National Library of Energy BETA

Sample records for minnesota pollution control

  1. Minnesota Pollution Control Agency | Open Energy Information

    Open Energy Info (EERE)

    Pollution Control Agency Jump to: navigation, search Name: Minnesota Pollution Control Agency Place: St. Paul, Minnesota Zip: 55155-4194 Product: Focused on reducing and preventing...

  2. Mark Jankowski: Minnesota Pollution Control Agency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mark Jankowski: Minnesota Pollution Control Agency Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues submit...

  3. Technical Assistance Project for the Minnesota Pollution Control Agency

    SciTech Connect (OSTI)

    Vimmerstedt, L.

    2006-12-01

    This report was prepared in response to a request for technical assistance from the Minnesota Pollution Control Agency (MPCA). The U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy supported the National Renewable Energy Laboratory (NREL) in its response to this request through the Technical Assistance Project. Discussion with the MPCA identified the following as the highest-priority questions: What is the effect of (1) size of Renewable Energy Reserve (RER) and (2) duration of allocation award on (a) NOx emissions in Minnesota and (b) retail electricity prices? What data is available on the response of wind energy development to financial incentives? This report addresses those questions.

  4. St. Paul, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Solutions International Innovative Power Systems Karges-Faulconbridge MN Office of Energy Security Minnesota Pollution Control Agency WindLogics Inc Energy Generation...

  5. Minnesota - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Minnesota

  6. Minnesota - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Minnesota

  7. Minnesota - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Minnesota

  8. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  9. Oregon General Industrial Water Pollution Control Facilities...

    Open Energy Info (EERE)

    General Industrial Water Pollution Control Facilities Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon General Industrial Water Pollution...

  10. NPS Pollution Control Program | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NPS Pollution Control ProgramLegal Abstract Policy for Implementation and Enforcement of the NPS Pollution...

  11. Pope County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Brooten, Minnesota Cyrus, Minnesota Farwell, Minnesota Glenwood, Minnesota Long Beach, Minnesota Lowry, Minnesota Sedan, Minnesota Starbuck, Minnesota Villard,...

  12. Grant County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Ashby, Minnesota Barrett, Minnesota Elbow Lake, Minnesota Herman, Minnesota Hoffman, Minnesota Norcross, Minnesota Wendell, Minnesota Retrieved from "http:...

  13. Redwood County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Highwater Ethanol Places in Redwood County, Minnesota Belview, Minnesota Clements, Minnesota Delhi, Minnesota Lamberton, Minnesota Lucan, Minnesota Milroy, Minnesota...

  14. Otter Tail County, Minnesota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    County, Minnesota Battle Lake, Minnesota Bluffton, Minnesota Clitherall, Minnesota Dalton, Minnesota Deer Creek, Minnesota Dent, Minnesota Elizabeth, Minnesota Erhard,...

  15. Carver County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cologne, Minnesota Hamburg, Minnesota Mayer, Minnesota New Germany, Minnesota Norwood Young America, Minnesota Victoria, Minnesota Waconia, Minnesota Watertown, Minnesota...

  16. Todd County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Browerville, Minnesota Burtrum, Minnesota Clarissa, Minnesota Eagle Bend, Minnesota Grey Eagle, Minnesota Hewitt, Minnesota Long Prairie, Minnesota Osakis, Minnesota Staples,...

  17. Marshall County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Middle River, Minnesota Mud Lake, Minnesota Newfolden, Minnesota Oslo, Minnesota Stephen, Minnesota Strandquist, Minnesota Viking, Minnesota Warren, Minnesota Retrieved from...

  18. Wadena County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Aldrich, Minnesota Menahga, Minnesota Nimrod, Minnesota Sebeka, Minnesota Staples, Minnesota Verndale, Minnesota Wadena, Minnesota Retrieved from "http:...

  19. Washington County, Minnesota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Minnesota Pine Springs, Minnesota Scandia, Minnesota St. Marys Point, Minnesota St. Paul Park, Minnesota Stillwater, Minnesota White Bear Lake, Minnesota Willernie, Minnesota...

  20. WATER POLLUTION CONTROL GENERAL PERMIT GNEV93001

    National Nuclear Security Administration (NNSA)

    _________________________ GNEV 93001, revision v Page 1 of 21 WATER POLLUTION CONTROL GENERAL PERMIT GNEV93001 In accordance with the provisions of the Federal Water Pollution Control Act, as amended, and the Nevada Revised Statutes, the UNITED STATES DEPARTMENT OF ENERGY National Nuclear Security Agency Nevada Site Office P. O. Box 98518 Las Vegas, Nevada 89193-8518 is authorized to discharge from the sewage treatment works located at and within the Nevada Test Site to receiving waters named

  1. Hawaii Air Pollution Control Permits Webpage | Open Energy Information

    Open Energy Info (EERE)

    Air Pollution Control Permits Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Air Pollution Control Permits Webpage Abstract Information...

  2. Nevada Bureau of Pollution Control Webpage | Open Energy Information

    Open Energy Info (EERE)

    Site: Nevada Bureau of Pollution Control Webpage Abstract Provides information regarding air pollution control in Nevada. Author State of Nevada Division of Environmental...

  3. Executive Order 12088: Federal Compliance with Pollution Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2088: Federal Compliance with Pollution Control Standards Executive Order 12088: Federal Compliance with Pollution Control Standards The head of each Executive agency is ...

  4. Hawaii Polluted Runoff Control Program Webpage | Open Energy...

    Open Energy Info (EERE)

    Polluted Runoff Control Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Polluted Runoff Control Program Webpage Abstract This...

  5. Montana Ground Water Pollution Control System Information Webpage...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Information Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System...

  6. Washington Pollution Control Hearings Board webpage | Open Energy...

    Open Energy Info (EERE)

    Pollution Control Hearings Board webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Washington Pollution Control Hearings Board webpage Abstract...

  7. Big Stone County, Minnesota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Beardsley, Minnesota Clinton, Minnesota Correll, Minnesota Graceville, Minnesota Johnson, Minnesota Odessa, Minnesota Ortonville, Minnesota Retrieved from "http:...

  8. Carlton County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    River, Minnesota Moose Lake, Minnesota North Carlton, Minnesota Scanlon, Minnesota Thomson, Minnesota Wrenshall, Minnesota Wright, Minnesota Retrieved from "http:...

  9. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Permit Application Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution...

  10. Mower County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Le Roy, Minnesota Lyle, Minnesota Mapleview, Minnesota Racine, Minnesota Rose Creek, Minnesota Sargeant, Minnesota Taopi, Minnesota Waltham, Minnesota Retrieved from...

  11. Polk County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Crookston, Minnesota East Grand Forks, Minnesota Erskine, Minnesota Fertile, Minnesota Fisher, Minnesota Fosston, Minnesota Gully, Minnesota Lengby, Minnesota McIntosh, Minnesota...

  12. Executive Order 12088: Federal Compliance with Pollution Control Standards

    Energy Savers [EERE]

    | Department of Energy 2088: Federal Compliance with Pollution Control Standards Executive Order 12088: Federal Compliance with Pollution Control Standards The head of each Executive agency is responsible for ensuring that all necessary actions are taken for the prevention, control, and abatement of environmental pollution with respect to Federal facilities and activities under the control of the agency. PDF icon Executive Order 12088: Federal Compliance with Pollution Control Standards More

  13. Nevada Bureau of Air Pollution Control Permit Forms Webpage ...

    Open Energy Info (EERE)

    Bureau of Air Pollution Control Permit Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Bureau of Air Pollution Control Permit...

  14. Impact of new pollution control technologies on all emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of new pollution control technologies on all emissions: the specific problem of high ratio of NO2 at tail pipe downstream of certain pollution control devices Impact of new ...

  15. NPS Pollution Control Program Fact Sheet | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NPS Pollution Control Program Fact SheetLegal Abstract NPS Pollution Control Program Fact Sheet, current...

  16. Title 10 Chapter 47 Water Pollution Control | Open Energy Information

    Open Energy Info (EERE)

    7 Water Pollution Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 10 Chapter 47 Water Pollution ControlLegal...

  17. Stearns County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Advanced Lighting Systems Places in Stearns County, Minnesota Albany, Minnesota Avon, Minnesota Belgrade, Minnesota Brooten, Minnesota Clearwater, Minnesota Cold Spring,...

  18. McLeod County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Lester Prairie, Minnesota Plato, Minnesota Silver Lake, Minnesota Stewart, Minnesota Winsted, Minnesota Retrieved from "http:en.openei.orgw...

  19. Douglas County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Garfield, Minnesota Kensington, Minnesota Millerville, Minnesota Miltona, Minnesota Nelson, Minnesota Osakis, Minnesota Retrieved from "http:en.openei.orgw...

  20. St. Louis County, Minnesota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Heikkala Lake, Minnesota Hermantown, Minnesota Hibbing, Minnesota Hoyt Lakes, Minnesota Hush Lake, Minnesota Iron Junction, Minnesota Janette Lake, Minnesota Kinney, Minnesota...

  1. Beltrami County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake, Minnesota Funkley, Minnesota Kelliher, Minnesota Little Rock, Minnesota Lower Red Lake, Minnesota North Beltrami, Minnesota Ponemah, Minnesota Red Lake, Minnesota Redby,...

  2. RCW - 90.48 - Water Pollution Control | Open Energy Information

    Open Energy Info (EERE)

    - 90.48 - Water Pollution Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: RCW - 90.48 - Water Pollution...

  3. Greenidge Multi-Pollutant Control Project

    SciTech Connect (OSTI)

    Daniel Connell

    2008-10-18

    The Greenidge Multi-Pollutant Control Project was conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electric generating units (EGUs). There are about 400 units in the United States with capacities of 50-300 MW that currently are not equipped with selective catalytic reduction (SCR), flue gas desulfurization (FGD), or mercury control systems. Many of these units, which collectively represent more than 55 GW of installed capacity, are difficult to retrofit for deep emission reductions because of space constraints and unfavorable economies of scale, making them increasingly vulnerable to retirement or fuel switching in the face of progressively more stringent environmental regulations. The Greenidge Project sought to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs by offering a combination of deep emission reductions, low capital costs, small space requirements, applicability to high-sulfur coals, mechanical simplicity, and operational flexibility. The multi-pollutant control system includes a NO{sub x}OUT CASCADE{reg_sign} hybrid selective non-catalytic reduction (SNCR)/in-duct SCR system for NO{sub x} control and a Turbosorp{reg_sign} circulating fluidized bed dry scrubbing system (with a new baghouse) for SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter control. Mercury removal is provided as a co-benefit of the in-duct SCR, dry scrubber, and baghouse, and by injection of activated carbon upstream of the scrubber, if required. The multi-pollutant control system was installed and tested on the 107-MW{sub e}, 1953-vintage AES Greenidge Unit 4 by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. About 44% of the funding for the project was provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and the remaining 56% was provided by AES Greenidge. Project goals included reducing high-load NO{sub x} emissions to {le} 0.10 lb/mmBtu; reducing SO{sub 2}, SO{sub 3}, HCl, and HF emissions by at least 95%; and reducing Hg emissions by at least 90% while the unit fired 2-4% sulfur eastern U.S. bituminous coal and co-fired up to 10% biomass. This report details the final results from the project. The multi-pollutant control system was constructed in 2006, with a total plant cost of $349/kW and a footprint of 0.4 acre - both substantially less than would have been required to retrofit AES Greenidge Unit 4 with a conventional SCR and wet scrubber. Start-up of the multi-pollutant control system was completed in March 2007, and the performance of the system was then evaluated over an approximately 18-month period of commercial operation. Guarantee tests conducted in March-June 2007 demonstrated attainment of all of the emission reduction goals listed above. Additional tests completed throughout the performance evaluation period showed 96% SO{sub 2} removal, 98% mercury removal (with no activated carbon injection), 95% SO{sub 3} removal, and 97% HCl removal during longer-term operation. Greater than 95% SO{sub 2} removal efficiency was observed even when the unit fired high-sulfur coals containing up to 4.8 lb SO{sub 2}/mmBtu. Particulate matter emissions were reduced by more than 98% relative to the emission rate observed prior to installation of the technology. The performance of the hybrid SNCR/SCR system was affected by problems with large particle ash, ammonia slip, and nonideal combustion characteristics, and high-load NO{sub x} emissions averaged 0.14 lb/mmBtu during long-term operation. Nevertheless, the system has reduced the unit's overall NO{sub x} emissions by 52% on a lb/mmBtu basis. The commercial viability of the multi-pollutant control system was demonstrated at AES Greenidge Unit 4. The system, which remains in service after the conclusion of the project, has enabled the unit to satisfy its permit requirements while continuing to operate profitably. As a result of the success at AES Greenidge Unit 4, three additional deployments of the Turbosorp{reg_sign} technology had been announced by the end of the project.

  4. Commonwealth of Virginia, State Air Pollution Control Board,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Commonwealth of Virginia, State Air ...

  5. Hawaii Variance from Pollution Control Permit Packet (Appendix...

    Open Energy Info (EERE)

    Variance from Pollution Control Permit Packet (Appendix S-13) Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental...

  6. Alaska Nonpoint Source Water Pollution Control Strategy | Open...

    Open Energy Info (EERE)

    Nonpoint Source Water Pollution Control Strategy Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Alaska Nonpoint...

  7. WAC - 173-225 Federal Water Pollution Control Act - Establishment...

    Open Energy Info (EERE)

    225 Federal Water Pollution Control Act - Establishment of Implementation Procedures of Application for Certification Jump to: navigation, search OpenEI Reference LibraryAdd to...

  8. Lac qui Parle County, Minnesota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    A. Places in Lac qui Parle County, Minnesota Bellingham, Minnesota Boyd, Minnesota Dawson, Minnesota Louisburg, Minnesota Madison, Minnesota Marietta, Minnesota Nassau,...

  9. Chisago County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Chisago County, Minnesota Center City, Minnesota Chisago City, Minnesota Harris, Minnesota Lindstrom, Minnesota North Branch, Minnesota Rush City, Minnesota Shafer,...

  10. Becker County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Becker County, Minnesota Audubon, Minnesota Callaway, Minnesota Detroit Lakes, Minnesota Frazee, Minnesota Lake Park, Minnesota Ogema, Minnesota Pine Point,...

  11. Wilkin County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    7 Climate Zone Subtype A. Places in Wilkin County, Minnesota Breckenridge, Minnesota Campbell, Minnesota Doran, Minnesota Foxhome, Minnesota Kent, Minnesota Nashua, Minnesota...

  12. Yellow Medicine County, Minnesota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Echo, Minnesota Granite Falls, Minnesota Hanley Falls, Minnesota Hazel Run, Minnesota Porter, Minnesota St. Leo, Minnesota Wood Lake, Minnesota Retrieved from "http:...

  13. Chippewa County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Chippewa County, Minnesota Clara City, Minnesota Granite Falls, Minnesota Maynard, Minnesota Milan, Minnesota Montevideo, Minnesota Watson, Minnesota Retrieved from...

  14. Mercury Specie and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Rob James; Virgil Joffrion; John McDermott; Steve Piche

    2010-05-31

    This project was awarded to demonstrate the ability to affect and optimize mercury speciation and multi-pollutant control using non-intrusive advanced sensor and optimization technologies. The intent was to demonstrate plant-wide optimization systems on a large coal fired steam electric power plant in order to minimize emissions, including mercury (Hg), while maximizing efficiency and maintaining saleable byproducts. Advanced solutions utilizing state-of-the-art sensors and neural network-based optimization and control technologies were proposed to maximize the removal of mercury vapor from the boiler flue gas thereby resulting in lower uncontrolled releases of mercury into the atmosphere. Budget Period 1 (Phase I) - Included the installation of sensors, software system design and establishment of the as-found baseline operating metrics for pre-project and post-project data comparison. Budget Period 2 (Phase II) - Software was installed, data communications links from the sensors were verified, and modifications required to integrate the software system to the DCS were performed. Budget Period 3 (Phase III) - Included the validation and demonstration of all control systems and software, and the comparison of the optimized test results with the targets established for the project site. This report represents the final technical report for the project, covering the entire award period and representing the final results compared to project goals. NeuCo shouldered 61% of the total project cost; while DOE shouldered the remaining 39%. The DOE requires repayment of its investment. This repayment will result from commercial sales of the products developed under the project. NRG's Limestone power plant (formerly owned by Texas Genco) contributed the host site, human resources, and engineering support to ensure the project's success.

  15. Minnesota Energy | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Energy Place: Buffalo Lake, Minnesota Zip: 55314 Product: 21mmgy (79.5m litresy) farmer-owned ethanol production cooperative. References: Minnesota Energy1 This...

  16. Case Study - Minnesota Power - Accelerating Grid Modernization in Minnesota - November 2012.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study-Minnesota Power November 2012 1 SGIG Accelerates Grid Modernization in Minnesota Headquartered in Duluth, Minnesota Power (MP) serves approximately 144,000 customers and manages almost 9,000 miles of power lines and over 160 substations. Grid modernization is a top corporate priority and is driven by needs to upgrade the company's electric distribution and metering systems, load control programs, and customer engagement strategies for improved reliability and energy efficiency, lower

  17. EO 12088: Federal Compliance with Pollution Control Standards

    Broader source: Energy.gov [DOE]

    The head of each Executive agency is responsible for ensuring that all necessary actions are taken for the prevention, control, and abatement of environmental pollution with respect to Federal...

  18. Building America Case study: Advanced Controls Improve Performance of Combination Space and Water Heating Systems, Minneapolis, Minnesota (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls Improve Performance of Combination Space- and Water-Heating Systems Minneapolis, Minnesota PROJECT INFORMATION Combined Space and Water Heating: Next Steps to Improved Performance Location: Minneapolis, MN Partners: University of Minnesota and The Energy Conservatory Center for Energy and Environment, mncee.org NorthernSTAR Building America Partnership Building Component: Space conditioning and water heating Application: New and retrofit; single-family Year Tested: 2011-2014 Applicable

  19. Renville County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Falls Energy Minnesota Energy Sunrise Agri Fuels Places in Renville County, Minnesota Bird Island, Minnesota Buffalo Lake, Minnesota Danube, Minnesota Fairfax, Minnesota...

  20. Sherburne County, Minnesota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, Minnesota Elk River Biomass Facility Places in Sherburne County, Minnesota Becker, Minnesota Big Lake, Minnesota Clear Lake, Minnesota Elk River, Minnesota Princeton,...

  1. Crow Wing County, Minnesota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Wing County, Minnesota Brainerd Public Utilities Places in Crow Wing County, Minnesota Baxter, Minnesota Brainerd, Minnesota Breezy Point, Minnesota Crosby, Minnesota Crosslake,...

  2. Pine County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 7 Climate Zone Subtype A. Places in Pine County, Minnesota Askov, Minnesota Brook Park, Minnesota Bruno, Minnesota Denham, Minnesota Finlayson, Minnesota Henriette,...

  3. Watonwan County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Places in Watonwan County, Minnesota Butterfield, Minnesota Darfur, Minnesota La Salle, Minnesota Lewisville, Minnesota Madelia, Minnesota Odin,...

  4. Kittson County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Kennedy, Minnesota Lake Bronson, Minnesota Lancaster, Minnesota North Red River, Minnesota St. Vincent, Minnesota Retrieved from "http:en.openei.orgw...

  5. Meeker County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Places in Meeker County, Minnesota Cedar Mills, Minnesota Cosmos, Minnesota Darwin, Minnesota Dassel, Minnesota Eden Valley, Minnesota Grove City,...

  6. Kanabec County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Places in Kanabec County, Minnesota Braham, Minnesota Grasston, Minnesota Mora, Minnesota Ogilvie, Minnesota Quamba, Minnesota Retrieved from "http:en.openei.orgw...

  7. Morrison County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Places in Morrison County, Minnesota Bowlus, Minnesota Buckman, Minnesota Elmdale, Minnesota Flensburg, Minnesota Genola, Minnesota Harding,...

  8. Freeborn County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Minnesota Agra Resources Cooperative EXOL Places in Freeborn County, Minnesota Albert Lea, Minnesota Alden, Minnesota Clarks Grove, Minnesota Conger, Minnesota Emmons,...

  9. EO 12088: Federal Compliance with Pollution Control Standards

    Office of Environmental Management (EM)

    2088-Federal Compliance with Pollution Control Standards SOURCE: The provisions of Executive Order 12088 of October 13,1978, appear at 43 FR 47707, 3 CFR, 1978 Comp., p. 243, unless otherwise noted. By the authority vested in me as President by the Constitution and statutes of the United States of America, including Section 22 of the Toxic Substances Control Act (15 U.S.C. 2621), Section 313 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1323), Section 1447 of the Public

  10. Commonwealth of Virginia, State Air Pollution Control Board, Order by

    Energy Savers [EERE]

    Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 | Department of Energy Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Commonwealth of Virginia, State Air Pollution Control Board, Order by Concent Issued to Mirant Potomac River, LLC, Registration No. 70228 Docket No. EO-05-01: This is a Consent Order issued under the authority of Va. Code § § 10.1-1307D and 10.1-1307.1, between the

  11. Impact of new pollution control technologies on all emissions: the specific

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    problem of high ratio of NO2 at tail pipe downstream of certain pollution control devices | Department of Energy Impact of new pollution control technologies on all emissions: the specific problem of high ratio of NO2 at tail pipe downstream of certain pollution control devices Impact of new pollution control technologies on all emissions: the specific problem of high ratio of NO2 at tail pipe downstream of certain pollution control devices 2005 Diesel Engine Emissions Reduction (DEER)

  12. Greenridge Multi-Pollutant Control Project Preliminary Public Design Report

    SciTech Connect (OSTI)

    Daniel P. Connell

    2009-01-12

    The Greenidge Multi-Pollutant Control Project is being conducted as part of the U.S. Department of Energy's Power Plant Improvement Initiative to demonstrate an innovative combination of air pollution control technologies that can cost-effectively reduce emissions of SO{sub 2}, NO{sub x}, Hg, acid gases (SO{sub 3}, HCl, and HF), and particulate matter from smaller coal-fired electrical generating units (EGUs). The multi-pollutant control system includes a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NOx emissions by {ge}60%, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, and HF by {ge}95%. Mercury removal of {ge}90% is also targeted via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The technology is particularly well suited, because of its relatively low capital and maintenance costs and small space requirements, to meet the needs of coal-fired units with capacities of 50-300 MWe. There are about 440 such units in the United States that currently are not equipped with SCR, flue gas desulfurization (FGD), or mercury control systems. These smaller units are a valuable part of the nation's energy infrastructure, constituting about 60 GW of installed capacity. However, with the onset of the Clean Air Interstate Rule, Clean Air Mercury Rule, and various state environmental actions requiring deep reductions in emissions of SO{sub 2}, NO{sub x}, and mercury, the continued operation of these units increasingly depends upon the ability to identify viable air pollution control retrofit options for them. The large capital costs and sizable space requirements associated with conventional technologies such as SCR and wet FGD make these technologies unattractive for many smaller units. The Greenidge Project aims to confirm the commercial readiness of an emissions control system that is specifically designed to meet the environmental compliance requirements of these smaller coal-fired EGUs. The multi-pollutant control system is being installed and tested on the AES Greenidge Unit 4 (Boiler 6) by a team including CONSOL Energy Inc. as prime contractor, AES Greenidge LLC as host site owner, and Babcock Power Environmental Inc. as engineering, procurement, and construction contractor. All funding for the project is being provided by the U.S. Department of Energy, through its National Energy Technology Laboratory, and by AES Greenidge. AES Greenidge Unit 4 is a 107 MW{sub e} (net), 1950s vintage, tangentially-fired, reheat unit that is representative of many of the 440 smaller coal-fired units identified above. Following design and construction, the multi-pollutant control system will be demonstrated over an approximately 20-month period while the unit fires 2-4% sulfur eastern U.S. bituminous coal and co-fires up to 10% biomass. This Preliminary Public Design Report is the first in a series of two reports describing the design of the multi-pollutant control facility that is being demonstrated at AES Greenidge. Its purpose is to consolidate for public use all available nonproprietary design information on the Greenidge Multi-Pollutant Control Project. As such, the report includes a discussion of the process concept, design objectives, design considerations, and uncertainties associated with the multi-pollutant control system and also summarizes the design of major process components and balance of plant considerations for the AES Greenidge Unit 4 installation. The Final Public Design Report, the second report in the series, will update this Preliminary Public Design Report to reflect the final, as-built design of the facility and to incorporate data on capital costs and projected operating costs.

  13. Dakota County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Pine Bend Biomass Facility Places in Dakota County, Minnesota Apple Valley, Minnesota Burnsville, Minnesota Coates, Minnesota Eagan, Minnesota Farmington,...

  14. Lincoln County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Consulting LLC Utility Companies in Lincoln County, Minnesota City of Tyler, Minnesota (Utility Company) Places in Lincoln County, Minnesota Arco, Minnesota Hendricks, Minnesota...

  15. Murray County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype A. Places in Murray County, Minnesota Avoca, Minnesota Chandler, Minnesota Currie, Minnesota Dovray, Minnesota...

  16. Benton County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ronneby, Minnesota Royalton, Minnesota Sartell, Minnesota Sauk Rapids, Minnesota St. Cloud, Minnesota Retrieved from "http:en.openei.orgwindex.php?titleBentonCounty,Minne...

  17. Oxy-fuel combustion with integrated pollution control

    DOE Patents [OSTI]

    Patrick, Brian R. (Chicago, IL); Ochs, Thomas Lilburn (Albany, OR); Summers, Cathy Ann (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul Chandler (Independence, OR)

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  18. E-Alerts: Environmental pollution and control (solid waste pollution and control). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    The paper discusses pollution by solid wastes including garbage, scrap, junked automobiles, spoil, sludge, containers; Disposal methods such as composts or land application, injection wells, incineration, sanitary landfills; Mining wastes; Processing for separation and materials recovery; Solid waste utilization; Recycling; Biological and ecological effects; Superfund (Records of Decision, etc.); SITE technology; Laws, legislation, and regulations; Public administration; Economics; Land use. The discussion includes disposal of concentrated or pure liquids such as brines, oils, chemicals, and hazardous materials.

  19. Preventive techniques of pollution control, the reliability and safety in core sectors including thermal power plant installations and economic evaluation

    SciTech Connect (OSTI)

    Tewari, J.K.

    1997-12-31

    This paper reports on a study of pollution control techniques, thermal power plant reliability and safety, and economics. Included are some illustrative examples dealing with pollution control. Topics include environmental planning, prevention strategy, pesticide use, food pollution, soil pollution, water pollution, thermal power plant emissions, and pollution control equipment.

  20. The use of gas separation membranes for pollution control

    SciTech Connect (OSTI)

    Logsdon, B.W.; Stull, D.; Pellegrino, J.

    1993-04-01

    Rocky Flats is considering the use of a fluidized bed oxidation unit (FBU) for the destruction of mixed waste. Public concerns about the health effects of such destruction have been intense. In order to allay such concerns and minimize the possible health impacts of the proposed mixed waste destruction, RFP has been investigating novel methods of air pollution control. Among the most promising of these techniques is the use of gas separation membranes, which is described in this report.

  1. H.A.R. 11-60.1 - Air Pollution Control | Open Energy Information

    Open Energy Info (EERE)

    60.1 - Air Pollution Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-60.1 - Air Pollution ControlLegal...

  2. AAC R18-9 Water Pollution Control | Open Energy Information

    Open Energy Info (EERE)

    8-9 Water Pollution Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: AAC R18-9 Water Pollution ControlLegal Abstract...

  3. A.A.C. R18-9: Water Pollution Control | Open Energy Information

    Open Energy Info (EERE)

    9: Water Pollution Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: A.A.C. R18-9: Water Pollution ControlLegal...

  4. H.A.R. 11-55 - Water Pollution Control | Open Energy Information

    Open Energy Info (EERE)

    5 - Water Pollution Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-55 - Water Pollution ControlLegal...

  5. Method oil shale pollutant sorption/NO.sub.x reburning multi-pollutant control

    DOE Patents [OSTI]

    Boardman, Richard D. (Idaho Falls, ID); Carrington, Robert A. (Idaho Falls, ID)

    2008-06-10

    A method of decreasing pollutants produced in a combustion process. The method comprises combusting coal in a combustion chamber to produce at least one pollutant selected from the group consisting of a nitrogen-containing pollutant, sulfuric acid, sulfur trioxide, carbonyl sulfide, carbon disulfide, chlorine, hydroiodic acid, iodine, hydrofluoric acid, fluorine, hydrobromic acid, bromine, phosphoric acid, phosphorous pentaoxide, elemental mercury, and mercuric chloride. Oil shale particles are introduced into the combustion chamber and are combusted to produce sorbent particulates and a reductant. The at least one pollutant is contacted with at least one of the sorbent particulates and the reductant to decrease an amount of the at least one pollutant in the combustion chamber. The reductant may chemically reduce the at least one pollutant to a benign species. The sorbent particulates may adsorb or absorb the at least one pollutant. A combustion chamber that produces decreased pollutants in a combustion process is also disclosed.

  6. Water pollution control in low density areas (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Conference: Water pollution control in low density areas Citation Details In-Document Search Title: Water pollution control in low density areas Twenty-eight papers are included on water pollution in the rural environment. The book is divided into six sections: land treatment of wastewater, septic tanks and their effects on the environment, groundwater problems, rural water supply problems, non-point pollution, and low-cost wastewater treatment facilities for rural

  7. Isanti County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 6 Climate Zone Subtype A. Places in Isanti County, Minnesota Braham, Minnesota Cambridge, Minnesota Isanti, Minnesota Retrieved from "http:en.openei.orgw...

  8. Anoka County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype A. Registered Energy Companies in Anoka County, Minnesota BioCat Fuels LLC Ever Cat Fuels LLC Places in Anoka County, Minnesota Andover, Minnesota Anoka, Minnesota Bethel,...

  9. Lake of the Woods County, Minnesota: Energy Resources | Open...

    Open Energy Info (EERE)

    in Lake of the Woods County, Minnesota Baudette, Minnesota Roosevelt, Minnesota Williams, Minnesota Retrieved from "http:en.openei.orgwindex.php?titleLakeoftheWoodsC...

  10. Pollution control by spray dryer and electron beam treatment

    SciTech Connect (OSTI)

    Bush, J.R.

    1983-02-08

    A combination spray drying and electron beam treatment for effluent gases provides air pollution control for even high sulfur coals. Liquid and a reagent are injected into the effluent gas in the spray dryer, thereby cleansing the effluent gas, decreasing its temperature, and increasing its moisture content. The spray drying decreases the temperature at least to below 100/sup 0/ C and, most preferably, to between 60 and 70/sup 0/ C. The decreased temperature, increased moisture content effluent gas including both reacted compounds and unreacted reagent is conveyed into an irradiation chamber, whereat radiation causes the gaseous sulfur oxides and/or nitrogen oxides to convert into mist and/or solid particles. The unreacted reagent may then react with the acid mist. The effluent gases are then subjected to dry particular collection.

  11. EA-196 Minnesota Power, Inc | Department of Energy

    Energy Savers [EERE]

    Minnesota Power, Inc EA-196 Minnesota Power, Inc Order authorizing Minnesota Power, Inc to export electric energy to Canada. PDF icon EA-196 Minnesota Power, Inc More Documents & Publications EA-196-A Minnesota Power, Sales EA-122-A Dynegy

  12. University of Minnesota | Open Energy Information

    Open Energy Info (EERE)

    search Name: University of Minnesota Place: Minneapolis, Minnesota Product: Higher education research institution. Coordinates: 44.979035, -93.264929 Show Map Loading map......

  13. Minnesota Energy Resources (Gas) - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Tankless Water Heater Program Info Sector Name Utility Administrator Minnesota Energy Resources Website http:www.minnesotaenergyresources.comhomerebates.aspx State Minnesota...

  14. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    DOE Patents [OSTI]

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  15. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prevention Pollution Prevention Promoting green purchasing, reuse and recycling, and the conservation of fuel, energy, and water. April 17, 2012 Pollution prevention and control...

  16. EA-196-B Minnesota Power | Department of Energy

    Energy Savers [EERE]

    B Minnesota Power EA-196-B Minnesota Power Order authorizing Minnesota Power to export electric energy to Canada. PDF icon EA-196-B Minnesota Power More Documents & Publications EA-196-C Minnesota Power EA-196-D Minnesota Power Application to Export Electric Energy OE Docket No. EA-196-D Minnesota Power

  17. EA-196-C Minnesota Power | Department of Energy

    Energy Savers [EERE]

    C Minnesota Power EA-196-C Minnesota Power Order authorizing Minnesota Power to export electric energy to Canada. PDF icon EA-196-C Minnesota.pdf More Documents & Publications Application to export electric energy OE Docket No. EA-196-C Minnesota Power EA-196-B Minnesota Power EA-196-D Minnesota Power

  18. WAC 173-460 - Controls for New Sources of Toxic Air Pollutants...

    Open Energy Info (EERE)

    73-460 - Controls for New Sources of Toxic Air Pollutants Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC 173-460 -...

  19. NAC 445B.287 et seq - Air Pollution Control Operating Permits...

    Open Energy Info (EERE)

    287 et seq - Air Pollution Control Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.287 et seq -...

  20. NAC 445B.3485 et seq - Air Pollution Control: Class III Operating...

    Open Energy Info (EERE)

    85 et seq - Air Pollution Control: Class III Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC...

  1. NAC 445B.3453 et seq - Air Pollution Control: Class II Operating...

    Open Energy Info (EERE)

    53 et seq - Air Pollution Control: Class II Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.3453...

  2. NAC 445B.352 et seq - Air Pollution Control: Class IV Operating...

    Open Energy Info (EERE)

    52 et seq - Air Pollution Control: Class IV Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.352...

  3. NAC 445B.3361 et seq - Air Pollution Control: Class I Operating...

    Open Energy Info (EERE)

    361 et seq - Air Pollution Control: Class I Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.3361...

  4. IDAPA 58.01.01 - Rules for the Control of Air Pollution in Idaho...

    Open Energy Info (EERE)

    1 - Rules for the Control of Air Pollution in Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: IDAPA 58.01.01 - Rules...

  5. ARM 17-30-10 - Ground Water Pollution Control System | Open Energy...

    Open Energy Info (EERE)

    - Ground Water Pollution Control System Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-30-10 - Ground Water...

  6. Title 10 V.S.A. Chapter 47 Water Pollution Control | Open Energy...

    Open Energy Info (EERE)

    V.S.A. Chapter 47 Water Pollution Control Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 10 V.S.A. Chapter 47 Water...

  7. Faribault County, Minnesota: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Registered Energy Companies in Faribault County, Minnesota Corn Plus Utility Companies in Faribault County, Minnesota City of Wells, Minnesota (Utility...

  8. Minnesota's 8th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Minnesota (Utility Company) City of Wadena, Minnesota (Utility Company) Retrieved from "http:en.openei.orgwindex.php?titleMinnesota%27s8thcongressionaldistrict&oldid194540...

  9. 2014 Race to Zero Student Design Competition: University of Minnesota...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Minnesota Profile 2014 Race to Zero Student Design Competition: University of Minnesota Profile 2014 Race to Zero Student Design Competition: University of Minnesota...

  10. Goodhue County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6 Climate Zone Subtype A. Energy Generation Facilities in Goodhue County, Minnesota Red Wing Biomass Facility Places in Goodhue County, Minnesota Bellechester, Minnesota...

  11. Ramsey County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Agency WindLogics Inc Energy Generation Facilities in Ramsey County, Minnesota St. Paul Biomass Facility Places in Ramsey County, Minnesota Arden Hills, Minnesota Blaine,...

  12. Gas pollution control apparatus and method and wood drying system employing same

    SciTech Connect (OSTI)

    Eatherton, J.R.

    1984-02-14

    Pollution control apparatus and method are disclosed in which hot exhaust gas containing pollutants including solid particles and hydrocarbon vapors is treated by transmitting such exhaust gas through a container containing wood members, such as wood chips, which serve as a filter media for filtering out such pollutants by causing such solids to deposit and such hydrocarbon vapors to condense upon the surface of the wood members. The contaminated wood chips are discharged from the filter and further processed into chip board or other commercial wood products thereby disposing of the pollutants. Lumber may be used as the wood members of the filter in a lumber kiln by deposition of solid particles on the rough surface of such lumber. The contaminated surfaces of the lumber are removed by a planer which produces a smooth finished lumber and contaminated wood chips that may be processed into chip board or other commercial wood products. A wood drying system employing such pollution control apparatus and method includes a hot air dryer for wood or other organic material, such as a wood chip rotary dryer or a wood veneer dryer, which produces hot exhaust gases containing pollutants including hydrocarbon vapors and solid particles. This hot exhaust air is transmitted through a lumber kiln to dry lumber thereby conserving heat energy and causing solid particle pollutants to deposit on the surface of the lumber. The kiln exhaust air containing solid and hydrocarbon vapor pollutants is then transmitted up through a filter stack of wood chips.

  13. Minneapolis, Minnesota: Energy Pathways Project

    Broader source: Energy.gov [DOE]

    This presentation features Brian Ross, a consultant for the City of Minneapolis, Minnesota with CR Planning. Ross provides an overview of how Minneapolis created a local energy vision for its...

  14. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M.

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  15. Minnesota's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Registered Networking Organizations in Minnesota's 7th congressional district Indigenous Environmental Network Registered Energy Companies in Minnesota's 7th congressional...

  16. Another step towards zero waste, using pollution control residuals to make steel

    SciTech Connect (OSTI)

    Easterly, T.W.; Berquist, W.G.; Lynn, J.D.

    1997-12-31

    Environmental legislation and regulations plus the economies of disposal are directing the steel industry to look for ways of minimizing the generation of waste and to maximize the recycling of collected materials. Further, the increasing use and efficiency of end of pipe pollution controls capture ever increasing amounts of materials that were previously discharged to the environment. These newly captured pollution control dusts and sludges often have chemical or physical properties that may prevent their direct recycle into the iron and steelmaking process. This paper describes how Bethlehem Steel`s Burns Harbor Division is using a variety of material handling and recycling technologies in an integrated pollution control dust and sludge management program to recycle its daily generation of pollution control dusts and sludges. This program has been designed to be consistent with the operating requirements of the iron and steelmaking processes while insuring conformance with all environmental requirements. When fully operational, this program will reuse over 90% of the plant`s pollution control dusts and sludges to make the product steel.

  17. EIS-0300: Minnesota Agri-Power Project: Biomass for Rural Development, Granite Falls, Minnesota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE and the Minnesota Environmental Quality Boards' [MEQB, a Minnesota State agency] decision to support a proposal by the Minnesota Valley Alfalfa Producers (MnVAP) to construct and operate a 75–103 megawatt biomass fueled gasifier and electric generating facility, known as the Minnesota Agri-Power Plant (MAPP), and associated transmission lines and alfalfa processing facilities.

  18. Blaine, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Blaine is a city in Anoka County and Ramsey County, Minnesota. It falls under Minnesota's 6th congressional district.12...

  19. Case Study - Minnesota Power - Accelerating Grid Modernization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The newly automated feeder is now able to respond to faults by rerouting power Case Study-Minnesota Power November 2012 2 Automated feeder switches being installed by Minnesota ...

  20. Virginia, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Virginia is a city in St. Louis County, Minnesota. It falls under Minnesota's 8th...

  1. Adrian, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Adrian is a city in Nobles County, Minnesota. It falls under Minnesota's 1st congressional district.12...

  2. Adams, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Adams is a city in Mower County, Minnesota. It falls under Minnesota's 1st congressional...

  3. Duluth, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Duluth is a city in St. Louis County, Minnesota. It falls under Minnesota's 8th congressional...

  4. Minnesota State Historic Preservation Programmatic Agreement | Department

    Energy Savers [EERE]

    of Energy Minnesota State Historic Preservation Programmatic Agreement Minnesota State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. PDF icon state_historic_preservation_programmatic_agreement_mn

  5. Multi-Attribute Decision Theory methodology for pollution control measure analysis

    SciTech Connect (OSTI)

    Barrera Roldan, A.S.; Corona Juarez, A. ); Hardie, R.W.; Thayer, G.R. )

    1992-01-01

    A methodology based in Multi-Attribute Decision Theory was developed to prioritize air pollution control measures and strategies (a set of measures) for Mexico City Metropolitan Area (MCMA). We have developed a framework that takes into account economic, technical feasibility, environmental, social, political, and institutional factors to evaluate pollution mitigation measures and strategies utilizing a decision analysis process. In a series of meetings with a panel of experts in air pollution from different offices of the mexican government we have developed General and Specific criteria for a decision analysis tree. With these tools the measures or strategies can be graded and a figure of merit can be assigned to each of them, so they can be ranked. Two pollution mitigation measures were analyzed to test the methodology, the results are presented. This methodology was developed specifically for Mexico City, though the experience gained in this work can be used to develop similar methodologies for other metropolitan areas throughout the world.

  6. Multi-Attribute Decision Theory methodology for pollution control measure analysis

    SciTech Connect (OSTI)

    Barrera Roldan, A.S.; Corona Juarez, A.; Hardie, R.W.; Thayer, G.R.

    1992-12-31

    A methodology based in Multi-Attribute Decision Theory was developed to prioritize air pollution control measures and strategies (a set of measures) for Mexico City Metropolitan Area (MCMA). We have developed a framework that takes into account economic, technical feasibility, environmental, social, political, and institutional factors to evaluate pollution mitigation measures and strategies utilizing a decision analysis process. In a series of meetings with a panel of experts in air pollution from different offices of the mexican government we have developed General and Specific criteria for a decision analysis tree. With these tools the measures or strategies can be graded and a figure of merit can be assigned to each of them, so they can be ranked. Two pollution mitigation measures were analyzed to test the methodology, the results are presented. This methodology was developed specifically for Mexico City, though the experience gained in this work can be used to develop similar methodologies for other metropolitan areas throughout the world.

  7. Bemidji, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    district.12 Registered Networking Organizations in Bemidji, Minnesota Indigenous Environmental Network References US Census Bureau Incorporated place and minor...

  8. New Boilers, Big Savings for Minnesota County

    Broader source: Energy.gov [DOE]

    Why simply replacing the boilers at the Sherburne County Courthouse in Minnesota is going to save big.

  9. Minnesota Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Monticello Unit 1",554,"4,695",34.8,"Northern States Power Co - Minnesota" "Prairie Island Unit 1, Unit 2","1,040","8,783",65.2,"Northern States Power Co -

  10. Water Pollution Control Plant Solar Site Evaluation: San José

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the San Jose/Santa Clara Water Pollution Control Plant (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  11. Economic analysis for controlling water pollution in the paint manufacturing industry

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The document is the result of a study of the paint manufacturing industry. It will serve as guidance for State and local authorities in controlling the discharge of pollutants by plants within the paint manufacturing industry as the Agency has exempted the industry from regulation under Paragraph 8(a) (iv) of the Settlement Agreement.

  12. Criminal sanctions applicable to Federal water pollution control measures. Master's thesis

    SciTech Connect (OSTI)

    Thompson, J.C.

    1991-09-30

    Overkill or not enough: Two decades ago, Congress realized that a system of civil remedies alone, devoid of any lasting punitive consequences, was inadequate to insure compliance with environmental protection statutes. Other than the Rivers and Harbors Act of 1899, which was designed to protect navigation, Federal criminal sanctions were not applicable to water pollution offenses. The Federal Water Pollution Control Act, more commonly known as the Clean Water Act (CWA), was twenty-four years old before Federal criminal enforcement of its provisions was allowed. But since the early 1970's, the criminal provisions of the CWA have been strengthened, the United States Department of Justice has beefed up its environmental enforcement efforts, and environmental polluters have been prosecuted. This Federal effort is now approaching overkill.

  13. Conference on alternatives for pollution control from coal-fired low emission sources, Plzen, Czech Republic. Plzen Proceedings

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies of assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  14. Integrated Air Pollution Control System (IAPCS), Executable Model (Version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  15. Categorical Exclusion Determinations: Minnesota | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minnesota Categorical Exclusion Determinations: Minnesota Location Categorical Exclusion Determinations issued for actions in Minnesota. DOCUMENTS AVAILABLE FOR DOWNLOAD December 3, 2015 CX-100414 Categorical Exclusion Determination Highly Active, Durable, and Ultra-low PGM NSTF Thin Film ORR Catalysts and Supports Award Number: DE-FOA-0007270 CX(s) Applied: A9, B3.6 Fuel Cell Technologies Office Date: 12/03/2015 Location(s): MN Office(s): Golden Field Office October 20, 2015 CX-100391

  16. Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2003-06-24

    An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.

  17. Minnesota Valley Coop L&P Assn | Open Energy Information

    Open Energy Info (EERE)

    Minnesota Valley Coop L&P Assn Jump to: navigation, search Name: Minnesota Valley Coop L&P Assn Place: Minnesota Phone Number: 320-269-2163 or 1-800-247-5051 Website:...

  18. EA-196-A Minnesota Power, Sales | Department of Energy

    Office of Environmental Management (EM)

    Minnesota Power, Sales to export electric energy to Canada. PDF icon EA-196-A Minnesota Power, Sales More Documents & Publications EA-196 Minnesota Power, Inc EA-220-A NRG...

  19. Guarantee Testing Results from the Greenidge Mult-Pollutant Control Project

    SciTech Connect (OSTI)

    Daniel P. Connell; James E. Locke

    2008-02-01

    CONSOL Energy Inc. Research & Development (CONSOL R&D) performed flue gas sampling at AES Greenidge to verify the performance of the multi-pollutant control system recently installed by Babcock Power Environmental Inc. (BPEI) on the 107-megawatt (MW) Unit 4 (Boiler 6). The multi-pollutant control system includes combustion modifications and a hybrid selective non-catalytic reduction (SNCR)/induct selective catalytic reduction (SCR) system to reduce NO{sub x} emissions, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system and baghouse to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter. Mercury removal is provided via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. Testing was conducted through ports located at the inlet and outlet of the SCR reactor to evaluate the performance of the hybrid NO{sub x} control system, as well as through ports located at the air heater outlet and baghouse outlet or stack to determine pollutant removal efficiencies across the Turbosorp{reg_sign} scrubber and baghouse. Data from the unit's stack continuous emission monitor (CEM) were also used for determining attainment of the performance targets for NO{sub x} emissions and SO{sub 2} removal efficiency.

  20. Baxter, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Baxter, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.341221, -94.282414 Show Map Loading map... "minzoom":false,"mappingservic...

  1. ,"Minnesota Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  2. ,"Minnesota Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  3. Minnesota Valley Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    https:www.facebook.compagesMinnesota-Valley-Electric-Cooperative212971310374 Outage Hotline: 1-800-232-2328 Outage Map: outage.mvec.net References: EIA Form EIA-861...

  4. Anoka, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6th congressional district.12 Registered Energy Companies in Anoka, Minnesota Ever Cat Fuels LLC References US Census Bureau Incorporated place and minor civil division...

  5. Minnesota/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Minnesota Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  6. Minnesota Power - Residential Energy Efficiency Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    ind... State Minnesota Program Type Rebate Program Rebate Amount Refrigerator Recycling: 35-50 Refrigerator: 25 Clothes Washer: 40 mail-in rebate General Lighting:...

  7. Minnesota/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Yes Alexandria Light and Power - Commercial Energy Efficiency Rebate Program (Minnesota) Utility Rebate Program Yes Alexandria Light and Power - Energy Efficient Water Heater...

  8. Davidson, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:en.openei.orgwindex.php?titleDavidson,Minnesota&oldid23...

  9. Hopkins, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hopkins, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9267, -93.405282 Show Map Loading map... "minzoom":false,"mappingservice...

  10. Tyler, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tyler, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2782995, -96.134755 Show Map Loading map... "minzoom":false,"mappingservic...

  11. Tyler, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tyler, Minnesota: Energy Resources (Redirected from Tyler, MN) Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.2782995, -96.134755 Show Map Loading map......

  12. Second Assessment, Minnesota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Second Assessment, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.5963193, -93.8481904 Show Map Loading map......

  13. Minnesota Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

  14. Richfield, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    congressional district.12 Registered Energy Companies in Richfield, Minnesota Best Buy References US Census Bureau Incorporated place and minor civil division population...

  15. Garrison, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Garrison, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.2944038, -93.8269216 Show Map Loading map... "minzoom":false,"mappingse...

  16. Jewett, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:en.openei.orgwindex.php?titleJewett,Minnesota&oldid2385...

  17. University of Minnesota Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Minnesota Address St. Anthony Falls Laboratory, 2 Third Avenue SE Place...

  18. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Pollution Prevention Promoting green purchasing, reuse and recycling, and the conservation of fuel, energy, and water. April 17, 2012 Pollution prevention and control at LANL Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Our goal is to reduce or eliminate waste whenever possible. Promoting pollution prevention to achieve sustainability Our commitment to environmental stewardship and sustainability

  19. University of Minnesota -- Morris Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    -- Morris Wind Farm Jump to: navigation, search Name University of Minnesota -- Morris Wind Farm Facility University of Minnesota -- Morris Sector Wind energy Facility Type...

  20. Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  1. City of Mountain Lake, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Lake, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Lake Place: Minnesota Phone Number: (507) 427-2999 Website: www.mountainlakemn.comindex.a...

  2. Central Minnesota Ethanol Cooperative CMEC | Open Energy Information

    Open Energy Info (EERE)

    Ethanol Cooperative CMEC Jump to: navigation, search Name: Central Minnesota Ethanol Cooperative (CMEC) Place: Minnesota Zip: 56345 Sector: Hydro Product: CMEC produces 200 proof...

  3. City of Detroit Lakes, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Lakes, Minnesota (Utility Company) Jump to: navigation, search Name: City of Detroit Lakes Place: Minnesota Website: www.ci.detroit-lakes.mn.usmai Facebook: https:...

  4. Application for Presidential Permit OE Docket No. PP-398 Minnesota...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line: Amended Letter to New Border Crossing Minnesota Power, an operating ...

  5. Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I...

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy...

  6. Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii...

    Open Energy Info (EERE)

    Ii Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy...

  7. City of Nielsville, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Nielsville, Minnesota (Utility Company) Jump to: navigation, search Name: City of Nielsville Place: Minnesota Phone Number: (218) 946-3205 Facebook: https:www.facebook.compages...

  8. University of Minnesota Morris II - PES | Open Energy Information

    Open Energy Info (EERE)

    Morris II - PES Jump to: navigation, search Name University of Minnesota Morris II - PES Facility University of Minnesota Morris II - PES Sector Wind energy Facility Type Community...

  9. City of Virginia, Minnesota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Virginia, Minnesota (Utility Company) Jump to: navigation, search Name: City of Virginia Place: Minnesota Phone Number: 218-748-7540 Website: www.virginiamn.us Outage Hotline:...

  10. City of Randall, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Minnesota (Utility Company) Jump to: navigation, search Name: City of Randall Place: Minnesota Phone Number: 320-749-2159 Website: www.randall.govoffice2.comind Outage Hotline:...

  11. City of Austin, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Austin, Minnesota (Utility Company) Jump to: navigation, search Name: Austin City of Place: Minnesota Phone Number: 507-433-8886 Website: www.austinutilities.com Facebook: https:...

  12. City of Elk River, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Minnesota (Utility Company) Jump to: navigation, search Name: City of Elk River Place: Minnesota Phone Number: 763.441.2020 Website: www.elkriverutilities.com Facebook: https:...

  13. City of Le Sueur, Minnesota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Sueur, Minnesota (Utility Company) Jump to: navigation, search Name: Le Sueur City of Place: Minnesota Phone Number: (507) 665-3338 Website: mmpa.org Twitter: @lesueurmn Facebook:...

  14. City of Buffalo, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Minnesota (Utility Company) Jump to: navigation, search Name: City of Buffalo Place: Minnesota Phone Number: (763) 682-1001 Website: www.ci.buffalo.mn.usutility-s Twitter:...

  15. City of Spring Grove, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Grove, Minnesota (Utility Company) Jump to: navigation, search Name: City of Spring Grove Place: Minnesota Phone Number: 507-498-5221 Website: www.springgrove.govoffice.com Outage...

  16. City of Stephen, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Stephen, Minnesota (Utility Company) Jump to: navigation, search Name: City of Stephen Place: Minnesota Phone Number: 218-478-3614 Website: www.stephenmn.comindex.asp?SE Outage...

  17. City of Moorhead, Minnesota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Moorhead, Minnesota (Utility Company) (Redirected from Moorhead Public Service Utilty) Jump to: navigation, search Name: City of Moorhead Place: Minnesota Phone Number:...

  18. City of Moorhead, Minnesota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Moorhead, Minnesota (Utility Company) (Redirected from Moorhead Public Service) Jump to: navigation, search Name: City of Moorhead Place: Minnesota Phone Number: 218-477-8000...

  19. Central Minnesota Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Power Agency Place: Minnesota Phone Number: 507-526-2193 Website: www.cmmpa.org Facebook: https:www.facebook.compagesCentral-Minnesota-Municipal-Power-Agency-CMMPA...

  20. Minnesota's 4th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Inc Energy Generation Facilities in Minnesota's 4th congressional district St. Paul Biomass Facility Retrieved from "http:en.openei.orgwindex.php?titleMinnesota%27s4...

  1. City of Staples, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Staples, Minnesota (Utility Company) Jump to: navigation, search Name: City of Staples Place: Minnesota Phone Number: 218-894-2550 Website: www.staples.govoffice.cominde Outage...

  2. Best Demonstrated Available Technology (BDAT) for pollution control and waste treatment. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the most advanced equipment and processes for pollution control and waste treatment according to the guidelines set by the Environmental Protection Agency (EPA). Citations discuss biological, thermal, physical, and chemical prosesses for the technology innovation, economic productivity, and environmental protection. Standards and regulations for gaseous, liquid, and solid pollution are included. Also discussed are water pollution control, food and pharmaceutical wastes, effluent treatment, and materials recovery. (Contains a minimum of 184 citations and includes a subject term index and title list.)

  3. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    SciTech Connect (OSTI)

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  4. Made in Minnesota Solar Energy Production Incentive

    Broader source: Energy.gov [DOE]

    Since January 2014, The Department of Commerce (DOC) has administered the Made in Minnesota Solar Energy Production Incentive pursuant to H.F. 729, which was enacted in May 2013. Systems must be ...

  5. Made in Minnesota Solar Thermal Rebate

    Broader source: Energy.gov [DOE]

    Beginning in 2014, the Department of Commerce is offering a Made in Minnesota Solar Thermal Rebate program, pursuant to H.F. 729 enacted in 2013. Rebates are 25% of installed costs, with a $2,500...

  6. More Weatherized Homes for Minnesota Tribe

    Broader source: Energy.gov [DOE]

    Weatherization crews across Minnesota are busy replacing old furnaces, sealing air leaks, and weathering stripped doors for people who are at or below 200 percent of the federal poverty line, with priority given to households with elderly or disabled people.

  7. Made in Minnesota Solar PV Incentive Program

    Broader source: Energy.gov [DOE]

    Since January 2014, The Department of Commerce (DOC) has administered the Made in Minnesota Solar Energy Production Incentive pursuant to H.F. 729, which was enacted in May 2013. Systems must be ...

  8. Biofuels in Minnesota: A Success Story

    Broader source: Energy.gov [DOE]

    This PDF provides a Minnesota biofuels success story. It shows the timeline of state actions, the number of biodiesel plants in the state, production and consumption rates, and the NextGen Energy Initiative.

  9. Filtration technology for the control of solid hazardous air pollutants in paint booth operations

    SciTech Connect (OSTI)

    Stolle, M.

    1997-12-31

    In October of 1996, the EPA released the draft Aerospace NESHAP regulation that targets hazardous air pollutant (HAP) emissions from aerospace manufacturing and rework operations. One of the key provisions focuses on the control of inorganic HAPs released from application operations involving hexavalent chromium based primers. The NESHAP regulation mandates that coating facilities which release inorganic HAPS meet specific particulate emission control efficiencies or requirements, and further specifies different control requirements for new and existing facilities. The provisions pertaining to inorganic HAP emissions from coating operations were developed through the efforts of many individuals from the industrial, military, manufacturing, and regulatory sectors, and were the subject of intense discussion that spanned a period of years. Throughout this process, a topic of major debate was the development of dry filter particulate control efficiency requirements that would achieve an appropriate level of emission control, and could reasonably met by manufacturers and filter suppliers alike. The control requirements that are the topic of this paper mandate specific collection efficiencies for various particle size ranges. Recent studies on particle size characteristics of overspray generated by hexavalent chrome primer applications indicate that the NESHAP standard may not achieve the level of emission control that was initially intended. This paper presents the results of a detailed, third party analysis that focuses on the actual control efficiencies for chromate-based priming operations that will be achieved by the new standard. Following a general filtration efficiency discussion, an overview of the procedure employed to evaluate the overall efficiencies that will be achieved by NESHAP compliant filters is provided. The data upon which the evaluation was derived are presented.

  10. Medicine Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Medicine Lake is a city in Hennepin County, Minnesota. It falls under Minnesota's 3rd...

  11. Hill City, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hill City is a city in Aitkin County, Minnesota. It falls under Minnesota's 8th...

  12. Minnesota Mining and Manufacturing Co 3M | Open Energy Information

    Open Energy Info (EERE)

    Mining and Manufacturing Co 3M Jump to: navigation, search Name: Minnesota Mining and Manufacturing Co (3M) Place: Saint Paul, Minnesota Zip: MN 55144-1000 Product: US-based...

  13. Vadnais Heights, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Vadnais Heights is a city in Ramsey County, Minnesota. It falls under Minnesota's 4th congressional district.12...

  14. North Oaks, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. North Oaks is a city in Ramsey County, Minnesota. It falls under Minnesota's 4th congressional district.12...

  15. St. Paul, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. St. Paul is a city in Ramsey County, Minnesota. It falls under Minnesota's 4th congressional district.12...

  16. City of Mountain Iron, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Mountain Iron, Minnesota (Utility Company) Jump to: navigation, search Name: City of Mountain Iron Place: Minnesota Phone Number: (218)748-7570 Website: www.mtniron.com...

  17. New Hope, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. New Hope is a city in Hennepin County, Minnesota. It falls under Minnesota's 5th congressional...

  18. City of Blue Earth, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Earth, Minnesota (Utility Company) Jump to: navigation, search Name: City of Blue Earth Place: Minnesota Phone Number: (507) 526-2191 or (507) 526-5382 or (507) 526-2402 Website:...

  19. Brooklyn Park, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brooklyn Park is a city in Hennepin County, Minnesota. It falls under Minnesota's 3rd congressional...

  20. City of Caledonia, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Minnesota (Utility Company) Jump to: navigation, search Name: City of Caledonia Place: Minnesota Phone Number: (507) 725-3323 or (507) 725-3450 Website: www.caledoniamn.gov...

  1. City of Alexandria, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Minnesota (Utility Company) Jump to: navigation, search Name: City of Alexandria Place: Minnesota Phone Number: 320.763.6501 or 800.267.8955 Website: www.alputilities.com Twitter:...

  2. West Concord, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Concord is a city in Dodge County, Minnesota. It falls under Minnesota's 1st...

  3. Albert Lea, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Albert Lea is a city in Freeborn County, Minnesota. It falls under Minnesota's 1st...

  4. ,"Minnesota Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:53 AM" "Back to Contents","Data 1: Minnesota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MN3" "Date","Minnesota...

  5. City of North St Paul, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Paul, Minnesota (Utility Company) Jump to: navigation, search Name: City of North St Paul Place: Minnesota Phone Number: 651.747.2413 or 651.747.2417 Website: www.ci.north-saint-pa...

  6. Prior Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Prior Lake is a city in Scott County, Minnesota. It falls under Minnesota's 2nd congressional district.12...

  7. H-D Electric Coop Inc (Minnesota) | Open Energy Information

    Open Energy Info (EERE)

    H-D Electric Coop Inc (Minnesota) Jump to: navigation, search Name: H-D Electric Coop Inc Place: Minnesota Phone Number: 605.874.2171 Website: www.h-delectric.coopindex.htm...

  8. PP-78 Minnesota Power & Light Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Minnesota Power & Light Company PP-78 Minnesota Power & Light Company Presidential Permit authorizing Minnesota Power & Light Company to construct, operate, and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-78 Minnesota Power & Light Company More Documents & Publications PP-76 The Vermont Electric Transmission Company PP-228 Edison Sault Electric Company PP-45-2 Northern States Power

  9. Minnesota Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Minnesota Recovery Act State Memo Minnesota Recovery Act State Memo Minnesota has substantial natural resources, including biomass, wind power, and is a large ethanol producer. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Minnesota are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal power, and the

  10. 2014 Race to Zero Student Design Competition: University of Minnesota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Profile | Department of Energy University of Minnesota Profile 2014 Race to Zero Student Design Competition: University of Minnesota Profile 2014 Race to Zero Student Design Competition: University of Minnesota Profile, as posted on the U.S. Department of Energy website. PDF icon rtz_minnesota_profile.pdf More Documents & Publications 2014 Race to Zero Student Design Competition: Auburn University Profile 2014 Race to Zero Student Design Competition: Georgia Institute of Technology

  11. Alternative Fuels Data Center: Minnesota School District Finds Cost

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Savings, Cold-Weather Reliability with Propane Buses Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses to someone by E-mail Share Alternative Fuels Data Center: Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses on Facebook Tweet about Alternative Fuels Data Center: Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses on Twitter Bookmark Alternative Fuels Data Center: Minnesota

  12. Alternative Fuels Data Center: Minnesota Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels and Vehicles Minnesota Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Minnesota Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Minnesota Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Minnesota Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data

  13. Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    out Greener Future Propane Buses Help Minnesota Schools Carve out Greener Future to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve out Greener Future on Google Bookmark Alternative Fuels Data Center: Propane Buses

  14. EIS-0499: Great Northern Transmission Line Project, Minnesota | Department

    Office of Environmental Management (EM)

    of Energy 9: Great Northern Transmission Line Project, Minnesota EIS-0499: Great Northern Transmission Line Project, Minnesota Summary This EIS will evaluate the potential environmental impacts of a DOE proposal to grant a Presidential permit to Minnesota Power to construct, operate, maintain, and connect a new 883-megawatt electric transmission system across the U.S.-Canada border. The proposed 220 mile transmission line would cross the border near Roseau, Minnesota, and continue to Grand

  15. Application to export electric energy OE Docket No. EA-196-C Minnesota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power | Department of Energy export electric energy OE Docket No. EA-196-C Minnesota Power Application to export electric energy OE Docket No. EA-196-C Minnesota Power Application from Minnesota Power to export electric energy to Canada. PDF icon Application to export electric energy OE Docket No. EA-196-C Minnesota Power More Documents & Publications EA-196-C Minnesota Power Application to Export Electric Energy OE Docket No. EA-196-D Minnesota Power EA-196-B Minnesota Power

  16. Storm Water Pollution Prevention Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Control Specialist FMS - Sustainability and Environmental Programs Date ......... 47 8.6 Site Sustainability Plan ......

  17. Integrated Air Pollution Control System (IAPCS), Executable Model and Source Model (version 4. 0) (for microcomputers). Model-Simulation

    SciTech Connect (OSTI)

    Not Available

    1990-10-29

    The Integrated Air Pollution Control System (IAPCS) Cost Model is an IBM PC cost model that can be used to estimate the cost of installing SO2, NOx, and particulate matter control systems at coal-fired utility electric generating facilities. The model integrates various combinations of the following technologies: physical coal cleaning, coal switching, overfire air/low NOx burners, natural gas reburning, LIMB, ADVACATE, electrostatic precipitator, fabric filter, gas conditioning, wet lime or limestone FGD, lime spray drying/duct spray drying, dry sorbent injection, pressurized fluidized bed combustion, integrated gasification combined cycle, and pulverized coal burning boiler. The model generates capital, annualized, and unitized pollutant removal costs in either constant or current dollars for any year.

  18. Environmental Evaluation for Installation of Solar Arrays at San Jose/Santa Clara Water Pollution Control Plant

    Broader source: Energy.gov [DOE]

    The purpose of this technical memorandum (TM) is to review the options to develop a potential solar array development (Project) within or adjacent to western burrowing owl (Athene cunicularia) habitat in the buffer lands that surround the San José/Santa Clara Water Pollution Control Plant (WPCP) and to determine if there is a ground-mounted solar photovoltaic (PV) configuration that would enable a workable co-existence between the burrowing owl habitat and the PV arrays.

  19. Pollution prevention opportunity assessment for the K-25 Site Toxic Substances Control Act Incinerator Operations, Level III

    SciTech Connect (OSTI)

    1995-09-01

    A Level III pollution prevention opportunity assessment (PPOA) was performed for the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator to evaluate pollution prevention (P2) options for various waste streams: The main objective of this study was to identify and evaluate options to reduce the quantities of each waste stream generated by the TSCA Incinerator operations to realize significant environmental and/or economic benefits from P2. For each of the waste streams, P2 options were evaluated following the US Environmental Protection Agency (EPA) hierarchy to (1) reduce the quantity of waste generated, (2) recycle the waste, and/or (3) use alternate waste treatment or segregation methods. This report provides process descriptions, identification and evaluation of P2 options, and final recommendations.

  20. Determination of a cost-effective air pollution control technology for the control of VOC and HAP emissions from a steroids processing plant

    SciTech Connect (OSTI)

    Hamel, T.M.

    1997-12-31

    A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductions of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.

  1. University of Minnesota Boosts Studies with Wind Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Boosts Studies with Wind Power University of Minnesota Boosts Studies with Wind Power October 27, 2011 - 10:53am Addthis Time-lapse of the University of Minnesota's wind turbine construction, from September 6 - 23, 2011. | Courtesy of the University of Minnesota College of Science and Engineering Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office What does this project do? The American-made Clipper Liberty wind turbine and a 426-foot

  2. City of Owatonna, Minnesota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    search Name: City of Owatonna Place: Minnesota Phone Number: (507) 451-2480 Website: ci.owatonna.mn.uscityutiliti Facebook: https:www.facebook.comOwatonnaPublicUtilities...

  3. Clay County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.878186, -96.4257589 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  4. Swift County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Swift County, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2315651, -95.7196042 Show Map Loading map... "minzoom":false,"mappi...

  5. Hush Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hush Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4494204, -92.1031839 Show Map Loading map... "minzoom":false,"mappings...

  6. City of Mabel, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    of Mabel Place: Minnesota Phone Number: 507-493-5299 Website: www.mabelmn.comindex.html Facebook: https:www.facebook.compagesCity-Of-Mabel246654925362752 Outage Hotline:...

  7. Mountain Iron, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mountain Iron, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.5324267, -92.623515 Show Map Loading map... "minzoom":false,"mappi...

  8. Application for Presidential Permit OE Docket No. PP-398 Minnesota...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line Application from Great Northern (GNTL) to construct, operate and ...

  9. Application for Presidential Permit OE Docket No. PP-398 Minnesota...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line: Comments from Roseau County Board of Commissioners Motion was made by ...

  10. Application for Presidential Permit OE Docket No. PP-398 Minnesota...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line: Federal Register Notice, Vol. 79, No. 93 - May 14, 2014 Application ...

  11. Application for Presidential Permit OE Docket No. PP-398 Minnesota...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line: Notice of Intent to Prepare an Environmental Impact Statement: Federal ...

  12. Marion Lake, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Marion Lake, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1383694, -91.9960581 Show Map Loading map... "minzoom":false,"mappin...

  13. Minnesota Chippewa Tribe: White Earth Band- 2003 Project

    Broader source: Energy.gov [DOE]

    Several northern Minnesota tribes interested in building a common foundation for strategic tribal energy capacity have banded together for strategic energy resource planning.

  14. Fort Snelling, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Incorporated place and minor civil division population dataset (All States, all geography) Retrieved from "http:en.openei.orgwindex.php?titleFortSnelling,Minnesota&old...

  15. Minnesota Energy Resources (Gas) - Low-Income New Construction...

    Broader source: Energy.gov (indexed) [DOE]

    State Minnesota Program Type Rebate Program Rebate Amount Gas Furnace: 500 Integrated Space and Water Heating System: 900 Electronic Programmable Set-Back...

  16. Lyon County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lyon County, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.3981292, -95.8987139 Show Map Loading map... "minzoom":false,"mappin...

  17. St. Louis Park, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9482979, -93.3480051 Show Map Loading map... "minzoom":false,"mappingservic...

  18. Spring Park, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9352407, -93.6321817 Show Map Loading map... "minzoom":false,"mappingservic...

  19. City of Jackson, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Jackson Place: Minnesota Phone Number: (507)847-5586 Website: www.cityofjacksonmn.comindex. Facebook: https:www.facebook.comjacksonmn Outage Hotline: 507-847-4410 or After...

  20. City of St James, Minnesota (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    St James Place: Minnesota Phone Number: (507) 375-3241 Website: www.ci.stjames.mn.usindex.asp Twitter: @cityofstjames Facebook: https:www.facebook.compages...

  1. EECBG Success Story: New Boilers, Big Savings for Minnesota County

    Broader source: Energy.gov [DOE]

    Officials at Sherburne County's Government Center in Minnesota had a problem: the complex's original boilers, installed in 1972, were in desperate need of replacing. Learn more.

  2. Minnesota Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  3. University of Minnesota Morris Clean Energy Investments Recognized...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minnesota Morris Clean Energy Investments Recognized by U.S. Department of Energy ... days at full production or considerably longer during lower heating and cooling demands. ...

  4. Anoka Electric Coop (Minnesota) EIA Revenue and Sales - February...

    Open Energy Info (EERE)

    Anoka Electric Coop (Minnesota) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anoka Electric Coop for...

  5. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - February 2008...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for February 2008....

  6. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - June 2008 |...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for June 2008. Monthly...

  7. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - April 2008 ...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for April 2008. Monthly...

  8. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - May 2008 | Open...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for May 2008. Monthly...

  9. Anoka Electric Coop (Minnesota) EIA Revenue and Sales - August...

    Open Energy Info (EERE)

    Anoka Electric Coop (Minnesota) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anoka Electric Coop for...

  10. Anoka Electric Coop (Minnesota) EIA Revenue and Sales - December...

    Open Energy Info (EERE)

    Coop (Minnesota) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anoka Electric Coop for December 2008....

  11. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - March 2008 ...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for March 2008. Monthly...

  12. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - February 2009...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for February 2009....

  13. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - December 2008...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for December 2008....

  14. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - October 2008...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for October 2008....

  15. Anoka Electric Coop (Minnesota) EIA Revenue and Sales - February...

    Open Energy Info (EERE)

    Anoka Electric Coop (Minnesota) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anoka Electric Coop for...

  16. Anoka Electric Coop (Minnesota) EIA Revenue and Sales - April...

    Open Energy Info (EERE)

    Anoka Electric Coop (Minnesota) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anoka Electric Coop for April...

  17. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - January 2009...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for January 2009....

  18. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - January 2008...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for January 2008....

  19. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - November 2008...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for November 2008....

  20. ALLETE, Inc. (Minnesota) EIA Revenue and Sales - August 2008...

    Open Energy Info (EERE)

    ALLETE, Inc. (Minnesota) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for ALLETE, Inc. for August 2008....

  1. North St. Paul, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    St. Paul, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0124657, -92.9918828 Show Map Loading map... "minzoom":false,"mappingse...

  2. ,"Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  3. ,"Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  4. Minnesota Natural Gas Deliveries to Electric Power Consumers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Minnesota Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  5. Eden Prairie, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Companies in Eden Prairie, Minnesota Cardinal Glass Industries Independent Natural Resources Inc Rational Energies LLC SUPERVALU Westwood Renewables Wind Energy America Inc...

  6. University of Minnesota (NorthernSTAR Building America Partnership...

    Open Energy Info (EERE)

    (NorthernSTAR Building America Partnership) Jump to: navigation, search Name: University of Minnesota (NorthernSTAR Building America Partnership) Place: St. Paul, MN Information...

  7. CRS 25-7-100 et seq - Air Pollution and Prevention Control Act...

    Open Energy Info (EERE)

    Prevention and Control Act. This statutory section sets forth requirements for Colorado's air quality control program. Published NA Year Signed or Took Effect 1980 Legal Citation...

  8. Minnesota E85 Test Market | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minnesota E85 Test Market Minnesota E85 Test Market Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon gerlach.pdf More Documents & Publications CX-002622: Categorical Exclusion Determination CX-002623: Categorical Exclusion Determination CX-002625: Categorical Exclusion Determination

  9. Perimeter security for Minnesota correctional facilities

    SciTech Connect (OSTI)

    Crist, D.; Spencer, D.D.

    1996-12-31

    For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned new construction at other facilities.

  10. Integrated process and apparatus for control of pollutants in coal-fired boilers

    DOE Patents [OSTI]

    Hunt, T.G.; Offen, G.R.

    1992-11-24

    A method and apparatus are described for reducing SO[sub x] and NO[sub x] levels in flue gases generated by the combustion of coal in a boiler in which low NO[sub x] burners and air staging ports are utilized to inhibit the amount of NO[sub x] initially produced in the combustion of the coal. A selected concentration of urea is introduced downstream of the combustion zone after the temperature has been reduced to the range of 1300 F to 2000 F, and a sodium-based reagent is introduced into the flue gas stream after further reducing the temperature of the stream to the range of 200 F to 900 F. Under certain conditions, calcium injection may be employed along with humidification of the flue gas stream for selective reduction of the pollutants. 7 figs.

  11. Integrated process and apparatus for control of pollutants in coal-fired boilers

    DOE Patents [OSTI]

    Hunt, Terry G.; Offen, George R.

    1992-01-01

    A method and apparatus for reducing SO.sub.x and NO.sub.x levels in flue gases generated by the combustion of coal in a boiler in which low NO.sub.x burners and air staging ports are utilized to inhibit the amount of NO.sub.x initially produced in the combustion of the coal, a selected concentration of urea is introduced downstream of the combustion zone after the temperature has been reduced to the range of 1300.degree. F. to 2000.degree. F., and a sodium-based reagent is introduced into the flue gas stream after further reducing the temperature of the stream to the range of 200.degree. F. to 900.degree. F. Under certain conditions, calcium injection may be employed along with humidification of the flue gas stream for selective reduction of the pollutants.

  12. EECBG Success Story: Job Creation and Energy Savings in St. Paul, Minnesota

    Broader source: Energy.gov [DOE]

    The city of St. Paul, Minnesota, and local produce distribution company, J&J Distributing, are taking a no-nonsense approach to cutting waste, saving energy and creating jobs in the Twin Cities. As part of the city’s $1.3 million Energy Efficiency Conservation Block Grant, J&J Distributing has upgraded its interior lighting system and replaced 44 rooftop refrigeration units with three energy efficient climate control systems. Learn more.

  13. Design, operation, and performance of a modern air pollution control system for a refuse derived fuel combustion facility

    SciTech Connect (OSTI)

    Weaver, E.H.; Azzinnari, C.

    1997-12-01

    The Robbins, Illinois refuse derived fuel combustion facility was recently placed into service. Large and new, the facility is designed to process 1600 tons of waste per day. Twenty-five percent of the waste, or 400 tons per day, is separated out in the fuel preparation process. The remaining 1200 tons per day is burned in two circulating fluidized bed boilers. The system is designed to meet new source performance standards for municipal waste combustion facilities, including total particulate, acid gases (HCl, SO{sub 2}, HF), heavy metals (including mercury), and dioxins. The system utilizes semi-dry scrubbers with lime and activated carbon injected through dual fluid atomizers for control of acid gases. Final polishing of acid gas emissions, particulate control, heavy metals removal, and control of dioxins is accomplished with pulse jet fabric filters. This paper discusses the design of the facility`s air pollution control system, including all auxiliary systems required to make it function properly. Also discussed is the actual operation and emissions performance of the system.

  14. Air pollution EPA'S efforts to control gasoline vapors from motor vehicles

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This report examines ozone, often called smog, which is a respiratory irritant, and long-term exposure may cause permanent lung damage. Attempts by EPA to reduce gasoline vapors, a major contributor to ozone, by requiring refiners to lower the volatility (evaporation rate) of gasoline sold during the summer months when most high ozone levels occur and auto manufacturers to install vapor recovery equipment (onboard controls) on motor vehicles. Beginning in 1989 (Phase I), the maximum volatility of gasoline sold during the summer would fall to 10.5 pounds per square inch and beginning in 1992 (Phase II), the maximum volatility would fall to 9.0 pounds per square inch. EPA has not yet acted on Phase II reductions because it disagrees with the Department of Transportation on the dangers of adding onboard controls to vehicles. DOT believes the onboard controls may pose an increased risk of fire during crashes. In this report's view, the Stage II controls are a practical and feasible way to control refueling vapors and that onboard controls may well surpass the effectiveness of Phase II controls and therefore should not be abandoned as a way to reduce gasoline vapors.

  15. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of Chinas 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 ?g/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 ?g/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 ?g/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is Chinas 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.

  16. Energy technology characterizations handbook: environmental pollution and control factors. Third edition

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    This Handbook deals with environmental characterization information for a range of energy-supply systems and provides supplementary information on environmental controls applicable to a select group of environmentally characterized energy systems. Environmental residuals, physical-resource requirements, and discussion of applicable standards are the principal information provided. The quantitative and qualitative data provided are useful for evaluating alternative policy and technical strategies and for assessing the environmental impact of facility siting, energy production, and environmental controls.

  17. Minnesota Agri-Power Project. Quarterly report, January--March, 1998

    SciTech Connect (OSTI)

    Wilbur, D.

    1998-05-01

    The Minnesota Valley Alfalfa Producers propose to build an alfalfa processing plant integrated with an advanced power plant system at the Granite Falls, Minnesota industrial park to provide 75 MW of base load electric power and a competitively priced source of value added alfalfa based products. This project utilizes air blown fluidized bed gasification technology to process alfalfa stems and another biomass to produce a hot, clean, low heating value gas that will be used in a gas turbine. Exhaust heat from the gas turbine will be used to generate steam to power a steam turbine and provide steam for the processing of the alfalfa leaf into a wide range of products including alfalfa leaf meal, a protein source for livestock. This progress report describes feedstock testing, feedstock supply system, performance guarantees, sales contracts, environmental permits, education, environment, economy, and project coordination and control.

  18. Benefits of Biofuel Production and Use in Minnesota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minnesota spent $12.5 billion on petroleum-based fuels for transportation in 2013. Investments in Minnesota biofuels could keep those dollars in the state to stimulate economic development and add to the state's 75,000+ jobs in green goods and services. I In 2011, petroleum use by Minnesota's transportation sector released 30 million metric tonnes of CO 2 . On a life-cycle basis, advanced biofuels can reduce greenhouse gas emissions by >50% compared to petroleum-helping to reduce

  19. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect (OSTI)

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

  20. City of Newfolden, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    search Name: City of Newfolden Place: Minnesota Phone Number: 218-874-7135 Website: www.ci.newfolden.mn.usindex.a Twitter: @newfoldenmn Facebook: https:www.facebook.com...

  1. City of Madison, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Madison Place: Minnesota Phone Number: (320)-598-7373 Website: www.ci.madison.mn.usindex.asp Facebook: https:www.facebook.compagesCity-of-Madison-MN106941826001888 Outage...

  2. City of Mora, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Mora Place: Minnesota Phone Number: 320.679.1451 or 320.679.1511 Website: www.ci.mora.mn.usindex.asp?Ty Facebook: https:www.facebook.commora.mn.1 Outage Hotline:...

  3. City of Lake Crystal, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Name: City of Lake Crystal Place: Minnesota Phone Number: (605)256-6536 Website: www.ci.lake-crystal.mn.usinde Outage Hotline: (800)520-4746 References: EIA Form EIA-861 Final...

  4. City of Lake City, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Place: Minnesota Phone Number: (651) 345 - 5383 (8am to 4:30pm weekdays) Website: www.ci.lake-city.mn.usindex.a Outage Hotline: After Hours: (651) 345 - 4711 or (651) 345 -...

  5. City of Grand Marais, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Grand Marais Place: Minnesota Phone Number: (218) 387-3030 or (218)387-1848 Website: www.ci.grand-marais.mn.usinde Facebook: https:www.facebook.comGrandMaraisMN Outage Hotline:...

  6. Brown County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in Minnesota. Its FIPS County Code is 015. It is classified as...

  7. City of Lake Park, Minnesota (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Place: Minnesota Phone Number: (218)238-5337 Website: lakeparkmn.comutilities.html Outage Hotline: 218-238-5532 References: EIA Form EIA-861 Final Data File for 2010 -...

  8. How Energy Efficiency is Adding Jobs in St. Paul, Minnesota

    Broader source: Energy.gov [DOE]

    Saint Paul, Minnesota is using an energy efficiency grant to provide commercial retrofits that will allow a local produce distribution company to dramatically reduce its energy costs and add dozens...

  9. University of Minnesota and the Department of Energy Celebrate...

    Broader source: Energy.gov (indexed) [DOE]

    Quarter 2011 edition of the Wind Program R&D Newsletter. The 2.5-MW Clipper wind turbine installed at the University of Minnesota's Eolos Wind Energy Research Station in Rosemount. ...

  10. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  11. Minnesota's 6th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    congressional district BioCat Fuels LLC Cp Holdings Llc Cymbet Corporation Econar Ever Cat Fuels LLC S W Energy LLC Energy Generation Facilities in Minnesota's 6th congressional...

  12. Nobles County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Nobles County is a county in Minnesota. Its FIPS County Code is 105. It is classified as...

  13. Southern Minnesota Mun P Agny | Open Energy Information

    Open Energy Info (EERE)

    Address: 500 First Avenue SW Place: Rochester, Minnesota Zip: 55902-3303 Year Founded: 1977 Website: www.smmpa.com References: EIA Form EIA-861 Final Data File for 2010 -...

  14. EA-196-D Minnesota Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (CN).pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-196-D Minnesota Power EA-409 Saracen Power LP EA-342-A Royal Bank of Canada...

  15. City of Madelia, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    of Madelia Place: Minnesota Phone Number: 507-642-3245 Website: madeliamn.comContactUs.php Outage Hotline: 507-642-3245 References: EIA Form EIA-861 Final Data File for 2010 -...

  16. How Energy Efficiency is Adding Jobs in St. Paul, Minnesota

    ScienceCinema (OSTI)

    Hannigan, Jim; Coleman, Chris; Oliver, LeAnn; Jambois, Louis

    2013-05-29

    Saint Paul, Minnesota is using an energy efficiency grant to provide commercial retrofits that will allow a local produce distribution company to dramatically reduce its energy costs and add dozens of new workers.

  17. Blue Earth County, Minnesota: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Earth County is a county in Minnesota. Its FIPS County Code is 013. It is classified as...

  18. City of Tyler, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Tyler, Minnesota (Utility Company) Jump to: navigation, search Name: City of Tyler Address: 230 North Tyler Street Place: Tyler, MN Zip: 56178 Phone Number: 507-247-5176...

  19. Jackson County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Minnesota. Its FIPS County Code is 063. It is classified as...

  20. Red Lake County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Lake County is a county in Minnesota. Its FIPS County Code is 125. It is classified as...

  1. Minnesota Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,655 4,655...

  2. Implementing an Industrial Energy Efficiency Program in Minnesota

    Broader source: Energy.gov [DOE]

    Minnesota implemented an Industrial Energy Efficiency Program utilizing the state award from AMO to develop and implement an industrial energy efficiency program that identified key manufacturing sectors and accelerated technology adoption to reduce energy intensity.

  3. Stevens County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Stevens County is a county in Minnesota. Its FIPS County Code is 149. It is classified as...

  4. Minnesota Chippewa Tribe: White Earth Band- 2012 Project

    Broader source: Energy.gov [DOE]

    The project will consist of a detailed feasibility study for a biogas/biomass-fired electric combined heat and power (CHP) facility to be located on tribal land adjacent to the Tribe's casino and hotel in Mahnomen, Minnesota.

  5. Minnesota Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Minnesota Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us High School Regionals Minnesota Regions Print Text

  6. Minnesota Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Minnesota Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us Middle School Regionals Minnesota Regions

  7. Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure), Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Cities, Energy Efficiency & Renewable Energy (EERE) | Department of Energy Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) This brochure provides an overview of the challenges and successes of Minneapolis, MN, a 2008 Solar America City awardee, on the path

  8. Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota |

    Energy Savers [EERE]

    Department of Energy 4 National Transportation Stakeholder Forum Meeting, Minnesota Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota NTSF 2014 Meeting Agenda PRESENTATIONS - MAY 13, 2014 Program and Stakeholder Briefings EM Office of Packaging and Transportation DOE Office of Nuclear Energy TRANSCOM National Nuclear Security Administration Nuclear Regulatory Commission Commercial Vehicle Safety Alliance NTSF Tribal Caucus Section 180(c) Ad Hoc Working Group

  9. Comments of East Central Energy- Minnesota | Department of Energy

    Office of Environmental Management (EM)

    East Central Energy- Minnesota Comments of East Central Energy- Minnesota Because of the lack of ubiquitous coverage by major carriers or operating telephone companies, East Central Energy has contracted with our G&T, Great River Energy for private wireless services to our substations. No single vendor or combination of several vendors could provide an integrated solution Great River Energy has deployed a fully integrated IP network to 36 of ECE's remote sites of our electric system. The IP

  10. Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers

    SciTech Connect (OSTI)

    Steven Derenne; Robin Stewart

    2009-09-30

    This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{sub x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.

  11. Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Goal 5: Pollution Prevention LANL is dedicated to finding ways to reduce waste, prevent pollution, and recycle waste that cannot be reduced. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science Serving Sustainability» ENVIRONMENTAL SUSTAINABILITY GOALS at LANL Technical Area 21: Water was sprayed during the demolition of 24 Cold

  12. What Do Clean Energy Tax Credits Mean for Minnesota (and America)? |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Do Clean Energy Tax Credits Mean for Minnesota (and America)? What Do Clean Energy Tax Credits Mean for Minnesota (and America)? July 18, 2012 - 5:34pm Addthis Earlier this week Deputy Secretary Poneman also visited Environment Minnesota, where he spoke with members about their efforts to educate their community on the importance of clean energy tax credits. | Energy Department photo. Earlier this week Deputy Secretary Poneman also visited Environment Minnesota, where he

  13. Application to Export Electric Energy OE Docket No. EA-196-D Minnesota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power | Department of Energy Power Application to Export Electric Energy OE Docket No. EA-196-D Minnesota Power Application from Minnesota Power to export electric energy to Canada. PDF icon EA-196-D Minnesota Power (CN).pdf More Documents & Publications EA-196-D Minnesota Power Application to Export Electric Energy OE Docket No. EA-409 Sararcen Power LP Application to Export Electric Energy OE Docket No. EA-97-D Portland General Electric Company

  14. A Minnesota Blizzard Provides Insight into Utility-Scale Wind Turbine Wakes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy A Minnesota Blizzard Provides Insight into Utility-Scale Wind Turbine Wakes A Minnesota Blizzard Provides Insight into Utility-Scale Wind Turbine Wakes September 12, 2014 - 11:22am Addthis A blurry, black and white photo of wind turbines in a blizzard. Jiarong Hong can hardly wait for Minnesota's harsh winters to return. That's because the University of Minnesota's mechanical engineering assistant professor and St. Anthony Falls Laboratory researcher uses blizzard

  15. Minnesota Natural Gas Exports to All Countries (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports to All Countries (Million Cubic Feet) Minnesota Natural Gas Exports to All Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 0 71 172 2,193 0 0 0 0 0 2010's 0 3,975 11,768 16,209 5,474 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: U.S. Natural Gas Exports Minnesota

  16. Voluntary pollution reduction programs

    SciTech Connect (OSTI)

    Sears, E.B.

    1997-08-01

    Despite claims that the government is reducing the amount of environmental regulation, the sheer amount of regulatory language has actually increased yearly. Yet based on media reports and citizen claims, pollution appears to go unchecked. Citizens condemn a perceived lack of government regulation of industrial pollution, while industries find themselves mired in increasingly complex regulatory programs that are sometimes far removed from real world situations. US Environmental Protection Agency (EPA) decision-makers have responded to these concerns by designing regulatory programs that abandon traditional command-and-control regulatory schemes as ill-suited to today`s pollution problems and the interests of these stakeholders. This paper analyzes the use of voluntary pollution control programs in place of command-and-control regulation. It is proposed that voluntary programs may serve as carrots to entice regulated entities to reduce pollution, but that there are a number of hurdles to their effective implementation that preclude them from being embraced as effective environmental regulatory tools. This paper reviews why agencies have moved from command-and-control regulation and examines current voluntary pollution control programs. This paper also contemplates the future of such programs.

  17. Evaluation of innovative volatile organic compound and hazardous air-pollutant-control technologies for U. S. Air Force paint spray booths. Final report, Aug 88-Aug 89

    SciTech Connect (OSTI)

    Ritts, D.H.; Garretson, C.; Hyde, C.; Lorelli, J.; Wolbach, C.D.

    1990-10-01

    Significant quantities of volatile organic compounds (VOCs) and hazardous air pollutants are released into the atmosphere during USAF maintenance operations. Painting operations conducted in paint spray booths are major sources of these pollutants. Solvent based epoxy primers and solvent-based polyurethane coatings are typically used by the Air Force for painting aircraft and associated equipment. Solvents used in these paints include methyl ethyl ketone (MEK), toluene, lacquer thinner, and other solvents involved in painting and component cleaning. In this report, carbon paper adsorption/catalytic incineration (CPACI) and fluidized-bed catalytic incineration (FBCI) were evaluated as control technologies to destroy VOC emissions from paint spray booths. Simultaneous testing of pilot-scale units was performed to evaluate the technical performance of both technologies. Results showed that each technology maintained greater than 99 percent Destruction and Removal Efficiencies (DREs). Particulate emissions from both pilot-scale units were less than 0.08 grains/dry standard cubic foot. Emissions of the criteria pollutants--sulfur oxides, nitrogen oxides, and carbon monoxide--were also below general regulatory standards for incinerators. Economic evaluations were based on a compilation of manufacturer-supplied data and energy consuption data gathered during the pilot scale testing. CPACM and FBCI technologies are less expensive than standard VOC control technologies when net present costs for a 15-year equipment life are compared.

  18. Minnesota Power- SolarSense Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a rebate of $750 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a bonus incentive of $250 per kW if the system is installed by a North American...

  19. Minnesota Power- Solar-Electric (PV) Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  20. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  1. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established reburning chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  2. Minnesota agripower project. Quarterly report, April--June 1997

    SciTech Connect (OSTI)

    Baloun, J.

    1997-07-01

    The Minnesota Valley Alfalfa Producers (MnVAP) propose to build an alfalfa processing plant integrated with an advanced power plant system at the Granite Falls, Minnesota Industrial Park to provide 75 MW of base load electric power and a competitively priced source of value added alfalfa based products. This project will utilize air blown fluidized bed gasification technology to process alfalfa stems and another biomass to produce a hot, clean, low heating value gas that will be used in a gas turbine. Exhaust heat from the gas turbine will be used to generate steam to power a steam turbine and provide steam for the processing of the alfalfa leaf into a wide range of products including alfalfa leaf meal, a protein source for livestock. The plant will demonstrate high efficiency and environmentally compatible electric power production, as well as increased economic yield from farm operations in the region. The initial phase of the Minnesota Agripower Project (MAP) will be to perform alfalfa feedstock testing, prepare preliminary designs, and develop detailed plans with estimated costs for project implementation. The second phase of MAP will include detailed engineering, construction, and startup. Full commercial operation will start in 2001.

  3. Technology Solutions Case Study: Cold Climate Foundation Wall Hygrothermal Research Facility, Cloquet, Minnesota

    SciTech Connect (OSTI)

    2014-09-01

    This case study describes the University of Minnesotas Cloquet Residential Research Facility (CRRF) in northern Minnesota, which features more than 2,500 ft2 of below-grade space for building systems foundation hygrothermal research. Here, the NorthernSTAR Building America Partnership team researches ways to improve the energy efficiency of the building envelope, including wall assemblies, basements, roofs, insulation, and air leakage.

  4. Application to Export Electric Energy OE Docket No. EA-196-D Minnesota

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power: Federal Register Notice, Volume 78, No. 89 - May 8, 2013 | Department of Energy Power: Federal Register Notice, Volume 78, No. 89 - May 8, 2013 Application to Export Electric Energy OE Docket No. EA-196-D Minnesota Power: Federal Register Notice, Volume 78, No. 89 - May 8, 2013 Application from Minnesota Power to export electric energy to Canada. Federal Register Notice. PDF icon EA-196-D Minnesota Power (CN).pdf More Documents & Publications Application to Export Electric Energy

  5. Amended Application for Presidential Permit OE Docket No. PP-398 Minnesota

    Energy Savers [EERE]

    Power - Great Northern Transmission Line: Federal Register Notice, Volume 79, No. 222 - Nov. 18, 2014 | Department of Energy No. PP-398 Minnesota Power - Great Northern Transmission Line: Federal Register Notice, Volume 79, No. 222 - Nov. 18, 2014 Amended Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line: Federal Register Notice, Volume 79, No. 222 - Nov. 18, 2014 Minnesota Power, Great Northern Transmission Line has submitted an

  6. Joint Motion to Intervene of Northern States Power Company (Minnesota) et

    Office of Environmental Management (EM)

    al. on the Proposed Open Access Requirements | Department of Energy Motion to Intervene of Northern States Power Company (Minnesota) et al. on the Proposed Open Access Requirements Joint Motion to Intervene of Northern States Power Company (Minnesota) et al. on the Proposed Open Access Requirements Joint motion to intervene of the Northern States Power Company (Minnesota), the Northern States Power Company (Wisconsin), and NRG Energy, Incl on the Proposed Open Access Requirements for

  7. Project Reports for Minnesota Chippewa Tribe: White Earth Band- 2003 Project

    Broader source: Energy.gov [DOE]

    Several northern Minnesota tribes interested in building a common foundation for strategic tribal energy capacity have banded together for strategic energy resource planning.

  8. Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Net Withdrawals (Million Cubic Feet) Minnesota Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's -589 739 -295 -493 431 -234 3,636 621 4,442 -462 1990's 44 -70 213 466 630 -985 2,128 -29 -36 312 2000's -964 265 -160 81 128 -588 93 82 65 703 2010's 54 22 -545 255 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  9. Minnesota Natural Gas Exports (Price) All Countries (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) (Price) All Countries (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Exports (Price) All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.05 2000's -- -- 1.99 5.53 5.77 -- -- -- -- -- 2010's -- 3.90 3.46 3.83 11.05 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  10. Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 48 106 337 1 3 11 2 1 385 315 1990's 56 49 52 78 289 194 709 172 50 64 2000's 101 118 13 42 71 154 13 54 46 47 2010's 12 20 9 22 66 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  11. ,"Minnesota Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Prices",8,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","ng_pri_sum_dcu_smn_m.xls"

  12. Minnesota Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Underground Storage Net Withdrawals (Million Cubic Feet) Minnesota Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 120 567 -69 -477 -330 -112 -133 -48 -61 -27 3 387 1991 361 223 96 -160 -257 -312 -291 4 -93 32 77 53 1992 426 123 311 198 -391 -307 -299 -184 -126 4 7 193 1993 395 417 417 41 -331 -358 -426 -134 -248 -87 75 310 1994 497 184 180 145 -342 -374 -371 -207 -150 2 3 68 1995 491 456 246 44 -331 -262

  13. Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet) Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 6,363 5,796 5,866 6,343 6,672 6,784 6,916 6,964 7,025 7,052 7,050 6,662 1991 6,206 5,968 5,862 6,017 6,274 6,586 6,878 6,869 6,962 6,928 6,846 6,789 1992 6,341 6,211 5,883 5,675 6,064 6,371 6,668 6,848 6,974 6,970 6,962 6,759 1993 6,363 5,945 5,527 5,479 5,796 6,140 6,549 6,678 6,916 6,999 6,923 6,612

  14. Addendum to Guarantee Testing Results from the Greenidge Multi-Pollutant Control Project: Additiona NH3, NOx, and CO Testing Results

    SciTech Connect (OSTI)

    Daniel P. Connell; James E. Locke

    2008-03-01

    On March 28-30 and May 1-4, 2007, CONSOL Energy Inc. Research & Development (CONSOL R&D) performed flue gas sampling at AES Greenidge to verify the performance of the multi-pollutant control system recently installed by Babcock Power Environmental Inc. (BPEI) on the 107-MW Unit 4 (Boiler 6). The multi-pollutant control system includes combustion modifications and a hybrid selective non-catalytic reduction (SNCR)/in-duct selective catalytic reduction (SCR) system to reduce NO{sub x} emissions, followed by a Turbosorp{reg_sign} circulating fluidized bed dry scrubber system and baghouse to reduce emissions of SO{sub 2}, SO{sub 3}, HCl, HF, and particulate matter. Mercury removal is provided via the co-benefits afforded by the in-duct SCR, dry scrubber, and baghouse and by injection of activated carbon upstream of the scrubber, as required. The testing in March and May demonstrated that the multi-pollutant control system attained its performance targets for NO{sub x} emissions, SO{sub 2} removal efficiency, acid gas (SO{sub 3}, HCl, and HF) removal efficiency, and mercury removal efficiency. However, the ammonia slip measured between the SCR outlet and air heater inlet was consistently greater than the guarantee of 2 ppmvd {at} 3% O{sub 2}. As a result, additional testing was performed on May 30-June 1 and on June 20-21, 2007, in conjunction with tuning of the hybrid NO{sub x} control system by BPEI, in an effort to achieve the performance target for ammonia slip. This additional testing occurred after the installation of a large particle ash (LPA) screen and removal system just above the SCR reactor and a fresh SCR catalyst layer in mid-May. This report describes the results of the additional tests. During the May 30-June 1 sampling period, CONSOL R&D and Clean Air Engineering (CAE) each measured flue gas ammonia concentrations at the air heater inlet, downstream of the in-duct SCR reactor. In addition, CONSOL R&D measured flue gas ammonia concentrations at the economizer outlet, upstream of the SCR reactor, and CAE measured flue gas NO{sub x} and CO concentrations at the sampling grids located at the inlet and outlet of the SCR reactor. During the June 20-21 sampling period, CONSOL R&D measured flue gas ammonia concentrations at the air heater inlet. All ammonia measurements were performed using a modified version of U.S. Environmental Protection Agency (EPA) Conditional Test Method (CTM) 027. The NO{sub x} and CO measurements were performed using U.S. EPA Methods 7E and 10, respectively.

  15. University of Minnesota Morris Clean Energy Investments Recognized by U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy | Department of Energy Minnesota Morris Clean Energy Investments Recognized by U.S. Department of Energy University of Minnesota Morris Clean Energy Investments Recognized by U.S. Department of Energy August 16, 2012 - 12:30pm Addthis NEWS MEDIA CONTACT U.S. Department of Energy (202) 586-4940 University of Minnesota, Morris (320) 589-6398 WASHINGTON - Today, the U.S. Department of Energy released its second video in the "Clean Energy in Our Community" video

  16. University of Minnesota and the Department of Energy Celebrate New Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Research Station | Department of Energy Minnesota and the Department of Energy Celebrate New Wind Energy Research Station University of Minnesota and the Department of Energy Celebrate New Wind Energy Research Station December 19, 2011 - 1:00pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D Newsletter. The 2.5-MW Clipper wind turbine installed at the University of Minnesota's Eolos Wind Energy Research Station in Rosemount. The Department

  17. Minnesota Member Lists the Twin Cities' First Energy Fit Certified Home |

    Energy Savers [EERE]

    Department of Energy Minnesota Member Lists the Twin Cities' First Energy Fit Certified Home Minnesota Member Lists the Twin Cities' First Energy Fit Certified Home Photo of a small house from the front, with a tree shading the house and expanse of front lawn. A home purchased and upgraded by Better Buildings Residential Network member the Center for Energy and Environment (CEE) made headlines as the first "Energy Fit" certified home listed on the Minnesota Multiple Listing Service

  18. Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Advanced Fuel Cells | Department of Energy Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost of Advanced Fuel Cells Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost of Advanced Fuel Cells March 29, 2012 - 4:20pm Addthis In support of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today announced the investment of $3 million to 3M Company in St. Paul, Minnesota, to lower the cost of

  19. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2012-12-20

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting operation of sludge-processing equipment besides centrifuges, and utilizing schedulable self-generation.

  20. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota

    SciTech Connect (OSTI)

    Jimenez, A. C.

    2013-12-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

  1. Minnesota Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.49 2.52 2.65 2.72 2.59 2.44 2.52 2000's 2.60 2.62 2.77 2.72 2.73 2.66 2.68 2.73 2.85 2.79 2010's 2.57 2.66 2.63 2.86 2.88 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  2. Small Wind Electric Systems: A Minnesota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A Minnesota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 354,092 330,513 344,591 2000's 362,025 340,911 371,583 371,261 359,898 367,825 352,570 388,335 425,352 394,136 2010's 422,968 420,770 422,263 467,874 473,310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  4. Minnesota Natural Gas Imports (No intransit Receipts) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports (No intransit Receipts) (Million Cubic Feet) Minnesota Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 243,900 144,798 190,418 206,613 157,662 134,099 233,331 262,402 1990's 308,581 378,492 369,137 383,702 387,466 406,883 401,473 402,706 475,152 512,135 2000's 476,958 454,833 408,597 364,725 404,091 472,600 422,847 504,676 481,748 482,749 2010's 451,405 548,686 406,327 243,805 328,610 - =

  5. Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.73 1990's 1.90 1.71 1.74 2.07 2.06 1.81 2.38 2.45 2.07 2.29 2000's 3.74 4.20 3.09 5.05 5.77 8.01 6.82 6.72 8.48 4.21 2010's 4.49 4.15 2.87 3.87 5.60 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  6. Minnesota Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Minnesota Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,838 4,402 4,505 1,277 4,954 3,190 4,679 3,109 5,391 6,453 1990's 4,714 5,974 3,594 6,330 6,167 3,746 7,990 1,686 1,233 1,295 2000's 376 1,368 1,142 3,474 2,806 2,331 1,700 3,023 2,845 2,502 2010's 1,059 2,257 918 2,515 3,686 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Minnesota Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Minnesota Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,427 3,663 4,800 1,770 4,523 3,424 1,043 2,488 949 6,916 1990's 4,670 6,044 3,380 5,864 5,537 4,731 5,861 1,715 1,269 983 2000's 1,340 1,103 1,302 3,555 2,933 1,743 1,793 2,941 2,780 1,798 2010's 1,005 2,235 1,463 2,261 3,683 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,382 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  9. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 - = No

  11. Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 19,509 20,095 22,019 2000's 21,037 19,044 23,060 20,252 20,491 22,252 20,313 19,907 17,584 12,559 2010's 15,465 15,223 12,842 11,626 12,657 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. Global Atmospheric Pollution Forum Air Pollutant Emission Inventory...

    Open Energy Info (EERE)

    Atmospheric Pollution Forum Air Pollutant Emission Inventory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Atmospheric Pollution (GAP) Forum Air Pollutant...

  13. In Minnesota, U.S. Deputy Secretary of Energy Poneman Highlights...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Minnesota, U.S. Deputy Secretary of Energy Poneman Highlights Clean Energy Industries That ... 27 percent over the last year, with production facilities now in more than 40 states. ...

  14. Project Reports for Minnesota Chippewa Tribe: White Earth Band- 2012 Project

    Broader source: Energy.gov [DOE]

    The project will consist of a detailed feasibility study for a biogas/biomass-fired electric combined heat and power (CHP) facility to be located on tribal land adjacent to the Tribe's casino and hotel in Mahnomen, Minnesota.

  15. Minnesota Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Minnesota Residential Energy Code

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Minnesota homeowners. Moving to either the 2009 or 2012 IECC from the current Minnesota Residential Energy Code is cost effective over a 30-year life cycle. On average, Minnesota homeowners will save $1,277 over 30 years under the 2009 IECC, with savings still higher at $9,873 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceed cumulative cash outlays) in 3 years for the 2009 IECC and 1 year for the 2012 IECC. Average annual energy savings are $122 for the 2009 IECC and $669 for the 2012 IECC.

  16. Application for Presidential Permit OE Docket No. PP-398 Minnesota Power -

    Energy Savers [EERE]

    Great Northern Transmission Line: Amended Letter to New Border Crossing | Department of Energy Amended Letter to New Border Crossing Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line: Amended Letter to New Border Crossing Minnesota Power, an operating division of ALLETE, Inc., has submitted an amended application for a Presidential permit to construct, operate, maintain, and connect an electric transmission line across the United

  17. Application for Presidential Permit OE Docket No. PP-398 Minnesota Power -

    Energy Savers [EERE]

    Great Northern Transmission Line: Comments from Roseau County Board of Commissioners | Department of Energy Comments from Roseau County Board of Commissioners Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line: Comments from Roseau County Board of Commissioners Motion was made by Commissioner Miller, seconded by Commissioner Falk on Minnesota Power - GNTL application to construct, operate, and maintain electric transmission facilities

  18. Minnesota Company 3M Awarded $3 Million by Energy Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel cells can be used in a wide range of stationary, transportation, and portable-power applications-curbing harmful air pollution and enhancing energy security. 3M's project will ...

  19. Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,708 1,141 1,211 1,688 2,017 2,129 2,261 2,309 2,370 2,397 2,395 2,007 1991 1,551 1,313 1,207 1,362 1,619 1,931 2,222 2,214 2,307 2,273 2,191 2,134 1992 1,685 1,556 1,228 1,019 1,409 1,716 2,013 2,193 2,319 2,315 2,307 2,104 1993 1,708 1,290 872 824 1,141 1,485 1,894 2,022 2,260 2,344 2,268 1,957 1994 1,430 1,235

  20. Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.22 0.22 1970's 0.25 0.25 0.26 0.28 0.33 0.55 0.60 1.24 1.28 2.20 1980's 1.26 4.27 4.43 4.14 3.99 3.45 2.68 2.19 1.81 1.77 1990's 1.89 0.56 0.61 0.47 0.47 0.37 0.68 0.63 0.54 0.82 2000's 1.50 1.40 NA -- -- -- - = No Data Reported; -- = Not Applicable;

  1. MERCURY AND LEAD SAMPLING AT MINNESOTA POWER'S BOSWELL ENERGY CENTER

    SciTech Connect (OSTI)

    Dennis L. Laudal

    2000-08-01

    At the request of the Minnesota Power, Inc., the Energy & Environmental Research Center (EERC) sampled for lead at the stack (or duct directly leading to the stack) for three units at the Boswell Energy Center. All sampling was done in triplicate using U.S. Environmental Protection Agency (EPA) Method 12, with sampling procedures following EPA Methods 1 through 4. During the test program, lead sampling was done using EPA Method 12 in the duct at the outlet of the baghouse serving Unit 2 and the duct at the outlet of the wet particulate scrubber serving Unit 3. For Unit 4, lead sampling was done at the stack. The specific objective for the project was to determine the concentration of lead in the flue gas being emitted into the atmosphere from the Boswell Energy Center. The test program was performed during the period of May 8 through 11, 2000. This report presents the test data, sample calculations, and results, and a discussion of the lead sampling performed at the Boswell Energy Center. The detailed test data and test results, raw test data, process data, laboratory reports, and equipment calibration records are provided in Appendices A, B, and C.

  2. Minnesota Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Consumption (Million Cubic Feet) Minnesota Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,110 8,557 8,841 7,676 6,052 6,046 6,202 7,183 7,926 7,945 9,056 7,858 2002 9,366 8,391 9,188 7,661 7,001 6,431 6,011 7,494 6,376 8,535 9,542 9,675 2003 9,539 9,625 8,206 7,310 6,802 6,487 6,575 6,769 6,284 8,202 9,271 9,703 2004 9,787 8,941 8,594 7,829 6,637 7,549 6,968 6,623 7,309 7,714 9,582 9,571 2005 10,057 8,561 7,940 6,667

  3. Minnesota Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Consumption (Million Cubic Feet) Minnesota Natural Gas Residential Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 18,926 19,064 16,511 9,806 5,523 3,121 2,388 2,269 2,682 5,430 11,067 20,120 1990 18,979 16,064 13,558 9,519 5,540 3,296 2,372 2,281 2,621 5,611 9,947 17,178 1991 22,882 16,115 14,249 8,351 5,656 2,804 2,303 2,268 3,236 6,654 14,101 18,529 1992 18,895 15,904 14,009 10,391 5,136 3,130 2,702 2,525 3,021 6,449 12,857 18,543 1993

  4. Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    per Thousand Cubic Feet) Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Minnesota Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.68 4.50 4.31 4.32 4.64 5.08 5.34 5.40 5.19 4.69 4.45 4.56 1990 4.98 4.57 4.23 4.12 4.40 4.77 5.07 4.63 4.55 4.56 4.75 4.85 1991 4.59 3.97 4.13 4.24 4.49 5.05 5.14 5.25 5.06 4.97 4.71 4.70 1992 4.58 4.15 4.17 4.34 4.85 5.51 5.56 5.98 5.93 6.04

  5. University of Minnesota Hosts Clean Energy Events With U.S. Deputy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary of Energy Poneman and Senator Franken | Department of Energy Hosts Clean Energy Events With U.S. Deputy Secretary of Energy Poneman and Senator Franken University of Minnesota Hosts Clean Energy Events With U.S. Deputy Secretary of Energy Poneman and Senator Franken January 26, 2012 - 2:22pm Addthis Washington, D.C. - Tomorrow, Friday, January 27, U.S. Deputy Secretary of Energy Daniel Poneman will join Senator Al Franken at the University of Minnesota for events highlighting the

  6. Sunspace Minnesota: passive solar design for winter resorts. Period covered, August 1979-October 1980

    SciTech Connect (OSTI)

    Johnson, J.M.

    1980-01-01

    Minnesota winter resorts are discussed as to type, size, and use. Energy needs and conservation techniques are described by cabin type and problem areas. Existing cabins are analyzed for conservation opportunities and solar retrofit potential. New cabin designs and concepts are presented including earth sheltered buildings. (MHR)

  7. Earth-sheltered building yields energy savings for University of Minnesota

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    The design and energy efficiency of the Civil/Mineral Engineering Building at the University of Minnesota is discussed. The building combines relatively common energy-efficient surface building practices with earth-sheltered techniques already proven on the University Campus and innovative deep-earth sheltering.

  8. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    SciTech Connect (OSTI)

    Abbey, Ross; Ross, Brian

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  9. Sandia National Laboratories: Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Prevention Environmental Management System Pollution Prevention Sustainable Acquisition Electronics Stewardship Recycling Reuse Outreach Awards News Information...

  10. Pollution prevention efforts recognized

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stories » Pollution prevention efforts recognized Pollution prevention efforts recognized Pollution prevention awards recognize individuals or teams whose efforts minimize waste, conserve resources and apply sustainable practices. April 17, 2012 George Rael presenting a bronze award for "green" purchasing to Laboratory Deputy Director Beth Sellers. George Rael, assistant manager for national security missions for the Department of Energy's Los Alamos Site Office, presents a bronze

  11. U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Minnesota

  12. DOE Zero Energy Ready Home Case Study: Amaris Custom Home, St.Paul, Minnesota (Fact Sheet),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Custom Homes St. Paul, Minnesota The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give you superior construction,

  13. Application for Presidential Permit OE Docket No. PP-398 Minnesota Power -

    Energy Savers [EERE]

    Great Northern Transmission Line | Department of Energy Line Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line Application from Great Northern (GNTL) to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border. PDF icon PP-398 Great Northern Trans Line.pdf More Documents & Publications EIS-0499: Draft Environmental Impact Statement EIS-0499: Final Environmental Impact Statement Application for

  14. Application for Presidential Permit OE Docket No. PP-398 Minnesota Power -

    Energy Savers [EERE]

    Great Northern Transmission Line: Federal Register Notice, Vol. 79, No. 93 - May 14, 2014 | Department of Energy Federal Register Notice, Vol. 79, No. 93 - May 14, 2014 Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line: Federal Register Notice, Vol. 79, No. 93 - May 14, 2014 Application from Great Northern (GNTL) to construct, operate and maintain electric transmission facilities at the U.S. - Canada Border. Federal Register Notice.

  15. Application for Presidential Permit OE Docket No. PP-398 Minnesota Power -

    Energy Savers [EERE]

    Great Northern Transmission Line: Notice of Intent to Prepare an Environmental Impact Statement: Federal Register Notice, Volume 79, No. 124, June 27, 2014 | Department of Energy Notice of Intent to Prepare an Environmental Impact Statement: Federal Register Notice, Volume 79, No. 124, June 27, 2014 Application for Presidential Permit OE Docket No. PP-398 Minnesota Power - Great Northern Transmission Line: Notice of Intent to Prepare an Environmental Impact Statement: Federal Register

  16. EA-0587: Proposed Amendment to Presidential Permit PP-63 and Associated Modification to 500 kV International Transmission Line: Forbes, Minnesota to Manitoba, Canada

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of Northern States Power Company's  proposal to expand the Forbes Substation in Minnesota.

  17. Synergies and conflicts in multimedia pollution control related to utility compliance with Title IV of the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; Loeb, A.P.; Formento, J.W.; South, D.W.

    1994-01-01

    Most analyses of utility strategies for meeting Title IV requirements in the Clean Air Act Amendments of 1990 have focused on factors relating directly to utilities` sulfur dioxide control costs; however, there are a number of additional environmental requirements that utilities must meet at the same time they comply with the acid rain program. To illuminate the potential synergies and conflicts that these other regulatory mandates may have in connection with the acid rain program, it is necessary to conduct a thorough, simultaneous examination of the various programs. This report (1) reviews the environmental mandates that utilities must plant to meet in the next decade concurrently with those of the acid rain program, (2) evaluates the technologies that utilities may select to meet these requirements, (3) reviews the impacts of public utility regulation on the acid rain program, and (4) analyzes the interactions among the various programs for potential synergies and conflicts. Generally, this report finds that the lack of coordination among current and future regulatory programs may result in higher compliance costs than necessary. Failure to take advantage of cost-effective synergies and incremental compliance planning will increase control costs and reduce environmental benefits.

  18. ,"Minnesota Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5030mn2m.xls"

  19. White Earth Reservation - Minnesota Tribal Coalition Tribal Utility Capacity Building Project

    Energy Savers [EERE]

    Minnesota Tribal Coalition White Earth Leech Lake Grand Portage Community Center- 840,000 kWh/yr Casino/Hotel- 2,200,000 kWh/yr Households- 1,440,000 kWh/yr Tribal Council Offices- 640,000 kWh/yr Total Consumption: 5,120,000 kWh/yr Annual Cost: $358,400.00 Total Electricity Consumption: *Approximately 1MW of Wind to power community center and hotel/casino *20% Hydrogen backup (electrolysis, hydrogen storage, and fuel cell) located at community center *All electricity production to be consumed by

  20. Minnesota Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -381 -30 28 -87 -12 8 23 18 74 67 131 109 1991 -157 171 -4 -326 -398 -197 -39 -95 -63 -124 -204 127 1992 134 244 21 -342 -210 -216 -209 -21 12 42 116 -30 1993 23 -266 -356 -196 -268 -230 -119 -170 -58 29 -39 -147 1994 -278 -55 173 65 96 156 117 190 101

  1. ,"Minnesota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  2. ,"Minnesota Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Minnesota Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290mn2m.xls"

  5. ,"Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. Permeability, geochemical, and water quality tests in support of an aquifer thermal energy storage site in Minnesota

    SciTech Connect (OSTI)

    Blair, S.C.; Deutsch, W.J.; Mitchell, P.J.

    1985-04-01

    This report describes the Underground Energy Storage Program's efforts to characterize physicochemical processes at DOE's ATES Field Test Facility (FTF) located on the University of Minnesota campus at St. Paul, Minnesota. Experimental efforts include: field tests at the St. Paul FTF to characterize fluid injectability and to evaluate the effectiveness of fluid-conditioning equipment, geochemical studies to investigate chemical reactions resulting from alterations to the aquifer's thermal regime, and laboratory tests on sandstone core from the site. Each experimental area is discussed and results obtained thus far are reported. 23 refs., 39 figs., 12 tabs.

  7. Pollution prevention cost savings potential

    SciTech Connect (OSTI)

    Celeste, J.

    1994-12-01

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  8. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase I Report

    SciTech Connect (OSTI)

    Kinzey, B. R.; Myer, M. A.

    2009-08-01

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.

  9. WATER POLLUTION CONTROL GENERAL PERMIT GNEV93001

    National Nuclear Security Administration (NNSA)

    specific data such as evaporation, precipitation and infiltration rates. I.A.6. The hydrogen ion concentration of the influent fluids must measure between pH 6.0 and pH 9.0. I.B....

  10. 5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution...

    Open Energy Info (EERE)

    -5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: 5 CCR...

  11. Minnesota Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Minnesota Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,845 2,524 3,527 1990's 3,220 4,094 3,134 2,623 3,336 5,696 3,768 1,077 1,954 2,454 2000's 2,529 1,634 9,684 7,353 5,627 6,165 5,472 4,691 4,251 6,069 2010's 6,224 9,668 7,429 10,508 10,835 - = No

  12. Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6.08 1.90 1.82 3.42 3.50 2.40 3.41 2000's 4.63 5.02 4.74 4.46 4.46 5.76 11.62 12.78 19.51 18.72 2010's 16.49 10.55 10.56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  13. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,020 1,021 1,020 1,021 1,026 1,030 1,028 1,029 1,028 1,029 1,029 1,027 2014 1,031 1,027 1,033 1,034 1,038 1,042 1,042 1,051 1,046 1,040 1,038 1,040 2015 1,041 1,034 1,033 1,037 1,044 1,047 1,043 1,041 1,039 1,041 1,045 1,041 - = No Data Reported; -- = Not Applicable;

  14. Minnesota Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W W W W 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W W W W W W W W W W 2006 W W W W W W W W W W W W 2007 W W W W W W W W W W W W 2008 8.10 W W W W W W W W W W W 2009 W W W W 6.88 W W W 4.13 4.80 6.65 6.41 2010

  15. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St. Paul, Minnesota

    SciTech Connect (OSTI)

    2015-06-01

    For this project, Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to develop the first Zero Energy Ready Home (ZERH) in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout ranch-style home with all the creature comforts. Along with meeting ZERH standards, Amaris also achieved certifications for Leadership in Energy & Environmental Design for Homes v4, MN Green Path Emerald, and a Builders Association of the Twin Cities Reggie Award of Excellence. The home achieves a HERS score of 41 without photovoltaics; with PV, the home achieves a HERS score of 5.

  16. Environmental Monitoring, Surveillance, and Control Programs...

    Office of Environmental Management (EM)

    ... source air emissions characterization (including monitoring programs), air pollution control equipment operation and maintenance, and reporting and compliance management systems. ...

  17. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    Retrofit Integrated Space and Water Heating: Field Assessment Minneapolis, Minnesota PROJECT INFORMATION Project Name: Retrofit Integrated Space and Water Heating: Field Assessment Location: Minneapolis, MN Partners: Center for Energy and Environment, www.mncee.org/ Sustainable Resources Center, www.src-mn.org/ University of Minnesota, www.bbe.umn.edu/index.htm NorthernSTAR Building America Partnership Building Component: HVAC Application: Retrofit; single family Year Tested: 2012 Climate

  18. Multi-Pollutant Legislation and Regulations (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The 108th Congress proposed and debated a variety of bills addressing pollution control at electric power plants but did not pass any of them into law. In addition, the Environmental Protection Agency (EPA) currently is preparing two regulations-a proposed Clean Air Interstate Rule (pCAIR) and a Clean Air Mercury Rule (CAMR)-to address emissions from coal-fired power plants. Several states also have taken legislative actions to limit pollutants from power plants in their jurisdictions. This section discusses three Congressional air pollution bills and the EPA's pCAIR and CAMR regulations.

  19. Waste Minimization and Pollution Prevention

    Broader source: Energy.gov [DOE]

    The team supports efforts that promote a more sustainable environment and implements pollution prevention activities, as deemed appropriate for LM operations and approved by LM, as defined in:

  20. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase II Report

    SciTech Connect (OSTI)

    Kinzey, B. R.; Davis, R. G.

    2014-09-30

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.

  1. Controlling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations K. A. Mirus and J. C. Sprott Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 ͑Received 29 June 1998͒ The effect of applying a periodic perturbation to an accessible parameter of various chaotic systems is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic systems can result in limit

  2. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect (OSTI)

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  3. Minnesota Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Minnesota Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -9.2 15.0 -0.3 -19.3 -19.7 -9.3 -1.7 -4.1 -2.7 -5.2 -8.5 6.3 1992 8.7 18.6 1.8 -25.1 -13.0 -11.2 -9.4 -1.0 0.5 1.8 5.3 -1.4 1993 1.3 -17.1 -29.0 -19.2 -19.0 -13.4 -5.9 -7.8 -2.5 1.2 -1.7 -7.0 1994 -16.3 -4.2 19.8 7.9 8.4 10.5 6.2 9.4 4.5 0.7 3.9 16.7 1995 23.8 4.8 -0.7 11.5 6.8 -3.5

  4. Community Energy Systems and the Law of Public Utilities. Volume Twenty-five. Minnesota

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01

    A detailed description is given of the laws and programs of the State of Minnesota governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  5. Minnesota Price of Natural Gas Sold to Commercial Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Minnesota Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.26 4.05 3.88 3.80 3.79 3.92 3.93 3.88 3.83 3.74 3.83 4.19 1990 4.64 4.05 3.69 3.56 3.55 3.73 3.63 3.16 3.26 3.55 4.05 4.29 1991 4.13 3.48 3.56 3.56 3.57 3.65 3.44 3.47 3.55 3.87 3.94 4.14 1992 4.00 3.59 3.51 3.70 3.99 4.20 3.96 4.32 4.39 4.88 4.61 4.59 1993

  6. Alternative Fuels Data Center: Pollutants and Health

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Pollutants and Health to someone by E-mail Share Alternative Fuels Data Center: Pollutants and Health on Facebook Tweet about Alternative Fuels Data Center: Pollutants and Health on Twitter Bookmark Alternative Fuels Data Center: Pollutants and Health on Google Bookmark Alternative Fuels Data Center: Pollutants and Health on Delicious Rank Alternative Fuels Data Center: Pollutants and Health

  7. Guidance on Incorporating EPA's Pollution Prevention Strategy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incorporating EPA's Pollution Prevention Strategy into the Environmental Review Process Guidance on Incorporating EPA's Pollution Prevention Strategy into the Environmental Review ...

  8. Pollution Prevention - Environmental Impact Reduction Checklists...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pollution Prevention - Environmental Impact Reduction Checklists for NEPA309 Reviewers Pollution Prevention - Environmental Impact Reduction Checklists for NEPA309 Reviewers The ...

  9. Particulate matter pollution in Mexico City

    SciTech Connect (OSTI)

    Vega R, E.; Mora P, V.; Mugica A, V.

    1998-12-31

    The levels of particulate matter are of concern since they may induce severe effects on public health and is the second atmospheric pollution problem in Mexico City. Another noticeable effect in large cities attributable to particulate matter, is the deterioration of visibility. In this paper the analysis of the data of TSP and PM10 during 1988 to 1996 is presented. The seasonal variation of particulate matter, the typical ratios of PM10/TSP and relationships of the two variables were determined. It was found that PM10 concentrations show an important tendency to decrease during this period, due to some control strategies, although this is not the case for TSP. The monthly trend exhibits a clear relationship with the dry (October through April) and wet (May through September) seasons. The particulate matter concentrations are lower during the wet season. The hourly behavior shows that the highest concentrations are correlated with the traffic rush hours. The most TSP polluted area was the northeast, meanwhile the southeast is the most PM10 polluted area. There is a clear evidence of the particulate matter transportation from these areas to other sites of the City.

  10. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  11. Supercomputers: Super-polluters?

    SciTech Connect (OSTI)

    Mills, Evan; Mills, Evan; Tschudi, William; Shalf, John; Simon, Horst

    2008-04-08

    Thanks to imperatives for limiting waste heat, maximizing performance, and controlling operating cost, energy efficiency has been a driving force in the evolution of supercomputers. The challenge going forward will be to extend these gains to offset the steeply rising demands for computing services and performance.

  12. Idaho National Laboratory Site Pollution Prevention Plan

    SciTech Connect (OSTI)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively managed by the INL Site P2 Coordinator. Development and maintenance of this overall INL Site plan is ultimately the responsibility of DOE-ID. This plan is applicable to all INL Site contractors except those at the Naval Reactors Facility.

  13. Recent EPA pollution prevention initiatives

    SciTech Connect (OSTI)

    Bryant, C. )

    1993-01-01

    Today's rapidly developing and changing technologies and industrial practices frequently carry with them the increased generation of wastes and materials which, if improperly managed, may threaten public health and the environment. The US Environmental Protection Agency is charged with the mission of protecting public health and the environment from the hazards posed by these wastes and materials. As part of its effort to achieve this mandate, it has recently adopted a Pollution Prevention Program. Among other things, the program encourages the development and adoption of processing technologies and products that will lead to reducing the aggregate generation rates for pollutants entering the environment. This paper will address EPA's efforts under its Pollution Prevention Program. The paper will address regulatory and non-regulatory action EPA has taken pursuant to the Resource Conservation and Recovery Act (RCRA), the Emergency Planning and Community Right-to-Know Act, the Pollution Prevention Act of 1990, and other Federal statutes. In addition, the paper will present case studies in pollution prevention.

  14. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  15. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  16. DOE Zero Energy Ready Home Case Study: Amaris Custom Homes, St.Paul, Minnesota; DOE Zero Energy Ready Home Case Study, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-06-01

    For this project Amaris worked with U.S. Department of Energy (DOE) team, NorthernSTAR Building America Partnership, to approach zero energy in Minnesota's cold climate using reasonable, cost-effective, and replicable construction materials and practices. The result is a passive solar, super-efficient 3542-ft2 walkout rambler with all the creature comforts.

  17. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  18. RCW - 43.21B - Environmental and Land Use Hearings Office - Pollution...

    Open Energy Info (EERE)

    43.21B - Environmental and Land Use Hearings Office - Pollution Control Hearings Board Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  19. Oil Pollution Act | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Oil Pollution ActLegal Abstract The Oil Pollution Act (OPA) of 1990 streamlined and...

  20. Sandia National Laboratories: Pollution Prevention: Regulatory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    buildings and procurement contracts that integrate sustainability into their operations. ... Pollution Prevention Act Department of Energy Strategic Sustainability Performance Plan ...

  1. Metal pollution of river Msimbazi, Tanzania

    SciTech Connect (OSTI)

    Ak'habuhaya, J.; Lodenius, M. )

    1988-01-01

    The Misimbazi River in Dar es Salaam is polluted with industrial, urban and agricultural waste waters. A preliminary investigation on the extent of metal pollution (Hg, Cr, Cu, Zn, Fe, Ni, Cd, Mn, Al) was made from samples of sediments and biological indicators. The metal concentrations were in general low, but some of our results indicated industrial pollution.

  2. Pollution Prevention - Environmental Impact Reduction Checklists for

    Energy Savers [EERE]

    NEPA/309 Reviewers | Department of Energy Pollution Prevention - Environmental Impact Reduction Checklists for NEPA/309 Reviewers Pollution Prevention - Environmental Impact Reduction Checklists for NEPA/309 Reviewers The environmental review process under the National Environmental Policy Act (NEPA) provides a valuable opportunity for Federal agency NEPA/309 reviewers to incorporate pollution prevention and environmental impact reduction into actions (or projects). This Environmental

  3. Feasibility Study of Economics and Performance of Solar PV at the Atlas Industrial Park in Duluth, Minnesota

    SciTech Connect (OSTI)

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) Region 5, in accordance with the RE-Powering America's Land initiative, selected the Atlas Industrial Park in Duluth, Minnesota, for a feasibility study of renewable energy production. The EPA provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of solar renewable energy generation at the Atlas Industrial Park. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this study is to assess the site for a possible PV installation and estimate the cost, performance, and site impacts of different PV configurations. In addition, the study evaluates financing options that could assist in the implementation of a PV system at the site.

  4. Building America Case Study: Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Retrofit Foundation Insulation Strategies Minneapolis, Minnesota PROJECT INFORMATION Project Name: Innovative Retrofit Foundation Insulation Strategies for Concrete Masonry Foundations Location: Minneapolis, MN NorthernSTAR Building America Partnership Building Component: Concrete block masonry foundation Application: Retrofit Year Tested: 2013 Climate Zones: Cold (6 and 7) PERFORMANCE DATA Cost of energy-efficiency measure (including labor): $4,600 Projected energy savings: 8.8% site

  5. Los Alamos wins 2008 Pollution Prevention awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Pollution Prevention awards Los Alamos wins 2008 Pollution Prevention awards Winner of two Best-in-Class Pollution Prevention awards and six Environmental Stewardship awards from the National Nuclear Security Administration. February 7, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  6. Site Discharge Pollution Prevention Plan (SDPPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDPPP Individual Permit: Site Discharge Pollution Prevention Plan (SDPPP) The 2014 SDPPP update fully incorporates all changes made during the year and reflects changes projected...

  7. Alaska Local Ordinances Governing Nonpoint Source Pollution ...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Alaska Local Ordinances Governing Nonpoint Source Pollution Citation Alaska...

  8. Texas Railroad Commission - Pollution Discharge Regulations ...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Texas Railroad Commission - Pollution Discharge Regulations Citation...

  9. Jefferson Lab Stormwater Pollution Prevention Reminder | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stormwater Pollution Prevention Reminder Stormwater runoff occurs when rainfall or snowmelt flows over ground surfaces. Naturally vegetated ground surfaces often absorb the...

  10. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, Terry C. (Augusta, GA)

    1994-01-01

    A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  11. Montana Pollutant Discharge Elimination System (MPDES) Webpage...

    Open Energy Info (EERE)

    System (MPDES) Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Pollutant Discharge Elimination System (MPDES) Webpage Abstract Provides...

  12. DOE's Studies of Weekday/Weekend Ozone Pollution in Southern California |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Studies of Weekday/Weekend Ozone Pollution in Southern California DOE's Studies of Weekday/Weekend Ozone Pollution in Southern California 2002 DEER Conference Presentation: National Renewable Energy Laboratory PDF icon 2002_deer_lawson.pdf More Documents & Publications The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment Real-World Studies of Ambient Ozone Formation as a Function of NOx Reductions … Summary and Implications for Air Quality

  13. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect (OSTI)

    2008-07-01

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  14. Guidance on Incorporating EPA's Pollution Prevention Strategy into the

    Office of Environmental Management (EM)

    Environmental Review Process | Department of Energy on Incorporating EPA's Pollution Prevention Strategy into the Environmental Review Process Guidance on Incorporating EPA's Pollution Prevention Strategy into the Environmental Review Process The guidance discusses the Environmental Protection Agency's definition of pollution prevention; how to incorporate pollution prevention into the EPA environmental review process and interagency liaison function; and federal pollution prevention awards

  15. Bioremediation of organic pollutants in a radioactive wastewater

    SciTech Connect (OSTI)

    Oboirien, Bilainu; Molokwane, P.E.; Chirwa, Evans

    2007-07-01

    Bioremediation holds the promise as a cost effective treatment technology for a wide variety of hazardous pollutants. In this study, the biodegradation of organic compounds discharged together with radioactive wastes is investigated. Nuclear process wastewater was simulated by a mixture of phenol and strontium, which is a major radionuclide found in radioactive wastewater. Phenol was used in the study as a model compound due to its simplicity of molecular structure. Moreover, the biodegradation pathway of phenol is well known. Biodegradation studies were conducted using pure cultures of Pseudomonas aeruginosa and Pseudomonas putida. The rate of phenol degradation by both species was found to be higher in the test without strontium. This suggests some degree of inhibition in the degradation of phenol by strontium. There was no phenol degradation in the sterile controls. The results indicate the feasibility of the biodegradation of organic pollutants discharged in radioactive effluents by specialised microbial cultures. (authors)

  16. Meeting pollution prevention goals: Successful implementation

    SciTech Connect (OSTI)

    Seith, B.J. )

    1993-01-01

    This paper focuses on the essential, but often overlooked, elements of a pollution prevention program: the steps required for a successful implementation. As programs are being developed, attention must be given to assuring that the systems to support a successful introduction and continued improvement are in place. The goals of a pollution prevention plan (i.e. 50% reduction in toxics use and 40% reduction in hazardous waste generation within three years) must be translated into performance oriented-responsibilities taken throughout an organization, at all levels. Successful implementation requires a genuine commitment from management, employee awareness programs tailored to each type of audience, and a feedback system to assure that the program is continually changing to incorporate new pollution prevention challenges. Also, by conducting an economic analysis of pollution prevention opportunities and activities, and incorporating the results into the business decision-making process, a company is more apt to make wise and measurable performance towards its pollution prevention goals.

  17. Indoor air quality & airborne disease control in healthcare facilities...

    Office of Scientific and Technical Information (OSTI)

    Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; MEDICAL ESTABLISHMENTS; INDOOR AIR POLLUTION; CONTROL SYSTEMS; DISEASES; THERMAL COMFORT; SPACE HVAC SYSTEMS Word ...

  18. Apparatus for decoupled thermo-photocatalytic pollution control

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2003-04-22

    A new method for design and scale-up of photocatalytic and thermocatalytic processes is disclosed. The method is based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to photo-thermocatalytic reactor design and scale-up. At low irradiance levels, the method is based on the implementation of low pressure drop biopolymeric and synthetic polymeric support for titanium dioxide and other band-gap media. At high irradiance levels, the method utilizes multifunctional metal oxide aerogels and other media within a novel rotating fluidized particle bed reactor.

  19. Method and apparatus for decoupled thermo-catalytic pollution control

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2006-07-11

    A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.

  20. In Situ Formation Of Reactive Barriers For Pollution Control

    DOE Patents [OSTI]

    Gilmore, Tyler J. (Pasco, WA); Riley, Robert G. (West Richland, WA)

    2004-04-27

    A method of treating soil contamination by forming one or more zones of oxidized material in the path of percolating groundwater is disclosed. The zone or barrier region is formed by delivering an oxidizing agent into the ground for reaction with an existing soil component. The oxidizing agent modifies the existing soil component creating the oxidized zone. Subsequently when soil contaminates migrate into the zone, the oxidized material is available to react with the contaminates and degrade them into benign products. The existing soil component can be an oxidizable mineral such as manganese, and the oxidizing agent can be ozone gas or hydrogen peroxide. Soil contaminates can be volatile organic compounds. Oxidized barriers can be used single or in combination with other barriers.

  1. Idaho DEQ Nonpoint Source Pollution Webpage | Open Energy Information

    Open Energy Info (EERE)

    Pollution Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho DEQ Nonpoint Source Pollution Webpage Abstract This webpage provides an...

  2. Colorado Air Pollutant Emission Notice (APEN) Form | Open Energy...

    Open Energy Info (EERE)

    Department of Public Health and Environment of the construction of a new source of pollution. Form Type ApplicationNotice Form Topic Air Pollutant Emission Notice &...

  3. Knowledge Partnership for Measuring Air Pollution and Greenhouse...

    Open Energy Info (EERE)

    Knowledge Partnership for Measuring Air Pollution and Greenhouse Gas Emissions in Asia Jump to: navigation, search Name Knowledge Partnership for Measuring Air Pollution and...

  4. DOE's Studies of Weekday/Weekend Ozone Pollution in Southern...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Studies of WeekdayWeekend Ozone Pollution in Southern California DOE's Studies of WeekdayWeekend Ozone Pollution in Southern California 2002 DEER Conference Presentation: ...

  5. Proposed EPA Rules Will Cut Carbon Pollution While Maintaining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed EPA Rules Will Cut Carbon Pollution While Maintaining Reliability Proposed EPA Rules Will Cut Carbon Pollution While Maintaining Reliability June 3, 2014 - 4:20pm Addthis ...

  6. Los Alamos National Laboratory employees receive Pollution Prevention...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Laboratory's annual Pollution Prevention Awards ceremony on Monday (April 22), Earth Day. "The Pollution Prevention Awards are the result of people taking the initiative...

  7. Looking for Hazardous Pollutants in Your Kitchen

    ScienceCinema (OSTI)

    Singer, Brett

    2014-05-13

    For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.

  8. Looking for Hazardous Pollutants in Your Kitchen

    SciTech Connect (OSTI)

    Singer, Brett

    2013-07-22

    For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.

  9. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    SciTech Connect (OSTI)

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  10. Technology Solutions Case Study: Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota

    SciTech Connect (OSTI)

    2015-07-01

    Basements in climates 6 & 7 can account for a fraction of a home's total heat loss when fully conditioned. These foundations are a source of moisture, with convection in open block cavities redistributing water from the wall base, usually when heating. Even when block cavities are capped, the cold foundation concrete can act as a moisture source for wood rim joist components that are in contact with the wall. As below-grade basements are increasingly retrofitted for habitable space, cold foundation walls pose increased challenges for moisture durability, energy use, and occupant comfort. To address this challenge, the NorthernSTAR Building America Partnership evaluated a retrofit insulation strategy for foundations that is designed for use with open-core concrete block foundation walls. The three main goals were to improve moisture control, improve occupant comfort, and reduce heat loss.

  11. Integrating Pollution Prevention with NEPA Planning Activities

    Broader source: Energy.gov [DOE]

    The purpose of this memorandum is to advise you of the direction that the Environmental Protection Agency (EPA) and Council on Environmental Quality (CEQ) appear to be taking regarding pollution...

  12. Site Discharge Pollution Prevention Plan (SDPPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SDPPP Individual Permit: Site Discharge Pollution Prevention Plan (SDPPP) The 2014 SDPPP update fully incorporates all changes made during the year and reflects changes projected for 2015. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Site Discharge Pollution Prevention Plan (SDPPP) The 2014 Update to the SDPPP, Rev. 1, along with the 2013 Update to the SDPPP, Rev. 1, fulfill the requirements of Part 1.F of the

  13. Statistical Methods for Environmental Pollution Monitoring

    Office of Scientific and Technical Information (OSTI)

    f!\Jl~~ If & &0 :3 Statistical Methods for Environmental Pollution Monitoring 3 3679 00058 9400 Statistical Methods for Environmental Pollution Monitoring Richard O. Gilbert Pacific Northwest Laboratory Imi5l VAN NOSTRAND REINHOLD COMPANY ~ - - - - - - - New York Dedicated to my parents, Mary Margaret and Donald I. Gilbert Copyright © 1987 by Van Nostrand Reinhold Company Inc. Library of Congress Catalog Card Number: 86-26758 ISBN 0-442-23050-8 Work supported by the U.S. Department of

  14. Lab wins six NNSA Pollution Prevention awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab wins six NNSA Pollution Prevention awards Lab wins six NNSA Pollution Prevention awards The Laboratory has captured awards for projects ranging from energy savings to creating fuels from algae. March 7, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  15. Pollution prevention opportunity assessment for organization 1700.

    SciTech Connect (OSTI)

    Gerard, Morgan Evan

    2007-06-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for Sandia National Laboratories/New Mexico Organization 1700 in June, 2006. The primary purpose of this PPOA is to provide recommendations to assist Organization 1700 in reducing the generation of waste and improving the efficiency of their processes and procedures. This report contains a summary of the information collected, analyses performed and recommended options for implementation. The Sandia National Laboratories Pollution Prevention staff will continue to work with Organization 1700 to implement the recommendations.

  16. Guides to pollution prevention: The paint-manufacturing industry

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    Paint manufacturing facilities generate large quantities of both hazardous and nonhazardous wastes. These wastes are: equipment cleaning wastewater and waste solvent, filter cartridges, off-spec paint, spills, leftover containers; and pigment dusts from air pollution control equipment. Reducing the generation of these wastes at the source, or recycling the wastes on- or off-site, will benefit paint manufacturers by reducing raw material needs, reducing disposal costs; and lowering the liabilities associated with hazardous waste disposal. The guide provides an overview of the paint manufacturing processes and operations that generate waste and presents options for minimizing the waste generation through source reduction or recycling.

  17. Development of Pollution Prevention Technologies

    SciTech Connect (OSTI)

    Polle, Juergen; Sanchez-Delgado, Roberto

    2013-12-30

    This project investigated technologies that may reduce environmental pollution. This was a basic research/educational project addressing two major areas: A. In the algae research project, newly isolated strains of microalgae were investigated for feedstock production to address the production of renewable fuels. An existing collection of microalgae was screened for lipid composition to determine strains with superior composition of biofuel molecules. As many microalgae store triacylglycerides in so-called oil bodies, selected candidate strains identified from the first screen that accumulate oil bodies were selected for further biochemical analysis, because almost nothing was known about the biochemistry of these oil bodies. Understanding sequestration of triacylglycerides in intracellular storage compartments is essential to developing better strains for achieving high oil productivities by microalgae. At the onset of the project there was almost no information available on how to obtain detailed profiles of lipids from strains of microalgae. Our research developed analytical methods to determine the lipid profiles of novel microalgal strains. The project was embedded into other ongoing microalgal projects in the Polle laboratory. The project benefited the public, because students were trained in cell cultivation and in the operation of state-of-the-art analytical equipment. In addition, students at Brooklyn College were introduced into the concept of a systems biology approach to study algal biofuels production. B. A series of new nanostructured catalysts were synthesized, and characterized by a variety of physical and chemical methods. Our catalyst design leads to active nanostructures comprising small metal particles in intimate contact with strongly basic sites provided by the supports, which include poly(4-vinylpyridine), magnesium oxide, functionalized multi-walled carbon nanotubes, and graphene oxide. The new materials display a good potential as catalysts for reactions of relevance to the manufacture of cleaner fossil fuels and biodiesel, and to hydrogen storage in organic liquids. Specifically the catalysts are highly active in the hydrogenation of aromatic and heteroaromatic components of fossil fuels, the reduction of unsaturated C=C bonds in biodiesel, and the dehydrogenation of nitrogen heterocycles. In the course of our studies we identified a novel dual-site substrate-dependent hydrogenation mechanism that explains the activity and selectivity data obtained and the resistance of the new catalysts to poisoning. These results represent an important advance in basic catalytic science, regarding design and synthesis and reaction mechanisms. Additionally, this project allowed the enhancement of the laboratory facilities in the Chemistry Department of Brooklyn College for catalysis and energy research, and served as an excellent vehicle for the training of several young researchers at the undergraduate, graduate and postdoctoral level, to join the national scientific workforce.

  18. Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hybrid Trolleys Tennessee Reduces Pollution With Propane Hybrid Trolleys to someone by E-mail Share Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Facebook Tweet about Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Twitter Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane Hybrid Trolleys on Google Bookmark Alternative Fuels Data Center: Tennessee Reduces Pollution With

  19. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  20. Building America Case Study: Excavationless Exterior-Side Foundation Insulation for Existing Homes, Minneapolis, Minnesota (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excavationless: Exterior-Side Foundation Insulation for Existing Homes Minneapolis, Minnesota PROJECT INFORMATION Project Name: Excavationless Exterior Foundation Insulation Field Study Location: Minneapolis, MN Partners: Cocoon, cocoon-solutions.com Urban Homeworks, urbanhomeworks.org/ BASF, basf.us American Environmental, LLC NorthernSTAR Building America Partnership Building Component: Foundation insulation Application: Retrofit; single-family Year Tested: 2013 Applicable Climate Zones: All

  1. Minnesota Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    Imports 4.49 4.15 2.87 3.87 5.60 1989-2014 Exports -- 3.90 3.46 3.83 11.05 1999-2014 Pipeline and Distribution Use 1967-2005 Citygate 5.48 5.04 4.26 4.58 6.56 4.40 1984-2015 Residential 8.76 8.85 7.99 8.19 9.89 8.84 1967-2015 Commercial 7.60 7.46 6.36 6.86 8.66 7.30 1967-2015 Industrial 5.58 5.55 4.28 4.94 6.57 4.95 1997-2015 Vehicle Fuel 16.49 10.55 10.56 1993-2012 Electric Power W W W W W W 1997-2015 Imports and Exports (Million Cubic Feet) Imports 451,405 548,686 406,327 243,805 328,610

  2. Minnesota Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    4.68 4.52 4.49 3.51 4.06 3.65 1989-2015 Residential 13.30 13.01 12.75 9.33 7.71 7.16 1989-2015 Commercial 8.17 8.03 7.72 6.43 6.20 6.10 1989-2015 Industrial 4.59 4.76 4.23 4.31 4.20 4.31 2001-2015 Electric Power W W W W W W 2002-2015 Underground Storage (Million Cubic Feet) Total Capacity 7,000 7,000 7,000 7,000 7,000 7,000 2002-2015 Gas in Storage 6,153 6,355 6,573 6,835 6,984 6,973 1990-2015 Base Gas 4,848 4,848 4,848 4,848 4,848 4,848 1990-2015 Working Gas 1,305 1,507 1,725 1,987 2,136 2,125

  3. Minnesota Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4.68 4.52 4.49 3.51 4.06 3.65 1989-2015 Residential Price 13.30 13.01 12.75 9.33 7.71 7.16 1989-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2015 Commercial Price 8.17 8.03 7.72 6.43 6.20 6.10 1989-2015 Percentage of Total Commercial Deliveries included in Prices 71.0 74.7 74.2 82.7 82.4 89.0 1989-2015 Industrial Price 4.59 4.76 4.23 4.31 4.20 4.31 2001-2015 Percentage of Total Industrial Deliveries included in Prices 11.4 12.6 12.7

  4. Minnesota Nuclear Profile - Monticello

    U.S. Energy Information Administration (EIA) Indexed Site

    Monticello" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,554,"4,695",96.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,554,"4,695",96.7 "Data for 2010" "BWR = Boiling Water Reactor."

  5. Minnesota Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports Price 4.49 4.15 2.87 3.87 5.60 1989-2014 Exports Price -- 3.90 3.46 3.83 11.05 1999-2014 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.48 5.04 4.26 4.58 6.56 4.40 1984-2015 Residential Price 8.76 8.85 7.99 8.19 9.89 8.84 1967-2015 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2015 Commercial Price 7.60 7.46 6.36 6.86 8.66 7.30 1967-2015 Percentage of Total Commercial Deliveries included in Prices 93.1 89.8 91.1

  6. NRS 445A Water Controls | Open Energy Information

    Open Energy Info (EERE)

    NRS 445A Water ControlsLegal Abstract General provisions for water pollution control and water quality of the public water systems in Nevada. Published NA Year Signed or...

  7. Pollution Prevention, Waste Reduction, and Recycling

    Broader source: Energy.gov [DOE]

    The DOE Pollution Prevention, Waste Reduction and Recycling Program supports Executive Order (E.O.) 13693, Planning for Federal Sustainability in the Next Decade; DOE Order 436.1, Department Sustainability; and, the Department’s Strategic Sustainability Performance Plan (SSPP). Under this Program, Headquarters assists DOE Field and Program Offices in the implementation of the specific goals identified in both of the Orders.

  8. Characterizing Indoor Airflow and Pollutant Transport using Simulation Modeling for Prototypical Buildings. I. Office Buildings

    SciTech Connect (OSTI)

    Sohn, M.D.; Daisey, J.M.; Feustel, H.E.

    1999-06-01

    This paper describes the first efforts at developing a set of prototypical buildings defined to capture the key features affecting airflow and pollutant transport in buildings. These buildings will be used to model airflow and pollutant transport for emergency response scenarios when limited site-specific information is available and immediate decisions must be made, and to better understand key features of buildings controlling occupant exposures to indoor pollutant sources. This paper presents an example of this approach for a prototypical intermediate-sized, open style, commercial building. Interzonal transport due to a short-term source release, e.g., accidental chemical spill, in the bottom and the upper floors is predicted and corresponding HVAC system operation effects and potential responses are considered. Three-hour average exposure estimates are used to compare effects of source location and HVAC operation.

  9. Long-Term Benthic Macroinvertebrate Community Monitoring to Assess Pollution Abatement Effectiveness

    SciTech Connect (OSTI)

    Smith, John G; Brandt, Craig C; Christensen, Sigurd W

    2011-01-01

    The benthic macroinvertebrate community of East Fork Poplar Creek (EFPC) in East Tennessee was monitored for 18 years to evaluate the effectiveness of a water pollution control program implemented at a major United States (U.S.) Department of Energy facility. Several actions were implemented to reduce and control releases of pollutants into the headwaters of the stream. Four of the most significant actions were implemented during different time periods, which allowed assessment of each action. Macroinvertebrate samples were collected annually in April from three locations in EFPC (EFK24, EFK23, and EFK14) and two nearby reference streams from 1986 through 2003. Significant improvements occurred in the macroinvertebrate community at the headwater sites (EFK24 and EFK23) after implementation of each action, while changes detected 9 km further downstream (EFK14) could not be clearly attributed to any of the actions. Because the stream was impacted at its origin, invertebrate recolonization was primarily limited to aerial immigration, thus, recovery has been slow. As recovery progressed, abundances of small pollution-tolerant taxa (e.g., Orthocladiinae chironomids) decreased and longer lived taxa colonized (e.g., hydropsychid caddisflies, riffle beetles, Baetis). While assessments lasting three to four years may be long enough to detect a response to new pollution controls at highly impacted locations, more time may be needed to understand the full effects. Studies on the effectiveness of pollution controls can be improved if impacted and reference sites are selected to maximize spatial and temporal trending, and if a multidisciplinary approach is used to broadly assess environmental responses (e.g., water quality trends, invertebrate and fish community assessments, toxicity testing, etc.).

  10. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. 2005 Diesel Engine Emissions...

  11. Title 40 CFR 112 Oil Pollution Prevention | Open Energy Information

    Open Energy Info (EERE)

    12 Oil Pollution Prevention Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 40 CFR 112 Oil Pollution...

  12. Pollution Prevention Tracking and Reporting System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pollution Prevention Tracking and Reporting System Pollution Prevention Tracking and Reporting System Welcome to the Department of Energy's Pollution Prevention Tracking and Reporting System (PPTRS). DOE uses this system to collect information about, and assess the performance of, the Department's efforts in pollution prevention, sustainable acquisition, and recycling. DATA ENTRY: PPTRS will be open for data entry from October 1, 2013, through November 22, 2013. Click here to enter the PPTRS. To

  13. EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 |

    Office of Environmental Management (EM)

    Department of Energy EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 EPA Presentation: Reducing Pollution from Power Plants, October 29, 2010 Presentation to the Electricity Advisory Committe on October 29, 2010 by the US Environmental Protection Agency Office of Air and Radiation on Reducing Pollution from Power Plants and the need for additional rule making. PDF icon Reducing Pollution from Power Plants More Documents & Publications EEI Presentation: The

  14. Pollution prevention opportunity assessments, a training and resource guide

    SciTech Connect (OSTI)

    VALERO, O.J.

    1998-11-03

    The intention of the ''Pollution Prevention Opportunity Assessment Training and Resource Guide'' is to help Hanford waste generators identify ways to reduce waste through the Pollution Prevention Opportunity Assessment (P20A) process. This document presents pollution prevention tools and provides a step-by-step approach for conducting assessments.

  15. Bioluminescent reporters for catabolic gene expression and pollutant bioavailability

    SciTech Connect (OSTI)

    Heitzer, A.; DiGrazia, P.M.; Sayler, G.S. . Center for Environmental Biotechnology); Burlage, R.S. )

    1991-01-01

    The application of visualized catabolic nah-gene expression using a luxCDABE gene fusion provides a valuable method to measure quantitatively and specifically naphthalene and salicylate bioavailability. It has been demonstrated that the physiological state of the test culture together with the intrinsic regulation mechanisms of the naphthalene degradation pathway as well as the physiological aspects of the lux gene fusion have to be taken into account. The method presented provides a high potential for in situ bioprocess monitoring. In addition, the results obtained with immobilized cells provide a basis for the development of biosensors for environmental applications in specific pollutant monitoring in waste streams and soil slurry systems but, as a general method, also for more conventional biotechnological process control. 8 refs., 2 figs., 1 tab.

  16. Pollution Prevention Environmental Design Guide for Engineers

    Energy Science and Technology Software Center (OSTI)

    1999-03-16

    Pollution Prevention Environmental Design Guide for Engineers (P2-EDGE) provides nearly 300 recommendations to incorporate pollution prevention into projects during the design phase. Each is supplemented by examples, references, and additional data to help the user evaluate applicability and potential benefits to their design project. Built in filters allow the user to narrow the review to only those opportunities that are applicable based on project size and design phase. User responses are saved to a custommore » data file or can also be generated into a report and printed. Other features include the ability to search the database for keywords, add opportunities to the database, or edit existing entries.« less

  17. Method of degrading pollutants in soil

    DOE Patents [OSTI]

    Hazen, Terry C. (Augusta, GA); Lopez-De-Victoria, Geralyne (Irmo, SC)

    1994-01-01

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  18. Method of degrading pollutants in soil

    DOE Patents [OSTI]

    Hazen, T.C.; Lopez-De-Victoria, G.

    1994-07-05

    Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

  19. Sandia National Laboratories: Pollution Prevention: Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Pollution Prevention (P2) promotes awareness about Sandia's environmental impact and how to reduce the impact both internally to the workforce and externally to the public. These overlap when the workforce takes home the attitude of continuous improvement toward the environment. Take your kids to work day Internal Communication P2 communicates with the workforce through several internal publications including a corporate daily news email, the biweekly "Porcelain Press" posted

  20. Hanford Site pollution prevention progress report

    SciTech Connect (OSTI)

    BETSCH, M.D.

    1999-10-05

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear sense of direction toward achieving environmental protection, cleanup, and research.

  1. Pollution Changes Clouds' Ice Crystal Genesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pollution Changes Clouds' Ice Crystal Genesis For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Suspended high in the atmosphere, plentiful dust particles are fertile turf for growing ice. But, what are the optimal conditions for this crop? Researchers at Pacific Northwest National Laboratory (PNNL) found that miniscule particles of airborne dust, thought to be a perfect landing site for water vapor, are altered by the

  2. Oil pollution in Shijiu Harbor studied

    SciTech Connect (OSTI)

    Miao Lutian

    1983-11-09

    This article describes an experimental model designed to forecast oil pollution in the newly constructed Shijiu Harbor, using a mixture of 30% used machine oil and 70% light diesel, in amounts of 200 kg per test. Plastic bags filled with the mixture are slit open and cast into the water generally along the axis of the major ocean current. Small boats are used to collect water specimens to trace the experimental pollutant. The density distribution and the horizontal diffusion coefficient are calculated to produce equations to study effects of the surface wind speed, the depth of the water, and the tidal waves on the oil drift. Each test is completed in about 2 hours. On the basis of statistical data of large Chinese harbors published by the ministry and related reports of foreign countries, the mean annual oil pollution load of Shijiu Harbor is computed in terms of the total estimated tonnage of cargo ships, tugboats, oil tankers, and fishing boats. The forecast model, the equations, and the computation processes are described in some detail.

  3. Pollution prevention in the pharmaceutical industry

    SciTech Connect (OSTI)

    Venkataramani, E.S.

    1995-09-01

    A clear understanding of the process, reaction pathways, process equipment, operational requirements, and waste stream characteristics are critical for the evaluation, selection, and implementation of pollution prevention in the pharmaceutical industry. Although pollution prevention opportunities are always preferred over treatment and disposal techniques, consideration of a full range of options--including at-source treatments and disposal--is a practical necessity to ensure protection of the environment using best available technology. General housekeeping can also play a major role in waste minimization. Waste minimization and pollution prevention are not new concepts for the pharmaceutical industry. But the confidential and highly competitive nature of the business stands in the way of disseminating information regarding specific activities in this area. The pharmaceutical industry could probably do much better in this respect. Successful implementation of waste minimization in the pharmaceutical industry requires that a process modification not have a negative impact on product quality. Recovered and recycled materials must meet quality specifications that are similar to those for virgin raw materials.

  4. Enlightened self-interest key to pollution prevention

    SciTech Connect (OSTI)

    Quinn, B.

    1995-03-01

    A decade ago, pollution prevention was introduced by environmental policy-makers as an alternative to traditional end-of-pipe waste treatment. Even then, the concept was not new. Among corporate efforts, 3M`s well-publicized Pollution Prevention Pays program already had set the stage for viewing pollution prevention as an environmental and financial tool. What was new, though, was the integration of pollution prevention into the fabric of national law. The most blatant example of pollution prevention`s evolution from good idea to enforceable requirement is found in the Pollution Prevention Act of 1990. But some less-visible efforts may have an even more profound effect on the business community. The US Environmental Protection Agency (EPA) is looking for ways to incorporate pollution prevention into Title V permits under the Clean Air Act Amendments of 1990 (CAAA). And, more than 29 states have enacted environmental protection legislation that imposes specific planning requirements on the regulated community.

  5. Building America Case Study: Combustion Safety Simplified Test Protocol, Chicago Illinois, and Minneapolis, Minnesota (Fact Sheet),Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Safety Simplified Test Protocol Chicago, Illinois, and Minneapolis, Minnesota PROJECT INFORMATION Project Name: Combustion Safety Simplified Test Protocol Location: Chicago, IL, and Minneapolis, MN Partners: Partnership for Advanced Residential Retrofit and NorthernSTAR Building Component: Natural gas water heaters or furnaces in high- performance houses Application: New and/or retrofit; single- and/or multifamily Year Tested: 2015 Applicable Climate Zones: All PERFORMANCE DATA The

  6. Study Pinpoints Sources of Polluting Vehicle Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    Unburned lubricant produces 60%-90% of organic carbon emissions. While diesel fuel is often viewed as the most polluting of conventional petroleum-based fuels, emissions from gasoline engines can more significantly degrade air quality. Gasoline exhaust is at least as toxic on a per-unit-mass basis as diesel exhaust, and contributes up to 10 times more particulate matter (PM) to the emission inventory. Because emissions from both fuels can gravely impact health and the environment, researchers at the National Renewable Energy Laboratory (NREL) launched a study to understand how these pollutants relate to fuels, lubricants, and engine operating conditions. NREL's Collaborative Lubricating Oil Study on Emissions (CLOSE) project tested a variety of vehicles over different drive cycles at moderate (72 F) and cold (20 F) temperatures. Testing included: (1) Normal and high-emitting light-, medium-, and heavy-duty vehicles; (2) Gasoline, diesel, and compressed natural gas (CNG)-powered vehicles; (3) New and aged lubricants representative of those currently on the market; and (4) Gasoline containing no ethanol, E10, Texas-mandated low-emission diesel fuel, biodiesel, and CNG. The study confirmed that normally functioning emission control systems for gasoline light-duty vehicles are very effective at controlling organic carbon (OC) emissions. Diesel vehicles without aftertreatment emission control systems exhibited OC emissions approximately one order of magnitude higher than gasoline vehicles. High-emitter gasoline vehicles produced OC emissions similar to diesel vehicles without exhaust aftertreatment emission control. Exhaust catalysts combusted or converted more than 75% of lubricating oil components in the exhaust gases. Unburned crankcase lubricant made up 60%-90% of OC emissions. This OC represented 20%-50% of emitted PM in all but two of the vehicles. Three-way catalysts proved effective at reducing most of the OC. With high PM emitters or vehicles with deteriorated aftertreatment, high-molecular-weight fuel components and unburned lubricant were emitted at higher rates than in vehicles in good repair, with functioning emissions systems. Light-duty gasoline, medium-duty diesel, and heavy-duty natural gas vehicles produced more particles with fresh oil than with aged oil. The opposite trend was observed in light- and medium-duty high PM emitters. This effect was not readily apparent with heavy-duty diesel vehicles, perhaps because the lubricant represented a much smaller fraction of the total PM in those trucks.

  7. Phytoremediation of ionic and methyl mercury pollution

    SciTech Connect (OSTI)

    Meagher, R.B.

    1998-06-01

    'The long-term objective of the research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants. The authors are focused on mercury pollution as a case study of this plant genetic engineering approach. The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will: (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The results from the research are so positive that the technology will undoubtedly be applied in the very near future to cleaning large mercury contaminates sites. Many such sites were not remediable previously due to the excessive costs and the negative environmental impact of conventional mechanical-chemical technologies. At the time this grant was awarded 20 months ago, the authors had successfully engineered a small model plant, Arabidopsis thaliana, to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to much less toxic and volatile metallic Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. At that time, the authors had no information on expression of merA in any other plant species, nor had the authors tested merB in any plant. However, the results were so startlingly positive and well received that they clearly presaged a paradigm shift in the field of environmental remediation.'

  8. Biocarrier composition for and method of degrading pollutants

    DOE Patents [OSTI]

    Fliermans, C.B.

    1994-01-01

    The present invention relates to biocarrier compositions that attract and bond pollutant-degrading antigens that will degrade the pollutants. Biocarriers are known generally as a variety of inert or semi-inert compounds or structures having the ability to sequester (attract), hold and biomagnify (enhance) specific microorganisms within their structure. Glass or polystyrene beads are the most well known biocarriers. The biocarrier, which is preferably in the form of glass microspheres, is coated with an antibody or group of antibodies that attract and react specifically with certain pollutant-degrading antigens. The antibody, once bonded to the biocarrier, is used by the composition to attract and bond those pollutant-degrading antigens. Each antibody is specific for an antigen that is specific for a given pollutant. The resulting composition is subsequently exposed to an environment contaminated with pollutants for degradation. In the preferred use, the degrading composition is formed and then injected directly into or near a plume or source of contamination.

  9. Stratification of particulate and VOC pollutants in horizontal-flow-paint spray booths. Report for September 1988-October 1989

    SciTech Connect (OSTI)

    Darvin, C.H.

    1990-01-01

    The paper discusses stratification of particulate and volatile organic compound (VOC) pollutants in horizontal flow paint spray booths, as part of a joint U.S. Air Force/EPA research and development program on emissions from paint spray booths. The test program discussed in the paper was designed to characterize the pollutants both within and exiting a typical back-draw booth for which emissions control strategies are being developed. The results of one series of tests indicate that the pollutants, both particulate and VOC, fall to the lower level of the booth or stratify at the level at which they were generated. This might be expected since the densities of typical pollutants found in spray booths are greater than air. The results showed, however, that the concentration of pollutants in the lower level prior to exiting the booth was significantly greater than expected. Data indicated that, for the 16 ft (4.9 m) high booth tested, the concentration at the exit of the booth below the 8 ft (2.4 m) level was 5-25 times greater than the concentration above that level. The importance of these findings is that it might be possible to partition a booth's air flow into two zones, one lean and the other concentrated. The concentrated zone could be directed to a proportionally smaller VOC control system of significantly less capital and operating cost.

  10. Review of Emerging Diesel Emissions and Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Diesel Emissions and Control Review of Emerging Diesel Emissions and Control Criteria pollutant regulatory efforts are focused on Euro VI HD PN limits, and California LEV3 for LD. PDF icon deer09_johnson.pdf More Documents & Publications Diesel Emission Control Review Diesel Emission Control Technology in Review Vehicle Emissions Review - 2012

  11. Tennessee Pollution Prevention Partnership | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tennessee Pollution ... Tennessee Pollution Prevention Partnership Posted: February 14, 2013 - 9:58am The green flag belongs to every Y-12 employee who has collected cans for recycle or worked to change how we do business as a company. The Y-12 National Security Complex proudly flies a green flag as a performer-level member of the Tennessee Pollution Prevention Partnership. Members of the Tennessee Department of Environment and Conservation presented Y-12 with the flag March 17, 2009. Brad

  12. The President's Plan to Reduce Carbon Pollution: Myths v. Reality |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The President's Plan to Reduce Carbon Pollution: Myths v. Reality The President's Plan to Reduce Carbon Pollution: Myths v. Reality June 26, 2013 - 4:59pm Addthis President Obama lays out his vision for a comprehensive plan to reduce carbon pollution, prepare our country for the impacts of climate change and lead global efforts to fight it. Heather Zichal Deputy Assistant to the President for Energy and Climate Change More information on President Obama's Climate Action

  13. NREL Praised for Efforts in Sustainable Pollution Prevention - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL Praised for Efforts in Sustainable Pollution Prevention August 26, 2004 Golden, Colo. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) received three 2004 DOE Pollution Prevention Best-In-Class awards for its work through the Sustainable NREL program on new buildings, recycling, and education, outreach and information sharing. The awards recognize accomplishments and innovative activities in pollution prevention and environmental

  14. Los Alamos National Laboratory captures eight NNSA Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards NNSA Pollution Prevention awards Los Alamos National Laboratory captures eight NNSA Pollution Prevention awards The awards are based on an NNSA-wide competition that acknowledges pollution prevention, recycling, and affirmative procurement accomplishments. April 15, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  15. Los Alamos National Laboratory employees receive Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Employees Receive Pollution Prevention Awards Los Alamos National Laboratory employees receive Pollution Prevention Awards Nearly 400 employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than $8 million. April 23, 2013 Molten plutonium in a crucible. The improved processing of old plutonium generates less than half of the waste of the former process. Molten plutonium in a crucible. The improved processing of old plutonium

  16. NREL: Sustainable NREL - Waste Reduction and Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Reduction and Pollution Prevention NREL's waste reduction and pollution prevention programs support the goal of near-zero waste through NREL's 4R philosophy, composting, the chemical management system and excess chemical inventory, and our pollution prevention initiatives. Based on requirements from Executive Order 13693, these replicable programs: Reduce paper use while increasing the use of postconsumer recycled paper by 30% or more Reduce the amount of organic and compostable materials

  17. Los Alamos National Laboratory employees receive Pollution Prevention

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Pollution Prevention Awardees Los Alamos National Laboratory employees receive Pollution Prevention Awards Nearly 400 employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than $8 million. April 23, 2013 Molten plutonium in a crucible. The improved processing of old plutonium generates less than half of the waste of the former process. Molten plutonium in a crucible. The improved processing of old plutonium generates less

  18. Hanford site waste minimization and pollution prevention awareness program

    SciTech Connect (OSTI)

    Kirkendall, J.R.

    1996-09-23

    This plan documents the requirements of the Hanford Site Waste Minimization/Pollution Prevention (WMin/P2) Program. The plan specifies requirements for Hanford contractors to prevent pollution from entering the environment, to conserve resources and energy, and to reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary waste generated at Hanford. The Pollution Prevention Awareness Program required by DOE 5400.1 (DOE 1988A) is included in the Hanford WMin/P2 Program.

  19. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  20. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-04-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)