTI]

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A

    2014-04-01

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  11. Durable silver coating for mirrors

    DOE Patents [OSTI]

    Wolfe, Jesse D.; Thomas, Norman L.

    2000-01-01

    A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.

  12. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    news Photons & Fusion Newsletter - 2014 May ARC Beamlet Profiles NIF Petawatt Laser Is on ... An article in the Feb. 12 online issue of the journal Nature reports that fusion fuel ...

  13. Fusion Forum 1981

    SciTech Connect (OSTI)

    Fowler, T.K.

    1981-07-28

    This review covers the basics of the fusion process. Some research programs and their present status are mentioned. (MOW)

  14. Taming Plasma Fusion Snakes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taming Plasma Fusion Snakes Taming Plasma Fusion Snakes Supercomputer simulations move fusion energy closer to reality January 24, 2014 Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov SugiSnakes_2.jpg Researchers have been able to see and measure plasma snakes - corkscrew-shaped concentrations of plasma density in the center of a fusion plasma -- for years. 3D nonlinear plasma simulations conducted at NERSC are providing new insights into the formation and stability of these structures. Image

  15. Magneto-Inertial Fusion

    SciTech Connect (OSTI)

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; Betti, R.; Bauer, B. S.; Lindemuth, I. R.; Siemon, R. E.; Miller, R. L.; Laberge, M.; Delage, M.

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  16. Cold fusion research

    SciTech Connect (OSTI)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  17. Cold fusion coatings

    SciTech Connect (OSTI)

    Wachtler, W.R.

    1993-12-31

    Historically, fusion of metals was accomplished through the use of heat. Cold fusion has become a reality with metal to metal fusion occurring at room temperature. The basics of this new technology which can be done in tank, brush or solid form is covered in this paper.

  18. Final report on optical damage tests

    SciTech Connect (OSTI)

    Not Available

    1990-05-18

    This report presents the data resulting from a series of mirror damage tests conducted with the FLEX laser at KMS Fusion on March 14 through March 20, 1990 for Los Alamos National Laboratory. The FLEX laser consists of a ND:YLF master oscillator and four Nd:glass rod amplifiers operating at 1.05 {mu}m. For this program, the laser was configured to produce a 3 ms long square wave envelope of mode locked pulses which was focused onto Los Alamos supplied targets via a 1200 mm focal length (f/20) lens at approximately normal incidence. The pulse energy and spot size were specified by Los Alamos personnel, the energy varying from approximately 10--40 Joules and the spot size ranging from approximately 100--300 {mu}m. A total of 63 target shots and 19 calibration and/or test shots were conducted.

  19. Electric dipole radiation near a mirror

    SciTech Connect (OSTI)

    Li Xin; Arnoldus, Henk F.

    2010-05-15

    The emission of radiation by a linearly oscillating electric dipole is drastically altered when the dipole is close to the surface of a mirror. The energy is not emitted along optical rays, as for a free dipole, but as a set of four optical vortices. The field lines of energy flow spiral around a set of two lines through the dipole. At a larger distance from the dipole, singularities and isolated vortices appear. It is shown that these interference vortices are due to the vanishing of the magnetic field at their centers. In the plane of the mirror there is a singular circle with a diameter which is proportional to the distance between the dipole and the mirror. Inside this circle, all energy flows to a singularity on the mirror surface.

  20. Coating considerations for mirrors of CPV devices

    SciTech Connect (OSTI)

    Schmauder, Torsten; Sauer, Peter; Ickes, Gerd

    2014-09-26

    One of the different optical concepts for concentrator devices is to place a focussing primary mirror behind a transparent front plate. In addition (also in case of Fresnel-diffractive main optics), further 'secondary' reflectors may be used further along the beam path. Such mirrors are usually implemented as coating stacks of a highly reflective metal - usually silver - and protective layers. The protective layers are preferably designed as reflection enhancing interference stack. The design of such protective layer stacks yields two difficulties, which are addressed in this paper: (a) vacuum coating of three-dimensional parts will result in a thickness distribution and the optical design of the stack should thus be tolerant to layer thickness variations, and (b) different places of the mirror will have different angle-of-incidence of the sunlight under operating conditions. As result, the layer stack has a different design at different places of the mirror.

  1. Motorized control for mirror mount apparatus

    DOE Patents [OSTI]

    Cutburth, Ronald W.

    1989-01-01

    A motorized control and automatic braking system for adjusting mirror mount apparatus is disclosed. The motor control includes a planetary gear arrangement to provide improved pitch adjustment capability while permitting a small packaged design. The motor control for mirror mount adjustment is suitable for laser beam propagation applications. The brake is a system of constant contact, floating detents which engage the planetary gear at selected between-teeth increments to stop rotation instantaneously when the drive motor stops.

  2. TMRBAR: a code to calculate plasma parameters for tandem-mirror reactors operating in the MARS mode

    SciTech Connect (OSTI)

    Campbell, R.B.

    1983-08-30

    The purpose of this report is to document the plasma power balance model currently used by LLNL to calculate steady state operating points for tandem mirror reactors. The code developed from this model, TMRBAR, has been used to predict the performance and define supplementary heating requirements for drivers used in the Mirror Advanced Reactor Study (MARS) and for the Fusion Power Demonstration (FPD) study. The equations solved included particle and energy balance for central cell and end cell species, quasineutrality at several cardinal points in the end cell region, as well as calculations of volumes, densities and average energies based on given constraints of beta profiles and fusion power output. Alpha particle ash is treated self-consistently, but no other impurity species is treated.

  3. Viral membrane fusion

    SciTech Connect (OSTI)

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  4. Search for neutrons as evidence of cold fusion

    SciTech Connect (OSTI)

    Cannizzaro, F.; Greco, G.; Raneli, M.; Spitale, M.C.; Tomarchio, E. )

    1992-01-01

    In this paper investigations performed at the University of Palermo in an attempt to reproduce the cold fusion experiment are reported. The search was devoted to detecting neutron emission from palladium electrodes electrolytically charged with deuterium. In no test was neutron emission significantly over the background observed, either in bursts or continuous. Results of a few tests are reported. For the more sensitive test, an upper limit for D(d,n) cold fusion (at 98% confidence level) of {lambda}{sub f} {lt} 3.6 {times} 10{sup {minus}24} fusion/s {center dot} d-d pair is determined.

  5. Characterization of the axial plasma shock in a table top plasma focus after the pinch and its possible application to testing materials for fusion reactors

    SciTech Connect (OSTI)

    Soto, Leopoldo Pavez, Cristian; Moreno, Jos; Inestrosa-Izurieta, Mara Jos; Veloso, Felipe; Gutirrez, Gonzalo; Vergara, Julio; Clausse, Alejandro; Bruzzone, Horacio; Castillo, Fermn; and others

    2014-12-15

    The characterization of plasma bursts produced after the pinch phase in a plasma focus of hundreds of joules, using pulsed optical refractive techniques, is presented. A pulsed Nd-YAG laser at 532?nm and 8?ns FWHM pulse duration was used to obtain Schlieren images at different times of the plasma dynamics. The energy, interaction time with a target, and power flux of the plasma burst were assessed, providing useful information for the application of plasma focus devices for studying the effects of fusion-relevant pulses on material targets. In particular, it was found that damage factors on targets of the order of 10{sup 4} (W/cm{sup 2})s{sup 1/2} can be obtained with a small plasma focus operating at hundred joules.

  6. Effect of exposing two commercial manufacturers' second surface silver/glass mirrors to elevated temperature, mechanical loading, and high-humidity environments

    SciTech Connect (OSTI)

    Dake, L.S.; Lind, M.A.

    1982-04-01

    A preliminary examination of the effect of three accelerated exposure parameters on second surface silver/glass mirrors was performed. The variables studied were temperature (elevated and sub-zero), humidity and mechanical loading. One test consisted of exposing mirror coupons to dry heat (80/sup 0/C) and heat plus water vapor (80/sup 0/C, approx. 100% RH) environments. Another test consisted of subjecting mechanically loaded mirror strips to sub-zero temperature (-20/sup 0/C), dry heat (80/sup 0/C), and heat plus water vapor. Samples were evaluated qualitatively using dark field microscopy (1X and 100X). Quantitative determination of the effects of exposure testing on the mirrors was done with spectrophotometer spectral hemispherical and diffuse reflectance measurements. Degradation that was progressive with time was observed for mirrors exposed to dry heat and heat plus water vapor. The degradation did not have the same visual appearance for the two environments. Mechanical loading at -20/sup 0/C produced no degradation after three months' exposure time. Mechanical loading in dry heat and heat plus water vapor environments resulted in mirror degradation that was the same as that found in unloaded mirrors exposed to the same temperature and humidity. These preliminary tests indicate that the dry heat and heat plus water vapor accelerated tests may provide useful information about mirror degradation, while the mechanical load tests do not. The microscopy and spectrophotometer reflectance measurements were both useful techniques for determining the extent of degradation.

  7. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOE Patents [OSTI]

    Cohen, Simon J; Jeong, Hwan J; Shafer, David R

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  8. Fusion: The controversy continues

    SciTech Connect (OSTI)

    1989-07-01

    Nuclear fusion-the power of the stars that promises mankind an inexhaustible supply of energy-seems concurrently much closer and still distant this month. The recent flurry of announcements concerning the achievement of a cold fusion reaction has-if nothing else-underscored the historic importance of the basic fusion reaction which uses hydrogen ions to fuel an energy-producing reaction.

  9. Fusion Communication Summit cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMUNICATIONS SUMMIT for U.S. Magnetic Fusion September 12-13, 2012 Princeton University - Frist Campus Center Princeton, New Jersey, USA Mission Statement Announcements...

  10. Glossary of fusion energy

    SciTech Connect (OSTI)

    Whitson, M.O.

    1982-01-01

    This glossary gives brief descriptions of approximately 400 terms used by the fusion community. Schematic diagrams and photographs of the major US experiments are also included. (MOW)

  11. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Photons & Fusion Newsletter May 2012 Reducing the Time to Grow Good Cryogenic Layers One of the most demanding aspects of preparing targets for NIF ignition experiments is...

  12. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2013 Photons & Fusion is a monthly review of science and technology at the National Ignition Facility & Photon Science Directorate. For more information, submit a question....

  13. Magnetic fusion reactor economics

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  14. Fusion and Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ignition Fusion and Ignition What is Fusion? Fusion is the process that powers the sun and the stars. Fusion describes what happens when the nuclei of light atoms overcome the electrical resistance that keeps them apart and get close enough to activate the strong nuclear force that holds them together, or "fuse." When fused, they form a bigger nucleus; two elements combine to create a different element at the level of the nucleus. Making elements fuse requires an enormous amount of

  15. Photons & Fusion Newsletter - 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Science on NIF: Exploring the Physics of Star Formation Article on MOIRE Optics on Cover of Applied Optics Mode 1 Drive Asymmetry in NIF Inertial Confinement Fusion...

  16. Alignment and focus of mirrored facets of a heliosat

    DOE Patents [OSTI]

    Yellowhair, Julius E; Ho, Clifford Kuofei; Diver, Richard B; Moss, Timothy A

    2013-11-12

    Various technologies pertaining to aligning and focusing mirrored facets of a heliostat are described herein. Updating alignment and/or focus of mirrored facets is undertaken through generation of a theoretical image, wherein the theoretical image is indicative of a reflection of the target via the mirrored facets when the mirrored facets are properly aligned. This theoretical image includes reference points that are overlaid on an image of the target as reflected by the mirrored facets of the heliostat. A technician adjusts alignment/focus of a mirrored facet by causing reflected reference markings to become aligned with the reference points in the theoretical image.

  17. Metrology for x-ray telescope mirrors in a vertical configuration

    SciTech Connect (OSTI)

    Li, Haizhang; Li, Xiaodan; Grindel, M.W.

    1995-09-01

    Mirrors used in x-ray telescope systems for observations outside of the earth`s atmosphere are usually made of several thin nested shells, each formed by a pair of paraboloidal and hyperboloidal surfaces. The thin shells are very susceptible to self-weight deflection caused by gravity and are nearly impossible to test by conventional interferometric techniques. The metrology requirements for these mirrors are extremely challenging. This paper presents a prototype of a Vertical Scanning Long Trace Profiler (VSLTP) which is optimized to measure the surface figure of x-ray telescope mirrors in a vertical orientation. The optical system of the VSLTP is described. Experimental results from measurements on an x-ray telescope mandrel and tests of the accuracy and repeatability of the prototype VSLTP are presented. The prototype instrument has achieved a height measurement accuracy of about 50 nanometers with a repeatability of better than 20 nanometers, and a slope measurement accuracy of about 1 microradian.

  18. Solid State Replacement of Rotating Mirror Cameras

    SciTech Connect (OSTI)

    Frank, A M; Bartolick, J M

    2006-08-25

    Rotating mirror cameras have been the mainstay of mega-frame per second imaging for decades. There is still no electronic camera that can match a film based rotary mirror camera for the combination of frame count, speed, resolution and dynamic range. The rotary mirror cameras are predominantly used in the range of 0.1 to 100 micro-seconds per frame, for 25 to more than a hundred frames. Electron tube gated cameras dominate the sub microsecond regime but are frame count limited. Video cameras are pushing into the microsecond regime but are resolution limited by the high data rates. An all solid state architecture, dubbed ''In-situ Storage Image Sensor'' or ''ISIS'', by Prof. Goji Etoh, has made its first appearance into the market and its evaluation is discussed. Recent work at Lawrence Livermore National Laboratory has concentrated both on evaluation of the presently available technologies and exploring the capabilities of the ISIS architecture. It is clear though there is presently no single chip camera that can simultaneously match the rotary mirror cameras, the ISIS architecture has the potential to approach their performance.

  19. Electropionics and fusion

    SciTech Connect (OSTI)

    Kenny, J.P. )

    1991-05-01

    This paper reports on the electropionic mass formula which does not differentiate between nuclei and elementary particles, but gives the deuteron a unique bifurcated space-time description. This hints at fusion products produced by anomalous intermediate mass states of 3026, 3194, and 3515 MeV/c{sup 2} that then decay to produce energy. Another unique possibility in electropionics is that no fusion of deuterons occurs, but the deuteron is changed by electron capture into a D-meson that then decays to produce observed cold fusion energies. All these cold fusion electropionic reactions violate baryon conservation but do produce energy yields consistent with reported cold fusion decay products and energy levels.

  20. Science DMZ Fuels Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ Fuels Fusion Research General Atomics remote controls fusion experiments, bridges...

  1. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    DOE Patents [OSTI]

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  2. Method for making mirrored surfaces comprising superconducting material

    DOE Patents [OSTI]

    Early, J.T.; Hargrove, R.S.

    1989-12-12

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  3. Method for making mirrored surfaces comprising superconducting material

    DOE Patents [OSTI]

    Early, James T.; Hargrove, R. Steven

    1989-01-01

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40.degree. K. and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  4. Optical performance of the TBC-2 solar collector before and after the 1993 mirror lustering

    SciTech Connect (OSTI)

    Houser, R.; Strachan, J.

    1995-02-01

    In 1993, the mirror facets of one of Sandia`s point-focusing solar collectors, the Test Bed Concentrator {number_sign}2 (TBC-2), were reconditioned. The concentrator`s optical performance was evaluated before and after this operation. This report summarizes and compares the results of these tests. The tests demonstrated that the concentrator`s total power and peak flux were increased while the overall flux distribution in the focal plane remained qualitatively the same.

  5. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  6. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C.E.; Benson, D.K.

    1984-07-20

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate prior to metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  7. Silicon nitride protective coatings for silvered glass mirrors

    DOE Patents [OSTI]

    Tracy, C. Edwin; Benson, David K.

    1988-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors.

  8. Fusion Nuclear Science Pathways Assessment

    SciTech Connect (OSTI)

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  9. Particle deconfinement in a bent magnetic mirror

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gueroult, Renaud; Fisch, Nathaniel J.

    2012-11-06

    Here, coils misalignment in a magnetic mirror can produce additional particle transport. The magnetic field non axi-symmetry is responsible for radial and longitudinal drifts in a way much similar to the neo-classical transport in a tandem mirror cell distorted by end plugs. Accordingly, a regime exhibiting large radial displacements––similar to the resonant regime in tandem mirrors––can be obtained by confining ions azimuthally, for example by means of a properly tuned radial electric field. Because of the mass dependence of the magnetic field non-homogeneity drift velocities, the azimuthal trapping is mass specific, allowing, in principle, the filtering of a specific speciesmore » based on its mass.« less

  10. US ITER - Why Fusion?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL FusEdWeb Educational Outreach: US ITER staff members are available for presentations on fusion energy and the ITER project to technical, civic, community, and student groups. ...

  11. Fusion-breeder program

    SciTech Connect (OSTI)

    Moir, R.W.

    1982-11-19

    The various approaches to a combined fusion-fission reactor for the purpose of breeding /sup 239/Pu and /sup 233/U are described. Design aspects and cost estimates for fuel production and electricity generation are discussed. (MOW)

  12. Fiber optics welder having movable aligning mirror

    DOE Patents [OSTI]

    Higgins, Robert W.; Robichaud, Roger E.

    1981-01-01

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  13. Cold nuclear fusion

    SciTech Connect (OSTI)

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  14. ITER Fusion Energy

    ScienceCinema (OSTI)

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  15. Accelerator and Fusion Research Division: 1987 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  16. Fusion Energy Division: Annual progress report, period ending December 31, 1987

    SciTech Connect (OSTI)

    Morgan, O.B. Jr.; Berry, L.A.; Sheffield, J.

    1988-11-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, carries out research in nearly all areas of magnetic fusion. Collaboration among staff from ORNL, Martin Marietta Energy Systems, Inc., private industry, the academic community, and other fusion laboratories, in the United States and abroad, is directed toward the development of fusion as an energy source. This report documents the program's achievements during 1987. Issued as the annual progress report of the ORNL Fusion Energy Division, it also contains information from components of the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, and development and testing of materials for fusion devices. Highlights from program activities are included in this report. 126 figs., 15 tabs.

  17. Fusion Energy Division annual progress report, period ending December 31, 1989

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1991-07-01

    The Fusion Program of Oak Ridge National Laboratory (ORNL) carries out research in most areas of magnetic confinement fusion. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US fusion program and the international fusion community. Issued as the annual progress report of the ORNL Fusion Energy Division, this report also contains information from components of the Fusion Program that are carried out by other ORNL organizations (about 15% of the program effort). The areas addressed by the Fusion Program and discussed in this report include the following: Experimental and theoretical research on magnetic confinement concepts, engineering and physics of existing and planned devices, including remote handling, development and testing of diagnostic tools and techniques in support of experiments, assembly and distribution to the fusion community of databases on atomic physics and radiation effects, development and testing of technologies for heating and fueling fusion plasmas, development and testing of superconducting magnets for containing fusion plasmas, development and testing of materials for fusion devices, and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas. Highlights from program activities are included in this report.

  18. Fusion Energy Division progress report, 1 January 1990--31 December 1991

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.

    1994-03-01

    The Fusion Program of the Oak Ridge National Laboratory (ORNL), a major part of the national fusion program, encompasses nearly all areas of magnetic fusion research. The program is directed toward the development of fusion as an economical and environmentally attractive energy source for the future. The program involves staff from ORNL, Martin Marietta Energy systems, Inc., private industry, the academic community, and other fusion laboratories, in the US and abroad. Achievements resulting from this collaboration are documented in this report, which is issued as the progress report of the ORNL Fusion Energy Division; it also contains information from components for the Fusion Program that are external to the division (about 15% of the program effort). The areas addressed by the Fusion Program include the following: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices, including remote handling; development and testing of diagnostic tools and techniques in support of experiments; assembly and distribution to the fusion community of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; development and testing of superconducting magnets for containing fusion plasmas; development and testing of materials for fusion devices; and exploration of opportunities to apply the unique skills, technology, and techniques developed in the course of this work to other areas (about 15% of the Division`s activities). Highlights from program activities during 1990 and 1991 are presented.

  19. Inertial fusion program. Progress report, July 1-December 31, 1978

    SciTech Connect (OSTI)

    Perkins, R.B.

    1980-11-01

    Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO/sub 2/ lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization.

  20. Support mechanism for a mirrored surface or other arrangement

    DOE Patents [OSTI]

    Cutburth, Ronald W.

    1987-01-01

    An adjustment mechanism such as a three point spherical mount for adjustably supporting a planer mirror or other type of arrangement relative to a plane defined by a given pair of intersecting perpendicular axes is disclosed herein. This mechanism includes first means for fixedly supporting the mirror or other arrangement such that the latter is positionable within the plane defined by the given pair of intersecting perpendicular axes. This latter means and the mirror or other such arrangement are supported by second means for limited movement back and forth about either of the intersecting axes. Moreover, this second means supports the first means and the mirror or other arrangement such that the latter is not movable in any other way whereby the point on the mirror or other arrangement coinciding with the intersection of the given axes does not move or float, thereby making the ability to adjust the mirror or other such arrangement more precise and accurate.

  1. Fusion Technologies for Laser Inertial Fusion Energy (LIFE) ...

    Office of Scientific and Technical Information (OSTI)

    Title: Fusion Technologies for Laser Inertial Fusion Energy (LIFE) Authors: Kramer, K J ; Latkowski, J F ; Abbott, R P ; Anklam, T P ; Dunne, A M ; El-Dasher, B S ; Flowers, D L ; ...

  2. Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment at PPPL National ... One Share on Facebook U.S. Energy Secretary Ernest Moniz, center, in the NSTX-U test cell. ...

  3. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  4. Spherical torus fusion reactor

    DOE Patents [OSTI]

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  5. On impact fusion

    SciTech Connect (OSTI)

    Winterberg, F.

    1997-04-15

    Impact fusion is a promising, but much less developed road towards inertial confinement fusion. It offers an excellent solution to the so-called stand-off problem for thermonuclear microexplosions but is confronted with the challenge to accelerate macroscopic particles to the needed high velocities of 10{sup 2}-10{sup 3} km/s. To reach these velocities, two ways have been studied in the past. The electric acceleration of a beam of microparticles, with the particles as small as large clusters, and the magnetic acceleration of gram-size ferromagnetic or superconducting projectiles. For the generation of an intense burst of soft X-rays used for the indirect drive, impact fusion may offer new promising possibilities.

  6. Peaceful Uses of Fusion

    DOE R&D Accomplishments [OSTI]

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  7. Fusion Safety Program annual report, fiscal year 1994

    SciTech Connect (OSTI)

    Longhurst, G.R.; Cadwallader, L.C.; Dolan, T.J.; Herring, J.S.; McCarthy, K.A.; Merrill, B.J.; Motloch, C.G.; Petti, D.A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.

  8. Fusion safety program Annual report, Fiscal year 1995

    SciTech Connect (OSTI)

    Longhurst, G.R.; Cadwallader, L.C.; Carmack, W.J.

    1995-12-01

    This report summarizes the major activities of the Fusion Safety Program in FY-95. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory, and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions. Among the technical areas covered in this report are tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate database development, and safety code development and application to fusion safety issues. Most of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and the technical support for commercial fusion facility conceptual design studies. A final activity described is work to develop DOE Technical Standards for Safety of Fusion Test Facilities.

  9. Electrocurtain coating process for coating solar mirrors

    DOE Patents [OSTI]

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  10. Imperfect relativistic mirrors in the quantum regime

    SciTech Connect (OSTI)

    Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.

    2014-05-15

    The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.

  11. Image-rotating, 4-mirror, ring optical parametric oscillator

    DOE Patents [OSTI]

    Smith, Arlee V.; Armstrong, Darrell J.

    2004-08-10

    A device for optical parametric amplification utilizing four mirrors oriented in a nonplanar configuration where the optical plane formed by two of the mirrors is orthogonal to the optical plane formed by the other two mirrors and with the ratio of lengths of the laser beam paths approximately constant regardless of the scale of the device. With a cavity length of less than approximately 110 mm, a conversion efficiency of greater than 45% can be achieved.

  12. Atomic data for fusion

    SciTech Connect (OSTI)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  13. Fusion welding process

    DOE Patents [OSTI]

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  14. Miniscule Mirrored Cavities Connect Quantum Memories | U.S. DOE...

    Office of Science (SC) Website

    Miniscule Mirrored Cavities Connect Quantum Memories Basic Energy Sciences (BES) BES Home ... Diamond optical cavities allow laser light (green arrow) to excite electrons on atoms held ...

  15. Simulating Wavefront Correction via Deformable Mirrors at X-Ray...

    Office of Scientific and Technical Information (OSTI)

    Conference: Simulating Wavefront Correction via Deformable Mirrors at X-Ray Beamlines Citation Details In-Document Search Title: Simulating Wavefront Correction via Deformable ...

  16. Nondispersive neutron focusing method beyond the critical angle of mirrors

    DOE Patents [OSTI]

    Ice, Gene E. (Oak Ridge, TN)

    2008-10-21

    This invention extends the Kirkpatrick-Baez (KB) mirror focusing geometry to allow nondispersive focusing of neutrons with a convergence on a sample much larger than is possible with existing KB optical schemes by establishing an array of at least three mirrors and focusing neutrons by appropriate multiple deflections via the array. The method may be utilized with supermirrors, multilayer mirrors, or total external reflection mirrors. Because high-energy x-rays behave like neutrons in their absorption and reflectivity rates, this method may be used with x-rays as well as neutrons.

  17. Mirror Advanced Reactor Study (MARS). Final report. Volume 2. Commercial fusion synfuels plant

    SciTech Connect (OSTI)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 2 contains the following chapters: (1) synfuels; (2) physics base and parameters for TMR; (3) high-temperature two-temperature-zone blanket system for synfuel application; (4) thermochemical hydrogen processes; (5) interfacing the sulfur-iodine cycle; (6) interfacing the reactor with the thermochemical process; (7) tritium control in the blanket system; (8) the sulfur trioxide fluidized-bed composer; (9) preliminary cost estimates; and (10) fuels beyond hydrogen. (MOW)

  18. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-A. Commercial fusion electric plant

    SciTech Connect (OSTI)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-A contains the following chapters: (1) plasma engineering, (2) magnets, (3) ecr heating systems, (4) anchor ion-cyclotron resonance heating system, (5) sloshing ion neutral beam, (6) end cell structure, (7) end plasma technology, (8) fueling, (9) startup ion cyclotron resonant heating systems, and (10) end cell radiation analysis. (MOW)

  19. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    SciTech Connect (OSTI)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis.

  20. Physics (selected articles). [Nuclear fusion

    SciTech Connect (OSTI)

    Shiyao, Z.; Zesheng, C.; Xiaolung, X.; Qiang, H.

    1982-09-01

    Controlled nuclear fusion as a new energy source was investigated. It will be possible in the 1980's to obtain thermal nuclear ignition, and in the early 2000's nuclear fusion may be used to supplement the energy shortage. It is predicted that in the 2000's nuclear fusion will occupy an important position as a global source of energy.

  1. Nattoh model for cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1989-12-01

    A hypothetical model, the Nattoh model, is proposed to answer the questions that result from cold fusion experiments. This model proposes the formation of a small cluster of deuterons and examines the feasibility of many-body fusion reactions. The gamma-ray spectrum, heat production, neutron emissions, and fusion products are discussed.

  2. NREL: TroughNet - Parabolic Trough System and Component Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in an operating power plant environment. ... test stand using electric resistance heating to measure the thermal losses from parabolic ... of mirrors coming off the production line. ...

  3. Tokamak Fusion Test Reactor (TFTR) Dedication

    SciTech Connect (OSTI)

    2015-08-05

    Princeton Plasma Physics Laboratory hosts a dedication ceremony in honor of the scientists working with the TFTR experiment.

  4. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  5. Fusion Energy Division progress report, January 1, 1992--December 31, 1994

    SciTech Connect (OSTI)

    Sheffield, J.; Baker, C.C.; Saltmarsh, M.J.; Shannon, T.E.

    1995-09-01

    The report covers all elements of the ORNL Fusion Program, including those implemented outside the division. Non-fusion work within FED, much of which is based on the application of fusion technologies and techniques, is also discussed. The ORNL Fusion Program includes research and development in most areas of magnetic fusion research. The program is directed toward the development of fusion as an energy source and is a strong and vital component of both the US and international fusion efforts. The research discussed in this report includes: experimental and theoretical research on magnetic confinement concepts; engineering and physics of existing and planned devices; development and testing of plasma diagnostic tools and techniques; assembly and distribution of databases on atomic physics and radiation effects; development and testing of technologies for heating and fueling fusion plasmas; and development and testing of materials for fusion devices. The activities involving the use of fusion technologies and expertise for non-fusion applications ranged from semiconductor manufacturing to environmental management.

  6. Background-reducing X-ray multilayer mirror

    DOE Patents [OSTI]

    Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.

    1992-01-01

    Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

  7. Alternate protection concepts for second surface silver/glass solar mirrors

    SciTech Connect (OSTI)

    Buckwalter, C.Q.; Dake, L.S.; Hartman, J.S.; Lind, M.A.

    1980-10-01

    Investigations into three technologies having the potential of significantly enhancing the durability of solar mirrors are reported. The approaches are based on the assumption that sealing the silver layer on second surface mirrors from the external environment with protective overcoats will significantly extend their useful service life. Considered are: (1) edge sealing a second sheet of glass over the silver layer using solder glasses, (2) overcoating the silver layer with liquid applied SiO/sub 2/ or TiO/sub 2/ coatings, and (3) overcoating the silver layer with an electroless nickel film. Preliminary experiments were performed using Sb/sub 2/O/sub 5/-K/sub 2/O and PbO based solder glasses to edge seal a second sheet of glass over the silver mirror surface. Problems encountered in the formulation of the Sb/sub 2/O/sub 5/-K/sub 2/O glasses forced abandonment of these low melting point solder glass experiments. Materials compatibility problems were encountered when using several of the commercially available PbO based solder glasses alternatives. A cursory evaluation of liquid SiO/sub 2/ and TiO/sub 2/ coatings was also undertaken. The films were applied as direct overcoats on both silver only and silver/copper mirror substrates. Although the process appeared to yield visually acceptable coatings, under microscopic examination the films were found to be porous and pinhole riddled after the final curing step. Consequently, they did not stand up well to salt spray and HCl vapor tests. Background data were collected in an investigation of overcoating the silver or silver/copper mirrors with an electroless deposited nickel film. Two formulations, one a basic solution, the other a commercial acidic solution, were attempted. Film integrity problems were encountered for fairly thick films in the feasibility experiments attempted. Nevertheless, the concept appears sound and merits further investigation.

  8. Mirror: Visually reflecting C{sup ++}

    SciTech Connect (OSTI)

    Orosco, R.; Campo, M.; Sole, J.P.

    1995-12-31

    Reflection is the ability of a system to inspect and change a model of itself. This ability allows to transparently control and extend the functionality of an existing system without performing any changes to the system itself. In dynamic object-oriented languages like CLOS or Smalltalk. the reflective ability is supported directly by the language. In C++, in contrast, reflection must be provided by some form of code annotation and pre-processing. In most cases, this approach either requires modification of the system code, or just supports the reflection of entire classes but not the reflection of determined objects. This work presents the Mirror environment that supports C++ reflective programming through visual association of meta-classes to classes. It allows full transparent reflection of objects using three-dimensional presentations of the different architecture levels. The environment adds reflective ability to C++ classes without any code modification visible to the user, as well as dynamically selective reflection of objects.

  9. Variational approach for static mirror structures

    SciTech Connect (OSTI)

    Kuznetsov, E. A.; Passot, T.; Sulem, P. L.; Ruban, V. P.

    2015-04-15

    Anisotropic static plasma equilibria where the parallel and perpendicular pressures are only functions of the amplitude of the local magnetic field are shown to be amenable to a variational principle with a free energy density given by the parallel tension. This approach is used to demonstrate that two-dimensional small-amplitude static magnetic holes constructed from a Grad-Shafranov type equation slightly below the (subcritical) mirror instability threshold identify with lump solitons of KPII equation, but turn out to be unstable. Differently, large-amplitude magnetic structures, which are stable as they realize a minimum of the free energy, are computed using a gradient method within two-dimensional numerical simulations where the regularizing effect of finite Larmor radius corrections is retained. Interestingly, these structures transform from stripes to bubbles when the angle of the magnetic field with the coordinate plane is increased.

  10. Performance testing of the Acurex solar-collector Model 3001-03

    SciTech Connect (OSTI)

    Dudley, V.E.; Workhoven, R.M.

    1982-03-01

    Results are summarized of tests conducted at the Collector Module Test Facility on an Acurex Model 3001-03 Parabolic Trough Concentrating Solar Collector. Test temperaure range was 100/sup 0/C to 300/sup 0/C. Tests were conducted with the collector axis oriented east-west and again with the collector axis oriented north-south. Three collectors were tested: one using polished aluminum mirrors, one using glass mirrors, and another using an aluminized acrylic film mirror.

  11. Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror

    DOE Patents [OSTI]

    Lerner, Scott A.

    2006-01-10

    A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

  12. Comparison of the effect of outdoor exposure on the optical properties of solar mirrors and transparent encapsulant materials

    SciTech Connect (OSTI)

    Dake, L.S.; Lind, M.A.; Maag, C.R.

    1981-09-01

    The effects of outdoor exposure on solar mirrors and transparent encapsulant materials are assessed and compared. The encapsulant materials tested included glasses, polymers and silicones. Samples of the materials were placed on stationary exposure racks in six locations that represented urban, desert, oceanside and high altitude mountain areas. Samples were removed periodically for optical characterizations. The spectral hemispherical and diffuse reflectance of the mirror samples and the spectral hemispherical transmittance and diffuse reflectance of the encapsulant materials was measured. The relative normal hemispherical transmittance of the encapsulant materials was measured. Correlations between the glass and mirror data showed that the average diffuse reflectance losses were six times larger for the mirrors than for the glass samples. The average specular reflectance losses for the mirror samples were seven times as large as the average hemispherical transmittance losses for the glass samples. These correlations may enable one to predict the performance of mirrors made using the other encapsulant materials for superstrates. It was found that the urban and oceanside sites were the dirtiest, while the desert and mountain sites were the cleanest. Average specular reflectance losses varied from 4% at the cleanest site to 50% at the dirtiest site. The range in hemispherical transmittance losses for the encapsulant materials varied between 0% and 6%. At one site, the average daily specular reflectance losses were .04% for the mirror samples and average daily hemispherical transmittance losses were about .01% for the glass samples. The polymer materials degraded somewhat more rapidly than the glasses, and the silicones irreversible degraded too rapidly and severely to be useful for either photovoltaic or solar thermal applications.

  13. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  14. Modular Aneutronic Fusion Engine

    SciTech Connect (OSTI)

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  15. Photons & Fusion Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 / december Photons & Fusion Newsletter December 2011 MIT Plasma Science Lab Develops NIF Diagnostics A typical NIF experiment is over in a few billionths of a second. Obtaining meaningful information about what occurs during this extremely brief time period, in and around a tiny target, has required the design and development of a new breed of detectors, cameras, and other diagnostic instruments, many of which have been created through partnerships with universities and national

  16. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallery: Completed stainless steel and copper mirror system. (Photo by Elle StarkmanPPPL Office of Communications) Completed stainless steel and copper mirror system. When ...

  17. Magnetized Target Fusion Collaboration. Final report

    SciTech Connect (OSTI)

    John Slough

    2012-04-18

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking described in this report was to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The FRC must also survive during the time it takes for the metal liner to compress the FRC target. The initial work at the UW was focused on developing adequate preionization and flux trapping that were found to be essential in past experiments for obtaining the density, flux and most critically, FRC lifetime required for MTF. The timescale for testing and development of such a source can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with

  18. Cooling Fusion in a Flash | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooling Fusion in a Flash American Fusion News Category: U.S. Universities Link: Cooling Fusion in a Flash

  19. Inertial Confinement Fusion | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Evaluation Inertial Confinement Fusion Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber (National Ignition Facility, Lawrence Livermore National Laboratory) The Office of ICF provides experimental capabilities and scientific understanding in high energy density physics (HEDP) necessary to ensure a safe, secure, and effective nuclear weapons stockpile without underground testing. The demonstration of

  20. Inertial confinement fusion | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) Evaluation Inertial Confinement Fusion Forty-eight final optic assemblies are symmetrically distributed around the upper and lower hemispheres of the target chamber (National Ignition Facility, Lawrence Livermore National Laboratory) The Office of ICF provides experimental capabilities and scientific understanding in high energy density physics (HEDP) necessary to ensure a safe, secure, and effective nuclear weapons stockpile without underground testing. The demonstration of

  1. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  2. Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL | Princeton Plasma Physics Lab Energy Secretary Moniz Launches the Nation's Newest Fusion Experiment at PPPL National Spherical Torus Experiment - Upgrade will help determine the course of fusion energy for years to come By Larry Bernard May 20, 2016 Tweet Widget Google Plus One Share on Facebook U.S. Energy Secretary Ernest Moniz, center, in the NSTX-U test cell. From left: PPPL physicist Stefan Gerhardt; Princeton University President Christopher L. Eisgruber; Princeton University

  3. Developing inertial fusion energy - Where do we go from here?

    SciTech Connect (OSTI)

    Meier, W.R.; Logan, G.

    1996-06-11

    Development of inertial fusion energy (IFE) will require continued R&D in target physics, driver technology, target production and delivery systems, and chamber technologies. It will also require the integration of these technologies in tests and engineering demonstrations of increasing capability and complexity. Development needs in each of these areas are discussed. It is shown how IFE development will leverage off the DOE Defense Programs funded inertial confinement fusion (ICF) work.

  4. U and Pu Gamma-Ray Measurements of Spent Fuel Using a Gamma-Ray Mirror Band-Pass Filter

    SciTech Connect (OSTI)

    Ziock, Klaus-Peter; Alameda, J.B.; Brejnholt, N.F.; Decker, T.A.; Descalle, M.A.; Fernandez-Perea, M.; Hill, R.M.; Kisner, R.A.; Melin, A.M.; Patton, B.W.; Ruz, J.; Soufli, R.; Pivovaroff, M.J.

    2014-01-01

    Abstract. We report on the use of grazing incidence gamma-ray mirrors to serve as a narrow band-pass filter for advanced non-destructive analysis (NDA) of spent nuclear fuel. The purpose of the mirrors is to limit the radiation reaching a HPGe detector to narrow spectral bands around characteristic emission lines from fissile isotopes in the fuel. This overcomes the normal rate issues when performing gamma-ray NDA measurements. In a proof-of-concept experiment, a set of simple flat gamma-ray mirrors were used to directly observe the atomic florescence lines from U and Pu from spent fuel pins with the detector located in a shirt-sleeve environment. The mirrors, consisting of highly polished silicon substrates deposited with WC/SiC multilayer coatings, successfully deflected the lines of interest while the intense primary radiation beam from the fuel was blocked by a lead beam stop. The gamma-ray multilayer coatings that make the mirrors work at the gamma-ray energies used here (~ 100 keV) have been experimentally tested at energies as high as 645 keV, indicating that direct observation of nuclear emission lines from 239Pu should be possible with an appropriately designed optic and shielding configuration.

  5. Fusion Technologies for Laser Inertial Fusion Energy (LIFE) ...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: 7th International Conference on Inertial Fusion Sciences and Applications, Bordeaux, France, Sep 12 - Sep 16, 2011 Research Org: ...

  6. COLLOQUIUM: Magnetized Target Fusion Work at General Fusion | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab December 18, 2014, 12:30pm to 2:00pm Colloquia MBG Auditorium COLLOQUIUM: Magnetized Target Fusion Work at General Fusion Dr. Michel Laberge General Fusion FOR THIS COLLOQUIUM - PLEASE NOTE SPECIAL TIME OF 12:30PM General Fusion is working on compressing a Compact Torus in liquid metal using an acoustic wave generated by compressed gas pistons. This approach has attractive reactor engineering features: strongly reduced neutrons damage (1E-5 reduction in neutron flux with

  7. Application Of The Phase Shifting Diffraction Interferometer For Measuring Convex Mirrors And Negative Lenses

    DOE Patents [OSTI]

    Sommargren, Gary E.; Campbell, Eugene W.

    2005-06-21

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  8. Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses

    DOE Patents [OSTI]

    Sommargren, Gary E.; Campbell, Eugene W.

    2004-03-09

    To measure a convex mirror, a reference beam and a measurement beam are both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. A measurement is taken that includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second, measurement provides the information to eliminate this error. A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. A reference beam is provided from a first optical fiber and a measurement beam is provided from a second optical fiber. A positive auxiliary lens is placed in the system to provide a converging wavefront from the reference beam onto the negative lens under test. The measurement beam is combined with the reference wavefront and is analyzed by standard methods. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.

  9. Performance of 3-Sun Mirror Modules on Sun Tracking Carousels on Flat Roof Buildings

    SciTech Connect (OSTI)

    Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Maxey, L Curt; Gehl, Anthony C; Hurt, Rick A; Boehm, Robert F

    2008-01-01

    Commercial buildings represent a near term market for cost competitive solar electric power provided installation costs and solar photovoltaic module costs can be reduced. JX Crystals has developed a carousel sun tracker that is prefabricated and can easily be deployed on building flat roof tops without roof penetration. JX Crystals is also developing 3-sun PV mirror modules where less expensive mirrors are substituted for two-thirds of the expensive single crystal silicon solar cell surface area. Carousels each with four 3-sun modules have been set up at two sites, specifically at Oak Ridge National Lab and at the University of Nevada in Las Vegas. The test results for these systems are presented.

  10. Wave-particle Interactions In Rotating Mirrors

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in EB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  11. Peregrinations on cold fusion

    SciTech Connect (OSTI)

    Turner, L.

    1989-01-01

    Attention is focused on the possibility of resonance-enhanced deuteron Coulomb barrier penetration. Because of the many-body nature of the interactions of room-temperature deuterons diffusing through a lattice possessing deuterons in many of the interstitial positions, the diffusing deuterons can resonate on the atomic scale in the potential wells bounded by the ascending walls of adjacent Coulomb barriers and thereby penetrate the Coulomb barriers in a fashion vastly underestimated by two-body calculations in which wells for possible resonance are absent. Indeed, perhaps the lack of robust reproducibility in cold fusion originates from the narrowness of such transmission resonances. 4 refs., 1 fig.

  12. Fusion Science to Prepare

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard Buttery General Atomics Tuesday, Dec 10, 2013 - 11:00AM MBG AUDITORIUM Refreshments at 10:45AM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Recent DIII-D research has provided significant new in- formation for the physics basis of key scientific issues for successful operation of ITER and future steady state fu- sion tokamaks, including control of edge localized modes (ELMs), plasma

  13. Application of silicon carbide to synchrotron-radiation mirrors

    SciTech Connect (OSTI)

    Takacs, P.Z.; Hursman, T.L.; Williams, J.T.

    1983-09-01

    Damage to conventional mirror materials exposed to the harsh synchrotron radiation (SR) environment has prompted the SR user community to search for more suitable materials. Next-generation insertion devices, with their attendant flux increases, will make the problem of mirror design even more difficult. A parallel effort in searching for better materials has been underway within the laser community for several years. The technology for dealing with high thermal loads is highly developed among laser manufacturers. Performance requirements for laser heat exchangers are remarkably similar to SR mirror requirements. We report on the application of laser heat exchanger technology to the solution of typical SR mirror design problems. The superior performance of silicon carbide for laser applications is illustrated by various material trades studies, and its superior performance for SR applications is illustrated by means of model calculations.

  14. Bidirectional reflectivity of mirrors in solar power plants

    SciTech Connect (OSTI)

    Khrustalyov, B.A.; Ragimov, R.K.

    1991-01-01

    In this paper a technique for measuring the bidirectional reflectivity of mirrors is presented. An experimental setup is described which allows one to measure the reflecting characteristics at small angles of scattering. These reflectivities are approximated by an exponential relation.

  15. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    SciTech Connect (OSTI)

    Daly, Edward F.; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.; /SLAC

    2011-09-14

    This paper describes the mechanical design of the primary mirror that images the visible portion of the synchrotron radiation (SR) extracted from the High Energy Ring (HER) of the PEP-II B-Factory. During off-axis operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm2. When on-axis imaging occurs, the heat flux due to scattered SR, resistive wall losses and Higher-Order-Mode (HOM) heating is estimated at 1 W/cm2. The imaging surface is plated with Electroless Nickel to improve its optical characteristics. The design requirements for the primary mirror are listed and discussed. Calculated mechanical distortions and stresses experienced by the mirror during on-axis and off-axis operation will be presented.

  16. Lightweight diaphragm mirror module system for solar collectors

    DOE Patents [OSTI]

    Butler, B.L.

    1984-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  17. Lightweight diaphragm mirror module system for solar collectors

    DOE Patents [OSTI]

    Butler, Barry L.

    1985-01-01

    A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.

  18. Durable Corrosion and Ultraviolet-Resistant Silver Mirror

    DOE Patents [OSTI]

    Jorgensen, G. J.; Gee, R.

    2006-01-24

    A corrosion and ultra violet-resistant silver mirror for use in solar reflectors; the silver layer having a film-forming protective polymer bonded thereto, and a protective shield overlay comprising a transparent multipolymer film that incorporates a UV absorber. The corrosion and ultraviolet resistant silver mirror retains spectral hemispherical reflectance and high optical clarity throughout the UV and visible spectrum when used in solar reflectors.

  19. Rapid Solar Mirror Characterization with Fringe Reflection Techniques -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Thermal Solar Thermal Energy Analysis Energy Analysis Find More Like This Return to Search Rapid Solar Mirror Characterization with Fringe Reflection Techniques SOFAST: Sandia Optical Fringe Analysis Slope Tool Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (834 KB) SOFAST Imaging SOFAST Imaging Technology Marketing SummaryThis technology is an automated system in which the reflection of a mirror,

  20. Ion Rings for Magnetic Fusion

    SciTech Connect (OSTI)

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  1. How Fusion Energy Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 likes How Fusion Energy Works Fusion energy is the energy source of the sun and all of the stars. In fusion, two light atomic nuclei are fused together to create energy (as ...

  2. The possible hot nature of cold fusion

    SciTech Connect (OSTI)

    Kuehne, R.W. )

    1994-03-01

    Based on the model of micro hot fusion, the neutron emission rate of cold fusion is determined without the need for fine-tuning parameters. Moreover, the experimental conditions that are essential to reproduce fusion are determined. 84 refs.

  3. Data fusion in neutron and X-ray computed tomography

    SciTech Connect (OSTI)

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  4. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Fusion Policy Advisory Committee (FPAC)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This document is the final report of the Fusion Policy Advisory Committee. The report conveys the Committee's views on the matters specified by the Secretary in his charge and subsequent letters to the Committee, and also satisfies the provisions of Section 7 of the Magnetic Fusion Energy Engineering Act of 1980, Public Law 96-386, which require a triennial review of the conduct of the national Magnetic Fusion Energy program. Three sub-Committee's were established to address the large number of topics associated with fusion research and development. One considered magnetic fusion energy, a second considered inertial fusion energy, and the third considered issues common to both. For many reasons, the promise of nuclear fusion as a safe, environmentally benign, and affordable source of energy is bright. At the present state of knowledge, however, it is uncertain that this promise will become reality. Only a vigorous, well planned and well executed program of research and development will yield the needed information. The Committee recommends that the US commit to a plan that will resolve this critically important issue. It also outlines the first steps in a development process that will lead to a fusion Demonstration Power Plant by 2025. The recommended program is aggressive, but we believe the goal is reasonable and attainable. International collaboration at a significant level is an important element in the plan.

  6. Cellulose binding domain fusion proteins

    DOE Patents [OSTI]

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  7. Cold fusion; Myth versus reality

    SciTech Connect (OSTI)

    Rabinowitz, M. )

    1990-01-01

    Experiments indicate that several different nuclear reactions are taking place. Some of the experiments point to D-D fusion with a cominant tritium channel as one of the reactions. The article notes a similarity between Prometheus and the discoveries of cold fusion.

  8. Inertial Confinement Fusion R&D and Nuclear Proliferation

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  9. Optical losses of solar mirrors due to atmospheric contamination at Liberal, Kansas and Oologah, Oklahoma

    SciTech Connect (OSTI)

    Dake, L.S.; Lind, M.A.

    1981-09-01

    An assessment is presented of the effect of outdoor exposure on mirrors located at two sites selected for potential solar cogeneration/repowering facilities: Liberal, Kansas and Oologah, Oklahoma. Mirror coupons were placed on tracking heliostat simulators located in the proposed heliostat fields and were removed periodically. The spectral hemispherical and diffuse reflectances of these coupons were measured. Representative samples were analyzed for the chemical composition of the dust particulates using SEM/EDX. Other samples were washed with a high pressure spray and recharacterized to determine the effects of the residual dust. Average specular reflectance losses over the entire test period (up to 504 days) were 6 to 12%, with a range of 1 to 30%. Specular reflectance losses varied widely from day to day depending on local weather conditions. The losses due to scattering were 2 to 5 times greater than the losses due to absorptance. The average degradation rate over the first thirty days was an order of magnitude larger than the average degradation rate over the entire sampling period. Specular reflectance loss rates averaged 0.5% per day and greater between periods of natural cleaning. The chemical composition of the dust on the mirrors was characteristic of the indigenous soil, with some samples also showing the presence of sulfur and chlorine, possibly from cooling tower drift.

  10. CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS...

    Office of Scientific and Technical Information (OSTI)

    MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS AFFECTING FUSION. Henderson, Ian M.; Paxton, Walter F Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque,...

  11. American Fusion News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Fusion News General Atomics (GA) December 4, 2012 The Scorpion's Strategy: "Catch and Subdue" December 4, 2012 Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment ...

  12. CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Journal Article: CONTROL OF MECHANICALLY ACTIVATED POLYMERSOME FUSION: FACTORS AFFECTING FUSION. Citation Details In-Document Search Title: CONTROL OF MECHANICALLY ACTIVATED...

  13. Prospects for practical fusion power

    SciTech Connect (OSTI)

    Dean, S.O.

    1980-12-01

    The prospects for practical fusion power received a substantial shot in the arm recently when the President signed into law the Magnetic Fusion Engineering Act of 1980. This new law directs the Secretary of Energy to ''initiate at the earliest practical time each activity which he deems necessary to achieve the national goal for operation of a commercial demonstration plant at the turn of the twenty-first century''. The new law is in consonance with the conclusions of two panels which reviewed the status of magnetic fusion energy research during 1980. A Fusion Advisory Panel to the House Science and Technology Committee, chaired by Dr. Robert L. Hirsch of EXXON, concluded that ''fusion can be made commercial before 2000 if a national commitment is made soon''. And, the Department of Energy's Energy Research Advisory Board (ERAB), chaired by Dr. Solomon J. Buchsbaum of Bell Laboratories, concluded that ''recent progress in plasma confinement has been impressive'' and that ''as a result of this progress, the U.S. is now ready to embark on the next step toward the goal of achieving economic fusion power: the exploration of the engineering feasibility of fusion''. The basis for optimism that fusion will become a practical energy source around the turn of the century is three-fold: (1) dramatic scientific progress has occurred on a broad front during the past few years; (2) key fusion technologies have been developed for several large fusion facilities now under construction; and (3) a growing cadre of engineers have been identifying the engineering development tasks required for practical systems.

  14. PPPL engineers build mirror mechanism using 3D printer and off-the-shelf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parts | Princeton Plasma Physics Lab engineers build mirror mechanism using 3D printer and off-the-shelf parts By Raphael Rosen November 23, 2015 Tweet Widget Google Plus One Share on Facebook Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype Gallery: Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype At the Princeton Plasma Physics Laboratory, the spirit of tinkering lives. This past summer a team of engineers invented a mechanical

  15. PPPL engineers build mirror mechanism using 3D printer and off-the-shelf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parts | Princeton Plasma Physics Lab PPPL engineers build mirror mechanism using 3D printer and off-the-shelf parts By Raphael Rosen November 23, 2015 Tweet Widget Google Plus One Share on Facebook Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype Gallery: Mirror Mechanism Prototype (Photo by Mike Messineo) Mirror Mechanism Prototype At the Princeton Plasma Physics Laboratory, the spirit of tinkering lives. This past summer a team of engineers invented a

  16. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  17. Multiple shell fusion targets

    DOE Patents [OSTI]

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  18. Fusion pumped laser

    DOE Patents [OSTI]

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  19. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  20. Fusion Power Demonstration III

    SciTech Connect (OSTI)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report.

  1. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect (OSTI)

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  2. Prospects for bubble fusion

    SciTech Connect (OSTI)

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  3. Superconducting focusing quadrupoles for heavy ion fusion experiments

    SciTech Connect (OSTI)

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  4. A lower cost development path for heavy ion fusion

    SciTech Connect (OSTI)

    Hogan, W.J.; Meier, W.R.

    1993-05-19

    If two features of the inertial fusion process are exploited successfully, they can lead to significantly lower costs for demonstrating the feasibility of commercial electric power production from this source of energy. First, fusion capsule ignition and burn physics is independent of reaction chamber size and hydrodynamically-equivalent capsules can be designed to perform at small yield, exactly as they do at large yield. This means that an integrated test of all power plant components and feasibility tests of various reaction chamber concepts can be done at much smaller sizes (about 1--2 m first wall radius) and much lower powers (tens of MWs) than magnetic fusion development facilities such as ITER. Second, the driver, which is the most expensive component of currently conceived IFE development facilities, can be used to support more than one experiment target chamber/reactor (simultaneously and/or sequentially). These two factors lead to lower development facility costs, modular facilities, and the planning flexibility to spread costs over time or do several things in parallel and thus shorten the total time needed for development of Inertial Fusion Energy (IFE). In this paper the authors describe the general feature of a heavy ion fusion development plan that takes advantage of upgradable accelerators and the ability to test chambers and reactor systems at small scale in order to reduce development time and costs.

  5. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect (OSTI)

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  6. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  7. Deuterium fusion through nonequilibrium induction

    SciTech Connect (OSTI)

    Fang, P.H. )

    1991-03-01

    This paper presents a deuterium fusion system that is based on the induction of fusion through a nonequilibrium thermodynamical configuration. Mechanical excitation using ultrasound is applied to a palladium electrode with deuterium-containing liquid, a mixture of palladium powder and deuterium-containing liquid, and a system of palladium and a highly compressed deuterium gas that approximates a deuterium solid. The ultrasound, when coupled with the medium of these systems, instantaneously creates a high temperature and pressure that would induce fusion between deuterons.

  8. Fokker-Planck Modelling of Delayed Loss of Charged Fusion Products in TFTR.

    SciTech Connect (OSTI)

    Edenstrasser, J.W.; Goloborod'ko, V.Ya.; Reznik, S.N.; Yavorskij, V.A.; Zweben, S.

    1998-08-01

    The results of a Fokker-Planck simulation of the ripple-induced loss of charged fusion products in the Tokamak Fusion Test Reactor (TFTR) are presented. It is shown that the main features of the measured "delayed loss" of partially thermalized fusion products, such as the differences between deuterium-deuterium and deuterium-tritium discharges, the plasma current and major radius dependencies, etc., are in satisfactory agreement with the classical collisional ripple transport mechanism. The inclusion of the inward shift of the vacuum flux surfaces turns out to be necessary for an adequate and consistent explanation of the origin of the partially thermalized fusion product loss to the bottom of TFTR.

  9. Fusion reactor design | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reactor design Subscribe to RSS - Fusion reactor design The design of devices that use powerful magnetic fields to control plasma so fusion can take place. The most widely used magnetic confinement device is the tokamak, followed by the stellarator. How Does Fusion Energy Work? Click here to view a cool infographic about fusion energy from the U.S. Department of Energy. Read more about How Does Fusion Energy Work? How Does Fusion Energy Work? Fusion is the energy source of the sun and stars.

  10. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    SciTech Connect (OSTI)

    Lomanowski, B. A. Sharples, R. M.; Meigs, A. G.; Conway, N. J.; Zastrow, K.-D.; Heesterman, P.; Kinna, D. [EURATOM Collaboration: JET-EFDA Team

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium D?, D?, D? line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  11. Cleanable and Hardcoat Coatings for Increased Durability of Silvered Polymeric Mirrors

    SciTech Connect (OSTI)

    Padiyath, Raghunath

    2013-04-01

    We have successfully developed coating formulations which significantly increasethe abrasion resistance of mirror films. We have demonstrated manufacturing scale-up of these films to full width andproduction volumes. Implementation of these films in commercial test sites is planned for Q2 2013(Abengoa, Gossamer Space Frames). This slide show outlines the background and objectives of the project, technical approach and results, and key lessons. It also presents the need and opportunity for reduction of costs for CSP and collectors. It also presents an approach for a large aperture parabolic trough collector with reflective film and a high concentration factor, including demonstration and results.

  12. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  13. Condensed hydrogen for thermonuclear fusion

    SciTech Connect (OSTI)

    Kucheyev, S. O.; Hamza, A. V.

    2010-11-15

    Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

  14. The reality of cold fusion

    SciTech Connect (OSTI)

    Case, L.C. )

    1991-12-01

    Despite the unreproducibility, doubt, and controversy involved in the question of the cold fusion of deuterium, enough good data have been published to clearly indicate the reality of some sort of nuclear fusion. Yamaguchi and Niushioka reported a thrice-repeated event in which large amounts of heat and definite bursts of neutrons evolved simultaneously with considerable out-gassing of absorbed deuterium. These results are consistent with nuclear fusion and not with a chemical reaction. In this paper a detailed mechanism is proposed that is consistent with these events and that also generally explains many of the scattered indications of cold fusion that have been reported. There must be an adventitiously large enough presence of tritium to initiate the nuclear reaction. The results of previously successful experiments cannot now be reproduced because currently available D{sub 2}O (and D{sub 2}) is so low in adventitious tritium as to preclude initiation of the nuclear reaction.

  15. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOE Patents [OSTI]

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  16. Method for providing mirror surfaces with protective strippable polymeric film

    DOE Patents [OSTI]

    Edwards, Charlene C.; Day, Jack R.

    1980-01-01

    This invention is a method for forming a protective, strippable, elastomeric film on a highly reflective surface. The method is especially well suited for protecting diamond-machined metallic mirrors, which are susceptible not only to abrasion and mechanical damage but also to contamination and corrosion by various fluids. In a typical use of the invention, a diamond-machined copper mirror surface is coated uniformly with a solution comprising a completely polymerized and completely cured thermoplastic urethane elastomer dissolved in tetrahydrofuran. The applied coating is evaporated to dryness, forming a tough, adherent, impermeable, and transparent film which encapsulates dust and other particulates on the surface. The film may be left in place for many months. When desired, the film may be stripped intact, removing the entrapped particulates and leaving no residue on the mirror surface.

  17. IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors

    SciTech Connect (OSTI)

    Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

    2008-09-02

    A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 15004500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera arrays sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

  18. Development of polarization-controlled multi-pass Thomson scattering system in the GAMMA 10 tandem mirror

    SciTech Connect (OSTI)

    Yoshikawa, M.; Morimoto, M.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Yasuhara, R.; Yamada, I.; Kawahata, K.; Funaba, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2012-10-15

    In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TS system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.

  19. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect (OSTI)

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of net tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  20. Tritium accountancy in fusion systems

    SciTech Connect (OSTI)

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S.; Moore, M.L.

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  1. Normal incidence x-ray mirror for chemical microanalysis

    DOE Patents [OSTI]

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  2. Design of magnetic mirrors for a linear theta pinch

    SciTech Connect (OSTI)

    Veglia, V. P.

    1981-01-01

    The problem of generating optimum magnetic mirror fields at the ends of a 50-cm long theta-pinch experiment to study particle flow and loss effects has been investigated. A combination of active and passive mirrors was developed to produce 2-3:1 fields for a 23-kG pinch. Biot-Savart and potential field prediction solutions for the magnetic field distribution were compared with experimental measurements in 2-5-cm long coils for the 50-cm long pinch.

  3. Can mirror matter solve the the cosmological lithium problem?

    SciTech Connect (OSTI)

    Coc, Alain [Centre de Sciences Nuclaires et de Sciences de la Matire (CSNSM), CNRS/IN2P3, Universit Paris Sud 11, UMR 8609, Btiment 104, 91405 Orsay Campus (France); Uzan, Jean-Philippe; Vangioni, Elisabeth [Institut d'Astrophysique de Paris, UMR-7095 du CNRS, Universit Pierre et Marie Curie, 98 bis bd Arago, 75014 Paris, France and Sorbonne Universits, Institut Lagrange de Paris, 98 bis bd Arago, 75014 Paris (France)

    2014-05-02

    The abundance of lithium-7 confronts cosmology with a long lasting inconsistency between the predictions of standard Big Bang Nucleosynthesis with the baryonic density determined from the Cosmic Microwave Background observations on the one hand, and the spectroscopic determination of the lithium-7 abundance on the other hand. We investigated the influence of the existence of a mirror world, focusing on models in which mirror neutrons can oscillate into ordinary neutrons. Such a mechanism allows for an effective late time neutron injection, which induces an increase of the destruction of beryllium-7and thus a lower final lithium-7 abundance.

  4. Measurement and performance of stretched-membrane mirror facets

    SciTech Connect (OSTI)

    Davenport, R.L.; Oshmyansky, S.

    1995-11-01

    For several years, SAIC has been developing solar concentrators based on stretched-membrane mirrors. In an ongoing development and commercialization program known as the Utility-Scale Joint Venture Program (JVP), SAIC is now developing a commercial 25 kW{sub e} dish/Stirling system using a faceted stretched-membrane dish. This paper reports on physical and optical measurements of the stretched-membrane mirror facets produced for the JVP program, and the use of those measurements to predict and adjust the flux profile on the receiver of a dish/Stirling system in order to optimize its performance.

  5. Cold fusion in condensed matter

    SciTech Connect (OSTI)

    Schommers, W.; Politis, C. )

    1989-01-01

    A model for cold fusion in condensed matter is proposed (cold fusion of deuterons in palladium). It is assumed that the palladium-deuterium system forms an alloy, i.e., it is assumed that Pd ions as well as d/sup +/ ions are embedded in an uniform background of negative charge (conduction electrons). The model is based on an interaction potential for deuterons in solid palladium which has been estimated by means of a theoretical picture well known in the physics of liquids. In particular, the following effects are possible: 1. Cold fusion in condensed matter can take place. 2. The observed energy should be larger than that given by the fusion reactions. 3. Hitherto unknown nuclear processes must not be postulated as reported by Fleischmann and Pons. 4. The deuterons are mobile. 5. The deuterons can form close-packed clusters, and in principle a fusion reaction can take place within such a cluster. 6. Not only /sup 3/He should be produced in Pd but possible /sup 4/He too. From their theoretical picture, it can be concluded that experimental results will be strongly dependent on the condition of the materials used in the experiments. This can possible explain that only a part of experiments could show up cold fusion. A well defined condition (lattice defects, different phases, impurities, etc.) of the materials is probably the most critical point in connection with the observation of cold fusion in condensed matter. The effect should also be influenced by lattice dilatations. Experiments with other materials instead of palladium (e.g. vanadium, titanium, lanthanide metals, and different alloys) should be probably more informative.

  6. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect (OSTI)

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  7. Overview of Fusion-Fission Hybrid Blankets for Laser Inertial...

    Office of Scientific and Technical Information (OSTI)

    Conference: Overview of Fusion-Fission Hybrid Blankets for Laser Inertial Fusion Energy (LIFE) Engine Citation Details In-Document Search Title: Overview of Fusion-Fission Hybrid ...

  8. Applying physics, teamwork to fusion energy science | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab Applying physics, teamwork to fusion energy science American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Applying physics, teamwork to fusion energy science

  9. Office of Inertial Confinement Fusion | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inertial Confinement Fusion | National Nuclear Security Administration Facebook Twitter ... Blog Home Office of Inertial Confinement Fusion Office of Inertial Confinement Fusion ...

  10. Using Radio Waves to Control Fusion Plasma Density

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics ...

  11. Placing Fusion Power on a Pedestal | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Placing Fusion Power on a Pedestal American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Placing Fusion Power on a Pedestal

  12. Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment American Fusion News Category: General Atomics (GA) Link: Frozen Bullets Tame Unruly Edge Plasmas in Fusion Experiment...

  13. Deuterium Uptake in Magnetic Fusion Devices with Lithium Conditioned...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Devices with Lithium Conditioned Carbon Walls American Fusion News Category: U.S. Universities Link: Deuterium Uptake in Magnetic Fusion Devices with Lithium ...

  14. Overview of Fusion-Fission Hybrid Blankets for Laser Inertial...

    Office of Scientific and Technical Information (OSTI)

    Hybrid Blankets for Laser Inertial Fusion Energy (LIFE) Engine Citation Details In-Document Search Title: Overview of Fusion-Fission Hybrid Blankets for Laser Inertial Fusion ...

  15. Quark and lepton mixing as manifestations of violated mirror symmetry

    SciTech Connect (OSTI)

    Dyatlov, I. T.

    2015-06-15

    The existence of heavy mirror analogs of ordinary fermions would provide deeper insight into the gedanken paradox appearing in the Standard Model upon direct parity violation and consisting in a physical distinguishability of left- and right-hand coordinate frames. Arguments are presented in support of the statement that such mirror states may also be involved in the formation of observed properties of the system of Standard Model quarks and leptons—that is, their mass spectra and their weak-mixing matrices: (i) In the case of the involvement of mirror generations, the quark mixing matrix assumes the experimentally observed form. It is determined by the constraints imposed by weak SU(2) symmetry and by the quark-mass hierarchy. (ii) Under the same conditions and upon the involvement of mirror particles, the lepton mixing matrix (neutrino mixing) may become drastically different from its quark analog—the Cabibbo-Kobayashi-Maskawa matrix; that is, it may acquire properties suggested by experimental data. This character of mixing is also indicative of an inverse mass spectrum of Standard Model neutrinos and their Dirac (not Majorana) nature.

  16. Mirror Film Company Has 'Concentrated' Plans for Expansion

    Office of Energy Efficiency and Renewable Energy (EERE)

    ReflecTech Inc. is using a silvered polymer-based film -- instead of glass -- to make mirror panels for focusing sunlight onto a heat generator. Their innovation helped them land a Recovery Act tax credit to expand their Colorado company.

  17. Normal incidence X-ray mirror for chemical microanalysis

    DOE Patents [OSTI]

    Carr, Martin J.; Romig, Jr., Alton D.

    1990-01-01

    A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.

  18. PPPL engineers build mirror mechanism using 3D printer and off...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mirror, connected in such a way that no matter how the bars move the mirrors always stay in the same alignment with one another. Each bar is about a foot long and is made of...

  19. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect (OSTI)

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  20. COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab November 18, 2014, 2:00pm to 3:00pm Colloquia MBG Auditorium COLLOQUIUM: Achieving 10MW Fusion Power in TFTR: a Retrospective Dr. Michael Bell Princeton Plasma Physics Laboratory "The Tokamak Fusion Test Reactor (TFTR) operated at the Princeton Plasma Physics Laboratory (PPPL) from 1982 to 1997. TFTR set a number of world records, including a plasma temperature of 510 million degrees centigrade -- the highest ever produced in a laboratory, and well beyond

  1. LCLS X-ray mirror measurements using a large aperture visible light

    Office of Scientific and Technical Information (OSTI)

    interferometer (Conference) | SciTech Connect Conference: LCLS X-ray mirror measurements using a large aperture visible light interferometer Citation Details In-Document Search Title: LCLS X-ray mirror measurements using a large aperture visible light interferometer Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior

  2. High Dose Neutron Irradiation Performance of Dielectric Mirrors

    SciTech Connect (OSTI)

    Nimishakavi, Anantha Phani Kiran Kumar; Leonard, Keith J; Jellison Jr, Gerald Earle; Snead, Lance Lewis

    2015-01-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. The ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.

  3. High-dose neutron irradiation performance of dielectric mirrors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; Snead, Lance Lewis

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopymore » (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.« less

  4. High-dose neutron irradiation performance of dielectric mirrors

    SciTech Connect (OSTI)

    Nimishakavi Anantha Phani Kiran Kumar; Leonard, Keith J.; Jellison, Jr., Gerald Earle; Snead, Lance Lewis

    2015-05-01

    The study presents the high-dose behavior of dielectric mirrors specifically engineered for radiation-tolerance: alternating layers of Al2O3/SiO2 and HfO2/SiO2 were grown on sapphire substrates and exposed to neutron doses of 1 and 4 dpa at 458 10K in the High Flux Isotope Reactor (HFIR). In comparison to previously reported results, these higher doses of 1 and 4 dpa results in a drastic drop in optical reflectance, caused by a failure of the multilayer coating. HfO2/SiO2 mirrors failed completely when exposed to 1 dpa, whereas the reflectance of Al2O3/SiO2 mirrors reduced to 44%, eventually failing at 4 dpa. Transmission electron microscopy (TEM) observation of the Al2O3/SiO2 specimens showed SiO2 layer defects which increases size with irradiation dose. The typical size of each defect was 8 nm in 1 dpa and 42 nm in 4 dpa specimens. Buckling type delamination of the interface between the substrate and first layer was typically observed in both 1 and 4 dpa HfO2/SiO2 specimens. Composition changes across the layers were measured in high resolution scanning-TEM mode using energy dispersive spectroscopy. A significant interdiffusion between the film layers was observed in Al2O3/SiO2 mirror, though less evident in HfO2/SiO2 system. Lastly, the ultimate goal of this work is the provide insight into the radiation-induced failure mechanisms of these mirrors.

  5. New Accelerator Will Study Steps on the Path to Fusion Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Will Study Steps on the Path to Fusion Power New Accelerator Will Study Steps ... NDCX-II will test a variety of technologies in preparation for a new generation of power ...

  6. (Meeting on fusion reactor materials)

    SciTech Connect (OSTI)

    Jones, R.H. ); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. ); Loomis, B.A. )

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  7. Fusion Energy Division annual progress report period ending December 31, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-09-01

    The Fusion Program carries out work in a number of areas: (1) experimental and theoretical research on two magnetic confinement concepts - the ELMO Bumpy Torus (EBT) and the tokamak, (2) theoretical and engineering studies on a third concept - the stellarator, (3) engineering and physics of present-generation fusion devices, (4) development and testing of diagnostic tools and techniques, (5) development and testing of materials for fusion devices, (6) development and testing of the essential technologies for heating and fueling fusion plasmas, (7) development and testing of the superconducting magnets that will be needed to confine these plasmas, (8) design of future devices, (9) assessment of the environmental impact of fusion energy, and (10) assembly and distribution to the fusion community of data bases on atomic physics and radiation effects. The interactions between these activities and their integration into a unified program are major factors in the success of the individual activities, and the ORNL Fusion Program strives to maintain a balance among these activities that will lead to continued growth.

  8. Method for vacuum fusion bonding

    DOE Patents [OSTI]

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  9. Fusion bonding and alignment fixture

    DOE Patents [OSTI]

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  10. Fuel cycle for a fusion neutron source

    SciTech Connect (OSTI)

    Ananyev, S. S. Spitsyn, A. V. Kuteev, B. V.

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  11. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect (OSTI)

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  12. Generic magnetic fusion reactor cost assessment

    SciTech Connect (OSTI)

    Sheffield, J.

    1984-01-01

    A generic D-T burning magnetic fusion reactor model shows that within the constraints set by generic limitations it is possible for magnetic fusion to be a competitive source of electricity in the 21st century.

  13. Advanced energy conversion methods for cold fusion

    SciTech Connect (OSTI)

    Prelas, M.A. )

    1989-09-01

    If cold fusion is verified, then the next important question deals with how it can be used to produce energy. Several direct energy conversion concepts for use with cold fusion are discussed.

  14. Cold fusion catalyzed by muons and electrons

    SciTech Connect (OSTI)

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  15. Lawrence Uvermore Laboratory THE TECHNOLOGY OF HIRROR MACHINES...

    Office of Scientific and Technical Information (OSTI)

    The second facility, HFTF (Mirror Fusion Test Facility), is currently in preliminary ... to exploit the 2XIIB results, develop and test Q- enhancement techniques, and provide ...

  16. Automated interferometric alignment system for paraboloidal mirrors

    DOE Patents [OSTI]

    Maxey, L. Curtis

    1993-01-01

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aigning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront.

  17. Automated interferometric alignment system for paraboloidal mirrors

    DOE Patents [OSTI]

    Maxey, L.C.

    1993-09-28

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aligning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront. 14 figures.

  18. Z-Pinch Fusion for Energy Applications

    SciTech Connect (OSTI)

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  19. 1994 International Sherwood Fusion Theory Conference

    SciTech Connect (OSTI)

    1994-04-01

    This report contains the abstracts of the paper presented at the 1994 International Sherwood Fusion Theory Conference.

  20. Breakthrough: Neutron Science for the Fusion Mission

    SciTech Connect (OSTI)

    McGreevy, Robert

    2012-04-24

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  1. Exo-endo cellulase fusion protein

    DOE Patents [OSTI]

    Bower, Benjamin S.; Larenas, Edmund A.; Mitchinson, Colin

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  2. Theoretical Fusion Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSTX-U Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Theoretical Fusion Research About Theory Department The fusion energy sciences mission of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) is to help provide the scientific foundations for establishing magnetic confinement as an attractive, technically

  3. Possible natural cold fusion in the atmosphere

    SciTech Connect (OSTI)

    Hawkins, N. )

    1991-07-01

    Nongeological natural cold fusion effects in meteoroelectrical disequilibria are possible, and various laboratory simulations of these effects are being studied.

  4. Possible in-lattice confinement fusion (LCF)

    SciTech Connect (OSTI)

    Kawarasaki, Y.

    1996-05-01

    New scheme of a nuclear fusion reactor system is proposed, the basic concept of which comes from ingenious combination of hitherto developed techniques and verified facts; (1) so-called cold fusion (CF), (2) plasma of both magnetic confinement fusion (MCF) and inertial confinement fusion (ICF), and (3) accelerator-based D-T (D) neutron source. Through the comparison of the characteristics among ICF, LCF, and MCF, the feasibility of the LCFs is discussed. {copyright} {ital 1996 American Institute of Physics.}

  5. Breakthrough: Neutron Science for the Fusion Mission

    ScienceCinema (OSTI)

    McGreevy, Robert

    2014-06-03

    How Oak Ridge National Laboratory is helping to solve the world's energy problems through fusion energy research.

  6. Communications system using a mirror kept in outer space by electromagnetic radiation pressure

    DOE Patents [OSTI]

    Csonka, Paul L.

    1981-01-01

    A method and system are described for transmitting electromagnetic radiation by using a communications mirror located between about 100 kilometers and about 200 kilometers above ground. The communications mirror is kept aloft above the atmosphere by the pressure of the electromagnetic radiation which it reflects, and which is beamed at the communications mirror by a suitably constructed transmitting antenna on the ground. The communications mirror will reflect communications, such as radio, radar, or television waves up to about 1,100 kilometers away when the communications mirror is located at a height of about 100 kilometers.

  7. Cold fusion anomalies more perplexing than ever

    SciTech Connect (OSTI)

    Dagani, R

    1989-11-01

    This article addresses the debate over research on cold fusion. Analysis is made of the research efforts that have taken place since cold fusion was first thought to have been discovered in Utah. Research in the Soviet Union on the cold fusion phenomenon is also discussed.

  8. A1.5 Fusion Performance

    SciTech Connect (OSTI)

    Amendt, P

    2011-03-31

    Analysis and radiation hydrodynamics simulations for expected high-gain fusion target performance on a demonstration 1-GWe Laser Inertial Fusion Energy (LIFE) power plant in the mid-2030s timeframe are presented. The required laser energy driver is 2.2 MJ at a 0.351-{micro}m wavelength, and a fusion target gain greater than 60 at a repetition rate of 16 Hz is the design goal for economic and commercial attractiveness. A scaling-law analysis is developed to benchmark the design parameter space for hohlraum-driven central hot-spot ignition. A suite of integrated hohlraum simulations is presented to test the modeling assumptions and provide a basis for a near-term experimental resolution of the key physics uncertainties on the National Ignition Facility (NIF). The NIF is poised to demonstrate ignition by 2012 based on the central hot spot (CHS) mode of ignition and propagating thermonuclear burn [1]. This immediate prospect underscores the imperative and timeliness of advancing inertial fusion as a carbon-free, virtually limitless source of energy by the mid-21st century to substantially offset fossil fuel technologies. To this end, an intensive effort is underway to leverage success at the NIF and to provide the foundations for a prototype 'LIFE.1' engineering test facility by {approx}2025, followed by a commercially viable 'LIFE.2' demonstration power plant operating at 1 GWe by {approx}2035. The current design goal for LIFE.2 is to accommodate {approx}2.2 MJ of laser energy (entering the high-Z radiation enclosure or 'hohlraum') at a 0.351-{micro}m wavelength operating at a repetition rate of 16 Hz and to provide a fusion target yield of 132 MJ. To achieve this design goal first requires a '0-d' analytic gain model that allows convenient exploration of parameter space and target optimization. This step is then followed by 2- and 3-dimensional radiation-hydrodynamics simulations that incorporate laser beam transport, x-ray radiation transport, atomic physics, and

  9. Senate targets fusion, backs NIF

    SciTech Connect (OSTI)

    Lawler, A.

    1995-08-01

    This article discusses a budget approved by the Senate Appropriations Committee which funds the fusion program even lower than the drastically reduced level the House approved in July. Work on the International Thermonuclear Experimental Reactor (ITER) would continue but the Tokamak Physics Experiment would be halted. At the same time, the Senate bill allots money to start work on the National Ignition Facility (NIF).

  10. Mirror panel layouts for an icosahedral solar bowl. The Crosbyton Solar Power Project

    SciTech Connect (OSTI)

    Anderson, R.M.; Barnard, R.W.; Ford, W.T.

    1986-03-15

    This study is concerned with designing mirror panel layouts for a spherical shaped solar bowl. It was carried out as part of the Crosbyton Solar Power Project (CSPP). The CSPP is concerned with the development of a technology for producing electric power from steam generated by reflection of the sun's rays from a fixed mirror solar bowl onto a tracking receiver. In this system, the receiver is cantilevered and pivots about the center of curvature of the mirror. This study describes mathematical techniques for designing the mirror surface. The method is based on an icosahedral breakdown of the surface of a sphere and the resulting bowl is called an icosahedral bowl. As an example, a sixty degree icosahedral bowl is constructed from two sets of fifteen identical spherical triangles. These thirty spherical triangles are called superpanels and are used to support several smaller mirrors. The small mirrors used to cover the surface of the icosahedral bowl are hexagonal in shape. This shape mirror gives extremely good coverage of the bowl surface and minimizes parameters such as total mirror perimeter and gap area between mirrors. In addition, this choice of mirror shape yields the same mirror panel layout on each superpanel.

  11. Fusion Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. (Fourth international conference on fusion reactor materials)

    SciTech Connect (OSTI)

    Bloom, E.E.

    1990-01-24

    This report summarizes the International Conference on Fusion Reactor Materials (ICFRM-4) which was held December 4--9, 1989, in Kyoto, Japan, as well as the results of several workshops, planning meetings, and laboratory visits made by the travelers. The ICFRM-4 is the major forum to present and exchange information on materials research and development in support of the world's fusion development efforts. About 360 papers were presented by the 347 conference attendees. Highlights of the conference are presented. A proposal by the United States to host ICFRM-5 was accepted by the International Advisory Committee. ORNL will be the host laboratory. A meeting of the DOE/JAERI Annex I Steering Committee to review the US/Japan Collaborative Testing of First Wall and Blanket Structural Materials with Mixed Spectrum Fission Reactors was held at JAERI Headquarters on December 1. The Japanese emphasized the critical importance of a resumption of HFIR operation. Even though the HFIR outage has lasted three plus years this program has continued to provide new and important data on materials behavior which has particular relevance to ITER.

  13. Electroless nickel and ion-plated protective coatings for silvered glass mirrors

    SciTech Connect (OSTI)

    Lind, M.A.; Chaudiere, D.A.; Dake, L.S.; Stewart, T.L.

    1982-04-01

    A preliminary examination of two methods of protecting second surface silvered glass mirrors from environmental degradation is presented. One method employed silver mirrors overcoated with Al, Ni, 304 stainless steel, Cr, or an Al/Cu alloy prepared by ion-plating. The other method used conventional wet process silver mirrors protected with a thin electroless nickel coating. No attempt was made to optimize the coatings for either method. These experimental mirrors were compared with conventional paint backed silver/copper mirrors after exposure to elevated temperatures and water vapor in order to estimate their relative environmental stability. The electroless nickel mirrors showed consistently more resistance to these stresses than either the conventional or ion-plated mirrors, suggesting that they may provide more durable field service.

  14. Design of a multilayer mirror monochromatic x-ray imager for the Z accelerator

    SciTech Connect (OSTI)

    Jones, B.; Deeney, C.; Pirela, A.; Meyer, C.; Petmecky, D.; Gard, P.; Clark, R.; Davis, J.

    2004-10-01

    A time-resolved pinhole camera is being developed for monochromatic soft x-ray imaging of z-pinch plasmas on the Z accelerator [R. B. Spielman et al., Phys. Plasmas 5, 2105 (1998)] at Sandia National Laboratories. Pinhole images will reflect from a planar multilayer mirror onto a microchannel plate detector. A W/Si or Cr/C multilayer reflects a narrow energy range (full width at half maximum <10 eV) centered at 277 eV with peak reflectivity up to 20%. This choice of energy will allow final implosion imaging of any wire-array z-pinch fielded on Z, as well as bench testing using a carbon K{alpha} source. Aluminized parylene filters will eliminate optical and second harmonic reflection, and the 34 deg. multilayer grazing angle will allow detector shielding from high energy x rays produced by the Z accelerator. The system will also include a standard in-line pinhole camera, which can be filtered to obtain simultaneous higher-photon-energy images. Future instruments could use multiple mirrors to image at several energies, or operate at a low grazing angle to image 1-10 keV K-shell emission.

  15. Mirror force induced wave dispersion in Alfvn waves

    SciTech Connect (OSTI)

    Damiano, P. A.; Johnson, J. R.

    2013-06-15

    Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvn waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror force effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.

  16. Summary of results from the Tandem Mirror Experiment (TMX)

    SciTech Connect (OSTI)

    Simonen, T.C.

    1981-02-26

    This report summarizes results from the successful experimental operation of the Tandem Mirror Experiment (TMX) over the period October 1978 through September 1980. The experimental program, summarized by the DOE milestones given in Table 1-1, had three basic phases: (1) an 8-month checkout period, October 1978 through May 1979; (2) a 6-month initial period of operation, June through November 1979, during which the basic principles of the tandem configuration were demonstrated (i.e., plasma confinement was improved over that of a single-cell mirror); and (3) a 10-month period, December 1979 through September 1980, during which the initial TMX results were corroborated by additional diagnostic measurements and many detailed physics investigations were carried out. This report summarizes the early results, presents results of recent data analysis, and outlines areas of ongoing research and data analysis which will be reported in future journal publications.

  17. Some fundamentals of cooled mirrors for synchrotron radiation beam lines

    SciTech Connect (OSTI)

    Howells, M.R.

    1996-04-01

    We present an analysis using conventional heat-transfer theory of a common type of synchrotron-radiation-beam-line mirror with rectangular cooling channels. The analysis leads to a simple analytic expression for the slope error, which enables the distortion performance to be estimated in practical situations. It also provides an understanding of the effect of the various parameters on the goodness of the cooling process and an insight into the underlying physics. The analysis is applied to determining the design steps needed to achieve low slope errors and/or high-heat-removal rates with this type of mirror. The slope-error performance of various materials in a specific design are compared and the best performance is obtained from (in order) invar, silicon, and silicon carbide. {copyright} {ital 1996 Society of Photo{minus}Optical Instrumentation Engineers.}

  18. Field Experience with 3-Sun Mirror Module Systems

    SciTech Connect (OSTI)

    Fraas, Dr. Lewis; Avery, James E.; Huang, H,; Minkin, Leonid M; Fraas, J. X.; Maxey, L Curt; Gehl, Anthony C

    2008-01-01

    JX Crystals 3-sun PV mirror modules have now been operating in four separate systems in the field for up to 2 years. Two post-mounted 2-axis tracking arrays of 12 modules each were installed at the Shanghai Flower Park in April of 2006. Then 672 modules were installed in a 100 kW array on N-S horizontal beam trackers at the Shanghai Flower Port in November of 2006. Finally, sets of 4 modules were installed on azimuth-tracking carousels on buildings at the Oak Ridge National Lab and at the U. of Nevada in Las Vegas in late 2007. All of these modules in each of these systems are still operating at their initial power ratings. No degradation in performance has been observed. The benefit of these 3-sun PV mirror modules is that they use 1/3 of the silicon single-crystal cell material in comparison to traditional planar modules. Since aluminum mirrors are much cheaper than high-purity single-crystal silicon-cells, these modules and systems should be much lower in cost when manufactured in high volume.

  19. Photo of the Week | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo of the Week Photo of the Week Addthis Inside the Tandem Mirror Experiment 1 of 28 Inside the Tandem Mirror Experiment This 1978 photo shows two workers inside the Mirror Fusion Test Facility, a magnetic confinement fusion device designed and built at Lawrence Livermore National Laboratory. In this experiment, magnetic mirrors are placed at both ends of a central magnetic tube. Very hot and dense plasmas inside each mirror enhanced the confinement of another plasma inside the central tube,

  20. Data security on the national fusion grid

    SciTech Connect (OSTI)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  1. Security on the US Fusion Grid

    SciTech Connect (OSTI)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  2. FUSION WELDING METHOD AND APPARATUS

    DOE Patents [OSTI]

    Wyman, W.L.; Steinkamp, W.I.

    1961-01-17

    An apparatus for the fusion welding of metal pieces at a joint is described. The apparatus comprises a highvacuum chamber enclosing the metal pieces and a thermionic filament emitter. Sufficient power is applied to the emitter so that when the electron emission therefrom is focused on the joint it has sufficient energy to melt the metal pieces, ionize the metallic vapor abcve the molten metal, and establish an arc discharge between the joint and the emitter.

  3. Fusion Institutions | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Institutions Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research Fusion

  4. Fusion Links | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Links Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion Links International Activities Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Research Fusion Links Print

  5. Mirror effect induced by the dilaton field on the Hawking radiation

    SciTech Connect (OSTI)

    Maeda, Kengo; Okamura, Takashi

    2006-11-03

    A ''stringy particle'' action is naturally derived from Kaluza-Klein compactification of a test string action coupled to the dilaton field in a conformally invariant manner. According to the standard procedure, we perform the second quantization of the stringy particle. As an interesting application, we consider evaporation of a near-extremal dilatonic black hole by Hawking radiation via the stringy particles. We show that a mirror surface which reflects them is induced by the dilaton field outside the the horizon when the size of the black hole is comparable to the Planck scale. As a result, the energy flux does not propagate across the surface, and hence the evaporation of the dilatonic black hole stops just before the naked singularity at the extremal state appears even though the surface gravity is non-zero in the extremal limit.

  6. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect (OSTI)

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  7. Stress analysis of superconducting magnets for magnetic fusion reactors

    SciTech Connect (OSTI)

    Akin, J.E.; Gray, W.H.; Baudry, T.V.

    1980-01-01

    Superconducting devices involve several factors that normally are not encountered in the structural analysis of more common systems. Several of these factors ae noted and methods for including them in an analysis are cited. To illustrate the state of the analysis art for superconducting magnets, in magnetic fusion reactors, two specific projects are illustrated. They are the Large Coil Program (LCP) and the Engineering Test Facility (ETF).

  8. Apparatus and process for removing a predetermined portion of reflective material from mirror

    DOE Patents [OSTI]

    Perry, Stephen J.; Steinmetz, Lloyd L.

    1994-01-01

    An apparatus and process are disclosed for removal of a stripe of soft reflective material of uniform width from the surface of a mirror by using a blade having a large included angle to inhibit curling of the blade during the cutting operation which could result in damage to the glass substrate of the mirror. The cutting blade is maintained at a low blade angle with respect to the mirror surface to produce minimal chipping along the cut edge and to minimize the force exerted on the coating normal to the glass surface which could deform the flat mirror. The mirror is mounted in a cutting mechanism containing a movable carriage on which the blade is mounted to provide very accurate straightness of the travel of the blade along the mirror.

  9. High reflectivity mirrors and method for making same

    DOE Patents [OSTI]

    Heikman, Sten; Jacob-Mitos, Matthew; Li, Ting; Ibbetson, James

    2016-06-07

    A composite high reflectivity mirror (CHRM) with at least one relatively smooth interior surface interface. The CHRM includes a composite portion, for example dielectric and metal layers, on a base element. At least one of the internal surfaces is polished to achieve a smooth interface. The polish can be performed on the surface of the base element, on various layers of the composite portion, or both. The resulting smooth interface(s) reflect more of the incident light in an intended direction. The CHRMs may be integrated into light emitting diode (LED) devices to increase optical output efficiency

  10. Deployable telescope having a thin-film mirror and metering structure

    DOE Patents [OSTI]

    Krumel, Leslie J.; Martin, Jeffrey W.

    2010-08-24

    A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.

  11. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect The use of a high-order MEMS deformable mirror in the Gemini Planet Imager Citation Details In-Document Search Title: The use of a high-order MEMS deformable mirror in the Gemini Planet Imager We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and influence

  12. Testing and inspecting lens by holographic means

    DOE Patents [OSTI]

    Hildebrand, Bernard P.

    1976-01-01

    Processes for the accurate, rapid and inexpensive testing and inspecting of oncave and convex lens surfaces through holographic means requiring no beamsplitters, mirrors or overpower optics, and wherein a hologram formed in accordance with one aspect of the invention contains the entire interferometer and serves as both a master and illuminating source for both concave and said convex surfaces to be so tested.

  13. Lens testing using total internal reflection holography

    DOE Patents [OSTI]

    Hildebrand, Bernard P.

    1976-12-14

    Accurate, rapid and inexpensive testing and inspecting of lens surfaces tugh holographic means requiring no beamsplitters, mirrors or overpower optics, and wherein a hologram formed in accordance with one aspect of the invention contains the entire interferometer and serves as both a master and illuminating source for both concave and convex surfaces to be so tested.

  14. Engineering the fusion reactor first wall

    SciTech Connect (OSTI)

    Wurden, Glen; Scott, Willms

    2008-01-01

    magnetohydrodynamics. While work to date has been quite valuable, no blanket concept has been built and operated in anything approaching a realistic fusion reactor environment. Rather, work has been limited to isolated experiments on first wall components and paper studies. The need now is to complete necessary R&D on first wall components, assemble components into a practical design, and test the first wall in a realistic fusion environment. Besides supporting work, major prototype experiments could be performed in non-nuclear experiments, as part of the ITER project and as part of the Component Test Facility. The latter is under active consideration and is a proposed machine which would use a driven plasma to expose an entire first wall to a fusion environment. Key US contributors to first wall research have been UCLA, UCSD, U of Wisconsin, LANL, ORNL, PNNL, Argonne and Idaho National Lab. Current efforts have been coordinated by UCLA. It is recognized that when this work progresses to a larger scale, leadership from a national laboratory will be required. LANL is well-prepared to provide such leadership.

  15. Final report on the Magnetized Target Fusion Collaboration

    SciTech Connect (OSTI)

    John Slough

    2009-09-08

    Nuclear fusion has the potential to satisfy the prodigious power that the world will demand in the future, but it has yet to be harnessed as a practical energy source. The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. It is the contention here that a simpler path to fusion can be achieved by creating fusion conditions in a different regime at small scale (~ a few cm). One such program now under study, referred to as Magnetized Target Fusion (MTF), is directed at obtaining fusion in this high energy density regime by rapidly compressing a compact toroidal plasmoid commonly referred to as a Field Reversed Configuration (FRC). To make fusion practical at this smaller scale, an efficient method for compressing the FRC to fusion gain conditions is required. In one variant of MTF a conducting metal shell is imploded electrically. This radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target plasmoid suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target. The undertaking to be described in this proposal is to provide a suitable target FRC, as well as a simple and robust method for inserting and stopping the FRC within the imploding liner. The timescale for testing and development can be rapidly accelerated by taking advantage of a new facility funded by the Department of Energy. At this facility, two inductive plasma accelerators (IPA) were constructed and tested. Recent experiments with these IPAs have demonstrated the ability to rapidly form, accelerate and merge two hypervelocity FRCs into a compression chamber. The resultant FRC that was formed was hot (T&ion ~ 400 eV), stationary, and stable with a configuration lifetime several times that necessary for the MTF liner experiments. The accelerator length was less than

  16. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The flat channels will increase the efficiency of the coolant, he said, which will be important for shedding heat from the constantly moving steerable mirror. Contact Info PPPL ...

  17. Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Princeton Plasma Physics Lab Bob Ellis designs a PPPL first: A 3D printed mirror for microwave launchers By John Greenwald October 28, 2014 Tweet Widget Google Plus One Share on Facebook Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. (Photo by Elle Starkman/PPPL Office of Communications) Bob Ellis with a 3D-printed plastic prototype for a non-mirror part of the launcher. Gallery: Completed stainless steel and copper mirror system. (Photo by Elle

  18. New Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... New Sandia Mirror Isn't Shiny: Instead It Reflects Infrared Light Using a Metamaterial HomeCapabilities, Materials Science, News, News & Events, Research & CapabilitiesNew ...

  19. TOPHAT(tm) for the Alignment & Focus of Heliostat Mirror Facets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Increased efficiency & accuracy in solar mirror alignment Reduced loss of concentrated solar Increased efficiency in solar energy generation Can be used during heliostat assembly...

  20. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    DOE Patents [OSTI]

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  1. Fusion On Earth | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton Fusion On Earth Publication File: PDF icon Fusion On Earth Publication Type: Brochures

  2. PPPL Races Ahead with Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Power... PPPL Races Ahead with Fusion Research RESEARCH NEWS FROM PPPL uest Summer 2013, Issue 1 Contents 02 New Paths to Fusion Energy 09 ADVANCING FUSION THEORY 12 ADVANCING PLASMA SCIENCE 15 PARTNERSHIPS & COLLABORATIONS 19 EDUCATION & OUTREACH AWARDS Inside back cover Letter from the Director W elcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides

  3. Hydrogen Fusion An Opportunity for Global Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process of Hydrogen Fusion Hydrogen fusion, the process that powers our sun and the stars, is the most fundamental energy source in the visible universe. Directly, it provides sunlight, while indirectly it is the driver behind all "renewable" energies (solar-thermal and photovoltaic, wind, biomass and ocean- thermal). Even the fossil fuels (oil, gas and coal), which were derived over long periods of time from ancient biomass, are by-products of hydrogen fusion. The energy released

  4. Tritium Gas Processing for Magnetic Fusion

    Office of Environmental Management (EM)

    Processing for Magnetic Fusion SRNL-STI-2014-00168 Bernice Rogers Clean Energy - Savannah River National Laboratory April 24, 2014 The views and opinions expressed herein do not necessarily reflect those of any international organization, the US Government SRNL-STI-2014-00168 Presentation Outline * Background Information * Simplified Fusion Fuel Cycle * Select Requirements Fuel Cycle * Confinement * Process * Summary 2 3 What is Fusion? Small Atom Small Atom Large Atom ENERGY + 4 deuterium

  5. Observation of stars produced during cold fusion

    SciTech Connect (OSTI)

    Matsumoto, T. . Dept. of Nuclear Engineering)

    1992-12-01

    It has been indicated tht multiple-neutron nuclei such as quad-neutrons can be emitted during cold fusion. These multiple-neutrons might bombard the nuclei of materials outside a cold fusion cell to cause nuclear reactions. In this paper, observations of nuclear emulsions that were irradiated during a cold fusion experiment with heavy water and palladium foil are described. Various traces, like stars, showing nuclear reactions caused by the multiple-neutrons have been clearly observed.

  6. Particle beam fusion progress report for 1989

    SciTech Connect (OSTI)

    Sweeney, M.A.

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

  7. Cold nuclear fusion and muon-catalyzed fusion. (Latest citations from the INSPEC database). Published Search

    SciTech Connect (OSTI)

    1993-12-01

    The bibliography contains citations concerning a nuclear fusion process which occurs at lower temperatures and pressures than conventional fusion reactions. The references describe theoretical and experimental results for a proposed muon-catalyzed fusion reactor, and for studies on muon sticking and reactivation. The temperature dependence of fusion rates, and resolution of some engineering challenges are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  8. Sandia National Laboratories: Inertial Confinement Fusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inertial Confinement Fusion Magnetized Liner Inertial Fusion (MagLIF) Centered on magnetically driven implosions Alt text Fusion: The ultimate energy source Einstein's famous equation, E = mc2, tells us that a small amount of mass can be converted into a large amount of energy. This powerful equation is at the center of fusion energy - the idea that light nuclei, e.g. deuterium and tritium (isotopes of hydrogen) can be smashed together to form particles, e.g. a neutron and a helium nuclei, of

  9. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Goldhaber, M.

    1983-05-09

    This invention relates to a method of controlling the reaction rates in a nuclear fusion reactor; and more particularly, to the use of polarized nuclear fuel.

  10. How Fusion Energy Works | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 likes How Fusion Energy Works Fusion energy is the energy source of the sun and all of the stars. In fusion, two light atomic nuclei are fused together to create energy (as opposed to fission where the nucleus of an atom is split apart). The scientific basis underlying fusion energy is known as plasma physics. Plasma is one of the one of the four fundamental states of matter and makes up 99 percent of the visible universe. On a basic level, a plasma is a hot ionized gas. The ultimate goal of

  11. Magneto-inertial fusion (MIF) needs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magneto-inertial fusion (MIF) needs a credible demonstration of the key physics principles ... Such an achievement, modeled and understood, would be a clear demonstration of the ...

  12. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  13. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  14. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    SciTech Connect (OSTI)

    Bush, R.T. )

    1992-09-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM.

  15. Fusion Rockets for Planetary Defense

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED Fusion Rockets for Planetary Defense Glen Wurden Los Alamos National Laboratory PPPL Colloquium March 16, 2016 LA-UR-15-xxxx LA-UR-16-21396 | Los Alamos National Laboratory | Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED My collaborators on this topic: T. E. Weber 1 , P. J. Turchi 2 , P. B. Parks 3 , T. E. Evans 3 , S. A. Cohen 4 , J. T.

  16. Laser fusion pulse shape controller

    DOE Patents [OSTI]

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  17. fusion

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of...

  18. fusion

    National Nuclear Security Administration (NNSA)

    in size from a pinhead to a small pea, is filled with a mixture of two isotopes of hydrogen (deuterium (D) and tritium (T)) and is subjected to a sudden application of intense...

  19. Lithium As Plasma Facing Component for Magnetic Fusion Research

    SciTech Connect (OSTI)

    Masayuki Ono

    2012-09-10

    divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

  20. Modeling of Heat and Mass Transfer in Fusion Welding (Book) ...

    Office of Scientific and Technical Information (OSTI)

    Book: Modeling of Heat and Mass Transfer in Fusion Welding Citation Details In-Document Search Title: Modeling of Heat and Mass Transfer in Fusion Welding In fusion welding, parts...

  1. Summary of Assessment of Prospects for Inertial Fusion Energy | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab Summary of Assessment of Prospects for Inertial Fusion Energy American Fusion News Category: National Ignition Facility Link: Summary of Assessment of Prospects for Inertial Fusion Energy

  2. Fusion breeder: its potential role and prospects

    SciTech Connect (OSTI)

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T ..-->.. n(14.1 MeV) + ..cap alpha..(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device.

  3. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  4. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  5. Plasmas are Hot and Fusion is Cool

    SciTech Connect (OSTI)

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  6. Cold fusion observed with ordinary water

    SciTech Connect (OSTI)

    Matsumoto, T. )

    1990-05-01

    This paper describes a cold fusion electrolysis experiment using ordinary water. A Ge(Li) detector is used to observe signals up to {approx}130 keV; these signals show the occurrence of fusion reactions in ordinary water. The mechanism for the emission of radiation is discussed by the Nattoh model.

  7. Inertial Confinement Fusion: Quarterly report, April-June 1996

    SciTech Connect (OSTI)

    Correll, D.

    1996-06-01

    The lead article, `Ion-beam propagation in a low-density reactor chamber for heavy-ion inertial fusion` (p. 89), explores the ability of heavy-ion beams to be adequately transported and focused in an IFE reactor. The next article, `Efficient production and applications of 2- to 10-keV x rays by laser-heated underdense radiators` (p. 96), explores the ability of the NIF to produce sufficient high-energy x rays for diagnostic backlighting, target preheating, or uniform irradiation of large test objects for Nuclear Weapons Effects Testing. For capsule implosion experiments, the increasing energies and distances involved in the NIF compared to Nova require the development of new diagnostics methods. The article `Fusion reaction-rate measurements--Nova and NIF` (p. 115) first reviews the use of time-resolved neutron measurements on Nova to monitor fusion burn histories and then explores the limitations of that technique, principally Doppler broadening, for the proposed NIF. It also explores the use of gamma rays on Nova, thereby providing a proof-of-principle for using gamma rays for monitoring fusion burn histories on the NIF. The articles `The energetics of gas-filled hohlraums` (p. 110) and `Measurements of laser- speckle-induced perturbations in laser-driven foils` (p. 123) report measurements on Nova of two important aspects of implosion experiments. The first characterizes the amount of energy lost from a hohlraum by stimulated Brillouin and Raman scattering as a function of gas fill and laser-beam uniformity. The second of these articles shows that the growth of density nonuniformities implanted on smooth capsule surfaces by laser speckle can be correlated with the effects of physical surface roughness. The article `Laser-tissue interaction modeling with the LATIS computer program` (p. 103) explores the use of modeling to enhance the effectiveness--maximize desired effects and minimize collateral damage--of lasers for medical purposes.

  8. Inertial-confinement fusion with lasers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Betti, R.; Hurricane, O. A.

    2016-05-03

    Here, the quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related tomore » the safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion.« less

  9. Laser-fusion rocket for interplanetary propulsion

    SciTech Connect (OSTI)

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  10. COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COLLOQUIUM: DIII-D Explorations of Fusion Science to Prepare for ITER and FNSF Dr. Richard ... issues for successful operation of ITER and future steady state fusion tokamaks, ...

  11. Controlled Nuclear Fusion (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Title: Controlled Nuclear Fusion The objective of controlled nuclear fusion research is to develop a major economic source of energy that should be readily available to all ...

  12. Control of a laser inertial confinement fusion-fission power...

    Office of Scientific and Technical Information (OSTI)

    Control of a laser inertial confinement fusion-fission power plant Title: Control of a laser inertial confinement fusion-fission power plant A laser inertial-confinement ...

  13. A Small, Clean, Stable Fusion Power Plant ---- Inventor Samuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small, Clean, Stable Fusion Power Plant ---- Inventor Samuel A. Cohen This invention ... The small, clean stable fusion power plant, based on the Field Reverse Configuration, ...

  14. Better Fusion Plasma Operating Scenarios are Being Explored and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Better Fusion Plasma Operating Scenarios are Being Explored and Extended on the Alcator ... Better Fusion Plasma Operating Scenarios are Being Explored and Extended on the Alcator ...

  15. Physicist Zoe Martin's fusion quest: a stellar future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zoe Martin's fusion quest: a stellar future Physicist Zoe Martin's fusion quest: a stellar future From revealing radiation hydrodynamics to creating energy, physics student pursues ...

  16. The Heavy Ion Fusion Science Virtual National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Science Virtual National Laboratory Python in a Parallel Environment Dave Grote - LLNL & LBNL NUG2013 User Day Wednesday, February 15, 2013 Slide 2 The Heavy Ion Fusion ...

  17. LIFE: The Case for Early Commercialization of Fusion Energy ...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: LIFE: The Case for Early Commercialization of Fusion Energy Citation Details In-Document Search Title: LIFE: The Case for Early Commercialization of Fusion Energy ...

  18. Ab initio calculations of light-ion fusion reactions (Journal...

    Office of Scientific and Technical Information (OSTI)

    Recent applications to light nuclei scattering and fusion reactions relevant to energy production in stars and Earth based fusion facilities, such as the deuterium-sup 3He ...

  19. Controlled Nuclear Fusion (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Book: Controlled Nuclear Fusion Citation Details In-Document Search Title: Controlled Nuclear Fusion You are accessing a document from the Department of Energy's (DOE) SciTech ...

  20. Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities...

    Office of Scientific and Technical Information (OSTI)

    Highly Charged Ions in Magnetic Fusion Plasmas: Research Opportunities and Diagnostic Necessities Citation Details In-Document Search Title: Highly Charged Ions in Magnetic Fusion ...

  1. COLLOQUIUM: The Lockheed Martin Compact Fusion Reactor | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COLLOQUIUM: The Lockheed Martin Compact Fusion Reactor Dr. Thomas McGuire Lockheed Martin Lockheed Martin Skunkworks is developing a compact fusion reactor concept, CFR. The novel ...

  2. Fusion-Fission Hybrid for Fissile Fuel Production without Processing...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Fusion-Fission Hybrid for Fissile Fuel Production without Processing Citation Details In-Document Search Title: Fusion-Fission Hybrid for Fissile Fuel Production ...

  3. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect (OSTI)

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  4. All solid-state SBS phase conjugate mirror

    DOE Patents [OSTI]

    Dane, Clifford B.; Hackel, Lloyd A.

    1999-01-01

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases.

  5. Gamma Ray Mirrors for Direct Measurement of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Pivovaroff, Dr. Michael J.; Ziock, Klaus-Peter; Harrison, Mark J; Soufli, Regina

    2014-01-01

    Direct measurement of the amount of Pu and U in spent nuclear fuel represents a challenge for the safeguards community. Ideally, the characteristic gamma-ray emission lines from different isotopes provide an observable suitable for this task. However, these lines are generally lost in the fierce flux of radiation emitted by the fuel. The rates are so high that detector dead times limit measurements to only very small solid angles of the fuel. Only through the use of carefully designed view ports and long dwell times are such measurements possible. Recent advances in multilayer grazing-incidence gamma-ray optics provide one possible means of overcoming this difficulty. With a proper optical and coating design, such optics can serve as a notch filter, passing only narrow regions of the overall spectrum to a fully shielded detector that does not view the spent fuel directly. We report on the design of a mirror system and a number of experimental measurements.

  6. All solid-state SBS phase conjugate mirror

    DOE Patents [OSTI]

    Dane, C.B.; Hackel, L.A.

    1999-03-09

    A stimulated Brillouin scattering (SBS) phase conjugate laser mirror uses a solid-state nonlinear gain medium instead of the conventional liquid or high pressure gas medium. The concept has been effectively demonstrated using common optical-grade fused silica. An energy threshold of 2.5 mJ and a slope efficiency of over 90% were achieved, resulting in an overall energy reflectivity of >80% for 15 ns, 1 um laser pulses. The use of solid-state materials is enabled by a multi-pass resonant architecture which suppresses transient fluctuations that would otherwise result in damage to the SBS medium. This all solid state phase conjugator is safer, more reliable, and more easily manufactured than prior art designs. It allows nonlinear wavefront correction to be implemented in industrial and defense laser systems whose operating environments would preclude the introduction of potentially hazardous liquids or high pressure gases. 8 figs.

  7. Planning for U.S. Fusion Community Participation in the ITER Program

    SciTech Connect (OSTI)

    Baker, Charles; Berk, Herbert; Greenwald, Martin; Mauel, Michael E.; Najmabadi, Farrokh; Nevins, William M.; Stambaugh, Ronald; Synakowski, Edmund; Batchelor, Donald B.; Fonck, Raymond; Hawryluk, Richard J.; Meade, Dale M.; Neilson, George H.; Parker, Ronald; Strait, Ted

    2006-06-07

    A central step in the mission of the U.S. Fusion Energy Sciences program is the creation and study of a fusion-powered "star on earth", where the same energy source that drives the sun and other stars is reproduced and controlled for sustained periods in the laboratory. This “star” is formed by an ionized gas, or plasma, heated to fusion temperatures in a magnetic confinement device known as a tokamak, which is the most advanced magnetic fusion concept. The ITER tokamak is designed to be the premier scientific tool for exploring and testing expectations for plasma behavior in the fusion burning plasma regime, wherein the fusion process itself provides the dominant heat source to sustain the plasma temperature. It will provide the scientific basis and control tools needed to move toward the fusion energy goal. The ITER project confronts the grand challenge of creating and understanding a burning plasma for the first time. The distinguishing characteristic of a burning plasma is the tight coupling between the fusion heating, the resulting energetic particles, and the confinement and stability properties of the plasma. Achieving this strongly coupled burning state requires resolving complex physics issues and integrating challenging technologies. A clear and comprehensive scientific understanding of the burning plasma state is needed to confidently extrapolate plasma behavior and related technology beyond ITER to a fusion power plant. Developing this predictive understanding is the overarching goal of the U.S. Fusion Energy Sciences program. The burning plasma research program in the U.S. is being organized to maximize the scientific benefits of U.S. participation in the international ITER experiment. It is expected that much of the research pursued on ITER will be based on the scientific merit of proposed activities, and it will be necessary to maintain strong fusion research capabilities in the U.S. to successfully contribute to the success of ITER and optimize

  8. Vanadium recycling for fusion reactors

    SciTech Connect (OSTI)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  9. Multishell inertial confinement fusion target

    DOE Patents [OSTI]

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  10. Multishell inertial confinement fusion target

    DOE Patents [OSTI]

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  11. Laser-driven fusion reactor

    DOE Patents [OSTI]

    Hedstrom, J.C.

    1973-10-01

    A laser-driven fusion reactor consisting of concentric spherical vessels in which the thermonuclear energy is derived from a deuterium-tritium (D + T) burn within a pellet'', located at the center of the vessels and initiated by a laser pulse. The resulting alpha -particle energy and a small fraction of the neutron energy are deposited within the pellet; this pellet energy is eventually transformed into sensible heat of lithium in a condenser outside the vessels. The remaining neutron energy is dissipated in a lithium blanket, located within the concentric vessels, where the fuel ingredient, tritium, is also produced. The heat content of the blanket and of the condenser lithium is eventually transferred to a conventional thermodynamic plant where the thermal energy is converted to electrical energy in a steam Rankine cycle. (Official Gazette)

  12. Progress in Heavy Ion Fusion

    SciTech Connect (OSTI)

    Herrmannsfeldt, W.B.

    1988-09-01

    The progress of the field of Heavy Ion Fusion has been documented in the proceedings of the series of International Symposia that, in recent years, have occurred every second year. The latest of these conferences was hosted by Gesellshaft fuer Schwerionenforshung (GSI) in Darmstadt, West Germany, June 28-30, 1988. For this report, a few highlights from the conference are selected, stressing experimental progress and prospects for future advances. A little extra time is devoted to report on the developments at the Lawrence Berkeley Laboratory (LBL) which is the center for most of the HIFAR program. The Director of the HIFAR program at LBL is Denis Keefe, who presented the HIF report at the last two of the meetings in this series, and in whose place the author is appearing now. 4 refs., 1 fig.

  13. Inertial-confinement-fusion targets

    SciTech Connect (OSTI)

    Hendricks, C.D.

    1982-08-10

    Much of the research in laser fusion has been done using simple ball on-stalk targets filled with a deuterium-tritium mixture. The targets operated in the exploding pusher mode in which the laser energy was delivered in a very short time (approx. 100 ps or less) and was absorbed by the glass wall of the target. The high energy density in the glass literally exploded the shell with the inward moving glass compressing the DT fuel to high temperatures and moderate densities. Temperatures achieved were high enough to produce DT reactions and accompanying thermonuclear neutrons and alpha particles. The primary criteria imposed on the target builders were: (1) wall thickness, (2) sphere diameter, and (3) fuel in the sphere.

  14. Metrology for Industry for use in the Manufacture of Grazing Incidence Beam Line Mirrors

    SciTech Connect (OSTI)

    Metz, James P.; Parks, Robert E.

    2014-12-01

    The goal of this SBIR was to determine the slope sensitivity of Specular Reflection Deflectometry (SRD) and whether shearing methods had the sensitivity to be able to separate errors in the test equipment from slope error in the unit under test (UUT), or mirror. After many variations of test parameters it does not appear that SRD yields results much better than 1 μ radian RMS independent of how much averaging is done. Of course, a single number slope sensitivity over the full range of spatial scales is not a very insightful number in the same sense as a single number phase or height RMS value in interferometry does not tell the full story. However, the 1 μ radian RMS number is meaningful when contrasted with a sensitivity goal of better than 0.1 μ radian RMS. Shearing is a time proven method of separating the errors in a measurement from the actual shape of a UUT. It is accomplished by taking multiple measurements while moving the UUT relative to the test instrument. This process makes it possible to separate the two errors sources but only to a sensitivity of about 1 μ radian RMS. Another aspect of our conclusions is that this limit probably holds largely independent of the spatial scale of the test equipment. In the proposal for this work it was suggested that a test screen the full size of the UUT could be used to determine the slopes on scales of maybe 0.01 to full scale of the UUT while smaller screens and shorter focal length lenses could be used to measure shorter, or smaller, patches of slope. What we failed to take into consideration was that as the scale of the test equipment got smaller so too did the optical lever arm on which the slope was calculated. Although we did not do a test with a shorter focal length lens over a smaller sample area it is hard to argue with the logic that the slope sensitivity will be about the same independent of the spatial scale of the measurement assuming the test equipment is similarly scaled. On a more positive note

  15. Fusion proton diagnostic for the C-2 field reversed configuration

    SciTech Connect (OSTI)

    Magee, R. M. Clary, R.; Korepanov, S.; Smirnov, A.; Garate, E.; Knapp, K.; Tkachev, A.

    2014-11-15

    Measurements of the flux of fusion products from high temperature plasmas provide valuable insights into the ion energy distribution, as the fusion reaction rate is a very sensitive function of ion energy. In C-2, where field reversed configuration plasmas are formed by the collision of two compact toroids and partially sustained by high power neutral beam injection [M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010); M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012)], measurements of DD fusion neutron flux are used to diagnose ion temperature and study fast ion confinement and dynamics. In this paper, we will describe the development of a new 3 MeV proton detector that will complement existing neutron detectors. The detector is a large area (50?cm{sup 2}), partially depleted, ion implanted silicon diode operated in a pulse counting regime. While the scintillator-based neutron detectors allow for high time resolution measurements (?100 kHz), they have no spatial or energy resolution. The proton detector will provide 10 cm spatial resolution, allowing us to determine if the axial distribution of fast ions is consistent with classical fast ion theory or whether anomalous scattering mechanisms are active. We will describe in detail the diagnostic design and present initial data from a neutral beam test chamber.

  16. Pre-Amplifier Module for Laser Inertial Confinement Fusion

    SciTech Connect (OSTI)

    Heebner, J E; Bowers, M W

    2008-02-06

    The Pre-Amplifier Modules (PAMs) are the heart of the National Ignition Facility (NIF), providing most of the energy gain for the most energetic laser in the world. Upon completion, NIF will be the only laboratory in which scientists can examine the fusion processes that occur inside stars, supernovae, and exploding nuclear weapons and that may someday serve as a virtually inexhaustible energy source for electricity. Consider that in a fusion power plant 50 cups of water could provide the energy comparable to 2 tons of coal. Of paramount importance for achieving laser-driven fusion ignition with the least energy input is the synchronous and symmetric compression of the target fuel--a condition known as laser power balance. NIF's 48 PAMs thus must provide energy gain in an exquisitely stable and consistent manner. While building one module that meets performance requirements is challenging enough, our design has already enabled the construction and fielding of 48 PAMs that are stable, uniform, and interchangeable. PAM systems are being tested at the University of Rochester's Laboratory for Laser Energetics, and the Atomic Weapons Enterprise of Great Britain has purchased the PAM power system.

  17. Pellet injectors for the tokamak fusion test reactor

    SciTech Connect (OSTI)

    Combs, S.K.

    1986-01-01

    The repeating pneumatic injector is a device from the ORNL development program. A new eight-shot deuterium pellet injector has been designed and constructed specifically for the TFTR application and is scheduled to replace the repeating injector this year. The new device combines a cryogenic extruder and a cold wheel rotary mechanism to form and chamber eight pellets in a batch operation; the eight pellets can then be delivered in any time sequence. Another unique feature of the device is the variable pellet size with three pellets each of 3.0 and 3.5 mm diam and two each of 4.0 mm diam. The experience and technology that have been developed on previous injectors at ORNL have been utilized in the design of this latest pellet injection system.

  18. Radiation resistant hydrogen microsensors for fusion applications.

    SciTech Connect (OSTI)

    Bastasz, Robert J.; Lemp, Thomas Kerr; Buchenauer, Dean A.; Whaley, Josh A.

    2010-11-01

    Quantifying the flux and energy of charge exchange neutrals to the walls of fusion experiments is important to understanding wall erosion and energy balance. Quantification of these fluxes is made much more difficult because they have very strong poloidal and toroidal variations. To facilitate such measurements, we have been developing compact, palladium metal oxide semiconductor (Pd-MOS) detectors. These devices are dosemetric detectors, which can evaluate differences between plasma discharges. To become widely used, however, such detectors must be made resistant to UV and x-ray induced damage, as well as high energy particle bombardment. We report here on the fabrication of Schottky diode Pd-MOS devices in which we have minimized the oxide thickness (to reduce the production of charges from UV and x-rays) and increased the Pd overlayer (to reduce charge production from high energy particles). The fabrication has been facilitated through use of an array of metallic posts to improve the Pd film adhesion. The efficacy of the film adhesion and comparison with standard detectors will be examined. Testing and calibration of the detectors is reported as a function of hydrogen flux and energy.

  19. FED-R: a fusion engineering device utilizing resistive magnets

    SciTech Connect (OSTI)

    Jassby, D.L.; Kalsi, S.S.

    1983-06-01

    The principal purpose of the FED-R tokamak facility is to provide a substantial quasisteady flux of fusion neutrons irradiating a large test area in order to carry out thermal, neutronic, and radiation effects testing of experimental blanket assemblies. The emphasis on reliable nuclear testing capability demands that the plasma physics characteristics and technological features of the fusion machine be chosen as close to mid-1980s state of the art as possible, with the important exception that FED-R requires high-duty-factor operation. The outboard nuclear test region is at least 80-cm deep with approximately 60 m/sup 2/ of exposure area. The neutron wall loading is 0.4 MW/m/sup 2/ in Stage I operation (Q/sub p/ = 1.5) and 1.3 MW/m/sup 2/ in Stage II (Q/sub p/ = 2.5). The toroidal field coils are fabricated of water-cooled copper plates with demountable joints and operate steady state with a power dissipation of 180 MW in Stage I and 280 MW in Stage II.

  20. Fusion utility in the Knudsen layer

    SciTech Connect (OSTI)

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-09-15

    In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared with those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer effect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate the restoring reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  1. Fusion Utility in the Knudsen Layer

    SciTech Connect (OSTI)

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-08-01

    In inertial confi nement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared to those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer e ffect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate restoring the reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  2. Fusion roadmapping | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion roadmapping Subscribe to RSS - Fusion roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. Stewart Prager Stewart Prager is the sixth director of PPPL. He joined the Laboratory in 2009 after a long career at the University of Wisconsin in Madison. At Wisconsin, he led research on the "Madison Symmetric Torus" (MST) experiment and headed a center that studied plasmas in both the laboratory and the cosmos. He also

  3. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect (OSTI)

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  4. MFTF-. cap alpha. + T progress report (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Early in FY 1983, several upgrades of the Mirror Fusion Test Facility (MFTF-B) at Lawrence Livermore National Laboratory (LLNL) were proposed to the fusion community. The one most ...

  5. Fusion energy development: Breakeven and beyond: Keynote address

    SciTech Connect (OSTI)

    Furth, H.P.

    1988-02-01

    The scientific feasibility, technological inevitability, and economic necessity of fusion as an energy source are discussed.

  6. Low cost anti-soiling coatings for CSP collector mirrors and heliostats

    SciTech Connect (OSTI)

    Smith, Barton Barton; Polyzos, Georgios; Schaeffer, Daniel A; Lee, Dominic F; Datskos, Panos G

    2014-01-01

    Most concentrating solar power (CSP) facilities in the USA are located in the desert southwest of the country where land and sunshine are abundant. But one of the significant maintenance problems and cost associated with operating CSP facilities in this region is the accumulation of dust, sand and other pollutants on the collector mirrors and heliostats. In this paper we describe the development of low cost, easy to apply anti-soiling coatings based on superhydrophobic (SH) functionalized nano silica materials and polymer binders that posses the key requirements necessary to inhibit particulate deposition on and sticking to CSP mirror surfaces, and thereby significantly reducing mirror cleaning costs and facility downtime.

  7. One-way acoustic mirror based on anisotropic zero-index media

    SciTech Connect (OSTI)

    Gu, Zhong-ming; Liang, Bin E-mail: jccheng@nju.edu.cn; Yang, Jing; Cheng, Jian-chun E-mail: jccheng@nju.edu.cn; Zou, Xin-ye; Li, Yong; Yang, Jun

    2015-11-23

    We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control.

  8. COLLOQUIUM: Fusion Rockets for Planetary Defense | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016, 4:15pm to 5:30pm MBG AUDITORIUM COLLOQUIUM: Fusion Rockets for Planetary Defense Dr. Glen Wurden Los Alamos National Laboratory Contact Information Coordinator(s): Ms....

  9. PPPL Races Ahead with Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the mysteri- ous density limit, they can spiral apart into a flash of light. "The big ... Coordinating Key Research | Summer 2013 8 uest New Paths to Fusion Energy Wonder Weld: ...

  10. 1995 International Sherwood Fusion Theory Conference

    SciTech Connect (OSTI)

    1995-07-01

    This book is a guide to the 1995 International Sherwood Fusion Theory Conference. It consists largely of abstracts of the oral and poster presentations that were to be made, and gives some general information about the conference and its schedule.

  11. Deuteron-induced fusion in various environments

    SciTech Connect (OSTI)

    Hale, G.M.; Talley, T.L.

    1994-04-01

    The theory of deuteron-induced fusion will be discussed, first in free space, then in muonic molecules where the Coulomb repulsion is highly screened. It will be shown how a consistent description of the d + t reactions can be obtained in these environments using R-matrix theory. We compare fusion rates obtained from the time-dependent scattering theory with those implied by the partial widths of the resonance associated with muon-catalyzed d-t fusion. Finally, some speculative comments are made about how the d + d reactions might proceed in other media, such as metallic lattices. The unusual properties of states associated with ``shadow`` poles might account for some of the strange results seen in cold fusion experiments. We emphasize that the same methods can, and should, be used to describe this situation as well as the other two well-established phenomena.

  12. On a weak flavor for cold fusion

    SciTech Connect (OSTI)

    Chatterjee, L. . Dept. of Physics)

    1991-11-01

    In this paper the possibility of recent reports of cold fusion in deuterated metals being manifestations of primal nucleoweak reactions catalyzed by the host environment is investigated. Resulting experimental signatures are predicted.

  13. X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons

    SciTech Connect (OSTI)

    Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

    2005-01-15

    In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

  14. Fluidized wall for protecting fusion chamber walls

    DOE Patents [OSTI]

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  15. Fusion Power | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton Events Research Education Organization Contact Us News Room News Archive American Fusion News Press Releases Publications Weekly Highlights Brochures Fact Sheets Newsletters PPPL News Quest Princeton Journal Watch Blog PPPL Experts Research at Princeton Fusion Power For centuries, the way in which the sun and stars produce their energy remained a mystery to man.

  16. Learn More about Fusion & Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    education Learn More about Fusion & Lasers How Lasers Work Learn how lasers were developed and how they work. Outreach NIF & Photon Science researchers take learning opportunities on the road. Glossary Don't know what something means? Find definitions of terms related to NIF, fusion, and photon science in our glossary. For Teachers LLNL's Science Education Program provides professional development instruction to in-service and pre-service teachers. For Kids See how we make giant crystals

  17. Possible ways to achieve cold fusion. III

    SciTech Connect (OSTI)

    Tisenko, Yu.A.

    1994-12-01

    It is suggested that a deuteron {open_quotes}microaccelerator{close_quotes} be constructed in order to achieve cold fusion. This accelerator would operate on the basis of a glow discharge near a charged Pd-D powder grain in low-density gaseous D{sub 2}. Possible parameters of such an accelerator are calculated. The heat released as a result of fusion is estimated, as is the intensity of the deuteron flux.

  18. Review of the `cold fusion` effect

    SciTech Connect (OSTI)

    Storms, E.

    1996-09-01

    More than 190 studies reporting evidence for the `cold fusion` effect are evaluated. New work has answered criticisms by eliminating many of the suggested errors. Evidence for large and reproducible energy generation as well as various nuclear reactions, in addition to fusion, from a variety of environments and methods in accumulating. The field can no longer be dismissed by invoking obvious error or prosaic explanations. 192 refs., 12 figs., 10 tabs.

  19. Prospects for inertial fusion as an energy source

    SciTech Connect (OSTI)

    Hogan, W.J.

    1989-06-26

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

  20. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    SciTech Connect (OSTI)

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due

  1. Fusion welding of refractory metals

    SciTech Connect (OSTI)

    Robino, C.V.

    1991-01-01

    The refractory metals of Groups 5B and 6B and their alloys display a variety of unique physical and mechanical characteristics in addition to their high melting points. In turn, these characteristics make these materials strong candidates for severe service and specialized applications. However, these materials also present a variety of challenges with respect to both fabrication weldability and the in-service behavior of weldments, many of which are related to the dominant effects of interstitial impurities. This work reviews current understanding of the physical and joining metallurgy of these metals and their alloys with emphasis on fusion welding. Of specific interest are the role of impurities and alloy chemistry in fabrication and service weldability, the material processing route, eg. vacuum melting vs. powder metallurgy, the importance of welding process procedures and variables, weldment mechanical properties, and fracture behavior. Specific examples from the various alloy systems are used to illustrate general metallurgical and joining characteristics of this class of materials. 34 refs., 14 figs., 3 tabs.

  2. Cold versus hot fusion deuterium branching ratios

    SciTech Connect (OSTI)

    Fox, H.; Bass, R.

    1995-12-31

    A major source of misunderstanding of the nature of cold nuclear fusion has been the expectation that the deuterium branching ratios occurring within a palladium lattice would be consistent with the gas-plasma branching ratios. This misunderstanding has led to the concept of the dead graduate student, the 1989`s feverish but fruitless search for neutron emissions from cold fusion reactors, and the follow-on condemnation of the new science of cold fusion. The experimental facts are that in a properly loaded palladium lattice, the deuterium fusion produces neutrons at little above background, a greatly less-than-expected production of tritium (the tritium desert), and substantially more helium-4 than is observed in hot plasma physics. The experimental evidence is now compelling (800 reports of success from 30 countries) that cold nuclear fusion is a reality, that the branching ratios are unexpected, and that a new science is struggling to be recognized. Commercialization of some types of cold fusion devices has already begun.

  3. Transport and equilibrium in field-reversed mirrors

    SciTech Connect (OSTI)

    Boyd, J.K.

    1982-09-01

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integrals in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.

  4. New simulation capability for gamma ray mirror experiments

    SciTech Connect (OSTI)

    Descalle, Marie-Anne; Ruz-Armendariz, Jaime; Decker, Todd; Brejhnolt, Nicolai; Pivovaroff, Michael

    2015-09-28

    This report provides a description of the simulation toolkit developed at Lawrence Livermore National Laboratory to support the design of nuclear safeguards experiments using grazing incidence multilayer mirrors in the energy band of uranium (U) and plutonium (Pu) emission lines. This effort was motivated by the data analysis of a scoping experiment at the Irradiated Fuels Examination Facility (IFEL) at Oak Ridge National Laboratory in FY13 and of a benchmark experiment at the Idaho National Laboratory (INL) in FY14 that highlighted the need for predictive tools built around a ray-tracing capability. This report presents the simulation toolkit and relevant results such as the simulated spectra for TMI, MOX, and ATM106 fuel rods based on spent fuel models provided by Los Alamos National Laboratory and for a virgin high 240Pu-content fuel plate, as well as models of the IFEL and INL experiments implemented in the ray tracing tool. The beam position and height were validated against the INL ~60 keV americium data. Examples of alternate configurations of the optics or experimental set-up illustrate the future use of the simulation suite to guide the next IFEL experimental campaign.

  5. Stimulated Brillouin scattering mirror system, high power laser and laser peening method and system using same

    DOE Patents [OSTI]

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-04-24

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  6. Method for pulse control in a laser including a stimulated brillouin scattering mirror system

    DOE Patents [OSTI]

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-10-23

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  7. Anisotropy and crystal orientation of silicon--application to the modeling of a bent mirror

    SciTech Connect (OSTI)

    Zhang Lin

    2010-06-23

    Matrix formula and MATLAB algorithm are proposed to calculate the stiffness coefficient matrix C, the Young's modulus, shear modulus and Poisson ratio for the silicon crystal in any orientation. Results for Si(110) and Si(311) are given as an example. The anisotropic material properties of the silicon have been used in the mirror width profile optimization for the nano-imaging end-station ID22NI at the ESRF. As the Si(110) is used as the substrate of this multilayer coated KB mirror, the silicon crystal axis [0 0 1] is proposed to orient to the mirror axis. This is the case to have low stress in the mirror and low bending forces from actuators.

  8. Closely spaced mirror pair for reshaping and homogenizing pump beams in laser amplifiers

    SciTech Connect (OSTI)

    Bass, I.L.

    1992-12-01

    Channeling a laser beam by multiple reflections between two closely-spaced, parallel or nearly parallel mirrors, serves to reshape and homogenize the beam at the output gap between the mirrors. Application of this device to improve the spatial overlap of a copper laser pump beam with the signal beam in a dye laser amplifier is described. This technique has been applied to the AVLIS program at the Lawrence Livermore National Laboratory.

  9. Amazing Mirrors and Superlative Supercomputers | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Amazing Mirrors and Superlative Supercomputers News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.29.11 Amazing Mirrors and Superlative Supercomputers Argonne's Mira will accelerate scientific

  10. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect (OSTI)

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  11. Fusion welding of a modern borated stainless steel

    SciTech Connect (OSTI)

    Robino, C.V.; Cieslak, M.J.

    1997-01-01

    Experiments designed to assess the fabrication and service weldability of 304B4A borated stainless steel were conducted. Welding procedures and parameters for manual gas tungsten arc (GTA) welding, autogenous electron beam (EB) welding and filler-added EB welding were developed and found to be similar to those for austenitic stainless steels. Following the procedure development, four test welds were produced and evaluated by microstructural analysis and Charpy impact testing. Further samples were used for determination of the postweld heat treatment (PWHT) response of the welds. The fusion zone structure of welds in this alloy consists of primary austenite dendrites with an interdendritic eutectic-like austenite/boride constituent. Welds also show an appreciable partially molten zone that consists of the austenite/boride eutectic surrounding unmelted austenite islands. The microstructure of the EB welds was substantially finer than that of the GTA welds, and boride coarsening was not observed in the solid state heat-affected zone (HAZ) of either weld type. The impact toughness of as-welded samples was found to be relatively poor, averaging less than 10 J for both GTA and EB welds. For fusion zone notched GTA and EB samples and centerline notched EB samples, fracture generally occurred along the boundary between the partially molten and solid-state regions of the HAZ. The results of the PWHT study were very encouraging, with typical values of the impact energy for HAZ notched samples approaching 40 J, or twice the minimum code-acceptable value.

  12. Realizing Technologies for Magnetized Target Fusion

    SciTech Connect (OSTI)

    Wurden, Glen A.

    2012-08-24

    Researchers are making progress with a range of magneto-inertial fusion (MIF) concepts. All of these approaches use the addition of a magnetic field to a target plasma, and then compress the plasma to fusion conditions. The beauty of MIF is that driver power requirements are reduced, compared to classical inertial fusion approaches, and simultaneously the compression timescales can be longer, and required implosion velocities are slower. The presence of a sufficiently large Bfield expands the accessibility to ignition, even at lower values of the density-radius product, and can confine fusion alphas. A key constraint is that the lifetime of the MIF target plasma has to be matched to the timescale of the driver technology (whether liners, heavy ions, or lasers). To achieve sufficient burn-up fraction, scaling suggests that larger yields are more effective. To handle the larger yields (GJ level), thick liquid wall chambers are certainly desired (no plasma/neutron damage materials problem) and probably required. With larger yields, slower repetition rates ({approx}0.1-1 Hz) for this intrinsically pulsed approach to fusion are possible, which means that chamber clearing between pulses can be accomplished on timescales that are compatible with simple clearing techniques (flowing liquid droplet curtains). However, demonstration of the required reliable delivery of hundreds of MJ of energy, for millions of pulses per year, is an ongoing pulsed power technical challenge.

  13. HEDP and new directions for fusion energy

    SciTech Connect (OSTI)

    Kirkpatrick, Ronald C

    2009-01-01

    The Quest for fusion energy has a long history and the demonstration of thermonuclear energy release in 1951 represented a record achievement for high energy density. While this first demonstration was in response to the extreme fears of mankind, it also marked the beginning of a great hope that it would usher in an era of boundless cheap energy. In fact, fusion still promises to be an enabling technology that can be compared to the prehistoric utilization of fire. Why has the quest for fusion energy been so long on promises and so short in fulfillment? This paper briefly reviews past approaches to fusion energy and suggests new directions. By putting aside the old thinking and vigorously applying our experimental, computational and theoretical tools developed over the past decades we should be able to make rapid progress toward satisfying an urgent need. Fusion not only holds the key to abundant green energy, but also promises to enable deep space missions and the creation of rare elements and isotopes for wide-ranging industrial applications and medical diagnostics.

  14. Review of the Inertial Fusion Energy Program

    SciTech Connect (OSTI)

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  15. Dynamical limitations to heavy-ion fusion

    SciTech Connect (OSTI)

    Back, B.B.

    1983-01-01

    In spite of the many attempts to synthesize superheavy elements in recent years, these efforts have not yet been successful. Recent improved theoretical models of heavy-ion fusion reactions suggest that the formation of super-heavy elements is hindered by the dynamics of the process. Several recent experiments lend support to these theories. The necessity of an excess radial velocity (extra push) over the Coulomb barrier in order to induce fusion is observed experimentally as predicted by the theory. So is a new reaction mechanism, called quasi-fission which tend to exhaust the part of the reaction cross section, which would otherwise lead to fusion. The present study shows that the angular distribution of fragments from quasi-fission processes are very sensitive to the occurrence of this reaction mechanism. A slight modification of one parameter in the theory demanded by the observation of quasi-fission for lighter projectiles via the angular distributions, has the consequence of posing even more-stringent limitations on heavy-ion-fusion reactions. This reduces even further the possibility for synthesizing and identifying superheavy elements in heavy-ion-fusion reactions.

  16. Questions and answers about ITER and fusion energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    QA & What is fusion? Fusion, the energy source of the sun and stars, is the most efficient process for converting mass into energy (E = mc 2 ). The fusion process is environmentally benign and does not emit gases that contribute to global warming or acid rain. Abundant fuel supplies for fusion are available that could meet the needs of the world's population for more than 10,000 years if the fusion process is harnessed successfully. When will fusion successfully produce useable energy? The

  17. DOE and Fusion Links | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE and Fusion Links United States Department of Energy U.S. Department of Energy Office of Science Office of Fusion Energy Sciences U.S. D.O.E. Princeton Site Office Map showing U.S. Fusion Program Participants U.S. D.O.E. Science Laboratories U.S. D.O.E. User Facilities U.S. D.O.E. Funding Opportunities Other Fusion Research Sites United States Sites General Atomics (GA) MIT Plasma Science and Fusion Center U.S. ITER National Ignition Facility (NIF) American Fusion News International Sites

  18. Microscopic Sub-Barrier Fusion Calculations for the Neutron Star Crust

    SciTech Connect (OSTI)

    Umar, A. S.; Oberacker, V. E,; Horowitz, C. J.

    2012-01-01

    Fusion of very neutron-rich nuclei may be important to determine the composition and heating of the crust of accreting neutron stars. Fusion cross sections are calculated using time-dependent Hartree-Fock theory coupled with density-constrained Hartree-Fock calculations to deduce an effective potential. Systems studied include 16O+16O, 16O+24O, 24O+24O, 12C+16O, and 12C+24O. We find remarkable agreement with experimental cross sections for the fusion of stable nuclei. Our simulations use the SLy4 Skyrme force that has been previously fit to the properties of stable nuclei, and no parameters have been fit to fusion data. We compare our results to the simple S o Paulo static barrier penetration model. For the asymmetric systems 12C+24O or 16O+24O we predict an order of magnitude larger cross section than those predicted by the S o Paulo model. This is likely due to the transfer of neutrons from the very neutron rich nucleus to the stable nucleus and dynamical rearrangements of the nuclear densities during the collision process. These effects are not included in potential models. This enhancement of fusion cross sections, for very neutron rich nuclei, can be tested in the laboratory with radioactive beams.

  19. Conference report on the 3rd international symposium on lithium application for fusion devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-01-14

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9–11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy),more » T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma–Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.« less

  20. Conference report on the 3rd international symposium on lithium application for fusion devices

    SciTech Connect (OSTI)

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-01-14

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9–11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma–Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.

  1. Palladium metallurgy and cold fusion; Some remarks

    SciTech Connect (OSTI)

    Murr, L.E. )

    1990-04-01

    In this paper the recent confusion surrounding claims for the observation of cold fusion involving palladium electrodes in electrochemical cells containing deuterium might be clarified to some extent if the palladium metallurgy, particularly in the context of fundamental microstructures, are accurately defined. Both the palladium/hydrogen and palladium/deuterium systems have been extensively investigated, and it is asserted more than two decades ago that the palladium/hydrogen system was perhaps the most extensively, experimentally investigated metal/gas system. Ordinary hydrogen absorbed in palladium fused to form helium, while in the 1940's Wilner actually observed the fusion reaction at the center of the current cold fusion controversy: d + d {yields} {sup 3}He + n (where d = {sup 2}H represents a deuteron, and n is a neutron). In the experiment by Wilner, a deuterium-saturated palladium sheet was bombarded with accelerated deuterons. The product neutrons (n) were slowed by paraffin wax and detected by the activation of silver.

  2. Design of a Thermal Imaging Diagnostic Using 90-Degree, Off-Axis, Parabolic Mirrors

    SciTech Connect (OSTI)

    Malone, Robert M.; Becker, Steven A.; Dolan, Daniel H.; Hacking, Richard G.; Hickman, Randy J.; Kaufman, Morris I.; Stevens, Gerald D.; Turley, William D.

    2006-09-01

    Thermal imaging is an important, though challenging, diagnostic for shockwave experiments. Shock-compressed materials undergo transient temperature changes that cannot be recorded with standard (greater than ms response time) infrared detectors. A further complication arises when optical elements near the experiment are destroyed. We have designed a thermal-imaging system for studying shock temperatures produced inside a gas gun at Sandia National Laboratories. Inexpensive, diamond-turned, parabolic mirrors relay an image of the shocked target to the exterior of the gas gun chamber through a sapphire vacuum port. The 30005000-nm portion of this image is directed to an infrared camera which acquires a snapshot of the target with a minimum exposure time of 150 ns. A special mask is inserted at the last intermediate image plane, to provide dynamic thermal background recording during the event. Other wavelength bands of this image are split into high-speed detectors operating at 9001700 nm, and at 17003000 nm for timeresolved pyrometry measurements. This system incorporates 90-degree, off-axis parabolic mirrors, which can collect low f/# light over a broad spectral range, for high-speed imaging. Matched mirror pairs must be used so that aberrations cancel. To eliminate image plane tilt, proper tip-to-tip orientation of the parabolic mirrors is required. If one parabolic mirror is rotated 180 degrees about the optical axis connecting the pair of parabolic mirrors, the resulting image is tilted by 60 degrees. Different focal-length mirrors cannot be used to magnify the image without substantially sacrificing image quality. This paper analyzes performance and aberrations of this imaging diagnostic.

  3. The international fusion materials irradiation facility

    SciTech Connect (OSTI)

    Shannon, T.E.; Cozzani, F.; Crandall, D.H.; Wiffen, F.W.; Ehrlich, K.; Katsuta, H.; Kondo, T.; Teplyakov, V.; Zavialsky, L.

    1994-12-31

    It is widely agreed that the development of materials for fusion systems requires a high flux, 14 MeV neutron source. The European Union, Japan, Russia and the US have initiated the conceptual design of such a facility. This activity, under the International Energy Agency (IEA) Fusion Materials Agreement, will develop the design for an accelerator-based D-Li system. The first organizational meeting was held in June 1994. This paper describes the system to be studied and the approach to be followed to complete the conceptual design by early 1997.

  4. Radiological Dose Calculations for Fusion Facilities

    SciTech Connect (OSTI)

    Michael L. Abbott; Lee C. Cadwallader; David A. Petti

    2003-04-01

    This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.

  5. First wall for polarized fusion reactors

    DOE Patents [OSTI]

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  6. Driven reconnection in magnetic fusion experiments

    SciTech Connect (OSTI)

    Fitzpatrick, R.

    1995-11-01

    Error fields (i.e. small non-axisymmetric perturbations of the magnetic field due to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What effects do error fields have on plasma confinement? How can any detrimental effects be alleviated? These, and other, questions are explored in detail in this lecture using simple resistive magnetohydrodynamic (resistance MHD) arguments. Although the lecture concentrates on one particular type of magnetic fusion device, namely, the tokamak, the analysis is fairly general and could also be used to examine the effects of error fields on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.).

  7. Solenoid transport for heavy ion fusion

    SciTech Connect (OSTI)

    Lee, Edward

    2004-06-15

    Solenoid transport of high current, heavy ion beams is considered for several stages of a heavy ion fusion driver. In general this option is more efficient than magnetic quadrupole transport at sufficiently low kinetic energy and/or large e/m, and for this reason it has been employed in electron induction linacs. Ideally an ion beam would be transported in a state of Brillouin flow, i.e. cold in the transverse plane and spinning at one half the cyclotron frequency. The design of appropriate solenoids and the equilibrium and stability of transported ion beams are discussed. An outline of application to a fusion driver is also presented.

  8. Magnetized liner inertial fusion (MagLIF)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetized liner inertial fusion (MagLIF) [1] is an inertial confinement fusion (ICF) scheme using cylindrical compression of magnetized, preheated DT gas. A 10 - 30 T axial magnetic field reduces electron thermal conductivity allowing near-adiabatic compression at implosion velocities of order 100 km/s, much lower than the 300 km/s or more required for conventional ICF. Preheating to at least 100 eV ensures that keV temperatures are reached with a convergence ratio no greater than 30. The

  9. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    2005-05-15

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard associated with compressed gas cylinders and methods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  10. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    SciTech Connect (OSTI)

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; Sinars, Daniel B.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; Schmit, Paul F.; Jennings, Christopher A.; Awe, Thomas James; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Harvey-Thompson, Adam James; Herrmann, Mark; Hess, M. H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Robertson, Grafton Kincannon; Rochau, Gregory A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

  11. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; Sinars, Daniel B.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; Schmit, Paul F.; Jennings, Christopher A.; et al

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclearmore » DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.« less

  12. Magnet design considerations for Fusion Nuclear Science Facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhai, Yuhu; Kessel, Chuck; El-guebaly, Laila; Titus, Peter

    2016-02-25

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility to provide a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between ITER and the demonstration power plant (DEMO). Compared to ITER, the FNSF is smaller in size but generates much higher magnetic field, 30 times higher neutron fluence with 3 orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center withmore » plasma major radius of 4.8 m and minor radius of 1.2 m, and a peak field of 15.5 T on the TF coils for FNSF. Both low temperature superconductor (LTS) and high temperature superconductor (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high performance ternary Restack Rod Process (RRP) Nb3Sn strands for toroidal field (TF) magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high aspect ratio rectangular CICC design are evaluated for FNSF magnets but low activation jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. As a result, the material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.« less

  13. Apparatus and method for simulating material damage from a fusion reactor

    DOE Patents [OSTI]

    Smith, Dale L.; Greenwood, Lawrence R.; Loomis, Benny A.

    1989-01-01

    An apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  14. Apparatus and method for simulating material damage from a fusion reactor

    DOE Patents [OSTI]

    Smith, D.L.; Greenwood, L.R.; Loomis, B.A.

    1988-05-20

    This paper discusses an apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  15. Apparatus and method for simulating material damage from a fusion reactor

    DOE Patents [OSTI]

    Smith, Dale L.; Greenwood, Lawrence R.; Loomis, Benny A.

    1989-03-07

    An apparatus and method for simulating a fusion environment on a first wall or blanket structure. A material test specimen is contained in a capsule made of a material having a low hydrogen solubility and permeability. The capsule is partially filled with a lithium solution, such that the test specimen is encapsulated by the lithium. The capsule is irradiated by a fast fission neutron source.

  16. Accelerator & Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  17. Accelerator and fusion research division. 1992 Summary of activities

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  18. Accelerator Fusion Research Division 1991 summary of activities

    SciTech Connect (OSTI)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  19. What Causes Electron Heat Loss in Fusion Plasma?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Causes Heat Loss in Fusion Plasmas? What Causes Electron Heat Loss in Fusion Plasma? 3D ... but one of the most basic is heating plasma-hot gas composed of electrons and charged ...

  20. PPPL engineer named winner of the 2013 Fusion Technology Award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineer named winner of the 2013 Fusion Technology Award By John Greenwald May 1, 2013 ... advice is sought by engineers around the world, has won the 2013 Fusion Technology Award. ...