Sample records for mining safety indiana

  1. Labor and Safety: Mines and Mining Safety (Indiana)

    Broader source: Energy.gov [DOE]

    This section contains labor regulations pertaining specifically to coal mine workers. The law establishes the Indiana Mining Board. The Board's duties include: collecting and distributing...

  2. Gas Pipeline Safety (Indiana)

    Broader source: Energy.gov [DOE]

    This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

  3. Surface Coal Mining and Reclamation (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Natural Resources implements and enforces the federal Surface Mining Control and Reclamation Act of 1977, as well as a statewide program to protect society and the...

  4. Coal Mine Safety Act (Virginia)

    Broader source: Energy.gov [DOE]

    This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

  5. Analysis of seismic waves generated by surface blasting at Indiana coal mines

    E-Print Network [OSTI]

    Polly, David

    Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent blasting) and coal mines (surface blasting) to gain new understanding of seismic wave propagation, ground

  6. Pipeline Construction Guidelines (Indiana)

    Broader source: Energy.gov [DOE]

    The Division of Pipeline Safety of the Indiana Utility Regulatory Commission regulates the construction of any segment of an interstate pipeline on privately owned land in Indiana. The division has...

  7. WIPP Receives Top Mine Safety Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfiresImpurity Transport,12,Top Mine Safety Award CARLSBAD,

  8. Environmental Health and Safety COLORADO SCHOOL OF MINES Colorado School of Mines GOLDEN, COLORADO 80401-1887

    E-Print Network [OSTI]

    Environmental Health and Safety COLORADO SCHOOL OF MINES Colorado School of Mines GOLDEN, COLORADO Institute Site (CSMRI Site) on the south side of Clear Creek has been undergoing environmental time. Sincerely, L Linn D. Havelick Director, Environmental Health & Safety #12;

  9. Colorado School of Mines Police Department, Campus Security and Fire Safety Report -2013 2013 ANNUAL SECURITY

    E-Print Network [OSTI]

    Colorado School of Mines Police Department, Campus Security and Fire Safety Report -2013 1 2013 ANNUAL SECURITY & FIRE SAFETY REPORT PREPARED BY: THE COLORADO SCHOOL OF MINES DEPARTMENT OF PUBLIC SAFETY #12;Colorado School of Mines Police Department, Campus Security and Fire Safety Report -2013 2

  10. SEISMIC MONITORING APPLIED TO MINES SAFETY AND OPTIMAL DESIGN OF MINE LAYOUTS IN HARD ROCK MASS SITATIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    SEISMIC MONITORING APPLIED TO MINES SAFETY AND OPTIMAL DESIGN OF MINE LAYOUTS IN HARD ROCK MASSRockMechanics, School of Mines ofNancy, France. ABSTRACT : The paper intends to show how seismic data can be usefülly rock, tabular situations are usually associated with induced, seismic activity, i.e. the occurrence

  11. The Design and Evaluation of a Wireless Sensor Network for Mine Safety Monitoring

    E-Print Network [OSTI]

    Huang, Changcheng

    The Design and Evaluation of a Wireless Sensor Network for Mine Safety Monitoring Xiaoguang Niu12 sensor network for mine safety monitoring. Based on the characteristics of underground mine gallery overhead with a well-bounded offset error for large-scale sensor networks. This mechanism is easy

  12. Safety in Mine Research EstablishmentPresent-day requirements for protection against fire in coal mines 

    E-Print Network [OSTI]

    Kushnarev, A.; Koslyuk, A.; Petrov, P.

    Analysis of a statistical data shows that, on an average, about 50% of the total underground emergencies occurring in coal mines in the USSR are due to fires. Great attention is, therefore, paid in our country to the problem of protection against...

  13. Northwestern Indiana Regional Planning Commission (Indiana)

    Broader source: Energy.gov [DOE]

    NIRPC is a regional council of local governments serving the citizens of Lake, Porter, and LaPorte counties in Northwest Indiana. NIRPC provides a forum that enables the citizens of Northwest...

  14. Mining

    Broader source: Energy.gov [DOE]

    Supply and cost management–including energy costs–pose key challenges for U.S. mining companies. The industry has worked with AMO to develop a range of resources for increasing energy efficiency and reducing costs.

  15. Regional Development Authorities (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the establishment of local development authorities in Indiana. A development authority established under this law may acquire, construct, equip, own, lease, and finance...

  16. Air Pollution Control (Indiana)

    Broader source: Energy.gov [DOE]

    The mission of the Indiana Department of Environmental Management's Office of Air Quality implements federal and state regulations to protect human health and the environment while allowing the...

  17. Oil and Gas (Indiana)

    Broader source: Energy.gov [DOE]

    This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

  18. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  19. Utility Regulation (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control...

  20. Forestry Policies (Indiana)

    Broader source: Energy.gov [DOE]

    Indiana's forests are managed by the Department of Natural Resources, Division of Forestry. The Department issued in 2008 the State's Strategic Plan:...

  1. Soil and Water Conservation (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Association of Soil and Water Conservation Districts is an association of the 92 soil and water conservation districts, each representing one of the 92 Indiana counties.

  2. Mines and Mining (Maryland)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to encourage the development of mined resources in Maryland while protecting the environment and public health and safety. This legislation establishes the Bureau of...

  3. Bulletin 2001-2003 Indiana University

    E-Print Network [OSTI]

    Polly, David

    Indianapolis Indiana University East (Richmond) Indiana University­Purdue University Fort Wayne Indiana University Kokomo Indiana University Northwest (Gary) Indiana University South Bend Indiana University University­Purdue University Fort Wayne RUTH J. PERSON, Ph.D., Chancellor of Indiana University Kokomo BRUCE

  4. Water Pollution Control (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Environmental Management and the Water Pollution Control Board are tasked with the prevention of pollution in the waters of the state. The Board may adopt rules and...

  5. Indiana University Cognitive Science

    E-Print Network [OSTI]

    Indiana University

    Indiana University Cognitive Science Exploring the Science of Learning Representations Simulations in science. How can simulations best be designed to enhance science learning and transfer? Computer Modeling Transfer Complex Systems Perception Which representations might help your students learn about

  6. Curriculum Support Maps for the Study of Indiana Coal

    E-Print Network [OSTI]

    Polly, David

    Curriculum Support Maps for the Study of Indiana Coal By Walt Gray Targeted Age: High SchoolMap to create geographic information systems (GIS) maps to demonstrate the distribution of coal mines within comprehension of the data presented to them. It is expected that students have studied the process of coal

  7. Bulletin 2001-2003 Indiana University

    E-Print Network [OSTI]

    Polly, David

    University East (Richmond) Indiana University­Purdue University Fort Wayne Indiana University Kokomo Indiana University Northwest (Gary) Indiana University South Bend Indiana University Southeast (New Albany) Quality, Ph.D., Chancellor of Indiana University­Purdue University Fort Wayne RUTH J. PERSON, Ph

  8. Indiana: Indiana's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Indiana.

  9. Indiana Soil and Landscape

    E-Print Network [OSTI]

    Holland, Jeffrey

    Indiana Soil and Landscape Evaluation Manual Version 1.0 D.P. Franzmeier G.C. Steinhardt D soil scientists to be the state soil. The scale on the gray panel is in decimeters and feet. The upper 18 inches (46 cm) of the soil formed in Wisconsinan age loess, and the lower part formed

  10. Bulletin 2001-2003 Indiana University

    E-Print Network [OSTI]

    Polly, David

    , Northwest, and South Bend Campuses K N O W L E D G E O N C E G A I N E D CASTS A LIGHT BEYOND ITS OWN I M M) Indiana University­Purdue University Fort Wayne Indiana University Kokomo Indiana University Northwest (Gary) Indiana University South Bend Indiana University Southeast (New Albany) Quality Education

  11. Bloomington Campus When you become a student at Indiana University,

    E-Print Network [OSTI]

    Polly, David

    ­Purdue University Indianapolis Indiana University East (Richmond) Indiana University­Purdue University Fort Wayne Indiana University Kokomo Indiana University Northwest (Gary) Indiana University South Bend Indiana.D., Chancellor of Indiana University­Purdue University Fort Wayne RUTH J. PERSON, Ph.D., Chancellor of Indiana

  12. Utility Power Plant Construction (Indiana)

    Broader source: Energy.gov [DOE]

    This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

  13. Indianapolis, Indiana | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Buildings Program Near Eastside Neighborhood Sweeps Program EcoHouse Project Lafayette Energy Improvement Program Location: Indianapolis and Lafayette, Indiana Seed Funding: 10...

  14. EIS-0429: Indiana Gasification, LLC, Industrial Gasification...

    Office of Environmental Management (EM)

    9: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport,...

  15. INDIANA UNIVERSITY Adam W. Herbert

    E-Print Network [OSTI]

    Indiana University

    for the Indiana Genomics Initiative, our goal is to double research activity in the School of Medicine and signifi with the great strides we are making on the various aspects of the Indiana Genomics Initiative, creates critical of the nation's leaders in genomics research, our goal is to become one of the top five cancer centers

  16. PressurePressure Indiana Coal Characteristics

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

  17. Leasing of State Property (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Indiana Department of Natural Resources to lease public lands. State-owned land that is under the management and control of the department may be leased to a local...

  18. Water Rights: Surface Water (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Natural Resources regulates the use and diversion of surface waters. An entity that creates additional stream volumes by releases from impoundments built and financed by...

  19. Water Rights: Ground Water (Indiana)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to provide for the conservation of groundwater resources and limit groundwater waste. The Indiana Department of Natural Resources may designate restricted use areas...

  20. Health and safety evaluation of a modified tunnel-borer design for application to single-entry coal-mine development

    SciTech Connect (OSTI)

    Zimmerman, W. F.

    1982-02-15T23:59:59.000Z

    The health and safety analysis is part of an overall effort to identify and develop innovative underground coal extraction systems. The single-entry tunnel borer system was initially considered an innovative approach to underground mining because it exhibited a means of increasing the speed and efficiency of entry development by reducing the number of entries. However, to be considered a truly advanced system, the tunnel borer had to meet distinct safety criteria as well. The objective was to examine the tunnel borer design and determine whether it offset major health hazards, and satisfied the prescribed safety levels. As a baseline for comparison, the tunnel borer was compared against the continuous mining entry driving system. The results of the health analysis indicated that while the tunnel borer design offered improvements in dust control through the use of water sprays, a higher face ventilation rate, and the application of spalling rather than the conventional grinding process, it interjected an additional mutagenic is and toxic compound into the environment through the use of shotcrete. The tunnel borer system easily conformed with the prescribed fatality limit, but exceeded the required limits for disabling and overall injuries. It also exhibited projected disabling and overall injury rates considerably higher than existing continuous mining injury rates. Consequently, the tunnel borer system was not considered an advanced system.

  1. Economic Impact of the Equine Industry to Indiana

    E-Print Network [OSTI]

    equine operations. The survey was sponsored by the Indiana Horse Council (IHC), Indiana Horse Racing 2002 Source: Indiana Agriculture Statistics Service, Indiana Equine Survey, January 2002 Operations operation. Survey Figure 4. Indiana Equine, January 1, 2002 Source: Indiana Agriculture Statistics Service

  2. Indiana University Collaborative Research Grants 2012 2013

    E-Print Network [OSTI]

    Menczer, Filippo

    to faculty on all Indiana University campuses. Funding decisions will result from a competitive peer review University's New Frontiers seed funding program. Eligibility: All faculty and staff whose appointments allowIndiana University Collaborative Research Grants 2012 ­ 2013 Indiana University is pleased

  3. Fuel alcohol opportunities for Indiana

    SciTech Connect (OSTI)

    Greenglass, Bert

    1980-08-01T23:59:59.000Z

    Prepared at the request of US Senator Birch Bayh, Chairman of the National Alcohol Fuels Commission, this study may be best utilized as a guidebook and resource manual to foster the development of a statewide fuel alcohol plan. It examines sectors in Indiana which will impact or be impacted upon by the fuel alcohol industry. The study describes fuel alcohol technologies that could be pertinent to Indiana and also looks closely at how such a fuel alcohol industry may affect the economic and policy development of the State. Finally, the study presents options for Indiana, taking into account the national context of the developing fuel alcohol industry which, unlike many others, will be highly decentralized and more under the control of the lifeblood of our society - the agricultural community.

  4. Montana Coal Mining Code (Montana)

    Broader source: Energy.gov [DOE]

    The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

  5. Indiana University Cognitive & Information Sciences

    E-Print Network [OSTI]

    Indiana University

    Indiana University Cognitive & Information Sciences Psychology Bldg., Bloomington, IN 47405 (812 evaluation information to determine student academic needs and report findings to the cognitive science) 855-4658; fax: (812) 855-1086 Internship Program Policy Statement OBJECTIVES The Cognitive Science

  6. Indiana University -SEG Chapter Annual Report (March 2012 September 2012)

    E-Print Network [OSTI]

    Polly, David

    ­ Eric Stifter (estifter@indiana.edu) Secretary ­ Matthew Dunlop III (mdunlop@indiana.edu) Treasurer Roster (* denotes SEG member): Name Status E-mail Jeff Brown B.S. jeffbrow@indiana.edu Peter Burch M B.S. schaefea@indiana.edu Sarah Spencer M.S. spencesc@indiana.edu Eric Stifter* M.S. estifter

  7. Indiana University Cognitive Science Program 2014 Graduate Student Orientation Guide

    E-Print Network [OSTI]

    Indiana University

    @indiana.edu) Staff Ruth Eberle: Director of Technology and Adjunct Assistant Professor, 812-856-5722 (reberle@indiana.edu) Zack Haga: Robotics Specialist, 812-855-1086 (zhaga@indiana.edu) A full faculty list is available at

  8. Qualifying RPS State Export Markets (Indiana)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Indiana as eligible sources towards their RPS targets or goals. For specific...

  9. Indiana Michigan Power- Energy Savings Rebate Program

    Broader source: Energy.gov [DOE]

    Indiana Michigan Power's Energy Saver Program provides its customers incentives for upgrading to energy efficient equipment and for properly disposing of old equipment. Residential customers are...

  10. EIS-0429: Department of Energy Loan Guarantee for Indiana Integrated...

    Energy Savers [EERE]

    9: Department of Energy Loan Guarantee for Indiana Integrated Gasification Combined Cycle, Rockport, IN EIS-0429: Department of Energy Loan Guarantee for Indiana Integrated...

  11. Data mining, Data mining,

    E-Print Network [OSTI]

    Keinan, Alon

    18 Data mining, today and tomorrow Data mining, today and tomorrow We leave digital puddles useful information be extracted from this ever-growing ocean of data? Data mining is the science," says CS professor Johannes Gehrke, whose group has developed some of the fastest data-mining algo

  12. Indiana Michigan Power Co (Indiana) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cacheTransport(Redirected fromIndiana

  13. informatics.indiana.edu informatics.iupui.edu newmedia.iupui.edu

    E-Print Network [OSTI]

    Polly, David

    Indianapolis Indiana University East (Richmond) Indiana University­Purdue University Fort Wayne Indiana University Kokomo Indiana University Northwest (Gary) Indiana University South Bend Indiana University University­Purdue University Fort Wayne RUTH J. PERSON, Ph.D., Chancellor of Indiana University Kokomo BRUCE

  14. informatics.indiana.edu informatics.iupui.edu newmedia.iupui.edu

    E-Print Network [OSTI]

    Polly, David

    Indianapolis Indiana University East (Richmond) Indiana University­Purdue University Fort Wayne Indiana University Kokomo Indiana University Northwest (Gary) Indiana University South Bend Indiana University, Ph.D., Chancellor of Indiana University­Purdue University Fort Wayne RUTH J. PERSON, Ph

  15. Vectren Energy Delivery of Indiana (Electric)- Commercial New Construction Rebates (Indiana)

    Broader source: Energy.gov [DOE]

    Vectren Energy Delivery offers commercial customers in Indiana electric rebates for the installation of certain types of equipment in newly constructed buildings. Prescriptive and performance based...

  16. Indiana

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15BOE ReserveEnergy2014

  17. Indiana Energy Conference "Energy Challenges and Opportunities"

    E-Print Network [OSTI]

    Ginzel, Matthew

    , Hoosier Environmental Council Ben Yamagata, Coal Utilization Research Council (INVITED) Networking Break Discussion ­ Panelists: Keith Baugues, Indiana Dept. of Environmental Management (IDEM) Jesse Kharbanda impacts every facet of human existence including economic, social, cultural and political developments

  18. Electricity Suppliers' Service Area Assignments (Indiana)

    Broader source: Energy.gov [DOE]

    To promote efficiency and avoid waste and duplication, rural and unincorporated areas of Indiana are divided into geographic areas, to be assigned to an electricity provider that will have the sole...

  19. WIPP Employee Inducted Into Mine Rescue Hall of Fame - WIPP Teams...

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant Blue Mine Rescue Team Captain Gary Kessler (right) receives an award from Neal Merrifield, administrator for the Mine Safety and Health Administration...

  20. Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

  1. Indiana University Cognitive Science Program 2012 Graduate Student Orientation Guide

    E-Print Network [OSTI]

    Indiana University

    -856-2246 (jcrystal@indiana.edu) Staff Ruth Eberle: Director of Technology and Adjunct Assistant Professor, 812-856-0052 (cogsadv@indiana.edu) Zack Haga: Robotics Specialist, 812-855-1086 (zhaga@indiana.edu) A full faculty list

  2. Indiana Water Resources Research Center Annual Technical Report

    E-Print Network [OSTI]

    the IWRRC director is now serving on the state's Water Shortage Task Force. For this reporting period, weIndiana Water Resources Research Center Annual Technical Report FY 2007 Indiana Water Resources Overview: This report covers the activities of the Indiana Water Resources Research Center (IWRRC

  3. Lebanon, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: EnergyLands in WashingtonLebanon, Indiana:

  4. Indiana Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cacheTransport(Redirected fromIndianaIndiana

  5. Interns for Indiana (IFI) Project descriptions

    E-Print Network [OSTI]

    with the company after graduation, which allows him to work on cutting edge projects, aid in company growthInterns for Indiana (IFI) Projects Project descriptions: · Software development, database design analysis Past student project Development of animated graphics for web portal and product demos -Kevin

  6. AQUACULTURE EXTENSION Illinois -Indiana Sea Grant Program

    E-Print Network [OSTI]

    by this bacterium primarily affects freshwater fish such as cattfish, several species of bass, and many species and Treatment of "Aeromonas hydrophila" Infection of Fish LaDon Swann Illinois-Indiana Sea Grant Program Purdue University Introduction Aeromonas hydrophila causes disease in fish known as "Motile Aeromonas Septicemia

  7. Indiana Energy Conference "Exploring Emerging Energy Issues"

    E-Print Network [OSTI]

    Ginzel, Matthew

    Indiana Energy Conference "Exploring Emerging Energy Issues" Wednesday, October 3, 2012 University. Speakers/Panelists: Bernie Paul, Energy Consultant John Kinsman, Edison Electric Institute Are They Moving the U.S. Beyond Coal? Are regulations from the EPA moving too quickly and leading us away from coal

  8. Longwall mining

    SciTech Connect (OSTI)

    NONE

    1995-03-14T23:59:59.000Z

    As part of EIA`s program to provide information on coal, this report, Longwall-Mining, describes longwall mining and compares it with other underground mining methods. Using data from EIA and private sector surveys, the report describes major changes in the geologic, technological, and operating characteristics of longwall mining over the past decade. Most important, the report shows how these changes led to dramatic improvements in longwall mining productivity. For readers interested in the history of longwall mining and greater detail on recent developments affecting longwall mining, the report includes a bibliography.

  9. Vectren Energy Delivery of Indiana (Gas)- Commercial Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Vectren Energy Delivery offers commercial natural gas customers in Indiana rebates for the installation of certain types of efficient natural gas equipment. Prescriptive equipment rebates are...

  10. Indiana Manufacturing Institute Breaks Ground at Purdue University...

    Energy Savers [EERE]

    R. Byron Pipes, John Leighton Bray Distinguished Professor of Engineering; Victor Smith, Indiana Secretary of Commerce; Leah Jamieson, John A. Edwardson Dean of Engineering;...

  11. South Central Indiana REMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    South Central Indiana REMC, a Touchstone Energy Partner, offers incentives for residential customers to save energy in participating homes. Rebates are available for central air conditioning...

  12. Vectren Energy Delivery of Indiana (Gas)- Residential Energy Efficiency Rebates

    Broader source: Energy.gov [DOE]

    Vectren Energy Delivery offers its residential natural gas customers in Indiana rebates for the installation of certain high efficiency natural gas appliances and insulation measures. Rebates are...

  13. Indiana: EERE's Wireless Sensors Can Save Companies Millions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    demonstrated at an Alcoa facility in Evansville, Indiana. Within 30 minutes, the sensor network was operational. On one side of the plant, at an electrical substation, ORNL...

  14. Wabash Valley Power Association- Residential Energy Efficiency Program (Indiana)

    Broader source: Energy.gov [DOE]

    Wabash Valley Power Association (WVPA) is a generation and transmission cooperative which provides wholesale electricity to 28 distribution systems in Indiana, Ohio, Michigan, Missouri, and...

  15. Indiana Michigan Power- Commercial and Industrial Rebates Program

    Broader source: Energy.gov [DOE]

    Indiana Michigan Power offers rebates for HVAC equipment, variable frequency drives, commercial refrigeration equipments, food service equipment and lighting measures for commercial and industrial...

  16. Mining (Montana)

    Broader source: Energy.gov [DOE]

    This section provides general rules and regulations pertaining to mining practices in the state of Montana. It addresses mining locations and claims, procedures for rights-of-way and eminent domain...

  17. State of Indiana/Greater IN Clean Cities Alternative Fuels Implementat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications State of IndianaGreater IN Clean Cities Alternative Fuels Implementation Plan State of IndianaGICC Alternative Fuels Implementation...

  18. Department of MINING ENGINEERING

    E-Print Network [OSTI]

    Simons, Jack

    AS A MINING ENGINEER IMAGINE IMAGINE Department of MINING ENGINEERING THE UNIVERSITY OF UTAH www.mining

  19. Data Mining 4.6. " "

    E-Print Network [OSTI]

    Mustakerov, Ivan

    1 . . Data Mining "" 4.6. " " ( 01.01.12. "") . . .. 2012. .- - - , , .". . ", .2. : : Data Mining #12;3 (Data Mining) - 20-25 . , , , , , . , (Data Mining) , , , , . Data Mining . Data Mining

  20. Data Mining Students' Ordinary Handwritten Coursework

    E-Print Network [OSTI]

    Herold, James

    2013-01-01T23:59:59.000Z

    Data Mining . . . . . . . . . . . . . . . . . . . . . . .Mining . . . . . . . . . . . . . . . . . . . . . . . . .Sequence Mining 6.1 Introduction . . . . . . . . .

  1. John Shepard Wright Benefactor of Forestry in Indiana*

    E-Print Network [OSTI]

    John Shepard Wright Benefactor of Forestry in Indiana* by W. C. Bramble Head, Department of Forestry and Conservation, 1958 ­ 1973, Purdue University "John Shepard Wright was a quiet, scholarly man in the Proceedings of the Indiana Academy of Science for 1951. John S. Wright's interest in science and forestry

  2. Peirce Edition Project Indiana University School of Liberal Arts

    E-Print Network [OSTI]

    Zhou, Yaoqi

    substantives; regularizing and normalizing texts; maintaining the Project's #12;2 editorial guide as policies1 Peirce Edition Project Indiana University School of Liberal Arts Indianapolis, Indiana Asst./Assoc. Textual Editor Longer Job Description Background The Peirce Edition Project (http

  3. Lawrence, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: Energy Resources Jump to: navigation,

  4. Alamo, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004)Airwaysource History View02032°,Indiana: Energy

  5. Whitestown, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho: Energy ResourcesOhio:Whitestown, Indiana: Energy

  6. Categorical Exclusion Determinations: Indiana | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 CategoricalIdaho Categorical ExclusionIndiana

  7. Williamsport, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 Wind Project Jump to: navigation,Williamsport, Indiana: Energy

  8. Clean Cities: Greater Indiana Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z CPlasma0 12Denver Metro CleanGenesee RegionIndiana

  9. Jamestown, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar EnergyEnergyKansas:SouthOhio:Jamaica:Jamesport,Indiana:

  10. Indiana/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSARIndiana SoybeanIndiana/Geothermal

  11. Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSARIndianaIndiana/Wind

  12. Wynnedale, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch, New York: EnergyWynnedale, Indiana: Energy

  13. Indiana Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 Varnish cacheTransport(Redirected from IndianIndiana

  14. Indiana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty,Jump7 VarnishInformation Company SmartIndiana/Wind

  15. Granger, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas: EnergyOhio: EnergyGranger, Indiana:

  16. Martinsville, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens Jump to: navigation,Martinsville, Indiana: Energy

  17. Anderson, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources JumpAnaconda, Montana: Energy JumpAnderson, Indiana:

  18. Auburn, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide |Aubrey, Texas: EnergyIndiana:

  19. Monticello, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County,Monticello, Indiana: Energy Resources Jump to:

  20. Ulen, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypeforUSDOIin Developing and

  1. Health and safety

    SciTech Connect (OSTI)

    Snyder, K. (Mine Safety and Health Administration (US))

    1990-05-01T23:59:59.000Z

    This article discusses health and safety in coal mines and the primary issues in this area during 1989. Particular attention is given to the employment figures as well as the fatality statistics. According to this article, employment was up during 1989 to approximately 164,000 workers as compared to 136,000 in 1969. Attention is also given to dealing with coal mining regulations as well as a crackdown on illegal operators in the industry.

  2. 87th regular meeting of the Rocky Mountain Coal Mining Institute: Proceedings

    SciTech Connect (OSTI)

    Finnie, D.G. (ed.)

    1991-01-01T23:59:59.000Z

    Eleven papers are included in these proceedings. Topics include management of coal mining operations, improving mine health and safety, new technologies for longwall mining, coal haulage, coal drying, a demonstration of the LFC process, and state of the art in mining automation. All eleven papers have been processed for inclusion on the data base.

  3. WIRELESS MINE-WIDE TELECOMMUNICATIONS TECHNOLOGY

    SciTech Connect (OSTI)

    Zvi H. Meiksin

    2004-03-01T23:59:59.000Z

    A comprehensive mine-wide, two-way wireless voice and data communication system for the underground mining industry was developed. The system achieves energy savings through increased productivity and greater energy efficiency in meeting safety requirements within mines. The mine-wide system is comprised of two interfaced subsystems: a through-the-earth communications system and an in-mine communications system. The mine-wide system permits two-way communication among underground personnel and between underground and surface personnel. The system was designed, built, and commercialized. Several systems are in operation in underground mines in the United States. The use of these systems has proven they result in considerable energy savings. A system for tracking the location of vehicles and people within the mine was also developed, built and tested successfully. Transtek's systems are being used by the National Institute of Occupational Safety and Health (NIOSH) in their underground mine rescue team training program. This project also resulted in a spin-off rescue team lifeline and communications system. Furthermore, the project points the way to further developments that can lead to a GPS-like system for underground mines allowing the use of autonomous machines in underground mining operations, greatly reducing the amount of energy used in these operations. Some products developed under this program are transferable to applications in fields other than mining. The rescue team system is applicable to use by first responders to natural, accidental, or terrorist-caused building collapses. The in-mine communications system can be installed in high-rise buildings providing in-building communications to security and maintenance personnel as well as to first responders.

  4. Injury experience in coal mining, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of coal mining in the United States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and anthracite or bituminous coal. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison between coal mining and the metal and nonmetal mineral mining industries, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. Data used in compiling this report were reported by operators of coal mines and preparation plants on a mandatory basis as required under the Federal Mine Safety and Health Act of 1977, Public Law 91-173,as amended by Public Law 95-164. Since January 1, 1978, operators of mines or preparation plants or both which are subject to the Act have been required under 30 CFR, Part 50, to submit reports of injuries, occupational illnesses, and related data.

  5. Minimum Stream Flow and Water Sale Contracts (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Natural Resources Commission may provide certain minimum quantities of stream flow or sell water on a unit pricing basis for water supply purposes from the water supply storage in...

  6. Radiological Final Status Survey of the Hammond Depot, Hammond, Indiana

    SciTech Connect (OSTI)

    T.J. Vitkus

    2008-04-07T23:59:59.000Z

    ORISE conducted extensive scoping, characterization, and final status surveys of land areas and structures at the DNSC’s Hammond Depot located in Hammond, Indiana in multiple phases during 2005, 2006 and 2007.

  7. South Central Indiana REMC- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    South Central Indiana REMC offers a 6.0% interest loan for residential customers interested in making energy efficiency improvements to participating homes. The loan can be used for a variety of...

  8. University of Michigan, Ann Arbor Indiana University, Bloomington

    E-Print Network [OSTI]

    Wu, Yih-Min

    / 1 #12; 2005 4 University of Michigan, Ann Arbor Indiana University, Bloomington University of Illinois, Urbana-Champagne University of Michigan, Ann Arbor 19 Center University of Michigan, Georgetown University, University of Nebraska, University of Kansas University

  9. Injury experience in stone mining, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of stone mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  10. Quarrying and Mining (Stone)

    E-Print Network [OSTI]

    Bloxam, Elizabeth

    2010-01-01T23:59:59.000Z

    the author.   Quarrying and Mining (Stone), Bloxam, UEE 2010archaeology and anthropology of mining. In Social approachesand anthropology of mining, ed. Bernard Knapp, Vincent

  11. Mining engineering College of Engineering and Mines

    E-Print Network [OSTI]

    Hartman, Chris

    Mining engineering College of Engineering and Mines Department of Mining and Geological Engineering As the nation's northernmost accredited mining engineering program, our mission is to advance and disseminate. The mining engineering program emphasizes engineering as it ap- plies to the exploration and development

  12. Indiana University School of Library and Information Science S604/S764 : Information Networks

    E-Print Network [OSTI]

    Indiana University

    Indiana University School of Library and Information Science S604/S764 and information science, sociology, mathematics, physics and biology. In this course we of Library and Information Science, Indiana University, on November 11, 1996

  13. Town of Warren, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to:Town ofTownVinton,Warren, Indiana

  14. Indiana - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15BOE ReserveEnergy2014IndianaIndiana

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  17. SUBJECT: Laser Safety Program Purpose: The purpose of this Laser Safety Manual is to insure the safe use of lasers in

    E-Print Network [OSTI]

    SUBJECT: Laser Safety Program Purpose: The purpose of this Laser Safety Manual is to insure the safe use of lasers in research activities at the Colorado School of Mines (Mines or the School). This Laser Safety Manual outlines laser registration requirements, identifies hazards associated with using

  18. Data Mining Ryan Benton

    E-Print Network [OSTI]

    Raghavan, Vijay

    Data Mining Ryan Benton Center for Advanced Computer Studies University of Louisiana at Lafayette in Databases (KDD) ! Data Mining Related Fields Research Issues Tasks ! Association Mining Problem;9 KDD vs. DATA MINING ! Synonyms (?) ! KDD More than just finding pattern Mining, dredging

  19. Data Mining For Prediction of Aircraft Component Replacement

    E-Print Network [OSTI]

    Matwin, Stan

    Data Mining For Prediction of Aircraft Component Replacement Sylvain Letourneau1 Fazel Famili1 Stan the number of delays, and increasing the overall level of safety. Several data mining techniques exist from the data obtained during the operation and maintenance of aircraft is extremely challenging. Di

  20. Precision Mining

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARD ACCOUNTING SYSTEM SURVEYPrecision Mining Double

  1. ARTS AND SCIENCES AT INDIANA UNIVERSITY | Fall 2011 COLLEGEMAGAZINE

    E-Print Network [OSTI]

    Indiana University

    use two brush strokes to write the word `crisis.' One brush stroke stands for `danger:' the other for `opportunity.' In a crisis, be aware of the danger -- but recognize the opportunity." The relevance students and our alumni are the core, the heart, of Indiana University. We embrace the opportunity

  2. Mark Your Calendar! Indiana's only statewide wind power

    E-Print Network [OSTI]

    Ginzel, Matthew

    Mark Your Calendar! Indiana's only statewide wind power conference is July 21-22, 2010. WIndiana in Track 1. Wind power supply chain information will be in Track 2. Track 3 is an expanded Community Wind 2010. First, there will be three separate session tracks to choose from. Big Wind will be represented

  3. ANU MLSS 2010: Data Mining

    E-Print Network [OSTI]

    Christen, Peter

    ANU MLSS 2010: Data Mining Part 1: Introduction, data mining challenges, and data issues for data mining Data Mining module outline Part 1: Very short introduction to data mining Data mining process Challenges in data mining Data cleaning, integration and pre-processing Part 2: Association rule mining Part

  4. The Mining Machine as a Seismic Source for In-seam Reflection Mapping Neil Taylor*, Jim Merriam and Don Gendzwill, University of Saskatchewan, Canada; Arnfinn Prugger, Potash

    E-Print Network [OSTI]

    Merriam, James

    The Mining Machine as a Seismic Source for In-seam Reflection Mapping Neil Taylor*, Jim Merriam, Canada Summary Mapping the geology around mine zones is a key economic and safety concern at Saskatchewan potash mines. Experiments were carried out to investigate the feasibility of using a mining machine

  5. of Mining & Engineering

    E-Print Network [OSTI]

    Wong, Pak Kin

    & Illness in Mining (3 units) MNE 527 Geomechanics (4 units) MNE 547 Underground Construction Geomechanics

  6. anthracite mines mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  7. Rights and Duties of Mines and Mine Owners, General (Missouri)

    Broader source: Energy.gov [DOE]

    This legislation addresses general operational guidelines for mine owners regarding public notices, fees, land and mineral ownership, requirements for mining in certain municipalities, and mining...

  8. Town of Rockville, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to:

  9. Advanced Manufacturing and Engineering Equipment at the University of Southern Indiana

    SciTech Connect (OSTI)

    Mitchell, Zane Windsor [University of Southern Indiana; Gordon, Scott Allen [University of Southern Indiana

    2014-08-04T23:59:59.000Z

    Department of Energy grant DE-SC0005231was awarded to the University of Southern Indiana for the purchase of Advanced Manufacturing and Engineering equipment.

  10. Utilities District of Western Indiana REMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Utilities District of Western Indiana REMC offers residential customers incentives for energy efficient heat pumps, water heaters, and air conditioners. Eligible air-source heat pump and air...

  11. Injury experience in stone mining, 1991. Information report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of stone mining in the united States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

  12. RESEARCH SAFETY RADIATION SAFETY

    E-Print Network [OSTI]

    and Communications Manager (951) 827-6303 janette.ducut@ucr.edu Beiwei Tu, MS, CIH, CSP Safety and Industrial Hygiene

  13. LEARNING OUTCOMES EVALUATION Mining Engineering

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    and mineral processing for comprehensive mine design, extraction and mineral beneficiation. Understand geomechanics, geometrics and computer-aided mine design, and optimization of flow processes for designing mine

  14. ITP Mining: Exploration and Mining Technology Roadmap

    Broader source: Energy.gov (indexed) [DOE]

    David Bartley Connie Holmes BCS, Incorporated National Mining Association Kenneth G. Bennett David Hyman Caterpillar Inc. National Energy Technology Laboratory Jeanette Berry...

  15. Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production

    E-Print Network [OSTI]

    Forest Products Supply Chain -- Availability of Woody Biomass in Indiana for Bioenergy Production or wood waste biomass · Map Indiana's wood waste for each potential bioenergy supply chain · Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

  16. Purdue Extension West Lafayette, Indiana Forming the Wellhead Protection Planning Team

    E-Print Network [OSTI]

    Holland, Jeffrey

    Purdue Extension · West Lafayette, Indiana WQ-28 Forming the Wellhead Protection Planning Team Engineer for safe drinking water in Indiana Inside Why Do You Need a Team? 2 What Is the Wellhead Planning Team & What Does It Do? 2 How Do You Conduct Wellhead Protection Planning Meetings? 4 Useful

  17. YOUNG ENTREPRENEUR PROGRAM The Indiana Economic Development Corporation (IEDC) is promoting

    E-Print Network [OSTI]

    YOUNG ENTREPRENEUR PROGRAM The Indiana Economic Development Corporation (IEDC) is promoting a reality in Indiana. The IEDC will work with local and regional communities to offer incentives to the Young Entrepreneurs with the best business plans. These incentives can include and are not limited to

  18. Puerto Rico SPH and Indiana HPER Develop Sexual Health Promotion Partnership

    E-Print Network [OSTI]

    Quirk, Gregory J.

    Puerto Rico SPH and Indiana HPER Develop Sexual Health Promotion Partnership The University of Puerto Rico School of Public Health (UPR-SPH) and Indiana University ­ Bloomington School of Health, Physical Education and Recreation (IU-HPER) celebrated a meeting in San Juan, Puerto Rico to establish

  19. Analysis of the Forest Products Cluster in Indiana: A Framework for Improving Productivity and

    E-Print Network [OSTI]

    Analysis of the Forest Products Cluster in Indiana: A Framework for Improving Productivity Graduate Students: Silas Tora, FNR, M.S. Goals: · Suggest ways in which the forest products industry can Clustering of the Value - Added Forest Products Manufacturing industry in Indiana. (In Progress). Silas Tora

  20. THE HISTORY OF HUMAN DISTURBANCE IN FOREST ECOSYSTEMS OF SOUTHERN INDIANA

    E-Print Network [OSTI]

    conditions and influenced the frequency and intensity of disturbances, such as fire. The interplay THE HISTORY OF HUMAN DISTURBANCE IN FOREST ECOSYSTEMS OF SOUTHERN INDIANA Michael A. Jenkins1 Abstract.--The forests of southern Indiana have been shaped and defined by anthropogenic disturbance

  1. IMU Activities Tower Application and Contract 1 Indiana Memorial Union, Room 270

    E-Print Network [OSTI]

    Indiana University

    IMU Activities Tower Application and Contract 1 Indiana Memorial Union, Room 270 Bloomington space in the Student Activities Tower of the Indiana Memorial Union to student organizations registered Board office--located on the second floor of the Student Activities Tower-- IMU Room 270. Even if you

  2. Data Mining: Opportunities and Challenges

    E-Print Network [OSTI]

    Wu, Xindong

    1 Data Mining: Opportunities and Challenges Xindong Wu University of Vermont, USA; Hefei University Systems 2004 ...... #12;3 Outline 1.1. Data Mining OpportunitiesData Mining Opportunities Major Conferences and Journals in Data Mining Main Topics in Data Mining Some Research Directions in Data Mining 2

  3. Mining Regulations (Missouri)

    Broader source: Energy.gov [DOE]

    This legislation applies to all mines in this state engaged in the mining or extraction of minerals for commercial purposes, except barite, marble, limestone, and sand and gravel, or the...

  4. Warren Park, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthallFacility |41854°,1749°,Park, Indiana:

  5. Carroll County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizo Energy Solar Farm SolarIndiana: Energy

  6. Cass County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformation Cashtown-McKnightstown,Illinois: EnergyIndiana:

  7. Indiana DNR Division of Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms AHefeiHydroenergy CompanyJump to:JumpIndiana DNR

  8. Jackson County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar EnergyEnergy Information7150882°,218304°,Indiana:

  9. Jennings County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson, Iowa: EnergyJenkintown,County, Indiana:

  10. Johnson County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJaneJefferson,Information PVIllinois: EnergyIndiana:

  11. Indiana/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia,IDGWP WindSatelliteInSARIndianaIndiana/Wind Resources/Full

  12. Harrison County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio: Energy Resources JumpIndiana:

  13. Henry County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|InformationInformation StationHendryIndiana: Energy Resources

  14. Owen County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York: EnergyOuachitaOwasso, Oklahoma: EnergyIndiana:

  15. Porter County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards, Wisconsin:Porter County, Indiana: Energy

  16. Posey County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,Posey County, Indiana: Energy Resources Jump

  17. City of Scottsburg, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona,Plummer,City of Scottsburg, Indiana

  18. Grant County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting JumpGove County,Texas:InformationIndiana: Energy

  19. Hamilton County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersvilleHallandale Beach,Indiana: Energy Resources

  20. Spring Hill, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,Southeast ColoradoOhio: EnergyIndiana: Energy Resources Jump to:

  1. Sullivan County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to: navigation, searchNew Jersey)Indiana: Energy Resources Jump

  2. Newton County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania:Information296593°,Newcastle,NewNewport,NewtonIndiana:

  3. Noble County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: Energy Resources Jump to:Nigeria:LLC (Redirected from SempraIndiana:

  4. Orange County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio:Opower Social JumpOptimumIndiana: Energy

  5. Boone County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundell 1 GeothermalBonnevilleIndiana: Energy

  6. Crows Nest, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCpWing County, Minnesota: EnergyCrows Nest, Indiana:

  7. DeKalb County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNew Jersey:Indiana: Energy Resources Jump

  8. Town of Ladoga, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to: navigation, search Name: Ladoga

  9. Indiana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdaho Regions NationalIndiana Regions

  10. Indiana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearchIdaho Regions NationalIndiana

  11. South Bend, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkarTopics BackgroundBend, Indiana: Energy

  12. Allen County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEEAisinInformationNew York:Indiana: Energy Resources Jump

  13. Indiana College Provides Training for Green Jobs | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 ||Alaska EnergyIndiana College

  14. Indiana Department of Homeland Security - NNPP Exercise | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 ||Alaska EnergyIndiana

  15. Morgan County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County,Monticello,Oklahoma:In EnergyGeorgia:Indiana:

  16. New Carlisle, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergyPPCR)Nevis Engine CompanyBritain,Carlisle, Indiana:

  17. Beech Grove, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County,SouthCity County,New York: EnergyGrove, Indiana:

  18. Benton County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformation Indiana ASHRAE 169-2006

  19. Town of Walkerton, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin Hydropower StationTown ofTown of Walkerton, Indiana (Utility

  20. Randolph County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:Rancia 2 Geothermal PowerGeorgia:Indiana:

  1. Fulton County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty,EnergyCircle797374°,Indiana: Energy

  2. Town of New Carlisle, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to: navigation, searchTownTown of New

  3. Town of Pittsboro, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to: navigation, searchTownTown

  4. Town of South Whitley, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to:Town of

  5. Town of Straughn, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company) Jump to:Town ofTown of

  6. Union County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle AirshipsUnalakleet Valley1°, -83.9744262° Show51°,

  7. City of Peru, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach, FloridaCity of Pender, NebraskaPeru, Indiana

  8. City of Troy, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation Smyrna Beach,Stuart, Iowa (UtilityCity of Troy, Indiana

  9. Clinton County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:TrustClinchIndiana: Energy

  10. Indiana Michigan Power Co (Michigan) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan Runhua NewSmallholder Systems (SAMPLES)IndianOilIndiana

  11. Indiana - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15 Feb-15BOE ReserveEnergy2014Indiana

  12. Data Warehousing and Data Mining Conference, January 25, 1999, Singapore Data Mining:Data Mining

    E-Print Network [OSTI]

    Wu, Xindong

    Data Warehousing and Data Mining Conference, January 25, 1999, Singapore 1 Welcome Data Mining:Data Mining: Updates in TechnologiesUpdates in Technologies Xindong Wu Dept of Math and Computer Science Colorado School of Mines Golden, Colorado 80401, USA Email: xwu@ mines.edu Home Page: http://kais.mines

  13. of Mining & Engineering

    E-Print Network [OSTI]

    Wong, Pak Kin

    .621.8330 Engr-mining@email.arizona.edu ONLINE GRADUATE CERTIFICATE PROGRAM 15 UNITS YOUR CAREER GEOMECHANICS #12;GEOMECHANICS Department of Mining & Geological Engineering www.mge.arizona.edu Contact the MGE Department for more information: ENGR-mining@email.arizona.edu REQUIRED COURSES (12 units) MNE 527 Geomechanics (3

  14. Sub-Barrier Fusion Cross-Sections of Neutron-Rich Light Nuclei Indiana University, GANIL, Western Michigan Univ., Michigan State Univ.

    E-Print Network [OSTI]

    de Souza, Romualdo T.

    Michigan Univ., Michigan State Univ. Theory support: Vanderbilt Univ.(Oberacker & Umar); Indiana Univ. (C

  15. Cost comparison of selected US and South African coal mines

    SciTech Connect (OSTI)

    Not Available

    1990-04-01T23:59:59.000Z

    The report on the South African coal industry is the fourth in a series of studies on coal exporting countries requested by the House Appropriations Committee. The committee requested that the basic differences in mining costs for U.S. and foreign mines be identified, especially those costs incurred in complying with health, safety, and environmental regulations. Basic costs in extracting raw coal are analyzed for two mining methods -- underground conventional mining and open-pit operations. In the report there is also a limited analysis of the relative market competitiveness of selected South African and U.S. steam coal mines in electric utility markets in Japan, Western Europe, and the U.S. Gulf Coast area. The South African Government prohibits the exports of hard metallurgical coal.

  16. Economic Impacts from Indiana's First 1,000 Megawatts of Wind Power

    SciTech Connect (OSTI)

    Tegen, S.; Keyser, D.; Flores-Espino, F.; Hauser, R.

    2014-08-01T23:59:59.000Z

    The magnitude of Indiana's available wind resource indicates that the development of wind power infrastructure has the potential to support millions of dollars of economic activity in the state. The Jobs and Economic Development Impact (JEDI) models, developed by the National Renewable Energy Laboratory, are tools used to estimate some of the economic impacts of energy projects at the state level. JEDI calculates results in the form of jobs, earnings, and economic output in three categories: project development and onsite labor, local revenue and supply chain, and induced impacts. According to this analysis, the first 1,000 MW of wind power development in Indiana (projects built between 2008 and 2011): supported employment totaling more than 4,400 full-time-equivalent jobs in Indiana during the construction periods; supports approximately 260 ongoing Indiana jobs; supported nearly $570 million in economic activity for Indiana during the construction periods; supported and continues to support nearly $40 million in annual Indiana economic activity during the operating periods; generates more than $8 million in annual property taxes; generates nearly $4 million annually in income for Indiana landowners who lease their land for wind energy projects.

  17. MINING CLAIM PROCEDURES NEVADA BUREAU OF MINES AND GEOLOGY

    E-Print Network [OSTI]

    Tingley, Joseph V.

    UNIVERSITY OF NEVADA RENO MINING CLAIM PROCEDURES NEVADA BUREAU OF MINES AND GEOLOGY Mackay School of Mines Fifth Edition FOR NEVADA PROSPECTORS AND MINERS by Keith G. Papke and David A. Davis #12;1 MINING CLAIM PROCEDURES NEVADA BUREAU OF MINES AND GEOLOGY Fifth Edition FOR NEVADA PROSPECTORS AND MINERS

  18. Data Mining: Concepts and Techniques

    E-Print Network [OSTI]

    Geldenhuys, Jaco

    11 Data Mining: Concepts and Techniques (3rd ed.) -- Chapter 1 -- Jiawei Han, Micheline Kamber. All rights reserved. #12;July 29, 2013 Data Mining: Concepts and Techniques 2July 29, 2013 Data Mining: Concepts and Techniques 2 #12;July 29, 2013 Data Mining: Concepts and Techniques 3July 29, 2013 Data Mining

  19. Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report

    SciTech Connect (OSTI)

    Geosciences Division, National Energy Technology Laboratory, US Department of Energy, Pittsburgh, PA; Hammack, R.W.

    2006-12-28T23:59:59.000Z

    Decades of underground coal mining has left about 5,000 square miles of abandoned mine workings that are rapidly filling with water. The water quality of mine pools is often poor; environmental regulatory agencies are concerned because water from mine pools could contaminate diminishing surface and groundwater supplies. Mine pools are also a threat to the safety of current mining operations. Conversely, mine pools are a large, untapped water resource that, with treatment, could be used for a variety of industrial purposes. Others have proposed using mine pools in conjunction with heat pumps as a source of heating and cooling for large industrial facilities. The management or use of mine pool water requires accurate maps of mine pools. West Virginia University has predicted the likely location and volume of mine pools in the Pittsburgh Coalbed using existing mine maps, structure contour maps, and measured mine pool elevations. Unfortunately, mine maps only reflect conditions at the time of mining, are not available for all mines, and do not always denote the maximum extent of mining. Since 1999, the National Energy Technology Laboratory (NETL) has been evaluating helicopter-borne, electromagnetic sensing technologies for the detection and mapping of mine pools. Frequency domain electromagnetic sensors are able to detect shallow mine pools (depth < 50 m) if there is sufficient contrast between the conductance of the mine pool and the conductance of the overburden. The mine pools (conductors) most confidently detected by this technology are overlain by thick, resistive sandstone layers. In 2003, a helicopter time domain electromagnetic sensor was applied to mined areas in southwestern Virginia in an attempt to increase the depth of mine pool detection. This study failed because the mine pool targets were thin and not very conductive. Also, large areas of the surveys were degraded or made unusable by excessive amounts of cultural electromagnetic noise that obscured the subtle mine pool anomalies. However, post-survey modeling suggested that thicker, more conductive mine pools might be detected at a more suitable location. The current study sought to identify the best time domain electromagnetic sensor for detecting mine pools and to test it in an area where the mine pools are thicker and more conductive that those in southwestern Virginia. After a careful comparison of all airborne time domain electromagnetic sensors (including both helicopter and fixed-wing systems), the SkyTEM system from Denmark was determined to be the best technology for this application. Whereas most airborne time domain electromagnetic systems were developed to find large, deep, highly conductive mineral deposits, the SkyTEM system is designed for groundwater exploration studies, an application similar to mine pool detection.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  1. Small Wind Electric Systems: An Indiana Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01T23:59:59.000Z

    Small Wind Electric Systems: An Indiana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  2. A literature review of safety culture.

    SciTech Connect (OSTI)

    Cole, Kerstan Suzanne; Stevens-Adams, Susan Marie; Wenner, Caren A.

    2013-03-01T23:59:59.000Z

    Workplace safety has been historically neglected by organizations in order to enhance profitability. Over the past 30 years, safety concerns and attention to safety have increased due to a series of disastrous events occurring across many different industries (e.g., Chernobyl, Upper Big-Branch Mine, Davis-Besse etc.). Many organizations have focused on promoting a healthy safety culture as a way to understand past incidents, and to prevent future disasters. There is an extensive academic literature devoted to safety culture, and the Department of Energy has also published a significant number of documents related to safety culture. The purpose of the current endeavor was to conduct a review of the safety culture literature in order to understand definitions, methodologies, models, and successful interventions for improving safety culture. After reviewing the literature, we observed four emerging themes. First, it was apparent that although safety culture is a valuable construct, it has some inherent weaknesses. For example, there is no common definition of safety culture and no standard way for assessing the construct. Second, it is apparent that researchers know how to measure particular components of safety culture, with specific focus on individual and organizational factors. Such existing methodologies can be leveraged for future assessments. Third, based on the published literature, the relationship between safety culture and performance is tenuous at best. There are few empirical studies that examine the relationship between safety culture and safety performance metrics. Further, most of these studies do not include a description of the implementation of interventions to improve safety culture, or do not measure the effect of these interventions on safety culture or performance. Fourth, safety culture is best viewed as a dynamic, multi-faceted overall system composed of individual, engineered and organizational models. By addressing all three components of safety culture, organizations have a better chance of understanding, evaluating, and making positive changes towards safety within their own organization.

  3. EA-0965: Cancer Research Center Indiana University School of Medicine, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and equip the proposed Cancer Research Center (CRC), which would be located on the Indianapolis campus of the Indiana...

  4. INDIANA UNIVERSITY COMPUTER SCIENCE DEPARTMENT PROFESSIONAL MASTER'S DEGREE: UPPER LEVEL GRADUATION REQUIREMENTS WORKSHEET

    E-Print Network [OSTI]

    Indiana University

    INDIANA UNIVERSITY COMPUTER SCIENCE DEPARTMENT PROFESSIONAL MASTER'S DEGREE: UPPER LEVEL GRADUATION790) Q: (Qualifying exam + 2 approved graduate-level courses (1, 2 above)) Qualifying exam: _______________________ Date:_____ Grade:____ R, S, TH: (Master's research project, Master's software project, University

  5. A light reception will follow the presentations and discussion. Indiana University Department of Comparative Literature

    E-Print Network [OSTI]

    Indiana University

    A light reception will follow the presentations and discussion. Indiana University Department's On the Heights of Despair (1992) and Tears and Saints (1996) with the University of Chicago Press. In light

  6. IMU Activities Tower Application and Contract 1 INDIANA MEMORIAL UNION STUDENT ACTIVITIES TOWER

    E-Print Network [OSTI]

    Indiana University

    IMU Activities Tower Application and Contract 1 INDIANA MEMORIAL UNION STUDENT ACTIVITIES TOWER March 21, 2012 Union Board Office- 2nd floor of the IMU Activities Tower ­ room 270 The following Student Activities Tower: Organization Name

  7. ITP Mining: Mining Industry of the Future Mineral Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future Mineral Processing Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap mptroadmap.pdf More Documents & Publications ITP...

  8. Coal Mining Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

  9. Coal Mining (Iowa)

    Broader source: Energy.gov [DOE]

    These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

  10. Interstate Mining Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Interstate Mining Compact, a multi-state governmental agency / organization that represents the natural resource and related environmental...

  11. Coal Mining Tax Credit (Arkansas)

    Broader source: Energy.gov [DOE]

    The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

  12. Data Mining Tools Irfan Altas

    E-Print Network [OSTI]

    Turlach, Berwin A.

    Data Mining Tools Irfan Altas School of Information Studies, Charles Sturt University Wagga Wagga discuss several scalable and parallel discovery and predictive data mining tools. They successfully Data mining tools, thin plate splines, BMARS, revolver, regression, smoothing, addi­ tive models

  13. PRB mines mature

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2007-08-15T23:59:59.000Z

    Already seeing the results of reclamation efforts, America's largest surface mines advance as engineers prepare for the future. 30 years after the signing of the Surface Mining Control and Reclamation Act by Jimmy Carter, western strip mines in the USA, especially in the Powder River Basin, are producing more coal than ever. The article describes the construction and installation of a $38.5 million near-pit crusher and overland belt conveyor system at Foundation Coal West's (FCW) Belle Ayr surface mine in Wyoming, one of the earliest PRB mines. It goes on to describe the development by Rio Tinto of an elk conservatory, the Rochelle Hill Conservation Easement, on reclaimed land at Jacobs Ranch, adjacent to the Rochelle Hills. 4 photos.

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  15. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  16. Efficient Mining of Indirect Associations Using HI-Mine

    E-Print Network [OSTI]

    An, Aijun

    Efficient Mining of Indirect Associations Using HI-Mine Qian Wan and Aijun An Department. Discovering association rules is one of the important tasks in data mining. While most of the existing algorithms are developed for efficient mining of frequent patterns, it has been noted recently that some

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  19. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  20. Solar for Mining Hugh Rudnick

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    Solar for Mining Hugh Rudnick Professor Pontificia Universidad Católica de Chile #12;Solar Energy in Mining · Solar energy is becoming affordable · Attractive potential use for mining purposes · Must solve the storage requirement to increase its participation worldwide #12;Solar Energy in Mining · Electrical Energy

  1. Research at Mines Fiscal Year

    E-Print Network [OSTI]

    Matlock, De Moor, Speer #12;New Initiatives · Unconventional Oil & gas, Fracking (Santi) · Mines NREL

  2. Use of bathymetry for sediment characterization at Indiana Harbor

    SciTech Connect (OSTI)

    Petrovski, D.M. [Environmental Protection Agency, Chicago, IL (United States)

    1995-12-31T23:59:59.000Z

    In 1992, US EPA, Region 5, sampled sediments within the Federal Navigation Project at Indiana Harbor, IN. Lack of a disposal site has precluded dredging since 1972, resulting in the accumulation of over 750,000 m{sup 3} of highly contaminated sediment. The Federal Project covers approximately 1.08 km{sup 2} of both enhanced4ed and secondary sediment accumulation. The purpose of the sampling effort was to characterize these sediments under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Several approaches common to regulatory characterization were considered and rejected in favor of a bathymetry based procedure. Bathymetric surveys were used to identify 14 areas of thick sediment accumulation. Such areas are indicative of reduced water velocities which favor the accumulation of finer-grained sediment having a strong tendency to be associated with higher contaminant concentrations. Samples obtained from these locations should contain contaminant concentrations that exceed the mean concentrations for the project sediments. Consequently, a regulatory decision based upon these samples should be conservative. Bathymetry may provide a mechanism to reduce the number of samples necessary to characterize large sediment volumes, while maintaining an acceptable level of confidence in any derived regulatory decision.

  3. Mining Test Cases To Improve Software Maintenance

    E-Print Network [OSTI]

    Ziftci, Celal

    Chapter 6 Automatically Mining Requirements Relationships6.4 R EQ R EL E X : Mining Requirements Relationships fromTest Cases . . . . 6.4.1 Mining Requirements

  4. System Problem Detection by Mining Console Logs

    E-Print Network [OSTI]

    Xu, Wei

    2010-01-01T23:59:59.000Z

    5.4.1 Stage 1 pattern mining results . . . . . . . . 5.4.25.2 Stage 1: Frequent Pattern Mining . . . . . . . . . .5.2.1 Mining frequent event patterns . . . . .

  5. Indonesian coal mining

    SciTech Connect (OSTI)

    NONE

    2008-11-15T23:59:59.000Z

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  6. Strip Mine Law (Missouri)

    Broader source: Energy.gov [DOE]

    This law authorizes the Land Reclamation Commission of the Department of Natural Resources to adopt and promulgate rules and regulations pertaining to strip mining of coal and reclamation, review...

  7. Indiana Conservancy Act (Indiana)

    Broader source: Energy.gov [DOE]

    Landowners in a given locality may petition for the establishment of a Conservancy District. Such districts may be created for the purpose of managing and regulating flood prevention and control,...

  8. Incorporating safety into surface haulage in the Powder River basin

    SciTech Connect (OSTI)

    Jeffery, W.; Jennings, C.

    1996-12-31T23:59:59.000Z

    The Powder River Basin (PRB) coal deposit extends from southeast Montana to northeast Wyoming. This paper describes a number of haulage practices and tools in use at several mines of the southern PRB and the way in which safety has been designed into and implemented for surface haulage of coal and overburden. Experiences described herein focus on the northeastern corner of Wyoming. All the mines in this area rely on safe and efficient movement of enormous volumes of material, and the results achieved in safety underscore the planning and attention to detail present in the PRB. There are currently 12 large surface mines (those greater than 10.0MM tons/year) operating in this area. In 1995, these mines produced over 230.0MM tons of coal.

  9. Development of a Mine Rescue Drilling System (MRDS) :

    SciTech Connect (OSTI)

    Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom; Knudsen, Steven D.; Broome, Scott Thomas; Su, Jiann-Cherng; Blankenship, Douglas A.; Costin, Laurence S.

    2014-06-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

  10. Generic Pattern Mining via Data Mining Template Library

    E-Print Network [OSTI]

    Zaki, Mohammed Javeed

    - rithms for classification, and Weka [20], which is a general purpose Java library of different dataGeneric Pattern Mining via Data Mining Template Library Mohammed J. Zaki, Nilanjana De, Feng Gao. In this paper we propose the Data Mining Template Library, a collec- tion of generic containers and algorithms

  11. Surface Coal Mining Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under...

  12. School of Mines 2002 2003

    E-Print Network [OSTI]

    is for your use as a source of continuing reference. Please save it. Published by Colorado School of Mines

  13. School of Mines Undergraduate Bulletin

    E-Print Network [OSTI]

    is for your use as a source of continuing reference. Please save it. Published by Colorado School of Mines

  14. Westinghouse Earns Safety Excellence Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfiresImpurity Transport,12,Top Mine Safety AwardFor Immediate

  15. Sentiment Analysis and Opinion Mining

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Sentiment Analysis and Opinion Mining Bing Liu Department of Computer Science University Mining Morgan & Claypool Publishers, May 2012. #12;Bing Liu @ AAAI-2011, Aug. 8, 2011, San Francisco, USA 2 Introduction Opinion mining or sentiment analysis Computational study of opinions, sentiments

  16. Mining the Blazar Sky

    E-Print Network [OSTI]

    Paolo Padovani; Paolo Giommi

    2000-12-15T23:59:59.000Z

    We present the results of our methods to "mine" the blazar sky, i.e., select blazar candidates with very high efficiency. These are based on the cross-correlation between public radio and X-ray catalogs and have resulted in two surveys, the Deep X-ray Radio Blazar Survey (DXRBS) and the "Sedentary" BL Lac survey. We show that data mining is vital to select sizeable, deep samples of these rare active galactic nuclei and we touch upon the identification problems which deeper surveys will face.

  17. MANGANESE DEFICIENCIES IN INDIANA SOILS Sylvie M. Brouder, Purdue Soil Fertility Specialist

    E-Print Network [OSTI]

    Brouder, Sylvie

    MANGANESE DEFICIENCIES IN INDIANA SOILS Sylvie M. Brouder, Purdue Soil Fertility Specialist Andrea S. Bongen and barley. #12;4 AY-276-W Table 2. M anganese fertilizers and suggestions for their use in banded/row starter application (B nd) and foliar application (Fol). B roadcast applications are not recom m ended

  18. TRT meeting Feb 03 Pauline Gagnon Indiana University 1 Acceptance tests for barrel modules

    E-Print Network [OSTI]

    Gagnon, Pauline

    tension 90% 80% 100% stringing 80% 100% not tested HV checks 100% 20% not done HV conditioning in design 20% not done gain mapping designed 100% not done #12;TRT meeting ­ Feb 03 Pauline Gagnon ­ Indiana Circulate ventilation through 3 modules: type 1,2 3 Active gas in series through 2 modules of the same type

  19. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  20. This article was downloaded by: [Indiana University Libraries] On: 01 July 2014, At: 06:53

    E-Print Network [OSTI]

    Attari, Shahzeen Z.

    This article was downloaded by: [Indiana University Libraries] On: 01 July 2014, At: 06 for Sustainable Development Publication details, including instructions for authors and subscription information, Environment: Science and Policy for Sustainable Development, 56:4, 4-15, DOI: 10

  1. Employment Application Form Indiana University is an Equal Opportunity/Affirmative Action Employer.

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Employment Application Form Indiana University is an Equal Opportunity/Affirmative Action Employer history investigation is done on each new employee, and employment with the University is conditional, sub- matically disqualify you for employment; however, information obtained from the investigation will be used

  2. National Computational Infrastructure for Lattice Gauge Theory SciDAC-2 Closeout Report Indiana University Component

    SciTech Connect (OSTI)

    Gottlieb, Steven Arthur [Indiana University; DeTar, Carleton [University of Utah; Tousaint, Doug [University of Arizona

    2014-07-24T23:59:59.000Z

    This is the closeout report for the Indiana University portion of the National Computational Infrastructure for Lattice Gauge Theory project supported by the United States Department of Energy under the SciDAC program. It includes information about activities at Indian University, the University of Arizona, and the University of Utah, as those three universities coordinated their activities.

  3. From SEP to SEPIA: How and Why Indiana University is Helping the Stanford Encyclopedia of

    E-Print Network [OSTI]

    Zalta, Edward N.

    @indiana.edu> At over eight million words, it would take almost 14,000 large-format pages to do a tra- ditional printing- ing to new scholarly developments. Authors edit their entries through a Web interface on the server to the selection, production, and maintenance of a wide range of high-quali

  4. Paleontology and Geology of Indiana Department of Geological Sciences | P. David Polly 1

    E-Print Network [OSTI]

    Polly, David

    ) Calamostachys, Lower Black Coal (cones) #12;Department of Geological Sciences | P. David Polly 3 Pteridophyta ambigua, Pennsylvanian of Indiana University Sphenopteris fern foliage, Lower Black Coal Progymnosperms (conifers) Walchia, Abo Fm. New Mexico (Permian) #12;Department of Geological Sciences | P. David Polly 5

  5. EIS-0429: Department of Energy Loan Guarantee for Indiana Integrated Gasification Combined Cycle, Rockport, IN

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a coal-to-substitute natural gas facility proposed to be built in Rockport, IN by Indiana Gasification. The facility would utilize Illinois Basin coal. Other products would be marketable sulfuric acid, argon, and electric power.

  6. Table of Contents / IUJCS 7 (2012) 2 INDIANA UNDERGRADUATE JOURNAL OF COGNITIVE SCIENCE

    E-Print Network [OSTI]

    Indiana University

    __________________________________________________________ TABLE OF CONTENTS Editor's Note 3 Ronak Shah, Indiana University ARTICLES D-Deletion in Andalusian academic funding is in threat. IUJCS is one way of bridging that gap, empowering and recognizing bright is an online publication helps facilitate these principles. I trust you will find them embodied in the articles

  7. Associated Faculty Bidney, Martin P., Professor, PhD, 1971, Indiana

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    113 Associated Faculty Bidney, Martin P., Professor, PhD, 1971, Indiana University: 19th-century English literature, Russian literature, Blake. (1969) Coates, Carrol F., Professor, PhD, 1964, Yale), comparative literature. (1963) Okpewho, Isidore, Professor, PhD, 1976, University of Denver: Classics, African

  8. Alessi, James G. Physicist PHD 1979 Univ. of Pittsburgh Bai, Mei Physicist PHD 1999 Indiana Univ.

    E-Print Network [OSTI]

    Homes, Christopher C.

    DEGREE YEAR Alessi, James G. Physicist PHD 1979 Univ. of Pittsburgh Bai, Mei Physicist PHD 1999 Indiana Univ. Beavis, Dana Physicist PHD 1980 Univ. of California Riverside Beebe, Edward N. Physicist PHD 1990 Cornell Univ. Beebe-Wang, Joanne J. Physicist PHD 1994 Stockholm Univ. Belomestnykh, Sergey A

  9. LASER SAFETY POLICY MANUAL ENVIRONMENTAL HEALTH & SAFETY

    E-Print Network [OSTI]

    Houston, Paul L.

    LASER SAFETY POLICY MANUAL ISSUED BY ENVIRONMENTAL HEALTH & SAFETY OFFICE OF RADIOLOGICAL SAFETY and GEORGIA TECH LASER SAFETY COMMITTEE July 1, 2010 Revised July 31, 2012 #12;Laser Safety Program 1-1 #12;Laser Safety Policy Manual TABLE OF CONTENTS 1. POLICY AND SCOPE

  10. ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL

    E-Print Network [OSTI]

    Maroncelli, Mark

    ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL May 10, 2002 #12;i Acknowledgements Environmental Health and Safety gratefully acknowledges the assistance provided by the University Safety Council extremely helpful. #12;ii Environmental Health and Safety General Safety Manual Table of Contents Section

  11. Safety Bulletin

    Broader source: Energy.gov (indexed) [DOE]

    in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the...

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  13. ESF Mine Power Center Platforms

    SciTech Connect (OSTI)

    T.A. Misiak

    2000-02-10T23:59:59.000Z

    The purpose and objective of this analysis is to structurally evaluate the existing Exploratory Studies Facility (ESF) mine power center (MPC) support frames and to design service platforms that will attach to the MPC support frames. This analysis follows the Development Plan titled ''Produce Additional Design for Title 111 Evaluation Report'' (CRWMS M&O 1999a). This analysis satisfies design recommended in the ''Title III Evaluation Report for the Surface and Subsurface Power System'' (CRWMS M&O 1999b, Section 7.6) and concurred with in the ''System Safety Evaluation of Title 111 Evaluation Reports Recommended Work'' (Gwyn 1999, Section 10.1.1). This analysis does not constitute a level-3 deliverable, a level-4 milestone, or a supporting work product. This document is not being prepared in support of the Monitored Geologic Repository (MGR) Site Recommendation (SR), Environmental Impact Statement (EIS), or License Application (LA) and should not be cited as a reference in the MGR SR, EIS, or LA.

  14. Coal Mining on Pitching Seams

    E-Print Network [OSTI]

    Brown, George MacMillan

    1915-01-01T23:59:59.000Z

    . 1915* App r ov e d: Department of Mining Engineering* COAL MUTING ON PITCHING SEAMS A THESIS SUBMITTED TO THE FACULTY OP THE SCHOOL OP ENGINEERING OF THE UNIVERSITY OP KANSAS for THE DEGREE OF ENGINEER OF MINES BY GEORGE MACMILLAN BROWN 1915... PREFACE In the following dissertation on the subject of "Coal Mining in Pitching Beams" the writer desires to describe more particularly those methods of mining peculiar to coal mines in Oklahoma, with which he has been more or less familiar during...

  15. Toolbox Safety Talk Ladder Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Health & Safety for recordkeeping. Slips, trips, and falls constitute the majority of general industry and construction worker injuries. Falls cause 15% of all accidental deaths, and are second only to motor vehicle

  16. Impact of the Proposed I-69 Corridor on Bobcat (Felis rufus) Habitat in Southwestern Indiana Jeffrey L. Ashby1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    , interstate, and highway shapefiles from the IndianaMap website (indianamap.org), and then classified the study area. The I-69 corridor shapefile was then added and the reduction in habitat calculated to show

  17. Data Mining ICPSR Summer Program, 2008

    E-Print Network [OSTI]

    Stine, Robert A.

    Data Mining ICPSR Summer Program, 2008 Robert Stine Statistics Department Wharton School-stat.wharton.upenn.edu/~stine These lectures introduce data mining. Once a nasty thing to be accused of, data mining has become respectable, useful, and even necessary. What is data mining? Basically, data mining refers to statistical algorithms

  18. Toolbox Safety Talk Welding & Metal Work Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

  19. Towards Data Mining Benchmarking: A Test Bed for Performance Study of Frequent Pattern Mining

    E-Print Network [OSTI]

    Pei, Jian

    Towards Data Mining Benchmarking: A Test Bed for Performance Study of Frequent Pattern Mining Jian, object-relational DBMS, data warehouse sys- tems, etc. We believe that benchmarking data mining mining systems as well. Frequent pattern mining forms a core component in mining associations

  20. Nuclear Safety Regulatory Framework

    Broader source: Energy.gov (indexed) [DOE]

    overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

  1. ITP Mining: Education Roadmap for Mining Professionals (December...

    Broader source: Energy.gov (indexed) [DOE]

    this path supply Americans with the basic materials needed to sustain their standard of living. However, the role of the mining industry in meeting these needs is often...

  2. Exact Primitives for Time Series Data Mining

    E-Print Network [OSTI]

    Mueen, Abdullah Al

    2012-01-01T23:59:59.000Z

    G. Silva, and Rui M. M. Brito. Mining approximate motifs intime series. In Data Mining, 2001. ICDM 2001, Proceedingson Knowledge discovery and data mining, KDD, pages 947–956,

  3. Data Mining Historical Manuscripts and Culture Artifacts

    E-Print Network [OSTI]

    Zhu, Qiang

    2011-01-01T23:59:59.000Z

    Workshop on Temporal Data Mining. [62] Liu, Y. , Zhang, D. ,Faloutsos, C. 2006. Automatic mining of fruit fly embryo2011. The Mouse that Roared: Mining Massive Archives of Mice

  4. Efficient Algorithms for High Dimensional Data Mining

    E-Print Network [OSTI]

    Rakthanmanon, Thanawin

    2012-01-01T23:59:59.000Z

    E. J. Keogh. 2008. Querying and mining of time series data:Dupasquier and S. Burschka. 2011. Data mining for hackers –encrypted traffic mining. The 28 th Chaos Comm’ Congress. Y.

  5. Data Mining Within a Regression Framework

    E-Print Network [OSTI]

    Richard A. Berk

    2011-01-01T23:59:59.000Z

    I.H. and E. Frank. (2000). Data Mining. New York: Morgan and2003) Exploratory Data Mining and Data Cleaning. New York:2001) Principle of Data Mining. Cambridge, Massachusetts:

  6. DTC DATA MINING CONSORTIUM MEMBERSHIP BENEFITS

    E-Print Network [OSTI]

    Minnesota, University of

    DTC DATA MINING CONSORTIUM MEMBERSHIP BENEFITS I Collaboration with leading companies I BEHAVIORAL ECOLOGY DRUG DISCOVERY BUSINESS SALES & MARKETING AUTOMOTIVE CRM GOVERNMENT CYBER SECURITY Creation Analysis Optimization Scalable Database Mining Auto-Mining Agents CUTTING-EDGE CAPABILITIES

  7. Data Mining Within a Regression Framework

    E-Print Network [OSTI]

    Berk, Richard

    2004-01-01T23:59:59.000Z

    I.H. and E. Frank. (2000). Data Mining. New York: Morgan and2003) Exploratory Data Mining and Data Cleaning. New York:2001) Principle of Data Mining. Cambridge, Massachusetts:

  8. The Environmental Aspects of Deep Seabed Mining

    E-Print Network [OSTI]

    Kindt, John Warren

    1989-01-01T23:59:59.000Z

    United States Deep Seabed Mining, 19 WM. & MARY L. REV. 77 (Aspects of Deep Seabed Mining" John Warren Kindt* I.with deep seabed mining. As of 1988, the available

  9. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    1999-10-01T23:59:59.000Z

    This report represents the fourth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. During this reporting period the Engineering Design for remediation of the surface safety hazards associated with the White Meadow Mine was completed. Construction Plans and Technical Specifications were completed and competitive bids were solicited by the Township for completion of the work. The electrical resistivity survey analysis and report was completed for the Green Pond Mines site at the Township Compost Storage Facility. The geophysical survey results confirmed evidence of abandoned mining activity at the Green Pond Mine site which was previously identified. During this reporting period, the time frame of the Cooperative Agreement between the Township and the Department of Energy was extended. An additional site of subsidence with in the Township related to abandoned mining activity at Mount Hope Road was selected by Rockaway Township to be considered for remediation and inclusion under the Cooperative Agreement.

  10. Laser Safety Introduction

    E-Print Network [OSTI]

    McQuade, D. Tyler

    use Integrated Safety Management here at the lab to reduce risk and work to improve the quality and safety of the work? #12;Integrated Safety Management Use (greater in size than wavelength) #12;Integrated Safety Management Remember, we

  11. Proceedings, 26th international conference on ground control in mining

    SciTech Connect (OSTI)

    Peng, S.S.; Mark, C.; Finfinger, G. (and others) (eds.)

    2007-07-01T23:59:59.000Z

    Papers are presented under the following topic headings: multiple-seam mining, surface subsidence, coal pillar, bunker and roadway/entry supports, mine design and highwall mining, longwall, roof bolting, stone and hardrock mining, rock mechanics and mine seal.

  12. An experimental investigation of mine burial penetration in soft sediments

    E-Print Network [OSTI]

    Munim, Mohammed Abdul

    2003-01-01T23:59:59.000Z

    of that of actual mines. The factors selected for the investigation were mine weight, preburial condition of the mine, mine orientation, impact velocity of the mine and shear strength and creep characteristics of the soil. Only the geotechnical aspects...

  13. Insider Threat Detection using Stream Mining and Graph Mining

    E-Print Network [OSTI]

    Hamlen, Kevin W.

    Insider Threat Detection using Stream Mining and Graph Mining Pallabi Parveen, Jonathan Evans threats who attempt to conceal their activities by varying their behaviors over time. This paper applies of insider threat detection, demonstrating that the ensemble-based approach is significantly more effective

  14. Arkansas Surface Coal Mining Reclamation Act (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Surface Coal Mining Reclamation Act authorizes the state to develop, adopt, issue and amend rules and regulations pertaining to surface coal mining and reclamation operations. These...

  15. Minerals and Mining Program (South Dakota)

    Broader source: Energy.gov [DOE]

    The Minerals and Mining Program has the authority to oversee mining activities in the state and issue regulations pertaining to the permitting and environmental impact mitigation of, and...

  16. Climate VISION: PrivateSector Initiatives: Mining

    Office of Scientific and Technical Information (OSTI)

    Letters of IntentAgreements National Mining Association Logo Read the National Mining Association Commitment Letter (PDF 68 KB) Download Acrobat Reader...

  17. November 2012 SOCIETY for MINING, METALLURGY, and

    E-Print Network [OSTI]

    November 2012 2013-2014 SOCIETY for MINING, METALLURGY, and EXPLORATION (SME) Colorado Section goals (mining/civil/environmental engineering, metallurgy, economic geology, geochemistry

  18. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  19. Safety valve

    DOE Patents [OSTI]

    Bergman, Ulf C. (Malmoe, SE)

    1984-01-01T23:59:59.000Z

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  20. Hydraulic mining method

    DOE Patents [OSTI]

    Huffman, Lester H. (Kent, WA); Knoke, Gerald S. (Kent, WA)

    1985-08-20T23:59:59.000Z

    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  1. Mining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriority DataPARTMining Mining Supply and cost

  2. Colorado School of Mines Environmental Health and Safety Department

    E-Print Network [OSTI]

    years. A container in "good condition" is a container that is properly labeled, closed, has no leaks(s) closed Container(s) properly labeled Container(s) properly segregated Comments/Corrective Action #12;Satellite Accumulation Area ­ Waste Storage Requirements Label Requirements: · Waste

  3. Westinghouse Earns 15th Consecutive Mine Safety Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHEWeekly ReportsWenjunTRU Solutions

  4. Westinghouse Earns Mine Safety Award for 16th Consecutive Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHEWeekly ReportsWenjunTRU SolutionsEarns

  5. Westinghouse Earns Mine Safety Award for Exceptional Underground Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOETHEWeekly ReportsWenjunTRU

  6. Web Mining for Hyperlinked Communities

    E-Print Network [OSTI]

    Hu, Wen-Chen

    Web Mining for Hyperlinked Communities Gary William Flake flake@research.nj.nec.com NEC Research Institute #12;Motivation for Web Mining More than 1B web pages and 20TB of raw data. Even more content will always be disorganized (or at best self-organized). In the future, everything will be on the web

  7. Mining for Helium Jurriaan Hage

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Mining for Helium Jurriaan Hage Peter van Keeken Department of Information and Computing Sciences-year functional programming course using the Helium compiler. The mining of such a collection is not trivial a type error. 1 #12;1 Introduction and motivation When the Helium compiler for learning Haskell

  8. Rehabilitation of contaminated territories while liquidating enterprises of uranium mining industry of the CIS

    SciTech Connect (OSTI)

    Karamushka, V.P.; Ostroborodov, V.V. [VNIPIPROMTECHNOLOGII, Moscow (Russian Federation)

    1993-12-31T23:59:59.000Z

    Uranium mining in the Russian Federation has caused contamination of the environment with solid, liquid and gaseous wastes. Radioactive materials are being leached from residual uranium ores and mill tailings piles. These contaminated areas are being decontaminated and recultivated. Ensuring radiation safety in remediating is of prime importance.

  9. School of Mines Graduate Bulletin

    E-Print Network [OSTI]

    Mission and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Institutional Values Association . . . . . . . . . . . . . . . . . . . . . . . 19 Environmental Health and Safety

  10. School of Mines Graduate Bulletin

    E-Print Network [OSTI]

    and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Institutional Values and Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 CSM Alumni Association . . . . . . . . . . . . . . . . . . . . 17 Environmental Health and Safety

  11. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  12. Measuring mine roof bolt strains

    DOE Patents [OSTI]

    Steblay, Bernard J. (Lakewood, CO)

    1986-01-01T23:59:59.000Z

    A mine roof bolt and a method of measuring the strain in mine roof bolts of this type are disclosed. According to the method, a flat portion on the head of the mine roof bolt is first machined. Next, a hole is drilled radially through the bolt at a predetermined distance from the bolt head. After installation of the mine roof bolt and loading, the strain of the mine roof bolt is measured by generating an ultrasonic pulse at the flat portion. The time of travel of the ultrasonic pulse reflected from the hole is measured. This time of travel is a function of the distance from the flat portion to the hole and increases as the bolt is loaded. Consequently, the time measurement is correlated to the strain in the bolt. Compensation for various factors affecting the travel time are also provided.

  13. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    SciTech Connect (OSTI)

    Yoginder P. Chugh

    2002-10-01T23:59:59.000Z

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  14. Delivering safety

    SciTech Connect (OSTI)

    Baldwin, N.D.; Spooner, K.G.; Walkden, P. [British Nuclear Group Ltd, Daresbury, Warrington (United Kingdom)

    2007-07-01T23:59:59.000Z

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous RoSPA awards at site and sector level and nomination, at Company level, for the RoSPA George Earle trophy for outstanding performance in Health and Safety (Reactor Sites, 2006). After 'setting the scene' and describing the challenges that the company has had to respond to, the paper explains how these improvements have been delivered. Specifically it explains the process that has been followed and the parts played by sites and suppliers to deliver improved performance. With the experience of already having transitioned several Magnox stations from operations to defueling and then to decommissioning, the paper describes the valuable experience that has been gained in achieving an optimum change process and maintaining momentum. (authors)

  15. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterialsSafety, Security

  16. NEW MEXICO SCHOOL OF MINES STATE BUREAU OF MINES AND MINERAL RESOURCES

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    NEW MEXICO SCHOOL OF MINES STATE BUREAU OF MINES AND MINERAL RESOURCES BULLETIN 13 FRONTISPIECE PIT AT HARDING MINE (To left of dump) DUMP AT HARDING MINE (To right of pit) #12;NEW MEXICO SCHOOL OF MINES STATE and Economic Features of the Pegmatites of Taos and Rio Arriba Counties, New Mexico By EVAN JUST SOCORRO, N. M

  17. Video Mining with Frequent Itemset Configurations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Video Mining with Frequent Itemset Configurations Till Quack1 , Vittorio Ferrari2 , and Luc Van Gool1 1 ETH Zurich 2 LEAR - INRIA Grenoble Abstract. We present a method for mining frequently arrangements of affine covariant regions. Our mining method is based on the class of frequent itemset mining

  18. Mining Weighted Association Rules without Preassigned Weights

    E-Print Network [OSTI]

    Bai, Fengshan

    Mining Weighted Association Rules without Preassigned Weights Ke Sun and Fengshan Bai Abstract--Association rule mining is a key issue in data mining. However, the classical models ignore the difference between the transactions, and the weighted association rule mining does not work on databases with only binary attributes

  19. Identifying Relevant Databases for Multidatabase Mining

    E-Print Network [OSTI]

    Liu, Huan

    Identifying Relevant Databases for Multidatabase Mining Huan Liu, Hongjun Lu, Jun Yao Department,luhj,yaojung@iscs.nus.edu.sg Abstract. Various tools and systems for knowledge discovery and data mining are developed and available is where we should start mining. In this paper, breaking away from the conventional data mining assumption

  20. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics Colorado School of Mines CGEM Dongjie Cheng #12;#12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: December 2003 Advisor: Dr. Yaoguo Li (GP

  1. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics Colorado School of Mines CGEM Alisa Marie Green #12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: November 06, 2003 Advisor: Dr. Yaoguo Li

  2. Patrick Dudas Data Mining for Web Personalization

    E-Print Network [OSTI]

    Brusilovsky, Peter

    -gram corpuses, traffic statistics, OpenStreetMap dataset,Wikipedia traffic... #12;4/8/11 5 Data Mining Web4/8/11 1 Patrick Dudas Data Mining for Web Personalization Outline Personalization Data mining Examples Web mining MapReduce Data Preprocessing Knowledge Discovery Evaluation Information

  3. CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval -...

  4. Mining and Reclamation Technology Symposium

    SciTech Connect (OSTI)

    None Available

    1999-06-24T23:59:59.000Z

    The Mining and Reclamation Technology Symposium was commissioned by the Mountaintop Removal Mining/Valley Fill Environmental Impact Statement (EIS) Interagency Steering Committee as an educational forum for the members of the regulatory community who will participate in the development of the EIS. The Steering Committee sought a balanced audience to ensure the input to the regulatory community reflected the range of perspectives on this complicated and emotional issue. The focus of this symposium is on mining and reclamation technology alternatives, which is one of eleven topics scheduled for review to support development of the EIS. Others include hydrologic, environmental, ecological, and socio-economic issues.

  5. PINTEX Data: Numeric results from the Polarized Internal Target Experiments (PINTEX) at the Indiana University Cyclotron Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Meyer, H. O.

    The PINTEX group studied proton-proton and proton-deuteron scattering and reactions between 100 and 500 MeV at the Indiana University Cyclotron Facility (IUCF). More than a dozen experiments made use of electron-cooled polarized proton or deuteron beams, orbiting in the 'Indiana Cooler' storage ring, and of a polarized atomic-beam target of hydrogen or deuterium in the path of the stored beam. The collaboration involved researchers from several midwestern universities, as well as a number of European institutions. The PINTEX program ended when the Indiana Cooler was shut down in August 2002. The website contains links to some of the numerical results, descriptions of experiments, and a complete list of publications resulting from PINTEX.

  6. Uranium mine and mill tailings - Liabilities in the European Union

    SciTech Connect (OSTI)

    Hilden, Wolfgang; Murphy, Simon [European Commission, Maison de l'Europe, L-2920 (Luxembourg); Vrijen, Jan [KARUWEEG BV, Leliendaalsedreef 9, 4333 JZ Middelburg (Netherlands)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Uranium mining and milling has taken place on large scale in the Member States of the European Union (EU) for some 60 years. Although, compared to mining, milling activities are normally concentrated in fewer locations, this can still result in a relatively large number of disposal sites for the tailings, compared to other radioactive wastes. In addition these sites are also quite large, in terms of both volume and surface area. Coupled with the residual uranium in the tailings together with other radionuclides, heavy metals, chemicals etc this results in an environmental legacy continuing far into the future. Often during production no or little provision has been made for the closure, remediation and future supervision of such sites. In 1996 the European Commission funded an inventory of uranium mining and milling liabilities in nine Central and Eastern European Countries. Additionally, pilot projects were funded to carry out remediation activities at several sites. Almost ten years later the Commission has identified the need to address the situation of these large liabilities in all EU Member States and to assess the progress made in remediation of the sites, especially in view of the closure of almost all mining activities in Europe. The Commission study has identified the current tailings liabilities in Europe, their status, the future plans for these sites and the hazards that continue to be associated with them. It is clear that although considerable progress has been made in recent years, much work remains to be carried out in the areas of remediation, and ensuring the long-term safety of many of the identified objects. The paper presents the main findings of the study, as well as the challenges identified to ensure long-term safety of these wastes. (authors)

  7. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    SciTech Connect (OSTI)

    none,

    1982-07-01T23:59:59.000Z

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  8. Benton County, Indiana ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBayBelmontInformation Indiana ASHRAE 169-2006 Climate

  9. Indianapolis, Indiana, Summary of Reported Data From July 1, 2010 - September 30, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRY ENERGYEnergy Indiana

  10. ITP Mining: Energy and Environmental Profile of the U.S. Mining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Environmental Profile of the U.S. Mining Industry (December 2002) ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry (December 2002) Cover,...

  11. Australian Mining carries rare-earth-like iron release | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Australian Mining carries rare-earth-like iron release Australian Mining, the leading news source for the mining industry in Australia, carried a story on research Ames Lab...

  12. Proceedings, 27th international conference on ground control in mining

    SciTech Connect (OSTI)

    Peng, S.S.; Mark, C.; Finfinger, G. (and others) (eds.)

    2008-07-01T23:59:59.000Z

    Topics covered include: coal bumps and rockbursts, surface subsidence, surface mining, mine seals, longwall mining, pillars, roof bolting, rock mechanics and standing supports.

  13. Abiotic Oxidation Rate of Chalcopyrite: Implications for Seafloor Mining

    E-Print Network [OSTI]

    Bilenker, Laura Danielle

    2011-01-01T23:59:59.000Z

    in Seawater: Implications for Mining Seafloor Hot Spring.American Institute of Mining, Metallurgical, and PetroleumImplications for Seafloor Mining A Thesis submitted in

  14. Data Mining Applied to Acoustic Bird Species Recognition

    E-Print Network [OSTI]

    Vilches, Erika; Escobar, Ivan A.; Vallejo, E E; Taylor, C E

    2006-01-01T23:59:59.000Z

    I. ; Frank, E. ; Data Mining: Practical Machine LearningData Mining Applied to Acoustic Bird Species Recognitionthe application of data mining techniques to the problem of

  15. abandoned mined lands: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  16. abandoned mined land: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  17. appalachian coal mining: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  18. abandoned mining sites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  19. abandoned mining land: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  20. advance mining: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  1. asan mining district: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  2. COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES

    E-Print Network [OSTI]

    Lamb, D.W.

    2013-01-01T23:59:59.000Z

    SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIEStimes are calculated for a mining and drilling progrilln toof cost and time to compl mining and core drilling for

  3. Mercury-Contaminated Hydraulic Mining Debris in San Francisco Bay

    E-Print Network [OSTI]

    Bouse, Robin M; Fuller, Christopher C; Luoma, Sam; Hornberger, Michelle I; Jaffe, Bruce E; Smith, Richard E

    2010-01-01T23:59:59.000Z

    Contaminated Hydraulic Mining Debris in San Francisco BayAbstract The hydraulic gold-mining process used during thecreated by hydraulic gold mining in the Sierra Nevada,

  4. MODELING OF STATIC MINING SUBSIDENCE IN A NONLINEAR MEDIUM

    E-Print Network [OSTI]

    Ratigan, J.L.

    2013-01-01T23:59:59.000Z

    for Static Evaluation of Mining Subsidence," Rep. No. LBL-6, 1981 MODELING OF STATIC MINING SUBSIDENCE IN A NONLINEAR11896 MODELING OF STATIC MINING SUBSIDENCE IN A NONLINEAR ~

  5. Surface Coal Mining Law (Missouri)

    Broader source: Energy.gov [DOE]

    This law aims to provide for the regulation of coal mining in order to minimize or prevent its adverse effects, protect the environment to the extent possible, protect landowner rights, and...

  6. Coal Mining Reclamation (North Dakota)

    Broader source: Energy.gov [DOE]

    The Reclamation Division of the Public Service Commission is tasked with administering the regulation of surface coal mining and reclamation. Specific regulations can be found in article 69-05.2 of...

  7. Privacy-preserving data mining

    E-Print Network [OSTI]

    Zhang, Nan

    2009-05-15T23:59:59.000Z

    In the research of privacy-preserving data mining, we address issues related to extracting knowledge from large amounts of data without violating the privacy of the data owners. In this study, we first introduce an integrated baseline architecture...

  8. Integer optimization in data mining

    E-Print Network [OSTI]

    Shioda, Romy, 1977-

    2003-01-01T23:59:59.000Z

    While continuous optimization methods have been widely used in statistics and data mining over the last thirty years, integer optimization has had very limited impact in statistical computation. Thus, our objective is to ...

  9. Acceptable NSLS Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

  10. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  11. ITP Mining: Energy and Environmental Profile of the U.S. Mining...

    Broader source: Energy.gov (indexed) [DOE]

    with which human civilizations have been built. The United States Department of Energy and the National Mining Association are working in partnership to implement the Mining...

  12. School of Mines Graduate Bulletin

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Institutional Values and Principles . . . . . . . . . . . . . . 6 History of CSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 CSM Alumni Association . . . . . . . . . . . . . . . . . . . . 17 Environmental Health and Safety

  13. Dam Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania Department of Environmental Protection's Division of Dam Safety provides for the regulation and safety of dams and reservoirs throughout the Commonwealth in order to protect the...

  14. Pipeline Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

  15. SHSD Manager Safety Engineering Group Manager

    E-Print Network [OSTI]

    Safety, Machine Shop Safety, Tier I Program, Traffic Safety S. Moss: Nuclear Criticality Safety G. Shepherd: Explosives Safety, Facility Authorization Basis, Nuclear Safety R. Travis: Readiness Evaluations

  16. Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec)

    SciTech Connect (OSTI)

    Caruthers, James; Dietz, J.; Pelter, Libby; Chen, Jie; Roberson, Glen; McGinn, Paul; Kizhanipuram, Vinodegopal

    2013-01-31T23:59:59.000Z

    The Indiana Advanced Electric Vehicle Training and Education Consortium (I-AEVtec) is an educational partnership between six universities and colleges in Indiana focused on developing the education materials needed to support electric vehicle technology. The I-AEVtec has developed and delivered a number of degree and certificate programs that address various aspects of electric vehicle technology, including over 30 new or significantly modified courses to support these programs. These courses were shared on the SmartEnergyHub. The I-AEVtec program also had a significant outreach to the community with particular focus on K12 students. Finally, the evGrandPrix was established which is a university/college student electric go-kart race, where the students get hands-on experience in designing, building and racing electric vehicles. The evGrandPrix now includes student teams from across the US as well as from Europe and it is currently being held on Opening Day weekend for the Indy500 at the Indianapolis Motor Speedway.

  17. Environmental Health and Safety Fire and Life Safety Laboratory Assessment

    E-Print Network [OSTI]

    Environmental Health and Safety Fire and Life Safety Laboratory Assessment PI or environmental concerns were identified. B. Items of safety or environmental concerns were identified. C. Uncorrected repeated safety or environmental items were identified. Safety Equipment # Compliance Items

  18. Survey of nine surface mines in North America. [Nine different mines in USA and Canada

    SciTech Connect (OSTI)

    Hayes, L.G.; Brackett, R.D.; Floyd, F.D.

    1981-01-01T23:59:59.000Z

    This report presents the information gathered by three mining engineers in a 1980 survey of nine surface mines in the United States and Canada. The mines visited included seven coal mines, one copper mine, and one tar sands mine selected as representative of present state of the art in open pit, strip, and terrace pit mining. The purpose of the survey was to investigate mining methods, equipment requirements, operating costs, reclamation procedures and costs, and other aspects of current surface mining practices in order to acquire basic data for a study comparing conventional and terrace pit mining methods, particularly in deeper overburdens. The survey was conducted as part of a project under DOE Contract No. DE-AC01-79ET10023 titled The Development of Optimal Terrace Pit Coal Mining Systems.

  19. COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES

    E-Print Network [OSTI]

    Lamb, D.W.

    2013-01-01T23:59:59.000Z

    SHAFT SINKING IN-MINE DRILLiNG NEW MINE - 1500 M SURFACEORILUNG SHAFT SINKiNG FACIUTY DEVELOPMENT IN-MINE DRILLINGSURFACE DRILLING FACIUTY DEVELOPMENT IN-MINE DRILLING ~~NGM!

  20. In plant partial noise enclosures for the mining industry

    SciTech Connect (OSTI)

    Kinevy, P.T.

    1993-10-01T23:59:59.000Z

    The Physical and Toxic Agents Division of the Mine Safety and Health Administration`s Pittsburgh Safety and Health Technology Center has conducted three joint noise control demonstrations at dry milling operations. These demonstrations were conducted on a rod mill, a roller mill, and a ball mill, in order to survey a representative sample of the more commonly utilized types of milling equipment. The noise control concept that was demonstrated involved the construction of partial enclosures surrounding the mills and then adding acoustical materials within the enclosures to absorb the build up of acoustical energy. The results of this work illustrate the feasibility of this concept, the physical principle of creating an acoustical shadow, and the ability to closely predict the amount of absorptive material required to reduce the noise levels so as to comply with the Code of Federal Regulations (CFR), Title 30.

  1. Fossil Communities of the Borden (Mississippian) Delta in Indiana and Northern William I. Ausich; Thomas W. Kammer; N. Gary Lane

    E-Print Network [OSTI]

    Kammer, Thomas

    in delta platform, delta slope, and prodeltaic environments. Isopach maps of the New Providence Shale and total Borden Group indicate that two distinct lobes of the delta existed in Indiana. The delta platform primarily of large brachiopods (Orthotetes,Syringothyris) that could remain fixed in position on unstable

  2. Increased Ischemic Cardiac Deaths in Central Indiana in Summer Months Compared to Winter Months Shannon Cook1

    E-Print Network [OSTI]

    Zhou, Yaoqi

    of death in the United States for several decades. Despite sustained declines in the mortality rates fromIncreased Ischemic Cardiac Deaths in Central Indiana in Summer Months Compared to Winter Months that the risk increases even in warm climates. Analyzing death certificates in seven regions with different

  3. Mining Unexpected SequentialMining Unexpected SequentialMining Unexpected SequentialMining Unexpected Sequential Patterns and Implication RulesPatterns and Implication RulesPatterns and Implication RulesPatterns and Implication Rules

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mining Unexpected SequentialMining Unexpected SequentialMining Unexpected SequentialMining RulesPatterns and Implication Rules Dong (Haoyuan) Li LGI2P, École des Mines d'Alès, France Anne Laurent ABSTRACT As common criteria in data mining methods, the frequency-based interestingness measures provide

  4. AS A MINING ENGINEER Mining provides the raw materials and energy resources needed to sustain modern civilization. Mining Engineers

    E-Print Network [OSTI]

    Simons, Jack

    AS A MINING ENGINEER Mining provides the raw materials and energy resources needed to sustain modern civilization. Mining Engineers are trained to determine the safest most sustainable way to remove for energy and mineral resources. The average American consumes approximately 45,000 pounds of minerals

  5. ECML TextMining Workshop, Chemnitz, 1998 Evaluation of four clustering methods used in text mining

    E-Print Network [OSTI]

    Turenne, Nicolas

    ECML TextMining Workshop, Chemnitz, 1998 Evaluation of four clustering methods used in text mining according the real-world. Keywords: conceptual clustering ; data mining ; knowledge structuration an acute need in concept extraction and text mining. The paper presents an evaluation of four clustering

  6. Generic Pattern Mining via Data Mining Template Library Nilanjana De, Feng Gao, Paolo Palmerini

    E-Print Network [OSTI]

    Bystroff, Chris

    Generic Pattern Mining via Data Mining Template Library Nilanjana De, Feng Gao, Paolo Palmerini Department, Rensselaer Polytechnic Institute, Troy NY 12180 Abstract Frequent Pattern Mining (FPM) is a very powerful paradigm for mining informative and use- ful patterns in massive, complex datasets. In this paper

  7. Mercury Contamination from Hydraulic Placer-Gold Mining in the Dutch Flat Mining

    E-Print Network [OSTI]

    179 Mercury Contamination from Hydraulic Placer-Gold Mining in the Dutch Flat Mining District at historic gold mining sites represents a potential risk to human health and the environment. Elemental mercury (quicksilver) was used extensively for the recovery of gold at both placer and hardrock mines

  8. Data Mining Research: Opportunities and Challenges Data Mining Research: Opportunities and Challenges

    E-Print Network [OSTI]

    Grossman, Robert

    Data Mining Research: Opportunities and Challenges 1 Data Mining Research: Opportunities and Challenges A Report of three NSF Workshops on Mining Large, Massive, and Distributed Data* Robert Grossman, 1997 and February, 1998 to discuss the current state of the art of data mining and data intensive

  9. LLM Oil, Gas and Mining Law Module Information: Oil, Gas & Mining Environmental Law I and

    E-Print Network [OSTI]

    Evans, Paul

    LLM Oil, Gas and Mining Law Module Information: Oil, Gas & Mining Environmental Law I and Oil, Gas of the area of Oil, Gas &, Mining Environmental Law; 2. communicate complex legal concepts that apply within the area of Oil, Gas & Mining & Environmental Law to a high level of competence; and 3. deploy a highly

  10. "MINE YOUR OWN BUSINESS": USING PROCESS MINING TO TURN BIG DATA INTO REAL VALUE

    E-Print Network [OSTI]

    van der Aalst, Wil

    "MINE YOUR OWN BUSINESS": USING PROCESS MINING TO TURN BIG DATA INTO REAL VALUE Van der Aalst, Wil is to turn event data into valuable insights. Only process mining techniques directly relate event data-oriented analysis techniques (e.g., data mining and machines learning) typically focus on simple classification

  11. NU-MineBench: Understanding the Performance and Scalability Characteristics of Data Mining Algorithms

    E-Print Network [OSTI]

    Choudhary, Alok

    NU-MineBench: Understanding the Performance and Scalability Characteristics of Data Mining Clara. CA - 95052 pradeep.dubey@intel.com Abstract Data mining has become one of the most essential and distributed systems have provided abundant venues for improving the performance of data mining algorithms

  12. Data Analysis and Mining at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mining Data Analysis and Mining microCTdani.jpg Data analysis techniques include post-processing (e.g., data statistics) of experimental datasets andor simulation output, as well...

  13. Oil, Gas, and Mining Leases (Nebraska)

    Broader source: Energy.gov [DOE]

    This section contains rules on oil, gas, and mining leases, and grants authority to the State of Nebraska and local governments to issue leases for oil and gas mining and exploration on their lands.

  14. South Carolina Mining Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The South Carolina Mining Act seeks to offer the greatest practical degree of protection and restoration to usefulness, productivity, and scenic values of all SC lands and waters involved in mining...

  15. Data Mining and Knowledge Discovery: Practice Notes

    E-Print Network [OSTI]

    Novak, Petra Kralj

    1 Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si and exam · 2013/1/15: Written exam, seminar proposal discussion · 2013/2/12: Data mining seminar

  16. Data Mining and Knowledge Discovery: Practice Notes

    E-Print Network [OSTI]

    Novak, Petra Kralj

    1 Data Mining and Knowledge Discovery: Practice Notes Petra Kralj Novak Petra.Kralj.Novak@ijs.si on Weka 3: Descriptive data mining ­ Discussion about seminars and exam · 2013/12/16: Written exam

  17. Presentations from the 1992 Coal Mining Impoundment Informational Meeting

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    On May 20 and 21, 1992, the MSHA Coal Mining Impoundment Informational Meeting was held at the National Mine Health and Safety Academy in Beckley, West Virginia. Fifteen presentations were given on key issues involved in the design and construction of dams associated with coal mining. The attendees were told that to improve the consistency among the plan reviewers, engineers from the Denver and Pittsburgh Technical Support Centers meet twice annually to discuss specific technical issues. It was soon discovered that the topics being discussed needed to be shared with anyone involved with coal waste dam design, construction, or inspection. The only way to accomplish that goal was through the issuance of Procedure Instruction Letters. The Letters present a consensus of engineering philosophy that could change over time. They do not present policy or carry the force of law. Currently, thirteen position papers have been disseminated and more will follow as the need arises. The individual paper were not even entered into the database.

  18. Current issues (and problems) in uranium mine and mill site remediation

    SciTech Connect (OSTI)

    Quarch, H. [DSR GmbH, Saarbruecken (Germany); Kuhlmann, J.; Zettwoog, P. [CERTAC, Auffargis (France)

    1994-12-31T23:59:59.000Z

    The environmental impact of the mining and milling of uranium ores is similar to that of traditional metal mining with the added factor of the characteristic radioactivity in uranium ores. Residues of these ores therefore generate specific potential hazards requiring special precautions on a site specific basis, as well as special regulatory procedures and controls to ensure protection of public health and safety in the long term. There are strong indications that on a global scale U-mining tailings management and remediation-activities are steadily becoming governed by the ultimate goal of sustainable stabilization and re-establishment of a healthy environment, rather than by immediate or short term needs. In Central Europe rehabilitation of uranium mining and milling districts has only started. Some problems are listed as follows: (1) Limitation, long term control and prediction of aquatic and atmospheric dispersal of contaminants from tailings impoundments, waste rock dumps and abandoned underground mines, (2) Dewatering of tailings (large volumes), (3) Design of cover systems and inhibition of microbian process, (4) Controlled flooding of extensive underground mine workings and related prognosis and control of containment dispersion, (5) Reduction of Rn-exhalation during the flooding process and after mine abandonment, in particular in areas close to densely populated regions, (6) Determination of long term radiological impacts on residents near sources of contamination and identification of natural background levels, (7) Identification of critical containment pathways that remain active, (8) Conception and implementation of a comprehensive monitoring system for all pathways which would operate on a long term basis, (9) Limitation of mine water drainage to be treated and decontaminated and of resulting sludges (in considerable quantities) to be disposed of and which would have to be classified as hazardous waste in the future due to their radionuclide content.

  19. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    2001-04-01T23:59:59.000Z

    This report represents the sixth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the White Meadow Mine site, after amended specifications were prepared and continued negotiations took place with the Property Owner, the property ownership was transferred during the reporting period. As a result in the change in property ownership, the remediation project was then to be done by the new Property Owner out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort. At the Green Pond Mine site at the Township Compost Storage Facility, no additional field work was undertaken during this reporting period subsequent to the previous completion of the geophysical survey. With the termination of the White Meadow Mine project, work began toward development of a remedial design for the Green Pond Mines.

  20. TWRS safety program plan

    SciTech Connect (OSTI)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their location in the organization.

  1. A Survey on Mining Software Survey Presentation

    E-Print Network [OSTI]

    Bae, Doo-Hwan

    ­ Effort Estimation ­ Mining Aspects · Papers at a glance · Related Workshop · Available Resources of mining software archives to support, ­ the maintenance of software systems, ­ improve software designA Survey on Mining Software Archives Survey Presentation Jin Ung, Oh ­ 2007.07.11 #12;Contents

  2. Institut Mines-Tlcom EPOC : Energy Proportional

    E-Print Network [OSTI]

    Lefèvre, Laurent

    ? ? Renewable energy #12;Institut Mines-Télécom29/11/13 Green@Days Lille 28-29 Novembre 2013 Problem 5 time Workload Renewable energy ? ? regular electric #12;Institut Mines-Télécom29/11/13 Green@Days Lille 28Institut Mines-Télécom EPOC : Energy Proportional and Opportunistic Computing system 1 Labex Comin

  3. Error Mining on Dependency Trees Claire Gardent

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Error Mining on Dependency Trees Claire Gardent CNRS, LORIA, UMR 7503 Vandoeuvre-l`es-Nancy, F-l`es-Nancy, F-54600, France shashi.narayan@loria.fr Abstract In recent years, error mining approaches were propose an algorithm for mining trees and ap- ply it to detect the most likely sources of gen- eration

  4. ICPSR Summer Program, 2014 Data Mining

    E-Print Network [OSTI]

    Stine, Robert A.

    ICPSR Summer Program, 2014 Data Mining Tools for Exploring Big Data Robert Stine Department of Statistics Wharton School, University of Pennsylvania www-stat.wharton.upenn.edu/~stine Modern data mining a contribution. Rather than build a model that relates one or two experimental results to a response, data mining

  5. Proof Mining in Practice Philipp Gerhardy

    E-Print Network [OSTI]

    Gerhardy, Philipp

    Proof Mining in Practice Philipp Gerhardy April 14, 2008 Abstract In this paper, we present some aspects of a recent application of proof mining by J.Avigad, H.Towsner and the author. In this case study for the ergodic averages. Proof mining generally falls into two main categories: Establishing general metatheorems

  6. of Mining & www.mge.arizona.edu

    E-Print Network [OSTI]

    Holliday, Vance T.

    Department of Mining & Geological www.mge.arizona.edu EXPAND Tel: 520.621.6063 Fax: 520.621.8330 mgedept@email.arizona.edu YOUR CAREER ONLINE GRADUATE CERTIFICATE PROGRAM 15 UNITS MINE PRODUCTION & TECHNOLOGY #12;Department of Mining & Geological Engineering Contact: Sean Dessureault dessure

  7. Database Transposition for Constrained (Closed) Pattern Mining

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Database Transposition for Constrained (Closed) Pattern Mining Baptiste Jeudy1 and Fran¸cois Rioult-Normandie, France. francois.rioult@info.unicaen.fr Abstract. Recently, different works proposed a new way to mine). In this case, mining the "transposed" database runs through a smaller search space, and the Ga- lois connection

  8. Du Data Mining l'Apprentissage Statistique

    E-Print Network [OSTI]

    Besse, Philippe

    Du Data Mining à l'Apprentissage Statistique Philippe Besse Contenu : 1. Introduction 2. Risque et graphiques des scénarios Formation L'Oréal : 28 / 03 / 2014 #12;Introduction au data mining Apprentissage Mining Introduction Philippe Besse & B´eatrice Laurent INSA de Toulouse Institut de Math´ematiques INSA

  9. Data Mining for Scientific & Engineering Applications

    E-Print Network [OSTI]

    Kumar, Vipin

    Data Mining for Scientific & Engineering Applications Robert Grossman, Laboratory for Advanced Kumar, Army High Performance Research Center, University of Minnesota #12;Chapter 10 ­ Data Mining. Grossman, C. Kamath, V. Kumar Data Mining for Scientific and Engineering Applications Ch 10/ 3 Goals

  10. ICPSR Summer Program, 2013 Data Mining

    E-Print Network [OSTI]

    Stine, Robert A.

    ICPSR Summer Program, 2013 Data Mining Tools for Exploring Big Data Robert Stine Department of Statistics Wharton School, University of Pennsylvania www-stat.wharton.upenn.edu/~stine Modern data mining a contribution. Rather than build a model that relates one or two experimental results to a response, data mining

  11. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: May 11 (Geophysics) On Original Copies Dr. Terence K. Young Professor and Head Department of Geophysics Approved

  12. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: May 10 (Geophysics). Golden, Colorado Date May 15, 2006 Signed: on original copy Jeongmin Lee Signed: on original

  13. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: September fulfillment of the requirements for the degree of Master of Science (Geophysics). Golden, Colorado Date

  14. Mining Binary Expressions: Applications and Toon Calders

    E-Print Network [OSTI]

    Antwerpen, Universiteit

    ,pareda}@uia.ua.ac.be Technical report TR0008, June 2000 Abstract In data mining, searching for frequent patterns is a common exponentially large, we use data mining techniques to avoid expo- nential execution times. We present results of the number of partial orders 22 B Example run of the algorithm 24 2 #12;1 Introduction In data mining

  15. Massively Parallel Data Mining Using Reconfigurable Hardware

    E-Print Network [OSTI]

    Chamberlain, Roger

    ]. The basic idea is to decompose the data mining oper- ation into two components. The low-level componentMassively Parallel Data Mining Using Reconfigurable Hardware: Approximate String Matching Qiong. Chamberlain, Ronald S. Indeck, Benjamin West, and Jason White, "Massively Parallel Data Mining Using

  16. ZART: A Multifunctional Itemset Mining Algorithm

    E-Print Network [OSTI]

    Boyer, Edmond

    independent, multi-purposed data mining platform, incorporating a rich collection of data mining algorithms, allowing a number of auxiliary operations for preparing and filtering data, and, for interpreting in data mining today. Generating strong association rules from frequent itemsets often results in a huge

  17. Mine roof geology information system

    SciTech Connect (OSTI)

    Peng, S.S.; Sasaoka, T.; Tang, D.X.; Wilson, Y.; Wilson, G.

    2005-05-01T23:59:59.000Z

    A project sponsored by the US Department of Energy under the Industry of Future (Mining) program was initiated five years ago. In this project a patented drill control unit (DCU) installed DIN. the J.H. Flecher & Co.'s roof bolter was used to record the drilling parameter for experiments conducted in the mines and laboratory. Today, the drilling parameters have been recorded for more than 1,000 roof bolt holes. This article summarizes the results to date including the methods for determining quantitatively the location of voids/fractures and estimation of roof rock strength from the recorded roof bolter drilling parameters. 8 figs., 2 tabs.

  18. Stratigraphy, structure, and zonation of large Silurian reef at Delphi, Indiana

    SciTech Connect (OSTI)

    Archer, A.W.; Bottjer, D.J.; Droste, J.B.; Horowitz, A.S.; Kelly, S.M.; Krisher, D.L.; Shaver, R.H.

    1980-01-01T23:59:59.000Z

    A Silurian reef complex at Delphi, Indiana, consists of two subcircular reefs occupying an area of about 4 sq mi (10.6 sq km). The reef is more than 400 ft (62 m) thick, has a volume of about 0.15 cu mi (0.64 cu km), and effected as much as 75 ft (23 m) of compaction-induced drape in the overlying Middle Devonian strata. Stratigraphically, the complex extends upward from Salamonie (Middle Silurian) into Salina rocks (Upper Silurian). Growth of the complex proceeded through alternating periods of lateral expansion and restriction as reflected in the cross-sectional geometry of at least one of the reefs. These growth characteristics probably reflect the conditions that led to cyclic deposition of carbonate and evaporite rocks in the Michigan basin during Middle to Late Silurian time. Present dips along reef flanks locally exceed 35/sup 0/ but structural and stratigraphic analyses suggest that original depositional slopes may have been more gentle, that reef tops were never appreciably more than 200 ft (60 m) above the seafloor (although reef thicknesses of several hundred feet were attained before erosion), and that the central parts of the main reef masses were occupied by relatively rigid and volumetrically litle changing structural cores. Biozones include: two central areas of highest organic-framework buildup characterized by corals and stromatoporoids and flanking zones characterized separately by echinodermal and other debris, pentamerid brachiopods, gastropods, and fine debris and chert. The zonal distribution is similar to that already proposed for the large Silurian reef at Monon, Indiana, and somewhat resembles that proposed for the reef at Thornton, Illinois. These similarities and the fact of zonation in itself help to support the conclusion that the often debated Silurian buildups in the Great Lakes area satisfy all but the most rigid definitions of ecologic (organic-framework) reefs. 8 figures, 1 table.

  19. Modeled atmospheric radon concentrations from uranium mines

    SciTech Connect (OSTI)

    Droppo, J.G.

    1985-04-01T23:59:59.000Z

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  20. Nuclear Safety Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of...

  1. Speedy backfilling for old mines

    SciTech Connect (OSTI)

    Dyni, R.C. (Bureau of Mines, Philadelphia, PA (United States)); Burnett, M. (Burnett Associates, Inc., Farmingham, MA (United States))

    1993-09-01T23:59:59.000Z

    This article describes pneumatic equipment that can help fill the underground voids left by abandoned coal mines that threaten nearly half a million acres of densely populated urban areas in the US alone. In 1910, when coal was king in northeastern Pennsylvania, engineers built a 600 ft cut-and-cover tunnel to transport coal from a mine entrance to a rail siding in the town of Vandling. In December 1992, engineers filled it up. The tunnel, known as the Hillside Coal and Iron Slope, had been well designed and constructed. Where it crossed under a main road, the roof was reinforced by three concrete columns--protection against loads from trolley cars whose rails shared the road. In October 1991, a hole opened up in one of the town's roads, and a subsidence complaint brought investigators from the US Department of the Interior's Office of Surface Mining (OSM) in Wilkes Barre, Pa. The tunnel, which passes directly underneath several of Vandling's residential streets as well as State Highway 171, was declared a potential hazard. The OSM engineers decided that complete backfilling was necessary to support the tunnel roof. After remediating the original subsidence hole, they contacted the US Bureau of Mines and offered the tunnel as a field demonstration site for two new pneumatic backfilling devices. The demonstration, a success, completely filled the tunnel in only 23 working days.

  2. Robot to the Mine Rescue

    Broader source: Energy.gov [DOE]

    To increase the speed of rescue efforts, scientists and engineers at the Energy Department’s Sandia National Laboratories recently developed a new robot, called the Gemini-Scout Mine Rescue Robot, that quickly finds dangers and provides relief to trapped miners.

  3. Corner-cutting mining assembly

    DOE Patents [OSTI]

    Bradley, J.A.

    1981-07-01T23:59:59.000Z

    This invention resulted from a contract with the United States Department of Energy and relates to a mining tool. More particularly, the invention relates to an assembly capable of drilling a hole having a square cross-sectional shape with radiused corners. In mining operations in which conventional auger-type drills are used to form a series of parallel, cylindrical holes in a coal seam, a large amount of coal remains in place in the seam because the shape of the holes leaves thick webs between the holes. A higher percentage of coal can be mined from a seam by a means capable of drilling holes having a substantially square cross section. It is an object of this invention to provide an improved mining apparatus by means of which the amount of coal recovered from a seam deposit can be increased. Another object of the invention is to provide a drilling assembly which cuts corners in a hole having a circular cross section. These objects and other advantages are attained by a preferred embodiment of the invention.

  4. Corner-cutting mining assembly

    DOE Patents [OSTI]

    Bradley, John A. (San Antonio, TX)

    1983-01-01T23:59:59.000Z

    A mining assembly includes a primary rotary cutter mounted on one end of a support shaft and four secondary rotary cutters carried on the same support shaft and positioned behind the primary cutters for cutting corners in the hole cut by the latter.

  5. Mining into the new millennium

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-06-15T23:59:59.000Z

    After more than 3 years of production and a billion tons of coal shipped, Foundation Coal West, a subsidiary of Foundation Coal Holding Inc., continues to operate two of the original surface mines in Wyoming's Powder River Basin. The article describes equipment (conveyors, trucks, surface miners etc.) deployed at Belle Ayr and Eagle Butte PRB operations. 3 photos.

  6. Data Mining: Concepts and Techniques

    E-Print Network [OSTI]

    Geldenhuys, Jaco

    1 Data Mining: Concepts and Techniques (3rd ed.) -- Chapter 3 -- Jiawei Han, Micheline Kamber. All rights reserved. #12;2013/08/12 2 #12;33 Chapter 3: Data Preprocessing n Data Preprocessing: An Overview n Data Quality n Major Tasks in Data Preprocessing n Data Cleaning n Data Integration n Data

  7. Semi autonomous mine detection system

    SciTech Connect (OSTI)

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01T23:59:59.000Z

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.

  8. Mining Scientific Data Naren Ramakrishnan

    E-Print Network [OSTI]

    Southern California, University of

    -scale data repositories. Advances in networking technology have en- abled communication of large volumesMining Scientific Data Naren Ramakrishnan Department of Computer Science Virginia Tech, VA 24061 rapid advances in high performance computing and tools for data acquisition in a variety of scientific

  9. Image Mining: Detecting Deforestation Patterns

    E-Print Network [OSTI]

    Camara, Gilberto

    54 Chapter IV Image Mining: Detecting Deforestation Patterns Through Satellites Marcelino Pereira to analyze satellite images and extract knowledge from this kind of data. The Amazonia deforestation problem of change on deforested areas of Amazonia. The purpose of the authors is to present relevant technologies

  10. Magnetic Field Safety Magnetic Field Safety

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

  11. Indiana Humanities Council Request for the Indianapolis Energy Conversion Inst. For Phase I of the Indianapolis Energy Conservation Res Initiative also called the smartDESKTOP Initiative

    SciTech Connect (OSTI)

    John B. Keller

    2007-12-06T23:59:59.000Z

    The smartDESKTOP Initiative at the Indiana Humanities Council received critical support in building and delivering a â??digital desktopâ? for Indiana educators through the Department of Energy Grantâ??DE-FG02-06ER64282. During the project period September 2006 through October of 2007, the number of Indiana educators with accounts on the smartDESKTOP more than tripled from under 2,000 to more than 7,000 accounts. An external review of the project conducted for the purposes of understanding the impact of the service in Indiana schools revealed that the majority of respondents felt that using the smartDESKTOP did reduce the time they spent managing paper. The same study revealed the challenges of implementing a digital desktop meant to help teachers leverage technology to improve their teaching and ultimately student learning. The most significant outcome of this project is that the Indiana Department of Education expressed interest in assuming responsibility for sustaining this project. The transition of the smartDESKTOP to the Indiana Department of Education was effective on November 1, 2007.

  12. Bureau of mines cost estimating system handbook (in two parts). 1. Surface and underground mining

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The handbook provides a convenient costing procedure based on the summation of the costs for unit processes required in any particular mining or mineral processing operation. The costing handbook consists of a series of costing sections, each corresponding to a specific mining unit process. Contained within each section is the methodology to estimate either the capital or operating cost for that unit process. The unit process sections may be used to generate, in January 1984 dollars, costs through the use of either costing curves or formulae representing the prevailing technology. Coverage for surface mining includes dredging, quarrying, strip mining, and open pit mining. The underground mining includes individual development sections for drifting, raising, shaft sinking, stope development, various mining methods, underground mine haulage, general plant, and underground mine administrative cost.

  13. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  14. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  15. Pipeline Safety Rule (Tennessee)

    Broader source: Energy.gov [DOE]

    The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

  16. Dam Safety Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Dam Safety Division within the Department of the Environment is responsible for administering a dam safety program to regulate the construction, operation, and maintenance of dams to prevent...

  17. Dam Safety (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety,...

  18. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  19. DOE handbook electrical safety

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  20. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  1. Department of Environmental Health & Safety Emergency Management

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Management Fire & Life Safety Industrial Hygiene Laboratory Safety Occupational & General Safety Management Environmental Management Fire & Life Safety Industrial Hygiene Laboratory Safety Occupational Values A Note from the Director Environmental Management Fire & Life Safety Lab Safety & Industrial

  2. Environmental Health & Safety

    E-Print Network [OSTI]

    Environmental Health & Safety Sub Department Name 480 Oak Rd, Stanford, CA 94305 T 650.723.0448 F 650.725.3468 DEPUTY DIRECTOR, ENVIRONMENTAL HEALTH AND SAFETY Exempt, Full-Time (100% FTE) Posted May 1, 2014 The Department of Environmental Health and Safety (EH&S) at Stanford University seeks

  3. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    Report of Earth Sciences Departmental Safety Committee 2011 - 12 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

  4. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    Report of Earth Sciences Departmental Safety Committee 2012 - 13 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

  5. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg

    2003-12-01T23:59:59.000Z

    This report represents the thirteenth Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this semi annual reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township's Jacobs Road Compost Storage Facility, construction was completed during this reporting period and surface monitoring began. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort.

  6. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TONWSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg

    2003-02-01T23:59:59.000Z

    This report represents the tenth Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government-Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township Compost Storage Facility, engineering continued during this reporting period toward development of the Construction Plans and Technical Specifications for the remediation work. At the Mt. Hope Road subsidence, surface monitoring was conducted periodically at the work area and adjacent areas after the January 2000 construction effort.

  7. September 2013 Laboratory Safety Manual Section 7 -Safety Training

    E-Print Network [OSTI]

    Wilcock, William

    September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

  8. A quantitative analysis of health, safety and environment policy in France

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A quantitative analysis of health, safety and environment policy in France Thomas Audiffrena , Jean-Marc Rallob , Franck Guarnieria , Christophe Martina a Mines ParisTech, Center for Research on Risks was introduced in France to regulate the role of occupational risk prevention specialists (OHS professionals

  9. Center for Intermodal Transportation Safety

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Center for Intermodal Transportation Safety and Security Panagiotis Scarlatos, Ph.D., Director Transportation Safety and Security #12;Center for Intermodal Transportation Safety and Security Partners #12 evacuations · Tracking systems for hazardous materials Center for Intermodal Transportation Safety

  10. Safety Manual Prepared by the

    E-Print Network [OSTI]

    Alpay, S. Pamir

    -3113 Emergency maintenance to report a water leak, electrical outage, non-working fume hood, etc. after normal Radiation and Laser Safety 19 Laser Safety 21 Compressed Gas and Cryogenic Safety 22 Electrical Safety 24

  11. The Remediation of Abandoned Iron Ore Mine Subsidence in Rockaway Township, New Jersey

    SciTech Connect (OSTI)

    Gartenberg, Gary; Poff, Gregory

    2010-06-30T23:59:59.000Z

    This report represents the twenty-seventh and Final Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this last reporting period ending June 30, 2010 and a summary of the work accomplished since the agreement inception in 1997. This report is issued as part of the project reporting provisions set forth in the Cooperatorâ??s Agreement between the United States Government - Department of Energy, and Rockaway Township. The purpose of the Cooperatorâ??s Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800â??s, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Townshipâ??s Jacobs Road Compost Storage Facility, surface monitoring continued after completion of construction in September 2003. Surface monitoring was conducted periodically at the Mt. Hope Road subsidence work area and adjacent areas after the January 2000 construction effort. In March 2007, a seventh collapse occurred over a portion of the White Meadow Mine in a public roadway at the intersection of Iowa and Erie Avenues in Rockaway Township. After test drilling, this portion of the mine was remediated by drilling and grouting the stopes.

  12. Sandia National Laboratories: Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Testing Phenomenological Modeling Risk and Safety Assessment Cyber-Based Vulnerability Assessments Uncertainty Analysis Transportation Safety Fire Science Human...

  13. SAND AND GRAVEL MINING IN COLORADO RIPARIAN HABITATS

    E-Print Network [OSTI]

    Reclamation Specialist Colorado Division of Mined Land Reclamation 723 Centennial Building 1313 Sherman Reclamation Board (MLRB) administers the Colo rado Mined Land Reclamation Act of 1976. This law requires types of mining including sand and gravel mining. The Mined Land Reclamation Division (MLRD

  14. Total safety: A new safety culture to integrate nuclear safety and operational safety

    SciTech Connect (OSTI)

    Saji, G. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Murphy, G.A. [ed.

    1991-07-01T23:59:59.000Z

    The creation of a complete and thorough safety culture is proposed for the purpose of providing additional assurance about nuclear safety and improving the performance of nuclear power plants. The safety philosophy developed a combination of the former hardware-oriented nuclear safety approach and recent operational safety concepts. The improvement of the latter, after TMI-2 and Chernobyl, has been proven very effective in reducing the total risk associated with nuclear power plants. The first part of this article introduces a {open_quotes}total safety{close_quotes} concept. This extends the concept of {open_quotes}nuclear safety{close_quotes} and makes it closer to the public perception of safety. This concept is defined by means of a taxonomy of total safety. The second part of the article shows that total safety can be achieved by integrating it into a modern quality assurance (QA) system since it is tailored to make implementation into a framework of QA easier. The author believes that the outstanding success experienced by various industries as a result of introducing the modern QA system should lead to its application for ensuring the safety and performance of nuclear facilities. 15 refs., 3 figs.

  15. Data mining and visualization techniques

    DOE Patents [OSTI]

    Wong, Pak Chung (Richland, WA); Whitney, Paul (Richland, WA); Thomas, Jim (Richland, WA)

    2004-03-23T23:59:59.000Z

    Disclosed are association rule identification and visualization methods, systems, and apparatus. An association rule in data mining is an implication of the form X.fwdarw.Y where X is a set of antecedent items and Y is the consequent item. A unique visualization technique that provides multiple antecedent, consequent, confidence, and support information is disclosed to facilitate better presentation of large quantities of complex association rules.

  16. ITP Mining: Energy and Environmental Profile of the U.S. Mining...

    Broader source: Energy.gov (indexed) [DOE]

    Virtually all ore was concentrated before shipment. Nine mines operated by five companies accounted for 99 percent of production. 1 4.1.1.1 Surface Mining When the iron...

  17. Autonomy and operator-assistance technologies optimize mining processes and mining equipment operation.

    E-Print Network [OSTI]

    Gupta, Abhinav

    operation. · Drills, miners and shearers are guided with laser precision for maximum extraction from the ore#12;· Autonomy and operator-assistance technologies optimize mining processes and mining equipment

  18. Legacy of historic mining and water quality in a heavily mined Scottish river catchment 

    E-Print Network [OSTI]

    Haunch, Simon

    2013-11-28T23:59:59.000Z

    Mine abandonment and the discharge of contaminated mine water is recognised globally as a major source of surface water and groundwater pollution. Contamination generally arises from the oxidation of sulphide minerals, ...

  19. Coal bunkers in underground mines

    SciTech Connect (OSTI)

    Polak, J.; Zegzulka, J. [VSB-Technical Univ., Ostrava (Czech Republic)

    1996-12-31T23:59:59.000Z

    In spite of the technical progress in the application of face technological equipment, the fluctuation of its output has been still considerable. A coal clearance system can be on one hand overloaded by production peaks and on the other hand its stoppages unfavorably influence production of faces. It has been proved that the most effective coal conveying system incorporates surge bunkers to eliminate the above mentioned problems. The surge bunkers have been used in the Czech mines since the middle of the sixties. There were 17 bunkers with an average capacity of 200 m{sup 3} in the biggest Czech coal mine basin OKD in 1967. Presently the number of bunkers has increased to 66 with a total capacity of 40,000 m{sup 3}. It represents the possibility of storing 56% of the daily OKD running of mine output. Two thirds of the number are gate bunkers with an average capacity of 540 m{sup 3} and the rest are skip ones with an average capacity of 740 m{sup 3}, situated at the shaft side.

  20. Colorado School of Mines Graduate Bulletin 1999-2000 1 School of Mines

    E-Print Network [OSTI]

    is for your use as a source of continuing reference. Please save it. Published by Colorado School of Mines

  1. Enhancing the safety of tailings management facilities

    SciTech Connect (OSTI)

    Meggyes, T.; Niederleithinger, E.; Witt, K.J.; Csovari, M.; Kreft-Burman, K.; Engels, J.; McDonald, C.; Roehl, K.E. [BAM, Berlin (Germany). Federal Institute for Material Research & Testing

    2008-07-01T23:59:59.000Z

    Unsafe tailings management facilities (TMFs) have caused serious accidents in Europe threatening human health/life and the environment. While advanced design, construction and management procedures are available, their implementation requires greater emphasis. An integrated research project funded by the European Union was carried out between 2002 and 2005 with the overall goal of improving the safety of TMFs (Sustainable Improvement in Safety of Tailings Facilities - TAILSAFE, http://www.tailsafe.com/). The objective of TAILSAFE was to develop and apply methods of parameter evaluation and measurement for the assessment and improvement of the safety state of tailings facilities, with particular attention to the stability of tailings dams and slurries, the special risks inherent when such materials include toxic or hazardous wastes, and authorization and management procedures for tailings facilities. Aspects of tailings facilities design, water management and slurry transport, non-destructive and minimally intrusive testing methods, monitoring and the application of sensors, intervention and remediation options were considered in TAILSAFE. A risk reduction framework (the TAILSAFE Parameter Framework) was established to contribute to the avoidance of catastrophic accidents and hazards from tailings facilities. Tailings from the mining and primary processing of metals, minerals and coal were included within the scope of TAILSAFE. The project focused on the avoidance of hazards by developing procedures and methods for investigating and improving the stability of tailings dams and tailings bodies.

  2. Intelligent Simulation Tools for Mining Large Scienti c Data Sets 1 Intelligent Simulation Tools for Mining

    E-Print Network [OSTI]

    Bailey-Kellogg, Chris

    Intelligent Simulation Tools for Mining Large Scienti#12;c Data Sets 1 Intelligent Simulation Tools for Mining Large Scienti#12;c Data Sets Feng ZHAO Xerox Palo Alto Research Center 3333 Coyote Hill Road, Palo. Keywords Intelligent simulation, Scienti#12;c data mining, Qualitative reasoning, Reasoning about physical

  3. LLM Oil, Gas and Mining Law Module Information: Oil, Gas and Mining Investment Law I and

    E-Print Network [OSTI]

    Evans, Paul

    LLM Oil, Gas and Mining Law Module Information: Oil, Gas and Mining Investment Law I and Oil, Gas and Mining Investment Law II Overview & Aims: This core module aims to introduce students to the political economy background as well as the international legal framework for transnational foreign investment

  4. CHEN, LOY, GONG, XIANG: FEATURE MINING FOR LOCALISED CROWD COUNTING 1 Feature Mining for Localised Crowd

    E-Print Network [OSTI]

    Gong, Shaogang

    CHEN, LOY, GONG, XIANG: FEATURE MINING FOR LOCALISED CROWD COUNTING 1 Feature Mining for Localised Crowd Counting Ke Chen1 cory@eecs.qmul.ac.uk Chen Change Loy2 ccloy@visionsemantics.com Shaogang Gong1 in print or electronic forms. #12;2 CHEN, LOY, GONG, XIANG: FEATURE MINING FOR LOCALISED CROWD COUNTING

  5. Data Mining: Concepts and TechniquesFebruary 19, 2008 1 Data Mining

    E-Print Network [OSTI]

    Raghavan, Vijay

    Data Mining: Concepts and TechniquesFebruary 19, 2008 1 Data Mining: Concepts and Techniques.cs.uiuc.edu/~hanj ©2006 Jiawei Han and Micheline Kamber, All rights reserved #12;Data Mining: Concepts and TechniquesFebruary 19, 2008 2 Chapter 2: Data Preprocessing Why preprocess the data? Descriptive data summarization

  6. Climate VISION: Private Sector Initiatives: Mining: Resources...

    Office of Scientific and Technical Information (OSTI)

    Technical Information Publications Case Studies Publications The Mining Industry Climate Action Plan (MICAP) (PDF 308 KB) Download Acrobat Reader MICAP focuses on carbon dioxide...

  7. Climate VISION: Private Sector Initiatives: Mining: Resources...

    Office of Scientific and Technical Information (OSTI)

    Outreach Program (CMOP) is a voluntary program aimed at reducing methane emissions from coal mining activities. Our mission is to promote the profitable recovery and use of coal...

  8. Climate VISION: Private Sector Initiatives: Mining: Resources...

    Office of Scientific and Technical Information (OSTI)

    process on the most significant and timely issues that impact our ability to locate, permit, mine, process, transport, and utilize the nation's vast coal and mineral resources...

  9. Climate VISION: Private Sector Initiatives: Mining: Technology...

    Office of Scientific and Technical Information (OSTI)

    Technology Pathways As part of the mining vision process, industry develops technology roadmaps to identify critical pathways for the R&D needed to reach their goals. These...

  10. College of Engineering MNG Mining Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    (Concurrent), PHY 232, engineering standing. MNG 302 MINERALS PROCESSING LABORATORY. (1) ApplicationCollege of Engineering MNG Mining Engineering KEY: # = new course * = course changed = course ENGINEERING. (1) Orientationtotheminingengineeringprofession

  11. Interstate Mining Compact Commission (multi-state)

    Broader source: Energy.gov [DOE]

    The Interstate Mining Compact is a multi-state governmental agency / organization that represents the natural resource and related environmental protection interests of its member states. Currently...

  12. Equipment Selection for Surface Mining: A Review

    E-Print Network [OSTI]

    Christina Burt

    2013-04-16T23:59:59.000Z

    Apr 16, 2013 ... Abstract: One of the challenging problems for surface mining operation optimization is choosing the optimal truck and loader fleet. This problem ...

  13. The LSST Data Mining Research Agenda

    E-Print Network [OSTI]

    K. D. Borne; J. Becla; I. Davidson; A. Szalay; J. A. Tyson

    2008-11-02T23:59:59.000Z

    We describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night); multi-resolution methods for exploration of petascale databases; indexing of multi-attribute multi-dimensional astronomical databases (beyond spatial indexing) for rapid querying of petabyte databases; and more.

  14. Mining, Using and Maintaining Source Statistics for Adaptive Data Integration

    E-Print Network [OSTI]

    Kambhampati, Subbarao

    -Objective Optimization, Statistics Mining, Incremental Maintenance 1. INTRODUCTION The availability of structuredMining, Using and Maintaining Source Statistics for Adaptive Data Integration Jianchun Fan a framework for effectively mining multiple types of statistics including source coverage statistics, inter

  15. Text mining for user perspectives on the physical workplace

    E-Print Network [OSTI]

    Goins, John; Moezzi, Mithra

    2011-01-01T23:59:59.000Z

    Goins, John (2011) 'Text mining for occupant perspectives onGoins, John (2011) 'Text mining for occupant perspectives onGoins, John (2011) 'Text mining for occupant perspectives on

  16. Integrated network construction using event based text mining

    E-Print Network [OSTI]

    Gent, Universiteit

    Integrated network construction using event based text mining Yvan Saeys, Sofie Van Landeghem numerous interactions between biological entities. Text mining techniques have been increasingly useful mining in the systems biology field has been restricted mostly to the discovery of protein

  17. Data Mining and Internet Profiling: Emerging Regulatory and Technological Approaches

    E-Print Network [OSTI]

    Schwartz, Paul M.; Lee, Ronald D.; Rubinstein, Ira

    2008-01-01T23:59:59.000Z

    of consensus safeguards around government data mining tocommercial data mining, the extent and speed of ad- funded2/19/2008 3:00:00 PM Data Mining and Internet Profiling:

  18. Shared State for Distributed Interactive Data Mining Applications

    E-Print Network [OSTI]

    Dwarkadas, Sandhya

    Shared State for Distributed Interactive Data Mining Applications #3; Srinivasan Parthasarathy, 2001 Abstract Distributed data mining applications involving user interaction are now fea- sible due and eval- uates a system for sharing state among such interactive distributed data mining applications

  19. Data Mining for Improving Health-Care Resource Deployment

    E-Print Network [OSTI]

    He, Nannan

    2014-01-01T23:59:59.000Z

    a comparison of three data mining methods. ArtificialE. F. (2011). Data Mining:Practical Machine Learning ToolsHan, M. K. (2012). Data Mining:Concepts and Techiniques.

  20. Planning for Mining Operations with Time and Resource Constraints

    E-Print Network [OSTI]

    Nir Lipovetzky

    2014-02-05T23:59:59.000Z

    Feb 5, 2014 ... Abstract: We study a daily mine planning problem where, given a set of blocks we wish to mine, our task is to generate a mining sequence for ...

  1. Software Escalation Prediction with Data Mining Tilmann Bruckhaus

    E-Print Network [OSTI]

    Ling, Charles X.

    Software Escalation Prediction with Data Mining Tilmann Bruckhaus Customer Network Services Sun (EP) is to avoid such escalations from known product defects using data mining technology [1, 2 is then augmented within the SPSS Clementine data-mining

  2. Health-hazard evaluation report HETA 90-223-2211, Thomson Consumer Electronics, Marion, Indiana

    SciTech Connect (OSTI)

    Lenhart, S.W.; Driscoll, R.

    1992-05-01T23:59:59.000Z

    In response to a request from the Corporate Medical Consultant to Thomson Consumer Electronics (SIC-3673), Marion, Indiana, a study was undertaken of an illness outbreak in workers at the facility. There were about 1900 workers at the facility, which produced television picture tubes. Production occurred over three shifts, 6 days a week. Charcoal tube sampling indicated the presence of acetone (67641) n-amyl-acetate (628637), n-butyl-acetate (123864), isoamyl-acetate (123922), toluene (108883), 1,1,1-trichloroethane (71556), and trichloroethylene (79016). No contaminants were detected in the bag samples of air collected from the in/house compressed air system. One or more symptoms were reported by 593 (82%) of the workers. Those most commonly reported included headache (68%), sore throat (53%), fatigue (51%), eye irritation (50%), itchy skin (47%), irritated nose (45%), dizziness (45%), unusual taste in mouth (45%), unusual smell (41%) and cough. The authors conclude that symptoms were consistent with stress related health complaints in occupational settings. Concentrations of chemicals measured in the facility would not be expected to produce the effects seen in the outbreak. The authors recommend that trichloroethylene degreasing units be replaced with equipment which uses a less toxic degreasing agent. The facility should hire a full time industrial hygienist.

  3. CURRENT STATUS AND RECLAMATION PLAN OF FORMER URANIUM MINING AND MILLING FACILITIES AT NINGYO-TOGE IN JAPAN

    SciTech Connect (OSTI)

    Sato, Kazuhiko; Tokizawa, Takayuki

    2003-02-27T23:59:59.000Z

    The Japan Nuclear Cycle Development Institute (JNC) conducted research and development projects on uranium exploration in Japan from 1956 to 1987. Several mine facilities, such as waste rock yards and a mill tailing pond, were retained around Ningyo-toge after the projects ended. Although there is no legal issue in the mine in accordance with related law and agreements at present, JNC has a notion that it is important to reduce the burden of waste management on future generations. Thus, the Ningyo-toge Environmental Engineering Center of JNC proposed a reclamation plan for these facilities with fundamental policy, an example of safety analysis and timetables. The plan has mainly three phases: Phase I is the planning stage, and this paper corresponds to this: Phase II is the stage to perform various tests for safety analysis and site designing: Phase III is the stage to accomplish measures. Preliminarily safety analyses suggested that our supposed cover designs for both waste rock and m ill tailing are enough to keep dose limit of 1mSv/y at site boundaries. The plan is primarily based on the Japanese Mine Safety Law, also refers to ICRP recommendations, IAEA reports, measures implemented overseas, etc. because this is the first case in Japan. For the accomplishment of this plan, it is important to establish a close relationship with local communities and governments, and to maintain a policy of open-to-public.

  4. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  5. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  6. american mining congress: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAS and OSU Business Analytics Certificate Program Veiga, Pedro Manuel Barbosa 185 Mining Subsidence Monitoring CiteSeer Summary: Compared to opencut mining, underground...

  7. Virginia Coal Surface Mining Control and Reclamation Act (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation implements the federal Surface Mining Control and Reclamation Act and establishes a statewide regulatory program for reclamation following coal surface mining activities. The...

  8. Modeling the Process of Mining Silicon Through a Single Displacement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling the Process of Mining Silicon Through a Single DisplacementRedox Reaction Modeling the Process of Mining Silicon Through a Single DisplacementRedox Reaction Below is...

  9. Emissions and Durability of Underground Mining Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given at...

  10. Reclamation of Land Used for Mineral Mining (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation aims to provide for the rehabilitation and conservation of land affected by the mining of minerals through proper planning, proper use of appropriate methods of mining,...

  11. Copper isotope fractionation in acid mine drainage. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in acid mine drainage. Abstract: We surveyed the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed located in...

  12. australian mining industry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Globalization is placing new demands on today's metals, mining and forest and paper companies - especially 95 Energy Research Data mining algorithms and software...

  13. abandoned lignite mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  14. abandoned metal mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  15. abandoned coal mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  16. australian coal mining: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  17. abandoned anthracite mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  18. african coal mining: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  19. abandoned underground mines: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

  20. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15T23:59:59.000Z

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

  1. Dam Safety Program (Florida)

    Broader source: Energy.gov [DOE]

    Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

  2. Battery Safety Testing

    Broader source: Energy.gov (indexed) [DOE]

    Battery Safety Testing Christopher J. Orendorff, Leigh Anna M. Steele, Josh Lamb, and Scott Spangler Sandia National Laboratories 2014 Energy Storage Annual Merit Review...

  3. BNL | ATF Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be continuously escorted by someone who has such training: The training consists of an eye exam, BNL general laser safety lecture, and formal ATF laser familiarization. Untrained...

  4. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06T23:59:59.000Z

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  5. Safety Hazards of Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the...

  6. Pipeline Safety (Maryland)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

  7. Intrastate Pipeline Safety (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the...

  8. Pipeline Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

  9. Gas Safety Law (Florida)

    Broader source: Energy.gov [DOE]

    This law authorizes the establishment of rules and regulations covering the design, fabrication, installation, inspection, testing and safety standards for installation, operation and maintenance...

  10. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  11. Controlling Silver Dust and Fumes at Mine Refinery

    E-Print Network [OSTI]

    R. A. Haney; M. P. Valoski

    ABSTRACT: As part of the refining of gold and silver molten metal, silver dust and fumes are released into the atmosphere. The Mine Safety and Health Administration (MSHA) enforces an 8-hour, equivalent Time Weighted Average concentration limit for silver dust and fumes of 10 µg/m 3. MSHA initiated a program to assess the controls that were being used to control silver dust and fume exposure. Refineries were visited at six mines. The layout of each refinery and the controls used varied at each refinery. At each operation, personal and area silver fume and dust samples were collected to assess worker exposures and to determine sources of fume. Primary source of silver dust and fume exposure was the pouring of molten metal from the furnace. Secondary sources of exposure included: precipitate mixing, bar cooling, and housekeeping. Guidelines were developed addressing housekeeping, exhaust ventilation, general ventilation, administrative controls, and system monitoring. In most cases, housekeeping and general ventilation were adequate; however, the exhaust ventilation systems needed to be improved. 1 INRODUCTION Silver dust and fumes become airborne during the refining step of producing gold and silver. The dust

  12. THE REMEDIATION OF ABANDONED IRON ORE MINE SUBSIDENCE IN ROCKAWAY TOWNSHIP, NEW JERSEY

    SciTech Connect (OSTI)

    Gary Gartenberg, P.E., P.P.

    2001-04-01T23:59:59.000Z

    This report represents the seventh Semi-Annual Technical Progress Report issued in connection with the subsidence remediation projects undertaken by Rockaway Township in Morris County, New Jersey. This report provides a summary of the major project work accomplished during this reporting period and contemplated for the subsequent reporting period. This report is issued as part of the project reporting provisions set forth in the Cooperators Agreement between the United States Government--Department of Energy, and Rockaway Township. The purpose of the Cooperators Agreement is for the Department of Energy to provide technical and financial assistance in a coordinated effort with Rockaway Township to develop and implement a multi-phased plan to remediate ground stability problems associated with abandoned mining activity. Primarily during the 1800's, extensive iron ore mining and prospecting was undertaken in Rockaway Township, part of the Dover District Mining region in Morris County. The abandoned mining activity has resulted in public safety hazards associated with ground collapse and surface subsidence features evolving in both developed and undeveloped areas within Rockaway Township. At the Green Pond Mine site at the Township Compost Storage Facility, research and preliminary design was performed during this reporting period toward development of the engineering plans and Technical Specifications for the remediation work. At the White Meadow Mine site, the remediation project was conducted last reporting period by others, out of the responsibility of Rockaway Township under this Cooperators Agreement. At the Mt. Hope Road subsidence, surface monitoring was conducted at the work area and adjacent areas after the January 2000 construction effort.

  13. Data mining for ontology development.

    SciTech Connect (OSTI)

    Davidson, George S.; Strasburg, Jana (Pacific Northwest National Laboratory, Richland, WA); Stampf, David (Brookhaven National Laboratory, Upton, NY); Neymotin,Lev (Brookhaven National Laboratory, Upton, NY); Czajkowski, Carl (Brookhaven National Laboratory, Upton, NY); Shine, Eugene (Savannah River National Laboratory, Aiken, SC); Bollinger, James (Savannah River National Laboratory, Aiken, SC); Ghosh, Vinita (Brookhaven National Laboratory, Upton, NY); Sorokine, Alexandre (Oak Ridge National Laboratory, Oak Ridge, TN); Ferrell, Regina (Oak Ridge National Laboratory, Oak Ridge, TN); Ward, Richard (Oak Ridge National Laboratory, Oak Ridge, TN); Schoenwald, David Alan

    2010-06-01T23:59:59.000Z

    A multi-laboratory ontology construction effort during the summer and fall of 2009 prototyped an ontology for counterfeit semiconductor manufacturing. This effort included an ontology development team and an ontology validation methods team. Here the third team of the Ontology Project, the Data Analysis (DA) team reports on their approaches, the tools they used, and results for mining literature for terminology pertinent to counterfeit semiconductor manufacturing. A discussion of the value of ontology-based analysis is presented, with insights drawn from other ontology-based methods regularly used in the analysis of genomic experiments. Finally, suggestions for future work are offered.

  14. Towards Generic Pattern Mining (Extended Abstract)

    E-Print Network [OSTI]

    Zaki, Mohammed Javeed

    Award DE-FG02-02ER25538, and NSF grants EIA-0103708 and EMT-0432098. We thank Paolo Palmerini and Jeevan computations using a tightly coupled database (DBMS) approach. One of the main attractions of a generic are persistent and indexed, this means the mining can be done efficiently over massive databases, and mined

  15. Principles for Mining Summaries: Theorems and Proofs

    E-Print Network [OSTI]

    Regina, University of

    Principles for Mining Summaries: Theorems and Proofs Robert J. Hilderman and Howard J. Hamilton,hamiltong@cs.uregina.ca Abstract An important problem in the area of data mining is the development of effective measures of inter previously been utilized in various disciplines, such as information theory, statis­ tics, ecology

  16. Department of Geophysics Colorado School of Mines

    E-Print Network [OSTI]

    Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics;#12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of the requirements for the degree of Master of Science (Geophysics). Golden, Colorado Date: April 14, 2005 Signed

  17. WEB MINING: A ROADMAP Magdalini Eirinaki

    E-Print Network [OSTI]

    Eirinaki, Magdalini

    1 WEB MINING: A ROADMAP Magdalini Eirinaki Dept. of Informatics Athens University of Economics and Business CHAPTER 1 Introduction ­ The three axes of Web Mining 1.1 WWW Impact The World Wide Web, has grown of the Web content, the creation of some meta- knowledge out of the information which is available on the Web

  18. Mining Helium programs with Neon Jurriaan Hage

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Mining Helium programs with Neon Jurriaan Hage Peter van Keeken Department of Information in a first-year functional programming course using the Helium compiler. The mining of such a collection to resolve a type error. 1 #12;1 Introduction and motivation When the Helium compiler for learning Haskell

  19. Data Mining and Knowledge Discovery: Practice Notes

    E-Print Network [OSTI]

    Novak, Petra Kralj

    1 Data Mining and Knowledge Discovery: Practice Notes dr. Petra Kralj Novak Petra.Kralj.Novak@ijs.si and exam · 2013/12/16: Written exam, seminar proposal discussion · 2014/1/8: Data mining seminar gain becomes the root 7. Divide the set S into subsets Si according to the values of A 8. Repeat steps

  20. ANALYSIS OF MINING EXPLOSION PERFORMANCE WITH MULTIPLE

    E-Print Network [OSTI]

    Stump, Brian W.

    Limitations of Video Data · Effect of Blast Design on Near-Source Seismograms · Different Types of Cast Blasts of Models in Visualization ß Two-Dimensional Blast Model ß Three-Dimensional Blast Models 3. Applications to Different Types of Mining Explosions · Single Shot · Cast Blast · Coal Fragmentation #12;Analysis of Mining

  1. Mining Protein Contact Maps Jingjing Hu

    E-Print Network [OSTI]

    Bystroff, Chris

    Mining Protein Contact Maps Jingjing Hu , Xiaolan Shen , Yu Shao ¡ , Chris Bystroff matrix of pairwise, inter-residue contacts, or "contact map". The contact map provides a host of use- ful information about the protein's structure. In this paper we de- scribe how data mining can be used to extract

  2. The Neon DSEL for mining Helium programs

    E-Print Network [OSTI]

    Utrecht, Universiteit

    studies We consider three case studies to illustrate how Neon can be used to data mine the collectionThe Neon DSEL for mining Helium programs Jurriaan Hage Peter van Keeken Department of Information and Computing Sciences, Utrecht University Technical Report UU-CS-2007-023 www.cs.uu.nl ISSN: 0924-3275 #12

  3. Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety

    E-Print Network [OSTI]

    Machel, Hans

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk all connections and fittings prior to start of anesthesia. Carefully pour Isoflurane from Environmental Health & Safety before re-entering the laboratory. REFERENCES 1. Procedure

  4. Sandia Energy - Risk and Safety Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk and Safety Assessment Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Risk and Safety AssessmentTara...

  5. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  6. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change, Safety, The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety,...

  7. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Cancels DOE P 411.1, DOE P 441.1, DOE P 450.2A, DOE P 450.4, and DOE P 450.7

  8. SECURITY AND FIRE SAFETY

    E-Print Network [OSTI]

    Barrash, Warren

    ANNUAL SECURITY AND FIRE SAFETY REPORT 2014 #12;2 Boise State University 2014 Annual Security and Fire Safety Report From the Vice President for Campus Operations and General Counsel At Boise State University, we are committed to providing a safe and secure environment for students, staff

  9. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  10. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21T23:59:59.000Z

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

  11. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  12. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16T23:59:59.000Z

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  13. Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University

    SciTech Connect (OSTI)

    Luo, Tianhuan; /Indiana U.

    2011-08-01T23:59:59.000Z

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  14. Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety

    E-Print Network [OSTI]

    Machel, Hans

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk (most common ­ personal hygiene very important); d) storage ­ leaks; and e) waste ­ storage and disposal

  15. Effectiveness of cabs for dust and silica control on mobile mining equipment

    SciTech Connect (OSTI)

    Garcia, J.J.; Gresh, R.E.; Gareis, M.B.; Haney, R.A.

    1999-07-01T23:59:59.000Z

    The Mine Safety and Health Administration (MSHA) has conducted a study to evaluate the effectiveness of cabs for controlling silica dust exposure during operation of mobile mining equipment. This study focused on bulldozers, front-end loaders and haul trucks, was conducted at surface coal mining operations and underground metal and nonmetal mining operations. Each piece of equipment tested was equipped with a cab. The vehicles sampled were from a range of manufacturers having different types of filter media and air intake configurations. The purpose of this study was to determine the reduction of dust and silica exposure that could be achieved through the use of a well-maintained cab. For each piece of equipment, dust and silica concentrations inside and outside the cab were determined and compared. In some cases, filtration efficiencies could be calculated. A properly designed environmental cab is sealed, has an intake air filtration system, and a heating and cooling system. Cabs should have good seals around the doors and windows. Factors such as cab pressurization filtration systems, filter media, and maintenance practices were also examined. In some cases, dust and silica reduction of 90 to 95% were observed.

  16. New Frontiers from the Mine

    E-Print Network [OSTI]

    Wong, Pak Kin

    . . . . . . . . . . . . 43 Improving our understanding of the global mineral resource inventory Promoting health and safety ethics courses for mineral resources students and professionals. Often mineral resources people experts around the globe we tackle these and other challenges: The J. David Lowell Institute for Mineral

  17. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  18. CRAD, Facility Safety- Technical Safety Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Technical Safety Requirments (TSA).

  19. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 Psychiatric Institute Radiation Safety Office (Please complete this form within 24 hours and send a copy to your supervisor and The Radiation Safety Office) Your Name

  20. Normalization of Process Safety Metrics

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...