Sample records for minneapolis mo kansas

  1. EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO

    Broader source: Energy.gov [DOE]

    NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location.

  2. Minneapolis, Minnesota: Energy Pathways Project

    Broader source: Energy.gov [DOE]

    This presentation features Brian Ross, a consultant for the City of Minneapolis, Minnesota with CR Planning. Ross provides an overview of how Minneapolis created a local energy vision for its...

  3. Spatializing social equity through place-based policies : lessons from the Green Impact Zone of Missouri, in Kansas City, MO

    E-Print Network [OSTI]

    Bozorg, Leila

    2010-01-01T23:59:59.000Z

    The Kansas City Green Impact Zone of Missouri is a regionally administered, place-based initiative that emerged in direct response to the 2009 "federal moment" symbolized by the creation of the White House Office of Urban ...

  4. City of Minneapolis, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville,Livingston,CityCity ofMilan,

  5. Kansas Certified Development Companies (Kansas)

    Broader source: Energy.gov [DOE]

    Kansas Certified Development Companies (CDC) assist businesses by developing loan packages that meet the financial need of a project. These packages often contain multiple sources of project...

  6. Solar Policy Environment: Minneapolis/St. Paul

    Broader source: Energy.gov [DOE]

    The cities of Minneapolis and St. Paul joined forces to implement a comprehensive approach to promoting “Solar in the Cities” including commercial and residential solar installations, technical training programs, and city and state policy review. The Cities are marshalling a wide array of expertise through strategic partnerships with Xcel Energy, Minnesota Dept. of Commerce, Minnesota Renewable Energy Society, Green Institute, freEner-g, Int’l Brotherhood of Electrical Workers, League of Minnesota cities, Neighborhood Energy Connection, and Century College.

  7. Promoting Employment Across Kansas (PEAK) (Kansas)

    Broader source: Energy.gov [DOE]

    Promoting Employment Across Kansas (PEAK) allows for the retention of employee payroll withholding taxes for qualified companies or third parties performing services on behalf of such companies....

  8. Forestry Policies (Kansas)

    Broader source: Energy.gov [DOE]

    Kansas is home to an established forestry industry managing roughly 2 million acres of land. The vast majority of these lands are privately owned. The Kansas Forest Service (KFS) provides the...

  9. Kansas- Net Metering

    Broader source: Energy.gov [DOE]

    Kansas adopted the Net Metering and Easy Connection Act in May 2009 (see K.S.A. 66-1263 through 66-1271), establishing net metering for customers of investor-owned utilities in Kansas. Net metering...

  10. Minneapolis and Saint Paul, Minnesota: Solar in Action (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This brochure provides an overview of the challenges and successes of Minneapolis, MN, a 2008 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.

  11. EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

    Broader source: Energy.gov [DOE]

    Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant, Kansas City, Missouri

  12. Hispanic Theatre in Kansas

    E-Print Network [OSTI]

    1979-04-01T23:59:59.000Z

    96 LATIN AMERICAN THEATRE REVIEW Hispanic Theatre in Kansas The Fanlights (Los soles truncos), by the late Rene Marqués, was performed in English translation at the University of Kansas, in Lawrence, April 10-12 and 17-21, 1979. The play...

  13. Sexting in Kansas Schools

    E-Print Network [OSTI]

    May, Dale

    2011-06-10T23:59:59.000Z

    This paper is an exploratory study about sexting, the sending of sexually explicit or illicit photos or video between cell phones, in Kansas public schools. An on-line survey asked superintendents to report if they have ...

  14. Kansas refraction profiles

    E-Print Network [OSTI]

    Steeples, Don W.; Miller, Richard D.

    1989-01-01T23:59:59.000Z

    of the MGA (Bickford et al., 1979). The NemahaRidge is another of the major structural discontinuities in the study area. Seismic-reflection evidence suggests major uplift during late Mississippian time which produced the Nemaha Ridge, forming... the boundary between the Salina and Forest City basins in Kansas (Steeples, 1982, also this volume). Aside from the MGA and Nemaha Ridge, the Ozark uplift, Sioux uplift, Central Kansas uplift, Forest City basin, Anadarko basin, Denver basin, and Salina...

  15. The Kansas Black Bass Tournament Monitoring Program

    E-Print Network [OSTI]

    The Kansas Black Bass (Micropterus spp.) Tournament Monitoring Program was begun by the Kansas Fish and Game program of the Kansas Fish and Game Commission avoids both of these prob- lems. The Kansas Black Bass annually to each of the bass clubs in Kansas before the bulk of fishing begins, and clubs are asked

  16. The Kansas Plains

    E-Print Network [OSTI]

    Zimmerman, Karen P.

    1973-01-01T23:59:59.000Z

    The Kansas Plains An Exhibit from the Kansas Collection UNIVERSITY OF KANSAS LIBRARIES T R A V E L L I N G ACROSS KANSAS f r o m e a s t to west , one is a w a r e of a t rans i t ion f r o m the ta l l g r a s s P r a i r i e P l a i n... s with wooded val leys to the f lat , t r e e l e s s , ar id High P l a i n s of w e s t e r n K a n s a s . Wal ter P r e s c o t t Webb in The G r e a t P l a i n s explains the c h a r a c t e r i s t i c s of the plains environment and the f l o r a l...

  17. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  18. Some Kansas Lawyer-Poets

    E-Print Network [OSTI]

    Moline, Brian; Hoeflich, Michael H.

    2007-05-01T23:59:59.000Z

    Some Kansas Lawyer-Poets Brian Moline" & MH. Hoeflich·· At first glance the idea of a Kansas lawyer-poet might seem odd. We tend to think oflawyers as hard-boiled men and women ofthe world, not as sensitive poetic types. Similarly, when we think... of Kansas we think first of farmers and ranchers, not of lawyers. The idea of Kansas lawyer-poets, therefore, may well seem to be strange and the breed quite limited, but nothing could be further from the truth. Throughout American history, lawyers have...

  19. National Nuclear Security Administration Kansas City Field Office

    National Nuclear Security Administration (NNSA)

    City Field Office 14520 Botts Road Kansas City, Missouri 64147 Kansas City Plant Related Web Pages Kansas City Plant Home Page - Provides background information and related news on...

  20. Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In...

  1. Kansas Statistical Abstract 2007 (42nd Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2008-10-21T23:59:59.000Z

    ............................................................................. 381 Population of Kansas by Region, July 1, 2007, and Percent Change, 2006-2007 (map) ................................................... 382 Population Projections for Kansas, by Age and Gender, 2000-2030, Selected Years...-2007 ............................................................................................................................ 423 Cumulative Components of Population Change for Kansas, by County, April 1, 2000 - July 1, 2007 ......................... 426 Projected Percent Population Change for Kansas, by County, 2000-2030 (map...

  2. Storage Area Network Optimization A cooperation of Ancor Communications, Minneapolis, USA

    E-Print Network [OSTI]

    Felsner, Stefan

    Storage Area Network Optimization A cooperation of Ancor Communications, Minneapolis, USA and Freie The Storage Area Network Optimization Project (SANO) is a cooperation of Ancor Communications (now QLogic for server-to-storage and server-to-server networking have been the focus of much attention during the 90s

  3. Machinery and Equipment Expensing Deduction (Kansas)

    Broader source: Energy.gov [DOE]

    Machinery and Equipment Expensing Deduction allows Kansas taxpayers to claim an expense deduction for business machinery and equipment, placed in service in Kansas during the tax year. The one-time...

  4. Collection, Storage And Impounding Of Waters (Kansas)

    Broader source: Energy.gov [DOE]

    Kansas Statute Chapter 82 Article 4 lays out property tax exemption requirements for landowners who build and maintain dams on their property in the state of Kansas. Dams must meet the given...

  5. Geothermal evaluation of Kansas: preliminary results

    SciTech Connect (OSTI)

    Steeples, D.W.; Ruscetta, C.A.; Foley, D. (eds.)

    1981-05-01T23:59:59.000Z

    Information from the literature and from four drill holes in Kansas is presented. Geothermal gradients and heat flow measurements are presented. An aeromagnetic map of Kansas is included. (MHR)

  6. The Biology of Some Kansas Eumenidae

    E-Print Network [OSTI]

    Isely, Dwight

    1913-01-01T23:59:59.000Z

    This paper is based on field observations and collections made by the author while connected with the Biological Survey of the University of Kansas, in Northwestern Kansas, during the summer of 1912. Specimens of fully ...

  7. Kansas City Power & Light- Solar PV Rebates

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light and its affiliate Kansas City Power and Light Greater Missouri Operations (collectively referred to as KCP&L) offer rebates to their customers for the installation...

  8. Kansas Statistical Abstract 2005 (40th Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2008-10-21T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on population, vital statistics and health, housing, elections, education, business and manufacturing, exports, employment, income, finance, state and local...

  9. Kansas Statistical Abstract 2013 (48th Edition)

    E-Print Network [OSTI]

    Institute for Policy & Social Research

    2014-09-01T23:59:59.000Z

    The Kansas Statistical Abstract 2013, contains the latest available state, county, and city-level data for Kansas on population, vital statistics and health, housing, education, business and manufacturing, exports, employment, ...

  10. Kansas Statistical Abstract 2001 (36th Edition)

    E-Print Network [OSTI]

    2002-12-01T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on population, vital statistics and health, housing, elections, education, business and manufacturing, exports, employment, income, ...

  11. Kansas Statistical Abstract 2008 (43rd Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2009-09-21T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on agriculture, banking and finance, business and exports, climate, communications and information, crime, education, employment and ...

  12. Kansas Statistical Abstract 2004 (39th Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2006-01-31T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on population, vital statistics and health, housing, elections, education, business and manufacturing, exports, employment, income, ...

  13. Kansas Statistical Abstract 2003 (38th Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2004-09-01T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on population, vital statistics and health, housing, elections, education, business and manufacturing, exports, employment, income, ...

  14. Kansas Statistical Abstract 2012 (47th Edition)

    E-Print Network [OSTI]

    Institute for Policy & Social Research

    2014-05-27T23:59:59.000Z

    The Kansas Statistical Abstract 2012, contains the latest available state, county, and city-level data for Kansas on population, vital statistics and health, housing, education, business and manufacturing, exports, employment, ...

  15. Kansas Statistical Abstract 2002 (37th Edition)

    E-Print Network [OSTI]

    2003-09-01T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on population, vital statistics and health, housing, elections, education, business and manufacturing, exports, employment, income, ...

  16. Kansas Statistical Abstract 2009 (44th Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2011-03-02T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on agriculture, banking and finance, business and exports, climate, communications and information, crime, education, employment and ...

  17. EA-1947: Transfer of the Kansas City Plant, Kansas City, MO

    Broader source: Energy.gov [DOE]

    This EA evaluates potential environmental impacts of a proposal to transfer the NNSA's KCP property either in whole or in part. This includes considering the No Action Alternative, where NNSA relocates operations from the KCP and maintains ownership of its property; and the Proposed Action Alternative, where NNSA transfers the KCP property for mixed use (industrial, warehouse, commercial, office). Under the proposed action, the EA addresses the potential direct, indirect, and cumulative impacts of using the KCP property for uses consistent with current zoning. NNSA also analyzes the potential environmental impacts of partial and/or complete demolition of some KCP structures.

  18. Rebuilding It Better: Greensburg, Kansas. USD 422 Greensburg...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greensburg, Kansas. USD 422 Greensburg K-12 School (Revised) (Brochure), Energy Efficiency & Renewable Energy (EERE) Rebuilding It Better: Greensburg, Kansas. USD 422 Greensburg...

  19. Independent Oversight Focused Review, Kansas City Plant, Summary...

    Office of Environmental Management (EM)

    Review, Kansas City Plant, Summary Report - December 2001 Independent Oversight Focused Review, Kansas City Plant, Summary Report - December 2001 December 2001 Focused Review of...

  20. Kansas City Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Kansas City Field Office Kansas City Field Office FY15 Semi Annual Report FY14...

  1. Kansas Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Memo Kansas Recovery Act State Memo Kansas has substantial natural resources, including oil, gas, biomass and wind power.The American Recovery & Reinvestment Act (ARRA) is making...

  2. Kansas City Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Data Summary of data reported by Better Buildings Neighborhood Program partner Kansas City, Missouri. Kansas City Summary of Reported Data More Documents & Publications Michigan...

  3. Greensburg, Kansas: Building a Model Green Community, How Would...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Greensburg, Kansas: Building a Model Green Community, How Would You Rebuild a Town - Green? April 2009 (Brochure) This brochure describes the rebuilding of Greensburg, Kansas,...

  4. Rebuilding It Better: Greensburg, Kansas, High Performance Buildings...

    Office of Environmental Management (EM)

    It Better: Greensburg, Kansas, High Performance Buildings Meeting Energy Savings Goals (Brochure) Rebuilding It Better: Greensburg, Kansas, High Performance Buildings Meeting...

  5. Qualifying RPS State Export Markets (Kansas)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Kansas as eligible sources towards their RPS targets or goals. For specific...

  6. A List of Kansas Minerals

    E-Print Network [OSTI]

    Grover, Charles H.

    1895-01-01T23:59:59.000Z

    Master Th e s i s Geology Grov e r , C h a r l e s H. 1895 L i s t of Kansas m i n e r a l s * A l i s t of Kansas Minerals with "brief notes on the^cr^stjalogr&phio (form, chemical composition, and the p r i n c i p a l l o c a l i t i e s f...£om which £hey have been reported* ^S/V-y The f o l l o w i n g l i s t , i t i s believed, embraces a l l the minerals of the state that have been so f a r discovered and reported. Two s i m i l a r i i s t s have been heretofore published i n...

  7. Minneapolis/St. Paul: Taking Solar to the Cities | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 AcquisitionODepartmentMinneapolis/St. Paul:

  8. Kansas Water Office November 14, 2012

    E-Print Network [OSTI]

    adequate quantities of good quality water to meet future needs. #12;#12;Kansas Reservoir Loss of Capacity 0 that adversely affect the water quality of Kansas lakes and streams. Ensure that water quality conditions are maintained at a level equal to or better than year 2000 conditions. Reduce total nitrogen and phosphorus

  9. Essential and Fixed Oils of Kansas Plants

    E-Print Network [OSTI]

    Wellington, Earl J.

    1908-01-01T23:59:59.000Z

    of Kansas", published in Topeka, 1892, was used. This is the most complete catalog of Kansas plants available at the present time. The numbers to the Left of the botanical names refer to those of this check list . A new flora of the state has been...

  10. Kansas Statistical Abstract 2011 (46th Edition)

    E-Print Network [OSTI]

    Institute for Policy & Social Research

    2014-05-27T23:59:59.000Z

    . Mercer, project manager Whitney K. Onasch, data collection management and compilation Laura Kriegstrom Stull, editor, graphic design, and data visualization Xanthippe Wedel, data compilation and visualization, programming, and production Steven...) ....................................................................................................................... 21 Kansas Senate Districts, 2002 (map) .................................................................................................................................................. 22 Kansas Senate Districts, 2012 (map...

  11. Kansas Statistical Abstract 2006 (41st Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2008-10-21T23:59:59.000Z

    1, 2000 to July 1, 2006 ...................... 466 Projected Percent Population Change for Kansas, by County, 2000-2025 (map).............................................................. 468 Population Projections for Kansas, by County, 2000...: Genna Hurd, editor Susan Mercer, project manager Laura Kriegstrom Stull, editor, graphic design, and data visualization Charlotte Murayan, data collection management and compilation Xanthippe Wedel, data compilation and visualization, programming...

  12. Kansas Energy Sources: A Geological Review

    SciTech Connect (OSTI)

    Merriam, Daniel F., E-mail: dmerriam@kgs.ku.edu [University of Kansas (United States); Brady, Lawrence L.; Newell, K. David [University of Kansas, Kansas Geological Survey (United States)

    2012-03-15T23:59:59.000Z

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U.S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer.

  13. Kansas Natural Gas Processed in Kansas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessAprilResidential ConsumersThousandKansas

  14. City of Kansas City, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCity ofCity of Johnson,City of Kansas

  15. Mathematical Minneapolis

    E-Print Network [OSTI]

    Nielsen, Finn Årup

    Research Centre for Magnetic Resonance, Hvidovre Hospital, Denmark # 456 Abstract ffl We use k­means­correlation func­ tion with the paradigm (the activation stimulus). ffl The performance of k­means is very de. Black circles represent the data, empty circles the cluster centers. k­means Clustering Clustering

  16. MO. REV. MO. MAGNETIC CLEANLINESS GUIDELINES

    E-Print Network [OSTI]

    Rathbun, Julie A.

    MO. REV. MO. ATM-865 MAGNETIC CLEANLINESS GUIDELINES PAGE 1 Of 3 DATE 4/6/70 The purpose of this ATM is to update the ALSEP Magnetic Cleanliness Guidelines as delineated in A TM-294, dated 1 June. ATM-865 MAGNETIC CLEANLINESS GUIDELINES PAGE 2 OF 3 DATE 4/6/70 A review of the ALSEP Magnetic

  17. Safety and Security on Campus 2013 Annual Security and Fire Safety Report for the Minneapolis and St. Paul Campuses

    E-Print Network [OSTI]

    Minnesota, University of

    Safety and Security on Campus 2013 Annual Security and Fire Safety Report for the Minneapolis, active place. Safety and security are important for the thousands of us who live, work, and study here the Twin Cities. But looking out for our safety and security includes us, too. We all have a role to play

  18. Kansas BEST for Innovation 1 B.E.S.T.for Innovation

    E-Print Network [OSTI]

    for Science and Technology for Innovation #12;Kansas B.E.S.T. for Innovation 2 Acknowledgments The drafters and Technology for Innovation (Kansas B.E.S.T. for Innovation)--Kansas can capitalize on the inherent streKansas BEST for Innovation 1 KANSAS B.E.S.T.for Innovation Kansas: Building an Environment

  19. Calibration intervals at Bendix Kansas City

    SciTech Connect (OSTI)

    James, R.T.

    1980-01-01T23:59:59.000Z

    The calibration interval evaluation methods and control in each calibrating department of the Bendix Corp., Kansas City Division is described, and a more detailed description of those employed in metrology is provided.

  20. Kansas City Completes Innovative Business Incubator | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The logo for EnergyWorks KC. The Blue Hills Business Center and Contractor Incubator is now open This Kansas City, Missouri, center has been a collaborative effort between...

  1. Black Literary Suite: Kansas Authors Edition

    E-Print Network [OSTI]

    Wiggins, Meredith Joan

    2015-03-04T23:59:59.000Z

    authors were born or lived in the Sunflower State, and their work often reflects their time in Kansas. This Black Literary Suite exhibit highlights four important black writers—Langston Hughes, Gwendolyn Brooks, Frank Marshall Davis, and Kevin Young...

  2. Alternative Fuels Data Center: Kansas Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Kansas, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  3. Kansas City- EnergyWorks KC (Missouri)

    Broader source: Energy.gov [DOE]

    The EnergyWorks KC program offers residents, small businesses, churches, schools, and non-profit Kansas City organizations an opportunity to increase the efficiency of their homes and buildings. An...

  4. Greensburg, Kansas : rebuilding a green town

    E-Print Network [OSTI]

    Bromberg, Anna (Anna Miriam)

    2009-01-01T23:59:59.000Z

    The tornado that hit Greensburg, Kansas, in May 2007, traveled down the center of Main Street at two hundred and five miles per hour and destroyed ninety-five percent of the town's built environment. The extensive damage ...

  5. 25055 W. Valley Parkway Olathe, Kansas 66061

    E-Print Network [OSTI]

    Dyer, Bill

    25055 W. Valley Parkway Suite 106 Olathe, Kansas 66061 Evans Enterprises is growing, or a person we need to reach out to. Our company website is below, and I am happy to answer any questions you

  6. Scully field - Marion County, Kansas

    SciTech Connect (OSTI)

    Salgat, B.

    1983-08-01T23:59:59.000Z

    The Scully field is a multipay new-field discovery located in the southern end of Salina basin, Marion County, Kansas. The Scully field was discovered using a combination of satellite imagery and subsurface control. The overall trapping mechanism at the Scully field is anticlinal closure. Infield drilling has demonstrated, however, that significant stratigraphic variations do exist within the productive area. The Simpson sands have been subdivided in five separate units which range from 4 to 12 ft (1 to 4 m) in thickness. Three of these are of economic importance in the field. In general, the sands with the most economic potential are distributed within relative Ordovician paleolows. The Viola has four main lithologic divisions. The uppermost of these is a relatively thin dolomite cap which ranges from 2 to 15 ft (1 to 5 m). This upper dolomite is the primary Viola pay zone. The Mississippian section is eroded deeply over the Scully structure and demonstrates about 70 ft (20 m) of thinning. The potential pay interval is chert which has 25 to 30% porosity based on log analysis. The trapping mechanism is a combination of erosional truncation and structural closure. In addition to the structural information obtained from satellite imagery, R.J. Walker Oil Co., Inc., evaluated the hydrocarbon potential of T18S, R1E, Marion County, Kansas, which contains the Scully field, using remote sensing technology developed by Earth Reference Systems of Long Beach, California. The technology involves direct detection of hydrocarbons in place, using satellite data, nonlinear mathematics, and the fundamental principles of molecular structure and electromagnetic wave propagation.

  7. Kansas

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has|Issues inU N EKEP

  8. Geothermal Business on the Rise for Kansas Company | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Business on the Rise for Kansas Company Geothermal Business on the Rise for Kansas Company April 16, 2010 - 4:43pm Addthis Paul Lester Communications Specialist, Office of Energy...

  9. Kansas City Power and Light- Solar Photovoltaic Rebates

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light and its affiliate Kansas City Power and Light Greater Missouri Operations (collectively referred to as KCP&L) offer rebates to their customers for the installation...

  10. Paleoecology and paleontology of the Lower Cretaceous Kiowa Formation, Kansas

    E-Print Network [OSTI]

    Scott, R. W.

    1970-01-15T23:59:59.000Z

    paleontologist at the University of Kansas, and by MYRL WALKER and ORVILLE BONNER, vertebrate paleontologists at Fort Hays Kansas State College, where my collection of vertebrates has been deposited. In general, the taxonomic diversity of plesiosaurs, sharks..., and fishes is moderate, and reptile species other than plesiosaurs are few. Rocks in southern Kansas have yielded the greatest number of specimens and species; central Kansas has yielded only a few species of crocodiles and sharks. Fish scales are relatively...

  11. In Second International Workshop on Security and Privacy in Cloud Computing, Minneapolis, MN. 24 June 2011. Private Editing Using Untrusted Cloud Services

    E-Print Network [OSTI]

    Evans, David

    In Second International Workshop on Security and Privacy in Cloud Computing, Minneapolis, MN. 24 of Virginia MightBeEvil.com Abstract--We present a general methodology for protecting the confidentiality

  12. Croatian Language and Cultural Maintenance in the Slavic-American Community of Strawberry Hill, Kansas City, Kansas

    E-Print Network [OSTI]

    Glasgow, Holly Hood

    2012-05-31T23:59:59.000Z

    The purpose of this qualitative study was to investigate levels of immigrant language retention among Croatian-Americans in the Slavic diaspora community of Strawberry Hill in Kansas City, Kansas. There have been three major waves of Croatian...

  13. Environmental Survey preliminary report, Kansas City Plant, Kansas City, Missouri

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE), Kansas City Plant (KCP), conducted March 23 through April 3, 1987. The Survey is being conducted by a multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the KCP. The Survey covers all environmental media and all areas of environmental regulations. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data observations of the operations performed at the KCP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activities. The Sampling and Analysis Plan is being executed by DOE's Argonne National Laboratory. When completed, the results will be incorporated into the KCP Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the KCP Survey. 94 refs., 39 figs., 55 tabs.

  14. James H. Lane and the Origins of the Kansas Jayhawk

    E-Print Network [OSTI]

    Baron, Frank

    2011-01-01T23:59:59.000Z

    . In contrast, John Speer, editor of the Lawrence Republican, considered him to be the liberator of Kansas. Albert Castel, Civil War Kansas: Reaping the Whirlwind (Lawrence: University Press of Kansas, 1997); Donald L. Gilmore, Civil War on the Missouri...-Kansas Border (Gretna, La.: Pelican, 2008), 133; John Speer, Life of Gen. James H. Lane, “The Liberator of Kansas” (Garden City, Kans.: John Speer, 1896); Starr, Jennison’s Jayhawkers, 14. James H. Lane ended his political career as a U.S. Senator...

  15. Kansas Labor Unions: Past, Present and Future

    E-Print Network [OSTI]

    Shulenburger, David E.; Johnson, Nancy Brown

    1983-06-01T23:59:59.000Z

    Labor Unions: Past, Present and Future,” Kansas Business Review, with N.B. Johnson, Volume 6 (May-June, 1983), pp. 13-17. Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml and N. B. Johnson Kansas Labor Unions: Past, Present, and Future... that the strikers were " . . . sober, in­ telligent, orderly men" and encouraged the railroad to "arrange terms for an amicable settlement."6 Governor Martin's stalwart stand not to intervene with troops represented one of the earliest occasions in which a state...

  16. EA-1137: Nonnuclear Consolidation Weapons Production Support Project for the Kansas City Plant Kansas City, Missouri

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to renovate an existing building at the U.S. Department of Energy Kansas City Plant to accommodate equipment, security and environmental...

  17. Insurance under M&O Contracts

    National Nuclear Security Administration (NNSA)

    Aviation Industry Mark Holecek, Manager Kansas City Field Office Environmental, Safety & Health Safety Bannister: * Fall Protection (building & equipment) * Electrical Safety...

  18. Selection to the Kansas Supreme Court

    E-Print Network [OSTI]

    Ware, Stephen J.

    2008-01-01T23:59:59.000Z

    . This process for selecting justices to the Kansas Supreme Court is described by the organized bar as a "merit," rather than political, process. Other observers, however, emphasize that the process has a political side as well. This paper surveys debate about...

  19. EECBG Success Story: Resourceful Kansas Puts Energy Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is a great place to harness wind and solar power. Through the Department of Energy's Energy Efficiency and Conservation Block Grant program, the Resourceful Kansas team is...

  20. Rebuilding it Better: Greensburg, Kansas, Kiowa County Memorial Hospital (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    This brochure details the sustainable and green aspects of the LEED Platinum-designed Kiowa County Memorial Hospital in Greensburg, Kansas.

  1. From Tragedy to Triumph: Rebuilding Greensburg, Kansas To Be...

    Office of Environmental Management (EM)

    Rebuilds as a National Model for Green Communities (Fact Sheet) Greensburg, Kansas: Building a Model Green Community, How Would You Rebuild a Town - Green? April 2009...

  2. Assessment of Biomass Pelletization Options for Greensburg, Kansas: Executive Summary

    SciTech Connect (OSTI)

    Haase, S.

    2009-11-01T23:59:59.000Z

    This executive summary provides an overview of an NREL assessment to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region around Greensburg, Kansas.

  3. Rebuilding It Better: Greensburg, Kansas. City Hall (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    This document showcases the LEED-Platinum designed Greensburg City Hall, which was rebuilt green, after a massive tornado destroyed Greensburg, Kansas in May 2007.

  4. Rebuilding It Better: Greensburg, Kansas, City Hall (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designated City Hall building in Greensburg, Kansas.

  5. Rebuilding It Better: Greensburg, Kansas. City Hall (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designated City Hall building in Greensburg, Kansas.

  6. Rebuilding It Better: City of Greensburg, Kansas, Business Incubator (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designed SunChips Business Incubator in Greensburg, Kansas.

  7. Hutchinson, Kansas Revitalized by Clean Energy Jobs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Addthis Employees speak about the changes happening in their lives since a wind turbine component manufacturing facility came to Hutchinson, Kansas. | Video courtesy of...

  8. Options for Alternative Fuels and Advanced Vehicles in Greensburg, Kansas

    SciTech Connect (OSTI)

    Harrow, G.

    2008-05-01T23:59:59.000Z

    Paper describes DOE/NREL recommendations to rebuild Greensburg, Kansas, as a sustainable community after being struck by a tornado in 2007.

  9. Regional interpretation of Kansas aeromagnetic data

    SciTech Connect (OSTI)

    Yarger, H.L.

    1982-01-01T23:59:59.000Z

    The aeromagnetic mapping techniques used in a regional aeromagnetic survey of the state are documented and a qualitative regional interpretation of the magnetic basement is presented. Geothermal gradients measured and data from oil well records indicate that geothermal resources in Kansas are of a low-grade nature. However, considerable variation in the gradient is noted statewide within the upper 500 meters of the sedimentary section; this suggests the feasibility of using groundwater for space heating by means of heat pumps.

  10. Site environmental report for calendar year 1992, Kansas City Plant, Kansas City, Missouri

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The Kansas City Plant is a government-owned, contractor-operated facility. AlliedSignal and its predecessors have been the operating contractors since 1949. The principal operation performed at the Kansas City Plant is the manufacture of non-nuclear components for nuclear weapons. This activity involves metals and plastics machining, plastics fabrication, plating, microelectronics, and electrical and mechanical assembly. No radioactive materials are machined or processed. This report presents information and data pertaining to the environmental monitoring program and compliance with environmental standards.

  11. Biographical Dictionary of Kansas Artists (active before 1945)

    E-Print Network [OSTI]

    Craig, Susan V.

    2006-08-11T23:59:59.000Z

    at West 25 th near Riedy Road, Kansas City from 1905-07. Kansas City Directory 1905, 1906, 1907 Beard, William Holbrook. b. Painesville, OH, Apr. 13, 1824; d. New York, NY, Feb. 20, 1900. Painter, spec. animals, landscapes, portraits. Pupil of his...

  12. EIS-0407: Abengoa Biorefinery Project Near Hugoton, Kansas

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an environmental impact statement to assess the potential environmental impacts associated with the proposed action of providing Federal financial assistance to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton in Stevens County, southwestern Kansas.

  13. IEEE Power and Energy Society General Meeting, July 2010, Minneapolis, MN USA c 2010 IEEE A cutset area concept for phasor monitoring

    E-Print Network [OSTI]

    Dobson, Ian

    IEEE Power and Energy Society General Meeting, July 2010, Minneapolis, MN USA c 2010 IEEE A cutset area concept for phasor monitoring Ian Dobson, Fellow IEEE ECE Department University of Wisconsin together voltage angle phasor measurements at several buses to measure the angle stress across an area

  14. Evapotranspiration and Precipitation in Kansas: Part I Dale Bremer, Kansas State University

    E-Print Network [OSTI]

    ..."an annual mean temperature almost as high as that of Virginia, more sunshine than that of any state) involve water, which is a politically hot topic in Kansas and across the western U.S. States, including. The article in this issue discusses the fundamentals of ET and the water budget of a land's surface

  15. Long-term Testing Results for the 2008 Installation of LED Luminaires at the I-35 West Bridge in Minneapolis

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Davis, Robert G.

    2014-09-30T23:59:59.000Z

    This document reports the long-term testing results from an extended GATEWAY project that was first reported in “Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, in Minneapolis, MN,” August 2009. That original report presented the results of lighting the newly reconstructed I 35W Bridge using LEDs in place of conventional high-pressure sodium (HPS) roadway luminaires, comparing energy use and illuminance levels with a simulated baseline condition. That installation was an early stage implementation of LED lighting and remains one of the oldest installations in continued operation today. This document provides an update of the LED system’s performance since its installation in September 2008.

  16. The Kansas Revised Limited Liability Company Act

    E-Print Network [OSTI]

    Hecker, Edwin W. Jr.

    2000-01-01T23:59:59.000Z

    changes; dissolution and winding up; and foreign LLCs. VC LU with with uction, c tate Act :ted the - - the le :stry, c ility ited ltes --A I grant k k Amy c " ,,..A 2 * I wish to thank the University of Kansas School of Law for 2 re... validated, 1999 Supp. 17-7678(a), there is no longer any neea for a papel the wordir ,spending provisions ot the LCA demor fully the latter embraces the KLLCA de gcsimile communication" as nic equipn ~d or transfer a copy of an 3ocumt.n~ via teleoho K...

  17. Relief work in Kansas, 1856-1857

    E-Print Network [OSTI]

    O'Meara, Edith

    1928-01-01T23:59:59.000Z

    raised a relief fond §2,000 of which was donated to tho use of tho National- Kan3a3 Committee* At a mass meeting hold at tho Broadway Tabernacle of New York, great enthusiasm wae 3hown for the Kansas relief work; a fund was raised, and a committee... was given out in October, 1056* A notice in tho "lawronco Herald of Freedom" of Novoabcr 22, 185G, announced that tho Control Committee had opened of~ ficoo in Lawrence undor tho management of Col* Kldridgo and v3n» l&itcli~ inaon, and wr,o prepared...

  18. Kansas City Plant Celebrates Safety Milestone

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    A gang of motorcycle riders arrived at the NNSA's Kansas City Plant on July 1 to help celebrate a significant safety achievement - working nearly five million hours, covering a one-year period without a lost-time injury. The bikers -- some of whom are plant employees -- represent Bikers Against Child Abuse, the local nonprofit selected to receive a $5,000 donation as part of the plant's safety achievement celebration. The organization was selected because it aligns with the plant's community outreach focus on Family Safety & Security and partnership with the plant's union members.

  19. Langdon, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind Energy Development Jump to: navigation,Langdon, Kansas:

  20. Greenbush Kansas Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,IISrl JumpGreenSourceGreenbush Kansas

  1. Admire, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara,Addington,Admire, Kansas: Energy Resources

  2. Agenda, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) |Agawam, Massachusetts: EnergyAgenda, Kansas:

  3. Buhler, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy ResourcesBuffalo,Buhler, Kansas:

  4. Willard, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest, NewKansas: Energy Resources Jump

  5. Shawnee, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: Energy Resources Jump to: navigation,Shawnee, Kansas:

  6. Fairway, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolisFairway, Kansas: Energy Resources Jump to:

  7. Kansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa: EnergyKanabec County, Minnesota:KankakeeKansas/Wind

  8. Manhattan, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersource HistoryMandaluyong City,Kansas: Energy

  9. Oakley, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and FeesOaklawn-Sunview, Kansas:2825°,

  10. Derby, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility DatabaseMichigan: EnergyKansas: Energy Resources Jump to:

  11. Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy CoKERAFOL GmbHEnergyKangdingPageKansas:

  12. Andover, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan2809328°, -95.3102505° ShowTexas:Andover, Kansas:

  13. Auburn, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation,Kansas: Energy Resources Jump to:

  14. Bentley, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmont County,InformationBenson,Bentley, Kansas:

  15. Gardner, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy ResourcesGang Mills,Plain,Kansas: Energy

  16. University of Kansas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperative Place:2.850084°,Kansas Place: Lawrence,

  17. Ethanol Conversion on Cyclic (MO3)3 (M = Mo, W) Clusters. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion on Cyclic (MO3)3 (M Mo, W) Clusters. Ethanol Conversion on Cyclic (MO3)3 (M Mo, W) Clusters. Abstract: Oxides of molybdenum and tungsten are an important class of...

  18. Comparison of 2006 IECC and 2009 IECC Commercial Energy Code Requirements for Kansas City, MO

    SciTech Connect (OSTI)

    Huang, Yunzhi; Gowri, Krishnan

    2011-03-22T23:59:59.000Z

    This report summarizes code requirements and energy savings of commercial buildings in climate zone 4 built to the 2009 IECC when compared to the 2006 IECC. In general, the 2009 IECC has higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment (HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted). The energy analysis results show that residential and nonresidential commercial buildings meeting the 2009 IECC requirements save between 6.1% and 9.0% site energy, and between 6.4% and 7.7% energy cost when compared to 2006 IECC. Analysis also shows that semiheated buildings have energy and cost savings of 3.9% and 5.6%.

  19. Targeted Energy Efficiency Expert Evaluation (E4) Report: Bannister Federal Complex, Kansas City, MO

    SciTech Connect (OSTI)

    Goddard, James K.; Fernandez, Nicholas; Underhill, Ronald M.; Gowri, Krishnan

    2013-03-01T23:59:59.000Z

    This is a final report summarizing the efficiency measures identified, implemented and the analysis of energy savings after implementation.

  20. Demonstration of LED Street Lighting in Kansas City, MO | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensure that sulfates inat

  1. What's Right with Kansas? (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Fuller, Merrian; Jackson, Nancy

    2014-05-06T23:59:59.000Z

    On Monday, Oct. 3 at 7 p.m. in Berkeley's Repertory Theater, the Lab presented "What's Right with Kansas," an evening of conversation with the Kansas-based Climate and Energy Project's founder and board chair, Nancy Jackson, and Berkeley Lab scientist Merrian Fuller, an electricity-market, policy and consumer behavior expert. Berkeley Lab will also debut its video "Common Ground," which showcases how CEP has become a Kansas mainstay and an inspiration to environmental organizations across the country. In a state rife with climate-change skepticism, CEP has changed behavior, and some minds, by employing rural values of thrift, independence, conservation, and friendly competition to promote energy efficiency.

  2. What's Right with Kansas? (LBNL Science at the Theater)

    SciTech Connect (OSTI)

    Fuller, Merrian; Jackson, Nancy

    2011-10-03T23:59:59.000Z

    On Monday, Oct. 3 at 7 p.m. in Berkeley's Repertory Theater, the Lab presented "What's Right with Kansas," an evening of conversation with the Kansas-based Climate and Energy Project's founder and board chair, Nancy Jackson, and Berkeley Lab scientist Merrian Fuller, an electricity-market, policy and consumer behavior expert. Berkeley Lab will also debut its video "Common Ground," which showcases how CEP has become a Kansas mainstay and an inspiration to environmental organizations across the country. In a state rife with climate-change skepticism, CEP has changed behavior, and some minds, by employing rural values of thrift, independence, conservation, and friendly competition to promote energy efficiency.

  3. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2004-06-30T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2004, 6.26 MM lb of carbon dioxide were injected into the pilot area. Carbon dioxide injection rates averaged about 250 MCFD. Carbon dioxide was detected in one production well near the end of May. The amount of carbon dioxide produced was small during this period. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February, increasing to an average of about 2.5 B/D in May and June. Operational problems encountered during the initial stages of the flood were identified and resolved.

  4. Kansas City Power and Light- Home Performance with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers towards the cost of an ENERGY STAR Home Energy Assessment and a portion of the installed efficiency improvements....

  5. Assessment of Biomass Pelletization Options for Greensburg, Kansas: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE)

    This executive summary provides an overview of a technical report on an assessment NREL conducted in Greensburg, Kansas, to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region.

  6. Kansas City Power & Light- Energy Optimizer Programmable Thermostat Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers a free programmable thermostat and free installation to qualifying customers to manage energy usage. Only residential and small commercial customers...

  7. Kansas City Power and Light- Cool Homes Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers to help offset the cost of replacing inefficient central AC and heat pump systems with newer, more efficient models....

  8. Kansas City Power & Light- Home Performance Rebate with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers towards the cost of an ENERGY STAR Home Energy Assessment and a portion of the installed efficiency improvements....

  9. Kansas City Power & Light- Home Performance with ENERGY STAR

    Broader source: Energy.gov [DOE]

    Kansas City Power & Light (KCP&L) offers rebates to residential customers of KCP&L's Greater Missouri Operations towards the cost of an ENERGY STAR Home Energy Assessment and a portion...

  10. HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL...

    National Nuclear Security Administration (NNSA)

    HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST CATEGORY Total Procurement Total SB Small Disad. Bus Woman-Owned SB Hub-Zone SB...

  11. Kansas City Power and Light- Energy Optimizer Programmable Thermostat Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers a free Honeywell programmable thermostat, worth $300, and free installation to qualifying customers to manage energy usage. Only residential and small...

  12. Kansas Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Kansas Water Resources Research Institute Annual Technical Report FY 2001 Introduction Roles identified by the state. These three projects included: 1. Measuring ssepage losses from waste treatment-push technology for site characterization investigations. #12;Measuring Seepage Losses from Waste

  13. The Midcontinent rift system in Kansas

    SciTech Connect (OSTI)

    Berendsen, P. (Univ. of Kansas, Lawrence, KS (United States). Kansas Geological Survey)

    1993-03-01T23:59:59.000Z

    A sequence of rift-related mafic volcanic rocks, volcanoclastic-, and clastic sedimentary rocks are recognized in cuttings and cores from about seventy wells in Kansas. The age (1,097.5 Ma) for gabbro in the Poersch [number sign]1 well in northern Kansas, as well as the general petrographic characteristics of the sedimentary rocks throughout the area favors a correlation with established Keweenawan stratigraphy in the Lake Superior region. Rift-related northeast-trending faults and older northwest-trending faults divide the area up into a number of orthogonal fault blocks or basins. Depending upon the tectonic history of the individual basin all or part of the Keweenawan section may be preserved. It is believed that large amounts of Keweenawan clastic sedimentary rock were eroded from the nemaha uplift east of the central graben of the rift and transported in an easterly direction. Prior to deposition of Paleozoic rocks the area was peneplaned. Correlation of various stratigraphic units over any distance is complicated by tectonic activity occurring at several times during the Precambrian and Paleozoic. Stratabound or stratiform deposits can occur both in the Precambrian as well as the overlying Paleozoic rocks. The possibility of massive sulfides to occur in the mafic intrusive rocks must not be excluded. In the core from the Poersch [number sign]1 well sulfides are recognized in gabbroic sills or dikes. Dark, fissile shale, similar to the Nonesuch Shale in the [number sign]1--4 Finn well averages 0.75% organic carbon. Thermal maturation within the rift probably ranges from within the oil window to over maturity.

  14. September 2007 monitoring results for Centralia, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-05-01T23:59:59.000Z

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater is being sampled twice yearly (for a recommended period of two years) for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 10 monitoring wells and 6 piezometers (Figure 1.1), at locations approved by the KDHE (Argonne 2006a). The results of groundwater sampling and VOCs analyses in September-October 2005, March 2006, September 2006, and March 2007 were documented previously (Argonne 2006a,b, 2007a). The results have demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 Risk-Based Screening Level of 5 {micro}g/L for this compound, in a broad groundwater plume that has shown little movement. This report presents the results of the groundwater sampling at Centralia in September 2007, performed in accord with the KDHE-approved monitoring plan (Argonne 2005b). The September 2007 sampling represents the fifth and final monitoring event performed under the recommended two-year monitoring program approved by the KDHE.

  15. Economic evaluation of the Annual Cycle Energy System. Volume I. Executive summary. Final report. [In Minneapolis, Atlanta, and Philadelphia

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    The objective of this study is to determine the energy effectiveness and the economic viability of the ACES concept. Three different classes of building are investigated, namely: single-family residence; multi-family residence; and commercial office building. The application of ACES to each of these building types is studied in three different climatic regions: Minneapolis, Atlanta, and Philadelphia. Computer programs - ACESIM for the residences and CACESS for the office building - were used, each comprised of four modules: loads; design; simulation; and economic. For each building type in each geographic location, the economic evaluation of the ACES is based on a comparison of the present worth of the ACES to the present worth of a number of conventional systems. The results of this analysis indicate that the economic viability of the ACES is very sensitive to the assumed value of the property tax, maintenace cost, and fuel-escalation rates, while it is relatively insensitive to the assumed values of other parameters. Fortunately, any conceivable change in the fuel-escalation rates would tend to increase the viability of the ACES concept. An increase in the assumed value of the maintenance cost or property tax would tend to make the ACES concept less viable; a decrease in either would tend to make the ACES concept more viable. The detailed results of this analysis are given in Section 5.4 of Volume II. 2 figures, 21 tables.

  16. A History of Irrigation in the Arkansas River Valley in Western Kansas, 1880-1910

    E-Print Network [OSTI]

    Sorensen, Conner

    1968-01-01T23:59:59.000Z

    of western Kansas, in particular the community around Garden City, Kansas. This history attempts to relate the development of irrigation in the Arkansas Valley through its formative years, 1880-1910. The term "Arkansas River Valley" as used here refers...

  17. The Attitudes of Teachers in One County in Kansas Toward Their School Improvement Plan Assessments

    E-Print Network [OSTI]

    Ubel, Renita Kathleen Pohl

    1998-03-01T23:59:59.000Z

    regarding their attitudes toward seven types of assessments used in school improvement plans: standardized norm-referenced tests, criterion-referenced tests, the Kansas Reading Assessment, portfolio assessment, the Kansas Writing Assessment, publishers...

  18. Developing an Enterprise GIS for Interdisciplinary Research to Model Farmers’ Land Use Decisions in Kansas

    E-Print Network [OSTI]

    Peterson, Dana

    2013-11-20T23:59:59.000Z

    for water quality prediction in Kansas reservoirs • Factors Affecting Farmers’ Willingness to Grow Alternative Biomass Feedstocks for Biofuels across Kansas • Crop Supply Dynamics and the Illusion of Partial Adjustment • Opportunities and Constraints: Actor...

  19. Achieving Consensus on the University of Kansas Open-Access Policy

    E-Print Network [OSTI]

    Emmett, Ada; Peterson, A. Townsend

    2010-04-01T23:59:59.000Z

    Achieving Consensus on the University of Kansas Open-Access Policy Ada Emmett, Associate Librarian for Scholarly Communications, University of Kansas Town Peterson, Distinguished Professor, Department of Ecology and Evolutionary Biology..., and Senior Curator, Biodiversity Institute, University of Kansas I n April of 2009 the University of Kansas (KU) Faculty Senate passed an open-access policy much like Harvard, MIT, and Stanford faculty’s, a decision that was expanded and improved in a second...

  20. Ranching in the Kansas Flint Hills: Exploring the Built Forms of a Family Cattle Ranch

    E-Print Network [OSTI]

    Adams, Paula Graves

    1997-05-01T23:59:59.000Z

    Appendix A: Data, 1875­1930, Tax Rolls, township 13, range 9, section 4, 226 Wabaunsee County, Kansas. Appendix B: Data, Wabaunsee County Map (Wichita: Kansas Blueprint 233 Company, 1991). Appendix C... up a primary source of information about the construction, demolition, and alterations of the buildings. In addition, the Kansas State Census, the U. S. Federal Census for Kansas, the Wabaunsee County Tax Rolls...

  1. A catalogue of the Ellis collection of ornithological books in the University of Kansas Libraries

    E-Print Network [OSTI]

    Mengel, Robert M.

    1972-01-01T23:59:59.000Z

    A CATALOGUE OF THE ELLIS COLLECTION OF ORNITHOLOGICAL BOOKS IN THE UNIVERSITY OF KANSAS LIBRARIES Compiled by ROBERT M. MENGEL Edited by ALEXANDRA MASON AND JAMES HELYAR Volume 2 C—D Lawrence, Kansas 1983 UNIVERSITY OF KANSAS... PUBLICATIONS Library Series, 48 Edited by James Helyar A CATALOGUE OF THE ELLIS COLLECTION OF ORNITHOLOGICAL BOOKS IN THE UNIVERSITY OF KANSAS LIBRARIES Compiled by ROBERT M. MENGEL Edited by ALEXANDRA MASON AND JAMES HELYAR Volume 2 C—D Lawrence...

  2. Rebuilding It Better: Greensburg, Kansas, USD 422 Greensburg K-12 School (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    This brochure details the energy efficient and sustainable aspects of the USD 422 K-12 school in Greensburg, Kansas.

  3. Alternative Fuels Data Center: Kansas City Kansas Public Schools Invests in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.TierIdaho County EmploysCNG Buses Kansas

  4. March 2008 monitoring results for Centralia, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-11-06T23:59:59.000Z

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater is being sampled twice yearly (for a recommended period of two years) for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 10 monitoring wells and 6 piezometers (Figure 1.1), at locations approved by the KDHE (Argonne 2006a). The results of groundwater sampling and VOCs analyses in September-October 2005, March 2006, September 2006, March 2007, and September 2007 were documented previously (Argonne 2006a,b, 2007a, 2008). The results have demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 Risk-Based Screening Level of 5 {micro}g/L for this compound, in a broad groundwater plume that has shown little movement. This report presents the results of the groundwater sampling at Centralia in March 2008, performed in accord with the KDHE-approved monitoring plan (Argonne 2005b). The September 2007 sampling represented the fifth and final monitoring event performed under the recommended two-year monitoring program approved by the KDHE. The March 2008 sampling begins an extension of the approved monitoring that is to continue until the final site remedy has been implemented and a comprehensive program of performance and compliance monitoring has been established at Centralia (KDHE 2008a).

  5. Microearthquakes in Kansas and Nebraska 1977--1989

    SciTech Connect (OSTI)

    Steeples, D. W.; Bennett, B.C.; Park, C.; Miller, R.D.; Knapp, R.W. (Kansas Geological Survey, Lawrence, KS (USA))

    1990-10-01T23:59:59.000Z

    The Kansas Geological Survey operated a microearthquake network from August 1977 to August 1989 with station located in eastern Kansas and Nebraska. Locatable microearthquakes with duration magnitudes less than 3.2 occur at the rate of roughly 20 per year in the two-state area, with most of the magnitudes ranging from 1.4 to 2.5. The microearthquake pattern observed during the 12 years of recording is consistent with the pattern of historical earthquakes reported since 1867. Much of the activity occurs along the Precambrian Nemaha Ridge, which has been the site of several earthquakes of MM Intensity VII over the past 125 years. Some seismicity is observed along the northwest flank of the Midcontinent Geophysical Anomaly in Kansas, but little is observed in the Nebraska or Iowa portions of this Precambrian feature. The Central Kansas Uplift, a buried anticline similar in age to the Nemaha Ridge, has been the site of several felt earthquakes since 1982. Another trend of earthquakes extends northeastward across central Nebraska and is not associated with any prominent geologic structure. All the seismicity in central and eastern Kansas can be roughly correlated to known geologic structures. 32 refs., 4 figs.

  6. Routine environment audit of the Kansas City Plant, Kansas City, Missouri

    SciTech Connect (OSTI)

    NONE

    1994-11-01T23:59:59.000Z

    This report documents the results of the routine environmental audit of the Kansas City Plant, Kansas City, Missouri. During this audit the activities the audit team conducted included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE) and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted October 24-November 4, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety, and Health (EH). DOE 5482.1 B, {open_quotes}Environment, Safety, and Health Appraisal Program,{close_quotes} establishes the mission of EH-24, which is to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of the Department`s environmental programs within line organizations and by using supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

  7. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfn; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2004-12-31T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. Continuous carbon dioxide injection began on December 2, 2003. By the end of December 2004, 11.39 MM lb of carbon dioxide were injected into the pilot area. Carbon dioxide injection rates averaged about 242 MCFD. Vent losses were excessive during June as ambient temperatures increased. Installation of smaller plungers in the carbon dioxide injection pump reduced the recycle and vent loss substantially. Carbon dioxide was detected in one production well near the end of May and in the second production well in August. No channeling of carbon dioxide was observed. The GOR has remained within the range of 3000-4000 for most the last six months. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February, increasing to an average of about 2.35 B/D for the six month period between July 1 and December 31. Cumulative oil production was 814 bbls. Neither well has experienced increased oil production rates expected from the arrival of the oil bank generated by carbon dioxide injection.

  8. A History of Manufactures in the Kansas Fuel District

    E-Print Network [OSTI]

    Douglas, Richard L.

    1910-06-01T23:59:59.000Z

    are thus the great coal-producing formations that are found in this section, and produce by far the largest share of the coal mined in Kansas . 2 8 The only other coal-bearing shale of any importance in the state, and it does not extend into any except... Kansas, so far as known, is the Osage shale, 2000 feet above the Cherokee shale, which has been important in that it has both supplied a local demand, and has furnished a great deal of coal to the Santa Fe railroad. 2 9 The output of the mines...

  9. October 2007 monitoring results for Morrill, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-03-26T23:59:59.000Z

    In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. On the basis of available information, the CCC/USDA believes that one or more third parties operated this facility after termination of the CCC/USDA's lease in 1971. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE), to monitor levels of carbon tetrachloride contamination identified in the groundwater at this site (Argonne 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater has been sampled twice yearly for a recommended period of two years. The samples are analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 12 monitoring wells and 3 private wells (Figure 1.1), at locations approved by the KDHE. The scope of the originally approved monitoring has been expanded to include vegetation sampling (initiated in October 2006) and surface water and stream bed sediment sampling (initiated in March 2007). The analytical results for groundwater sampling events at Morrill in September 2005, March 2006, September 2006, and March 2007 were documented previously (Argonne 2006a, 2007c,e). The results have demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 Risk-Based Screening Level (5.0 {micro}g/L) for this compound, in a groundwater plume extending generally south-southeastward from the former CCC/USDA facility, toward Terrapin Creek at the south edge of the town. Little clear pattern of change in the concentrations observed at the individual monitoring points and little plume migration have been observed in previous monitoring events. Low levels ({le} 1.3 {micro}g/L) of carbon tetrachloride have persistently been detected at monitoring well MW8S, however, along an intermittent tributary to Terrapin Creek. This observation suggests a possible risk of contamination of the surface waters of the creek. In light of these findings, in 2006 the CCC/USDA recommended expansion of the approved monitoring program to include the collection and analysis of surface water samples along Terrapin Creek (Argonne 2007e). At the request of the KDHE (KDHE 2007a), locations for both surface water and shallow sediment sampling were discussed with the KDHE in January 2007. An addendum to the existing monitoring plan and a standard operating procedure (SOP AGEM-15) for sediment sampling were submitted to the KDHE on the basis of these discussions (Argonne 2007a,b). This report presents the results of groundwater, surface water, and sediment sampling performed at Morrill in October 2007, in accord with the monitoring plan (Argonne 2005b) and the addendum to that plan (Argonne 2007a). To supplement these studies, Argonne also sampled natural vegetation along Terrapin Creek in October 2006, April 2007, and July 2007 for analyses for VOCs. The results of the plant tissue analyses are included in this report. The October 2007 groundwater sampling at Morrill represents the fifth and final monitoring event performed under the recommended two-year monitoring program approved by the KDHE.

  10. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, Minneapolis, MN

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2009-08-31T23:59:59.000Z

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology conducted in 2009 at the recently reconstructed I-35W bridge in Minneapolis, MN. The project was supported under the U.S. Department of Energy (DOE) Solid-State Lighting GATEWAY Technology Demonstration Program. Other participants in the demonstration project included the Minnesota Department of Transportation (Mn/DOT), Federal Highways Administration (FHWA), and BetaLED™ (a division of Ruud Lighting). Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. DOE has implemented a three-year evaluation of the LED luminaires in this installation in order to develop new longitudinal field data on LED performance in a challenging, real-world environment. This document provides information through the initial phase of the I-35W bridge project, up to and including the opening of the bridge to the public and the initial feedback received on the LED lighting installation from bridge users. Initial findings of the evaluation are favorable, with minimum energy savings level of 13% for the LED installation relative to the simulated base case using 250W high-pressure sodium (HPS) fixtures. The LEDs had an average illuminance level of 0.91 foot candles compared to 1.29 fc for the HPS lamps. The LED luminaires cost $38,000 more than HPS lamps, yielding a lengthy payback period, however the bridge contractor had offered to include the LED luminaires as part of the construction package at no additional cost. One potentially significant benefit of the LEDs in this installation is avoiding rolling lane closures on the heavily-traveled interstate bridge for the purpose of relamping the HPS fixtures. Rolling lane closures involve multiple crew members and various maintenance and safety vehicles, diversion of traffic, as well as related administrative tasks (e.g., approvals, scheduling, etc.). Mn/DOT records show an average cost of relamping fixtures along interstate roadways of between $130-150 per pole. The previous bridge saw a lamp mortality rate of approximately 50% every two years, though the new bridge was designed to minimize many of the vibration issues. A voluntary Web-based feedback survey of nearly 500 self-described bridge users showed strong preference for the LED lighting - positive comments outnumbered negative ones by about five-to-one.

  11. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Richard Pancake; JyunSyung Tsau; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2010-03-07T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide was injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide was injected to displace the oil bank to the production wells by water injection. By March 7,2010, 8,736 bbl of oil were produced from the pilot. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver A7, Colliver A3, Colliver A14 and Graham A4 located on adjacent leases. About 19,166 bbl of incremental oil were estimated to have been produced from these wells as of March 7, 2010. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Estimated oil recovery attributed to the CO2 flood is 27,902 bbl which is equivalent to a gross CO2 utilization of 4.8 MCF/bbl. The pilot project is not economic.

  12. Final work plan for targeted sampling at Webber, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2006-05-01T23:59:59.000Z

    This Work Plan outlines the scope of work for targeted sampling at Webber, Kansas (Figure 1.1). This activity is being conducted at the request of the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). Data obtained in this sampling event will be used to (1) evaluate the current status of previously detected contamination at Webber and (2) determine whether the site requires further action. This work is being performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. Argonne has issued a Master Work Plan (Argonne 2002) that describes the general scope of and guidance for all investigations at former CCC/USDA facilities in Kansas. The Master Work Plan, approved by the KDHE, contains the materials common to investigations at all locations in Kansas. This document should be consulted for complete details of the technical activities proposed at the former CCC/USDA facility in Webber.

  13. Rebuilding It Better: Greensburg, Kansas. Kiowa County Courthouse (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is one in a series of five that showcases the green, sustainable buildings in Greensburg, Kansas. The Kiowa County Courthouse was one of only two buildings left standing after the tornado, which allowed the building to be renovated and refurbished rather than torn down.

  14. Building Footprints (Shapefile) of University of Kansas, Lawrence Campus

    E-Print Network [OSTI]

    Houser, Rhonda

    2011-02-18T23:59:59.000Z

    Data layer geneated with Intention to have basic building dataset for data analysis and generation of maps, for Lawrence Campus of the University of Kansas. Building outlines were digitized using ArcMap in ca. 2007 from aerial photograph to create...

  15. Drinking Water Implications of Cyanobacteria on the Kansas River to

    E-Print Network [OSTI]

    to the presence of Blue Green Algae By-products in the river. The data is stimulating further discussion,000 service connections Directly supply 16 cities Treatment capacity of 180 mgd #12;Page 3 Other Utilities products were being transported from Milford Lake to their intakes. Utilities and Kansas Water Office agree

  16. Assessment of Biomass Pelletization Options for Greensburg, Kansas

    SciTech Connect (OSTI)

    Haase, S.

    2010-05-01T23:59:59.000Z

    This report provides an overview of a technical report on an assessment NREL conducted in Greensburg, Kansas, to identify potential opportunities to develop a biomass pelletization or briquetting plant in the region. See NREL/TP-7A2-45843 for the Executive Summary of this report.

  17. Rebuilding It Better: Greensburg, Kansas. Kiowa County Courthouse (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    This document is one in a series of five that showcases the green, sustainable buildings in Greensburg, Kansas. The Kiowa County Courthouse was one of only two buildings left standing after the tornado, which allowed the building to be renovated and refurbished rather than torn down.

  18. Kansas Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Kansas Water Resources Research Institute Annual Technical Report FY 1998 Introduction Research, and bioavailable P losses in runoff are influenced by a variety of factors. The purpose of this project is to quantify the impact of best management practices on P losses in runoff. The specific objectives are: 1

  19. Microsoft Technology Centers Minneapolis

    E-Print Network [OSTI]

    Hunt, Galen

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  20. Electrodeposition of high Mo content Ni-Mo alloys under forced convection

    SciTech Connect (OSTI)

    Podlaha, E.J.; Matlosz, M.; Landolt, D. (Ecole Polytechnique Federale de Lausanne, Lausanee (Switzerland). Dept. des materiaux)

    1993-10-01T23:59:59.000Z

    Bright, compact, adherent, metallic Ni-Mo alloys, containing over 48 wt % Mo have been electrodeposited from an aqueous solution. The Mo content, which is the highest achieved so far in induced codeposition of Ni-Mo, was determined by X-ray fluorescence spectroscopy. The absence of oxygen was verified by Auger electron spectroscopy. Electrodeposition experiments were performed on rotating cylinder electrodes and demonstrate that the Mo content of the alloy is strongly influenced by convective transport.

  1. Field Demonstration of Carbon Dioxide Miscible Flooding in the Lansing-Kansas City Formation, Central Kansas

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2007-03-07T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and three production wells. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. By December 31, 2006, 79,072 bbls of water were injected into CO2 I-1 and 3,923 bbl of oil were produced from the pilot. Water injection rates into CO2 I-1, CO2 No.10 and CO2 No.18 were stabilized during this period. Oil production rates increased from 4.7 B/D to 5.5 to 6 B/D confirming the arrival of an oil bank at CO2 No.12. Production from wells to the northwest of the pilot region indicates that oil displaced from carbon dioxide injection was produced from Colliver No.7, Colliver No.3 and possibly Graham A4 located on an adjacent property. There is evidence of a directional permeability trend toward the NW through the pilot region. The majority of the injected carbon dioxide remains in the pilot region, which has been maintained at a pressure at or above the minimum miscibility pressure. Our management plan is to continue water injection maintaining oil displacement by displacing the carbon dioxide remaining in the C zone,. If the decline rate of production from the Colliver Lease remains as estimated and the oil rate from the pilot region remains constant, we estimate that the oil production attributed to carbon dioxide injection will be about 12,000 bbl by December 31, 2007. Oil recovery would be equivalent to 12 MCF/bbl, which is consistent with field experience in established West Texas carbon dioxide floods. The project is not economic.

  2. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2005-12-31T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and two production wells on about 10 acre spacing. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February 2004, increasing to an average of about 3.78 B/D for the six month period between January 1 and June 30, 2005 before declining. By the end of December 2005, 14,115 bbls of water were injected into CO2I-1 and 2,091 bbl of oil were produced from the pilot. Injection rates into CO2I-1 declined with time, dropping to an unacceptable level for the project. The injection pressure was increased to reach a stable water injection rate of 100 B/D. However, the injection rate continued to decline with time, suggesting that water was being injected into a region with limited leakoff and production. Oil production rates remained in the range of 3-3.5 B/D following conversion to water injection. There is no evidence that the oil bank generated by injection of carbon dioxide has reached either production well. Continued injection of water is planned to displace oil mobilized by carbon dioxide to the production wells and to maintain the pressure in the PPV region at a level that supports continued miscible displacement as the carbon dioxide is displaced by the injected water.

  3. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Dave Murfin; James Daniels; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2006-06-30T23:59:59.000Z

    A pilot carbon dioxide miscible flood was initiated in the Lansing Kansas City C formation in the Hall Gurney Field, Russell County, Kansas. The reservoir zone is an oomoldic carbonate located at a depth of about 2900 feet. The pilot consists of one carbon dioxide injection well and two production wells on about 10 acre spacing. Continuous carbon dioxide injection began on December 2, 2003. By the end of June 2005, 16.19 MM lb of carbon dioxide were injected into the pilot area. Injection was converted to water on June 21, 2005 to reduce operating costs to a breakeven level with the expectation that sufficient carbon dioxide has been injected to displace the oil bank to the production wells by water injection. Wells in the pilot area produced 100% water at the beginning of the flood. Oil production began in February 2004, increasing to an average of about 3.78 B/D for the six month period between January 1 and June 30, 2005 before declining. By June 30, 2006, 41,566 bbls of water were injected into CO2I-1 and 2,726 bbl of oil were produced from the pilot. Injection rates into CO2I-1 declined with time, dropping to an unacceptable level for the project. The injection pressure was increased to reach a stable water injection rate of 100 B/D. However, the injection rate continued to decline with time, suggesting that water was being injected into a region with limited leakoff and production. Oil production rates remained in the range of 3-3.5 B/D following conversion to water injection. Oil rates increased from about 3.3 B/D for the period from January through March to about 4.7 B/D for the period from April through June. If the oil rate is sustained, this may be the first indication of the arrival of the oil bank mobilized by carbon dioxide injection. A sustained fluid withdrawal rate of about 200 B/D from CO2 No.12 and CO2 No.13 appears to be necessary to obtain higher oil rates. There is no evidence that the oil bank generated by injection of carbon dioxide has reached either production well. Water injection will continue to displace oil mobilized by carbon dioxide to the production wells and to maintain the pressure in the PPV region at a level that supports continued miscible displacement as the carbon dioxide is displaced by the injected water.

  4. Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), west-central Kansas

    E-Print Network [OSTI]

    Frey, R. W.

    1970-07-17T23:59:59.000Z

    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS ARTICLE 53 (CRETACEOUS 2) TRACE FOSSILS OF FORT HAYS LIMESTONE MEMBER OF NIOBRARA CHALK (UPPER CRETACEOUS), WEST-CENTRAL KANSAS ROBERT W. FREY University of Georgia Marine Institute, Sapelo... Figures, 10 Plates, 4 Tables TRACE FOSSILS OF FORT HAYS LIMESTONE MEMBER OF NIOBRARA CHALK (UPPER CRETACEOUS), WEST-CENTRAL KANSAS' ROBERT W. FREY University of Georgia Marine Institute, Sapelo Island, Georgia CONTENTS PAGE PAGE ABSTRACT 5 Thalassinoides...

  5. Greensburg, Kansas: Building a Model Green Community, How Would You Rebuild a Town - Green? (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    This brochure describes the rebuilding of Greensburg, Kansas, highlighting the Greensburg High Performance Buildings Database as a source of information for energy-efficient building techniques.

  6. Greensburg, Kansas: Building a Model Green Community, How Would You Rebuild a Town - Green?

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    This brochure describes the rebuilding of Greensburg, Kansas, highlighting the Greensburg High Performance Buildings Database as a source of information for energy-efficient building techniques.

  7. EPA RE-Powering America's Lands: Kansas City Municipal Farm Site...

    Office of Scientific and Technical Information (OSTI)

    EPA RE-Powering America's Lands: Kansas City Municipal Farm Site -- Biomass Power Analysis Re-direct Destination: Through the RE-Powering America's Land initiative, the economic...

  8. Kansas City Power and Light- Commercial/Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) provides financial incentives for commercial and industrial customers to increase the energy efficiency of eligible facilities. Rebates are available for...

  9. Surface Energy Balance Measurements Above an Exurban Residential Neighbourhood of Kansas City, Missouri

    E-Print Network [OSTI]

    Balogun, Ahmed A.; Adegoke, Jimmy O.; Vezhapparambu, Sajith; Mauder, Matthias; McFadden, Joseph P.; Gallo, Kevin

    2009-01-01T23:59:59.000Z

    and energy ?ows within cities and their surrounding areas.energy balance measurements over a new exurban residential area near Kansas City,

  10. Rebuilding It Better: Greensburg, Kansas. City of Greensburg SunChips Business Incubator (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01T23:59:59.000Z

    This brochure details the energy efficient and sustainable aspects of the LEED Platinum-designed SunChips Business Incubator in Greensburg, Kansas.

  11. Rebuilding It Better: Greensburg, Kansas; High Performance Buildings Meeting Energy Savings Goals (Brochure) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet provides a summary of how NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007.

  12. Rebuilding it Better: Greensburg, Kansas, Kiowa County Memorial Hospital (Brochure) (Revised)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure details the sustainable and green aspects of the LEED Platinum-designed Kiowa County Memorial Hospital in Greensburg, Kansas.

  13. Creating a new, sustainable community on the University's 5,000-acre property Office for UMore Park Academic Initiatives, 230 McNamara Alumni Center, 200 Oak Street SE, Minneapolis, MN 55455

    E-Print Network [OSTI]

    Netoff, Theoden

    Initiatives office has fostered projects on wind energy research, smart grid design, affordable housing the Minneapolis-St. Paul International Airport, and near the Highway 52 corridor between the Twin Cities. The University collaborates closely with the City of Rosemount, Empire Township and Dakota County to update

  14. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave VanderGriend; Eric Mork; Paul Cantrell

    2003-03-31T23:59:59.000Z

    Progress is reported for the period from January 1, 2003 to March 31, 2003. A water supply well was permitted, drilled, and completed in the shallow, fresh-water, Dakota Sandstone. The pumphouse has been put in place and the long-term injection equipment is being set-up. Although the short-term injectivity test was cut short by power failure following an ice storm, results indicate the well exhibits sufficient injectivity to proceed with the long-term injectivity test, which will start in the beginning of the second quarter. The CO2 Project No.10 and No.12 wells were reworked and the Lansing-Kansas City (LKC) ''C'' interval in both wells isolated. The CO2 Project No.16 well was drilled deeper, cored in the LKC ''C'' and ''G'' zones, and cased to the ''C'' zone and will be perforated and stimulated in the beginning of second quarter. Initial wireline log analysis and examination of the core indicate that the porosity of the ''C'' zone in this location may be lower than in other parts of the pattern by 3-5 porosity units. Log analysis indicates water saturations are near 60% consistent with predicted residual oil saturation to waterflood modeling. Lower porosities may indicate lower permeability may also be present. Core analysis is being conducted and results will be available in the first week of the second quarter. A draft letter agreement has been presented to FLOCO2 Company for supply of CO2 storage and injection pump equipment.

  15. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-09-30T23:59:59.000Z

    Progress is reported for the period from July 1, 2002 to September 30, 2002. On September 27, 2002 the US DOE approved the proposed modified plan to flood a 10+-acre pattern. MV Energy has received informal notification that GE Capital will approve sale of the portion of the Colliver lease involved in the pilot. Murfin Drilling Company is seeking local small independent partners for the pilot and has received commitment from White Eagle Energy and John O. Farmer Oil Company to date. A Contract was signed between the Kansas Department of Commerce & Housing and Murfin formalizing the KSDOC&H contribution of $88,000 to the pilot project. This money will be used for well rework and testing. The results of this small flood will be used to evaluate the viability of performing a larger-scale demonstration and will be used by the partners to decide their role in a larger-scale demonstration. The 10+-acre pattern requires the least up-front expense to all parties to obtain the data required to accurately assess the viability and economics of CO2 flooding in the L-KC and of a larger-scale demonstration. Proposed modifications to the project plan were reviewed in the previous quarterly technical progress report.

  16. Kansas State University DOE/KEURP Site Operator Program

    SciTech Connect (OSTI)

    Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.; Maier, M.A.

    1992-01-01T23:59:59.000Z

    This concludes the sixth quarter that Kansas State University has been under contract to the US Department of Energy and the Kansas Electric Utility Research Program to demonstrate electric vehicle technology. The G-Van continues to perform within acceptable limits, although the batteries and the charger have caused some problems. Dave Harris, Chloride, has been working with K-State to correct these problems. It may very well be that the limited mileage (less than 25 miles) can be increased by extending the charge cycle (overcharging) the batteries. Soleq Corp. has failed to deliver contracted vehicles. A dual shaft electric propulsion minivan, built by Eaton Corp. in 1987, will be shipped here. On the infrastructure side, EHV Corp. is developing curbside and home charging stations.

  17. Marketing Communications Plan for Coventry Health Care of Kansas, Inc.

    E-Print Network [OSTI]

    Kelly, Sarah; Kim, Sungtae; Mowder, Alicia; Smith, Carmen; Vaughn, Joshua

    2012-05-08T23:59:59.000Z

    media from Washburn University, where she was a member of the nation’s second ranked debate team. She will receive her master’s degree in journalism with a concentration in marketing communications from the University of Kansas in May. Carmen... of the importance of screenings and recommended tests if they are overdue. 2. An afterhours HEDIS Push call event each fall to call members who have missed recommended tests or screenings. 3. Automated outreach reminder calls to patients. 4. Print media...

  18. Final work plan : groundwater monitoring at Centralia, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2005-08-31T23:59:59.000Z

    This Work Plan outlines the scope of work for a program of twice yearly groundwater monitoring at the site of a former grain storage facility at Centralia, Kansas (Figure 1.1). The purposes of this monitoring program are to follow changes in plume dynamics and to collect data necessary to evaluate the suitability of monitored natural attenuation as a remedial option, under the requirements of Kansas Department of Health and Environment (KDHE) Policy No.BER-RS-042. This monitoring program is planned for a minimum of 2 yr. The planned monitoring activity is part of an investigation at Centralia being performed on behalf of the Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. Details and background for this Work Plan were presented previously (Argonne 2004, 2005). Argonne has also issued a Master Work Plan (Argonne 2002) that describes the general scope of and guidance for all investigations at former CCC/USDA facilities in Kansas. The Master Work Plan (approved by the KDHE) contains the materials common to investigations at all locations in Kansas. These documents must be consulted for the complete details of plans for this work associated with the former CCC/USDA facility at Centralia.

  19. Bryozoan Tabulipora carbonaria in Wreford Megacyclothem (Lower Permian) of Kansas

    E-Print Network [OSTI]

    Cuffey, Roger J.

    1967-05-12T23:59:59.000Z

    specimens from different rock types and stratigraphie horizons APPENDIX K. SUITUTIary of numerical data obtained from Tabulipora carbonaria specimens from the four widespread cal- careous shales in Wreford Megacyclo- them APPENDIX L. Summary of numerical... specimens from uppermost part of the Havensville Shale Member collected at localities across Kansas. 71 19. Paleozoogeographic distribution of Tabulipora carbonaria in Late Pennsylvanian and Early Permian time. 72 20. Distribution of Tabulipora...

  20. Suburban Place? Constructing Place in Overland Park, Kansas

    E-Print Network [OSTI]

    Carey, Daniel

    2008-08-21T23:59:59.000Z

    , but instead connect several isolated hubs into a network of residential, commercial, and business zones. This is Overland Park, Kansas. Change the street, highway, and corporation names, however, and this could be a suburb of any major metropolitan area.... In the 1980s, journalist Joel Garreau famously named areas similar to the ones described above, ?Edge Cities.? Garreau uses this term to describe the union of residential, commercial, and office space, because traditionally ?cities? have served all three...

  1. University of Kansas Graduate School theses, 1948-1958

    E-Print Network [OSTI]

    Wilder, Bessie E.

    1961-01-01T23:59:59.000Z

    managers with special reference to Kansas. M. A. Pol. Sci. 1948. Allen, William Daniel. Investigations of gas spargers by the air oxidation of sodium sulfite solutions. M, S. Chem. Engin. 1956. Allen, William H., Jr. A.n analysis of school philosophies.... Problems of an interior. M. Fine Arts Draw, and Paint. 1953. Alnutt, John Carl. A first semester senior high school course in American lit erature treated reflectively in the light of historical backgrounds. M. A. Ed. 1948. Alsmiller, Hufard G., Jr...

  2. Evaluation of the Highway Safety Manual Crash Prediction Model for Rural Two-Lane Highway Segments in Kansas

    E-Print Network [OSTI]

    Lubliner, Howard

    2011-12-31T23:59:59.000Z

    for states other than those the model was developed for. To address this gap the Kansas Department of Transportation (KDOT) commissioned this study to analyze both the accuracy and the practicality of using these crash prediction models on Kansas highways...

  3. US WNC MO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year69,023USWNC MO Site

  4. Cultures of Dissent: Comparing Populism in Kansas and Texas, 1854-1890

    E-Print Network [OSTI]

    Keyworth, Matthew Jerrid

    2014-03-05T23:59:59.000Z

    in Kansas Territory Written by an Actual Settler,” unpublished essay, (ca. 1856), p. 1 (all quotes), A Twelve Months Practical Life in Kansas Territory Written by an Actual Settler, KSRL. 18 Webb, Information for Kanzas Immigrants, p. 9 (first and third...

  5. Historical Disability Outcomes of Enrollees in the Kansas High Risk Pool: A White Paper presented to CMS by the Kansas DMIE Project January, 2006

    E-Print Network [OSTI]

    Hall, Jean P.; Moore, Janice M.

    2006-01-01T23:59:59.000Z

    This white paper reports the historical rates of disability outcomes (e.g., transition to Social Security disability status) for people enrolled in Kansas' state high-risk health insurance pool.

  6. alvos contendo mo: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CaMoO4 crystal scintillators. A high sensitivity experiment to search for neutrinoless double beta decay of 100-Mo by using CaMoO4 scintillators is discussed. Annenkov, A N;...

  7. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2001-12-31T23:59:59.000Z

    Progress is reported for the period from October 1, 2001 to December 31, 2001. Technical design and budget for a larger (60-acre) CO{sub 2} demonstration project are being reviewed by the US DOE for approval. While this review process is being conducted, work is proceeding on well testing to obtain reservoir properties and on the VIP reservoir simulation model to improve model prediction and better understand the controls that certain parameters exert on predicted performance. Testing of present Colliver lease injection water on Lansing-Kansas City (L-KC) oomoldic rock indicates that injection brine must be filtered to < {approx}3-5 um and <15 um to prevent plugging of rocks with permeability as low as 1 md (millidarcy; 0.001 um2) and 10 md (0.01 um2), respectively. Pressure build-up testing on the Carter-Colliver No.7 well is interpreted to indicate the L-KC reservoir surrounding this well is {approx}9 ft (2.7 m) thick having an average effective water permeability of 25-35 md (0.025-0.035 um2) that is connected to the wellbore by either a high permeability fracture, bed, or region with low skin. Reservoir simulation evaluation of gridcell size effect on model oil recovery prediction indicates that, based on the model prediction of distribution of produced oil and CO{sub 2} volumes, oil recovery is strongly influenced by gravity segregation of CO{sub 2} into the upper higher permeability layers and indicates the strong control that vertical permeability and permeability barriers between depositional flood cycles exert on the CO{sub 2} flooding process. Simulations were performed on modifications of the 60-acre, two-injector pattern to evaluate oil recovery using other large-scale patterns. Simulations indicated that several 73-acre patterns with a single injector located near the Colliver No.7 could provide improved economics without increasing the amount of CO{sub 2} injected. The US Energy Partners ethanol plant in Russell, KS began operations in October ahead of schedule.

  8. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2003-06-30T23:59:59.000Z

    Progress is reported for the period from April 1, 2003 to June 30, 2003. The pilot water injection plant became operational 4/18/03 and began long-term injection in the CO2I No.1 on 4/23/03. The CO2I No.1 exhibits sufficient injectivity for pilot requirements with average absolute permeability surrounding this well equal to {approx}85 millidarcies. Response to injection in the CO2I No.1 has established that conductivity between CO2I No.1 and CO2 No.12, No.10, No.18 and TB Carter No.5 is sufficient for the demonstration. Workovers of the CO2 No.16 and CO2 No.13 were completed in April and May, respectively. Pressure response indicates No.16 communicates with the flood pattern area but core, swab-test, and pressure response data indicate permeability surrounding No.16 is not adequate to maintain the production rates needed to support the original pattern as the well is presently completed. Decisions concerning possible further testing and stimulation have been postponed until after testing of the No.13 is complete. Production rates for the No.13 are consistent with a surrounding reservoir average absolute permeability of {approx}80 md. However, pressure and rate tests results, partially due to the nature of the testing conducted to date, have not confirmed the nature of the CO2I No.1-CO2 No.13 conductivity. A build-up test and conductivity test are planned to begin the first weeks of the next quarter to obtain reservoir properties data and establish the connectivity and conductivity between CO2 I-1 and CO2 No.13. A new geomodel of the pattern area has been developed based on core from No.16 and the new wireline logs from the No.10, No.12, No.16, and No.13. The new geomodel is currently being incorporated into the basic calculations of reservoir volume and flood design and predicted response as well as the reservoir simulators. Murfin signed a letter agreement with FLOCO2 of Odessa, TX for supply of CO2 storage and injection equipment. Technology transfer activities have included presentations to the Environmental Protection Agency, Prof. Accountants Soc. of KS, Am. Assoc. of Petroleum Geologists, and a US Congressional aide staff member. The Associated Press also released a story concerning the project that was picked up by many Kansas newspapers.

  9. Final report : site reclassification investigation for Courtland, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Dennis, C. B.; Environmental Science Division

    2006-01-31T23:59:59.000Z

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), formerly operated a grain storage facility in Courtland, Kansas. Prior to 1986, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the grain industry to preserve stored grain. In 1999, the Kansas Department of Health and Environment (KDHE) identified the former CCC/USDA operation as the likely source of carbon tetrachloride found in groundwater east of the former CCC/USDA facility in Courtland. Sampling by the KDHE in April 1998 had found carbon tetrachloride in the Garman residence lawn and garden well at a concentration of 2.1 {micro}g/L and in the Hoard residence lawn and garden well at a concentration of 0.5 {micro}g/L. Subsequent soil and groundwater sampling by the KDHE at the former CCC/USDA facility found no indication of a continuing source, and subsequent sampling of the affected wells showed generally declining contaminant levels. At the request of the KDHE and the CCC/USDA, Argonne National Laboratory prepared a Work Plan for Groundwater Sampling for Potential Site Reclassification, Courtland, Kansas (Argonne 2004). The objective of the proposed work was to conduct a single groundwater monitoring event and collect information necessary to update the status of the previously detected groundwater contamination, in support of an evaluation of appropriate actions for reclassification of the status of this site from active to resolved, under the Intergovernmental Agreement between the KDHE and the USDA's Farm Service Agency (FSA). The reclassification would be in accordance with the KDHE's Reclassification Plan (Policy No. BERRS-024, online at http://www.kdhe.state.ks.us/pdf/ber/scp/reclass.pdf). The KDHE approved the Work Plan on August 8, 2005. Sampling was conducted on September 7, 2005.

  10. Relationships between geology and geothermal gradients in Kansas

    SciTech Connect (OSTI)

    Stavnes, S.A.; Steeples, D.W.; Ruscetta, C.A. (ed.)

    1982-07-01T23:59:59.000Z

    Bottom hole temperature values from existing oil and gas wells and thermal logging data from geothermal wells are used to determine the factors responsible for geographic variation in the subsurface temperature distribution in Kansas. Geothermal gradient data range from 25/sup 0/C/km to 55/sup 0/C/km in the upper 300 m. The geologic factors proposed to explain this variation are: (1) topography of the crystalline basement surface; (2) variation in rates of heat production in the crystalline basement; (3) variation in thermal conductivity in the sedimentary section; and (4) possible convection upward and eastward from the Denver-Julesberg Basin. (MJF)

  11. A History of the Administration on Education in Kansas

    E-Print Network [OSTI]

    Bennett, Emmet Leslie

    1914-06-01T23:59:59.000Z

    Centennial Celebration, 1S76. Publications Kansas Historical Society, Vol. I, p. 86. 3. Council Journal, 1655, p. lS. 4. Laws lS55» 6k 1441 Art. IV, #1. 5. Ibid, #2. 6. Ib. ## 2, 7 . Ib. # 3. 8. Ib. #5. 9. Ib. $ 6 10. Act Feb. 20, 1S57. 11. Mostly... Education. 14. Laws 4th Territorial Session, 1858, Ch. VIII., 1. 15. IK # 40, 8 and 9. 16. Ib. Ch. LXXI, #2. 17 . Ib. Ch. VIII, # 71- 18. Ib. # 17 . 19. B>. # 70. 20. Ib. # 40. The district was considered organized upon the acceptance of two /of...

  12. Indian Reservations in Kansas and the Extinguishment of Their Title

    E-Print Network [OSTI]

    Abel, Annie Heloise

    1900-01-01T23:59:59.000Z

    of 1802.*f Her construction of that document was not consistent with the facts in the case; for the federal government had not promised to expel the In­ dians from Georgia, but only to extinguish their title within the reserved limits of the state " a...^ C i^J j ) INDIAN RESERVATIONS IN KANSAS ANI^EHE EXTINGUISHMENT OF THEIR TITLE. Thesis prepared in partial fulfilment of the requirement of the University of Kanowwfey ^ w degree of master of arts, by A N N A H B L O I S B A B E L , * of Salina...

  13. EA-1907: Biogas Anaerobic Digester Facility, Oakley, Kansas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal by DOE and USDA to provide funding to Western Plains Energy, LLC (WPE) to construct, purchase equipment, and operate a new Biogas Anaerobic Digester at WPE's existing Ethanol Facility, located at 3022 County Road 18, Grinnell Township (Oakley), Gove County, Kansas. The proposed facility will include a receiving building, digester, and related infrastructure. Based on the analysis in USDA's Final EA and FONSI, DOE has determined that DOE's proposed action does not constitute a major Federal action that would significantly affect the quality of the human or natural environment.

  14. Logan County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners andLodgepole, Nebraska: Energy Resources JumpColorado:Kansas:

  15. Lyon County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: Energy ResourcesLyon County, Iowa: EnergyKansas:

  16. Colorado Natural Gas Processed in Kansas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecadeDecadeYear(MillionKansas

  17. FTCP Site Specific Information - Kansas City | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of YearFLASH2011-17-OPAMDepartment ofEnergy Chief ofKansas City

  18. Bourbon County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthbyBoston Heights, Ohio:Boulevard Gardens,Kansas: Energy

  19. Brown County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable and InnovativeBrookmont, Maryland:Broome County,Kansas: Energy

  20. Kansas State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |JulianProject PhaseKansas

  1. Wallace County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpage JumpWaikane,(Redirected fromWallace County, Kansas:

  2. Chautauqua County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEICharlotteNorthChautauqua County, Kansas:

  3. Cheyenne County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelanVermont: EnergyView, Maryland:Kansas: Energy

  4. City of Burlingame, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington, IowaCity ofBurlingame, Kansas

  5. National Nuclear Security Administration Kansas City Field Office

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNL 2001a,Summary; i- DNANuclearKansas

  6. Sheridan County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York: EnergySumoncle Solar Energy IndustrialSherburneKansas:

  7. Silver Lake, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH JumpSilicium de ProvenceEnergyKansas:

  8. Jackson County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar EnergyEnergyKansas: Energy Resources Jump to:

  9. Johnson County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind FarmJeffersonJiminy PeakKansas: Energy

  10. Haskell County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformationHartsville, New York:Haskell County, Kansas:

  11. City of Troy, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity of Spencer,City ofTroy, Kansas (Utility

  12. City of Waterville, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity of Spencer,CityWaterville, Kansas (Utility

  13. City of Wathena, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity of Spencer,CityWaterville, Kansas

  14. City of Winfield, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCity ofInformation CityCity of Winfield, Kansas

  15. Woodson County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoods County, Oklahoma:Woodson County, Kansas:

  16. Overland Park, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York: EnergyOuachita ElectricOpen EnergyKansas:

  17. Pawnee County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian,Parle Biscuits PvtPaw Paw, Illinois: EnergyPawlet,Kansas:

  18. Phillips County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonika JumpPhilipstown, NewKansas: Energy

  19. Pretty Prairie, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:Precourt Institute for EnergyWister Area (DOEPrairie, Kansas: Energy

  20. City of Anthony, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |City of Ames, Iowa (UtilityAnthony, Kansas

  1. City of Attica, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |City of Ames, IowaAshland, OregonAttica, Kansas

  2. City of Coffeyville, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |City ofBlueChappell,City of Coffeyville, Kansas

  3. City of Herndon, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity ofCityCity ofCity ofHerndon, Kansas

  4. City of Johnson, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCity ofCity of Johnson, Kansas (Utility

  5. City of Kingman, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCity ofCity ofCity of Kingman, Kansas

  6. City of Lakin, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCityCity ofCity ofCityLakin, Kansas

  7. City of Meade, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville, VirginiaMeade, Kansas (Utility

  8. City of Morrill, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban TransportMartinsville,Minidoka, IdahoCityMorrill, Kansas

  9. City of Robinson, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer, IdahoCity ofRedRobinson, Kansas

  10. Gove County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas: Energy Resources Jump to:

  11. Graham County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County, Kansas:Graham County, Arizona:

  12. Gray County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska: EnergyGratings Inc JumpGravelKansas:

  13. Greeley County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGoveNebraska:Ethanol LLC GO Ethanol JumpKansas: Energy

  14. Greenwood County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder JumpIowa:Greenport,Connecticut: EnergyKansas:

  15. Hamilton County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersvilleHallandale Beach,Indiana: EnergyKansas: Energy

  16. Stanton County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt. Francis(Redirected from Stanford, CA)Kansas: Energy

  17. Stevens County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.Steep Gradient FlumeEnergyStettin,WintersKansas:

  18. Edwards County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka WaveKansas: Energy Resources

  19. Oaklawn-Sunview, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,and FeesOaklawn-Sunview, Kansas: Energy

  20. McPherson County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° Show MapMcMinnMcNary, Arizona:Kansas:

  1. Meade County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio: Energy8429°, -88.864698° ShowMeade County, Kansas: Energy

  2. Mitchell County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: Energy ResourcesMitchell County, Georgia:Kansas:

  3. Kansas Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdahoKansas Regions National Science

  4. Mid-Kansas Electric Company, LLC (MKEC) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc Jump to: navigation,Mid-Kansas

  5. Texas Onshore Natural Gas Processed in Kansas (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease Separation, ProvedProcessed (Million Cubic Feet) TexasCubicKansas

  6. Barton County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County,Kansas: Energy Resources Jump

  7. Garden Plain, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park, Texas: Energy ResourcesGang Mills,Plain, Kansas: Energy

  8. Valley Center, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies andVacant Jump to:ValeValleBrook,Kansas:

  9. City of Glen Elder, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformation CityIowaCityGlen Elder, Kansas

  10. City of Haven, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformationHarmony, MinnesotaHaven, Kansas

  11. City of Iuka, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity ofInformationHarmony,CityCityIuka, Kansas

  12. City of Marion, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville,Livingston,City ofKansas (Utility

  13. Clark County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNew York: Energy ResourcesClarkKansas: Energy

  14. Clay County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNew York:Information Systems:Illinois:Kansas:

  15. Basement rift control on oil production in eastern Kansas

    SciTech Connect (OSTI)

    Gustavson, J.B.

    1983-08-01T23:59:59.000Z

    Improved understanding of the central North American rift system (CNARS) offers a new interpretation of the basement structure in certain parts of the Mid-Continent. In eastern Kansas, basement structure can be shown to control oil production from some producing fields. Structural control includes rotated blocks along faults created by horst and graben tectonics typically associated with rift zones. A distinctive gravity signature, the Mid-Continent geophysical anomaly (MGA) is related directly to the CNARS and provides good data for interpretation of the basement structure. Some oil fields can be correlated directly with gravity-interpreted basement structure. Aeromagnetic and Landsat information, combined with the gravity data, further define exploration targets along the general trend of basement features. Migration of thermally matured hydrocarbons into pre-Pennsylvanian, rift generated traps in the ancestral north Kansas basin is postulated. The Nemaha ridge subsequently divided that basin into two smaller basins, the present Salina and Forest City basins. Several exploration targets could exist in this area, with the Arbuckle, Simpson, and Viola units being primary targets. The source of hydrocarbons also may lie in the deep but distant Anadorko basin. An additional totally untested hydrocarbons potential exists in the deep Precambrian/Cambrian sedimentary subbasins created along the flanks of the CNARS. Recent data points to sedimentary columns with depths of approximately 15,000 ft (4500 m) which might be hosts to gas reserves similar to the Rome trough potential of the Appalachian region.

  16. FIELD DEMONSTRATION OF CARBON DIOXIDE MISCIBLE FLOODING IN THE LANSING-KANSAS CITY FORMATION, CENTRAL KANSAS

    SciTech Connect (OSTI)

    Alan Byrnes; G. Paul Willhite; Don Green; Martin Dubois; Richard Pancake; Timothy Carr; W. Lynn Watney; John Doveton; Willard Guy; Rodney Reynolds; Rajesh Kunjithaya; Dave Murfin; James Daniels; Niall Avison; Russell Martin; William Flanders; Dave Vander Griend; Eric Mork; Paul Cantrell

    2002-06-30T23:59:59.000Z

    Progress is reported for the period from July 1, 2002 to September 30, 2002. Assessment of the demonstration site has defined many aspects of the reservoir. Technical design and budget for a larger (60-acre, 24.3 ha) CO2 demonstration project are being reviewed by the US DOE for approval. Further analysis of the pilot site by the partners has indicated that a staged demonstration is considered optimal. A phased approach to implementation of the demonstration is proposed to reduce the risk of uncertainties as to whether the reservoir has basic properties (connectivity and ability to pressure-up) conducive to a meaningful CO2 flood demonstration. The proposed plan is to flood a 10+-acre pattern. The results of this small flood will be used to evaluate the viability of performing a larger-scale ({approx}60-acre) demonstration and will be used by the partners to decide their role in a larger-scale demonstration. The 10+-acre pattern requires the least up-front expense to all parties to obtain the data required to accurately assess the viability and economics of CO2 flooding in the L-KC and of a larger-scale demonstration. In general, the following significant modifications to the original Statement of Work are proposed: (1) The proposed plan would extend the period of Budget Period 1 to May 7, 2003. (2) Redefine the period of Budget Period 2 from 3/7/01-3/7/05 to 5/7/03-3/7/08. (3) Redefine the period of Budget Period 3 from 3/7/05-3/7/06 to 3/7/08-3/7/09. (4) To allow initial verification of the viability of the process before proceeding into the flood demonstration, move activities involved with preparing wells in the flood pattern (Task 5.1), repressurizing the pattern (Task 5.2), and constructing surface facilities (Task 5.3) from Budget Period 2 to Budget Period 1. (5) Allow US Energy Partners (USEP) to be a supplier of carbon dioxide from the ethanol plant in Russell, Kansas. (6) Change the pilot flood pattern, including the number and location of wells involved in the pilot. (7) Expenses are shifted from Budget Period 2 to Budget Period 1 to cover costs of additional reservoir characterization. All modified activities and tasks would maintain the existing required industry match of 55% in Budget Period 1, 65% in Budget Period 2, and 90% in Budget Period 3. Carbon dioxide supplied by the USEP ethanol facility would be valued such that the total cost of CO2 delivered to the demonstration site injection wellhead would not exceed the $3.00/MCF cost of supplying CO2 from Guymon, OK. Total cost of the modified project is $4,415,300 compared with $5,388,064 in the original project. The modified project would require no additional funding from US DOE.

  17. The look of the fair : Kansas county fairscapes, 1854-1994

    E-Print Network [OSTI]

    Ambler, Cathy J.

    1996-01-01T23:59:59.000Z

    THE LOOK OF THE FAIR: KANSAS COUNTY F AIRSCAPES, 1854-1994 Volume 2 by Cathy J. Ambler iff B. S., University of Kansas, 1969 M. A., University of Kansas, 1990 Submitted to the Department of American Studies and the Faculty of the Graduate... Fairs Figure 101. Transitional Era Fairs. 2 Figure 102. Transitional Building / Greeley County 4-H, c. 1938. Photo by author. ^Figure 101 gives the types of fairs held during the transitional period. Figure 102 is an example of a transitional era...

  18. MoS2 Nanoribbons Thermoelectric Generators

    E-Print Network [OSTI]

    Arab, Abbas

    2015-01-01T23:59:59.000Z

    In this work, we have designed and simulated new thermoelectric generator based on monolayer and few-layer MoS2 nanoribbons. The proposed thermoelectric generator is composed of thermocouples made of both n-type and p-type MoS2 nanoribbon legs. Density Functional Tight-Binding Non-Equilibrium Green's Function (DFTB-NEGF) method has been used to calculate the transmission spectrum of MoS2 armchair and zigzag nanoribbons. Phonon transmission spectrum are calculated based on parameterization of Stillinger-Weber potential. Thermoelectric figure of merit, ZT, is calculated using these electronic and phonon transmission spectrum. Monolayer and bilayer MoS2 armchair nanoribbons are found to have the highest ZT value for p-type and n-type legs, repectively. Moreover, we have compared the thermoelectric current of doped monolayer MoS2 armchair nanoribbons and SZi thin films. Results indicate that thermoelectric current of MoS2 monolayer nanoribbons is several orders of magnitude higher than that of Si thin films.

  19. Kansas City Board of Public Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Kansas City Board of Public Utilities provides incentives for commercial customers to install, or upgrade to, energy efficiency equipment in new and existing facilities.Rebates are available...

  20. Kansas City Power and Light- ENERGY STAR New Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Kansas City Power and Light (KCP&L) offers rebates to residential customers towards the cost of an ENERGY STAR Home Energy Assessment and a portion of the installed efficiency improvements....

  1. Opportunities for Energy Efficiency Improvements in Oil Production in Kansas: A Case Study

    E-Print Network [OSTI]

    Egbert, R. I.; King, J. E.

    In 1993 investigators from the Center for Energy Studies at Wichita State University (WSU) and Meridian Corporation in Overland Park, Kansas began a study to investigate whether there were any technical modifications and/or improvements that could...

  2. THE ELECTRONIC HEALTH RECORD FUNCTIONALITIES IN THE STATE OF KANSAS WITH REGARD TO NURSING PRACTICE

    E-Print Network [OSTI]

    Menninger-Corder, Mary Lynn

    2010-04-27T23:59:59.000Z

    The purpose of this study was to identify the electronic health record functionalities of acute care hospitals in the state of Kansas with regard to nursing practice. From the perspective of the Chief Nursing Officer, what ...

  3. Reconstituting Lives: Somali Women's Efforts to Reformulate Household and Community Values in Kansas City, Missouri

    E-Print Network [OSTI]

    Filippi-Franz, Melissa

    2009-01-01T23:59:59.000Z

    The research addresses what Somali women living in Kansas City, Missouri do to assist their households and communities to come to terms with the consequences of forced migration. Women's contributions to wellbeing are found ...

  4. Out of the Rubble and Towards a Sustainable Future: The “Greening” of Greensburg, Kansas

    E-Print Network [OSTI]

    White, Stacey Swearingen

    2010-07-20T23:59:59.000Z

    Following a devastating tornado there in 2007, the tiny city of Greensburg, Kansas has engaged in a sustainability-oriented recovery process through which it hopes to serve as a model for other communities planning for a ...

  5. THE CHIMERA OF KANSAS: AN EXPLORATION OF PLACE, POLITICS, AND CULTURE

    E-Print Network [OSTI]

    Way, Henry Alexander

    2008-01-01T23:59:59.000Z

    This dissertation first examines the role of geography in Kansas state politics, focusing on the years 2005 to 2008. A "spatial dialectics" is seen in the politics and policy-making process. This insight drives a ...

  6. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas - Near-Term, Class II

    SciTech Connect (OSTI)

    Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

    2001-10-30T23:59:59.000Z

    The focus of this project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent.

  7. Revised technical action plan at former Commodity Credit Corporation grain storage sites in Nebraska and Kansas

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    This document has been prepared for the Commodity Credit Corporation of the US Department of Agriculture (USDA/CCC) to provide an outline for a multiyear plan for technical investigations at sites in Kansas and Nebraska that have been identified as having groundwater contamination. Carbon tetrachloride is the primary contaminant of concern at sites in Nebraska and Kansas where former USDA/CCC grain storage facilities were located.

  8. A Library for Engineering Education: Frank O. Marvin and the University of Kansas, 1875-1915

    E-Print Network [OSTI]

    Neeley, James D.

    2008-01-01T23:59:59.000Z

    notable colleagues at Kansas were advocates of the seminar method. In 1887 the electrical engineering program was begun under Lucien I. Blake, who had studied physics at the University of Berlin. He was ambitious and quickly added new courses, lectured... and recognition. At Kansas, the more important factors were those magnified by Marvin’s personal associations: the standard set by scientist colleagues Lucien I. Blake and Erasmus Haworth, the competition with other schools led by chancellor Frank Strong...

  9. Environment of deposition of the Pennsylvanian Bartlesville Sandstone, Labette County, Kansas

    E-Print Network [OSTI]

    Johnson, Charles Truman Lars

    1973-01-01T23:59:59.000Z

    were available for study. Published reports on the Bartlesville Sandstone in Kansas, Missouri, and Oklahoma (Bass, 1936, Howe, 1956j Weirich, 1953; Hayes, 1963; Pharos, 1969; Visher, Saitta B. and Phares, 1971) provided additional information..., with the Chautauqua Arch forming a connection between the two uplifts (Figure 2). By Late Devonian time the Chautaugua Arch was no longer active, Eastern Kansas was divided by the Bourbon Arch into the Forest City and Cherokee Basins in Late Mississippian time...

  10. Pavement Through the Prairie, Wheels in the Wetlands: The battle over a road in Lawrence, Kansas

    E-Print Network [OSTI]

    Heiman, Kelly

    2012-04-01T23:59:59.000Z

    of the Haskell-Baker Wetlands and the South Lawrence Trafficway." Genuine Kansas. No date. http://www.genuinekansas.com/history_baker_w etlands_controversy_timeline_kansas.htm 113 contemporaneous with the initial release of the Draft Environmental Impact...." Environmental History. (2010) 15 (2): 194. that recognized the environment as a critical national issue, historian Ann Vileisis argues, "... citizen activists in their communities dealt with broad choices facing the society at large: to embrace boundless...

  11. Small Wind Electric Systems: A Kansas Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Small Wind Electric Systems: A Kansas Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  12. Kansas Consortium Plug-in Hybrid Medium Duty

    SciTech Connect (OSTI)

    None, None

    2012-03-31T23:59:59.000Z

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative agreements and their completion were problematic for the US and world economies. This resulted in the President and Congress implementing the American Recovery and Reinvestment Act of 2009, abbreviated ARRA (Pub.L. 111-5), commonly referred to as the Stimulus or The Recovery Act. The stimulus money available for transportation projects encouraged the SCAQMD to seek additional funds. In August of 2009, they eventually were awarded an additional $45.5 M, and the scope of their project was expanded to 378 vehicles. However, as a consequence of the stimulus money and the inundation of DOE with applications for new project under the ARRA, the expected time table for producing and testing vehicles was significantly delayed. As a result, these vehicles were not available for validating the protocols developed by the Kansas Consortium. Therefore, in April of 2011, the Scope of Project Objectives (SOPO) for the project was revised, and limited to producing the draft protocol for PHEV certification as its deliverable.

  13. Kansas City`s Union Station redevelopment opportunity -- Environmental challenges

    SciTech Connect (OSTI)

    Snyder, M.G. [Black and Veatch Waste Science, Inc., Overland Park, KS (United States); Scott, A. [Union Station Assistance Corp., Kansas City, MO (United States)

    1995-12-31T23:59:59.000Z

    Kansas City`s Union Station, located at the center of a 1.7 million metropolitan population, is the second largest train station in the United States. The Station ceased to operate as a train station in 1983 and has since been falling into an increasing state of disrepair. This paper provides an insight into ``brownfield`` redevelopment and renovation for adaptive reuse of major turn of the century facilities such as Union Station. Substantial assessment and investigation activities have been conducted at Union Station for compliance and corrective action under RCRA, TSCA, and associated state regulations encompassing remediation estimated at more than $3 million. Recognized environmental conditions identified at Union Station included potential underground storage tanks; solid wastes, special wastes, and potentially hazardous wastes located inside the building; free liquids in sumps and elevator pits; asbestos-containing materials; lead-based paint; and potential for soil contamination on the surrounding property.

  14. Final report : Phase III targeted investigation, Everest, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2006-01-31T23:59:59.000Z

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), formerly operated grain storage facilities at two different locations at Everest, Kansas (Figure 1.1). One facility (referred to in this report as the Everest facility) was at the western edge of the city. The second facility (referred to in this report as Everest East) was about 0.5 mi northeast of the town. The CCC/USDA operated these facilities from the early 1950s until the early 1970s, at a time when commercial fumigants containing carbon tetrachloride were in common use by the CCC/USDA and private industry for the preservation of grain in storage. In 1997 the Kansas Department of Health and Environment (KDHE) sampled several domestic drinking water and non-drinking water wells in the Everest area as part of the CCC/USDA Private Well Sampling Program. All of the sampled wells were outside the Everest city limits. Carbon tetrachloride contamination was identified at a single domestic drinking water well (the Nigh well, DW06; Figure 1.1) approximately 3/8 mi northwest of the former Everest CCC/USDA grain storage facility. Subsequent KDHE investigations suggested that the contamination in DW06 could be linked to the former use of grain fumigants at the CCC/USDA facility. For this reason, the CCC/USDA is conducting a phased environmental study to determine the source and extent of the carbon tetrachloride contamination at Everest and to identify potential remedial options. The studies are being performed by the Environmental Research Division of Argonne National Laboratory. Two phases of investigation were completed previously; this report presents the findings of the targeted Phase III investigation at Everest.

  15. Prompt {gamma}-ray spectroscopy of the {sup 104}Mo and {sup 108}Mo fission fragments

    SciTech Connect (OSTI)

    Guessous, A.; Schulz, N.; Bentaleb, M.; Lubkiewicz, E. [Centre de Recherches Nucleaires, Institut National de Physique Nucleaire et de Physique des Particules, Centre National de la Recherche Scientifique, Universite Louis Pasteur, 67037 Strasbourg (France)] [Centre de Recherches Nucleaires, Institut National de Physique Nucleaire et de Physique des Particules, Centre National de la Recherche Scientifique, Universite Louis Pasteur, 67037 Strasbourg (France); Durell, J.L.; Pearson, C.J.; Phillips, W.R.; Shannon, J.A.; Urban, W.; Varley, B.J. [Department of Physics, University of Manchester, M13 9PL (United Kingdom)] [Department of Physics, University of Manchester, M13 9PL (United Kingdom); Ahmad, I.; Lister, C.J.; Morss, L.R.; Nash, K.L.; Williams, C.W. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Khazrouni, S. [Laboratoire de Physique Nucleaire Appliquee, Faculte des Sciences, Kenitra, Maroc (France)] [Laboratoire de Physique Nucleaire Appliquee, Faculte des Sciences, Kenitra, Maroc (France)

    1996-03-01T23:59:59.000Z

    The level structures of the neutron-rich {sup 104}Mo and {sup 108}Mo nuclei have been investigated by observing prompt {gamma} rays emitted in the spontaneous fission of {sup 248}Cm with the EUROGAM spectrometer. Levels with spins up to 12{h_bar} have been observed and {gamma} branching obtained. The data can be satisfactorily described when {sup 104,108}Mo are considered as axially symmetric nuclei: in {sup 104}Mo, rotational bands based on the ground state, the one-phonon and the two-phonon {gamma}-vibrational states and a quasiparticle state have been observed, whereas in {sup 108}Mo the information is limited to the yrast band and the one phonon {gamma} band. {copyright} {ital 1996 The American Physical Society.}

  16. Tunable MoS{sub 2} bandgap in MoS{sub 2}-graphene heterostructures

    SciTech Connect (OSTI)

    Ebnonnasir, Abbas [Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 (United States); Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States); Narayanan, Badri; Ciobanu, Cristian V., E-mail: cciobanu@mines.edu, E-mail: kodambaka@ucla.edu [Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 (United States); Kodambaka, Suneel, E-mail: cciobanu@mines.edu, E-mail: kodambaka@ucla.edu [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-07-21T23:59:59.000Z

    Using density functional theory calculations with van der Waals corrections, we investigated how the interlayer orientation affects the structure and electronic properties of MoS{sub 2}-graphene bilayer heterostructures. Changing the orientation of graphene with respect to MoS{sub 2} strongly influences the type and the value of the electronic bandgap in MoS{sub 2}, while not significantly altering the binding energy between the layers or the interlayer spacing. We show that the physical origin of this tunable bandgap arises from variations in the S–S interplanar distance (MoS{sub 2} thickness) with the interlayer orientation, variations which are caused by electron transfer away from the Mo–S bonds.

  17. Greensburg, Kansas: Building a Model Green Community, How Would You Rebuild a Town- Green? April 2009 (Brochure)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This brochure describes the rebuilding of Greensburg, Kansas, highlighting the Greensburg High Performance Buildings Database as a source of information for energy-efficient building techniques.

  18. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect (OSTI)

    Jason Schulthess

    2014-09-01T23:59:59.000Z

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  19. Starting Points | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    (M&O) Contract Competition Starting Points Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives...

  20. Wetting of metals and glasses on Mo

    SciTech Connect (OSTI)

    Saiz, Eduardo; Tomsia, Antoni P.; Saiz, Eduardo; Lopez-Esteban, Sonia; Benhassine, Mehdi; de Coninck, Joel; Rauch, Nicole; Ruehle, Manfred

    2008-01-08T23:59:59.000Z

    The wetting of low melting point metals and Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. The selected metals (Au, Cu, Ag) form a simple eutectic with Mo. Metal spreading occurs under nonreactive conditions without interdiffusion or ridge formation. The metals exhibit low (non-zero) contact angles on Mo but this requires temperatures higher than 1100 C in reducing atmospheres in order to eliminate a layer of adsorbed impurities on the molybdenum surface. By controlling the oxygen activity in the furnace, glass spreading can take place under reactive or nonreactive conditions. We have found that in the glass/Mo system the contact angle does not decrease under reactive conditions. In all cases, adsorption from the liquid seems to accelerate the diffusivity on the free molybdenum surface.

  1. Oxidation, Reduction, and Condensation of Alcohols over (MO3)3 (M=Mo, W) Nanoclusters

    SciTech Connect (OSTI)

    Fang, Zongtang; Li, Zhenjun; Kelley, Matthew S.; Kay, Bruce D.; Li, Shenggang; Hennigan, Jamie M.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-10-02T23:59:59.000Z

    The reactions of deuterated methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol and t-butanol over cyclic (MO3)3 (M = Mo, W) clusters were studied experimentally with temperature programmed desorption (TPD) and theoretically with coupled cluster CCSD(T) theory and density functional theory. The reactions of two alcohols per M3O9 cluster are required to provide agreement with experiment for D2O release, dehydrogenation and dehydration. The reaction begins with the elimination of water by proton transfers and forms an intermediate dialkoxy species which can undergo further reaction. Dehydration proceeds by a ? hydrogen transfer to a terminal M=O. Dehydrogenation takes place via an ? hydrogen transfer to an adjacent MoVI = O atom or a WVI metal center with redox involved for M = Mo and no redox for M = W. The two channels have comparable activation energies. H/D exchange to produce alcohols can take place after olefin is released or via the dialkoxy species depending on the alcohol and the cluster. The Lewis acidity of the metal center with WVI being larger than MoVI results in the increased reactivity of W3O9 over Mo3O9 for dehydrogenation and dehydration.

  2. Annual report of groundwater monitoring at Everest, Kansas in 2011.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2011-12-19T23:59:59.000Z

    Everest, Kansas, is a small rural community (population approximately 300) located in the southeast corner of Brown County, in the northeastern corner of Kansas. Carbon tetrachloride and chloroform contamination in groundwater at Everest was initially identified in 1997 as a result of testing performed under the Commodity Credit Corporation/U.S. Department of Agriculture (CCC/USDA) private well sampling program conducted by the Kansas Department of Health and Environment (KDHE). The KDHE collected samples from seven private wells in and near Everest. Carbon tetrachloride and chloroform were found in only one of the wells, the Donnie Nigh domestic well (owned at that time by Tim Gale), approximately 3/8 mi northwest of the former Everest CCC/USDA facility. Carbon tetrachloride and chloroform were detected at 121 {mu}g/L and 4 {mu}g/L, respectively. Nitrate was found at 12.62 mg/L. The USDA subsequently connected the Nigh residence to the Everest public water supply system. The findings of the 2011 monitoring at Everest support the following conclusions: (1) Measurements of groundwater levels obtained manually during annual monitoring in 2009-2011 (and through the use of automatic recorders in 2002-2010) have consistently indicated an initial direction of groundwater flow from the former CCC/USDA facility to the north-northwest and toward the Nigh property, then west-southwest from the Nigh property toward the intermittent creek that lies west of the former CCC/USDA facility and the Nigh property. (2) At most of the monitored locations, carbon tetrachloride concentrations decreased in April 2011 relative to 2010 results. Noteworthy decreases of > 50% occurred at locations MW4, MW60, and MW88, in the most concentrated part of the plume. (3) Comparison of accumulated data demonstrates that the area of the carbon tetrachloride plume with concentrations > 200 {mu}g/L has decreased markedly over time and suggests a generally decreasing trend in contaminant levels. (4) The trace increases in carbon tetrachloride concentrations observed in 2010 at locations SB63 and SB64 were notable because of the locations proximity to the downgradient intermittent creek. However, these increases were not confirmed in sampling in 2011. (5) The results of the April 2011 monitoring event continue to support the interpretation, made during the 9-yr observation period from 2001 to 2010, that the migration rate for contamination in groundwater toward the intermittent creek is very slow. (6) No carbon tetrachloride was detected in five samples of surface water collected from the intermittent creek west of the former CCC/USDA facility and the Nigh property, or in tree branch tissue samples collected at locations along the banks of the creek. These observations indicate that the carbon tetrachloride contamination identified at Everest has, to date, not impacted the surface waters of the intermittent creek.

  3. Final work plan : environmental site investigation at Sylvan Grove, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2012-07-15T23:59:59.000Z

    In 1998, carbon tetrachloride was found above the maximum contaminant level (MCL) of 5 {micro}g/L in groundwater from one private livestock well at Sylvan Grove, Kansas, by the Kansas Department of Health and Environment (KDHE). The 1998 KDHE sampling was conducted under the U.S. Department of Agriculture (USDA) private well sampling program. The Commodity Credit Corporation (CCC), a USDA agency, operated a grain storage facility in Sylvan Grove from 1954 to1966. Carbon tetrachloride is the contaminant of primary concern at sites associated with former CCC/USDA grain storage operations. Sylvan Grove is located in western Lincoln County, approximately 60 mi west of Salina (Figure 1.1). To determine whether the former CCC/USDA facility at Sylvan Grove is a potential contaminant source and its possible relationship to the contamination in groundwater, the CCC/USDA has agreed to conduct an investigation, in accordance with the Intergovernmental Agreement between the KDHE and the Farm Service Agency (FSA) of the USDA. This Work Plan presents historical data related to previous investigations, grain storage operations, local private wells and public water supply (PWS) wells, and local geologic and hydrogeologic conditions at Sylvan Grove. The findings from a review of all available documents are discussed in Section 2. On the basis of the analyses of historical data, the following specific technical objectives are proposed for the site investigation at Sylvan Grove: (1) Evaluate the potential source of carbon tetrachloride at the former CCC/USDA facility; (2) Determine the relationship of potential contamination (if present) at the former CCC/USDA facility to contamination identified in 1998 in groundwater samples from one private well to the west; and (3) Delineate the extent of potential contamination associated with the former CCC/USDA facility. The detailed scope of work is outlined in Section 3. The results of the proposed work will provide the basis for determining what future CCC/USDA actions may be necessary, with the ultimate goal of achieving classification of the Sylvan Grove site at no further action status. The proposed activities are to be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory, a nonprofit, multidisciplinary research center operated by the UChicago Argonne, LLC, for the U.S. Department of Energy. Argonne provides technical assistance to the CCC/USDA concerning environmental site characterization and remediation at former grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. That document should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Sylvan Grove.

  4. Annual report of monitoring at Barnes, Kansas, in 2011.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2012-07-26T23:59:59.000Z

    Barnes, Kansas, is a small rural community (population approximately 150) located in Washington County, in north-central Kansas (Figure 1.1). The city lies in a transition zone between the Flint Hills and the glaciated region. The area's topography consists of gently sloping hills of Pleistocene loess (< 20 ft) overlying a shale unit and interbedded shale, limestone, and siltstone of the Permian Chase Group. Groundwater for the public water supply is obtained from wells PWS2 and PWS3 at reported depths of 155 ft and 160 ft, respectively, located in the northwestern portion of the city. The water is produced from the bedrock aquifer of the Chase Group. Section 2 summarizes of the hydrogeologic conceptual site model. The findings of the monitoring events at Barnes in 2011 continued to support the following previous conclusions: (1) Measurements of groundwater levels obtained manually and through the use of automatic recorders have consistently indicated that the flow direction is strongly influenced by pumping of the public water supply wells. The results have demonstrated an apparent groundwater flow direction to the northeast when the public wells are not pumping and a northwesterly groundwater flow trend when the public wells are pumping. (2) Evaluation of manual water level measurements and carbon tetrachloride concentrations continues to suggest that three vertically distinguishable aquifer zones are present at Barnes: shallow, intermediate, and deep (Table 4.1). The highest concentration of carbon tetrachloride occurs in the intermediate zone, in wells near the former CCC/USDA grain storage facility. Lower concentrations have been detected in the deep aquifer zone (where the public water supply wells are screened), and no carbon tetrachloride has been detected in the shallow zone. (3) The conceptual model of the groundwater flow system at Barnes, as postulated on the basis of the accumulated results, suggests that the observed vertical hydraulic gradients and higher carbon tetrachloride concentrations in the intermediate zone might reflect generally lower permeability and hence less effective groundwater and contaminant migration in the intermediate zone than in the deep aquifer zone. (4) As it has since March 2008, intermediate-zone well MW10S, in the eastern portion of the former CCC/USDA facility, contained the highest concentrations of carbon tetrachloride. (5) Overall, the lateral distribution of carbon tetrachloride in groundwater in 2011 is similar to the distribution during previous sampling events. The accumulated data, including a trend analysis conducted in 2009, indicate stable contaminant concentrations, with no imminent impact to the public wells.

  5. Mo Supply Chain for Nuclear Medicine Ladimer S. Nagurney

    E-Print Network [OSTI]

    Nagurney, Anna

    The 99 Mo Supply Chain for Nuclear Medicine Ladimer S. Nagurney Department of Electrical November 13, 2012 #12;Nuclear Medicine: Meeting Patient Needs with 99 Mo Ladimer S. Nagurney The 99 Mo Supply Chain #12;Background and Motivation Study of Nuclear Medicine Supply Chains is a combination

  6. Structural load inventory database for the Kansas City federal complex

    SciTech Connect (OSTI)

    Hashimoto, P.S.; Johnson, M.W.; Nakaki, D.K. [EQE International, Inc., Irvine, CA (United States); Lynch, D.T.; Drury, M.A. [AlliedSignal Inc., Kansas City, MO (United States). Kansas City Division

    1995-12-01T23:59:59.000Z

    A structural load inventory database (LID) has been developed to support configuration management at the DOE Kansas City Plant (KCP). The objective of the LID is to record loads supported by the plant structures and to provide rapid assessments of the impact of future facility modifications on structural adequacy. Development of the LID was initiated for the KCP`s Main Manufacturing Building. Field walkdowns were performed to determine all significant loads supported by the structure, including the weight of piping, service equipment, etc. These loads were compiled in the LID. Structural analyses for natural phenomena hazards were performed in accordance with UCRL-15910. Software to calculate demands on the structural members due to gravity loads, total demands including both gravity and seismic loads, and structural member demand-to-capacity ratios were also developed and integrated into the LID. Operation of the LID is menu-driven. The LID user has options to review and print existing loads and corresponding demand-to-capacity ratios, and to update the supported loads and demand-to-capacity ratios for any future facility modifications.

  7. Final work plan for targeted investigation at Hilton, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2007-08-28T23:59:59.000Z

    This Work Plan outlines the scope of a targeted investigation to update the status of carbon tetrachloride contamination in groundwater associated with grain storage operations at Hilton, Kansas. The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility in Hilton during the 1950s and 1960s. At the time of the CCC/USDA operation in Hilton, grain storage facilities (CCC/USDA and private) were located along the both sides of the former Union Pacific railroad tracks (Figure 1.1). The main grain storage structures were on or near the railroad right-of-way. The proposed targeted investigation, to be conducted by Argonne National Laboratory on the behalf of CCC/USDA, will supplement Argonne's Phase I and Phase II investigations in 1996-1997. The earlier investigations erroneously focused on an area east of the railroad property where the CCC/USDA did not operate, specifically on a private grain storage facility. In addition, the investigation was limited in scope, because access to railroad property was denied (Argonne 1997a,b). The hydrogeologic system at Hilton is potentially complex.

  8. Role of SrMoO{sub 4} in Sr{sub 2}MgMoO{sub 6} synthesis

    SciTech Connect (OSTI)

    Vasala, S.; Yamauchi, H. [Laboratory of Inorganic Chemistry, Department of Chemistry, School of Chemical Technology, Aalto University, P.O. Box 16100, FI-00076 Aalto (Finland); Karppinen, M., E-mail: maarit.karppinen@aalto.f [Laboratory of Inorganic Chemistry, Department of Chemistry, School of Chemical Technology, Aalto University, P.O. Box 16100, FI-00076 Aalto (Finland)

    2011-05-15T23:59:59.000Z

    Here we investigate the elemental and phase compositions during the solid-state synthesis of the promising SOFC-anode material, Sr{sub 2}MgMoO{sub 6}, and demonstrate that molybdenum does not notably evaporate under the normal synthesis conditions with temperatures up to 1200 {sup o}C due to the formation of SrMoO{sub 4} as an intermediate product at low temperatures, below 600 {sup o}C. However, partial decomposition of the Sr{sub 2}MgMoO{sub 6} phase becomes evident at the higher temperatures ({approx}1500 {sup o}C). The effect of SrMoO{sub 4} on the electrical conductivity of Sr{sub 2}MgMoO{sub 6} is evaluated by preparing a series of Sr{sub 2}MgMoO{sub 6} samples with different amounts of additional SrMoO{sub 4}. Under the reducing operation conditions of an SOFC anode the insulating SrMoO{sub 4} phase is apparently reduced to the highly conductive SrMoO{sub 3} phase. Percolation takes place with 20-30 wt% of SrMoO{sub 4} in a Sr{sub 2}MgMoO{sub 6} matrix, with a notable increase in electrical conductivity after reduction. Conductivity values of 14, 60 and 160 S/cm are determined at 800 {sup o}C in 5% H{sub 2}/Ar for the Sr{sub 2}MgMoO{sub 6} samples with 30, 40 and 50 wt% of added SrMoO{sub 4}, respectively. -- Graphical abstract: SrMoO{sub 4} is formed at low temperatures during the synthesis of Sr{sub 2}MgMoO{sub 6}, which prevents the volatilization of Mo from typical precursor mixtures of this promising SOFC anode material. SrMoO{sub 4} is insulating and it is often found as an impurity in Sr{sub 2}MgMoO{sub 6} samples. It is however readily reduced to highly conducting SrMoO{sub 3}. Composites of Sr{sub 2}MgMoO{sub 6} and SrMoO{sub 3} show increased electrical conductivities compared to pure Sr{sub 2}MgMoO{sub 6} under the reductive operation conditions of an SOFC anode. Display Omitted Highlights: {yields} Sr{sub 2}MgMoO{sub 6} is a promising SOFC anode material. {yields} During the Sr{sub 2}MgMoO{sub 6} synthesis SrMoO{sub 4} is formed at low temperatures. {yields} Formation of SrMoO{sub 4} effectively prevents volatilization of Mo at high temperatures. {yields} Insulating SrMoO{sub 4} reduces to highly conductive SrMoO{sub 3} under SOFC-anode conditions. {yields} Composites of Sr{sub 2}MgMoO{sub 6} and SrMoO{sub 3} show high electrical conductivities.

  9. Counting Bicyclists & Pedestrians in Minneapolis

    E-Print Network [OSTI]

    Minnesota, University of

    tally at "screen lines" #12;Estimations are drawn using assumptions 20% of daily bicycle traffic occurs #12;How does biking and walking compare to driving? #12;Census Bureau data shows most people drive

  10. A Summary Report Minneapolis, Minnesota

    E-Print Network [OSTI]

    Minnesota, University of

    Transportation Studies 13th Annual Freight and Logistics Symposium Facilitated by: Continuing Professional Education costs and other macroeconomic trends. He reminded attendees that logis- tics makes up about 10 percent

  11. Development of CaMoO4 crystal scintillators for double beta decay experiment with 100-Mo

    E-Print Network [OSTI]

    A. N. Annenkov; O. A. Buzanov; F. A. Danevich; A. Sh. Georgadze; S. K. Kim; H. J. Kim; Y. D. Kim; V. V. Kobychev; V. N. Kornoukhov; M. Korzhik; J. I. Lee; O. Missevitch; V. M. Mokina; S. S. Nagorny; A. S. Nikolaiko; D. V. Poda; R. B. Podviyanuk; D. J. Sedlak; O. G. Shkulkova; J. H. So; I. M. Solsky; V. I. Tretyak; S. S. Yurchenko

    2007-07-10T23:59:59.000Z

    Energy resolution, alpha/beta ratio, pulse-shape discrimination for gamma rays and alpha particles, temperature dependence of scintillation properties, and radioactive contamination were studied with CaMoO4 crystal scintillators. A high sensitivity experiment to search for neutrinoless double beta decay of 100-Mo by using CaMoO4 scintillators is discussed.

  12. Rhabdomesid bryozoans of the Wreford Megacyclothem (Wolfcampian, Permian) of Nebraska, Kansas, and Oklahoma

    E-Print Network [OSTI]

    Newton, G. B.

    1971-10-22T23:59:59.000Z

    in the Wreford of Kansas, I propose that these Oklahoma sand- stones be recognized as a distinct rock type, herein termed a "tan quartzose sandstone," within the Wreford Megacyclothem. Massive to thin-bedded, weathering dark brown, this rock type when fresh... in the Wreford of Kansas, I propose that these Oklahoma sand- stones be recognized as a distinct rock type, herein termed a "tan quartzose sandstone," within the Wreford Megacyclothem. Massive to thin-bedded, weathering dark brown, this rock type when fresh...

  13. Bibliography of Publications from Research Based on Mammal Specimens in the University of Kansas Biodiversity Institute

    E-Print Network [OSTI]

    Timm, Robert M.

    2009-12-01T23:59:59.000Z

    in the West Indies. Mammalia, 24:67–75. Jones, J. K., Jr. 1960. The hispid cotton rat in Nebraska. Journal of Mammalogy, 41:132. Jones, J. K., Jr., and G. L. Cortner. 1960. The subspecific identity of the gray squirrel (Sciurus carolinensis) in Kansas... Museum, 4:89–100. Jones, J. K., Jr., and T. Alvarez. 1962. Taxonomic status of the free-tailed bat, Tadarida yucatanica Miller. University of Kansas Publications, Museum of Natural History, 14(9):125–133. Jones, J. K., Jr., T. Alvarez, and M. R. Lee...

  14. GIS-Based Cellular Automaton Model to allocate Kansas High Plains Irrigated Agriculture Land Use

    E-Print Network [OSTI]

    Chiu, Peiwen

    2014-04-08T23:59:59.000Z

    GIS-Based Cellular Automaton Model to Allocate Irrigated Agriculture Land Use Peiwen Chiu Kansas State University GIS Day 2013 November 20, 2013 University of Kansas High Plains/Ogallala Aquifer 8 States 186,000 mi2 480,000 km2 http... of Acreage From the Model Iterations What’s Next This work was supported in part by the National Science Foundation (grant GEO0909515) and the United States Department of Agriculture/Agricultural Research Service (Ogallala Aquifer Initiative). Any findings...

  15. Re Effects on Phase Stability and Mechanical Properties of MoSS+Mo3Si+Mo5SiB2 alloys

    SciTech Connect (OSTI)

    Yang, Ying [ORNL; Bei, Hongbin [ORNL; George, Easo P [ORNL; Tiley, Jaimie [Air Force Research Laboratory, Wright-Patterson AFB, OH

    2013-01-01T23:59:59.000Z

    Because of their high melting points and good oxidation resistance Mo-Si-B alloys are of interest as potential ultrahigh-temperature structural materials. But their major drawbacks are poor ductility and fracture toughness at room temperature. Since alloying with Re has been suggested as a possible solution, we investigate here the effects of Re additions on the microstructure and mechanical properties of a ternary alloy with the composition Mo-12.5Si-8.5B (at.%). This alloy has a three-phase microstructure consisting of Mo solid-solution (MoSS), Mo3Si, and Mo5SiB2 and our results show that up to 8.4 at.% Re can be added to it without changing its microstructure or forming any brittle phase at 1600 C. Three-point bend tests using chevron-notched specimens showed that Re did not improve fracture toughness of the three-phase alloy. Nanoindentation performed on the MoSS phase in the three-phase alloy showed that Re increases Young s modulus, but does not lower hardness as in some Mo solid solution alloys. Based on our thermodynamic calculations and microstructural analyses, the lack of a Re softening effect is attributed to the increased Si levels in the Re-containing MoSS phase since Si is known to increase its hardness. This lack of softening is possibly why there is no Re-induced improvement in fracture toughness.

  16. Annual report of groundwater monitoring at Centralia, Kansas, in 2010.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2011-03-16T23:59:59.000Z

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation processes (reductive dechlorination) in the subsurface environment (Argonne 2006, 2007a, 2008a). The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound, in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was talking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a). The KDHE (2008a) requested that sitewide monitoring continue until a final remedy is selected (as part of a Corrective Action Study [CAS] evaluation) and implemented. In response to this request, the established sampling across the site and additional sampling in the IM pilot test area continued in 2008 (Argonne 2008b, 2009a,b). On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program for both the wider site and the IM pilot test area (Section 4.2 in Argonne 2009b). The elements of this interim monitoring plan are as follows: (1) Annual sampling of twelve monitoring points across the site (Figure 1.1) and five outlying IM pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.2); and (2) Twice yearly sampling of five IM pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.2). With the approval of the KDHE (2009), the initial groundwater sampling for VOCs and geochemical analyses under the interim monitoring plan outlined above was conducted in 2009 (Argonne 2010). The present report documents the findings of the 2010 monitoring events, conducted on April 5 and September 19-21, 2010.

  17. Annual report of groundwater monitoring at Centralia, Kansas, in 2009.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2010-10-19T23:59:59.000Z

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was taking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a). The KDHE (2008a) has requested that sitewide monitoring continue at Centralia until a final remedy has been selected (as part of a Corrective Action Study [CAS] evaluation) and implemented for this site. In response to this request, twice-yearly sampling of 10 monitoring wells and 6 piezometers (Figure 1.1) previously approved by the KDHE for monitoring of the groundwater at Centralia (KDHE 2005a,b) was continued in 2008. The sampling events under this extension of the two-year (2005-2007) monitoring program occurred in March and September 2008 (Argonne 2008b, 2009b). Additional piezometers specifically installed to evaluate the progress of the IM pilot test (PMP1-PMP9; Figure 1.2) were also sampled in 2008; the results of these analyses were reported and discussed separately (Argonne 2009a). On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program to address both of the continuing monitoring objectives until a CAS for Centralia is developed (Section 4.2 in Argonne 2009b). The elements of this interim monitoring plan are as follows: (1) Annual sampling of twelve previously established (before the pilot test) monitoring points (locations identified in Figure 1.3) and the five outlying pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.4); and (2) Sampling twice yearly at the five pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.4). With the approval of the KDHE (2009), groundwater sampling for analyses of VOCs and selected other geochemical parameters was conducted at Centralia under the interim monitoring program outlined above in April and October 2009. This report documents the findings of the 2009 monitoring events.

  18. Interim measure work plan/design for Agra, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-11-18T23:59:59.000Z

    This Interim Measure Work Plan/Design (IMWP/D) is supplemental to the Argonne document Interim Measure Conceptual Design for Remediation of Source Area Contamination at Agra, Kansas. The IMWP/D includes information required by Kansas Department of Health and Environment (KDHE) Policy BER-RS-029, Policy and Scope of Work for Interim Measures. Specific to Policy BER-RS-029 is the requirement for several documents that will ensure that an adequate amount and type of data are collected for implementation of the IMWP/D and that data quality and safe conditions are prevailed. Such information is included in the IMWP/D as follows: Appendix A: Data Acquisition Plan--Design Testing Requirements; Appendix B: Basis of Design; Appendix C: Permits; Appendix D: Quality Assurance Project Plan; Appendix E: Health and Safety Plan; and Appendix F: Operations, Maintenance, and Monitoring Schedule. The proposed remedial technology for this project is the installation of five large-diameter boreholes (LDBs) in a source area that has been identified on the property formerly used for grain storage by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The goal of the LDB technology is the remediation of the source area by removal of mass quantities of contaminated soil from the vadose zone and treatment of any remaining contaminated soils that are adjacent to the source area to achieve a carbon tetrachloride concentration below 200 {micro}g/kg. Secondary to the soil remediation is the remediation of groundwater at and adjacent to the source areas. The LDB technology serves the following purposes: (1) The physical removal of contaminated soil from the identified source area. (2) Replacement of less permeable native materials (silty clay, clayey silt, and silty sand) with more permeable materials to facilitate the capture of volatilized contaminants in the vertical borehole. (3) Removal of contaminants volatilized by air sparging (AS) and extracted from the vadose zone by soil vapor extraction (SVE). (4) Volatilization of contaminants from portions of the affected aquifer that can be accessed from the former CCC/USDA property. The primary objective of the proposed removal action is removal of mass quantities of carbon tetrachloride from the vadose zone and treatment of any remaining contaminated soils that are adjacent to the source area, to achieve a carbon tetrachloride concentration below 200 {micro}g/kg. This objective will be the basis for evaluating system performance. The scope of action outlined in the IMWP/D is limited to the five treatment zones defined by the LDB/SVE/AS locations. Surrounding soils and groundwater will benefit; however, remedial benefits to groundwater will be limited to the area of influence associated with the five treatment zones. While treatment should be aggressive in the vicinity of the LDB locations, the heterogeneity, clay content, and low permeability of the soils will place inherent limits on the area of influence.

  19. Implementation of deep soil mixing at the Kansas City Plant

    SciTech Connect (OSTI)

    Gardner, F.G.; Korte, N. [Oak Ridge National Lab., Grand Junction, CO (United States); Strong-Gunderson, J.; Siegrist, R.L.; West, O.R.; Cline, S.R. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Baker, J. [AlliedSignal, Inc., Kansas City, MO (United States)

    1998-11-01T23:59:59.000Z

    In July 1996, the US Department of Energy (DOE) Kansas City Plant (KCP), AlliedSignal Federal Manufacturing and Technologies, and Oak Ridge National Laboratory (ORNL), conducted field-scale tests of in situ soil mixing and treatment technologies within the Northeast Area (NEA) of the KCP at the Former Ponds site. This demonstration, testing, and evaluation effort was conducted as part of the implementation of a deep soil mixing (DSM) innovative remedial technology demonstration project designed to test DSM in the low-permeability clay soils at the KCP. The clay soils and groundwater beneath this area are contaminated by volatile organic compounds (VOCs), primarily trichloroethene (TCE) and 1,2-dichloroethene (1,2-DCE). The demonstration project was originally designed to evaluate TCE and 1,2-DCE removal efficiency using soil mixing coupled with vapor stripping. Treatability study results, however, indicated that mixed region vapor stripping (MRVS) coupled with calcium oxide (dry lime powder) injection would improve TCE and 1,2-DCE removal efficiency in saturated soils. The scope of the KCP DSM demonstration evolved to implement DSM with the following in situ treatment methodologies for contaminant source reduction in soil and groundwater: DSM/MRVS coupled with calcium oxide injection; DSM/bioaugmentation; and DSM/chemical oxidation using potassium permanganate. Laboratory treatability studies were started in 1995 following collection of undisturbed soil cores from the KCP. These studies were conducted at ORNL, and the results provided information on optimum reagent concentrations and mixing ratios for the three in situ treatment agents to be implemented in the field demonstration.

  20. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term, Class I

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Reynolds, Rodney R.; McCune, A. Dwayne; Michnick, Michael J.; Walton, Anthony W.; Watney, W. Lynn

    2000-06-08T23:59:59.000Z

    This project involved two demonstration projects, one in a Marrow reservoir located in the southwestern part of the state and the second in the Cherokee Group in eastern Kansas. Morrow reservoirs of western Kansas are still actively being explored and constitute an important resource in Kansas. Cumulative oil production from the Morrow in Kansas is over 400,000,000 bbls. Much of the production from the Morrow is still in the primary stage and has not reached the mature declining state of that in the Cherokee. The Cherokee Group has produced about 1 billion bbls of oil since the first commercial production began over a century ago. It is a billion-barrel plus resource that is distributed over a large number of fields and small production units. Many of the reservoirs are operated close to the economic limit, although the small units and low production per well are offset by low costs associated with the shallow nature of the reservoirs (less than 1000 ft. deep).

  1. Bound Together: Masters and Slaves on the Kansas-Missouri Border, 1825-1865

    E-Print Network [OSTI]

    Epps, Kristen Kimberly

    2010-04-20T23:59:59.000Z

    “Bound Together” chronicles the rise and fall of the slave system on the Kansas-Missouri border from the earliest years of American settlement in the 1820s to the end of the Civil War. This work uses nineteen counties along ...

  2. Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas -- Near-Term -- Class 2

    SciTech Connect (OSTI)

    Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

    1999-07-08T23:59:59.000Z

    This report describes progress during the third year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and mid-continent. The project introduced a number of potentially useful technologies, and demonstrated these technologies in actual oil field operations. Advanced technology was tailored specifically to the scale appropriate to the operations of Kansas producers. An extensive technology transfer effort is ongoing. Traditional technology transfer methods (e.g., publications and workshops) are supplemented with a public domain relational database and an online package of project results that is available through the Internet. The goal is to provide the independent complete access to project data, project results and project technology on their desktop. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). The value of cost-effective techniques for reservoir characterization and simulation at Schaben Field were demonstrated to independent operators. All major operators at Schaben have used results of the reservoir management strategy to locate and drill additional infill locations. At the Schaben Demonstration Site, the additional locations resulted in incremental production increases of 200 BOPD from a smaller number of wells.

  3. The Life of Charles O. Fuller in Central Kansas, 1855-1879.

    E-Print Network [OSTI]

    Stratton, John M.

    2004-02-01T23:59:59.000Z

    The article presents a biography of Charles Oscar Fuller, 1928-1979, who established a ranch on Running Turkey Creek along the Santa Fe Trail n what is now McPherson County, Kansas. Fuller went on to other pursuits later in life, and served a term...

  4. Upcoming Management and Operating (M&O) Contract Competition...

    National Nuclear Security Administration (NNSA)

    Upcoming Management and Operating (M&O) Contract Competition | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  5. MoRu/Be multilayers for extreme ultraviolet applications

    DOE Patents [OSTI]

    Bajt, Sasa C. (Livermore, CA); Wall, Mark A. (Stockton, CA)

    2001-01-01T23:59:59.000Z

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  6. Interdiffusion between Zr Diffusion Barrier and U-Mo Alloy

    SciTech Connect (OSTI)

    K. Huang; Y. Park; Y. H. Sohn

    2012-12-01T23:59:59.000Z

    U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) program. Significant reactions have been observed between U-Mo fuels and Al or Al alloy matrix. Refractory metal Zr has been proposed as barrier material to reduce the interactions. In order to investigate the compatibility and barrier effects between U-Mo alloy and Zr, solid-to-solid U-10wt.%Mo vs. Zr diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 °C for various times. The microstructures and concentration profiles due to interdiffusion and reactions were examined via scanning electron microscopy and electron probe microanalysis, respectively. Intermetallic phase Mo2Zr was found at the interface and its population increased when annealing temperature decreased. Diffusion paths were also plotted on the U-Mo-Zr ternary phase diagrams with good consistency. The growth rate of interdiffusion zone between U-10wt.%Mo and Zr was also calculated under the assumption of parabolic diffusion, and was determined to be about 103 times lower than the growth rate of diffusional interaction layer found in diffusion couples U-10wt.%Mo vs. Al or Al-Si alloy. Other desirable physical properties of Zr as barrier material, such as neutron adsorption rate, melting point and thermal conductivity are presented as supplementary information to demonstrate the great potential of Zr as the diffusion barrier for U-Mo fuel systems in RERTR.

  7. Mo Year Report Period: EIA ID NUMBER:

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High824 2.839 2.8352.747 2.759 2.699Mo

  8. A Report on Library-Museum collaboration at the University of Kansas: The Spencer Museum of Art and KU Libraries

    E-Print Network [OSTI]

    Rosenblum, Brian

    2011-06-24T23:59:59.000Z

    This report stems from the author's semester as Keeler Family Intra-University Professor at the Spencer Museum of Art at the University of Kansas during the Fall 2010 semester. The report provides some background information about library...

  9. ARCHAEOLOGY, LATE-QUATERNARY LANDSCAPE EVOLUTION, AND ENVIRONMENTAL CHANGE IN THE UPPER DRIFTWOOD CREEK BASIN, BARBER COUNTY, KANSAS

    E-Print Network [OSTI]

    Kessler, Nicholas Victor

    2010-12-09T23:59:59.000Z

    This study focused on valley fills in the upper Driftwood Creek basin, a 3rd order drainage network in south-central Kansas to determine the geologic potential for stratified cultural material and to reconstruct a record of Late...

  10. Elevated blood glucose recommendation guidelines that produce positive maternal and perinatal outcomes at the University of Kansas Obstetrics Clinic

    E-Print Network [OSTI]

    Plumberg, Erin M.

    2013-05-31T23:59:59.000Z

    and management practices at the University of Kansas Obstetrics (KUMC OB) clinic in regard to perinatal outcomes, and adherence to recommendations from the International Association of Diabetes and Pregnancy Study Groups (IADPSG). Design: In this retrospective...

  11. SWORDS INTO PLOUGHSHARES: The Struggle to Build an Ordered Community of Liberty on the southeast Kansas Frontier 1867-1876

    E-Print Network [OSTI]

    Mack, John N.

    2009-04-21T23:59:59.000Z

    This dissertation is a study of the settlement of southeast Kansas in the years immediately following the Civil War. It begins with the first settlers who arrived in 1867 and concludes with the triumph of the settlers in ...

  12. Annual report of monitoring at Morrill, Kansas, in 2009 .

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2010-08-05T23:59:59.000Z

    In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE 2005), to monitor levels of carbon tetrachloride contamination identified in the groundwater at this site (Argonne 2004, 2005a). This report provides results for monitoring events in April and September 2009. Under the KDHE-approved monitoring plan (Argonne 2005b), groundwater was initially sampled twice yearly for a period of two years (in fall 2005, in spring and fall 2006, and in spring and fall 2007). The samples were analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The analytical results for groundwater sampling events at Morrill from September 2005 to October 2008 were documented previously (Argonne 2006a,b, 2007, 2008a,b, 2009). Those results consistently demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 risk-based screening level of 5.0 {micro}g/L for this compound, in a groundwater plume extending generally south-southeastward from the former CCC/USDA facility, toward Terrapin Creek at the south edge of the town. Low levels ({le} 1.3 {micro}g/L) of carbon tetrachloride were persistently detected at monitoring well MW8S, on the bank of an intermittent tributary to Terrapin Creek. This observation suggested a possible risk of contamination of the surface waters of the creek. That concern is the regulatory driver for ongoing monitoring. In light of the early findings, in 2006 the CCC/USDA recommended expansion of the approved monitoring program to include the collection and analysis of surface water samples along Terrapin Creek (Argonne 2006a). At the request of the KDHE (2007a), locations for both surface water and shallow sediment sampling were discussed with the KDHE in January 2007. An addendum to the existing monitoring plan (Appendix A) and a standard operating procedure (SOP AGEM-15; Appendix B) for sediment sampling were submitted to the KDHE on the basis of these discussions and were subsequently approved (KDHE 2008b). Results of sediment sampling prior to 2009 were reported previously (Argonne 2008a,b; 2009). To supplement the original scope of the monitoring, Argonne also sampled natural vegetation along Terrapin Creek in October 2006, April 2007, and July 2007 for analyses for VOCs. The results of these plant tissue analyses were reported previously (Argonne 2008a, 2009). The April and September 2009 sampling events reported here represent a continuation of the two-year monitoring program, as requested by the KDHE (2007b). The groundwater sampling is presently conducted, in accord with the monitoring plan (Argonne 2005b) and the addendum to that plan (Appendix A in this report), in a network of 12 monitoring wells and 3 private wells (Figure 1.1), at locations approved by the KDHE (2008b). The findings of the April and September 2009 monitoring events at Morrill support the following conclusions: (1) Groundwater flow during the early spring and the later part of this review period was predominantly to the south-southeast, from the vicinity of the former CCC/USDA facility toward Terrapin Creek. In late spring, a slight shift occurred toward more southerly groundwater flow (possibly southwesterly in the immediate vicinity of the intermittent tributary that flows into Terrapin Creek). This shift in the late spring reflected transient seasonal precipitation and recharge that resulted in higher groundwater levels at this time. (2) No significant changes were observed in the levels or distribution of carbon tetrachloride in the groundwater at

  13. Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane

    E-Print Network [OSTI]

    Iglesia, Enrique

    Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane Kaidong The effects of MoOx structure on propane oxidative dehydrogenation (ODH) rates and selectivity were examined with those obtained on MoOx/ZrO2. On MoOx/Al2O3 catalysts, propane turnover rate increased with increasing Mo

  14. Stratigraphic and Geographic Bryozoan Abundance Gradients in the Calcareous Shales of the Wreford Megacyclothem (Lower Permian, Kansas)

    E-Print Network [OSTI]

    Pachut, J. F.; Cuffey, Roger J.

    1999-08-01T23:59:59.000Z

    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS August 1999 Number 10 STRATIGRAPHIC AND GEOGRAPHIC BRYOZOAN ABUNDANCE GRADIENTS IN THE CALCAREOUS SHALES OF THE WREFORD MEGACYCLOTHEM (LOWER PERMIAN, KANSAS) Joseph F. Pachut and Roger J... or taphonomic processes. With minor exceptions involving the uppermost Speiser Shale and Schroyer Limestone Member of the Wreford Limestone, detrended correspondence analysis did not segregate any distinctive groupings of beds or lithologies. Speiser assemblages...

  15. Final corrective action study for the former CCC/USDA facility in Ramona, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2011-04-20T23:59:59.000Z

    Past operations at a grain storage facility formerly leased and operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Ramona, Kansas, resulted in low concentrations of carbon tetrachloride in groundwater that slightly exceed the regulatory standard in only one location. As requested by the Kansas Department of Health and Environment, the CCC/USDA has prepared a Corrective Action Study (CAS) for the facility. The CAS examines corrective actions to address groundwater impacted by the former CCC/USDA facility but not releases caused by other potential groundwater contamination sources in Ramona. Four remedial alternatives were considered in the CAS. The recommended remedial alternative in the CAS consists of Environmental Use Control to prevent the inadvertent use of groundwater as a water supply source, coupled with groundwater monitoring to verify the continued natural improvement in groundwater quality. The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) has directed Argonne National Laboratory to prepare a Corrective Action Study (CAS), consistent with guidance from the Kansas Department of Health and Environment (KDHE 2001a), for the CCC/USDA grain storage facility formerly located in Ramona, Kansas. This effort is pursuant to a KDHE (2007a) request. Although carbon tetrachloride levels at the Ramona site are low, they remain above the Kansas Tier 2 risk-based screening level (RBSL) and the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 5 {micro}g/L (Kansas 2003, 2004). In its request for the CAS, the KDHE (2007a) stated that, because of these levels, risk is associated with potential future exposure to contaminated groundwater. The KDHE therefore determined that additional measures are warranted to limit future use of the property and/or exposure to contaminated media as part of site closure. The KDHE further requested comparison of at least two corrective action alternatives to the 'no-action' alternative, as the basis for the Draft Corrective Action Decision for the site. The history and nature of the contamination and previous investigations are summarized in Section 2. Also included in Section 2 is an evaluation of human and environmental targets and potential exposure pathways. Section 3 describes the corrective action goals and applicable or relevant and appropriate requirements (ARARs). Section 4 describes four alternatives, Section 5 analyzes the alternatives in detail, and Section 6 compares the alternatives. Section 6 also includes a summary and a recommended corrective action.

  16. Annual report of monitoring at Morrill, Kansas, in 2011.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2012-07-03T23:59:59.000Z

    Carbon tetrachloride contamination in groundwater at Morrill, Kansas, was initially identified in 1985 during statewide testing of public water supply wells for volatile organic compounds (VOCs). High levels of nitrate were also present in the wells. The city of Morrill is located in Brown County in the northeastern corner of the state, about 7 mi east of Sabetha (Figure 1.1). The population of Morrill as of the 2010 Census was approximately 230 (down from 277 in 2000). All residents of Morrill now obtain their drinking water from the Sabetha municipal water system via a pipeline constructed in 1991. The findings of the April 2011 and October 2011 monitoring events at Morrill support the following conclusions: (1) Groundwater flow during the 2011 review period (as in prior years) was predominantly to the south, from the vicinity of the former CCC/USDA facility toward Terrapin Creek. Automatic water level monitoring data suggest that spring precipitation and recharge represent the predominant factors affecting the local groundwater level patterns. (2) No significant changes were observed in the concentration or distribution of carbon tetrachloride in groundwater during the spring and fall 2011 monitoring events versus the spring and fall 2010 monitoring events. In October 2011, a maximum carbon tetrachloride concentration of 49 {micro}g/L was identified in groundwater at well MW3S on the former CCC/USDA facility, with concentrations decreasing downgradient toward Terrapin Creek. (3) Since 2004, the accumulated results of 15 sampling events have demonstrated a significant decline in the maximum detected concentration of carbon tetrachloride in groundwater. In 1995, the contaminant was detected at the former CCC/USDA facility at 390 {micro}g/L, while the current maximum levels are < 50 {micro}g/L. The residual contaminant plume extending from the former CCC/USDA facility southward toward Terrapin Creek is well-defined and slowly declining in concentration naturally. (4) No carbon tetrachloride contamination was detected in 2011 in surface waters or shallow streambed sediments sampled at five locations along Terrapin Creek, downgradient from the former CCC/USDA facility. These results indicate that Terrapin Creek remains unaffected by the carbon tetrachloride plume. (5) Since 2007, the accumulated results of 10 monitoring events for surface water and sediment in Terrapin Creek have demonstrated no impact to the sediment and surface waters of the creek by carbon tetrachloride and no imminent risk for further degradation of the creek. (6) Terrapin Creek (tributary segment 308 to Walnut Creek) receives discharge from the Morrill wastewater treatment plant and several confined animal feeding operations regulated by the KDHE. The Walnut Creek watershed is designated by the KDHE as impaired by fecal coliform bacteria. Terrapin Creek is classified by the KDHE as not open to or accessible by the public for contact recreation and does not support the food procurement designated use (KDHE 2010b). (7) In July 2011, trace concentrations of carbon tetrachloride were detected in vegetation samples collected from trees at 2 of the 42 sampled locations south (downgradient) of the former CCC/USDA facility. (8) Sampling of indoor air in August 2010 to evaluate the potential for vapor intrusion into homes overlying and within 100 ft laterally of the identified carbon tetrachloride plume resulted in no detections of carbon tetrachloride. Low concentrations of chloroform, indicative of indoor air sources, were detected. Low radon levels were also detected. The results indicate no evidence of upward migration of vapors from the low-level carbon tetrachloride contamination in groundwater to indoor air.

  17. Neutron Hole States of Mo-93,95

    E-Print Network [OSTI]

    Bindal, P. K.; Youngblood, David H.; Kozub, R. L.

    1977-01-01T23:59:59.000Z

    - topes but less than half is observed for '"Mo. The hole strength distributions for l =1 and 4 are displayed in Fig. 10 for all the Mo isotopes. It is apparent from this figure that the states corres- ponding to lgg/2 2Py/2 and 2P, /, orbitals, which...

  18. Neutrino scattering off the stable even-even Mo isotopes

    SciTech Connect (OSTI)

    Balasi, K. G.; Kosmas, T. S.; Divari, P. C. [Theoretical Physics Section, University of Ioannina, GR 45110 Ioannina (Greece)

    2009-11-09T23:59:59.000Z

    Inelastic neutrino-nucleus reaction cross sections are studied focusing on the neutral current processes. Particularly, we investigate the angular and initial neutrino-energy dependence of the differential and integrated cross sections for low and intermediate energies of the incoming neutrino. The nuclear wave functions for the initial and final nuclear states are constructed in the context of the quasi-particle random phase approximation (QRPA) tested on the reproducibility of the low-lying energy spectrum. The results presented here refer to the isotopes Mo{sup 92}, Mo{sup 94}, Mo{sup 96}, Mo{sup 98} and Mo{sup 100}. These isotopes could play a significant role in supernova neutrino detection in addition to their use in double-beta and neutrinoless double-beta decay experiments (e.g. MOON, NEMO III)

  19. Common Ground - Kansas Climate and Energy Project connects with the Heartland.

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    n 2010, Lawrence Berkeley National Laboratory (LBNL) electricity-market, policy and consumer behavior expert Merrian Fuller singled out a small environmental organization in Kansas-- the Climate and Energy Project (CEP)-- as an outstanding example of how you change behavior on energy efficiency and reduce carbon emissions through an apolitical emphasis on heartland values. In the summer of 2011, a team from LBNL, seeking to capture what Fuller had featured in her report "Driving Demand for Home Energy Improvement," visited Kansas. Speaking with CEP's Nancy Jackson and Dorothy Barnett, as well as farmers, small business owners, politicians and others, the team produced this video, which shows how and why CEP has become an inspiration to other environmental organizations that are seeking to change behavior where climate-change skepticism abounds.

  20. Demonstration of resonant photopumping of Mo VII by Mo XII for a VUV laser near 600 {Angstrom}

    SciTech Connect (OSTI)

    Ilcisin, K.J.; Aumayr, F.; Schwob, J.L.; Suckewer, S.

    1993-09-01T23:59:59.000Z

    We present data of experiments on the resonant photopumping of Mo VII by Mo XII as a method of generating a coherent VUV source near 600 {angstrom}. The experiment is based on a scheme proposed by Feldman and Reader in which the 4p{sup 6} -- 4p{sup 5}6s transition in Mo VII in resonantly photopumped by the 5s {sup 2}S{sub 1/2} -- 4p {sup 2}P{sub 1/2} transition in Mo XII. Results of the laser produced plasma experiments show the successful enhancement of the population of the Mo VII 4p{sup 5}6s upper lasing level when pumped by an adjacent Mo VII plasma. No enhancement was seen in a control experiment where the Mo VII plasma was pumped by a Zr X plasma. Improvements of the intensity of the Mo XII pump source, achieved using an additional pump laser, lead to the generation of a population inversion for the VUV transition.

  1. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    Green, D.W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite G.P.

    1999-10-29T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

  2. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-11-03T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

  3. 2003 Kansas City Plant Annual Illness and Injury Surveillance Report, Revised September 2007

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-04T23:59:59.000Z

    Annual Illness and Injury Surveillance Program report for 2003 for the Kansas City Plant. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  4. EPIDEMIOLOGIC TRANSITION AMONG A NATIVE AMERICAN COMMUNITY IN KANSAS DURING THE 20TH CENTURY

    E-Print Network [OSTI]

    Corbett, Steve

    2014-05-31T23:59:59.000Z

    to work directly for the tribe as the diabetes project manager at the Prairie Band Potawatomi Health Center. Primary duties of the position included coordinating grant funded initiatives aimed at reducing the incidence and impact of diabetes... disease in 2007 and 2008, respectively. Two small grants from the Kansas Department of Health and Environment allowed for the establishment of Chronic Disease Electronic Management Systems (CDEMS) for diabetes and hypertension. CDEMS is a software...

  5. An Army of Amazons: The Language of Protest in a Kansas Mining Community

    E-Print Network [OSTI]

    Schofield, Ann M.

    1985-12-01T23:59:59.000Z

    and Warren Van Tine, John L. Lewis: A Biography (New York: Quadrangle, 1979), 115. See also Joseph Skubitz, Jr., "A History of the Development of Deep Mine Production in Crawford County and the Factors that Have Influenced It," M.S. Thesis, Kansas State... of American communities are John Benson, British Coal Mining in the Nineteenth Century: A Social History (New York: Holmes and Meier Publishers, Inc., 1980) and Michael Hanies, "Fertility, Nuptiality, and Occupation: A Study of Coal Mining Populations...

  6. EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas

    Broader source: Energy.gov [DOE]

    This EA was to evaluate the environmental impacts of a proposal to authorize the expenditure of federal funds by Cloud County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for use in their wind energy training curriculum and to provide electricity for their campus. This EA has been canceled.

  7. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    SciTech Connect (OSTI)

    Schoeling, L.G.

    1993-09-01T23:59:59.000Z

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  8. Kansas Journal of Sociology, Volume 2, Number 4 (Fall, 1966): Back Matter

    E-Print Network [OSTI]

    1966-10-01T23:59:59.000Z

    •••••••••••••••••••••••••••• State •••••••••••••••••••••Zip••••••••••• I':>.lease make checks payabl.e to the KANSAS JOURNAL OF SOCIOLOGY. -154- The Journal of SOCIAL ISSUES spesi October 1966 vei, XXII lio. 4 MAI~ISRESPO~lSETO THE PHYSICAL ENVIRONMENT Issue Editors: R.W. Kates... what you need! • • • socio logical abstracts has developed 21 information files on specific areas of interest • • • • these are: 0100 methodology- and research technology 0200 sociology: history, theory, etc. 0300 social psychology 0400 group...

  9. Final work plan : investigation of potential contamination at the former USDA facility in Powhattan, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2007-02-02T23:59:59.000Z

    This Work Plan outlines the scope of work to be conducted to investigate the subsurface contaminant conditions at the property formerly leased by the Commodity Credit Corporation (CCC) in Powhattan, Kansas (Figure 1.1). Data obtained during this event will be used to (1) evaluate potential contaminant source areas on the property; (2) determine the vertical and horizontal extent of potential contamination; and (3) provide recommendations for future action, with the ultimate goal of assigning this site No Further Action status. The planned investigation includes groundwater monitoring requested by the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the U.S. Department of Agriculture (USDA). The work is being performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. A nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy, Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. It should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Powhattan.

  10. Stewart field, Finney County, Kansas: Seismic definition of thin channel reservoirs

    SciTech Connect (OSTI)

    Montgomery, S.L.

    1996-12-01T23:59:59.000Z

    Fluvial channel sandstones of Early Pennsylvanian (Morrowan) age comprise regional reservoirs in parts of Colorado, Kansas, Texas, and Oklahoma. In southwestern Kansas, these reservoirs commonly exist at depths of 4000-5000 ft (1200-1500 m) and have reserves of 150,000-200,000 bbl of oil per well, making them highly economical. Reservoir sandstones form part of transgressive valley-fill sequences deposited within channels incised into underlying Mississippian carbonates. Thickness of the fill varies up to 60 ft (18 m), is commonly 10-30 ft (3-9 m), and displays rapid changes along channel length. As a result, detailed mapping of channel trends is difficult. Stewart field, located in Finney County, Kansas, is a good example of this type of reservoir. Maximum reservoir quality exists in very fine to fine-grained fluvial sandstones reworked by tidal action. Early attempts to extend the field to the east failed because existing two-dimensional seismic and well data did not help workers properly resolve channel orientation. A three-dimensional (3-D) seismic survey, shot prior to initiation of waterflood operations, helped (1) locate the channel between existing dry holes and (2) identify prospective locations that were then successfully drilled. Further extrapolation of the 3-D data resulted in a dry hole that established the limits of interpretation in this area. Stewart field thus provides an important case study regarding the capabilities and limitation of 3-D data in exploring the interwell frontier.

  11. Statewide plan for utilization of scrap tires in Kansas. Final report, September 1993-May 1995

    SciTech Connect (OSTI)

    Nelson, R.G.; Hossain, M.

    1995-05-01T23:59:59.000Z

    This study was conducted to determine the current and future supply of scrap tire rubber and the feasibility of using scrap tires in Kansas for various purposes. The goal was to determine if a sufficient quantity of recycled rubber existed and what the cost would be to meet the ISTEA (Intermodal Surface Transportation Efficiency Act) requirements for 1995 and thereafter. The four tasks included in the study were: surveying scrap tire utilization plans in other states; inventory scrap tires in Kansas; estimating scrap tire generation in the future; and determiming cost effectiveness of various uses of scrap tires. Currently there are 4.5 to 5.5 million scrap tires in Kansas and the annual generation of scrap tires is estimated to be 2 to 3 million. The ISTEA mandate would require an estimated 367,000 scrap tires be recycled annually. KDOT has used more rubber in 1993 and 1994 than will be required by 1997 when the 20% required by ISTEA is in effect.

  12. Solar heating and cooling system installed at Leavenworth, Kansas. Final report

    SciTech Connect (OSTI)

    Perkins, R. M.

    1980-06-01T23:59:59.000Z

    The solar heating and cooling system installed at the headquarters of Citizens Mutual Savings Association in Leavenworth, Kansas, is described in detail. The project is part of the U.S. Department of Energy's solar demonstration program and became operational in March, 1979. The designer was TEC, Inc. Consulting Engineers, Kansas City, Missouri and contractor was Norris Brothers, Inc., Lawrence, Kansas. The solar system is expected to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2200 square feet. Five, 3-ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3000 gallon chilled water storage tank. Two, 3000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  13. A novel three dimensional semimetallic MoS{sub 2}

    SciTech Connect (OSTI)

    Tang, Zhen-Kun [Beijing Computational Science Research Center, Beijing 100084 (China); Departments of Physics and Electronics, Hengyang Normal University, Hengyang 421008 (China); Zhang, Hui; Liu, Li-Min, E-mail: limin.liu@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100084 (China); Liu, Hao [Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan 610207 (China); Lau, Woon-Ming [Beijing Computational Science Research Center, Beijing 100084 (China); Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan 610207 (China)

    2014-05-28T23:59:59.000Z

    Transition metal dichalcogenides (TMDs) have many potential applications, while the performances of TMDs are generally limited by the less surface active sites and the poor electron transport efficiency. Here, a novel three-dimensional (3D) structure of molybdenum disulfide (MoS{sub 2}) with larger surface area was proposed based on first-principle calculations. 3D layered MoS{sub 2} structure contains the basal surface and joint zone between the different nanoribbons, which is thermodynamically stable at room temperature, as confirmed by first principles molecular dynamics calculations. Compared the two-dimensional layered structures, the 3D MoS{sub 2} not only owns the large surface areas but also can effectively avoid the aggregation. Interestingly, although the basal surface remains the property of the intrinsic semiconductor as the bulk MoS{sub 2}, the joint zone of 3D MoS{sub 2} exhibits semimetallic, which is derived from degenerate 3d orbitals of the Mo atoms. The high stability, large surface area, and high conductivity make 3D MoS{sub 2} have great potentials as high performance catalyst.

  14. Diffusion Barrier Selection from Refractory Metals (Zr, Mo and Nb) via Interdiffusion Investigation for U-Mo RERTR Fuel Alloy

    SciTech Connect (OSTI)

    K. Huang; C. Kammerer; D. D. Keiser, Jr.; Y. H. Sohn

    2014-04-01T23:59:59.000Z

    U-Mo alloys are being developed as low enrichment monolithic fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. Diffusional interactions between the U-Mo fuel alloy and Al-alloy cladding within the monolithic fuel plate construct necessitate incorporation of a barrier layer. Fundamentally, a diffusion barrier candidate must have good thermal conductivity, high melting point, minimal metallurgical interaction, and good irradiation performance. Refractory metals, Zr, Mo, and Nb are considered based on their physical properties, and the diffusion behavior must be carefully examined first with U-Mo fuel alloy. Solid-to-solid U-10wt.%Mo vs. Mo, Zr, or Nb diffusion couples were assembled and annealed at 600, 700, 800, 900 and 1000 degrees C for various times. The interdiffusion microstructures and chemical composition were examined via scanning electron microscopy and electron probe microanalysis, respectively. For all three systems, the growth rate of interdiffusion zone were calculated at 1000, 900 and 800 degrees C under the assumption of parabolic growth, and calculated for lower temperature of 700, 600 and 500 degrees C according to Arrhenius relationship. The growth rate was determined to be about 10 3 times slower for Zr, 10 5 times slower for Mo and 10 6 times slower for Nb, than the growth rates reported for the interaction between the U-Mo fuel alloy and pure Al or Al-Si cladding alloys. Zr, however was selected as the barrier metal due to a concern for thermo- mechanical behavior of UMo/Nb interface observed from diffusion couples, and for ductile-to-brittle transition of Mo near room temperature.

  15. Effect of Mo Dispersion Size and Water Vapor on Oxidation of Two-Phase Directionally Solidified NiAl-9Mo In-Situ Composites

    SciTech Connect (OSTI)

    Brady, Michael P [ORNL] [ORNL; Bei, Hongbin [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Tortorelli, Peter F [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Oxidation of two-phase NiAl-9Mo eutectics with 3 different growth rates/2nd phase Mo dispersion sizes were investigated at 900 C in air and air with 10% water vapor. Good oxidation resistance via alumina formation was observed in dry air, with Mo volatilization loss minimized by fine submicron Mo dispersions. However, extensive Mo volatilization and in-place internal oxidation of prior Mo phase regions was observed in wet air oxidation. Ramifications of this phenomenon for the development of multi-phase high-temperature alloys are discussed

  16. Fracture and fatigue resistance of MoSiB alloys for ultrahigh-temperature structural applications

    E-Print Network [OSTI]

    Ritchie, Robert

    Fracture and fatigue resistance of Mo­Si­B alloys for ultrahigh-temperature structural applications­Mo3Si­Mo5SiB2 alloys, which utilize a continuous a-Mo matrix to achieve unprecedented room. Introduction For applications such as aerospace engines and power generation, future advancements are limited

  17. Oxidation, Reduction, and Condensation of Alcohols over (MO3...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alcohols over (MO3)3 (MMo, W) Nanoclusters . Abstract: The reactions of deuterated methanol, ethanol, 1-propanol, 1-butanol, 2-propanol, 2-butanol and t-butanol over cyclic...

  18. Co-Mo Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Co-Mo Electric Cooperative provides rebates to residential and commercial members who install air source, dual fuel, and/or geothermal heat pumps, and certain energy efficient appliances. The...

  19. 9 Cr-- 1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27T23:59:59.000Z

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  20. Q value of the 100Mo Double-Beta Decay

    E-Print Network [OSTI]

    S. Rahaman; V. -V. Elomaa; T. Eronen; J. Hakala; A. Jokinen; J. Julin; A. Kankainen; A. Saastamoinen; J. Suhonen; C. Weber; J. Äystö

    2007-12-20T23:59:59.000Z

    Penning trap measurements using mixed beams of 100Mo - 100Ru and 76Ge - 76Se have been utilized to determine the double-beta decay Q-values of 100Mo and 76Ge with uncertainties less than 200 eV. The value for 76Ge, 2039.04(16) keV is in agreement with the published SMILETRAP value. The new value for 100Mo, 3034.40(17) keV is 30 times more precise than the previous literature value, sufficient for the ongoing neutrinoless double-beta decay searches in 100Mo. Moreover, the precise Q-value is used to calculate the phase-space integrals and the experimental nuclear matrix element of double-beta decay.

  1. Ethanol Conversion on Cyclic (MO3)3 (M = Mo, W) Clusters

    SciTech Connect (OSTI)

    Li, Zhenjun; Fang, Zongtang; Kelley, Matthew S.; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek; Dixon, David A.

    2014-03-06T23:59:59.000Z

    Oxides of molybdenum and tungsten are an important class of catalytic materials with applications ranging from isomerization of alkanes and alkenes, partial oxidation of alcohols, selective reduction of nitric oxide and metathesis of alkeness.[1-10] While many studies have focused on the structure - function relationships, the nature of high catalytic activity is still being extensively investigated. There is a general agreement that the activity of supported MOx (M = W, Mo) catalysts is correlated with the presence of acidic sites, where the catalytic activity is strongly affected by the type of oxide support, delocalization of electron density, structures of tungsten oxide domains and presence of protons

  2. Final report : results of the 2007 investigation of potential contamination at the former CCC/USDA facility in Powhattan, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-08-15T23:59:59.000Z

    The 2007 investigation of carbon tetrachloride and chloroform contamination at Powhattan, Kansas, was conducted at the request of the Kansas Department of Health and Environment (KDHE 2006a). The Environmental Science Division of Argonne National Laboratory implemented the investigation on behalf of the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The primary purposes of the investigation were to evaluate potential contaminant source areas on the former CCC/USDA property, determine the horizontal and vertical extent of potential contamination, conduct groundwater monitoring, and provide recommendations for future action.

  3. Improved oil recovery in fluvial dominated reservoirs of Kansas--near-term. Annual report

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-11-01T23:59:59.000Z

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management and (5) integrated geological and engineering analysis. Results of these two field projects are discussed.

  4. Improved Oil Recovery In Fluvial Dominated Deltaic Reservoirs of Kansas - Near Term

    SciTech Connect (OSTI)

    Green, Don W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-01-14T23:59:59.000Z

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these types of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  5. Interim measure conceptual design for remediation of source area contamination at Agra, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2007-07-31T23:59:59.000Z

    This document presents a conceptual design for the implementation of a non-emergency interim measure (IM) at the site of the grain storage facility formerly operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Agra, Kansas. The IM is recommended to mitigate localized carbon tetrachloride contamination in the vadose zone soils at the former CCC/USDA facility and eliminate ongoing soil-to-groundwater contamination. The objectives of this IM conceptual design report include the following: 1. Obtain written acknowledgement from the Kansas Department of Health and the Environment (KDHE) that remediation on the former CCC/USDA property is required. 2. Provide information (IM description, justification for the IM, and project schedule) that the KDHE can include in a pending fact sheet. 3. Obtain KDHE approval for the IM conceptual design, so that the CCC/USDA can initiate a formal request for access to the privately owned property and proceed with preparation of a remedial design plan (RDP). Investigations conducted on behalf of the CCC/USDA by Argonne National Laboratory (Argonne 2006) have demonstrated that soil and groundwater at the Agra site are contaminated with carbon tetrachloride. The levels in groundwater exceed the Kansas Tier 2 Risk-Based Screening Level (RBSL) and the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 5.0 {micro}g/L for this compound. The soil and groundwater contamination identified at the former CCC/USDA facility currently poses no unacceptable health risks.

  6. IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2

    SciTech Connect (OSTI)

    Timothy R. Carr; Don W. Green; G. Paul Willhite

    2000-04-30T23:59:59.000Z

    This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small independent producer to identify efficiently candidate reservoirs and also to predict the performance of horizontal well applications.

  7. Kansas Public radio Ticket Giveaway E-blast, 2012-2015

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    ," "Getting to Know You," "Hello Young Lovers," and "Shall We Dance." CLICK HERE to enter. Heather Styka, Saturday, June 14, 7:30 p.m., in Topeka When listeners describe singer-songwriter Heather Styka as an "old soul," the term applies to more than... in search of answers. From Kansas City Rep's new playwright-in-residence Nathan Louis Jackson. Winner can choose which performance to attend. CLICK HERE to enter. Bela Fleck, 8 p.m., Saturday, Feb. 15, Stiefel Theatre in Salina Banjoists Béla Fleck...

  8. Automated accountability of hazardous materials at AlliedSignal Inc., Kansas City Division

    SciTech Connect (OSTI)

    Depew, P.L.

    1993-12-01T23:59:59.000Z

    The Department of Energy`s (DOE) Kansas City Plant (KCP), currently operated by AlliedSignal Inc. has developed a comprehensive Hazardous Material Information System (HMIS). The purpose of this system is to provide a practical and automated method to collect, analyze and distribute hazardous material information to DOE, KCP associates, and regulatory agencies. The drivers of the HMIS are compliance with OSHA Hazard Communications, SARA reporting, pollution prevention, waste minimization, control and tracking of hazards, and emergency response. This report provides a discussion of this system.

  9. A History of the Social Phases of the Temperance Movement in Kansas

    E-Print Network [OSTI]

    Lacy, Lester D.

    1916-01-01T23:59:59.000Z

    staff in the KU Libraries’ Center for Digital Scholarship. http://kuscholarworks.ku.edu S u b m i t t e d t o t h e D e p a r t m e n t o f Sociology and the Faculty of the Graduate School in part ial ful f i l lment of the requirements... Riot. (3) The First Laws. (4) A Petition to the Topeka Movement. (5) The First Liquor Vote in Lawrence, (6) The Liquor Law of 1859. (7) How the Liquor Business Fared under the License Lav;. (8) The First Temperance Organization in Kansas. (9...

  10. Argentine, Kansas: The Evolution of a Mexican American Community, 1905-1940

    E-Print Network [OSTI]

    Laird, Judith Fincher

    1975-10-01T23:59:59.000Z

    . Gilmore end Theodore Wilson, further facilitated my training and research. Finally, 1 wish to thank my husband, Larry, for his penetrating critique of my work and his loving support* TABLE OF C O M T E N T S Page PREFACE il TABLE OF CONTENTS * v...'s Mexican population and that of other Mexican enclaves in Kansas City, as well as to Mexican-American bar- rios elsewhere in the United States. This study argues that w a v e s of immigration to Argen- tine varied in composition, largely because...

  11. EPA RE-Powering America's Lands: Kansas City Municipal Farm Site -- Biomass Power Analysis

    SciTech Connect (OSTI)

    Hunsberger, R.; Mosey, G.

    2015-01-01T23:59:59.000Z

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing biomass at the Kansas City, Missouri, Municipal Farm site, a group of City-owned properties, is explored. The study that none of the technologies we reviewed--biomass heat, power and CHP--are economically viable options for the Municipal Farms site. However, if the site were to be developed around a future central biomass heating or CHP facility, biomass could be a good option for the site.

  12. Kansas City, Missouri, Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report: I11IG002RTC3 |JulianProject PhaseKansas City,

  13. MoSe2 thin films synthesized by solid state reactions between Mo and Se J. Pouzet (1) and J. C. Bernede (2)

    E-Print Network [OSTI]

    Boyer, Edmond

    807 MoSe2 thin films synthesized by solid state reactions between Mo and Se thin films J. Pouzet (1 reaction, induced by annealing, between the Mo and Se constituents in thin films form. The films have been thin films annealed under selenium pressure at only 770 K are well crystallized. The electrical

  14. Coated U(Mo) Fuel: As-Fabricated Microstructures

    SciTech Connect (OSTI)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01T23:59:59.000Z

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  15. Comparative Water Law and Management: The Yellow River Basin In Western China and the State of Kansas In the Western United States

    E-Print Network [OSTI]

    Griggs, Burke W.; Peck, John C.; Yupeng, Xue

    2009-01-01T23:59:59.000Z

    @BCL@A8059DC2.DOC (DO NOT DELETE) 8/17/2009 7:50 AM 428 COMPARATIVE WATER LAW AND MANAGEMENT: THE YELLOW RIVER BASIN IN WESTERN CHINA AND THE STATE OF KANSAS IN THE WESTERN UNITED STATES Burke W. Griggs Counsel, Division of Water Resources... Kansas Department of Agriculture John C. Peck Professor of Law, University of Kansas School of Law Special Counsel, Foulston Siefkin, LLP Xue Yunpeng Deputy Division Chief / Senior Engineer Department of Water Resources Management and Regulation Yellow...

  16. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near-term. Quarterly report, January 1--March 31, 1998

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; McCune, D.; Reynolds, R.; Michnick, M.; Watney, L.

    1998-04-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. Progress is described for the Stewart field on the following tasks: design/construct waterflood plant; design/construct injection system; design/construct battery consolidation and gathering system; waterflood operations and reservoir management; and technology transfer. Progress for the Savonburg Field includes: water plant development; profile modification treatments; pattern changes and wellbore cleanup; reservoir development (polymer flooding); field operations; and technology transfer.

  17. A Case Study of American Bicycle Culture: How Cycling to Work Works in a Small Town in Kansas

    E-Print Network [OSTI]

    Rodriguez, Carolina

    2011-08-31T23:59:59.000Z

    reports on the results of a case study aimed at understanding how a small group of bicyclists make it work in a small military town in Kansas. The cyclists interviewed make it work by committing to biking to work, planning their lives around cycling...

  18. Carbon Sequestration in Turfgrass: An Eco-Friendly Benefit of Your Lawn Dale Bremer, Kansas State University

    E-Print Network [OSTI]

    1 Carbon Sequestration in Turfgrass: An Eco-Friendly Benefit of Your Lawn Dale Bremer, Kansas State read this have no doubt heard of carbon sequestration and may even be well versed on the topic. Others't the slightest clue about carbon sequestration and others may not even care. After all, what does carbon

  19. Empirical Assessment of Shareholder Incentive Mechanisms Designs under Aggressive Savings Goals: Case Study of a Kansas"Super-Utility"

    SciTech Connect (OSTI)

    Cappers, Peter; Goldman, Charles

    2009-08-03T23:59:59.000Z

    Achieving significant reductions in retail electric sales is becoming a priority for policymakers in many states and is echoed at the federal level with the introduction of legislation to establish a national energy efficiency resource standard. Yet, as the National Action Plan on Energy Efficiency (NAPEE) pointed out, many utilities continue to shy away from seriously expanding their energy efficiency program offerings because they claim there is insufficient profit motivation, or even a financial disincentive, when compared to supply-side investments. In response to an information request from the Kansas Corporation Commission staff, we conducted a financial analysis to assess the utility business case in Kansas for pursuing more aggressive energy efficiency that complies with recent state legislation. Kansas' utilities are vertically integrated and don't face retail competition. With historically low retail rates and modest experience with energy efficiency, the achievement of rapid and substantial sales reductions from energy efficiency will require a viable utility business model. Using a conglomerate of the three largest utilities in Kansas, we quantitatively illustrate the tradeoff between ratepayer and shareholder interests when a 1percent reduction in incremental sales is achieved through energy efficiency both with and without the impact of future carbon regulation. We then assess if the utility can be compensated in a manner that produces a sufficient business case but leaves an adequate amount of net resource benefits for ratepayers at a cost that is not overly burdensome. Finally, we show how several common shareholder incentive mechanisms would be designed to achieve this balance.

  20. Multiphonon resonant Raman scattering in MoS{sub 2}

    SciTech Connect (OSTI)

    Go?asa, K., E-mail: Katarzyna.Golasa@fuw.edu.pl; Grzeszczyk, M.; Wysmo?ek, A.; Babi?ski, A. [Faculty of Physics, University of Warsaw, ul. Ho?a 69, 00-681 Warszawa (Poland); Leszczy?ski, P.; Faugeras, C.; Nicolet, A. A. L.; Potemski, M. [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, 25, avenue des Martyrs, 38042 Grenoble (France)

    2014-03-03T23:59:59.000Z

    Optical emission spectrum of a resonantly (??=?632.8?nm) excited molybdenum disulfide (MoS{sub 2}) is studied at liquid helium temperature. More than 20 peaks in the energy range spanning up to 1400?cm{sup ?1} from the laser line, which are related to multiphonon resonant Raman scattering processes, are observed. The attribution of the observed lines involving basic lattice vibrational modes of MoS{sub 2} and both the longitudinal (LA(M)) and the transverse (TA(M) and/or ZA(M)) acoustic phonons from the vicinity of the high-symmetry M point of the MoS{sub 2} Brillouin zone is proposed.

  1. Identification of phases in the interaction layer between U-Mo-Zr/Al and U-Mo-Zr/Al-Si

    SciTech Connect (OSTI)

    Varela, C.L. Komar; Arico, S.F.; Mirandou, M.; Balart, S.N. [Departamento Materiales, GIDAT, GAEN, CNEA, Avda. Gral Paz 1499, B1650KNA, San Martin (Argentina); Gribaudo, L.M. [Departamento Materiales, GIDAT, GAEN, CNEA, Avda. Gral Paz 1499, B1650KNA, San Martin (Argentina); CONICET, Avda. Rivadavia 1917, C1033AAJ, Buenos Aires (Argentina)

    2008-07-15T23:59:59.000Z

    Out-of-pile diffusion experiments were performed between U-7wt.% Mo-1wt.% Zr and Al or Al A356 (7,1wt.% Si) at 550 deg. C. In this work morphological characterization and phase identification on both interaction layer are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-Ray diffraction and WDS microanalysis. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. In the interaction layer U-7wt.% Mo-1wt.% Zr/Al A356, the phases U(Al, Si) with 25at.% Si and Si{sub 5}U{sub 3} were identified. This last phase, with a higher Si concentration, was identified with XRD Synchrotron radiation performed at the National Synchrotron Light Laboratory (LNLS), Campinas, Brasil. (author)

  2. Hydrotreatment of Athabasca bitumen derived gas oil over Ni-Mo, Ni-W, and Co-Mo catalysts

    SciTech Connect (OSTI)

    Diaz-Real, R.A.; Mann, R.S.; Sambi, I.S. (Univ. of Ottawa, Ontario (Canada). Dept. of Chemical Engineering)

    1993-07-01T23:59:59.000Z

    The hydrotreatment of Athabasca bitumen derived heavy gas oil containing 4.08% S and 0.49% N was carried out in a trickle bed reactor over Ni-W, Ni-Mo, and Co-Mo catalysts supported on zeolite-alumina-silica at 623-698 K, LHSV of 1-4, gas flow rate 890 m[sup 3][sub H2]/m[sup 3][sub oil] (5,000 sef/bbl), and pressure of 6.89 MPa. Analyses for viscosity, density, aniline point, ASTM mid boiling point distillation, C/H ratio, and percentage of N and S in the final product were carried out to characterize the product oil. The amounts of N and S removed indicated the hydrodenitrogenation and hydrodesulfurization activity of the catalysts. Results of zeolite-alumina-silica-supported catalysts are compared to those obtained with commercially available Ni-Mo, Ni-W, and Co-Mo on [gamma]-alumina. Ni-Mo supported on zeolite-alumina-silica was most active and could remove as much as 99 % S and 89% N present in the oil at 698 K. The data for HDN and HDS fitted the pseudo first order model. The kinetic model is described in detail.

  3. Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study; NREL's Technical Assistance to Greensburg, June 2007-May 2009 (Report and Appendices)

    SciTech Connect (OSTI)

    Billman, L.

    2009-11-01T23:59:59.000Z

    This comprehensive case study describes technical assistance provided by NREL to help Greensburg, Kansas, rebuild as a green community after an EF-5 tornado nearly leveled the town in 2007.

  4. Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study; NREL's Technical Assistance to Greensburg, June 2007-May 2009; Appendices

    Office of Energy Efficiency and Renewable Energy (EERE)

    This comprehensive case study describes technical assistance provided by NREL to help Greensburg, Kansas, rebuild as a green community after an EF-5 tornado nearly leveled the town in 2007.

  5. Structure And Radiation Damage Behavior Of Epitaxial CrxMo1-x...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    And Radiation Damage Behavior Of Epitaxial CrxMo1-x Alloy Thin Films On MgO. Structure And Radiation Damage Behavior Of Epitaxial CrxMo1-x Alloy Thin Films On MgO. Abstract:...

  6. Adsorption of Potassium on the MoS2(100) Surface: A First-Principles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potassium on the MoS2(100) Surface: A First-Principles Investigation. Adsorption of Potassium on the MoS2(100) Surface: A First-Principles Investigation. Abstract: Periodic density...

  7. High Capacity MoO3 Nanoparticle Li-Ion Battery Anode

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy functional were employed.) 10 AccomplishmentStatus Theoretical changes in Li-ion intercalated -MoO 3 Mo Li O * Four Li inserted in a theoretical nanoparticle. * 9 ps...

  8. Domestic production of medical isotope Mo-99 moves a step closer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Domestic production of medical isotope Mo-99 Domestic production of medical isotope Mo-99 moves a step closer Irradiated uranium fuel has been recycled and reused for molybdenum-99...

  9. Final report : results of the 2007 targeted investigation at Hilton, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-04-29T23:59:59.000Z

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility in Hilton, Kansas, in 1954-1965. In 1992, carbon tetrachloride was first identified, at a concentration of 910 {micro}g/L, in groundwater from well GW01 at Hilton. This discovery occurred in association with the sale of the private grain storage facility on which well GW01 is located to the current owner, the Mid-Kansas Cooperative Association. The Kansas Department of Health and Environment conducted investigations at Hilton in 1992-1994. In 1996-1997, Argonne National Laboratory conducted Phase I and Phase II investigations on behalf of the CCC/USDA to characterize the distribution of the carbon tetrachloride contamination identified in well GW01, the stratigraphic units potentially hosting contaminant migration, and local hydrogeology in the Hilton area. The 2007 targeted investigation reported here focused specifically on the former CCC/USDA property at Hilton, west of the railroad tracks. (Until a property record search in 2005, the location of the CCC/USDA's former facility at Hilton was not known with certainty.) The objectives of the investigation, as implemented, were to (1) investigate for carbon tetrachloride contamination in the shallower soil and shallow aquifer units below the former CCC/USDA property and (2) investigate groundwater flow patterns. The key results of the 2007 targeted investigation are as follows: (1) No carbon tetrachloride or chloroform contamination was found in soil or groundwater below the former CCC/USDA facility. (2) The 2007 groundwater level data support a southwesterly direction for groundwater flow in the main Hilton aquifer (Equus Beds), consistent with findings of previous investigations. Contaminated well GW01 was confirmed to be upgradient from the former CCC/USDA facility. (3) The contaminants carbon tetrachloride, chloroform, and 1,2-dibromoethane (ethylene dibromide) were found in groundwater only at well GW01. No evidence of contamination was found in other monitoring wells and piezometers. This pattern is consistent with findings of previous investigations. The findings of the 2007 targeted investigation clearly demonstrate that the former CCC/USDA facility at Hilton was not the source of the carbon tetrachloride contamination persistently detected in well GW01. Well GW01 is approximately 300 ft upgradient from the former CCC/USDA facility. This well is the only sampling location at Hilton where carbon tetrachloride contamination in groundwater has ever been identified. The CCC/USDA never operated grain storage facilities on the property on which well GW01 is located.

  10. Corrosion report for the U-Mo fuel concept

    SciTech Connect (OSTI)

    Henager, Jr., Charles H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (US); Bennett, Wendy D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (US); Doherty, Ann L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (US); Fuller, E. S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (US); Hardy, John S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (US); Omberg, Ronald P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (US)

    2014-08-28T23:59:59.000Z

    The Fuel Cycle Research and Development (FCRD) program of the Office of Nuclear Energy (NE) has implemented a program to develop a Uranium-Molybdenum (U-Mo) metal fuel for Light Water Reactors (LWR)s. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties, which includes high thermal conductivity for less stored heat energy. With sufficient development, it may be able to provide the Light Water industry with a melt-resistant accident tolerant fuel with improved safety response. However, the corrosion of this fuel in reactor water environments needs to be further explored and optimized by additional alloying. The Pacific Northwest National Laboratory has been tasked with performing ex-reactor corrosion testing to characterize the performance of U-Mo fuel. This report documents the results of the effort to characterize and develop the U-Mo metal fuel concept for LWRs with regard to corrosion testing. The results of a simple screening test in buffered water at 30°C using surface alloyed U-10Mo is documented and discussed. The screening test was used to guide the selection of several potential alloy improvements that were found and are recommended for further testing in autoclaves to simulate PWR water conditions more closely.

  11. MO"BIUS-INVARIANT KNOT ENERGIES R.B. KUSNER

    E-Print Network [OSTI]

    Sullivan, John M.

    for divergence-free vector fields which arise in modeling incompressible fluid flow.6,7These new knot energies MO"BIUS-INVARIANT KNOT ENERGIES R.B. KUSNER, Urbana, IL, USA 61801-2975 There has been recent interest in knot energies among mathematicians

  12. MO"BIUS-INVARIANT KNOT ENERGIES R.B. KUSNER

    E-Print Network [OSTI]

    for divergence-free vector fields which arise in modeling incompressible fluid flow.? These new knot energies may MO"BIUS-INVARIANT KNOT ENERGIES R.B. KUSNER, Urbana, IL, USA 61801-2975 There has been recent interest in knot energies among mathematicians

  13. Introduction THE YERINGTON DISTRICT, Nevada, contains porphyry Cu(Mo),

    E-Print Network [OSTI]

    Barton, Mark D.

    55 Introduction THE YERINGTON DISTRICT, Nevada, contains porphyry Cu(Mo), Cu skarn, Fe oxide with the Jurassic Yerington batholith, which serves as either host rock or as source for heat and ma- terials of the Yerington Porphyry Copper District: Magmatic to Nonmagmatic Sources of Hydrothermal Fluids, Their Flow Paths

  14. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    SciTech Connect (OSTI)

    A. Walton; Don W. Green; G. Paul Whillhite; L. Schoeling; L. Watney; M. Michnick; R. Reynolds

    1997-07-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are 1) reservoir management and performance evaluation, 2) waterflood optimization, and 3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included 1) reservoir characterization and the development of a reservoir database, 2) volumetric analysis to evaluate production performance, 3) reservoir modeling, 4) laboratory work, 5) identification of operational problems, 6) identification of unrecovered mobile oil and estimation of recovery factors, and 7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were 1) geological and engineering analysis, 2) laboratory testing, and 3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were 1) design and construction of a waterflood plant, 2) design and construction of a water injection system, 3) design and construction of tank battery consolidation and gathering system, 4) initiation of waterflood operations and reservoir management, and 5) technology transfer. Tasks 1-3 have been completed and water injection began in October 1995. In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included 1) reservoir characterization and the development of a reservoir database, 2) identification of operational problems, 3) identification of near wellbore problems such as plugging caused from poor water quality, 4) identification of unrecovered mobile oil and estimation of recovery factors, and 5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells). To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included 1) geological and engineering analysis, 2) waterplant optimization, 3) wellbore cleanup and pattern changes, and 4) field operations. This work was completed and the project has moved into Budget Period 2. The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period is subdivided into six major tasks. The tasks were 1) waterplant development, 2) profile modification treatments, 3) pattern changes, new wells and wellbore cleanups, 4) reservoir development (polymer flooding), 5) field operations, and 6) technology transfer.

  15. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas Near Term

    SciTech Connect (OSTI)

    Green, D.W.; Willhlte, C.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1997-04-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period I involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were (1) design and construction of a waterflood plant, (2) design and construction of a water injection system, (3) design and construction of tank battery consolidation and gathering system, (4) initiation of waterflood operations and reservoir management, and (5) technology transfer. In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems such as plugging caused from poor water quality, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells). To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included (1) geological and engineering analysis, (2) waterplant optimization, (3) wellbore cleanup and pattern changes, and (4) field operations. This work was completed and the project has moved into Budget Period 2. The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period was subdivided into six major tasks. The tasks were (1) waterplant development, (2) profile modification treatments, (3) pattern changes, new wells and wellbore cleanups, (4) reservoir development (polymer flooding), (5) field operations, and (6) technology transfer.

  16. Radionuclide site survey report, Ashland, Kansas (RN-74). Final technical report

    SciTech Connect (OSTI)

    Walker, F.; Lucas, J.; Owen, M.; McKethan, E.M.; MacCartney, J.

    1999-01-07T23:59:59.000Z

    The purpose of this report is to validate that the Ashland, Kansas site will fulfill treaty requirements as set forth by the Preparatory Commission for the Comprehensive Test Ban Treaty Organization. The team performing the site survey followed accepted scientific methods in collecting air and soil samples near the proposed site. The samples were analyzed by the McClellan Central Laboratory and the results forwarded to AFTAC/TM for review. The team included meteorological and technical staff. Possible sources of radionuclides were examined, as well as meteorological conditions that might affect the validity of recorded data at the site. All necessary background information required by the Commission was researched and is included in the report. The analysis of the samples identifies all radionuclide isotopes and their sources that might affect future samples at the site. There are no significant findings that would prevent this site from meeting treaty requirements.

  17. Stratigraphic architecture of the Tonganoxie Paleovalley Fill (Lower Virgilian) in Northeastern Kansas

    SciTech Connect (OSTI)

    Feldman, H.R. [Kansas Geological Survey, Lawrence, KS (United States); Gibling, M.R.; Wightman, W.G. [Dalhousie Univ., Nova Scotia (Canada)] [and others

    1995-07-01T23:59:59.000Z

    Lower Pennsylvanian paleovalley-confined sandstones are important petroleum reservoirs in the Midwest. In Kansas, such reservoirs have produced approximately 220 million bbl of oil and 1.7 tcf of gas. Valley-fill successions tend to become muddy upward, but there can be considerable local heterogeneity in which reservoir sandstones pass laterally into muddy sandstones or nonreservoir shales. The lack of understanding of this reservoir heterogeneity can lead to low drilling success rates. The Tonganoxie paleovalley (Upper Pennsylvanian, northeastern Kansas) contains facies very similar to Lower Pennsylvanian (Morrowan) valley fills, and can provide an outcrop- and subsurface-based model of sandstone deposition. The Tonganoxie paleovalley was incised during lowered sea level and filled during the subsequent transgression. Sandstones occur in four distinct architectural elements that were deposited during different phases of transgression. Type I sandstone consists of a belt of sandstone and conglomerate 3-18 m thick and confined to the trunk valley and wider portions of tributary valleys. Type I sandstone consists of amalgamated channel fills, has little or no mud, and has the highest porosity and permeability. The type I sandstone is overlain by estuarine deposits of sandstone (type II sandstones), rippled argillaceous sandstone to sandy mudstone, and coal. Most of the paleovalley was filled during this stage. The type II sandstones are narrow (1.5 km wide) arcuate bodies up to 8 km long and were likely deposited in tidal point bars near the fluvial to tidal transition, are either isolated sandstone bodies or are incised into type I sandstone. Type III sandstone bodies occur at the upstream limits of narrow tributaries and are probably bay-head deltas. Well logs indicate a range of mud content. Type IV sandstone is a thin (3 m) discontinuous sheet of marine sandstone deposited after most of the paleovalley had been filled.

  18. Tectonic history and analysis of structures in eastern Kansas and western Missouri

    SciTech Connect (OSTI)

    Berendsen, P.; Wilson, F.W. (Univ. of Kansas, Lawrence, KS (United States). Kansas Geological Survey)

    1993-03-01T23:59:59.000Z

    Orogenic events in and around the midcontinent in Proterozoic time were responsible for the formation of the dominant master set of younger northeast- and older northwest-trending faults that dominate the structure of the area today. Reactivation of these faults throughout geologic time gave rise to tectonic zones consisting of sets of anastomosing faults or other complex patterns. These zones are likely important in helping to determine the configuration of major uplifts and basins that involve the crust. The Nemaha tectonic zone defines the western boundary of both the Forest City and Cherokee basins, while a structural block delineated by the Chesapeake and Bolivar-Mansfield regional faults coincides with the approximate position of the Bourbon Arch, which is reflected in the thickness of Mississippian carbonate rocks. Rocks of the Ozark uplift began to be uplifted by the end of Maquoketa time. The uplift has historically been described as a landform, rather than a geologic structure. Hence, the extent and the boundaries of the uplift are ill-defined. The northeast-trending line forming the contact between Mississippian and Pennsylvanian rocks is commonly regarded as the western boundary. This boundary coincides with a major tectonic zone, extending northeastward from Oklahoma through Kansas and Missouri into at least southern Iowa. In the Tri-State area of Kansas, Oklahoma, and Missouri the zone is referred to as the Miami trough and features prominently in the localization of major ore deposits. This zone may then also be regarded as the eastern boundary of the Forest City and Cherokee basins.

  19. Naturally occurring hydrogen gas from a borehole on the western flank of Nemaha anticline in Kansas

    SciTech Connect (OSTI)

    Goebel, E.D.; Coveney, R.M. Jr.; Angino, E.E.; Zeller, E.

    1983-08-01T23:59:59.000Z

    Since August 1982, the CFA 1 Scott well in Sec. 20, T14S, R6E, Morris County, Kansas, located about 14 mi (23 km) south of Junction City, has yielded a gas composed of 50 +/- 10% free hydrogen, 50 +/- 10% nitrogen, and only traces of hydrocarbons. This analysis has been ascertained by gas chromatography and mass spectrography of samples taken over a period of 6 months. The reservoir rock is a Kinderhook sand from 2176 to 2196 ft (663 to 669m) depth. The gas samples analyzed are accumulating in the head space above a fluid level (salt water) of 1805 ft (550m) from a botton-hole depth of 2197 ft (670m). The Scott well is located on the western flank of the complexly faulted Nemaha anticline, updip from the central North American rift system and 30 mi (48 km) south of Riley County where serpentinized kimberlites occur. The geothermal gradient is 30/sup 0/C/km (87/sup 0/F/mi). Basement rock beneath the well is granite, probably overlying deeply buried magnetic rocks. No single mechanism is responsible solely for generating this H/sub 2/-rich gas from the Scott well; rather, a combination of fortuitous geologic and possibly biologic processes are contributing in various proportions to the production of the H/sub 2/ and N/sub 2/. Conceivably, the local geologic setting merely is circumstantial and unrelated to the genesis of the gases. However, in view of its spatial association with the central North American rift Zone, a major geologic feature with similarity to the East Pacific Rise, the Kansas gas occurrence warrants additional study.

  20. Depositional environments of Wood Siding Formation and Onaga Shale (Pennsylvanian-Permian), northeast Kansas

    SciTech Connect (OSTI)

    Bisby, C.G.

    1987-05-01T23:59:59.000Z

    The eastern Kansas sedimentary deposits of the Wood Siding Formation and the Onaga Shale are recognized as products of Late Pennsylvanian-Early Permian cyclic sedimentation. Reconstruction of depositional events associated with the units is important in understanding cyclic sedimentation in the Mid-Continent. In Kansas, the Wood Siding Formation-Onaga Shale outcrop belt trends nearly parallel to the Nemaha anticline in an approximately northeast-southwest direction. Detailed field studies of 26 stratigraphic sections (nine measured and described in detail) in the northeastern part of this belt provide the basis for interpretation of the depositional environments of the two formations. Results of this study indicate that variations in water depth/distance from shore, controlled by late Paleozoic structural features and eustatic sea level changes, were the major factors controlling sedimentation. On the basis of lithologic and paleontologic characteristics, four fifth-order transgressive-regressive (T-R) units, with periodicities of 300,000 to 500,000 years, have been identified within the Wood Siding Formation and the Onaga Shale. At least five sixth-order T-R units, with periodicities of 50,000 to 130,000 years or less, have also been identified within the two formations. The boundaries between sixth-order T-R units are represented by thin, laterally persistent marine units or by climate change surfaces. Paleogeographic reconstructions, based on the correlation of sixth-order T-R units, provide strong evidence for a northeast-southwest-trending shoreline during Wood Siding-Onaga time. The most marine sedimentary rocks are in the southern part of the study area and contain a diverse marine fossil assemblage. Channel facies with pyritized and coalified plant fossils are more common in the northern part of the outcrop belt and suggest marshy to swampy depositional conditions.

  1. Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-08-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

  2. The growth and characterization of LiGd?(Mo0?)? single crystals

    E-Print Network [OSTI]

    Reimund, James Allyn

    1981-01-01T23:59:59.000Z

    ' C/second 37 Pyroelectric Current vs. Temperature dT/dt = 30' C/second 180' Domains (Gd (MoO ) ) 37 39 INTRODUCTION This thesis discusses the growth and some single crystalline properties of lithium-gadolinium-molybdate of the type LiGd (Mo...O ) 3 45' This compound is one of the three thus far discovered compounds of the lithium ? gadolinium-molybdate (LGMO) system. In general, this system can be expressed as Li2Mo04. XGd2(Mo04)3, where LiGd3(MoO, )5 4 5 single crystals synthesize when X...

  3. Interior Foundation Insulation Upgrade-Minneapolis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry15Among States in

  4. Minneapolis, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanet Name:I &

  5. Minneapolis, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc JumpFinancing Mechanisms JumpMiniJump

  6. Category:Minneapolis, MN | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformationCashtonGo Back toFL" The following

  7. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - near-term. Quarterly report, April 1 - June 30, 1996

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-07-01T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites, Stewart Field, and Savonburg Field, operated by different independent oil operators are involved in this project. General topics to be addressed are: (1) reservoir management and performance evaluation; (2) waterflood optimization; and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. For the Stewart Field project, work is summarized for the last quarter on waterflood operations and reservoir management. For the Savonburg Field project, work on water plant development, and pattern changes and wellbore cleanup are briefly described.

  8. Kansas State University DOE/KEURP Site Operator Program. Year 2, Second quarter report, October 1--December 31, 1992

    SciTech Connect (OSTI)

    Hague, J.R.; Steinert, R.A.; Nissen-Pfrang, T.; Maier, M.A.

    1992-12-31T23:59:59.000Z

    This concludes the sixth quarter that Kansas State University has been under contract to the US Department of Energy and the Kansas Electric Utility Research Program to demonstrate electric vehicle technology. The G-Van continues to perform within acceptable limits, although the batteries and the charger have caused some problems. Dave Harris, Chloride, has been working with K-State to correct these problems. It may very well be that the limited mileage (less than 25 miles) can be increased by extending the charge cycle (overcharging) the batteries. Soleq Corp. has failed to deliver contracted vehicles. A dual shaft electric propulsion minivan, built by Eaton Corp. in 1987, will be shipped here. On the infrastructure side, EHV Corp. is developing curbside and home charging stations.

  9. Structure of the southern Keweenawan rift from COCORP surveys across the Midcontinent Geophysical Anomaly in northeastern Kansas

    E-Print Network [OSTI]

    Serpa, L.; Setzer, T.; Farmer, H.; Brown, L.; Oliver, J.; Kaufman, S.; Sharp, J.; Steeples, Don W.

    1984-06-01T23:59:59.000Z

    survey also provided information on other aspects of the cratonic basement, such as the struc- ture of the Nemaha ridge and the distribu- tion of major horizons within the deep crust. These subjects are mentioned here but are discussed more... they may provide additional information on the nature of crustal rocks [L. Serpa, manu- Serpa et al.: Structure of Southern Keweenawan Rift 371 KANSAS LI -80 west Nemaha Uplift Big Springs vp no 2000 4 3 0  1000  2 o  ; --'r...

  10. BETTY ANN TITTLE TATTLE REPRODUCES THE UPPER CLASS: GENDER AND BOUNDARY WORK IN KANSAS CITY, 1924-1934

    E-Print Network [OSTI]

    Perry, Nicole Kristin

    2008-01-01T23:59:59.000Z

    than they did men's, reflecting power inequalities within Kansas City's upper class. Theory As I will argue, upper-class women drew moral boundaries against people from other classes in order to justify the exclusivity of elite organizations... through these networks; (3) economic capital, or wealth; and (4) symbolic capital, or "the power to 5 define the worth and legitimacy of various kinds of capital" (Beisel 1997: 214). Individuals and families attempt to maximize their holdings...

  11. Paleoecology and depositional environment of Fort Hays Limestone Member, Niobrara Chalk (Upper Cretaceous), west-central Kansas

    E-Print Network [OSTI]

    Frey, R. W.

    1972-05-12T23:59:59.000Z

    of the Sigma Xi, and Indiana University. STRATIGRAPHY AND PETROGRAPHY PHYSICAL STRATIGRAPHIC SETTING The Niobrara Chalk, as presently defined, is the uppermost formation of the Colorado Group (Zeller, 1968, pl. 1). Units of this group comprise about 900 ) feet... each unit of the Colorado Group. It may therefore be present at any stratigraphie level of the Niobrara. In west-central Kansas the Ogallala has been stripped away by erosion along the major stream valleys, except for scattered lag deposits...

  12. Kansas Air Quality Act (Kansas)

    Broader source: Energy.gov [DOE]

    No person shall construct, own, operate, install, alter or use any air contaminant emission stationary source which, in accordance with rules and regulations, the secretary finds may cause or...

  13. Kansas Air Quality Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    All new air contaminant emission sources or alterations to emission sources that are required to be reported shall be in compliance with all applicable emission control regulations at the time that...

  14. Technical action plan at former Commodity Credit Corporation grain storage sites in Nebraska, Kansas, Iowa, and Missouri. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This document has been prepared for the Commodity Credit Corporation of the US Department of Agriculture (CCC/USDA), to provide an outline for a multiyear plan for technical investigations at sites in Kansas and Nebraska that have been identified as having groundwater contamination. Carbon tetrachloride is the primary contaminant of concern at sites in Nebraska and Kansas where former CCC/USDA grain storage facilities were located. At this time, no former CCC/USDA grain bin sites in Iowa and Missouri have been determined to have contamination at or above the maximum concentration level (MCL). This document represents a second revision to an original plan proposed by the CCC/USDA in January 1992 (Technical Action Plan at Former Commodity Credit Corporation Grain Storage Sites in Nebraska and Kansas). The CCC/USDA recognizes the need to address the reported groundwater contamination problems in a timely manner. Doing so will protect public drinking water supplies, public health, and the environment. To address these groundwater contamination problems, the CCC/USDA has committed and continues to commit resources and funding to investigate the contaminated sites further.

  15. Final report : results of aquifer pumping and groundwater sampling at Everest, Kansas, in January-March 2006.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2006-09-30T23:59:59.000Z

    On September 8-9, 2005, representatives of the Kansas Department of Health and Environment (KDHE), the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA), and Argonne National Laboratory met at the KDHE's offices in Topeka to review the status of the CCC/USDA's environmental activities in Kansas. As a result of this meeting, the KDHE recommended several additional activities to augment the CCC/USDA's investigations at Everest, Kansas, and assist in the selection of remedial approaches to be evaluated as part of a Corrective Action Study (CAS) for this site. The requested actions included the following: (1) Construction of several additional interpretive cross sections illustrating the hydrogeologic setting along the apparent main plume migration pathway to the north-northwest of the former CCC/USDA facility, as well as in the vicinity of the Nigh property. (2) Installation of additional permanent monitoring wells, to better constrain the apparent western, northern, and northwestern margins of the existing groundwater plume. (3) Development of technical recommendations for a phased pumping study of the Everest aquifer unit in the area near and to the north of the Nigh property.

  16. NEGLIGIBLE CREEP CONDITIONS FOR MOD 9 CR 1 MO STEEL

    SciTech Connect (OSTI)

    Ren, Weiju [ORNL; Riou, Bernard [AREVA Group; Escaravage, Claude [AREVA Group; Swindeman, Robert W [ORNL; Cabrillat, Marie-Th?r?se [CEA Cadarache, St. Paul lex Durance, France; Allais, Lucien [CEA, Saclay, France

    2006-01-01T23:59:59.000Z

    Mod 9 Cr 1 Mo Steel (grade 91) is one of the materials envisaged for the Reactor Pressure Vessel of Very High Temperature Reactors. To avoid the implementation of a surveillance program covering the monitoring of the creep damage throughout the whole life of the reactor, it is recommended to operate the Reactor Pressure Vessel in the negligible creep regime. In this paper, the background of negligible creep criteria available in nuclear Codes is first recalled and their limitations were analyzed. Then, guidance for deriving criteria more appropriate for mod 9 Cr 1 Mo steel is provided. Finally, R&D actions in the U. S. and France to support the new approaches are discussed and recommended.

  17. Dislocations With Edge Components in Nanocrystalline bcc Mo

    SciTech Connect (OSTI)

    G. M. Cheng; W. Z. Xu; W. W. Jian; H. Yuan; M. H. Tsai; Y. T. Zhu; Y. F. Zhang; Paul C. Millett

    2013-07-01T23:59:59.000Z

    We report high-resolution transmission electron microscopy (HRTEM) observation of a high density of dislocations with edge components (approximately 1016 m-2) in nanocrystalline (NC) body-centered cubic (bcc) Mo prepared by high-pressure torsion. We also observed for the first time of the 1/2 <111> and <001> pure edge dislocations in NC Mo. Crystallographic analysis and image simulations reveal that the best way using HRTEM to study dislocations with edge components in bcc systems is to take images along <110> zone axis, from which it is possible to identify 1/2 <111> pure edge dislocations, and edge components of 1/2 <111> and <001> mixed dislocations. The <001> pure edge dislocations can only be identified from <100> zone axis. The high density of dislocations with edge components is believed to play a major role in the reduction of strain rate sensitivity in NC bcc metals and alloys.

  18. Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Lin, Xianqing [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023 (China); Ni, Jun, E-mail: junni@mail.tsinghua.edu.cn [State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2014-07-28T23:59:59.000Z

    First-principles calculations have been performed to investigate the electronic and magnetic properties of monolayer MoS{sub 2} substitutionally doped with Mn, Fe, and Co in possible charge states (q). We find that the Mn, Fe, and Co dopants substituting for a Mo atom in monolayer MoS{sub 2} (Mn@Mo, Fe@Mo, and Co@Mo) are all magnetic in their neutral and charge states except in the highest positive charge states. Mn@Mo, Fe@Mo, and Co@Mo have the same highest negative charge states of q=?2 for chemical potential of electron just below the conduction band minimum, which corresponds to the electron doping. In the q=?2 state, Mn@Mo has a much larger magnetic moment than its neutral state with the antiferromagnetic coupling between the Mn dopant and its neighboring S atoms maintained, while Fe@Mo and Co@Mo have equal or smaller magnetic moments than their neutral states. The possible charge states of Mn@Mo, Fe@Mo, and Co@Mo and the variation of the magnetic moments for different dopants and charge states are due to the change of the occupation and energy of the anti-bonding defect levels in the band gap. The rich magnetic properties of the neutral and charge states suggest possible realization of the substitutionally Mn-, Fe-, and Co-doped monolayer MoS{sub 2} as dilute magnetic semiconductors.

  19. NO. REV. MO. _ ALSEP/LCRU EMC Test Results

    E-Print Network [OSTI]

    Rathbun, Julie A.

    NO. REV. MO. ATM 1050 _ ALSEP/LCRU EMC Test Results PAGE 1 OF 10 DATE 19 August 1971 The results of the ALSEP/LCRU EMC test are reported in this ATM. C~.·--~ s--·~e'Jn~,__')!).Prepared by:__~~~"f--.;;.~-------- Approved by: ~JM.MD. ithian #12;NO. RIV. NO. ATM 1050 ALSEP/LCRU EMC Test Results 2 10PAGE OF Aall

  20. Long-term corrosion of Cr-Mo steels in superheated steam at 482 and 538/sup 0/C. [21/4 Cr-1 Mo; 9 Cr-1 Mo; Sumitomo 9 Cr-2 Mo; Sandvik HT-9

    SciTech Connect (OSTI)

    Griess, J.C.; DeVan, J.H.; Maxwell, W.A.

    1980-01-01T23:59:59.000Z

    The corrosion of several Cr-Mo ferritic steels was investigated in superheated steam at an operating power plant. Tests were conducted at 482 and 538/sup 0/C (900 and 1000/sup 0/F) in a once-through loop for times up to 28,000 h. Chromium concentrations ranged from 2.0 to 11.3%, and the effect of surface preparation on corrosion was investigated. Only one of many specimens showed evidence of exfoliation at 482/sup 0/C, but at 538/sup 0/C exfoliation occurred on at least some of the specimens of most materials; the exceptions were the alloy with the highest chromium content (Sandvik HT-9), one heat of 9 Cr-1 Mo steel with the highest silicon content, and Sumitomo 9 Cr-2 Mo steel, which was in test for only 19,000 h. Parabolic oxidation kinetics adequately described the corrosion process for about the first year, after which corrosion rates were constant and lower than predicted from extrapolation of the initial part of the penetration versus time curves. With chromium concentrations between 2 and 9%, corrosion behavior was independent of chromium content, and corrosion was only slightly less with Sandvik HT-9. Corrosion was nearly independent of surface preparation, but in two cases the presence of mill scale on the surface prior to steam exposure seemed to retard oxidation in steam. 11 figures, 5 tables.

  1. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    SciTech Connect (OSTI)

    M.K. Meyer; J. Gan; J.-F. Jue; D.D. Keiser; E. Perez; A. Robinson; D.M. Wachs; N. Woolstenhulme; G.L. Hofman; Y.-S. Kim

    2014-04-01T23:59:59.000Z

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  2. Final Phase II Report : QuickSite{reg_sign} investigation, Centralia, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. (Environmental Research)

    2004-04-01T23:59:59.000Z

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), formerly operated a grain storage facility approximately 1,100 ft north of Centralia from 1949 until 1971. Subsequently, a concrete mixing plant operated on the site (FSA 1997). None of the CCC/USDA structures remain, though belowgrade foundations related to structures associated with the concrete mixing operations are evident. Two additional grain storage facilities currently exist in and near Centralia: the Nemaha County Co-op, approximately 4,000 ft south of the former CCC/USDA facility, and a private grain storage facility near the Don Morris residence, 3,500 ft north of the former CCC/USDA facility (Figure 1.1). The property on which the former facility was located is currently owned by Jeanne Burdett Lacky of Seneca, Kansas. In August-September 1998 the Kansas Department of Health and Environment (KDHE) conducted preliminary investigations at the former CCC/USDA facility, on the basis of the detection of carbon tetrachloride in the domestic well at the Don Morris residence (north of the former CCC/USDA facility). Prior to 1986, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the grain storage industry to preserve grain. The details of previous investigations in the area and a summary of the findings were reported previously (Argonne 2002a). Because the KDHE detected carbon tetrachloride in groundwater and soil at the former CCC/USDA facility at Centralia that might be related to historical use of carbon tetrachloride-based grain fumigants at the facility, the CCC/USDA is conducting an environmental site investigation to determine the source(s) and extent of the carbon tetrachloride contamination at the former facility near Centralia and to assess whether the contamination requires remedial action. The town of Centralia and all residents near the former CCC/USDA facility currently obtain their water from Rural Water District No.3. Therefore, local residents are not drinking or using the contaminated groundwater detected at the former facility. The Environmental Research Division of Argonne National Laboratory is performing the investigation at Centralia on behalf of the CCC/USDA. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. At these former facilities, Argonne is applying its QuickSite{reg_sign} environmental site characterization methodology. QuickSite is Argonne's proprietary implementation system for the expedited site characterization process. This methodology has been applied successfully at a number of former CCC/USDA facilities in Nebraska and Kansas and has been adopted by the American Society for Testing and Materials (ASTM 1998) as standard practice for environmental site characterization. Argonne's investigations are conducted with a phased approach. Phase I focuses primarily on the investigation and evaluation of geology, hydrogeology, and hydrogeochemistry to identify potential contaminant pathways at a site. Phase II focuses on delineating the contamination present in both soil and aquifers along the potential migration pathways. Phase I of Argonne's investigation was conducted in March-April 2002. The results and findings of the Phase I investigation at Centralia were reported previously (Argonne 2003). This report documents the findings of the Phase II activities at Centralia. Section 1 provides a brief history of the area, a review of the Phase I results and conclusions, technical objectives for the Phase II investigation, and a brief description of the sections contained in this report. Section 2 describes the investigative methods used during the Phase II investigation. Section 3 presents all of the data obtained during the investigation. Se

  3. Single Phase Melt Processed Powellite (Ba,Ca) MoO{sub 4} For The Immobilization Of Mo-Rich Nuclear Waste

    SciTech Connect (OSTI)

    Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States); Marra, James [Savannah River Site (SRS), Aiken, SC (United States); Fox, Kevin [Savannah River Site (SRS), Aiken, SC (United States); Reppert, Jason [Savannah River Site (SRS), Aiken, SC (United States); Crum, Jarrod [Paci fic Northwest National Laboratory , Richland, WA (United States); Tang, Ming [Los Alamos National Laboratory , Los Alamos, NM (United States)

    2012-09-17T23:59:59.000Z

    Crystalline and glass composite materials are currently being investigated for the immobilization of combined High Level Waste (HLW) streams resulting from potential commercial fuel reprocessing scenarios. Several of these potential waste streams contain elevated levels of transition metal elements such as molybdenum (Mo). Molybdenum has limited solubility in typical silicate glasses used for nuclear waste immobilization. Under certain chemical and controlled cooling conditions, a powellite (Ba,Ca)MoO{sub 4} crystalline structure can be formed by reaction with alkaline earth elements. In this study, single phase BaMoO{sub 4} and CaMoO{sub 4} were formed from carbonate and oxide precursors demonstrating the viability of Mo incorporation into glass, crystalline or glass composite materials by a melt and crystallization process. X-ray diffraction, photoluminescence, and Raman spectroscopy indicated a long range ordered crystalline structure. In-situ electron irradiation studies indicated that both CaMoO{sub 4} and BaMoO{sub 4} powellite phases exhibit radiation stability up to 1000 years at anticipated doses with a crystalline to amorphous transition observed after 1 X 10{sup 13} Gy. Aqueous durability determined from product consistency tests (PCT) showed low normalized release rates for Ba, Ca, and Mo (<0.05 g/m{sup 2}).

  4. An APFIM and TEM study of Ni{sub 4}Mo precipitation in a commercial Ni-28% Mo-1.4% Fe-0.4% Cr wt. % alloy

    SciTech Connect (OSTI)

    Thomson, R.C.; Brown, N.; Bates, J.S. [Loughborough Univ. (United Kingdom). Inst. of Polymer Technology and Materials Engineering; Russell, K.F.; Miller, M.K. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1998-02-01T23:59:59.000Z

    Ni-Mo alloys containing at least 26 wt.% Mo have a negligible corrosion rate in boiling 10% hydrochloric acid and are therefore used in corrosive environments. A series of commercial Ni-Mo alloys has been developed with subtle variations in chemical composition. These alloys usually contain {approximately} 28 wt.% Mo with additions of up to 5% Fe and Cr. A significant amount of research has been performed to understand the microstructure and properties of these alloys, although most of the effort has concentrated on the Ni-Mo binary system. In some alloys with low Fe and Cr contents, a severe embrittlement problem has been observed due to the formation of the Ni{sub 4}Mo (D1{sub a}-ordered) phase within the microstructure. This research focuses on a commercial alloy with nominal composition Ni-28% Mo-1.4% Fe-0.4% Cr-0.1% Mn-0.003 wt.% C. The material supplied was a heat treatment coupon which had been attached to a large vessel during fabrication. Assessment of the chemical analysis of the alloy suggested that detrimental phases could be present or might appear during subsequent repair work. Therefore, it was important to assess the microstructural condition of the vessel, and in particular the kinetics of precipitation of Ni{sub 4}Mo.

  5. High-performance MoS{sub 2} transistors with low-resistance molybdenum contacts

    SciTech Connect (OSTI)

    Kang, Jiahao; Liu, Wei; Banerjee, Kaustav, E-mail: kaustav@ece.ucsb.edu [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2014-03-03T23:59:59.000Z

    In this Letter, molybdenum (Mo) is introduced and evaluated as an alternative contact metal to atomically-thin molybdenum disulphide (MoS{sub 2}), and high-performance field-effect transistors are experimentally demonstrated. In order to understand the physical nature of the interface and highlight the role of the various factors contributing to the Mo-MoS{sub 2} contacts, density functional theory (DFT) simulations are employed, which reveal that Mo can form high quality contact interface with monolayer MoS{sub 2} with zero tunnel barrier and zero Schottky barrier under source/drain contact, as well as an ultra-low Schottky barrier (0.1?eV) at source/drain-channel junction due to strong Fermi level pinning. In agreement with the DFT simulations, high mobility, high ON-current, and low contact resistance are experimentally demonstrated on both monolayer and multilayer MoS{sub 2} transistors using Mo contacts. The results obtained not only reveal the advantages of using Mo as a contact metal for MoS{sub 2} but also highlight the fact that the properties of contacts with 2-dimensional materials cannot be intuitively predicted by solely considering work function values and Schottky theory.

  6. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect (OSTI)

    K. David Newell; Timothy R. Carr

    2007-03-31T23:59:59.000Z

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

  7. The utility of continual reservoir description: An example from Bindley Field, Western Kansas

    SciTech Connect (OSTI)

    Johnson, R.A. (Energy Foundation Inc., Lakewood, CO (United States)); Budd, D.A. (Univ. of Colorado, Boulder, CO (United States))

    1994-05-01T23:59:59.000Z

    Continual revision of geologic reservoir description is an important component of reservoir management. New data should be incorporated into existing reservoir models in light of evolving geologic concepts. Revisions may have significant impacts on the approach and success of reservoir management strategies. A reevaluation of Bindley field (Mississippian), Hodgeman County, Kansas, serves as an illustration of this process. Prior study of this field suggested that the reservoir interval is comprised of a single, relatively uniform facies (bryozoan dolomite) having no apparent internal structure. A waterflood attempt based on this concept of reservoir architecture resulted in minimal response. A revised model of reservoir architecture and petrophysics resulted from integration of new core data, a new stratigraphic correlation scheme, updated well production histories, and capillary pressure data. The revised geologic model reveals specific methods to improve primary recovery and rectify the poor waterflood performance. These methods include selective perforation of all oil-saturated type I flow units to optimize primary recovery and remedial waterflood design to assure continuity of fluid flow between injection and production wells. 19 refs., 20 figs., 2 tabs.

  8. Community Energy Systems and the Law of Public Utilities. Volume Eighteen. Kansas

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description is given of the laws and programs of the State of Kansas governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  9. Simple Molybdenum(IV) Olefin Complexes of the Type Mo(NR)(X)(Y)(olefin)

    E-Print Network [OSTI]

    Marinescu, Smaranda C.

    Exposure of heptane solutions of Mo(NAr)(CHCMe2Ph)(Me2Pyr)(OAr) (1a; Ar = 2,6-diisopropylphenyl), Mo(NAr)(CHCMe3)(Me2Pyr)[OCMe(CF3)2] (1b), and Mo(NAr)(CHCMe2Ph)(Me2Pyr)(OSiPh3) (1c) to one atmosphere of ethylene for 12 h ...

  10. Experimental activities supporting commercial U.S. accelerator production of 99-Mo

    SciTech Connect (OSTI)

    Dale, Gregory E [Los Alamos National Laboratory; Chemerisov, Sergey D [ANL; Vandegrift, George F [ANL

    2010-01-01T23:59:59.000Z

    {sup 99m}Tc, the daughter product of {sup 99}Mo, is the most commonly used radioisotope for nuclear medicine in the U.S. Experiments are being performed at Los Alamos National Laboratory and Argonne National Laboratory to demonstrate production of {sup 99}Mo using accelerators. The {sup 100}Mo({gamma},n){sup 99}Mo reaction in an enriched {sup 100}Mo target is currently under investigation. Three scaled low-power production experiments using a 20-MeV electron linac at Argonne have been performed to date. Two of these experiments used natural Mo targets and produced a total of 613 {mu}C of {sup 99}Mo. The third experiment used an enriched {sup 100}Mo target and produced 10.5 mCi of {sup 99}Mo. Following irradiation the targets were dissolved and the low specific activity solution was processed through an ARSII generator from NorthStar Medical Radioisotopes. Yields of {sup 99m}Tc >95% have been observed.

  11. Conceptual design of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production

    SciTech Connect (OSTI)

    Liem, Peng Hong [Nippon Advanced Information Service (NAIS Co., Inc.) Scientific Computational Division, 416 Muramatsu, Tokaimura, Ibaraki (Japan); Tran, Hoai Nam [Chalmers University of Technology, Dept. of Applied Physics, Div. of Nuclear Engineering, SE-412 96 Gothenburg (Sweden); Sembiring, Tagor Malem [National Nuclear Energy Agency (BATAN), Center for Reactor Technology and Nuclear Safety, Kawasan Puspiptek, Serpong, Tangerang Selatan, Banten (Indonesia); Arbie, Bakri [PT MOTAB Technology, Kedoya Elok Plaza Blok DA 12, Jl. Panjang, Kebun Jeruk, Jakarta Barat (Indonesia)

    2014-09-30T23:59:59.000Z

    To partly solve the global and regional shortages of Mo-99 supply, a conceptual design of a nitrate-fuel-solution based homogeneous reactor dedicated for Mo-99/Tc-99m medical radioisotope production is proposed. The modified LEU Cintichem process for Mo-99 extraction which has been licensed and demonstrated commercially for decades by BATAN is taken into account as a key design consideration. The design characteristics and main parameters are identified and the advantageous aspects are shown by comparing with the BATAN's existing Mo-99 supply chain which uses a heterogeneous reactor (RSG GAS multipurpose reactor)

  12. Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

    SciTech Connect (OSTI)

    Washington Division of URS

    2008-07-01T23:59:59.000Z

    This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

  13. Phase transitions in the adsorption system Li/Mo(112)

    E-Print Network [OSTI]

    Fedorus, A.; Kolthoff, D.; Koval, V.; Lyuksyutov, Igor F.; Naumovets, AG; Pfnur, H.

    2000-01-01T23:59:59.000Z

    limit can be quasi-one-dimensional. Such model systems are formed upon submonolayer adsorption on surfaces with strongly an- PRB 620163-1829/2000/62~4!/2852~10!/$15.00 n system Li?Mo?112? ,1,3 A. G. Naumovets,1 and H. Pfnu?r2,* , Prospect Nauki 46... W/Re thermocouple and was con- trolled by a computerized feedback circuit with a resolution of 0.01 K. The source of lithium was constructed and outgassed as PRB 62 PHASE TRANSITIONS IN TH described in Ref. 6. The LEED patterns have been taken...

  14. Recovery of Mo/Si multilayer coated optical substrates

    DOE Patents [OSTI]

    Baker, Sherry L. (Pleasanton, CA); Vernon, Stephen P. (Pleasanton, CA); Stearns, Daniel G. (Los Altos, CA)

    1997-12-16T23:59:59.000Z

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO.sub.2 overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates.

  15. Recovery of Mo/Si multilayer coated optical substrates

    DOE Patents [OSTI]

    Baker, S.L.; Vernon, S.P.; Stearns, D.G.

    1997-12-16T23:59:59.000Z

    Mo/Si multilayers are removed from superpolished ZERODUR and fused silica substrates with a dry etching process that, under suitable processing conditions, produces negligible change in either the substrate surface figure or surface roughness. The two step dry etching process removes SiO{sub 2} overlayer with a fluroine-containing gas and then moves molybdenum and silicon multilayers with a chlorine-containing gas. Full recovery of the initial normal incidence extreme ultra-violet (EUV) reflectance response has been demonstrated on reprocessed substrates. 5 figs.

  16. DOE - Office of Legacy Management -- Petrolite Corp - MO 08

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp - CTOregonPetrolite Corp - MO 08 FUSRAP

  17. The life cycle of Cyclops bicuspidatus thomasi S. A. Forbes in Leavenworth County State Lake, Kansas, U.S.A. (Copepoda)

    E-Print Network [OSTI]

    Armitage, Kenneth

    1967-01-01T23:59:59.000Z

    THE LIFE CYCLE OF CYCLOPS BICUSPIDATUS THOMASI S. A. FORBES IN LEAVENWORTH C O U N T Y STATE LAKE, KANSAS, U.S.A. (COPEPODA) BY KENNETH B. ARMITAGE and JERRY C. TASH *) Department of Zoology, The University of Kansas, Lawrence, U....S.A. LIFE CYCLE OF CYCLOPS 95 (1956), who collected from Woods Reservoir, Tennessee, concluded that C. b. thomasi is a cold water copepod that appears in winter and early spring collections and disappears before mid May. The aestival season is spent...

  18. A Comparison of E-book and Print Book Discovery, Preferences and Usage by Science and Engineering Faculty and Graduate Students at the University of Kansas

    E-Print Network [OSTI]

    Waters, Julie; Roach, Jennifer; Emde, Judith; McEathron, Scott R.; Russell, Keith

    2014-04-01T23:59:59.000Z

    Committee Lawrence Campus (HSCL), University of Kansas, 2385 Irving Hill Road, Lawrence, Kansas 66045­ 7563, email irb@ku.edu. Judith Emde (785)864­4931 jemde@ku.edu Scott McEathron (785)864­4662 macmap68@ku.edu Jennifer Roach (785)864­5532 jwroach@ku.edu Keith Russell (785... Julie Waters Physics-Math-Astronomy Librarian jwaters@ku.edu Jennifer Roach E-Sciences Librarian for Engineering jwroach@ku.edu Judith Emde Assistant Dean for Content and Access Services jemde@ku.edu Scott McEathron Head, Center for Graduate...

  19. Final report : results of the 2006-2007 investigation of potential contamination at the former CCC/USDA facility in Barnes, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-08-28T23:59:59.000Z

    The 2006-2007 investigation of carbon tetrachloride and chloroform contamination at Barnes, Kansas, was conducted at the request of the Kansas Department of Health and Environment (KDHE). The Environmental Science Division of Argonne National Laboratory implemented the investigation on behalf of the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). The overall goal of the investigation was to establish criteria for monitoring leading to potential site reclassification. The investigation objectives were to (1) determine the hydraulic gradient near the former CCC/USDA facility, (2) delineate the downgradient carbon tetrachloride plume, and (3) design and implement an expanded monitoring network at Barnes (Argonne 2006a).

  20. Interpretation of Pennsylvania Bartlesville sandstone in southeastern Kansas and northeastern Oklahoma from continuous dipmeter and gamma-ray logs 

    E-Print Network [OSTI]

    Kranz, Dwight Stanley

    1981-01-01T23:59:59.000Z

    are replaced lat- er ally by channel-fill sequences. The channel-fi 11 sequence is aener- ally 50 to 90 ft (16. 4 to 29. 5 m) thick and is composed of interlami- nated siltstones and shale. The channel-fill sediments are fine grained to clay size... structures, shale character, and soft sediment deformational features in the Middle Bartles- ville Sandstone, J. Lips 1 (JL 1) and Henry Smith 1 (HS 1), South Bartlett Area, LaBette County, Kansas. LIST OF FIGURES - Continued Figure Page 12 13 14...

  1. Interpretation of Pennsylvania Bartlesville sandstone in southeastern Kansas and northeastern Oklahoma from continuous dipmeter and gamma-ray logs

    E-Print Network [OSTI]

    Kranz, Dwight Stanley

    1981-01-01T23:59:59.000Z

    are replaced lat- er ally by channel-fill sequences. The channel-fi 11 sequence is aener- ally 50 to 90 ft (16. 4 to 29. 5 m) thick and is composed of interlami- nated siltstones and shale. The channel-fill sediments are fine grained to clay size... structures, shale character, and soft sediment deformational features in the Middle Bartles- ville Sandstone, J. Lips 1 (JL 1) and Henry Smith 1 (HS 1), South Bartlett Area, LaBette County, Kansas. LIST OF FIGURES - Continued Figure Page 12 13 14...

  2. Kansas Populist Newspaper Editorial Response to the Homestead and Pullman Strikes: An Application of Sewell’s Theory of Structure

    E-Print Network [OSTI]

    Carruthers, Bruce

    2008-01-01T23:59:59.000Z

    years, rainfall was insufficient to produce crops at all (Hicks 1931; McNall 1988; miller, worth robert 1996; miner 2002, 171; miner 1986). if the drought was not bad enough, falling crop prices soon added to the region’s woes. u.s. overproduction.... hese conditions continued well into the 1890s (miller, worth obert 1996:246; farmer 1924; Goodwyn 1978; miner 1986). the combination of drought and falling prices was a calamity for Kansas. land values and real estate transactions decreased pre...

  3. Color No Longer A Sign of Bondage: Race, Identity and the First Kansas Colored Volunteer Infantry Regiment (1862-1865)

    E-Print Network [OSTI]

    Ringquist, John Paul

    2011-08-31T23:59:59.000Z

    of Fremont’s Proclamation, Lincoln modified it, but not before large numbers of Missouri slaves flooded the Union lines, and crossed into Kansas. Lane, who was campaigning in Missouri as part of Fremont’s forces, eagerly distributed copies of Fremont... arguments of black timidity and cowardice in the face of white soldiers, as well as the racist demon of black savagery and danger of bloody slave uprisings. John Brown’s ghost haunted Americans on both sides of the Mason-Dixon line, and the possibility...

  4. Identification of single nucleotides in MoS2 nanopores

    E-Print Network [OSTI]

    Jiandong Feng; Ke Liu; Roman D. Bulushev; Sergey Khlybov; Dumitru Dumcenco; Andras Kis; Aleksandra Radenovic

    2015-05-07T23:59:59.000Z

    Ultrathin membranes have drawn much attention due to their unprecedented spatial resolution for DNA nanopore sequencing. However, the high translocation velocity (3000-50000 nt/ms) of DNA molecules moving across such membranes limits their usability. To this end, we have introduced a viscosity gradient system based on room-temperature ionic liquids (RTILs) to control the dynamics of DNA translocation through a nanometer-size pore fabricated in an atomically thin MoS2 membrane. This allows us for the first time to statistically identify all four types of nucleotides with solid state nanopores. Nucleotides are identified according to the current signatures recorded during their transient residence in the narrow orifice of the atomically thin MoS2 nanopore. In this novel architecture that exploits high viscosity of RTIL, we demonstrate single-nucleotide translocation velocity that is an optimal speed (1-50 nt/ms) for DNA sequencing, while keeping the signal to noise ratio (SNR) higher than 10. Our findings pave the way for future low-cost and rapid DNA sequencing using solid-state nanopores.

  5. Characterization of U-Mo Foils for AFIP-7

    SciTech Connect (OSTI)

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07T23:59:59.000Z

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  6. Supercapacitor behavior of ?-MnMoO{sub 4} nanorods on different electrolytes

    SciTech Connect (OSTI)

    Purushothaman, K.K., E-mail: purushoth_gri@yahoo.co.in [Department of Physics, TRP Engineering College (SRM Group), Irungalur, Trichy, Tamilnadu (India); Cuba, M. [Department of Physics, Gandhigram Rural Institute – Deemed University, Gandhigram, Tamilnadu (India)] [Department of Physics, Gandhigram Rural Institute – Deemed University, Gandhigram, Tamilnadu (India); Muralidharan, G., E-mail: muralg@rediffmail.com [Department of Physics, Gandhigram Rural Institute – Deemed University, Gandhigram, Tamilnadu (India)

    2012-11-15T23:59:59.000Z

    Graphical abstract: SEM image of ?-MnMoO{sub 4} nanorods on FTO substrate. Highlights: ? Synthesis of ?-MnMoO{sub 4} nanorods by spin coating method. ? First study on the effect of electrolyte on the pseudocapacitance behavior. ? ?-MnMoO{sub 4} nanorods exhibit maximum specific capacitance of 998 F/g. ? At higher scan rates p-TSA electrolyte exhibits superior capacitive behavior. -- Abstract: ?-MnMoO{sub 4} nanorods were prepared on conducting glass substrate via sol–gel spin coating method at the optimum doping level. The effect of electrolyte on the pseudocapacitance behavior of the ?-MnMoO{sub 4} nanorods was studied using para toluene sulfonic acid (p-TSA), sulfuric acid (H{sub 2}SO{sub 4}) and hydrochloric acid (HCl) as electrolytes. X-ray diffraction analysis reveals the formation of ?-MnMoO{sub 4} in monoclinic phase. FTIR spectra contain vibrational bands associated with Mo=O, M–O and Mo–O–Mo bonds. SEM image reveals the formation of nanorods. Supercapacitor behavior has been studied using cyclic voltammetry (CV) analysis. ?-MnMoO{sub 4} nanorods exhibit maximum specific capacitance of 998 F/g at a scan rate of 5 mV/s in H{sub 2}SO{sub 4} electrolyte while a specific capacitance of 784 F/g and 530 F/g have been obtained using p-TSA and HCl electrolytes, respectively. At higher scan rates p-TSA electrolyte exhibits superior capacitive behavior than H{sub 2}SO{sub 4}.

  7. Final report : 2004 monitoring well installation and sampling at Centralia,Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.

    2006-02-08T23:59:59.000Z

    This document reports on monitoring well installation and sampling in 2004 at the location of a grain storage facility formerly operated in Centralia, Kansas, by the Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA). Argonne National Laboratory is conducting environmental investigations of carbon tetrachloride contamination in groundwater at this site for the CCC/USDA. With the approval of the Kansas Department of Health and Environment (KDHE), Argonne installed six monitoring wells at the former facility in July 2004 to supplement existing monitoring points (piezometers) installed during Argonne's Phase I investigation in 2002. Together, the monitoring wells and piezometers constitute a monitoring network designed to (1) confirm the lateral distribution of carbon tetrachloride in the groundwater, (2) track any migration of contaminants that might take place, and (3) monitor aquifer geochemical characteristics. To verify that the six new monitoring wells had been developed adequately, they were sampled after their installation in July 2004 for analysis for volatile organic compounds (VOCs). The monitoring wells were sampled again in August 2004, after a stabilization period of four weeks. Five of the Phase I piezometers were also sampled in August 2004. Results of analysis of the August 2004 groundwater samples for VOCs confirmed the Phase II investigation's findings (based on sampling in March and April 2003) that carbon tetrachloride contamination in groundwater is generally confined to the boundary of the former CCC/USDA facility. Little migration of contamination from the former facility has been evident. Nevertheless, the network of monitoring wells now in place may not be adequate to delineate the extent of the plume. Future expansion of the network will proceed per agreement between the CCC/USDA and the KDHE. The groundwater samples collected in August 2004 were also analyzed for attenuation parameters that are helpful in determining whether the subsurface environment is suitable for natural in situ biodegradation of carbon tetrachloride. A preliminary screening of the results with a protocol of the U.S. Environmental Protection Agency showed limited evidence for active reductive dechlorination, one of the anaerobic processes by which carbon tetrachloride is biodegraded. These results indicate that additional monitoring of the groundwater contamination at the former CCC/USDA facility at Centralia is merited. On the basis of the findings and conclusions of the Phase I and Phase II investigations, as well as the results of the 2004 well sampling, a program of twice yearly groundwater monitoring in the expanded network is recommended to collect the data necessary to (1) monitor changes in plume dynamics and (2) evaluate the suitability of monitored natural attenuation as a remedial option for the Centralia site. This monitoring program should be conducted for a minimum of two years. After completion of the two-year monitoring program, remedial action objectives and potential corrective action alternatives are to be developed to address the groundwater contamination at Centralia.

  8. Final master work plan : environmental investigations at former CCC/USDA facilities in Kansas, 2002 revision.

    SciTech Connect (OSTI)

    Burton, J. C.; Environmental Research

    2003-01-23T23:59:59.000Z

    The Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) has entered into an interagency agreement with the U.S. Department of Energy (DOE) under which Argonne National Laboratory provides technical assistance for hazardous waste site characterization and remediation for the CCC/USDA. Carbon tetrachloride is the contaminant of primary concern at sites in Kansas where former CCC/USDA grain storage facilities were located. Argonne applies its QuickSite(reg sign) Expedited Site Characterization (ESC) approach to these former facilities. The QuickSite environmental site characterization methodology is Argonne's proprietary implementation of the ESC process (ASTM 1998). Argonne has used this approach at several former CCC/USDA facilities in Kansas, including Agenda, Agra, Everest, and Frankfort. The Argonne ESC approach revolves around a multidisciplinary, team-oriented approach to problem solving. The basic features and steps of the QuickSite methodology are as follows: (1) A team of scientists with diverse expertise and strong field experience is required to make the process work. The Argonne team is composed of geologists, geochemists, geophysicists, hydrogeologists, chemists, biologists, engineers, computer scientists, health and safety personnel, and regulatory staff, as well as technical support staff. Most of the staff scientists are at the Ph.D. level; each has on average, more than 15 years of experience. The technical team works together throughout the process. In other words, the team that plans the program also implements the program in the field and writes the reports. More experienced scientists do not remain in the office while individuals with lesser degrees or experience carry out the field work. (2) The technical team reviews, evaluates, and interprets existing data for the site and the contaminants there to determine which data sets are technically valid and can be used in initially designing the field program. A basic mistake sometimes made in the site characterization process is failure to use technically sound available data to form working hypotheses on hydrogeology, contaminant distribution, etc. for initial testing. (3) After assembling and interpreting existing data for the site, the entire technical team visits the site to identify as a group the site characteristics that might prohibit or enhance any particular technological approach. Logistic and community constraints are also identified at this point. (4) After the field visit, the team selects a suite of technologies appropriate to the problem and completes the design of the field program. No one technique works well at all sites, and a suite of techniques is necessary to delineate site features fully. In addition, multiple technologies are employed to increase confidence in conclusions about site features. Noninvasive and minimally invasive technologies are emphasized to minimize risk to the environment, the community, and the staff. In no case is the traditional approach of installing a massive number of monitoring wells followed. A dynamic work plan that outlines the program is produced for the sponsoring and regulatory agencies. The word ''dynamic'' is emphasized because the work plan is viewed as a guide, subject to modification, for the site characterization activity, rather than a document that is absolute and unchangeable. Therefore, the health and safety plan and the quality assurance/quality control plan must be broad and encompass all possible alterations to the plan. The cooperation of the regulating agency is essential in successful implementation of this process. The sponsoring and regulatory agencies are notified if significant changes to the site-specific work plan are necessary. (5) The entire team participates in the technical field program. Several technical activities are undertaken simultaneously. These may range from different surface geophysics investigations to vegetation sampling. Data from the various activities are reduced and interpreted each day by the technical staff. Various computer prog

  9. Fe3O4-LiMo3Se3 Nanoparticle Clusters as Superparamagnetic Nanocompasses

    E-Print Network [OSTI]

    Osterloh, Frank

    -iodopropionic acid treated LiMo3Se3 nanowire bundles with oleic acid-stabilized Fe3O4 nanoparticles of 2.8, 5Fe3O4-LiMo3Se3 Nanoparticle Clusters as Superparamagnetic Nanocompasses Frank E. Osterloh,*, Hiroki A scaleable chemical approach to functional nanoscale analogues of the magnetic compasses in magnetotactic

  10. Hole Selective MoOx Contact for Silicon Solar Cells Corsin Battaglia,,,

    E-Print Network [OSTI]

    Javey, Ali

    Hole Selective MoOx Contact for Silicon Solar Cells Corsin Battaglia,,, Xingtian Yin,,,§, Maxwell Laboratory, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, People's Republic of China Joint Center/silicon solar cell with a power conversion efficiency of 14.3%. While MoOx is commonly considered

  11. MoIAC Pre-Audit Form Ways to submit this form

    E-Print Network [OSTI]

    Noble, James S.

    information: #12;MoIAC Pre-Audit Form Major Energy Consuming Equipment: Please provide informationMoIAC Pre-Audit Form Ways to submit this form: 1. Fill up the form and fax it to 573-882-2693 Attn: Dr. Bin Wu 2. Print and return this form by mail to: Dr. Bin Wu University of Missouri

  12. Adsorption studies of Mo and V onto ferrihydrite *, L. G. BENNING

    E-Print Network [OSTI]

    Benning, Liane G.

    Adsorption studies of Mo and V onto ferrihydrite L. BRINZA 1, *, L. G. BENNING 1 AND P. J. STATHAM-sorbate experiments, 100% adsorption was observed at pH values below 6 and 8, respectively. Above the point of zero charge (PZC = 7.97) of FHY, the adsorption efficiency for Mo dropped dramatically (20% at pH 8) while V

  13. Stability of Graphene doping with MoO_3 and I_2

    E-Print Network [OSTI]

    D’Arsié, Lorenzo; Esconjauregui, Santiago; Weatherup, Robert; Guo, Yuzheng; Bhardwaj, Sunil; Centeno, Alba; Zurutuza, Amaia; Cepek, Cinzia; Robertson, John

    2014-09-08T23:59:59.000Z

    We dope graphene by evaporation of MoO_3 or by solution-deposition of I_2 and assess the doping stability for its use as transparent electrodes. Electrical measurements show that both dopants increase the graphene sheet conductivity and find that Mo...

  14. Student Financial Aid 11 Jesse Hall University of Missouri Columbia Columbia, MO 65211-1600

    E-Print Network [OSTI]

    Taylor, Jerry

    Student Financial Aid 11 Jesse Hall University of Missouri ­ Columbia Columbia, MO 65211-1600 PHONE;Student Financial Aid 11 Jesse Hall University of Missouri ­ Columbia Columbia, MO 65211-1600 PHONE (573 ________________________________________________________________________________________________________________________ Name of Host Institution (College or University you will be attending or taking additional classes

  15. Ligand Conjugation of Chemically Exfoliated MoS2 Stanley S. Chou,+

    E-Print Network [OSTI]

    Huang, Jiaxing

    Ligand Conjugation of Chemically Exfoliated MoS2 Stanley S. Chou,+ Mrinmoy De,+ Jaemyung Kim,+ Segi and chemical properties. Here, we demonstrate ligand conjugation of chemically exfoliated MoS2 using thiol-nitrilotriacetic acid chelation.13 However, colloidal sur- face modification of water dispersible, chemically exfoliated

  16. Characterization of Single-Walled Carbon Nanotubes (SWNTs) Produced by CO Disproportionation on Co-Mo

    E-Print Network [OSTI]

    Resasco, Daniel

    Characterization of Single-Walled Carbon Nanotubes (SWNTs) Produced by CO Disproportionation on Co Received November 15, 2001. Revised Manuscript Received February 6, 2002 The disproportionation of CO over Co-Mo/SiO2 catalysts with low Co/Mo ratios results in a high selectivity to single-walled carbon

  17. Corrosion Behavior of Solution-Annealed CoCrMo Medical Implant

    E-Print Network [OSTI]

    Shull, Kenneth R.

    ! ! ! Corrosion Behavior of Solution- Annealed CoCrMo Medical Implant Alloys Pooja Panigrahi University June 6, 2011 #12;! ! ""! Corrosion Behavior of Solution-Annealed CoCrMo Medical Implant Alloys and Applied Sciences Northwestern University June 6, 2011 Abstract Corrosion behavior of solution annealed

  18. Double beta decays and solar neutrinos with 100 MOON(Mo Observatory Of Neutrinos)

    E-Print Network [OSTI]

    Washington at Seattle, University of

    nuclear laboratory for spectroscopic studies of neutrinos Neutrinos are key particles for new frontiers) are sensitive and realistic experiments for studying the Majorana nature of the neutrino and the absolute massDouble beta decays and solar neutrinos with 100 Mo ­MOON(Mo Observatory Of Neutrinos)­ May 24, 2005

  19. Posting type Advisory Subject Shifts in Mo-anode XRF element calibration factors

    E-Print Network [OSTI]

    Fischer, Emily V.

    Posting type Advisory Subject Shifts in Mo-anode XRF element calibration factors Module/Species A@crocker.ucdavis.edu Supporting information A molybdenum-anode XRF instrument is used to analyze the heavier elements (Ni, Cu, Zn with lighter deposits were acquired and used in the Mo-anode XRF system. The new calibration foils resulted

  20. Photo-oxidation method using MoS2 nanocluster materials

    DOE Patents [OSTI]

    Wilcoxon, Jess P. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A method of photo-oxidizing a hydrocarbon compound is provided by dispersing MoS.sub.2 nanoclusters in a solvent containing a hydrocarbon compound contaminant to form a stable solution mixture and irradiating the mixture to photo-oxide the hydrocarbon compound. Hydrocarbon compounds of interest include aromatic hydrocarbon and chlorinated hydrocarbons. MoS.sub.2 nanoclusters with an average diameter less than approximately 10 nanometers are shown to be effective in decomposing potentially toxic aromatic and chlorinated hydrocarbons, such as phenol, pentachlorophenol, chlorinated biphenols, and chloroform, into relatively non-toxic compounds. The irradiation can occur by exposing the MoS.sub.2 nanoclusters and hydrocarbon compound mixture with visible light. The MoS.sub.2 nanoclusters can be introduced to the toxic hydrocarbons as either a MoS.sub.2 solution or deposited on a support material.

  1. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near term. Quarterly report, June 30--September 30, 1995

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1995-10-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. General topics to be addressed will be (1) reservoir management and performance evaluation; (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process on both field demonstration sites.

  2. Phase transformation of ZnMoO{sub 4} by localized thermal spike

    SciTech Connect (OSTI)

    Agarwal, D. C.; Avasthi, D. K.; Kabiraj, D. [Inter-University Accelerator Center, Aruna Asaf Ali Marg, New Delhi 110067 (India); Varma, S. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Kremer, Felipe; Ridgway, M. C. [Australian National University, Canberra ACT 0200 (Australia)

    2014-04-28T23:59:59.000Z

    We show that ZnMoO{sub 4} remains in stable phase under thermal annealing up to 1000?°C, whereas it decomposes to ZnO and MoO{sub 3} under transient thermal spike induced by 100?MeV Ag irradiation. The transformation is evidenced by X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Thin films of ZnMoO{sub 4} were synthesized by thermal evaporation and subsequent annealing in oxygen ambient at 600?°C for 4?h. XRD results show that as the irradiation fluence increases, the peak related to ZnMoO{sub 4} decreases gradually and eventually disappear, whereas peaks related to ZnO grow steadily up to fluence of 3?×?10{sup 12} ions/cm{sup 2} and thereafter remain stable till highest fluence. This indicates that polycrystalline ZnMoO{sub 4} film has transformed to polycrystalline ZnO thin film. The Raman lines related to ZnMoO{sub 4} are observed to have disappeared with increasing irradiation fluence. XPS results show modification in bonding and depletion of Mo from near surface region after the ion irradiation. Cross-sectional transmission electron microscopy result shows the formation of ion track of diameter 12–16?nm. These results demonstrate that ion beam methods provide the means to control phase splitting of ZnMoO{sub 4} to ZnO and MoO{sub 3} within nanometric dimension along the ion track. The observation of phase splitting and Mo loss are explained in the framework of ion beam induced thermal spike formalism.

  3. Ecophysiological Responses of C3 Forbs and C4 Grasses to Drought and Rain on a Tallgrass Prairie in Northeastern Kansas

    E-Print Network [OSTI]

    Martin, Craig E.; Harris, Fred S.; Norman, Frank J.

    1991-01-01T23:59:59.000Z

    Ecophysiological responses to drought and a 3-cm rain were measured in seven C3 forb and five C4 grass species on a tallgrass prairie in northeastern Kansas. In general, midday leaf water potentials and conductances increased after rain to a greater...

  4. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- Near-term. Quarterly progress report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; McCune, D.; Reynolds, R.; Michnick, M.; Watney, L.

    1997-01-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. Progress in the Stewart field project is described for the following tasks: design/construct waterflood plant; design/construct injection system; design/construct battery consolidation and gathering system; waterflood operations and reservoir management; and technology transfer. Progress in the Savonburg field project is described for the following tasks: profile modification treatments; pattern changes and wellbore cleanup; reservoir development (polymer flooding); and technology transfer.

  5. Improved oil recovery in Mississippian carbonate reservoirs of Kansas - near term -- Class 2. Quarterly progress report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Carr, T.; Green, D.W.; Willhite, G.P.

    1995-11-01T23:59:59.000Z

    The objective of this project is to demonstrate incremental reserves from Osagian and Meramecian dolomite reservoirs in western Kansas through application of reservoir characterization to identify areas of unrecovered mobile petroleum. Specific reservoirs targeted are the Schaben Field in Ness County and the Bindley Field in Hodgeman County.

  6. Tips for Travelers When State Funds Are Used University of Kansas Procurement Services Tips for Travelers When State Funds Are Used

    E-Print Network [OSTI]

    Tips for Travelers When State Funds Are Used University of Kansas Procurement Services ­Tips for Travelers When State Funds Are Used Updated 02/17/14 Travel and Expense All or a portion of your trip will be paid for with state funds. This tip sheet is designed to help with common travel expenses to speed

  7. KU Student Profile Fall 2010 | Office of the Vice Provost | Student Success | University of Kansas 50 KU Home Kyou Email Blackboard A-Z

    E-Print Network [OSTI]

    KU Student Profile Fall 2010 | Office of the Vice Provost | Student Success | University of Kansas A GREAT PLACE TO BE A CHAMPION Student Success Office of the Vice Provost KU Student Profile Fall 2010 KU Provost for Student Success, the KU Student Profile reflects admission, enrollment, performance

  8. Practice Problems 12: Answers 1. Kansas can be modelled as a rectangle of length 500 miles and of height 300 miles. The population density

    E-Print Network [OSTI]

    McKay, Benjamin

    Calculus I Practice Problems 12: Answers 1. Kansas can be modelled as a rectangle of length 500 x3 3 500 0 ¢ 4 25 million 2. A pencil sharpener is made by drilling a cone out of a sphere computation is arithmetically tedious, and is best done on the computer (I used MAPLE). PSfrag replacements -1

  9. Water and Methanol Adsorption on MgO(100)/Mo(100) Studied by Electron Spectroscopies and Thermal Programmed Desorption

    E-Print Network [OSTI]

    Goodman, Wayne

    Water and Methanol Adsorption on MgO(100)/Mo(100) Studied by Electron Spectroscopies and Thermal, 2000 The adsorption of methanol (CH3OH) and water (D2O) on the MgO(100)/Mo(100) surface at 100 K has covered MgO(100)/Mo(100) surface. On the other hand, the formation of a methanol multilayer desorption

  10. Influence of Co/Mo Ratio on Synthesis of Single-Walled Carbon Nanotubes from Carbon Monoxide

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Influence of Co/Mo Ratio on Synthesis of Single-Walled Carbon Nanotubes from Carbon Monoxide, Bunkyo-ku, Tokyo 113-8656 Co and Mo are often used as catalysts for the catalytic chemical vapor in synthesizing random, vertical and parallel aligned SWNTs on Co and Mo dip-coated quartz substrates from carbon

  11. Applicability of 2-D Time-Lapse High-Resolution Seismic Reflection Approach to Image Natural Salt-Dissolution and Subsidence in Central Kansas and Improved Post-Processed Vibroseis Data Characteristics

    E-Print Network [OSTI]

    Rice, Daniel

    2009-01-12T23:59:59.000Z

    The effectiveness of 2-D time-lapse imaging for monitoring natural dissolution of the Hutchinson Salt in eastern Reno County, Kansas was shown to be restricted when comparing high-resolution seismic reflection data acquired ...

  12. H{sub 2}-rich and Hydrocarbon Gas Recovered in a Deep Precambrian Well in Northeastern Kansas

    SciTech Connect (OSTI)

    Newell, K. David, E-mail: dnewell@kgs.ku.edu; Doveton, John H.; Merriam, Daniel F. [University of Kansas, Kansas Geological Survey (United States); Lollar, Barbara Sherwood [University of Toronto, Department of Geology (Canada)], E-mail: bslollar@chem.utoronto.ca; Waggoner, William M. [WTW Oil Co., Inc. (United States)], E-mail: bill@wtwoil.com; Magnuson, L. Michael [University of Kansas, Kansas Geological Survey (United States)

    2007-09-15T23:59:59.000Z

    In late 2005 and early 2006, the WTW Operating, LLC (W.T.W. Oil Co., Inc.) no. 1 Wilson well (T.D. = 5772 ft; 1759.3 m) was drilled for 1826 ft (556.6 m) into Precambrian basement underlying the Forest City Basin in northeastern Kansas. Approximately 4500 of the 380,000 wells drilled in Kansas penetrate Precambrian basement. Except for two previous wells drilled into the arkoses and basalts of the 1.1-Ga Midcontinent Rift and another well drilled in 1929 in basement on the Nemaha Uplift east of the Midcontinent Rift, this well represents the deepest penetration into basement rocks in the state to date. Granite is the typical lithology observed in wells that penetrate the Precambrian in the northern Midcontinent. Although no cores were taken to definitively identify lithologies, well cuttings and petrophysical logs indicate that this well encountered basement metamorphic rocks consisting of schist, gneiss, and amphibolitic gneiss, all cut by aplite dikes.The well was cased and perforated in the Precambrian, and then acidized. After several days of swabbing operations, the well produced shows of low-Btu gas, dominated by the non-flammable component gases of nitrogen (20%), carbon dioxide (43%), and helium (1%). Combustible components include methane (26%), hydrogen (10%), and higher molecular-weight hydrocarbons (1%). Although Coveney and others [Am. Assoc. Petroleum Geologists Bull., v. 71, no, 1, p. 39-48, 1987] identified H{sub 2}-rich gas in two wells located close to the Midcontinent Rift in eastern Kansas, this study indicates that high levels of H{sub 2} may be a more widespread phenomenon than previously thought. Unlike previous results, the gases in this study have a significant component of hydrocarbon gas, as well as H{sub 2}, N{sub 2}, and CO{sub 2}. Although redox reactions between iron-bearing minerals and groundwater are a possible source of H{sub 2} in the Precambrian basement rocks, the hydrocarbon gas does not exhibit the characteristics typically associated with proposed abiogenic hydrocarbon gases from Precambrian Shield sites in Canada, Finland, and South Africa. Compositional and isotopic signatures for gas from the no. 1 Wilson well are consistent with a predominantly thermogenic origin, with possible mixing with a component of microbial gas. Given the geologic history of uplift and rifting this region, and the major fracture systems present in the basement, this hydrocarbon gas likely migrated from source rocks and reservoirs in the overlying Paleozoic sediments and is not evidence for abiogenic hydrocarbons generated in situ in the Precambrian basement.

  13. Investigation of the optical properties of MoS{sub 2} thin films using spectroscopic ellipsometry

    SciTech Connect (OSTI)

    Yim, Chanyoung; O'Brien, Maria; Winters, Sinéad [School of Chemistry, Trinity College Dublin, Dublin 2 (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); McEvoy, Niall [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Mirza, Inam; Lunney, James G. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Duesberg, Georg S., E-mail: duesberg@tcd.ie [School of Chemistry, Trinity College Dublin, Dublin 2 (Ireland); Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Advanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2 (Ireland)

    2014-03-10T23:59:59.000Z

    Spectroscopic ellipsometry (SE) characterization of layered transition metal dichalcogenide (TMD) thin films grown by vapor phase sulfurization is reported. By developing an optical dispersion model, the extinction coefficient and refractive index, as well as the thickness of molybdenum disulfide (MoS{sub 2}) films, were extracted. In addition, the optical band gap was obtained from SE and showed a clear dependence on the MoS{sub 2} film thickness, with thinner films having a larger band gap energy. These results are consistent with theory and observations made on MoS{sub 2} flakes prepared by exfoliation, showing the viability of vapor phase derived TMDs for optical applications.

  14. High damage-resistant Mo mirror for high-power TEA CO/sub 2/ laser systems

    SciTech Connect (OSTI)

    Ichikawa, Y.; Yoshida, K.; Tsunawaki, Y.; Yamanaka, M.; Yamanaka, T.; Yamanaka, C.; Okamoto, H.; Matsusue, N.; Kitajima, K.

    1987-09-01T23:59:59.000Z

    A high-purity molybdenum (Mo) mirror was developed by an electron-beam melting method (e.b.m. Mo mirror). For high-power TEA CO/sub 2/ laser, the e.b.m. Mo mirror has two to four times higher surface damage threshold than that of an Au-coated glass mirror and three times longer lifetime than that of a powder metallurgy Mo mirror (p.m. Mo mirror) when laser energy density lower than 60 J/cm/sup 2/ was irradiated with a 0.5-pps repetition rate. It was found that the difference between the e.b.m. Mo mirror and the p.m. Mo mirror at the laser-damage threshold was due to the five surface without voids and the small amount of impurities.

  15. Aboveground test of an advanced Li$_2$MoO$_4$ scintillating bolometer to search for neutrinoless double beta decay of $^{100}$Mo

    E-Print Network [OSTI]

    T. B. Bekker; N. Coron; F. A. Danevich; V. Ya. Degoda; A. Giuliani; V. D. Grigorieva; N. V. Ivannikova; M. Mancuso; P. de Marcillac; I. M. Moroz; C. Nones; E. Olivieri; G. Pessina; D. V. Poda; V. N. Shlegel; V. I. Tretyak; M. Velazquez

    2014-12-17T23:59:59.000Z

    Large lithium molybdate (Li$_2$MoO$_4$) crystal boules were produced by using the low thermal gradient Czochralski growth technique from deeply purified molybdenum. A small sample from one of the boules was preliminary characterized in terms of X-ray-induced and thermally-excited luminescence. A large cylindrical crystalline element (with a size of $\\oslash 40\\times40$ mm) was used to fabricate a scintillating bolometer, which was operated aboveground at $\\sim 15$ mK by using a pulse-tube cryostat housing a high-power dilution refrigerator. The excellent detector performance in terms of energy resolution and $\\alpha$ background suppression along with preliminary positive indications on the radiopurity of this material show the potentiality of Li$_2$MoO$_4$ scintillating bolometers for low-counting experiment to search for neutrinoless double beta decay of $^{100}$Mo.

  16. Aboveground test of an advanced Li$_2$MoO$_4$ scintillating bolometer to search for neutrinoless double beta decay of $^{100}$Mo

    E-Print Network [OSTI]

    Bekker, T B; Danevich, F A; Degoda, V Ya; Giuliani, A; Grigorieva, V D; Ivannikova, N V; Mancuso, M; de Marcillac, P; Moroz, I M; Nones, C; Olivieri, E; Pessina, G; Poda, D V; Shlegel, V N; Tretyak, V I; Velazquez, M

    2014-01-01T23:59:59.000Z

    Large lithium molybdate (Li$_2$MoO$_4$) crystal boules were produced by using the low thermal gradient Czochralski growth technique from deeply purified molybdenum. A small sample from one of the boules was preliminary characterized in terms of X-ray-induced and thermally-excited luminescence. A large cylindrical crystalline element (with a size of $\\oslash 40\\times40$ mm) was used to fabricate a scintillating bolometer, which was operated aboveground at $\\sim 15$ mK by using a pulse-tube cryostat housing a high-power dilution refrigerator. The excellent detector performance in terms of energy resolution and $\\alpha$ background suppression along with preliminary positive indications on the radiopurity of this material show the potentiality of Li$_2$MoO$_4$ scintillating bolometers for low-counting experiment to search for neutrinoless double beta decay of $^{100}$Mo.

  17. Atomistic simulation of the electronic states of adatoms in monolayer MoS{sub 2}

    SciTech Connect (OSTI)

    Chang, Jiwon; Larentis, Stefano; Tutuc, Emanuel; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-04-07T23:59:59.000Z

    Using an ab initio density functional theory based electronic structure method, we study the effects of adatoms on the electronic properties of monolayer transition metal dichalcogenide Molybdenum-disulfide (MoS{sub 2}). We consider the 1st (Li, Na, K) and 7th (F, Cl, Br) column atoms and metals (Sc, Ti, Ta, Mo, Pd, Pt, Ag, Au). Three high symmetry sites for the adatom on the surface of monolayer MoS{sub 2} are examined as starting points to search for the most energetically stable configuration for each adatom-monolayer MoS{sub 2} system, as well as the type of associated bonding. For the most stable adatom positions, we characterize the emergence of adatom-induced electronic states including any dopant states.

  18. Monolayers of MoS{sub 2} as an oxidation protective nanocoating material

    SciTech Connect (OSTI)

    Sen, H. Sener [UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Sahin, H.; Peeters, F. M. [Department of Physics, University of Antwerp, 2610 Antwerp (Belgium); Durgun, E., E-mail: durgun@unam.bilkent.edu.tr [UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800 (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey)

    2014-08-28T23:59:59.000Z

    First-principle calculations are employed to investigate the interaction of oxygen with ideal and defective MoS{sub 2} monolayers. Our calculations show that while oxygen atoms are strongly bound on top of sulfur atoms, the oxygen molecule only weakly interacts with the surface. The penetration of oxygen atoms and molecules through a defect-free MoS{sub 2} monolayer is prevented by a very high diffusion barrier indicating that MoS{sub 2} can serve as a protective layer for oxidation. The analysis is extended to WS{sub 2} and similar coating characteristics are obtained. Our calculations indicate that ideal and continuous MoS{sub 2} and WS{sub 2} monolayers can improve the oxidation and corrosion-resistance of the covered surface and can be considered as an efficient nanocoating material.

  19. Substrate interactions with suspended and supported monolayer MoS?: Angle-resolved photoemission spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, Wencan; Sadowski, Jerzy T.; Yeh, Po-Chun; Zaki, Nader; Zhang, Datong; Liou, Jonathan T.; Dadap, Jerry I.; Herman, Irving P.; Osgood, Jr., Richard M.; Sutter, Peter; et al

    2015-03-01T23:59:59.000Z

    We report the directly measured electronic structure of exfoliated monolayer molybdenum disulfide (MoS?) using micrometer-scale angle-resolved photoemission spectroscopy. Measurements of both suspended and supported monolayer MoS? elucidate the effects of interaction with a substrate. A suggested relaxation of the in-plane lattice constant is found for both suspended and supported monolayer MoS? crystals. For suspended MoS?, a careful investigation of the measured uppermost valence band gives an effective mass at ? and ? of 2.00m? and 0.43m?, respectively. We also measure an increase in the band linewidth from the midpoint of ?? to the vicinity of ? and briefly discuss itsmore »possible origin.« less

  20. Substrate interactions with suspended and supported monolayer MoS?: Angle-resolved photoemission spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, Wencan [Columbia Univ., New York, NY (United States); Sadowski, Jerzy T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yeh, Po-Chun [Columbia Univ., New York, NY (United States); Zaki, Nader [Columbia Univ., New York, NY (United States); Zhang, Datong [Columbia Univ., New York, NY (United States); Liou, Jonathan T. [Columbia Univ., New York, NY (United States); Dadap, Jerry I. [Columbia Univ., New York, NY (United States); Herman, Irving P. [Columbia Univ., New York, NY (United States); Osgood, Jr., Richard M. [Columbia Univ., New York, NY (United States); Sutter, Peter [Brookhaven National Lab. (BNL), Upton, NY (United States); Barinov, Alexey [Elettra Sincrotrone Trieste, Basovizza, Trieste (Italy); Yablonskikh, Mikhail [Elettra Sincrotrone Trieste, Basovizza, Trieste (Italy)

    2015-03-01T23:59:59.000Z

    We report the directly measured electronic structure of exfoliated monolayer molybdenum disulfide (MoS?) using micrometer-scale angle-resolved photoemission spectroscopy. Measurements of both suspended and supported monolayer MoS? elucidate the effects of interaction with a substrate. A suggested relaxation of the in-plane lattice constant is found for both suspended and supported monolayer MoS? crystals. For suspended MoS?, a careful investigation of the measured uppermost valence band gives an effective mass at ? and ? of 2.00m? and 0.43m?, respectively. We also measure an increase in the band linewidth from the midpoint of ?? to the vicinity of ? and briefly discuss its possible origin.

  1. Intrinsic Electronic Transport Properties of High-Quality Monolayer and Bilayer MoS[subscript 2

    E-Print Network [OSTI]

    Baugher, Britton W. H.

    We report electronic transport measurements of devices based on monolayers and bilayers of the transition-metal dichalcogenide MoS[subscript 2]. Through a combination of in situ vacuum annealing and electrostatic gating ...

  2. MO"BIUS ENERGIES FOR KNOTS AND LINKS, SURFACES AND SUBMANIFOLDS

    E-Print Network [OSTI]

    Kusner, Robert B.

    MO"BIUS ENERGIES FOR KNOTS AND LINKS, SURFACES AND SUBMANIFOLDS energies, especially those which are invariant under M"obius transforma- tions of space. We describe computer experiments with such energies, and discuss ways of extending these to energies

  3. Isothermal activation of Mo2O5 ZSM-5 precursors during

    E-Print Network [OSTI]

    Iglesia, Enrique

    Isothermal activation of Mo2O5 21 ­ZSM-5 precursors during methane reactions: effects of reaction to petrochemicals and liquid fuels and chemicals remains a formidable technological challenge.1 Exchanged cations

  4. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    SciTech Connect (OSTI)

    Ching, Wai-Yim

    2013-12-31T23:59:59.000Z

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  5. Electronic structure and conductivity of nanocomposite metal (Au,Ag,Cu,Mo)-containing amorphous carbon films

    E-Print Network [OSTI]

    Endrino, Jose L.

    2010-01-01T23:59:59.000Z

    dual-cathode arc deposition (PDC-FCVA) source containingand metal cathodes [2]. The PDC-FCVA system in combinationCu,Mo) incorporation in a-C by PDC-FCVA. The modification of

  6. Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past online 22 June 2013 Abstract Here, we present sedimentological, trace metal, and molecular evidence underscores the value of combining sedimentological, geochemical, and microbiological approaches

  7. Enhanced absorption of monolayer MoS{sub 2} with resonant back reflector

    SciTech Connect (OSTI)

    Liu, Jiang-Tao, E-mail: jtliu@semi.ac.cn; Liu, Nian-Hua [Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031 (China); Department of Physics, Nanchang University, Nanchang 330031 (China); Wang, Tong-Biao [Department of Physics, Nanchang University, Nanchang 330031 (China); Li, Xiao-Jing [College of Physics and Energy, Fujian Normal University, Fuzhou 350007 (China)

    2014-05-21T23:59:59.000Z

    The optical absorption of monolayer MoS{sub 2} on top of one-dimensional photonic crystal (1DPC) or metal films with spacer layers is theoretically investigated by extracting the permittivity of monolayer MoS{sub 2} from existing experimental results [K. F. Mak et al., Phys. Rev. Lett. 105, 136805 (2010)]. The absorption of graphene with 1DPC across a broad spectral range is substantially enhanced because of the photonic localization at the optical micro-cavity on top of the 1DPC or metal films. The absorption of monolayer MoS{sub 2} can be tuned by varying either the distance between the monolayer MoS{sub 2} and the back reflector or the thickness of the cover layers.

  8. Diffusional Interactions between U-Mo and Zr at 650°C as a Function of Time

    SciTech Connect (OSTI)

    Y. Park; Y. H. Sohn; D. D. Keiser, Jr.

    2015-01-01T23:59:59.000Z

    Development of monolithic U-Mo alloy fuel (typically U-10wt.%Mo) for the Reduced Enrichment for Research and Test Reactors (RERTR) program requires a use of Zr diffusion barrier to eliminate the diffusional interaction between the fuel alloy and Al-alloy cladding. The application of Zr barrier to the U-Mo fuel requires co-rolling process that utilizes a soaking temperature of 650°C, which represents the highest temperature the fuel system is exposed to during both fuel manufacturing and reactor application. Therefore, in this study, development of phase constituents, microstructure and diffusion kinetics of U-10wt.%Mo and Zr was examined using solid-to-solid diffusion couples annealed at 650°C for 240, 480 and 720 hours. Diffusional interactions were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Within the diffusion zone, a single-phase layer of ß-Zr was observed along with a discontinuous layer of Mo2Zr at the interface between the terminal ?-U(Mo) alloy and ß-Zr. In the vicinity of Mo2Zr phase, islands of ß-U and a-Zr phases were also found. In addition, accicular a-Zr phases were observed within the ?-U(Mo). Growth rate of this diffuaional interaction layer was determined to be 8.76 x 10-15 m2/sec, however with an assumption of certain incubation period. Consistency in these observation along with concentration profiles and diffusion paths are presented and discussed with respect to the diffusion couple that was furnace-cooled, annealed at 700°C in our previous study, and isothermal ternary phase diagram at 700°C.

  9. MoS{sub 2} nanotube exfoliation as new synthesis pathway to molybdenum blue

    SciTech Connect (OSTI)

    Visic, B., E-mail: bojana.visic@ijs.si [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Gunde, M. Klanjsek [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia)] [National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Kovac, J.; Iskra, I. [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)] [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Jelenc, J.; Remskar, M. [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia) [Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Centre of Excellence Namaste, Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

    2013-02-15T23:59:59.000Z

    Graphical abstract: . Display Omitted Highlights: ? New synthesis approach to obtaining molybdenum blue via exfoliated MoS{sub 2} nanotubes. ? Material is prone to self assembly and is stable in high vacuum. ? Molecules are as small as 2 nm and their clusters are up to tens of nanometers. ? Change in absorption and oxidation states from the precursor MoS{sub 2}. -- Abstract: Molybdenum blue-type materials are usually obtained by partially reducing Mo{sup VI+} in acidic solutions, while in the presented method it is formed in ethanol solution of exfoliated MoS{sub 2} nanotubes, where the MoS{sub 2} flakes are the preferential location for their growth. Material was investigated by means of scanning electron and atomic force microscopy, showing the structure and self assembly, while also confirming that it is stable in high vacuum with molecules as small as 1.6 nm and the agglomerates of few tens of nanometres. The ultraviolet–visible and photoelectron spectrometry show the change in absorption properties and oxidation states from MoS{sub 2} structure to molybdenum blue, while the presence of sulphur suggests that this is a new type of molybdenum blue material.

  10. High reflectance and low stress Mo2C/Be multilayers

    DOE Patents [OSTI]

    Bajt, Sasa (Livermore, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

    2001-01-01T23:59:59.000Z

    A material for extreme ultraviolet (EUV) multilayers that will reflect at about 11.3 nm, have a high reflectance, low stress, and high thermal and radiation stability. The material consists of alternating layers of Mo.sub.2 C and Be deposited by DC magnetron sputtering on a substrate, such as silicon. In one example a Mo.sub.2 C/Be multilayer gave 65.2% reflectance at 11.25 nm measured at 5 degrees off normal incidence angle, and consisted of 70 bilayers with a deposition period of 5.78 nm, and was deposited at 0.83 mTorr argon (Ar) sputtering pressure, with the first and last layers being Be. The stress of the multilayer is tensile and only +88 MPa, compared to +330 MPa of a Mo/Be multilayers of the same thickness. The Mo.sub.2 C/Be multilayer was capped with carbon which produced an increase in reflectivity of about 7% over a similar multilayer with no carbon capping material, thus raising the reflectivity from 58.3% to over 65%. The multilayers were formed using either Mo.sub.2 C or Be as the first and last layers, and initial testing has shown the formation of beryllium carbide at the interfaces between the layers which both stabilizes and has a smoothing effect, and appear to be smoother than the interfaces in Mo/Be multilayers.

  11. Effects of thermal treatment on the co-rolled U-Mo fuel foils

    SciTech Connect (OSTI)

    Dennis D. Keiser, Jr.; Tammy L. Trowbridge; Cynthia R. Breckenridge; Brady L. Mackowiak; Glenn A. Moore; Barry H. Rabin; Mitchell K. Meyer

    2014-11-01T23:59:59.000Z

    A monolithic fuel type is being developed to convert US high performance research and test reactors such as Advanced Test Reactor (ATR) at Idaho National Laboratory from highly enriched uranium (HEU) to low-enriched uranium (LEU). The interaction between the cladding and the U-Mo fuel meat during fuel fabrication and irradiation is known to have negative impacts on fuel performance, such as mechanical integrity and dimensional stability. In order to eliminate/minimize the direct interaction between cladding and fuel meat, a thin zirconium diffusion barrier was introduced between the cladding and U-Mo fuel meat through a co-rolling process. A complex interface between the zirconium and U-Mo was developed during the co-rolling process. A predictable interface between zirconium and U-Mo is critical to achieve good fuel performance since the interfaces can be the weakest link in the monolithic fuel system. A post co-rolling annealing treatment is expected to create a well-controlled interface between zirconium and U-Mo. A systematic study utilizing post co-rolling annealing treatment has been carried out. Based on microscopy results, the impacts of the annealing treatment on the interface between zirconium and U-Mo will be presented and an optima annealing treatment schedule will be suggested. The effects of the annealing treatment on the fuel performance will also be discussed.

  12. Photoluminescent BaMoO{sub 4} nanopowders prepared by complex polymerization method (CPM)

    SciTech Connect (OSTI)

    Azevedo Marques, Ana Paula de [Laboratorio de Analise Termica e Materiais, Departamento de Quimica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil)]. E-mail: apamarques@liec.ufscar.br; Melo, Dulce M.A. de [Laboratorio de Analise Termica e Materiais, Departamento de Quimica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Paskocimas, Carlos A. [Departamento de Engenharia Mecanica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Pizani, Paulo S. [Laboratorio de Semicondutores, Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Joya, Miryam R. [Laboratorio de Semicondutores, Departamento de Fisica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos, SP (Brazil); Leite, Edson R. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, CMDMC, Departamento de Quimica, Universidade Federal de Sao Carlos 13565-905, Sao Carlos, SP (Brazil); Longo, Elson [CMDMC, LIEC, Instituto de Quimica, Universidade Estadual Paulista, 14801-907 Araraquara, SP (Brazil)

    2006-03-15T23:59:59.000Z

    The BaMoO{sub 4} nanopowders were prepared by the Complex Polymerization Method (CPM). The structure properties of the BaMoO{sub 4} powders were characterized by FTIR transmittance spectra, X-ray diffraction (XRD), Raman spectra, photoluminescence spectra (PL) and high-resolution scanning electron microscopy (HR-SEM). The XRD, FTIR and Raman data showed that BaMoO{sub 4} at 300 deg. C was disordered. At 400 deg. C and higher temperature, BaMoO{sub 4} crystalline scheelite-type phases could be identified, without the presence of additional phases, according to the XRD, FTIR and Raman data. The calculated average crystallite sizes, calculated by XRD, around 40 nm, showed the tendency to increase with the temperature. The crystallite sizes, obtained by HR-SEM, were around of 40-50 nm. The sample that presented the highest intensity of the red emission band was the one heat treated at 400 deg. C for 2 h, and the sample that displayed the highest intensity of the green emission band was the one heat treated at 700 deg. C for 2 h. The CPM was shown to be a low cost route for the production of BaMoO{sub 4} nanopowders, with the advantages of lower temperature, smaller time and reduced cost. The optical properties observed for BaMoO{sub 4} nanopowders suggested that this material is a highly promising candidate for photoluminescent applications.

  13. Synthesis and characterization of the ((CO)/sub 4/MoS/sub 2/MS/sub 2/)/sup 2 -/ and ((CO)/sub 4/MoS/sub 2/MS/sub 2/Mo(CO)/sub 4/)/sup 2 -/ ions (M = Mo, W): species containing group VI (6) metals in widely separated formal oxidation states

    SciTech Connect (OSTI)

    Rosenhein, L.D.; McDonald, J.W.

    1987-10-07T23:59:59.000Z

    Dinuclear and trinuclear sulfide-bridged complexes of the types (Et/sub 4/N)/sub 2/(MS/sub 4/(Mo(CO)/sub 4/)) and (Et/sub 4/N)/sub 2/(MS/sub 4/(Mo(CO)/sub 4/)/sub 2/) were prepared by the reaction of one or two equivalents of Mo(CO)/sub 4/(C/sub 7/H/sub 8/) (C/sub 7/H/sub 8/ = norbornadiene) with (Et/sub 4/N)/sub 2/(MS/sub 4/) (M = Mo, W) in methyl alcohol. Elemental analyses were consistent with the proposed formulae. Infrared spectra of all four compounds contain strong bands in the carbonyl region and low-energy bands characteristic of terminal and bridging M-S vibrations in linear, polynuclear, and sulfido-bridged species. Electrochemical experimental results support the hypothesis that the di- and trinuclear species contain both M(IV) (M = Mo, W) and Mo(0) oxidation states in the same complex. 33 references, 2 tables.

  14. Food and Drug Administration process validation activities to support 99Mo production at Sandia National Laboratories

    SciTech Connect (OSTI)

    McDonald, M.J.; Bourcier, S.C.; Talley, D.G.

    1997-07-01T23:59:59.000Z

    Prior to 1989 {sup 99}Mo was produced in the US by a single supplier, Cintichem Inc., Tuxedo, NY. Because of problems associated with operating its facility, in 1989 Cintichem elected to decommission the facility rather than incur the costs for repair. The demise of the {sup 99}Mo capability at Cintichem left the US totally reliant upon a single foreign source, Nordion International, located in Ottawa Canada. In 1992 the DOE purchased the Cintichem {sup 99}Mo Production Process and Drug Master File (DMF). In 1994 the DOE funded Sandia National Laboratories (SNL) to produce {sup 99}Mo. Although Cintichem produced {sup 99}Mo and {sup 99m}Tc generators for many years, there was no requirement for process validation which is now required by the Food and Drug Administration (FDA). In addition to the validation requirement, the requirements for current Good manufacturing Practices were codified into law. The purpose of this paper is to describe the process validation being conducted at SNL for the qualification of SNL as a supplier of {sup 99}Mo to US pharmaceutical companies.

  15. Mechanistic study of methanol synthesis from CO? and H? on a modified model Mo?S? cluster

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Cheng [Yangzhou Univ., Yangzhou, Jiangsu (China); Liu, Ping [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-02-06T23:59:59.000Z

    We report the methanol synthesis from CO? and H? on metal (M = K, Ti, Co, Rh, Ni, and Cu)-modified model Mo?S? catalyst using density functional theory (DFT). The results show that the catalytic behavior of a Mo?S? cluster is changed significantly due to the modifiers, via the electron transfer from M to Mo?S? and therefore the reduction of the Mo cation (ligand effect) and the direct participation of M in the reaction (ensemble effect) to promote some elementary steps. With the most positively charged modifier, the ligand effect in the case of K-Mo?S? is the most obvious among the systems studied; however it cannot compete with the ensemble effect, which plays a dominate role in determining activity via the electrostatic attraction in particular to stabilize the CHxOy species adsorbed at the Mo sites of Mo?S?. In comparison, the ligand effect is weaker and the ensemble effect is more important when the other modifiers are used. In addition, the modifiers also vary the optimal reaction pathway for methanol synthesis on Mo?S?, ranging from the reverse water-gas shift (RWGS) + CO hydrogenation as that of Mo?S? to the formate pathway. Finally, K is able to accelerate the methanol synthesis on Mo?S? the most; while the promotion by Rh is relatively small. Using the modifiers like Ti, Co, Ni, and Cu, the activity of Mo?S? is decreased instead. The relative stability between *HCOO and *HOCO is identified as a descriptor to capture the variation in mechanism and scales well with the estimated activity. Our study not only provides better understanding of the reaction mechanism and actives on the modified Mo?S?, but also predicts some possible candidates, which can be used a promoter to facilitate the CH?OH synthesis on Mo sulfides.

  16. Mechanistic study of methanol synthesis from CO? and H? on a modified model Mo?S? cluster

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Cheng; Liu, Ping

    2015-02-06T23:59:59.000Z

    We report the methanol synthesis from CO? and H? on metal (M = K, Ti, Co, Rh, Ni, and Cu)-modified model Mo?S? catalyst using density functional theory (DFT). The results show that the catalytic behavior of a Mo?S? cluster is changed significantly due to the modifiers, via the electron transfer from M to Mo?S? and therefore the reduction of the Mo cation (ligand effect) and the direct participation of M in the reaction (ensemble effect) to promote some elementary steps. With the most positively charged modifier, the ligand effect in the case of K-Mo?S? is the most obvious among themore »systems studied; however it cannot compete with the ensemble effect, which plays a dominate role in determining activity via the electrostatic attraction in particular to stabilize the CHxOy species adsorbed at the Mo sites of Mo?S?. In comparison, the ligand effect is weaker and the ensemble effect is more important when the other modifiers are used. In addition, the modifiers also vary the optimal reaction pathway for methanol synthesis on Mo?S?, ranging from the reverse water-gas shift (RWGS) + CO hydrogenation as that of Mo?S? to the formate pathway. Finally, K is able to accelerate the methanol synthesis on Mo?S? the most; while the promotion by Rh is relatively small. Using the modifiers like Ti, Co, Ni, and Cu, the activity of Mo?S? is decreased instead. The relative stability between *HCOO and *HOCO is identified as a descriptor to capture the variation in mechanism and scales well with the estimated activity. Our study not only provides better understanding of the reaction mechanism and actives on the modified Mo?S?, but also predicts some possible candidates, which can be used a promoter to facilitate the CH?OH synthesis on Mo sulfides.« less

  17. Kansas Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15T23:59:59.000Z

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Kansas homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost effective over a 30-year life cycle. On average, Kansas homeowners will save $2,556 over 30 years under the 2009 IECC, with savings still higher at $8,828 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energy savings are $155 for the 2009 IECC and $543 for the 2012 IECC.

  18. Improved oil recovery in Mississippian carbonate reservoirs of Kansas: Near term, Class 2. [Annual report], September 18, 1994--October 1, 1995. Draft.

    SciTech Connect (OSTI)

    Carr, T.R.; Green, D.W.; Willhite, G.P.

    1996-01-01T23:59:59.000Z

    This report represents a summary of the progress during the first year of Budget period 1 of the near term Class 2 project entitled ``Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas``. Two examples of advanced technologies developed as part of this project are highlighted along with the use of the Internet to transfer these technologies. The two advanced technologies are a spread-sheet petrophysical analysis and reservoir evaluation (PfEFFER), and a petrophysical/seismic approach to well logs (pseudoseismic). Work continues on multi-disciplinary reservoir characterization at the demonstration site. The potential for incremental primary recovery is being evaluated using the improved reservoir characterization to target infill drilling and evaluate the potential of a horizontal well. The impact of successful incremental primary recovery from sub-Pennsylvanian unconformity Mississippian reservoirs such as are present at the Schaben demonstration site would be significant for Kansas and the US.

  19. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- near-term. Seventh quarterly report, February 1, 1995--April 1, 1995

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1995-04-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on latter stage of primary production) is located in Finney County, Kansas and is operated by Sharon Resources, Inc. General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process, possibly polymer augmented waterflood: on both field demonstration sites.

  20. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas -- near-term. Eighth quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1995-07-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on latter stage of primary production) is located in Finney County, Kansas and is operated by North American Resources Company General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration, of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and 5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process on both field demonstration sites.

  1. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas, Near-term. Third quarterly report, January 1, 1994--April 1, 1994

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1994-04-15T23:59:59.000Z

    The objective of this project is to address waterflood problems of the type found in Cherokee Group reservoirs in southeastern Kansas and in Morrow sandstone reservoirs in southwestern Kansas. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field. The Stewart Field is located in Finney County, Kansas. General topics to be addressed will be (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. The reservoir management portion of the project will involve performance evaluation and will include such work as (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) identification of the most efficient and economical recovery process. The waterflood optimization portion of the project involves only the Nelson Lease. It will be based on the performance evaluation and will involve (1) design and implementation of a water cleanup system for the waterflood, (2) application of well remedial work such as polymer gel treatments to improve vertical sweep efficiency, and (3) changes in waterflood patterns to increase sweep efficiency. Finally, it is planned to implement an improved recovery process, possibly polymer augmented waterflooding on both field demonstration sites. Progress reports are presented for the following tasks: engineering and geological analysis; water plant development; pattern changes and wellbore cleanup; field operations; laboratory testing; and utilization.

  2. AN EVALUATION OF HYDROSTRATIGRAPHIC CHARACTERIZATION METHODS BASED ON WELL LOGS FOR GROUNDWATER MODELING OF THE HIGH PLAINS AQUIFER IN SOUTHWEST KANSAS

    E-Print Network [OSTI]

    Kreitzer, Sarah R.

    2011-04-27T23:59:59.000Z

    unconfined aquifer that consists mainly of unconsolidated to cemented deposits of clay, silt, sand, and gravel. Measures of saturated thickness (ST) assume that all saturated deposits contribute water to pumping wells equally. However, fine...-grained sediments like clay and silt, as well as locally cemented zones, form low permeability units that impede ground-water flow (Gutentag et al., 1981; Macfarlane and Wilson, 2006; Macfarlane, 2009). In southwest Kansas, unconsolidated sand and gravel deposits...

  3. Enriched Zn$^{100}$MoO$_4$ scintillating bolometers to search for $0 ? 2?$ decay of $^{100}$Mo with the LUMINEU experiment

    E-Print Network [OSTI]

    A. S. Barabash; D. M. Chernyak; F. A. Danevich; A. Giuliani; I. M. Ivanov; E. P. Makarov; M. Mancuso; S. Marnieros; S. G. Nasonov; C. Nones; E. Olivieri; G. Pessina; D. V. Poda; V. N. Shlegel; M. Tenconi; V. I. Tretyak; Ya. V. Vasiliev; M. Velazquez; V. N. Zhdankov

    2014-07-05T23:59:59.000Z

    The LUMINEU project aims at performing a demonstrator underground experiment searching for the neutrinoless double beta decay of the isotope $^{100}$Mo embedded in zinc molybdate (ZnMoO$_4$) scintillating bolometers. In this context, a zinc molybdate crystal boule enriched in $^{100}$Mo to 99.5\\% with a mass of 171 g was grown for the first time by the low-thermal-gradient Czochralski technique. The production cycle provided a high yield (the crystal boule mass was 84\\% of initial charge) and an acceptable level -- around 4\\% -- of irrecoverable losses of the costy enriched material. Two crystals of 59 g and 63 g, obtained from the enriched boule, were tested aboveground at milli-Kelvin temperature as scintillating bolometers. They showed a high detection performance, equivalent to that of previously developed natural ZnMoO$_4$ detectors. These results pave the way to future sensitive searches based on the LUMINEU technology, capable to approach and explore the inverted hierarchy region of the neutrino mass pattern.

  4. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - near - term. Technical progress report, June 17, 1994--June 17, 1995

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of water injection wells with solids as a result of poor water quality. In many instances the lack of reservoir management is due to lack of (1) data collection and organization, (2) integrated analysis of existing data by geological and engineering personnel, and (3) identification of optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in the project. The Stewart Field (on the latter stage of primary production) is located in Finney County, Kansas, and was operated by Sharon Resources, Inc. and is now operated by North American Resources Company. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  5. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term. Annual report, June 18, 1993--June 18, 1994

    SciTech Connect (OSTI)

    Green, D.W.; Willhite, G.P.

    1995-10-01T23:59:59.000Z

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of water injection wells with solids as a result of poor water quality. In many instances the lack of reservoir management is due to lack of (1) data collection and organization, (2) integrated analysis of existing data by geological and engineering personnel, and (3) identification of optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in the project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The Stewart Field (on the latter stage of primary production) is located in Finney County, Kansas and is operated by Sharon Resources, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  6. Control of absorption of monolayer MoS$_{2}$ thin-film transistor in one-dimensional defective photonic crystal

    E-Print Network [OSTI]

    Yang, Fang-Fang; Xiao, Wen-bo; Liu, Jiang-Tao; Liu, Nian-Hua

    2014-01-01T23:59:59.000Z

    The light absorption and transmission of monolayer MoS$_{2}$ in a one-dimensional defective photonic crystal (d-1DPC) is theoretically investigated. The study shows that the strong interference effect decreases photon density in particular areas of the microcavity. The d-1DPC can reduce light absorption of monolayer MoS$_{2}$ and enhance light transmission. The impact of monolayer MoS$_{2}$ light absorption on the localization effect of photon is investigated when monolayer MoS$_{2}$ and the organic light-emitting diode are located in the same microcavity. However, monolayer MoS$_{2}$ does not reduce the localization effect of light by regulating the position of monolayer MoS$_{2}$ in the microcavity.

  7. Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas

    SciTech Connect (OSTI)

    Saibal Bhattacharya

    2005-08-31T23:59:59.000Z

    Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring data constraints afflicting mature Mississippian fields. A publicly accessible databank of representative petrophysical properties and relationships was developed to overcome the paucity of such data that is critical to modeling the storage and flow in these reservoirs. Studies in 3 Mississippian fields demonstrated that traditional reservoir models built by integrating log, core, DST, and production data from existing wells on 40-acre spacings are unable to delineate karst-induced compartments, thus making 3D-seismic data critical to characterize these fields. Special attribute analyses on 3D data were shown to delineate reservoir compartments and predict those with pay porosities. Further testing of these techniques is required to validate their applicability in other Mississippian reservoirs. This study shows that detailed reservoir characterization and simulation on geomodels developed by integrating wireline log, core, petrophysical, production and pressure, and 3D-seismic data enables better evaluation of a candidate field for horizontal infill applications. In addition to reservoir compartmentalization, two factors were found to control the economic viability of a horizontal infill well in a mature Mississippian field: (a) adequate reservoir pressure support, and (b) an average well spacing greater than 40-acres.

  8. Effects of rhenium alloying on the microstructures and mechanical properties of directionally solidified NiAl-Mo eutectic alloy

    SciTech Connect (OSTI)

    Misra, A.; Wu, Z.L.; Gibala, R. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering

    1997-12-31T23:59:59.000Z

    Low ductility of the reinforcing bcc metal phase at room temperature and weak interfaces can limit the intrinsic toughness and ductility of NiAl-bcc metal eutectic composites. The potential of rhenium (Re) addition, which is known to solid solution soften and lower the ductile-to-brittle transition temperature of various bcc metals, to enhance the ductility and toughness of a directionally solidified NiAl-9 at.% Mo eutectic alloy was investigated. Re partitioned to the bcc metal phase and formed a substitutional solid solution. The interface morphology was changed from a faceted to a non-faceted one. Re alloying caused softening of the Mo fibers, and as a result NiAl-Mo(Re) alloys were softer in compression and flexure and had {approximately}20% higher fracture toughness values as compared to the transverse orientation toughness of NiAl-9Mo alloy. The toughness of the NiAl-Mo(Re) alloys was lower than the longitudinal orientation toughness of the NiAl-9Mo alloy due to the poor alignment of the Mo(Re) phase with the growth direction. The toughening mechanisms have been evaluated and schemes for processing NiAl-Mo(Re) alloys for higher toughness in the longitudinal orientation are suggested. The role of the residual interstitial impurities and partitioning of Ni and Al to Mo fibers on the mechanical properties are highlighted.

  9. Method for the production of {sup 99m}Tc compositions from {sup 99}Mo-containing materials

    DOE Patents [OSTI]

    Bennett, R.G.; Christian, J.D.; Grover, S.B.; Petti, D.A.; Terry, W.K.; Yoon, W.Y.

    1998-09-01T23:59:59.000Z

    An improved method is described for producing {sup 99m}Tc compositions from {sup 99}Mo compounds. {sup 100}Mo metal or {sup 100}MoO{sub 3} is irradiated with photons in a particle (electron) accelerator to ultimately produce {sup 99}MoO{sub 3}. This composition is then heated in a reaction chamber to form a pool of molten {sup 99}MoO{sub 3} with an optimum depth of 0.5--5 mm. A gaseous mixture thereafter evolves from the molten {sup 99}MoO{sub 3} which contains vaporized {sup 99}MoO{sub 3}, vaporized {sup 99m}TcO{sub 3}, and vaporized {sup 99m}TcO{sub 2}. This mixture is then combined with an oxidizing gas (O{sub 2(g)}) to generate a gaseous stream containing vaporized {sup 99m}Tc{sub 2}O{sub 7} and vaporized {sup 99}MoO{sub 3}. Next, the gaseous stream is cooled in a primary condensation stage in the reaction chamber to remove vaporized {sup 99}MoO{sub 3}. Cooling is undertaken at a specially-controlled rate to achieve maximum separation efficiency. The gaseous stream is then cooled in a sequential secondary condensation stage to convert vaporized {sup 99m}Tc{sub 2}O{sub 7} into a condensed {sup 99m}Tc-containing reaction product which is collected. 1 fig.

  10. Method for the production of .sup.99m Tc compositions from .sup.99 Mo-containing materials

    DOE Patents [OSTI]

    Bennett, Ralph G. (Idaho Falls, ID); Christian, Jerry D. (Idaho Falls, ID); Grover, S. Blaine (Idaho Falls, ID); Petti, David A. (Idaho Falls, ID); Terry, William K. (Idaho Falls, ID); Yoon, Woo Y. (Idaho Falls, ID)

    1998-01-01T23:59:59.000Z

    An improved method for producing .sup.99m Tc compositions from .sup.99 Mo compounds. .sup.100 Mo metal or .sup.100 MoO.sub.3 is irradiated with photons in a particle (electron) accelerator to ultimately produce .sup.99 MoO.sub.3. This composition is then heated in a reaction chamber to form a pool of molten .sup.99 MoO.sub.3 with an optimum depth of 0.5-5 mm. A gaseous mixture thereafter evolves from the molten .sup.99 MoO.sub.3 which contains vaporized .sup.99 MoO.sub.3, vaporized .sup.99m TcO.sub.3, and vaporized .sup.99m TcO.sub.2. This mixture is then combined with an oxidizing gas (O.sub.2(g)) to generate a gaseous stream containing vaporized .sup.99m Tc.sub.2 O.sub.7 and vaporized .sup.99 MoO.sub.3. Next, the gaseous stream is cooled in a primary condensation stage in the reaction chamber to remove vaporized .sup.99 MoO.sub.3. Cooling is undertaken at a specially-controlled rate to achieve maximum separation efficiency. The gaseous stream is then cooled in a sequential secondary condensation stage to convert vaporized .sup.99m Tc.sub.2 O.sub.7 into a condensed .sup.99m Tc-containing reaction product which is collected.

  11. An in situ x-ray spectroscopic study of Mo?{sup +} speciation in supercritical aqueous solutions

    SciTech Connect (OSTI)

    Yan, Hao [Missouri State University, Springfield, MO (United States); Mayanovic, Robert A. [Missouri State University, Springfield, MO (United States); Anderson, Alan J. [St. Francis Xavier Univ., Antigonish, NS (Canada); Meredith, Peter R. [St. Francis Xavier Univ., Antigonish, NS (Canada)

    2011-09-01T23:59:59.000Z

    In situ XRF and Mo K-edge XAS measurements were made on the ID20-B beam line at the APS on MoO? in 1 M H?O? aqueous solution, at temperatures between 400 and 600 °C. The samples were analyzed using a modified Bassett-type hydrothermal diamond anvil cell. Our XRF measurements show that MoO? is highly soluble in the supercritical H?O? aqueous fluid. Analysis of XAS spectra shows that the Mo?{sup +} ion exhibits consistent speciation in the H?O? aqueous solution at temperatures ranging from 400 to 600 °C.

  12. Mechanical properties of MoS2/graphene heterostructures Jin-Wu Jiang and Harold S. Park

    E-Print Network [OSTI]

    of the heterostructure is considerably smaller than the MoS2 due to lateral buckling of the outer graphene layers owning

  13. Elementary Steps of Syngas Reactions on Mo2C(001): Adsorption Thermochemistry and Bond Dissociation

    SciTech Connect (OSTI)

    Medford, Andrew

    2012-02-16T23:59:59.000Z

    Density functional theory (DFT) and ab initio thermodynamics are applied in order to investigate the most stable surface and subsurface terminations of Mo{sub 2}C(001) as a function of chemical potential and in the presence of syngas. The Mo-terminated (001) surface is then used as a model surface to evaluate the thermochemistry and energetic barriers for key elementary steps in syngas reactions. Adsorption energy scaling relations and Broensted-Evans-Polanyi relationships are established and used to place Mo{sub 2}C into the context of transition metal surfaces. The results indicate that the surface termination is a complex function of reaction conditions and kinetics. It is predicted that the surface will be covered by either C{sub 2}H{sub 2} or O depending on conditions. Comparisons to transition metals indicate that the Mo-terminated Mo{sub 2}C(001) surface exhibits carbon reactivity similar to transition metals such as Ru and Ir, but is significantly more reactive towards oxygen.

  14. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    SciTech Connect (OSTI)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01T23:59:59.000Z

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  15. Beta. -MoO sub 3 produced from a novel freeze drying route

    SciTech Connect (OSTI)

    Parise, J.B. (State Univ. of New York, Stony Brook (United States)); McCarron, E.M. III (E.I. Dupont de Nemours and Co., Inc., Wilmington, DE (United States)); Von Dreele, R.; Goldstone, J.A. (Los Alamos National Lab., NM (United States))

    1991-07-01T23:59:59.000Z

    Powdered samples of {beta}-MoO{sub 3} have been produced by the gentle heat treatment of freeze-dried molybdic acid at 350{degree}C for 1 hr. The samples, yellow-green in appearance, contained varying amounts of the thermodynamically stable {alpha}-MoO{sub 3}, depending upon the time and temperature of heat treatment. Neutron diffraction data were collected at 300 K. all peaks, not attributable to {alpha}-MoO{sub 3}, were indexed on the basis of a monoclinic cell, P2{sub 1}/c, {alpha} = 7.1228(7), b = 5.3660(6), c = 5.5665(6), {beta} = 92.01(1){degree}, V = 212.62(6){angstrom}{sup 3}. The structure, which is related to ReO{sub 3}, contains two crystallographically independent octahedra. Both show evidence of disorder at the Mo and O sites. Two distinct orientations of a short mo-O distance, suggestive of the type of molybdenyl bond observed in both the {alpha} and {beta}{prime}-forms, are primarily responsible for the observed disordering.

  16. Oxidation and creep behavior of Mo*5*Si*3* based materials

    SciTech Connect (OSTI)

    Meyer, M.

    1995-06-19T23:59:59.000Z

    Mo{sub 5}Si{sub 3} shows promise as a high temperature creep resistant material. The high temperature oxidation resistance of Mo{sub 5}Si{sub 3} has been found to be poor, however, limiting its use in oxidizing atmospheres. Undoped Mo{sub 5}Si{sub 3} exhibits mass loss in the temperature range 800{degrees}-1200{degrees}C due to volatilization of molybdenum oxide, indicating that the silica scale does not provide a passivating layer. The addition of boron results in protective scale formation and parabolic oxidation kinetics in the temperature range of 1050{degrees}-1300{degrees}C. The oxidation rate of Mo{sub 5}Si{sub 3} was decreased by 5 orders of magnitude at 1200{degrees}C by doping with less than two weight percent boron. Boron doping eliminates catastrophic {open_quote}pest{close_quote} oxidation at 800{degrees}C. The mechanism for improved oxidation resistance of boron doped Mo{sub 5}Si{sub 3} is due to scale modification by boron.

  17. Liquid generation during sintering of Fe-3.5%Mo powder compacts with elemental boron additions

    SciTech Connect (OSTI)

    Sarasola, M.; Gomez-Acebo, T.; Castro, F

    2004-09-06T23:59:59.000Z

    The mechanisms for liquid generation and the microstructural development during sintering of a Fe-3.5Mo-0.3B alloy were studied. Interrupted sintering experiments followed by water quenching from specific temperatures within the sintering cycle have been carried out. The influence of Mo, both, on the final microstructure and on the behaviour of boron prior to, during and after the formation of the liquid phase, was studied through observation of the quenched samples under LOM and SEM. The study shows that prior to the formation of the liquid phase, boron diffuses into the metallic particles forming inter and intragranular precipitates of the (Fe,Mo){sub 2}B type. At higher temperatures a continuous Fe/Mo/B liquid phase, with excellent wetting characteristics, is formed thus leading to near fully dense materials. The generation of the liquid is based on a eutectic reaction involving the mixed (Fe,Mo){sub 2}B borides previously formed. The development of the microstructure after liquid formation is described.

  18. Atomistic full-band simulations of monolayer MoS{sub 2} transistors

    SciTech Connect (OSTI)

    Chang, Jiwon; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)] [Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758 (United States)

    2013-11-25T23:59:59.000Z

    We study the transport properties of deeply scaled monolayer MoS{sub 2} n-channel metal-oxide-semiconductor field effect transistors (MOSFETs), using full-band ballistic quantum transport simulations, with an atomistic tight-binding Hamiltonian obtained from density functional theory. Our simulations suggest that monolayer MoS{sub 2} MOSFETs can provide near-ideal subthreshold slope, suppression of drain-induced barrier lowering, and gate-induced drain leakage. However, these full-band simulations exhibit limited transconductance. These ballistic simulations also exhibit negative differential resistance (NDR) in the output characteristics associated with the narrow width in energy of the lowest conduction band, but this NDR may be substantially reduced or eliminated by scattering in MoS{sub 2}.

  19. Highly conducting SrMoO{sub 3} thin films for microwave applications

    SciTech Connect (OSTI)

    Radetinac, Aldin, E-mail: aldin@oxide.tu-darmstadt.de; Mani, Arzhang; Ziegler, Jürgen; Alff, Lambert; Komissinskiy, Philipp, E-mail: komissinskiy@oxide.tu-darmstadt.de [Institute of Materials Science, TU Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt (Germany); Melnyk, Sergiy; Nikfalazar, Mohammad; Zheng, Yuliang; Jakoby, Rolf [Institute for Microwave Engineering and Photonics, TU Darmstadt, Merckstraße 25, 64283 Darmstadt (Germany)

    2014-09-15T23:59:59.000Z

    We have measured the microwave resistance of highly conducting perovskite oxide SrMoO{sub 3} thin film coplanar waveguides. The epitaxial SrMoO{sub 3} thin films were grown by pulsed laser deposition and showed low mosaicity and smooth surfaces with a root mean square roughness below 0.3?nm. Layer-by-layer growth could be achieved for film thicknesses up to 400?nm as monitored by reflection high-energy electron diffraction and confirmed by X-ray diffraction. We obtained a constant microwave resistivity of 29???·cm between 0.1 and 20?GHz by refining the frequency dependence of the transmission coefficients. Our result shows that SrMoO{sub 3} is a viable candidate as a highly conducting electrode material for all-oxide microwave electronic devices.

  20. Time exposure performance of Mo-Au Gibbsian segregating alloys for extreme ultraviolet collector optics

    SciTech Connect (OSTI)

    Qiu Huatan; Srivastava, Shailendra N.; Thompson, Keith C.; Neumann, Martin J.; Ruzic, David N

    2008-05-01T23:59:59.000Z

    Successful implementation of extreme ultraviolet (EUV) lithography depends on research and progress toward minimizing collector optics degradation from intense plasma erosion and debris deposition. Thus studying the surface degradation process and implementing innovative methods, which could enhance the surface chemistry causing the mirrors to suffer less damage, is crucial for this technology development. A Mo-Au Gibbsian segregation (GS) alloy is deposited on Si using a dc dual-magnetron cosputtering system and the damage is investigated as a result of time dependent exposure in an EUV source. A thin Au segregating layer is maintained through segregation during exposure, even though overall erosion in the Mo-Au sample is taking place in the bulk. The reflective material, Mo, underneath the segregating layer is protected by this sacrificial layer, which is lost due to preferential sputtering. In addition to theoretical work, experimental results are presented on the effectiveness of the GS alloys to be used as potential EUV collector optics material.