Sample records for minimum oxygen content

  1. Microbial metatranscriptomics in a permanent marine oxygen minimum zone

    E-Print Network [OSTI]

    Stewart, Frank J.

    Simultaneous characterization of taxonomic composition, metabolic gene content and gene expression in marine oxygen minimum zones (OMZs) has potential to broaden perspectives on the microbial and biogeochemical dynamics ...

  2. Microbial oceanography of anoxic oxygen minimum zones

    E-Print Network [OSTI]

    Ulloa, Osvaldo

    Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, ...

  3. Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (7001100 m)

    E-Print Network [OSTI]

    Levin, Lisa

    Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen increased animal activity associated with increasing bottom-water oxygen concentration. We examined faunal community responses to oxygen and organic matter gradients across the lower oxygen minimum zone (OMZ

  4. Changes in the Ventilation of the Oxygen Minimum Zone of the Tropical North Atlantic

    E-Print Network [OSTI]

    Changes in the Ventilation of the Oxygen Minimum Zone of the Tropical North Atlantic PETER BRANDT) ABSTRACT Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual

  5. From Fjords to Open Seas: Ecological Genomics of Expanding Oxygen Minimum Zones (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Hallam, Steven

    2011-04-26T23:59:59.000Z

    Steven Hallam of the University of British Columbia talks "From Fjords to Open Seas: Ecological Genomics of Expanding Oxygen Minimum Zones" on March 24, 2010 at the 5th Annual DOE JGI User Meeting

  6. Boundaries of the Peruvian Oxygen Minimum Zone shaped by coherent mesoscale dynamics

    E-Print Network [OSTI]

    Bettencourt, João H; García, Emilio Hernández; Montes, Ivonne; Sudre, Joël; Dewitte, Boris; Paulmier, Aurélien; Garçon, Véronique

    2015-01-01T23:59:59.000Z

    Dissolved oxygen in sea water is a major factor affecting marine habitats and biogeochemical cycles. Oceanic zones with oxygen deficits represent significant portions of the area and volume of the oceans and are thought to be expanding. The Peruvian oxygen minimum zone is one of the most pronounced and lies in a region of strong mesoscale activity in the form of vortices and frontal regions, whose effect in the dynamics of the oxygen minimum zone is largely unknown. Here, we study this issue from a modeling approach and a Lagrangian point of view, using a coupled physical-biogeochemical simulation of the Peruvian oxygen minimum zone and finite-size Lyapunov exponent fields to understand the link between mesoscale dynamics and oxygen variations. Our results show that, at depths between 380 and 600 meters, mesoscale structures have a relevant dual role. First, their mean positions and paths delimit and maintain the oxygen minimum zone boundaries. Second, their high frequency fluctuations entrain oxygen across t...

  7. Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile

    E-Print Network [OSTI]

    Dalsgaard, Tage

    A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O[subscript 2] and the sensitivity of the anaerobic N[subscript 2]-producing processes of anammox ...

  8. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

    SciTech Connect (OSTI)

    Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Hallam, Steven J.

    2014-08-05T23:59:59.000Z

    Oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified marine waters. Currently OMZs are expanding due to global climate change. This expansion alters marine ecosystem function and the productivity of fisheries due to habitat compression and changes in biogeochemical cycling leading to fixed nitrogen loss and greenhouse gas production. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally anoxic fjord, Saanich Inlet to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification and inorganic carbon fixation predominantly co-varied with abundance and distribution patterns of Thaumarchaeota, Nitrospira, Planctomycetes and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Within these groups, pathways mediating inorganic carbon fixation and nitrogen and sulfur transformations were differentially expressed across the redoxcline. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters and denitrification, sulfur-oxidation and inorganic carbon fixation pathways affiliated with SUP05 dominated suboxic and anoxic waters. Nitrite-oxidation and anammox pathways affiliated with Nitrospina and Planctomycetes respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The differential expression of these pathways under changing water column redox conditions has quantitative implications for coupled biogeochemical cycling linking different modes of inorganic carbon fixation with distributed nitrogen and sulfur-based energy metabolism extensible to coastal and open ocean OMZs.

  9. Trace and rare earth elemental variation in Arabian sea sediments through a transect across the oxygen minimum zone

    SciTech Connect (OSTI)

    Nath, B.N.; Rao, B.R.; Rao, C.M. [National Institute of Oceanography, Goa (India); Bau, M. [GeoForschungsZentrum Potsdam (Germany)

    1997-06-01T23:59:59.000Z

    We have determined the calcium carbonate (CaCO{sub 3}), organic carbon (C{sub org}), trace element, and rare earth element (REE) composition of surface sediments collected from a transect on the central western continental shelf and slope of India in the Eastern Arabian Sea. The transect samples across the oxygen minimum zone (OMZ) allows us to compare the relative abundances of trace elements and REEs in the sediments beneath and beyond the OMZ. Shale-normalized REE patterns, La{sub n}/Yb{sub n} ratios, and Eu/Eu* anamolies indicate that the sediments in the study area are either derived from the adjoining Archaean land masses or from distal Indus source. Sediment deposited in the OMZ have high U values from 3.6 to 8.1 ppm, with their U{sub excess} (of that can be supplied by continental particles) values ranging between 82-91% of the total U, indicating that the U may be precipitated as U{sup +4} in the reducing conditions of OMZ. Sediments deposited beneath the intense OMZ (<0.2 mL/L) and away from the OMZ (1-2 mL/L) show slight negative Ce anomalies, with no significant differences between these two sets of sediments. The Ce/Ce*{sub shale} values are poorly related to U and C{sub org} which are indicators of suboxic bottom waters. Normative calculations suggest that two sources, namely, terrestrial and seawater (terrestrial > seawater) contribute to the total Ce anomaly of the sediments. The Ce anomaly values of the calculated seawater derived component are similar to the anomalies reported for other coastal waters and the oxygenated surface waters of the Arabian Sea and do not show any correspondence to the lowered redox state of the overlying water, probably due to the redirection of dissolved Ce into the oxic deeper water. 103 refs., 6 figs., 3 tabs.

  10. Oxygen enhanced switching to combustion of lower rank fuels

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool III, Lawrence E.; Wu, Kuang Tsai

    2004-03-02T23:59:59.000Z

    A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.

  11. SOLAS Mid Term Strategy Initiative "Air-sea gas fluxes at Eastern boundary upwelling and Oxygen Minimum Zone (OMZ) systems"

    E-Print Network [OSTI]

    1 SOLAS Mid Term Strategy Initiative "Air-sea gas fluxes at Eastern boundary upwelling and Oxygen Lachkar, ETH Zurich, Suisse Parv Suntharalingam, UEA, UK Martin Hernandez Ayon, UABC, Mexico +of course of SOLAS and to the Workshop Véronique Garçon 09:50 Surface (energy and water) fluxes at the air

  12. Oxygen isotope content of CO2 in nocturnal ecosystem respiration: 1. Observations in forests along a precipitation transect in Oregon,

    E-Print Network [OSTI]

    Ehleringer, Jim

    in the vapor pressure deficit of air that caused isotopic enrichment of soil and leaf water. The enriched soil to evaporative enrichment overshadowed the original isotopic composition of precipitation as a first orderOxygen isotope content of CO2 in nocturnal ecosystem respiration: 1. Observations in forests along

  13. ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL, TUNING AND SENSITIVITY

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    ESTIMATION OF ETHANOL CONTENT IN FLEX-FUEL VEHICLES USING AN EXHAUST GAS OXYGEN SENSOR: MODEL periods of intense interest in using ethanol as an alternative fuel to petroleum-based gasoline and diesel derivatives. Currently available flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol

  14. Oxygen isotope content of CO2 in nocturnal ecosystem respiration: 2. Short-term dynamics of foliar and soil component fluxes in an

    E-Print Network [OSTI]

    Ehleringer, Jim

    Oxygen isotope content of CO2 in nocturnal ecosystem respiration: 2. Short-term dynamics of foliar; accepted 29 October 2003; published 23 December 2003. [1] The oxygen isotope contents (d18 O) of soil showed enrichment over a 2-week sampling period as the weather became hot and dry (leaves 0.9 to 15

  15. The contribution of Oxygen-Neon white dwarfs to the MACHO content of the Galactic Halo

    E-Print Network [OSTI]

    J. Camacho; S. Torres; J. Isern; L. G. Althaus; E. Garcia-Berro

    2007-06-18T23:59:59.000Z

    The interpretation of microlensing results towards the Large Magellanic Cloud (LMC) still remains controversial. White dwarfs have been proposed to explain these results and, hence, to contribute significantly to the mass budget of our Galaxy. However, several constraints on the role played by regular carbon-oxygen white dwarfs exist. Massivewhite dwarfs are thought to be made of a mixture of oxygen and neon. Correspondingly, their cooling rate is larger than those of typical carbon-oxygen white dwarfs and they fade to invisibility in short timescales. Consequently, they constitute a good candidate for explaining the microlensing results. Here, we examine in detail this hypothesis by using the most recent and up-to-date cooling tracks for massive white dwarfs and a Monte Carlo simulator which takes into account the most relevant Galactic inputs. We find that oxygen-neon white dwarfs cannot account for a substantial fraction of the microlensing depth towards the LMC, independently of the adopted initial mass function, although some microlensing events could be due to oxygen--neon white dwarfs. The white dwarf population contributes at most a 5% to the mass of the Galactic halo.

  16. This is a preprint of the following article, which is available from http://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published

    E-Print Network [OSTI]

    Papalambros, Panos

    ://mdolab.engin.umich.edu/content/ multidisciplinary-design-optimization-offshore-wind-turbines-minimum-levelized-cost-energy. The published article.A.M. van Kuik. Multidisciplinary Design Optimization of Offshore Wind Turbines for Minimum Levelized Cost of Energy. Renewable Energy (In press), 2014 Multidisciplinary Design Optimization of Offshore Wind Turbines

  17. Standard Test Method for Oxygen Content Using a 14-MeV Neutron Activation and Direct-Counting Technique

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01T23:59:59.000Z

    1.1 This test method covers the measurement of oxygen concentration in almost any matrix by using a 14-MeV neutron activation and direct-counting technique. Essentially, the same system may be used to determine oxygen concentrations ranging from over 50 % to about 10 g/g, or less, depending on the sample size and available 14-MeV neutron fluence rates. Note 1 - The range of analysis may be extended by using higher neutron fluence rates, larger samples, and higher counting efficiency detectors. 1.2 This test method may be used on either solid or liquid samples, provided that they can be made to conform in size, shape, and macroscopic density during irradiation and counting to a standard sample of known oxygen content. Several variants of this method have been described in the technical literature. A monograph is available which provides a comprehensive description of the principles of activation analysis using a neutron generator (1). 1.3 The values stated in either SI or inch-pound units are to be regarded...

  18. The effect of interface oxygen content on magnetoelectric effect of epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/BaTiO{sub 3} bilayer

    SciTech Connect (OSTI)

    Tingxian, Li, E-mail: wxlltx@126.com [College of Physics and Electrical Engineering, Anyang Normal University, Anyang 455002 (China); Kuoshe, Li [National Engineering Research Central for Rare Earth Materials, General Research Institute for Nonferrous Metals, The Grirem Advanced materials Co. Ltd., Beijing 100088 (China)

    2014-01-28T23:59:59.000Z

    The epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/BaTiO{sub 3} (LSMO/BTO) bilayer films are grown on (001) oriented LaAlO{sub 3} substrate by pulsed laser deposition technique. The oxygen-rich interface is obtained through in-situ annealing process in oxygen, and the oxygen-deficient interface is obtained without the annealing process. The results show that the ferromagnetic properties of the LSMO film and the magnetoelectric effect (ME) of the bilayer films strongly correlate to the oxygen content at the interface of LSMO/BTO. The saturated magnetization and the ME voltage coefficient of the oxygen-rich bilayer film are higher than that of oxygen-deficient one. It suggests a more effective ME coupling at the LSMO/BTO interface, which are generated through not only the interface strain but also the spin polarized carriers.

  19. Study of optical properties of asymmetric bipolar pulse DC magnetron sputtered Ta{sub 2}O{sub 5} thin film as a function of oxygen content in deposition ambient

    SciTech Connect (OSTI)

    Haque, S. Maidul, E-mail: skmaidulhaque@gmail.com; Shinde, D. D., E-mail: skmaidulhaque@gmail.com; Misal, J. S., E-mail: skmaidulhaque@gmail.com [Photonics and Nano-technology Section, Atomic and Molecular Physics Division, BARC, Visakhapatnam-530012 (India); Bhattacharyya, D.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24T23:59:59.000Z

    Tantalum penta-oxide thin films have been deposited by reactive sputtering technique using asymmetric bipolar pulsed DC source at various oxygen percentage viz. 0 to 50 %. The optical properties of the films have been studied by spectroscopic ellipsometry measurements. It has been observed that compact films with low void fraction, high refractive index and band gap can be obtained by the above technique with oxygen percentage in the range of 30–40%. The films deposited with zero or very low oxygen content have high deposition rate and yield metal rich films with large voids, defects, low band gap and high refractive index. Similarly films deposited with >40% oxygen content again contain voids and defects due to the presence of large amount of gas molecules in the sputtering ambient.

  20. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, William H. (Danville, CA)

    1986-01-01T23:59:59.000Z

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  1. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, W.H.

    1984-05-08T23:59:59.000Z

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  2. The Minimum Price Contract

    E-Print Network [OSTI]

    Waller, Mark L.; Amosson, Stephen H.; Welch, Mark; Dhuyvetter, Kevin C.

    2008-10-17T23:59:59.000Z

    , he can Mark Waller, Steve Amosson, Mark Welch, and Kevin Dhuyvetter* 2 lock in a floor price and still have upside poten- tial if the market rallies. Options-based marketing strategies, such as the minimum price contract, work well in times...

  3. Oxygen enhanced switching to combustion of lower rank fuels ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhanced switching to combustion of lower rank fuels Re-direct Destination: A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum...

  4. Oxygen: From Environment to Genes. The periodic occurrence of oxygen minima can powerfully influence organisms living in near

    E-Print Network [OSTI]

    Oxygen: From Environment to Genes. The periodic occurrence of oxygen minima can powerfully to the winter of 2014. Their scholarly work is presented in this collection. #12;1 Oxygen: From Environment", 2013, 2014 Table of contents Page 2. Laura Lilly - Low-oxygen formation along the California current. 6

  5. Ocean oxygen minima expansions and their biological impacts Lothar Stramma a,, Sunke Schmidtko a,b

    E-Print Network [OSTI]

    Levin, Lisa

    Ocean oxygen minima expansions and their biological impacts Lothar Stramma a,Ã, Sunke Schmidtko a Keywords: Deoxygenation Oxygen minimum zones Ecosystem changes Hypoxia Tropical ocean Tropical Atlantic dissolved oxygen with global warming. In coastal regimes oxygen deficits represent acute ecosystem

  6. Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1996-01-01T23:59:59.000Z

    fuel and oxygenates (ethanol, MTBE, ETBE) emissions and onmeasured effects of MTBE, ETBE, and ethanol content on

  7. MINIMUM SECURITY REQUIREMENTS FOR FEDERAL

    E-Print Network [OSTI]

    March 2006 MINIMUM SECURITY REQUIREMENTS FOR FEDERAL INFORMATION AND INFORMATION SYSTEMS: FEDERAL INFORMATION PROCESSING STANDARD (FIPS) 200 APPROVED BY THE SECRETARY OF COMMERCE MINIMUM SECURITY REQUIREMENTS BY THE SECRETARY OF COMMERCE Shirley Radack, EditorShirley Radack, Editor Computer Security Division

  8. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    SciTech Connect (OSTI)

    Stevenson, J.W.; Armstrong, B.L.; Armstrong, T.R.; Bates, J.L.; Pederson, L.R.; Weber, W.J.

    1995-05-01T23:59:59.000Z

    Solid mixed-conducting electrolytes in the series La{sub l-x}A{sub x}Co{sub l-y}Fe{sub y}O{sub 3-{delta}} (A = Sr,Ca,Ba) are potentially useful as passive membranes to separate high purity oxygen from air and as cathodes in fuel cells. All of the compositions studied exhibited very high electrical conductivities. At lower temperatures, conductivities increased with increasing temperature, characterized by activation energies of 0.05 to 0.16 eV that are consistent with a small polaron (localized electronic carrier) conduction mechanism. At higher temperatures, electronic conductivities tended to decrease with increasing temperature, which is attributed to decreased electronic carrier populations associated with lattice oxygen loss. Oxygen ion conductivities were higher than that of yttria stabilized zirconia and increased with the cobalt content and also increased with the extent of divalent A-site substitution. Thermogravimetric studies were conducted to establish the extent of oxygen vacancy formation as a function of temperature, oxygen partial pressure, and composition. These vacancy populations strongly depend on the extent of A-site substitution. Passive oxygen permeation rates were established for each of the compositions as a function of temperature and oxygen partial pressure gradient. For 2.5 mm thick membranes in an oxygen vs nitrogen partial pressure gradient, oxygen fluxes at 900 C ranged from approximately 0.3 sccm/cm{sup 2} for compositions high in iron and with low amounts of strontium A-site substitution to approximately 0.8 sccm/cm{sup 2} for compositions high in cobalt and strontium. A-site substitution with calcium instead of strontium resulted in substantially lower fluxes.

  9. Declining Oxygen in the Northeast Pacific* STEPHEN D. PIERCE, JOHN A. BARTH, R. KIPP SHEARMAN, AND ANATOLI Y. EROFEEV

    E-Print Network [OSTI]

    Pierce, Stephen

    Declining Oxygen in the Northeast Pacific* STEPHEN D. PIERCE, JOHN A. BARTH, R. KIPP SHEARMAN a decrease in oceanic dissolved oxygen and a thickening of the oxygen minimum zone, associated with global warming. Comprehensive observational analyses of oxygen decline are chal- lenging, given generally sparse

  10. Minimum Stream Flow Standards (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations apply to all dams and structures which impound or divert waters on rivers or their tributaries, with some exceptions. The regulations set standards for minimum flow (listed in the...

  11. Minimum Gas Service Standards (Ohio)

    Broader source: Energy.gov [DOE]

    Natural gas companies in Ohio are required to follow the Minimum Gas Service Standards, which are set and enforced by the Public Utilities Commission of Ohio. These rules are found in chapter 4901...

  12. Ordering and oxygen content effects in YBa sub 2 (Cu sub 1 minus x Fe sub x ) sub 3 O sub 7 samples observed by high-temperature Moessbauer spectroscopy

    SciTech Connect (OSTI)

    Saitovitch, E.B.; Scorzelli, R.B.; Azevedo, I.S.; dos Santos, C.A. (Centro Brasileiro de Pesquisas F isicas, Rua Dr. Xavier Sigaud, 150, 22290, Rio de Janeiro-RJ, Brasil (BR))

    1990-05-01T23:59:59.000Z

    We report here {ital in} {ital situ} high-temperature {sup 57}Fe Moessbauer measurements on YBa{sub 2}(Cu{sub 1{minus}{ital x}}Fe{sub {ital x}}){sub 3}O{sub 7} samples in controlled oxygen atmosphere, in air, or in vacuum. In these conditions, fundamental information can be obtained related to the thermal stability of the different Fe species, as well as the mechanism of oxygen loss.

  13. Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans, macrofauna and megafauna

    E-Print Network [OSTI]

    Levin, Lisa

    Faunal responses to oxygen gradients on the Pakistan margin: A comparison of foraminiferans Oxygen minimum zone Benthos Arabian Sea Biodiversity Deep sea a b s t r a c t The Pakistan Margin where oxygen levels were lowest. The rarity of larger animals between 300 and 700 m on the Pakistan

  14. Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon cycling

    E-Print Network [OSTI]

    Oxygen as a control on seafloor biological communities and their roles in sedimentary carbon experiments were conducted at sites spanning the steep oxygen, organic matter, and biological community gradients across the Arabian Sea oxygen minimum zone, in order to quantify the role that fauna play

  15. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31T23:59:59.000Z

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    YOPR40MBBLD","WEPOOXEYOPR50MBBLD" "Date","Weekly U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels per Day)","Weekly East Coast (PADD 1) Oxygenate Plant...

  17. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30T23:59:59.000Z

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  18. GMTI radar minimum detectable velocity.

    SciTech Connect (OSTI)

    Richards, John Alfred

    2011-04-01T23:59:59.000Z

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  19. Investigation of a minimum energy Earth-Mars trajectory

    E-Print Network [OSTI]

    Brown, Richard Emett

    1967-01-01T23:59:59.000Z

    INVESTIGATION OF A MINIMUM ENERGY EARTH-MARS TRAJECTORY A Thesis by Richard Emmett grown Submitted to the Graduate Co11ege of the Texas ASM University in partia1 fulfi11ment of the requirements for the degree of MASTER OF SCIENCE May 1967... Major Subject: Aerospace Engineering INVESTIGATION OF A MINIMIIM ENERGy EARTH MARS TRAJECTORy A Thesis by Richard Emmett Brown Approved as to style and content by; (Co-chairman of Committee) (Head of Department) (Member) May I967 TABLE...

  20. Oxygen generator for medical applications (USIC)

    SciTech Connect (OSTI)

    Staiger, C. L.

    2012-03-01T23:59:59.000Z

    The overall Project objective is to develop a portable, non-cryogenic oxygen generator capable of supplying medical grade oxygen at sufficient flow rates to allow the field application of the Topical Hyperbaric Oxygen Therapy (THOT{reg_sign}) developed by Numotech, Inc. This project was sponsored by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) and is managed by collaboration between Sandia National Laboratories (SNL), Numotech, Inc, and LLC SPE 'Spektr-Conversion.' The project had two phases, with the objective of Phase I being to develop, build and test a laboratory prototype of the membrane-pressure swing adsorber (PSA) system producing at 15 L/min of oxygen with a minimum of 98% oxygen purity. Phase II objectives were to further refine and identify the pre-requisites needed for a commercial product and to determine the feasibility of producing 15 L/min of oxygen with a minimum oxygen purity of 99%. In Phase I, Spektr built up the necessary infrastructure to perform experimental work and proceeded to build and demonstrate a membrane-PSA laboratory prototype capable of producing 98% purity oxygen at a flow rate of 5 L/min. Spektr offered a plausible path to scale up the process for 15 L/min. Based on the success and experimental results obtained in Phase I, Spektr performed work in three areas for Phase II: construction of a 15 L/min PSA; investigation of compressor requirements for the front end of the membrane/PSA system; and performing modeling and simulation of assess the feasibility of producing oxygen with a purity greater than 99%. Spektr successfully completed all of the tasks under Phase II. A prototype 15 L/min PSA was constructed and operated. Spektr determined that no 'off the shelf' air compressors met all of the specifications required for the membrane-PSA, so a custom compressor will likely need to be built. Modeling and simulation concluded that production of oxygen with purities greater than 99% was possible using a Membrane-PSA system.

  1. Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory . Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy...

  2. On Cartesian trees and range minimum queries

    E-Print Network [OSTI]

    Demaine, Erik D.

    We present new results on Cartesian trees with applications in range minimum queries and bottleneck edge queries. We introduce a cache-oblivious Cartesian tree for solving the range minimum query problem, a Cartesian tree ...

  3. oxygen-plasma | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygen-plasma oxygen-plasma Leads No leads are available at this time. Conversion of 1,2-Propylene Glycol on Rutile TiO2(110). Abstract: We have studied the reactions of...

  4. Multiple criteria minimum spanning trees Pedro Cardoso

    E-Print Network [OSTI]

    Coello, Carlos A. Coello

    Multiple criteria minimum spanning trees Pedro Cardoso M´ario Jesus ´Alberto M´arquez Abstract The NP multiple criteria minimum spanning tree as several applications into the network design problems criteria minimum spanning trees. There are several geometric network design and application problems

  5. A fiber optic probe for oxygen partial pressure sensing 

    E-Print Network [OSTI]

    Schlain, Leslie Ariel

    1986-01-01T23:59:59.000Z

    of the electronic circuitry, and Steve Spar for software development. TABLE OF CONTENTS INTRODUCTION Purpose Current Status of Conventional Oxygen Sensors Optical Sensors Technical Obj ect ives 1 5 10 MATERIAL AND METHODS 14 Transducer Design... the partial pressure of oxygen (p02) in solutions. The research effort was specifically aimed at the development of an oxygen sensor suitable for physiological applications. The sensor described in this thesis is an application of a generic fiber optic...

  6. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, D.W.

    1994-09-06T23:59:59.000Z

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  7. Double active shielded magnetic field gradient design with minimum inductance method

    E-Print Network [OSTI]

    Wang, Xu

    1992-01-01T23:59:59.000Z

    DOUBLE ACTIVE SHIELDED MAGNETIC FIELD GRADIENT DESIGN WITH MINIMUM INDUCTANCE METHOD A Thesis by XU WANG Submitted to the Oflice of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1992 Major Subject: Physics DOUBLE ACTIVE SHIELDED MAGNETIC FIELD GRADIENT DESIGN WITH MINIMUM INDUCTANCE METHOD A Thesis by XU WANG Approved as to style and content by: F. R. Huson (Chair of Committee) Steve Wry (Member) Edward...

  8. On the solar nickel and oxygen abundances

    E-Print Network [OSTI]

    Pat Scott; Martin Asplund; Nicolas Grevesse; A. Jacques Sauval

    2009-01-27T23:59:59.000Z

    Determinations of the solar oxygen content relying on the neutral forbidden transition at 630 nm depend upon the nickel abundance, due to a Ni I blend. Here we rederive the solar nickel abundance, using the same ab initio 3D hydrodynamic model of the solar photosphere employed in the recent revision of the abundances of C, N, O and other elements. Using 17 weak, unblended lines of Ni I together with the most accurate atomic and observational data available we find log epsilon_Ni = 6.17 +/- 0.02 (statistical) +/- 0.05 (systematic), a downwards shift of 0.06 to 0.08 dex relative to previous 1D-based abundances. We investigate the implications of the new nickel abundance for studies of the solar oxygen abundance based on the [O I] 630 nm line in the quiet Sun. Furthermore, we demonstrate that the oxygen abundance implied by the recent sunspot spectropolarimetric study of Centeno & Socas-Navarro needs to be revised downwards from log epsilon_O = 8.86 +/- 0.07 to 8.71 +/- 0.10. This revision is based on the new nickel abundance, application of the best available gf-value for the 630 nm forbidden oxygen line, and a more transparent treatment of CO formation. Determinations of the solar oxygen content relying on forbidden lines now appear to converge around log epsilon_O = 8.7.

  9. Integrated turbomachine oxygen plant

    SciTech Connect (OSTI)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17T23:59:59.000Z

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  10. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  11. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  12. Oxygen ion conducting materials

    DOE Patents [OSTI]

    Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

    2003-01-01T23:59:59.000Z

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  13. Hazardous Waste Minimum Distance Requirements (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste and other land uses. The regulations require an...

  14. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01T23:59:59.000Z

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

  15. Knots and Minimum Distance Energy Rosanna Speller

    E-Print Network [OSTI]

    Denne, Elizabeth

    Knots and Minimum Distance Energy Rosanna Speller (Dated: May 11, 2008) Professor Elizabeth Denne have least Minimum Distance Energy. I previously showed that the energy is minimized for convex polygons. We hope relating the energy to chords of polygons will be a helpful step towards showing

  16. Minimum Time/Minimum Fuel Control of an Axisymmetric Rigid Body

    E-Print Network [OSTI]

    Torres, Jonathan Farina

    2014-05-19T23:59:59.000Z

    Many times it is necessary to reorient an aerial vehicle during flight in a minimum time or minimum fuel fashion. This thesis will present a minimum time/fuel control solution to reorienting an axisymmetric rigid body using eigenaxis maneuvers. Any...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  18. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15T23:59:59.000Z

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  19. EMSL - oxygen-plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygen-plasma en Conversion of 1,2-Propylene Glycol on Rutile TiO2(110). http:www.emsl.pnl.govemslwebpublicationsconversion-12-propylene-glycol-rutile-tio2110

  20. The effect of an evaporation suppressant upon the liquid film oxygen transfer coefficient 

    E-Print Network [OSTI]

    Amad, Mohamad Towfic

    1967-01-01T23:59:59.000Z

    by organisms in a lake and the quantity of oxygen diffusion through the air-water interface were determined and the results were verified by field measurements. It was shown that the oxygen uptake rate of organisms in a body of water can be measured... diffusion. 3. To derive an expression to predict the minimum dissolved oxygen concentration during the critical night period for a lake o" pond treated with "Aquasave". The ~sco e of this research has been to determine the oxygen transfer coefficient...

  1. Minimum Energy Diagrams for Multieffect Distillation Arrangements

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Minimum Energy Diagrams for Multieffect Distillation Arrangements Hilde K. Engelien and Sigurd distillation arrangements for separating a ternary mixture have been considered. The focus is on a heat-integrated complex distillation configuration, called a multieffect prefractionator arrangement. The comparison

  2. Calculation of the degree of utilization of oxygen in the oxidation of bitumen under industrial conditions

    SciTech Connect (OSTI)

    Marakaeva, L.A.; Bereznikov, A.V.; Rozental', D.A.

    1988-09-10T23:59:59.000Z

    The degree of utilization of air oxygen plays an important role in bitumen production. This parameter depends firstly on the capacity of the compressor that could be reduced at a more complete utilization of oxygen; secondly, a high oxygen content of the waste gases can lead to explosions and coke formation. Besides this, the waste gases contain toxic substances at concentrations which are not permitted for discharge into the atmosphere. Thus, the possibility of calculating the oxygen content of waste gases on industrial installation was investigated. The authors have derived an equation which describes the oxygen content of the waste gases as a function of the temperature and depth of oxidation, the oxygen flow rate, and the height of the liquid phase, for a laboratory unit; it was taken as the basis for the transition to the industrial scale.

  3. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradient

  4. Determination of carbon, nitrogen, and oxygen in high purity magnesium 

    E-Print Network [OSTI]

    Roche, Neil Gerard

    1981-01-01T23:59:59.000Z

    DETERMINATION OF CARBON, NITROGEN, AND OXYGEN IN HIGH PURITY MAGNESIUM A Thesis by NEIL GERARD ROCHE Submitted to the Graduate College of Texas A8cM University in partial i'ulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1981 Major Subject: Chemistry DETERMINATION OF CARBON, NITROGEN, AND OXYGEN IN HIGH PURITY MAGNESIUM A Thesis by NEIL GERARD ROCHE Approved as to style and content by: E. A. Schweikert (Chairman of Committee) G. J. Bastiaans (Member) L...

  5. A calcium oxygen secondary battery

    SciTech Connect (OSTI)

    Pujare, N.U.; Semkow, K.W.; Sammells, A.F.

    1988-01-01T23:59:59.000Z

    The authors report preliminary work performed in their laboratory on a high-temperature electrochemically reversible calcium-oxygen cell. Following an analogous strategy to that recently discussed for the lithium-oxygen secondary system, this calcium-oxygen cell utilizes stabilized zirconia oxygen vacancy conducting solid electrolytes to achieve effective separation between half-cell reactions.

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat Content of

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat Content

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat ContentHeat

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeat Content

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content of

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content ofHeat

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat Content

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat ContentHeat

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat ContentHeatHeat

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat Content of

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat Content

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat ContentHeat

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeat Content

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeat Content

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat Content of

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat Content

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat ContentHeat

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeat Content

  4. On the critical flame radius and minimum ignition energy for spherical flame initiation

    SciTech Connect (OSTI)

    Chen, Zheng; Burke, M. P.; Ju, Yiguang

    2011-01-01T23:59:59.000Z

    Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis number larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.

  5. ITP Steel: Theoretical Minimum Energies to Produce Steel for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000...

  6. CLIMATICALLY-ACTIVE GASES IN THE EASTERN BOUNDARY UPWELLING AND OXYGEN MINIMUM ZONE (OMZ) SYSTEMS

    E-Print Network [OSTI]

    Garbe, Christoph S.

    -atmosphere CO2 fluxes is between 20 and 30%, and could be much higher in the EBUS-OMZ. Off Peru, very few in global ocean-atmosphere CO2 fluxes is between 20 and 30%, and could be much higher in the EBUS-OMZ. Off (VCD) can be extracted from satellite spectrometers. The accuracy of these VCDs need to be highly

  7. A new species of the family Thyasiridae (Mollusca: Bivalvia) from the oxygen minimum zone

    E-Print Network [OSTI]

    Levin, Lisa

    such as hydrothermal vents to intertidal mud£ats. With the exception of the genus Conchocele, they are not common, as compared to the Vesicomyidae and Bathymodiolinae, in chemo- synthetic communities (Oliver & Sellanes, 2005

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01T23:59:59.000Z

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  16. Direct Observation of the Oxygenated Species during Oxygen Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Observation of the Oxygenated Species during Oxygen Reduction on a Platinum Fuel Cell Cathode Friday, December 20, 2013 Fuel Cell Figure 1 Figure 1. In situ x-ray...

  17. Minimum Energy Accumulative Routing in Wireless Networks

    E-Print Network [OSTI]

    Sundaram, Ravi

    Minimum Energy Accumulative Routing in Wireless Networks Jiangzhuo Chen, Lujun Jia, Xin Liu to address the energy efficient routing problem in multi-hop wireless networks with accumulative relay. In the accumulative relay model, partially overheard signals of previous transmis- sions for the same packet are used

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362 41,298 36,4875

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362 41,298

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb362

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear JanAnnual",2014

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYearAnnual",2014 ,"Release

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYearAnnual",2014

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014 ,"Release

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197Annual",2014Monthly","4/2015"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet name or

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet name

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click worksheet%)"

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- Underground Storage

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- Underground

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click- UndergroundTotal

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)" ,"Click-

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas) (MMcf)"Monthly","4/2015"

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)Monthly","4/2015" ,"Release

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase Gas)Monthly","4/2015"

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBase

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015" ,"Release

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015"

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 AlaskaBaseMonthly","4/2015"Annual",2014

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015" ,"Release

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015Monthly","4/2015"Annual",2014

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015" ,"Release

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015" ,"ReleaseAnnual",2014

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549Monthly","4/2015"Monthly","4/2015"

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"Release Date:","2015/06/30"

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"Release

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"ReleaseAnnual",2014 ,"Release

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015" ,"ReleaseAnnual",2014

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015" ,"Release

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"and Distribution

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967Monthly","4/2015"Monthly","4/2015"and

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release Date:","6/30/2015" ,"Next

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release Date:","6/30/2015"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"Release

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015" ,"ReleaseDaily","7/20/2015"

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015"

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143Monthly","4/2015"Monthly","4/2015","1/15/1973"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for data" ,"Worksheet

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for data"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom for

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas Proved

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas ProvedCoalbed

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural Gas

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry Natural Gas

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry Natural

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDry

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural GasDryNonproducing

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved Natural

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved Reserves, Wet

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved Reserves,

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved NaturalProved

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom forAssociated-Dissolved

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at bottom

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab at

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls" ,"Available from

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls" ,"Available

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab atpri_sum_a_epg0_fwa_dmcf_a.xls"

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tab

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available from Web

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available from

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls" ,"Available

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or tabpri_sum_a_epg0_pin_dmcf_m.xls"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900" ,"Data

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900"

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""Natural Gas

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet name or30,"Annual",2014,"6/30/1900""Natural

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973" ,"Release

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No. 2

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No. 2Total

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.Propane

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheet nameMonthly","4/2015","1/15/1973"No.PropaneMotor

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum Products "

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum Products

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and Petroleum

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil and

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oil

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls" ,"Available from

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls" ,"Available

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude Oilmbbl_m.xls"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total Crude

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for Total

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied for

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"Click worksheet

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"Click

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry" ,"ClickPercentages

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net Receipts by

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net Receipts

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Net

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker, Pipeline,

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil by

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil byof by

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil byof

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby Tanker,Oil"

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of Entry"Netby

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area of

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production of Total

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production of

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net Production

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsers Prices

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsers

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPrices -

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPrices

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net ProductionUsersPricesNo.

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender Net

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea" ,"Click

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"Area"

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender NetArea"Area"for

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlender

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End Users "

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End Users

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End UsersAcquisition

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to End

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo. 2 Distillate

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo. 2

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to EndNo.

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales to

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating Oil Weekly

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating Oil

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating OilPropane

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeating

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeatingand Petroleum

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales toHeatingand

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSales

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil and Petroleum

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil and

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil andDomestic

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude Oil

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area ofBlenderSalesCrude

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by Area

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports by

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied forImports

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct Supplied

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProduct SuppliedMonthly","4/2015","1/15/1981"

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProductMonthly","4/2015","1/15/1981" ,"Data

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"Click worksheetProductMonthly","4/2015","1/15/1981"

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"Data

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909" ,"ClickMonthly","4/2015","1/15/1981" ,"DataU.S.

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"Marketed ProductionMarketedHeat Content

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural Gas

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural GasHeat

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of Natural

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of NaturalHeat

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of NaturalHeatHeat

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content of

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeat

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeat

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeatHeat

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content ofHeatHeatHeatHeat

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat Content

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeat

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeat

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeat

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeatHeat

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeat ContentHeatHeatHeatHeatHeat

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of Natural Gas

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of Natural

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of NaturalHeat

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content of

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeat

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeatHeat

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content ofHeatHeatHeat

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat Content

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeat

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeat

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeatHeat

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables JulyMonthly","4/2015"Annual",2014 ,"ReleaseMexico (MMcf)"MarketedHeatHeat ContentHeatHeatHeatto

  10. Parametric and Kinetic Minimum Spanning Trees Pankaj K. Agarwal 1

    E-Print Network [OSTI]

    Eppstein, David

    Parametric and Kinetic Minimum Spanning Trees Pankaj K. Agarwal 1 David Eppstein 2 Leonidas J. Guibas 3 Monika R. Henzinger 4 Abstract We consider the parametric minimum spanning tree problem- pute the sequence of minimum spanning trees generated as varies. We also consider the kinetic minimum

  11. Oxygen Concentration Microgradients for Cell Culture

    E-Print Network [OSTI]

    Park, Jaehyun

    2010-01-01T23:59:59.000Z

    The Chemotactic Effect of Oxygen on Bacteria,” J. Pathol.Measurement and Control of Oxygen Levels in MicrofluidicA Microfabricated Electrochemical Oxygen Generator for High-

  12. Oxygen abundances in the most oxygen-rich spiral galaxies

    E-Print Network [OSTI]

    L. S. Pilyugin; T. X. Thuan; J. M. Vilchez

    2006-01-06T23:59:59.000Z

    Oxygen abundances in the spiral galaxies expected to be richest in oxygen are estimated. The new abundance determinations are based on the recently discovered ff-relation between auroral and nebular oxygen line fluxes in HII regions. We find that the maximum gas-phase oxygen abundance in the central regions of spiral galaxies is 12+log(O/H)~8.75. This value is significantly lower than the previously accepted value. The central oxygen abundance in the Milky Way is similar to that in other large spirals.

  13. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, Donald E. (Kensington, CA)

    1992-01-01T23:59:59.000Z

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  14. High pressure oxygen furnace

    DOE Patents [OSTI]

    Morris, D.E.

    1992-07-14T23:59:59.000Z

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  15. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  16. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  17. Oxygen Vacancy Formation and Migration in CexTh_xO Solid Solution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of magnetic properties by varying the CeO&8322; content. Citation: Xiao HY, and WJ Weber.2011."Oxygen Vacancy Formation and Migration in CexTh?xO? Solid Solution."Journal of...

  18. Blast furnace injection of massive quantities of coal with enriched air or pure oxygen

    SciTech Connect (OSTI)

    Ponghis, N.; Dufresne, P.; Vidal, R.; Poos, A. (Center de Recherches Metallurgiques, Liege (Belgium))

    1993-01-01T23:59:59.000Z

    An extensive study of the phenomena associated with the blast furnace injection of massive quantities of coal is described. Trials with conventional lances or oxy-coal injectors and hot blast at different oxygen contents - up to 40% - or with cold pure oxygen were realized at coal to oxygen ratios corresponding to a range of 150 to 440 kg. Pilot scale rigs, empty or filled with coke, as well as industrial blast furnaces were utilized.

  19. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30T23:59:59.000Z

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

  20. Hybrid membrane--PSA system for separating oxygen from air

    DOE Patents [OSTI]

    Staiger, Chad L. (Albuquerque, NM); Vaughn, Mark R. (Albuquerque, NM); Miller, A. Keith (Albuquerque, NM); Cornelius, Christopher J. (Blackburg, VA)

    2011-01-25T23:59:59.000Z

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  1. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  2. Minimum and terminal velocities in projectile motion

    E-Print Network [OSTI]

    E. N. Miranda; S. Nikolskaya; R. Riba

    2012-08-13T23:59:59.000Z

    The motion of a projectile with horizontal initial velocity V0, moving under the action of the gravitational field and a drag force is studied analytically. As it is well known, the projectile reaches a terminal velocity Vterm. There is a curious result concerning the minimum speed Vmin; it turns out that the minimum velocity is lower than the terminal one if V0 > Vterm and is lower than the initial one if V0 < Vterm. These results show that the velocity is not a monotonous function. If the initial speed is not horizontal, there is an angle range where the velocity shows the same behavior mentioned previously. Out of that range, the volocity is a monotonous function. These results come out from numerical simulations.

  3. Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on...

  4. Stabilization of Platinum Nanoparticle Electrocatalysts for Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Platinum Nanoparticle Electrocatalysts for Oxygen Reduction Using Poly(diallyldimethylammonium chloride). Stabilization of Platinum Nanoparticle Electrocatalysts for Oxygen...

  5. Composite oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05T23:59:59.000Z

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  6. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Arthur J. Ragauskas

    2005-09-30T23:59:59.000Z

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

  7. Dilute Oxygen Combustion Phase I Final Report

    SciTech Connect (OSTI)

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.

    1997-10-31T23:59:59.000Z

    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300°F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

  8. Dilute oxygen combustion. Phase I report

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NO{sub x}) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NO{sub x} through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NO{sub x} production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature ({approximately}1366 K) oxidant (7-27% O{sub 2} vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d{sup +} scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d{sup +} scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW ({approximately}0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NO{sub x} emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NO{sub x} emissions below 5{times}10{sup -3} g/MJ (10 ppm-air equivalent at 3% O{sub 2} dry) were obtained for furnace temperatures below 1533 K (2300{degree}F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in- furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, with increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, requires additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

  9. Dilute Oxygen Combustion Phase 2 Final Report

    SciTech Connect (OSTI)

    Ryan, H.M.; Riley, M.F.; Kobayashi, H.

    2005-09-30T23:59:59.000Z

    A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300?F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

  10. Oxygen-reducing catalyst layer

    DOE Patents [OSTI]

    O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

    2011-03-22T23:59:59.000Z

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  11. Approximating the Minimum Spanning Tree Weight in Sublinear Time

    E-Print Network [OSTI]

    Trevisan, Luca

    Approximating the Minimum Spanning Tree Weight in Sublinear Time Bernard Chazelle #3; Ronitt a parameter 0 minimum spanning tree- components algorithm picks O(1=#15; 2 ) vertices in the graph and then grows \\local spanning trees" whose

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

  13. Electrochemical studies of quinone oxygen

    SciTech Connect (OSTI)

    Deanhardt, M.L. (Lander College, Greenwood, SC (US)); Mushrush, G.W.; Stalick, W.M. (Chemistry Dept., George mason Univ., Fairfax, VA (US)); Watkins, J.M. Jr. (Naval Research Lab., Fuels Section, Code 6180, Washington, DC (US))

    1990-02-01T23:59:59.000Z

    Asphaltenes are a chemically complex mixture of aromatic and heteroaromatic compounds. This material contains oxygen in various functional groups. The distribution includes esters, carboxylic acids, phenolic and most probably quinone type oxygen functionalities. The present work details the complete electrochemical behaviour of quinone type oxygen. The method is quinone specific. A condensed aromatic quinone, 9,10-anthraquinone, was selected as representative of complex quinones. By this method quinones can be determined in the presence of other oxygen functional groups, alcohols, carboxylic acids, ethers, and other carbonyls.

  14. Refinery fuel oxygenates in view of the complex model for reformulated gasline

    SciTech Connect (OSTI)

    Crawford, C.D.; Haelsig, C.P. [Fluor Daniel, Irvine, CA (United States)

    1994-12-31T23:59:59.000Z

    The final version of the Complex Model for reformulated gasoline (RFG) has now been issued with some surprising features that will significantly affect refinery fuel oxygenates planning. These include the following: (1) The only oxygenates included in the model are MTBE, ETBE, TAME, and Ethanol. (2) The Complex Model calculates that MTBE and TAME are significantly more effective for reduction of air toxics emissions than Ethanol and ETBE. (3) The Complex Model calculates that MTBE and TAME typically produce about equal reduction in air toxics emissions at the same RFG oxygen content. Although gasoline certification by the Complex Model is optional prior to 1998, after 1998 it will be mandatory for both reformulated and conventional gasolines. This paper considers refinery oxygenates production in view of these features of the Complex Model for RFG, basing the discussion on 2.0 weight percent oxygen content for RFG.

  15. Organic matter of anoxic and oxygenated marine waters

    E-Print Network [OSTI]

    Gershey, Robert Michael

    1974-01-01T23:59:59.000Z

    in the water column of the Trench indicated that no enrich- ment of organic matter has occurred with respect to the oxygenated water. The organic carbon content of the first 10 cm of a gravity core taken in the Trench was 3. 4%, as compared to a value of 1... Distributions of Sulfide Sulfur and Dis- solved Oxygen as a Function of Depth for Station 4 (10'38' N; 65'24' W) October, 1972 34 6 Distribution of Dissolved Organic Carbon (DOC) as a Function of Depth for Sta- tion 4 (10'38'N; 65'24'W) and Station 6 (11...

  16. Using Sparsification for Parametric Minimum Spanning Tree Problems

    E-Print Network [OSTI]

    Eppstein, David

    Using Sparsification for Parametric Minimum Spanning Tree Problems David Fern'andez­Baca 1? , Giora with a parameter. The second is an asymptotically optimal algorithm for the minimum ratio spanning tree problem, as well as other search problems, on dense graphs. 1 Introduction In the parametric minimum spanning tree

  17. Using Sparsification for Parametric Minimum Spanning Tree Problems

    E-Print Network [OSTI]

    Eppstein, David

    Using Sparsification for Parametric Minimum Spanning Tree Problems David Fern´andez-Baca Giora algorithm for the minimum ratio spanning tree problem, as well as other search prob- lems, on dense graphs. 1 Introduction In the parametric minimum spanning tree problem, one is given an n-node, m

  18. Stochastic Minimum Spanning Trees in Euclidean Spaces Pegah Kamousi #

    E-Print Network [OSTI]

    Chan, Timothy M.

    Stochastic Minimum Spanning Trees in Euclidean Spaces Pegah Kamousi # Computer Science University­1­4503­0682­9/11/06 ...$10.00. Keywords Algorithms, Theory General Terms Stochastic Minimum Spanning Trees, Geometric Data and arbitrary but known probability p i . We want to compute the expected length of the minimum spanning tree

  19. On Two-Stage Stochastic Minimum Spanning Kedar Dhamdhere1

    E-Print Network [OSTI]

    Ravi, R.

    On Two-Stage Stochastic Minimum Spanning Trees Kedar Dhamdhere1 , R. Ravi2 , and Mohit Singh2 1}@andrew.cmu.edu Abstract. We consider the undirected minimum spanning tree problem in a stochastic optimization setting algorithm. We then consider the Stochastic minimum spanning tree problem in a more general black-box model

  20. Minimum Cost Data Aggregation with Localized Processing for Statistical Inference

    E-Print Network [OSTI]

    Anandkumar, Animashree

    Minimum Cost Data Aggregation with Localized Processing for Statistical Inference Animashree--The problem of minimum cost in-network fusion of measurements, collected from distributed sensors via multihop, which implies that any Steiner- tree approximation can be employed for minimum cost fusion with the same

  1. Oxygen detection using evanescent fields

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Cao, Weenqing (Los Alamos, NM)

    2007-08-28T23:59:59.000Z

    An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

  2. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  3. Low Oxygen Environments in Chesapeake Bay

    E-Print Network [OSTI]

    Boynton, Walter R.

    Low Oxygen Environments in Chesapeake Bay Jeremy Testa Chesapeake Biological Laboratory University of Maryland Center for Environmental Science Why we care about low oxygen? What causes low oxygen? Where and When does Chesapeake Bay lose oxygen? #12;#12;Hypoxia and Chesapeake Animals Low dissolved oxygen

  4. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  5. 12/20/12 7:50 AMHuman Vitreous: MR Imaging of Oxygen Partial Pressure Page 1 of 12http://radiology.rsna.org/content/early/2012/11/30/radiol.12120777.full?sid=5b36cf57-91be-4a3f-ad97-afc0a8744edb

    E-Print Network [OSTI]

    Duong, Timothy Q.

    12/20/12 7:50 AMHuman Vitreous: MR Imaging of Oxygen Partial Pressure Page 1 of 12http method to measure the longitudinal relaxation rate, or R1, of water was implemented with a 3.0-T MR.rsna.org Published online before print December 6, 2012, doi: 10.1148/radiol.12120777 Human Vitreous: MR Imaging

  6. OXYGEN DIFFUSION IN UO2-x

    E-Print Network [OSTI]

    Kim, K.C.

    2013-01-01T23:59:59.000Z

    ~ K.C. K:i.m, "Oxygen Diffusion in Hypostoichiometricsystem for enriching uo 2 in oxygen-18 or for stoichiometry+nal of Nuclear Materials OXYGEN DIFFUSION IN U0 2 _:x K.C.

  7. Oxygen transfer in the implant environment

    E-Print Network [OSTI]

    Goor, Jared Braden

    2007-01-01T23:59:59.000Z

    Temperature dependence of oxygen diffusion and consumptionRN. Influence of temperature on oxygen diffusion in hamster341-347, 1988. Cox ME. Oxygen Diffusion in Poly(dimethyl

  8. PRIMARY RESEARCH PAPER Water column oxygen demand and sediment oxygen flux

    E-Print Network [OSTI]

    Mallin, Michael

    PRIMARY RESEARCH PAPER Water column oxygen demand and sediment oxygen flux: patterns of oxygen dissolved oxygen (DO) levels often occur during summer in tidal creeks along the southeastern coast of the USA. We analyzed rates of oxygen loss as water-column biochemical oxygen demand (BOD5) and sediment

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07T23:59:59.000Z

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  11. Korean oxygenates rule sparks MTBE capacity plans

    SciTech Connect (OSTI)

    Kim, Hyung-Jin

    1994-06-15T23:59:59.000Z

    The Korean government`s strict standard for gasoline sold domestically is expected to have a significant impact on the methyl tert-butyl ether (MTBE) market. The mandate-requiring gasoline oxygen content of 0.5% this year, 0.75% by 1996, and 1.0% by 1998-has sparked a rush by Korean refineries to build new MTBE plants. If expansion plans are carried out, Korea`s MTBE capacity will increase from 280,000 m.t./year to 650,000 m.t./year by 1996, far surpassing predicted demand. Honam Oil, part of the Lucky Group, plans startup of a 100,000-m.t./year unit at Yeochon by early 1996. In addition, by the end of 1996 Ssangyong Oil will bring a 100,000-m.t./year unit onstream.

  12. Extracorporeal membrane oxygenation promotes long chain fatty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation...

  13. Electrocatalytic Reactivity for Oxygen Reduction of Palladium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactivity for Oxygen Reduction of Palladium-Modified Carbon Nanotubes Synthesized in Supercritical Fluid. Electrocatalytic Reactivity for Oxygen Reduction of Palladium-Modified...

  14. OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE

    E-Print Network [OSTI]

    Kim, Kee Chul

    2010-01-01T23:59:59.000Z

    Research Division OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC11905 -DISCLAIMER - OXYGEN DIFFUSION IN HYPOSTOICHIOMETRICc o n e e n i g woroxygen self-diffusion coefficient

  15. Formation, characterization and reactivity of adsorbed oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Formation, characterization and reactivity of adsorbed oxygen on BaOPt(111). Formation, characterization and reactivity of adsorbed oxygen on BaOPt(111). Abstract: The formation...

  16. Angling chromium to let oxygen through | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Angling chromium to let oxygen through Angling chromium to let oxygen through Released: September 10, 2014 New semiconducting material works at lower temperatures Scanning...

  17. Polycyclic Aromatic Triptycenes: Oxygen Substitution Cyclization Strategies

    E-Print Network [OSTI]

    VanVeller, Brett

    The cyclization and planarization of polycyclic aromatic hydrocarbons with concomitant oxygen substitution was achieved through acid catalyzed transetherification and oxygen-radical reactions. The triptycene scaffold ...

  18. Flammability limits of dusts: Minimum inerting concentrations

    SciTech Connect (OSTI)

    Dastidar, A.G.; Amyotte, P.R. [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Chemical Engineering] [Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Chemical Engineering; Going, J.; Chatrathi, K. [Fike Corp., Blue Springs, MO (United States)] [Fike Corp., Blue Springs, MO (United States)

    1999-05-01T23:59:59.000Z

    A new flammability limit parameter has been defined as the Minimum Inerting Concentration (MIC). This is the concentration of inertant required to prevent a dust explosion regardless of fuel concentration. Previous experimental work at Fike in a 1-m{sup 3} spherical chamber has shown this flammability limit to exist for pulverized coal dust and cornstarch. In the current work, inerting experiments with aluminum, anthraquinone and polyethylene dusts as fuels were performed, using monoammonium phosphate and sodium bicarbonate as inertants. The results show that an MIC exists only for anthraquinone inerted with sodium bicarbonate. The other combustible dust and inertant mixtures did not show a definitive MIC, although they did show a strong dependence between inerting level and suspended fuel concentration. As the fuel concentration increased, the amount of inertant required to prevent an explosion decreased. Even though a definitive MIC was not found for most of the dusts an effective MIC can be estimated from the data. The use of MIC data can aid in the design of explosion suppression schemes.

  19. A lithium oxygen secondary battery

    SciTech Connect (OSTI)

    Semkow, K.W.; Sammells, A.F.

    1987-08-01T23:59:59.000Z

    In principle the lithium-oxygen couple should provide one of the highest energy densities yet investigated for advanced battery systems. The problem to this time has been one of identifying strategies for achieving high electrochemical reversibilities at each electrode under conditions where one might anticipate to also achieve long materials lifetimes. This has been addressed in recent work by us via the application of stabilized zirconia oxygen vacancy conducting solid electrolytes, for the effective separation of respective half-cell reactions.

  20. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01T23:59:59.000Z

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

  1. Electrochemical oxygen pumps. Final CRADA report.

    SciTech Connect (OSTI)

    Carter, J. D.

    2009-10-01T23:59:59.000Z

    All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily Lepalovsky; and Translator Vladimir Litvinov. During this trip project participants were to discuss with the project Technical Monitor J.D. Carter and representative of Praxair Inc. J. Chen the results of project activities (prospects of transition metal-doped material application in oxygen pumps), as well as the prospects of cooperation with Praxair at the meeting with the company management in the following fields: (1) Deposition of thin films of oxide materials of complex composition on support by magnetron and ion sputtering, research of coatings properties; (2) Development of block-type structure technology (made of porous and dense ceramics) for oxygen pump. The block-type structure is promising because when the size of electrolyte block is 2 x 2 inches and assembly height is 10 inches (5 blocks connected together) the area of active surface is ca. 290 square inches (in case of 8 slots), that roughly corresponds to one tube with diameter 1 inch and height 100 inches. So performance of the system made of such blocks may be by a factor of two or three higher than that of tube-based system. However one month before the visit, J. Chen notified us of internal changes at Praxair and the cancellation of the visit to Tonawanda, NY. During consultations with the project Technical Monitor J.D. Carter and Senior Project Manager A. Taylor a decision was made to extend the project term by 2 quarters to prepare proposals for follow-on activities during this extension (development of block-type structures made of dense and porous oxide ceramics for electrochemical oxygen pumps) using the funds that were not used for the trip to the US.

  2. An Efficient Algorithm for Computing Robust Minimum Capacity st Cuts

    E-Print Network [OSTI]

    Doug Altner

    2008-03-20T23:59:59.000Z

    Mar 20, 2008 ... In this paper, we present an efficient algorithm for computing minimum capacity s-t cuts under a polyhedral model of robustness. Our algorithm ...

  3. anka karlsruhe minimum: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Descrip- tion Length (MDL) principle (Rissanen, 1978, 1987, 1996), and the Minimum Length (MML) principle. Based on this analysis, we present two revised versions of MML: a...

  4. Tungsten Cluster Migration on Nanoparticles: Minimum Energy Pathway...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathway and Migration Mechanism. Tungsten Cluster Migration on Nanoparticles: Minimum Energy Pathway and Migration Mechanism. Abstract: Transition state searches have been...

  5. Optimization Online - Guaranteed Minimum-Rank Solutions of ...

    E-Print Network [OSTI]

    Benjamin Recht

    2007-06-28T23:59:59.000Z

    Jun 28, 2007 ... Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. Benjamin Recht(brecht ***at*** caltech.edu)

  6. Minimum Aberration Blocking Schemes for 128-Run Designs

    E-Print Network [OSTI]

    Xu, Hongquan; Mee, Robert W.

    2010-01-01T23:59:59.000Z

    Split-Plot Fractional Factorial Designs,” Journal of QualityAberration in Blocked Factorial Designs,” Technometrics, 39,Blocked Regular Fractional Factorial Designs With Minimum

  7. Minimum Aberration Blocking Schemes for 128-Run Designs

    E-Print Network [OSTI]

    Hongquan Xu; Robert W. Mee

    2011-01-01T23:59:59.000Z

    Split-Plot Fractional Factorial Designs,” Journal of QualityAberration in Blocked Factorial Designs,” Technometrics, 39,Blocked Regular Fractional Factorial Designs With Minimum

  8. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    SciTech Connect (OSTI)

    Taylor, C. N. [Fusion Safety Program, Idaho National Laboratory, P.O. Box 1625-7113, Idaho Falls, Idaho 83415 (United States) [Fusion Safety Program, Idaho National Laboratory, P.O. Box 1625-7113, Idaho Falls, Idaho 83415 (United States); School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States) [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Illinois 61801 (United States); Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States)] [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Institute for Advanced Computational Science, Stony Brook University, New York 11794 (United States) [Institute for Advanced Computational Science, Stony Brook University, New York 11794 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); TheoretiK, Knoxville, Tennessee 379XX (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States) [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-05-15T23:59:59.000Z

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to ?16% and then bombarded with deuterium. X-ray photoelectron spectroscopy showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  9. Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components

    SciTech Connect (OSTI)

    C.N. Taylor; J. P. Allain; P. S. Krstic; J. Dadras; C. H. Skinner; K. E. Luitjohan

    2013-11-01T23:59:59.000Z

    Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to approximately 16% and then bombarded with deuterium. XPS showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  11. Hydrogen and oxygen permeation through Nafion 117 and XUS 13204.10 fuel cell membranes

    E-Print Network [OSTI]

    Lee, Steven Ray

    1992-01-01T23:59:59.000Z

    HYDROGEN AND OXYGEN PERMEATION THROUGH NAFION 117 AND XUS 13204. 10 FUEL CELL MEMBRANES A Thesis by STEVEN RAY LEE Submitted to the Office of Graduate Studies of Texas AdrM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE August 1992 Major Subject Chemical Engineering HYDROGEN AND OXYGEN PERMEATION THROUGH NAFION 117 AND XUS 13204. 10 FUEL CELL MEMBRANES A Thesis by STEVEN RAY LEE Approved as to style and content by: Ralph E. White (Chair...

  12. OXYGEN ADSORPTION ON NITROGEN CONTAINING CARBON SURFACES

    E-Print Network [OSTI]

    Truong, Thanh N.

    OXYGEN ADSORPTION ON NITROGEN CONTAINING CARBON SURFACES Alejandro Montoya, Jorge O. Gil, Fanor-rich site of the carbon basal plane of graphite and then, it dissociates into oxygen atoms.1,2 Oxygen atoms at the edge of the carbon surface can form covalent bonds with oxygen. These sites can chemisorb

  13. Approximating the Minimum Spanning Tree Weight in Sublinear Time

    E-Print Network [OSTI]

    Goldwasser, Shafi

    Approximating the Minimum Spanning Tree Weight in Sublinear Time #3; Bernard Chazelle y Ronitt a parameter 0 minimum span- ning tree in the graph and then grows \\local spanning trees" whose sizes are speci#12;ed by a stochastic process. From

  14. Asymptotically minimum BER linear block precoders for MMSE equalisation

    E-Print Network [OSTI]

    Davidson, Tim

    ) [3]. For a general block transmission scheme, optimal detection requires a joint decisionAsymptotically minimum BER linear block precoders for MMSE equalisation S.S. Chan, T.N. Davidson and K.M. Wong Abstract: An asymptotically minimum bit error rate (BER) linear block precoder

  15. THE MINIMUM FREE ENERGY FOR CONTINUOUS SPECTRUM MATERIALS

    E-Print Network [OSTI]

    Deseri, Luca

    THE MINIMUM FREE ENERGY FOR CONTINUOUS SPECTRUM MATERIALS L. DESERI AND J.M. GOLDEN Abstract. A general closed expression is given for the isothermal minimum free energy of a linear viscoelastic states [6] are uniquely related to histories and the work function is the maximum free energy

  16. A Counterexample to Additivity of Minimum Output Entropy

    E-Print Network [OSTI]

    M. B. Hastings

    2009-12-30T23:59:59.000Z

    We present a random construction of a pair of channels which gives, with non-zero probability for sufficiently large dimensions, a counterexample to the minimum output entropy conjecture. As shown by Shor, this implies a violation of the additivity conjecture for the classical capacity of quantum channels. The violation of the minimum output entropy conjecture is relatively small.

  17. Minimum Entangling Power is Close to Its Maximum

    E-Print Network [OSTI]

    Jianxin Chen; Zhengfeng Ji; David W Kribs; Bei Zeng

    2012-10-04T23:59:59.000Z

    Given a quantum gate $U$ acting on a bipartite quantum system, its maximum (average, minimum) entangling power is the maximum (average, minimum) entanglement generation with respect to certain entanglement measure when the inputs are restricted to be product states. In this paper, we mainly focus on the 'weakest' one, i.e., the minimum entangling power, among all these entangling powers. We show that, by choosing von Neumann entropy of reduced density operator or Schmidt rank as entanglement measure, even the 'weakest' entangling power is generically very close to its maximal possible entanglement generation. In other words, maximum, average and minimum entangling powers are generically close. We then study minimum entangling power with respect to other Lipschitiz-continuous entanglement measures and generalize our results to multipartite quantum systems. As a straightforward application, a random quantum gate will almost surely be an intrinsically fault-tolerant entangling device that will always transform every low-entangled state to near-maximally entangled state.

  18. Oxygen isotopic exchange: A useful tool for characterizing oxygen conducting oxides

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Oxygen isotopic exchange: A useful tool for characterizing oxygen conducting oxides Bassat J we obtain in both cases data concerning the oxygen diffusion in the bulk and the oxygen exchange with regards to the oxygen reduction reaction. Detailed experimental and analytical processes are given

  19. Oxygen uptake of benthic systems

    E-Print Network [OSTI]

    Priebe, William Franklin

    1972-01-01T23:59:59.000Z

    mg/hr/sq m between standard and maximum mixing. Hanes and Irvine (23) made a determination of the effects of temperature on quiescent oxygen uptake rates by covering sludge with aerated water and allowing the supernatant to be totally de- pleted.... ECTROLTSIS STSTDI FOA MEMURIRC BOO. FIGURE 2. SWITCH ELECTROQE IN CONTACT WITH ELECTROIYTE. OXYGEN GENERATOR OFF. FIGURE 3. SWIICH ELECI'RODE NOT IN CONTACT' WITH -' ECTROLYTE. 0 0 0 a 0 0 0 ~ O0 0 o 0 0 o o 0 0 0 0 PIERRE A. HIGH SPEED NIXINC...

  20. Oxygen uptake of benthic systems 

    E-Print Network [OSTI]

    Priebe, William Franklin

    1972-01-01T23:59:59.000Z

    mg/hr/sq m between standard and maximum mixing. Hanes and Irvine (23) made a determination of the effects of temperature on quiescent oxygen uptake rates by covering sludge with aerated water and allowing the supernatant to be totally de- pleted.... ECTROLTSIS STSTDI FOA MEMURIRC BOO. FIGURE 2. SWITCH ELECTROQE IN CONTACT WITH ELECTROIYTE. OXYGEN GENERATOR OFF. FIGURE 3. SWIICH ELECI'RODE NOT IN CONTACT' WITH -' ECTROLYTE. 0 0 0 a 0 0 0 ~ O0 0 o 0 0 o o 0 0 0 0 PIERRE A. HIGH SPEED NIXINC...

  1. Process for conversion of lignin to reformulated, partially oxygenated gasoline

    DOE Patents [OSTI]

    Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

    2001-01-09T23:59:59.000Z

    A high-yield process for converting lignin into reformulated, partially oxygenated gasoline compositions of high quality is provided. The process is a two-stage catalytic reaction process that produces a reformulated, partially oxygenated gasoline product with a controlled amount of aromatics. In the first stage of the process, a lignin feed material is subjected to a base-catalyzed depolymerization reaction, followed by a selective hydrocracking reaction which utilizes a superacid catalyst to produce a high oxygen-content depolymerized lignin product mainly composed of alkylated phenols, alkylated alkoxyphenols, and alkylbenzenes. In the second stage of the process, the depolymerized lignin product is subjected to an exhaustive etherification reaction, optionally followed by a partial ring hydrogenation reaction, to produce a reformulated, partially oxygenated/etherified gasoline product, which includes a mixture of substituted phenyl/methyl ethers, cycloalkyl methyl ethers, C.sub.7 -C.sub.10 alkylbenzenes, C.sub.6 -C.sub.10 branched and multibranched paraffins, and alkylated and polyalkylated cycloalkanes.

  2. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect (OSTI)

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06T23:59:59.000Z

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

  3. Minimum Stream Flow and Water Sale Contracts (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Natural Resources Commission may provide certain minimum quantities of stream flow or sell water on a unit pricing basis for water supply purposes from the water supply storage in...

  4. Theoretical Minimum Energy Use of a Building HVAC System 

    E-Print Network [OSTI]

    Tanskyi, O.

    2011-01-01T23:59:59.000Z

    This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air...

  5. TOWARD THE MINIMUM INNER EDGE DISTANCE OF THE HABITABLE ZONE

    E-Print Network [OSTI]

    Zsom, Andras

    We explore the minimum distance from a host star where an exoplanet could potentially be habitable in order not to discard close-in rocky exoplanets for follow-up observations. We find that the inner edge of the Habitable ...

  6. Upper bounds on minimum distance of nonbinary quantum stabilizer codes

    E-Print Network [OSTI]

    Kumar, Santosh

    2005-11-01T23:59:59.000Z

    The most popular class of quantum error correcting codes is stabilizer codes. Binary quantum stabilizer codes have been well studied, and Calderbank, Rains, Shor and Sloane (July 1998) have constructed a table of upper bounds on the minimum distance...

  7. affecting minimum alveolar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    close to the observed minimum mass. The Hubble mass can also be predicted. It is suggested that assumption 1 above could be tested using a cyclotron to accelerate particles...

  8. Tree-ring reconstruction of maximum and minimum temperatures

    E-Print Network [OSTI]

    , minimum temperatures, diurnal temperature range, changing tree-ring/climate relationships, b; Vaganov et al. 1999; Bar- ber et al. 2000; Lloyd, Fastie 2002). Similar changes during investigations of tree- ring growth/climate relationships in interior British Columbia (BC

  9. Minimum Purchase Price Regulations (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    The Minimum Purchase Price Regulations establish the price which utilities must pay for power produced by large-scale renewable energy generators – that is those capable of producing more than 100...

  10. Compressing Social Networks The Minimum Logarithmic Arrangement Problem

    E-Print Network [OSTI]

    Safro, Ilya

    Compressing Social Networks The Minimum Logarithmic Arrangement Problem Chad Waters School Orderings Heuristic Conclusion Motivation Determine the extent to which social networks can be compressed adjacency queries. Social networks are not random graphs. Exhibit distinctive local properties

  11. Theoretical Minimum Energy Use of a Building HVAC System

    E-Print Network [OSTI]

    Tanskyi, O.

    2011-01-01T23:59:59.000Z

    This paper investigates the theoretical minimum energy use required by the HVAC system in a particular code compliant office building. This limit might be viewed as the "Carnot Efficiency" for HVAC system. It assumes that all ventilation and air...

  12. The minimum information for a qualified BioBrick

    E-Print Network [OSTI]

    Zhou, Mubing

    2012-10-11T23:59:59.000Z

    Since the information of many existing BioBricks is incomplete, thus the usage of the BioBricks will be affected. It is necessary to standardize the minimum information required for a qualified BioBrick. Furthermore this ...

  13. Minimum Cost Layout Decomposition and Legalization for Triple ...

    E-Print Network [OSTI]

    2015-06-27T23:59:59.000Z

    problem as a minimum cost coloring problem, and it is relaxed to a nonlinear 0-1 ... ered as a promising technology for next-generation lithogra- phy. However ...

  14. Minimum patch size thresholds of reproductive success of songbirds

    E-Print Network [OSTI]

    Butcher, Jerrod Anthony

    2009-05-15T23:59:59.000Z

    1 MINIMUM PATCH SIZE THRESHOLDS OF REPRODUCTIVE SUCCESS OF SONGBIRDS A Dissertation by JERROD ANTHONY BUTCHER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY May 2008 Major Subject: Wildlife and Fisheries Sciences 2 MINIMUM PATCH SIZE THRESHOLDS OF REPRODUCTIVE SUCCESS OF SONGBIRDS A Dissertation by JERROD ANTHONY BUTCHER Submitted to the Office...

  15. Methods for separating oxygen from oxygen-containing gases

    DOE Patents [OSTI]

    Mackay, Richard (Lafayette, CO); Schwartz, Michael (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2000-01-01T23:59:59.000Z

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  16. The Role of Oxygen in Coal Gasification 

    E-Print Network [OSTI]

    Klosek, J.; Smith, A. R.; Solomon, J.

    1986-01-01T23:59:59.000Z

    Air Products supplies oxygen to a number of coal gasification and partial oxidation facilities worldwide. At the high operating pressures of these processes, economics favor the use of 90% and higher oxygen purities. The effect of inerts...

  17. Oxygen reduction on platinum : an EIS study

    E-Print Network [OSTI]

    Golfinopoulos, Theodore

    2009-01-01T23:59:59.000Z

    The oxygen reduction reaction (ORR) on platinum over yttria-stabilized zirconia (YSZ) is examined via electrochemical impedance spectroscopy (EIS) for oxygen partial pressures between 10-4 and 1 atm and at temperatures ...

  18. Microchemical systems for singlet oxygen generation

    E-Print Network [OSTI]

    Hill, Tyrone F. (Tyrone Frank), 1980-

    2008-01-01T23:59:59.000Z

    Chemical Oxygen-Iodine Lasers (COIL) are a technology of interest for industrial and military audiences. COILs are flowing gas lasers where the gain medium of iodine atoms is collisionally pumped by singlet delta oxygen ...

  19. Mitochondrial reactive oxygen species and cancer

    E-Print Network [OSTI]

    Chandel, Navdeep S

    Mitochondria produce reactive oxygen species (mROS) as a natural by-product of electron transport chain activity. While initial studies focused on the damaging effects of reactive oxygen species, a recent paradigm shift ...

  20. Imaging Oxygen Molecules Up Close | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Oxygen Molecules Up Close Imaging Oxygen Molecules Up Close Released: March 20, 2011 ARRA-enabled upgrades enhance research capabilities STM images of the same TiO2(110)...

  1. Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea)

    E-Print Network [OSTI]

    Levin, Lisa

    (Pakistan margin, NE Arabian Sea) Gregory L. Cowie a,Ã, Lisa A. Levin b a The Sir John Murray Laboratories), and organic matter (OM) availability on benthic communities and processes across the Pakistan Margin

  2. The Mechanisms of Oxygen Reduction and Evolution Reactions in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries. The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous...

  3. Composite oxygen ion transport element

    DOE Patents [OSTI]

    Chen, Jack C. (Getzville, NY); Besecker, Charles J. (Batavia, IL); Chen, Hancun (Williamsville, NY); Robinson, Earil T. (Mentor, OH)

    2007-06-12T23:59:59.000Z

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  4. Catalyst containing oxygen transport membrane

    DOE Patents [OSTI]

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04T23:59:59.000Z

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  5. Effects of oxygen on fracturing fluids

    SciTech Connect (OSTI)

    Walker, M.L.; Shuchart, C.E.; Yaritz, J.G.; Norman, L.R.

    1995-11-01T23:59:59.000Z

    The stability of polysaccharide gels at high temperature is limited by such factors as pH, mechanical degradation, and oxidants. Oxygen is unavoidably placed in fracturing fluids through dissolution of air. To prevent premature degradation of the fracturing fluid by this oxidant, oxygen scavengers are commonly used. In this paper, the effects of oxygen and various oxygen scavengers on gel stability will be presented. Mechanical removal of oxygen resulted in surprisingly stable fracturing gels at 275 F. However, chemical removal of oxygen gave mixed results. Test data from sodium thiosulfate, sodium sulfite, and sodium erythorbate used as oxygen scavengers/gel stabilizers showed that the efficiency of oxygen removal from gels did not directly coincide with the viscosity retention of the gel, and large excesses of additives were necessary to provide optimum gel stabilization. The inability of some oxygen scavengers to stabilize the gel was the result of products created from the interaction of oxygen with the oxygen scavenger, which in turn, produced species that degraded the gel. The ideal oxygen scavenger should provide superior gel stabilization without creating detrimental side reaction products. Of the materials tested, sodium thiosulfate appeared to be the most beneficial.

  6. Oxygen Detection via Nanoscale Optical Indicators

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    Oxygen Detection via Nanoscale Optical Indicators Ruby N. Ghosh Dept. of Physics Michigan State University East Lansing, MI, USA weekschr@msu.edu Abstract--Oxygen plays a ubiquitous role in terrestrial developed an optical technique for monitoring oxygen in both gas and liquid phases utilizing nanoscale metal

  7. 8, 22252248, 2008 Detection of oxygen

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 2225­2248, 2008 Detection of oxygen emission related to spring bloom H. Yamagishi et al Chemistry and Physics Discussions Detection of regional scale sea-to-air oxygen emission related to spring bloom near Japan by using in-situ measurements of atmospheric oxygen/nitrogen ratio H. Yamagishi 1 , Y

  8. Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream

    DOE Patents [OSTI]

    Meltser, Mark Alexander (Pittsford, NY); Gutowski, Stanley (Pittsford, NY); Weisbrod, Kirk (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.

  9. Microbial oxygen uptake in sludge as influenced by compost physical parameters1 Ardavan Mohajer1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Microbial oxygen uptake in sludge as influenced by compost physical parameters1 Ardavan Mohajer1 The wide range of optimal values reported for the physical parameters of compost2 mixtures suggest: compost, biodegradability, respirometry, moisture content, bulking agent to waste22 ratio, particle size

  10. Oxygen permeation in bismuth-based materials part I: Sintering and oxygen permeation fluxes

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Oxygen permeation in bismuth-based materials part I: Sintering and oxygen permeation fluxes E;2 Abstract Oxygen permeation measurements were performed on two layered bismuth based oxide ceramics. Oxygen permeability for these systems was compared to permeability of the cubic fluorite type structure

  11. Singlet Oxygen Singlet oxygen generation and detection are growing fields with applications in such areas as

    E-Print Network [OSTI]

    Wells, Mathew G. - Department of Physical and Environmental Sciences, University of Toronto

    Singlet Oxygen Singlet oxygen generation and detection are growing fields with applications in such areas as cancer treatment, photosensitized oxidations, and biomolecular degradation. Ground state oxygen state of an oxygen molecule is a singlet state, which can readily react with other singlet molecules

  12. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic

    E-Print Network [OSTI]

    Wurtzel, Eleanore

    , quenching singlet oxygen generated during the water-splitting process of photo- synthesis (10, 11). VariousLycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS

  13. Experimental Effects of Atomic Oxygen on the Development of an Electric Discharge Oxygen Iodine Laser

    E-Print Network [OSTI]

    Carroll, David L.

    state I. Conventionally, a two-phase (gas-liquid) chemistry singlet oxygen generator (SOG) producesExperimental Effects of Atomic Oxygen on the Development of an Electric Discharge Oxygen Iodine of the electric discharge iodine laser continues, the role of oxygen atoms downstream of the discharge region

  14. The effects of oxygen concentration and light intensity on the photostability of zwitterionic chromophores

    SciTech Connect (OSTI)

    Raymond, S. G.; Williams, G. V. M.; Lochocki, B.; Bhuiyan, M. D. H.; Kay, A. J.; Quilty, J. W. [Photonics Group, Industrial Research Ltd., P.O. Box 31310, Lower Hutt 5040 (New Zealand)

    2009-06-01T23:59:59.000Z

    Photostability measurements at different oxygen partial pressures and light intensities have been made on host-guest films containing amorphous polycarbonate and an organic chromophore with a high second order nonlinear optical figure of merit. We find that the photodegradation quantum efficiency dramatically increases with increasing oxygen partial pressure. At very low oxygen partial pressures (8x10{sup -6} bar) the average number of photons required to photodegrade a chromophore is as high as 2x10{sup 8} at 655 nm. The photodegradation quantum efficiency in air is observed to decrease with increasing optical intensity. We show that this is due to a reduced oxygen content in the film caused by chromophore photodegradation rather than ground state bleaching. There is an anomalous increase and then decrease in the photoluminescence intensity that cannot easily be explained.

  15. CONTENTS PAGE INTRODUCTION

    E-Print Network [OSTI]

    Aslaksen, Helmer

    THE APPLICATIONS AND VALIDITY OF BODE'S LAW CAN WE EXPLAIN BODE'S LAW USING GRAVITY? 8 Law of Gravitation 8 Centre#12;#12;CONTENTS CONTENTS PAGE INTRODUCTION WHO, HOW AND WHEN IS THE BODE'S LAW DISCOVERED? 1 THE BODE'S LAW HOW THE BODE'S LAW SATISFIED URANUS 3 HOW THE BODE'S LAW LED TO THE DISCOVERY OF CERES

  16. A new approach to oxygen enriched high temperature blast generation

    SciTech Connect (OSTI)

    Queille, P.H.; Macauley, D.

    1996-12-31T23:59:59.000Z

    When increasing fuel injection in a blast furnace in order to reduce coke consumption and/or to increase production, the blast furnace operator tries to keep similar raceway conditions, for instance, an equivalent flame temperature. To compensate for the cooling effect due to the higher injection rate, two solutions can be selected or combined: to raise the temperature of the blast and/or to increase the level of oxygen in the blast. Whatever the choice, the Blast Furnace manager will certainly try to reduce the resulting investment and operating costs to a minimum. Air Liquide and Kvaerner Davy are trying to provide a new way to address these needs by offering a new technology for blast heating. A higher blast temperature will not only allow a higher fuel injection at tuyere level, a lower coke consumption, but also a lower oxygen consumption. Air Liquide and Kvaerner Davy are now able to offer a new heat regenerator with major advantages over conventional stoves. This new device can be used as a permanent substitute for a stove, or as a temporary one during repair, or stove improvement. It can also be added to an existing set of stoves to increase the average blast temperature.

  17. Routine metabolism and critical oxygen concentration for juvenile red drum Sciaenops ocellatus as functions of water hardness and salinity

    E-Print Network [OSTI]

    Schlechte, John Warren

    1989-01-01T23:59:59.000Z

    and the chamber was re-aerated. The second criterion was an oxygen concentration below a minimum level set by the programme . If this cr iterion was satisfied, the chamber was re ? aer ated, but COCR estimation had failed. Once the chamber s had been r e-aer...: Dr. William H. Neill Routine metabolic rate (RMR) and cr itical oxygen concentr ation (COCR) were determined for juvenile red drum Sciaenops ocel latus acclimated to var ious combinations of water hardness (expressed as concentr ation of calcium...

  18. OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

    E-Print Network [OSTI]

    Byrn, Marianne; Calvin, Melvin

    1965-01-01T23:59:59.000Z

    OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES TWO-eng-48 OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

  19. Minimum Risk Estimation and Decoding in Large Vocabulary Continuous

    E-Print Network [OSTI]

    Byrne, William

    refinements EP(W,A)L(W,(A)) W W ^W = argmin W W W W L(W,W )P(W |A) E(W) = W W L(W,W )P(W |A) #12;Minimum, specifically Word Error Rate ? Efficient Lattice MBR Computation E(W) = W W L(W,W )P(W |A) W W #12;Minimum path to a reference path W ? Word Error Rate Requires String-to-String Alignment W1,...,WN W1,...,WN L(W,W

  20. The minimum distance of classical and quantum turbo-codes

    E-Print Network [OSTI]

    Abbara, Mamdouh

    2011-01-01T23:59:59.000Z

    We present a theory of quantum stabilizer turbo-encoders with unbounded minimum distance. This theory is presented under a framework common to both classical and quantum turbo-encoding theory. The main conditions to have an unbounded minimum distance are that the inner seed encoder has to be recursive, and either systematic or with a totally recursive truncated decoder. This last condition has been introduced in order to obtain a theory viable in the quantum stabilizer case, since it was known that in this case the inner seed encoder could not be recursive and systematic in the same time.

  1. The minimum distance of classical and quantum turbo-codes

    E-Print Network [OSTI]

    Mamdouh Abbara; Jean-Pierre Tillich

    2011-09-01T23:59:59.000Z

    We present a theory of quantum stabilizer turbo-encoders with unbounded minimum distance. This theory is presented under a framework common to both classical and quantum turbo-encoding theory. The main conditions to have an unbounded minimum distance are that the inner seed encoder has to be recursive, and either systematic or with a totally recursive truncated decoder. This last condition has been introduced in order to obtain a theory viable in the quantum stabilizer case, since it was known that in this case the inner seed encoder could not be recursive and systematic in the same time.

  2. Developments in ITM oxygen technology for IGCC

    SciTech Connect (OSTI)

    Stein, V.E.E.; Richards, R.E.

    1999-07-01T23:59:59.000Z

    In partnership with the U.S. Department of Energy (DOE), an Air Products-led team (with Ceramatec, Eltron Research, McDermott Technology, NREC, Texaco, the Pennsylvania State University, and the University of Pennsylvania) is developing a new technology for air separation - Ion Transport Membrane Oxygen - based on the use of mixed-conducting ceramic membranes that have both electronic and oxygen ionic conductivity when operated at high temperature, typically 800 to 900 C. Under the influence of an oxygen partial-pressure driving force, the ITM Oxygen process achieves a high-purity, high-flux separation of oxygen from a compressed-air stream. By integrating the energy-rich, oxygen-depleted, non-permeate stream with a gas turbine system, the ITM Oxygen process becomes a co-producer of high-purity oxygen, power, and steam. Under a recent CRADA entitled ``Ion Transport Membranes (ITM) for Oxygen-Blown IGCC Systems and Indirect Coal Liquefaction,'' Air Products and DOE completed an initial quantification of the benefits of an ITM Oxygen-integrated IGCC facility. Compared to the cryogenic oxygen base case, the ITM Oxygen technology can potentially: reduce total installed costs by 7%; improve thermal efficiency for the integrated IGCC system by about 3%, leading to further decreases in carbon dioxide and sulfur emissions; and reduce the cost of generated electric power by more than 6%. The ITM Oxygen development project will proceed in three phases. Phase 1, which commenced under a DOE Cooperative Agreement in October 1998, is a 3-year effort focusing on construction of a technology development unit (TDU) for process concept validation tests at a capacity of 0.1 ton-per-day (TPD) oxygen. To accomplish this objective, the Air Products team will address relevant technical challenges in ITM Oxygen materials, engineering, membrane module development, and performance testing. During Phase 1 the team will also verify the economic prospects for integrating ITM Oxygen technology with IGCC and other advanced power generation systems. After at least one intermediate scaleup, Phase 2 and 3 activities will culminate with scaleup to a 25- to 50-TPD pre-commercial demonstration unit, fully integrated with a gas turbine. Meeting these challenges of developing cost-effective fabrication techniques for ITM Oxygen devices, and successfully integrating them with commercially available gas turbine engines, is key to bringing ITM Oxygen technology to the marketplace.

  3. Content Protection for Optical Media Content Protection for Optical Media

    E-Print Network [OSTI]

    Amir, Yair

    Content Protection for Optical Media Content Protection for Optical Media A Comparison of Self-Protecting Digital Content and AACS Independent Security Evaluators www.securityevaluators.com May 3, 2005 Copyright for Optical Media 2 #12;Content Protection for Optical Media Content Protection for Optical Media 3 Executive

  4. SECTION J - TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    Financing Arrangement Appendix Q Minimum Standards for Contractors' COI Plans (Replaced Mod 002) Appendix R RESERVED Appendix S Contracting Officer's Representative(s)...

  5. A time-series study of the health effects of water-soluble and total-extractable metal content of airborne particulate matter 

    E-Print Network [OSTI]

    Heal, Mathew R; Elton, Robert A; Hibbs, Leon R; Agius, Raymond M; Beverland, Iain J

    2009-01-01T23:59:59.000Z

    -soluble and total-extractable content of 11 trace metals determined in each sample. Time series were analysed using generalised additive Poisson regression models, including adjustment for minimum temperature and loess smoothing of trends. Methods were explored...

  6. Field demonstration of the LINDE Oxygen Combustion System on the EPA mobile incinerator

    SciTech Connect (OSTI)

    Ho, M.D.; Perdek, J.M.; Stumbar, J.P.; Sawyer, R.H.

    1992-01-01T23:59:59.000Z

    The paper summarizes the various system performance tests and the long-term operating experience of the LINDE Oxygen Combustion System (OCS) installed on the U.S. Environmental Protection Agency's (EPA) Mobile Incineration System (MIS) when it was in operation at the Denney Farm site in southwestern Missouri. The LINDE OCS was installed on the MIS as part of a major modification program in 1987. The modified system was first demonstrated for three months in 1987 when various system performance tests were conducted. Test burns of the modified MIS showed destruction and removal efficiencies (DRE) surpassing both Resource Conservation and Recovery Act (RCRA) and Toxic Substances Control Act (TSCA) standards. The system resumed operation in February 1988 to continue the incineration of dioxin-contaminated materials from sites in southwestern Missouri. This was the first application of an oxygen burner in a hazardous waste incineration system. The microprocessor-based controls of the oxygen system have exhibited excellent response, reducing the number of feed shutdowns due to low oxygen and high carbon monoxide contents in the stack gas which resulted from variations in the BTU content of the waste feed. It was also shown that nitrogen oxides emissions from the oxygen enriched operation compare favorably with the previous air-based operation.

  7. BLIND DECONVOLUTION WITH MINIMUM RENYI'S ENTROPY Deniz Erdogmus1

    E-Print Network [OSTI]

    Slatton, Clint

    BLIND DECONVOLUTION WITH MINIMUM RENYI'S ENTROPY Deniz Erdogmus1 , Jose C. Principe1 , Luis Vielva2-mail: [deniz , principe]@cnel.ufl.edu, luis@dicom.unican.es ABSTRACT Blind techniques attract the attention, from communications to control systems. Blind deconvolution is a problem that has been investigated

  8. The Minimum Constraint Removal Problem with Three Robotics Applications

    E-Print Network [OSTI]

    Indiana University

    The Minimum Constraint Removal Problem with Three Robotics Applications Kris Hauser Abstract on three example applications: generating human-interpretable excuses for failure, motion planning under their failures. · In human-robot interaction, semantically meaningful explanations would help people diagnose

  9. The Minimum Constraint Removal Problem with Three Robotics Applications

    E-Print Network [OSTI]

    Indiana University

    The Minimum Constraint Removal Problem with Three Robotics Applications Kris Hauser September 13 strategies. It is demonstrated on three example applications: gener- ating human-interpretable excuses, then they provide no explanation for the failure. For several applications, it would be useful for planners

  10. Network Coding for Joint Storage and Transmission with Minimum Cost

    E-Print Network [OSTI]

    Jiang, Anxiao "Andrew"

    transmission and data storage in networks. Its power comes from the improved flexibility that codeword symbolsNetwork Coding for Joint Storage and Transmission with Minimum Cost Anxiao (Andrew) Jiang@cs.tamu.edu. Abstract-- Network coding provides elegant solutions to many data transmission problems. The usage

  11. arXiv:condmat/0310072 Minimum dissipation principle

    E-Print Network [OSTI]

    Gabrielli, Davide

    uctuation principle which generalizes the well known Boltzmann{Einstein formula for the probability have opposite transformation properties under time reversal, the non dissipative part being in this respect akin to a magnetic term. We emphasize that the minimum dissipation principle is of general

  12. Storage Begins with Purchasing purchase minimum needed for experiment

    E-Print Network [OSTI]

    Cohen, Robert E.

    Storage Begins with Purchasing · purchase minimum needed for experiment ­ do not "buy in bulk://www.ehs.washington.edu/forms/epo/peroxideguidelines.pdf #12;Chemical Storage Basics · https://web.mit.edu/environment/pdf/sop/sop_0023.pdf · http://www.lbl.gov/ehs/chsp/html/storage level · do not store chemicals in fume hoods · flammable storage refrigerator needed for flammable

  13. Interior Architecture Minor Tracking Sheet Total Minimum Credits: 26

    E-Print Network [OSTI]

    Interior Architecture Minor Tracking Sheet Total Minimum Credits: 26 Minor standing is prerequisite architecture studio course is required for architecture majors enrolled in the interior architecture minor (1 is required for Architecture majors): IARC 484 Interior Design Studio (6), IARC 486 Furniture

  14. Architecture Minor Tracking Sheet Total Minimum Credits: 26

    E-Print Network [OSTI]

    Architecture Minor Tracking Sheet Total Minimum Credits: 26 Minor standing is prerequisite Notes: Required courses in one's major will not count for the minor with one exception: 1 architecture studio course is required for interior architecture majors enrolled in the architecture minor, and this studio

  15. The Clique Partition Problem with Minimum Clique Size ...

    E-Print Network [OSTI]

    2005-05-05T23:59:59.000Z

    May 5, 2005 ... Page 1 ... We will explain later in section 2.1, what we mean by “x is the .... since we don't know a concrete description for R(G, S), we will start from. ¯ ..... Now consider CPPMIN: S is the minimum size for each cluster, so the ...

  16. Predicting Daily Net Radiation Using Minimum Climatological Data1

    E-Print Network [OSTI]

    Predicting Daily Net Radiation Using Minimum Climatological Data1 S. Irmak, M.ASCE2 ; A. Irmak3 ; J Abstract: Net radiation (Rn) is a key variable for computing reference evapotranspiration and is a driving for predicting daily Rn have been widely used. However, when the paucity of detailed climatological data

  17. A minimum problem with free boundary for a degenerate quasilinear ...

    E-Print Network [OSTI]

    2005-03-04T23:59:59.000Z

    Feb 8, 2005 ... By the strong minimum principle, w0 = 0 in B5/8, since w0 ? 0 and w0(0) ..... 4.7 in [2] and pp. 19–20 in [3]; see also our proof of Theorem 5.1.

  18. A stochastic minimum principle and an adaptive pathwise algorithm for

    E-Print Network [OSTI]

    Electric power systems a b s t r a c t We present a numerical method for finite-horizon stochastic optimal control models. We derive a stochastic minimum principle (SMP) and then develop a numerical method based-parametric interpolation methods. We present results from a standard linear quadratic control model, and a realistic case

  19. The"minimum information about an environmental sequence" (MIENS) specification

    SciTech Connect (OSTI)

    Yilmaz, P.; Kottmann, R.; Field, D.; Knight, R.; Cole, J.R.; Amaral-Zettler, L.; Gilbert, J.A.; Karsch-Mizrachi, I.; Johnston, A.; Cochrane, G.; Vaughan, R.; Hunter, C.; Park, J.; Morrison, N.; Rocca-Serra, P.; Sterk, P.; Arumugam, M.; Baumgartner, L.; Birren, B.W.; Blaser, M.J.; Bonazzi, V.; Bork, P.; Buttigieg, P. L.; Chain, P.; Costello, E.K.; Huot-Creasy, H.; Dawyndt, P.; DeSantis, T.; Fierer, N.; Fuhrman, J.; Gallery, R.E.; Gibbs, R.A.; Giglio, M.G.; Gil, I. San; Gonzalez, A.; Gordon, J.I.; Guralnick, R.; Hankeln, W.; Highlander, S.; Hugenholtz, P.; Jansson, J.; Kennedy, J.; Knights, D.; Koren, O.; Kuczynski, J.; Kyrpides, N.; Larsen, R.; Lauber, C.L.; Legg, T.; Ley, R.E.; Lozupone, C.A.; Ludwig, W.; Lyons, D.; Maguire, E.; Methe, B.A.; Meyer, F.; Nakieny, S.; Nelson, K.E.; Nemergut, D.; Neufeld, J.D.; Pace, N.R.; Palanisamy, G.; Peplies, J.; Peterson, J.; Petrosino, J.; Proctor, L.; Raes, J.; Ratnasingham, S.; Ravel, J.; Relman, D.A.; Assunta-Sansone, S.; Schriml, L.; Sodergren, E.; Spor, A.; Stombaugh, J.; Tiedje, J.M.; Ward, D.V.; Weinstock, G.M.; Wendel, D.; White, O.; Wikle, A.; Wortman, J.R.; Glockner, F.O.; Bushman, F.D.; Charlson, E.; Gevers, D.; Kelley, S.T.; Neubold, L.K.; Oliver, A.E.; Pruesse, E.; Quast, C.; Schloss, P.D.; Sinha, R.; Whitely, A.

    2010-10-15T23:59:59.000Z

    We present the Genomic Standards Consortium's (GSC) 'Minimum Information about an ENvironmental Sequence' (MIENS) standard for describing marker genes. Adoption of MIENS will enhance our ability to analyze natural genetic diversity across the Tree of Life as it is currently being documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.

  20. Effect of mechanical parameters on dielectric elastomer minimum energy structures

    E-Print Network [OSTI]

    Floreano, Dario

    Effect of mechanical parameters on dielectric elastomer minimum energy structures Jun Shintake energy structures Jun Shintake*a,b , Samuel Rosseta , Dario Floreanob , Herbert R. Sheaa a Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland b

  1. Optimal Allocation of Bandwidth for Minimum Battery Consumption

    E-Print Network [OSTI]

    Cosman, Pamela C.

    properties of the battery under bursty discharge conditions are exploited. In this paper, we exploitOptimal Allocation of Bandwidth for Minimum Battery Consumption Qinghua Zhao, Pamela C. Cosman, a power amplifier utilizes battery energy more efficiently with a higher transmission power. For a given

  2. Information Delivery in Large Wireless Networks with Minimum Energy Expense

    E-Print Network [OSTI]

    Wang, Wenye

    transmission paths [8], [9]. By spending the energy resources in a wireless network wisely, the existingInformation Delivery in Large Wireless Networks with Minimum Energy Expense Yi Xu and Wenye Wang in large-scale multihop wireless networks because of the limited energy supplies from batteries. We

  3. Jamming-Aware Minimum Energy Routing in Wireless Networks

    E-Print Network [OSTI]

    Goeckel, Dennis L.

    1 Jamming-Aware Minimum Energy Routing in Wireless Networks Azadeh Sheikholeslami, Majid Ghaderi; however, energy-aware routing in the presence of active adversary (jammers) has not been considered. We. There has been some study of energy-aware ad hoc routing protocols in the literature [13], [14], [15], [16

  4. Interaction of iron-copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal

    SciTech Connect (OSTI)

    Siriwardane, Ranjani V. [U.S. DOE; Ksepko, Ewelina; Tian, Hanging [URS

    2013-01-01T23:59:59.000Z

    The objective of this work was to prepare supported bimetallic Fe–Cu oxygen carriers and to evaluate their performance for the chemical-looping combustion (CLC) process with simulated synthesis gas derived from steam gasification of coal/air. Ten-cycle CLC tests were conducted with Fe–Cu oxygen carriers in an atmospheric thermogravimetric analyzer utilizing simulated synthesis gas derived from the steam gasification of Polish Janina coal and Illinois #6 coal as fuel. The effect of temperature on reaction rates, chemical stability, and oxygen transport capacity were determined. Fractional reduction, fractional oxidation, and global rates of reactions were calculated from the thermogravimetric analysis (TGA) data. The supports greatly affected reaction performance. Data showed that reaction rates and oxygen capacities were stable during the 10-cycle TGA tests for most Fe–Cu/support oxygen carriers. Bimetallic Fe–Cu/support oxygen carriers showed higher reduction rates than Fe-support oxygen carriers. The carriers containing higher Cu content showed better stabilities and better reduction rates. An increase in temperature from 800 °C to 900 °C did not have a significant effect on either the oxygen capacity or the reduction rates with synthesis gas derived from Janina coal. Oxidation reaction was significantly faster than reduction reaction for all supported Fe–Cu oxygen carriers. Carriers with higher Cu content had lower oxidation rates. Ten-cycle TGA data indicated that these oxygen carriers had stable performances at 800–900 °C and might be successfully used up to 900 °C for coal CLC reaction in the presence of steam.

  5. Myocardial Reloading after Extracorporeal Membrane Oxygenation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Synthesis. Abstract: Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after...

  6. The Role of Oxygen in Coal Gasification

    E-Print Network [OSTI]

    Klosek, J.; Smith, A. R.; Solomon, J.

    in downst eam absorbs oxygen from air at low pressure by units. Selection of the optimum oxygen urHy contact with a circulating molten salt. High must be performed by optimizing the capit land purity (>99.5%) oxygen is regenerated from the operating... are evaluated, the use of oxygen is often preferred over air regardless of the pressure requirement. GOX GAN WASTE AIR FROM MOL SIEVE MAIN EXCHANGERS EXPANDER Figure 4 - Low Pressure Cryogenic Cycle Below about 95% purity, the specific power (k...

  7. SuStainability table of contentS

    E-Print Network [OSTI]

    Karonis, Nicholas T.

    SuStainability table of contentS executive Summary-Related Sustainability Options ........................................... 41 Information Technology Infrastucture #12;sustainability 2 Private Giving

  8. The effect of carbon dioxide-oxygen mixtures on oil recovery by in-situ combustion

    E-Print Network [OSTI]

    Broussard, Neal Joseph

    1970-01-01T23:59:59.000Z

    THE EFFECT OF CARBON DIOXIDE-OXYGEN MIXTURES ON OIL RECOVERY BY IN-SITU COMBUSTION A Thesis by NEAL J. BROUSSARD7 JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1970 Major Subject: PETROLEUM ENGINEERING THE EFFECT OF CARBON DIOXIDE-OXYGEN MIXTURES ON OIL RECOVERY BY IN-SITU COMBUSTION A Thesis by NEAL J. BROUSSARD) JR. Approved as to style and content by Chp r an o ommrttee m er...

  9. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y. Simon (Lakewood, CO)

    1991-01-01T23:59:59.000Z

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  10. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20T23:59:59.000Z

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  11. Transient oxygen consumption rate measurements with the BDT?M? oxygen biosensor system

    E-Print Network [OSTI]

    Low, Clarke Alan

    2008-01-01T23:59:59.000Z

    Oxygen consumption rate (OCR) is a reliable indicator of tissue health. Recently, the OCR of isolated human islets has been shown to predict transplant outcome in diabetic mice. The Oxygen Biosensor System (OBS) is a ...

  12. High density adsorbed oxygen on Rh,,111... and enhanced routes to metallic oxidation using atomic oxygen

    E-Print Network [OSTI]

    Sibener, Steven

    High density adsorbed oxygen on Rh,,111... and enhanced routes to metallic oxidation using atomic oxygen K. D. Gibson, Mark Viste, Errol C. Sanchez, and S. J. Sibener The James Franck Institute; accepted 30 November 1998 Exposure of Rh 111 to atomic oxygen leads to the facile formation of a full

  13. Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides

    SciTech Connect (OSTI)

    Chen, Xi [University of Texas at Austin] [University of Texas at Austin; Girard, S. N. [University of Wisconsin, Madison] [University of Wisconsin, Madison; Meng, F. [University of Wisconsin, Madison] [University of Wisconsin, Madison; Lara-Curzio, Edgar [ORNL] [ORNL; Jin, S [University of Wisconsin, Madison] [University of Wisconsin, Madison; Goodenough, J. B. [University of Texas at Austin] [University of Texas at Austin; Zhou, J. S. [University of Texas at Austin] [University of Texas at Austin; Shi, L [University of Texas at Austin] [University of Texas at Austin

    2014-01-01T23:59:59.000Z

    Higher manganese silicides (HMS) made of earth-abundant and non-toxic elements are regarded as promising p-type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitu- tion of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1 xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50 200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1 xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1 xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.

  14. Ambient dissolved oxygen concentrations in Delaware's Inland Bays. Final report, June 6, 1984

    SciTech Connect (OSTI)

    Biggs, R.B.

    1984-01-01T23:59:59.000Z

    Ambient dissolved oxygen concentrations were measured at dawn during August, 1983, in Rehoboth and Indian River Bays. In Indian River Bay, 59% of the D.O. measurements were below the State minimum water quality standard of 5 mg L/sup -1/, while in Rehoboth Bay 17% of the values fail to meet the State standards. Diurnal dissolved oxygen curves measured at 5 stations in the Bays and tributary creeks, provide evidence that, although the Bays are in reasonable balance with respect to apparent net daytime photosynthesis (Pa) and nighttime respiration (Rn), the absolute values of Pa and Rn are very high, compared with other coastal ecosystems, except for central Rehoboth Bay. These conclusions are consistent with the annual nutrient loads to the systems, which are about double for Indian River when contrasted with Rehoboth. 11 references, 1 figure, 7 tables.

  15. Oxygen and Nitrogen Contamination During Arc Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) ) : ,- Oxygen and Nitrogen Contamination During Arc Welding T. W. Eagar Department of }faterials, shielded metal arc, self-shielded metal arc, and submerged arc welding are reviewed. Calcu- lations upon heating is also discussed. Introduction Oxygen and nitrogen ~ontamination of weld metal

  16. New Oxygen-Production Technology Proving Successful

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies.

  17. Observation of the Density Minimum in Deeply Supercooled Confined Water

    E-Print Network [OSTI]

    Dazhi Liu; Yang Zhang; Chia-Cheng Chen; Chung-Yuan Mou; Peter H Poole; Sow-Hsin Chen

    2007-04-17T23:59:59.000Z

    Small angle neutron scattering (SANS) is used to measure the density of heavy water contained in 1-D cylindrical pores of mesoporous silica material MCM-41-S-15, with pores of diameter of 15+-1 A. In these pores the homogenous nucleation process of bulk water at 235 K does not occur and the liquid can be supercooled down to at least 160 K. The analysis of SANS data allows us to determine the absolute value of the density of D2O as a function of temperature. We observe a density minimum at 210+-5 K with a value of 1.041+-0.003 g/cm3. We show that the results are consistent with the predictions of molecular dynamics simulations of supercooled bulk water. This is the first experimental report of the existence of the density minimum in supercooled water.

  18. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2001-04-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes and Task 4 - Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the first year. OTM material characterization was completed. 100% of commercial target flux was demonstrated with OTM disks. The design and assembly of Praxair's single tube high-pressure test facility was completed. The production of oxygen with a purity of better than 99.5% was demonstrated. Coal combustion testing was conducted at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. The injector for oxygen enhanced coal based reburning was conducted at Praxair. Combustion modeling with Keystone boiler was completed. Pilot-scale combustion test furnace simulations continued this quarter.

  19. Dangerous implications of a minimum length in quantum gravity

    E-Print Network [OSTI]

    Cosimo Bambi; Katherine Freese

    2008-07-17T23:59:59.000Z

    The existence of a minimum length and a generalization of the Heisenberg uncertainty principle seem to be two fundamental ingredients required in any consistent theory of quantum gravity. In this letter we show that they would predict dangerous processes which are phenomenologically unacceptable. For example, long--lived virtual super--Planck mass black holes may lead to rapid proton decay. Possible solutions of this puzzle are briefly discussed.

  20. Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1

    SciTech Connect (OSTI)

    Poola, R.B.; Sekar, R.R.; Assanis, D.N.

    1996-09-01T23:59:59.000Z

    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

  1. SOLAR ROTATION RATE DURING THE CYCLE 24 MINIMUM IN ACTIVITY

    SciTech Connect (OSTI)

    Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, Sarbani, E-mail: antia@tifr.res.i, E-mail: sarbani.basu@yale.ed [Department of Astronomy, Yale University, P.O. Box 208101, New Haven CT 06520-8101 (United States)

    2010-09-01T23:59:59.000Z

    The minimum of solar cycle 24 is significantly different from most other minima in terms of its duration as well as its abnormally low levels of activity. Using available helioseismic data that cover epochs from the minimum of cycle 23 to now, we study the differences in the nature of the solar rotation between the minima of cycles 23 and 24. We find that there are significant differences between the rotation rates during the two minima. There are differences in the zonal-flow pattern too. We find that the band of fast rotating region close to the equator bifurcated around 2005 and recombined by 2008. This behavior is different from that during the cycle 23 minimum. By autocorrelating the zonal-flow pattern with a time shift, we find that in terms of solar dynamics, solar cycle 23 lasted for a period of 11.7 years, consistent with the result of Howe et al. (2009). The autocorrelation coefficient also confirms that the zonal-flow pattern penetrates through the convection zone.

  2. Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 2. Kaersutitic

    E-Print Network [OSTI]

    Stewart, Sarah T.

    to the experimental kaersutite compositions, means the measured hydrogen isotope enrichments are likely minima. The measured (minimum) levels of hydrogen isotope enrichment are relevant to the hydrogen isotope variabilityAssessment of shock effects on amphibole water contents and hydrogen isotope compositions: 2

  3. Content Provider Speeds Application

    E-Print Network [OSTI]

    Fisher, Kathleen

    protocols like SMPP for SMS and MM7 for MMS are industry standards, carriers typically layer their own APIs.0 standards," says Rose, "and we thought that would help speed development." The AT&T API Platform includesContent Provider Speeds Application Development AT&T API Platform cuts development time and costs

  4. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01T23:59:59.000Z

    Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  5. Oxygen Discharge and Post-Discharge Kinetics Experiments and Modeling for the Electric Oxygen-Iodine Laser System

    E-Print Network [OSTI]

    Carroll, David L.

    Oxygen Discharge and Post-Discharge Kinetics Experiments and Modeling for the Electric Oxygen a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels

  6. Long-term oxygen sensor implantation in the porcine subcutaneous environment

    E-Print Network [OSTI]

    Kumosa, Lucas Stefan

    2011-01-01T23:59:59.000Z

    Membrane-­?Covered  Oxygen  Electrode.   Analytical  Microvascular  and  tissue  oxygen   distribution.  vitro  stability  of  an  oxygen  sensor.   Anal  Chem,  

  7. Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF

    E-Print Network [OSTI]

    Genetos, Damian C.; Cheung, Whitney K.; Decaris, Martin L.; Leach, J. Kent

    2010-01-01T23:59:59.000Z

    neural repair. Keywords Oxygen tension . Neurite extension .respective physiological oxygen microenvironments (Chen etet al. 2008). For example, oxygen tension differentially

  8. On the oxygen abundance in our Galaxy

    E-Print Network [OSTI]

    L. S. Pilyugin; F. Ferrini; R. V. Shkvarun

    2003-02-03T23:59:59.000Z

    The compilation of published spectra of Galactic HII regions with available diagnostic [OIII]4363 line has been carried out. Our list contains 71 individual measurements of 13 HII regions in the range of galactocentric distances from 6.6 to 14.8 kpc. The oxygen abundances in all the HII regions were recomputed in the same way, using the classic Te - method. The oxygen abundance at the solar galactocentric distance traced by those HII regions is in agreement with the oxygen abundance in the interstellar medium in the solar vicinity derived with high precision from the interstellar absorption lines towards stars. The derived radial oxygen abundance distribution was compared with that for HII regions from the Shaver et al. (1983) sample which is the basis of many models for the chemical evolution of our Galaxy. It was found that the original Shaver et al.'s oxygen abundances are overestimated by 0.2-0.3 dex. Oxygen abundances in HII regions from the Shaver et al. sample have been redetermined with the recently suggested P - method. The radial distribution of oxygen abundances from the Shaver et al. sample redetermined with the P - method is in agreement with our radial distribution of (O/H)_Te abundances.

  9. Characterization of an oxygen suspension used for intravenous infusion

    E-Print Network [OSTI]

    Peña, Kristen Helen

    2012-01-01T23:59:59.000Z

    Oxygenated fluid mixture can be used to treat critically ill patients suffering from asphyxia, lung injury, and cardiac arrest. This oxygenated fluid delivered intravenously re-oxygenates the bloodstream, allowing for more ...

  10. Blood oxygen transport and depletion : the key of consummate divers

    E-Print Network [OSTI]

    Meir, Jessica Ulrika

    2009-01-01T23:59:59.000Z

    and Dill, D. B. (1935). Oxygen dissociation curves of birdE. (1964). A venous blood oxygen reservoir in the divingand Torrance, J. D. (1977). Oxygen-Affinity of Avian Blood.

  11. Imaging Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies on TiO2(110). Imaging Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies on TiO2(110). Abstract: Since oxygen atom...

  12. Oxygen Coverage Dependence of NO Oxidation on Pt(111). | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxygen Coverage Dependence of NO Oxidation on Pt(111). Oxygen Coverage Dependence of NO Oxidation on Pt(111). Abstract: The interaction of NO with adsorbed atomic oxygen on Pt(111)...

  13. Reactive oxygen species: a breath of life or death?

    E-Print Network [OSTI]

    Fruehauf, John P; Meyskens, Frank L Jr

    2007-01-01T23:59:59.000Z

    AP1, activator protein-1; ODD, oxygen-dependent degradationSignaling response when oxygen levels decrease (Fig. 1C;3. Halliwell B. Reactive oxygen species in living sys- tems:

  14. Tetraoxygen on Reduced Ti02(110): Oxygen Adsorption and Reactions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tetraoxygen on Reduced Ti02(110): Oxygen Adsorption and Reactions with Oxygen Vacancies. Tetraoxygen on Reduced Ti02(110): Oxygen Adsorption and Reactions with Oxygen Vacancies....

  15. On the maximum value of the cosmic abundance of oxygen and the oxygen yield

    E-Print Network [OSTI]

    L. S. Pilyugin; T. X. Thuan; J. M. Vilchez

    2007-01-11T23:59:59.000Z

    We search for the maximum oxygen abundance in spiral galaxies. Because this maximum value is expected to occur in the centers of the most luminous galaxies, we have constructed the luminosity - central metallicity diagram for spiral galaxies, based on a large compilation of existing data on oxygen abundances of HII regions in spiral galaxies. We found that this diagram shows a plateau at high luminosities (-22.3 oxygen abundance 12+log(O/H) ~ 8.87. This provides strong evidence that the oxygen abundance in the centers of the most luminous metal-rich galaxies reaches the maximum attainable value of oxygen abundance. Since some fraction of the oxygen (about 0.08 dex) is expected to be locked into dust grains, the maximum value of the true gas+dust oxygen abundance in spiral galaxies is 12+log(O/H) ~ 8.95. This value is a factor of ~ 2 higher than the recently estimated solar value. Based on the derived maximum oxygen abundance in galaxies, we found the oxygen yield to be about 0.0035, depending on the fraction of oxygen incorporated into dust grains.

  16. Platinum - Coated Cobalt Nanowires as Oxygen Reduction Reaction Electrocatalysts

    SciTech Connect (OSTI)

    Alia, Shaun M [National Renewable Energy Laboratory (NREL); Pylypenko, Svitlana [ORNL; Neyerlin, Kenneth C [National Renewable Energy Laboratory (NREL); Cullen, David A [ORNL; Kocha, Shyam S [National Renewable Energy Laboratory (NREL); Pivovar, Bryan [Los Alamos National Laboratory (LANL)

    2014-01-01T23:59:59.000Z

    Cobalt nanowires (CoNWs) are coated with platinum (Pt) by partial galvanic displacement, forming core/shell wires 200 300 nm in diameter and 100 200 1m in length. PtCoNWs are characterized for activit y in the oxygen reduction reaction (ORR) with rotating disk electrode half5cells in 0.1 M perchloric acid electrolytes. The resulting catalysts demonstrate ORR specific activi ties in the range 2053 2783 1A cm Pt 2 , comparable to the specific activity of polycrystalline Pt. The specific activi ties of PtCoNWs increase with decreasing Pt content and exhibit a corresponding increase in Pt lattice compression. P tCoNWs have exhibited a maximum mass activity of 79 3 mA mg Pt 1 , 2.6 times greater than carbon5supported Pt nanopart icles.

  17. Electrodeposition of high Mo content Ni-Mo alloys under forced convection

    SciTech Connect (OSTI)

    Podlaha, E.J.; Matlosz, M.; Landolt, D. (Ecole Polytechnique Federale de Lausanne, Lausanee (Switzerland). Dept. des materiaux)

    1993-10-01T23:59:59.000Z

    Bright, compact, adherent, metallic Ni-Mo alloys, containing over 48 wt % Mo have been electrodeposited from an aqueous solution. The Mo content, which is the highest achieved so far in induced codeposition of Ni-Mo, was determined by X-ray fluorescence spectroscopy. The absence of oxygen was verified by Auger electron spectroscopy. Electrodeposition experiments were performed on rotating cylinder electrodes and demonstrate that the Mo content of the alloy is strongly influenced by convective transport.

  18. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and...

  19. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

  20. avec oxygenation modelisation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental calibration of oxygen isotope fractionation between quartz and zircon Dustin Trail a the results of an experimental calibration of oxygen isotope fractionation...

  1. Electron-Stimulated Production of Molecular Oxygen in Amorphous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water. Electron-Stimulated Production of Molecular Oxygen in Amorphous Solid Water. Abstract: The low-energy, electron-stimulated production of molecular oxygen from pure amorphous...

  2. Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium 2007 Diesel Engine-Efficiency &...

  3. Isolation, Characterization of an Intermediate in an Oxygen Atom...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of an Intermediate in an Oxygen Atom-Transfer Reaction, and the Determination of the Bond Isolation, Characterization of an Intermediate in an Oxygen Atom-Transfer...

  4. Theoretical Study of the Structure, Stability and Oxygen Reduction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Structure, Stability and Oxygen Reduction Activity ofUltrathin Platinum Nanowires. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity...

  5. Density Functional Study of the Structure, Stability and Oxygen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity...

  6. Testing Oxygen Reduction Reaction Activity with the Rotating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique...

  7. Fractionation of Oxygen Isotopes in Phosphate during its Interactions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fractionation of Oxygen Isotopes in Phosphate during its Interactions with Iron Oxides. Fractionation of Oxygen Isotopes in Phosphate during its Interactions with Iron Oxides....

  8. Effects of Oxygen-Containing Functional Groups on Supercapacitor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Oxygen-Containing Functional Groups on Supercapacitor Performance. Effects of Oxygen-Containing Functional Groups on Supercapacitor Performance. Abstract: Molecular...

  9. Oxygen detected in atmosphere of Saturn's moon Dione

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of...

  10. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

  11. Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis . Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis . Abstract: The research described in...

  12. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

  13. Oxygen Transport Studies in Nanocrystalline Ceria Films. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Studies in Nanocrystalline Ceria Films. Oxygen Transport Studies in Nanocrystalline Ceria Films. Abstract: Oxygen uptake and conductivity were measured by nuclear...

  14. Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From...

    Open Energy Info (EERE)

    Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Oxygen...

  15. Density Functional Theory Study of Oxygen Reduction Activity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes. Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum...

  16. Fermion Masses and Mixings from a Minimum Principle

    E-Print Network [OSTI]

    Rodrigo Alonso

    2014-05-22T23:59:59.000Z

    We analyze the structure of quark and lepton mass matrices under the hypothesis that they are determined from a minimum principle applied to a generic potential invariant under the $\\left[U(3)\\right]^5\\otimes {\\mathcal O}(3)$ flavor symmetry, acting on Standard Model fermions and right-handed neutrinos. Unlike the quark case, we show that hierarchical masses for charged leptons are naturally accompanied by degenerate Majorana neutrinos with one mixing angle close to maximal, a second potentially large, a third one necessarily small, and one maximal relative Majorana phase. The scheme presented here could be tested in the near future via neutrino-less double beta decay and cosmological measurements.

  17. Minimum pressure envelope cavitation analysis using two-dimensional panel method

    E-Print Network [OSTI]

    Peterson, Christopher J., S.M. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    An analysis tool for calculating minimum pressure envelopes was developed using XFOIL. This thesis presents MATLAB® executables that interface with a modified version of XFOIL for determining the minimum pressure of a foil ...

  18. The impact of minimum age of employment regulation on child labor and schooling

    E-Print Network [OSTI]

    Edmonds, Eric V

    Promoting minimum age of employment regulation has been a centerpiece in child labor policy for the last 15 years. If enforced, minimum age regulation would change the age profile of paid child employment. Using micro-data ...

  19. Alarming Oxygen Depletion Caused by Hydrogen Combustion and Fuel Cells and their Resolution by Magnegas$^{TM}$

    E-Print Network [OSTI]

    Santilli, R M

    2000-01-01T23:59:59.000Z

    We recall that hydrogen combustion does resolve the environmental problems of fossil fuels due to excessive emission of carcinogenic substances and carbon dioxide. However, hydrogen combustion implies the permanent removal from our atmosphere of directly usable oxygen, a serious environmental problem called oxygen depletion, since the combustion turns oxygen into water whose separation to restore the original oxygen is prohibitive due to cost. We then show that a conceivable global use of hydrogen in complete replacement of fossil fuels would imply the permanent removal from our atmosphere of 2.8875x10^7 metric tons O_2/day. Fuel cells are briefly discussed to point out similarly serious environmental problems, again, for large uses. We propose the possibility of resolving these problems by upgrading hydrogen to the new combustible fuel called magnegas^TM, whose chemical structure is composed by the new chemical species of magnecules, whose energy content and other features are beyond the descriptive capaciti...

  20. Design optimization of oxygenated fluid pump

    E-Print Network [OSTI]

    Piazzarolo, Bruno Aiala

    2012-01-01T23:59:59.000Z

    In medical emergencies, an oxygen-starved brain quickly suffers irreparable damage. In many cases, patients who stop breathing can be resuscitated but suffer from brain damage. Dr. John Kheir from Boston Children's Hospital ...

  1. Reactive Gliosis Reactive Oxygen Species: Superoxide

    E-Print Network [OSTI]

    . By sensing the electric signals generated by other 3368 Reactive Gliosis #12;individuals, mormyrids are alsoReactive Gliosis Glial Scar Reactive Oxygen Species: Superoxide Anions Neuroinflammation motor output. Reafferent Control in Electric Communication Reafferent Control in Electric Communication

  2. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-08-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for the Program through the thirteenth quarter, April-June 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with project objectives. REI's model was modified to evaluate mixing issues in the upper furnace of a staged unit. Analysis of the results, and their potential application to this unit is ongoing. Economic evaluation continues to confirm the advantage of oxygen-enhanced combustion. A contract for a commercial demonstration has been signed with the Northeast Generation Services Company to supply oxygen and license the oxygen enhanced low NOx combustor technology for use at the 147-megawatt coal fired Mt. Tom Station in Holyoke, MA. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

  3. Electron-impact excitation of neutral oxygen

    E-Print Network [OSTI]

    P. S. Barklem

    2006-09-25T23:59:59.000Z

    Aims: To calculate transition rates from ground and excited states in neutral oxygen atoms due to electron collisions for non-LTE modelling of oxygen in late-type stellar atmospheres, thus enabling reliable interpretation of oxygen lines in stellar spectra. Methods: A 38-state R-matrix calculation in LS-coupling has been performed. Basis orbitals from the literature (Thomas et al.) are adopted, and a large set of configurations are included to obtain good representations of the target wavefunctions. Rate coefficients are calculated by averaging over a Maxwellian velocity distribution. Results: Estimates for the cross sections and rate coefficients are presented for transitions between the seven lowest LS states of neutral oxygen. The cross sections for excitation from the ground state compare well with existing experimental and recent theoretical results.

  4. Dynamic Nuclear Polarization of Oxygen-17

    E-Print Network [OSTI]

    Michaelis, Vladimir K.

    Oxygen-17-detected DNP NMR of a water/glycerol glass enabled an 80-fold enhancement of signal intensity at 82 K, using the biradical TOTAPOL. The >6000-fold savings in acquisition time enable [superscript 17]O–[superscript ...

  5. TableofContentsEnvironmentalStudies Table of Contents Environmental Studies

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 · Environmental Management: Policy, Resources and Conservation345 TableofContents­EnvironmentalStudies Table of Contents ­ Environmental Studies Faculty of Environmental Studies . . . . . . . . . . . . . . . . 347 The Bachelor in Environmental Studies

  6. Magnetism in Lithium–Oxygen Discharge Product

    SciTech Connect (OSTI)

    Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

    2013-05-13T23:59:59.000Z

    Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

  7. Atomic Oxygen in the Comae of Comets

    E-Print Network [OSTI]

    Anita L. Cochran

    2008-07-03T23:59:59.000Z

    We report on the detection of atomic oxygen lines in the spectra of 8 comets. These forbidden lines are a result of the photodissociation of the parent oxygen-bearing species directly into an excited state. We used high resolution spectra obtained at the McDonald Observatory 2.7m telescope to resolve the cometary oxygen lines from the telluric oxygen lines and from other cometary emissions. We find that the relative intensities of the two red lines (6300.304 and 6363.776A) are consistent with theory. The green line (5577.339A) has an intensity which is about 10% of the sum of the intensities of the two red lines. We show that collisional quenching may be important in the inner coma. If we assume the relative excitation rates of potential parents which have appeared in the literature, then H2O would be the parent of the cometary green oxygen line. However, those rates have been questioned. We measured the width of the three oxygen lines and find that the green line is wider than either of the two red lines. The finding of a wider line could imply a different parent for the green and red lines. However, the constancy of the green to red line flux ratio suggests the parent is the same for these lines but that the exciting photons have different energies.

  8. Underground coal gasification using oxygen and steam

    SciTech Connect (OSTI)

    Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

    2009-07-01T23:59:59.000Z

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  9. Minimum Energy Per Bit for Secret Key Acquisition Over Multipath Wireless Channels

    E-Print Network [OSTI]

    Sayeed, Akbar M.

    Minimum Energy Per Bit for Secret Key Acquisition Over Multipath Wireless Channels Tzu-Han Chou the secret key capacity. We analyze the low-SNR regime to quantify the minimum energy per secret key bit of conventional channel capacity, there is a non-zero SNR that achieves the minimum energy per key bit. A time

  10. LANGMUIR WAVE ACTIVITY: COMPARING THE ULYSSES SOLAR MINIMUM AND SOLAR MAXIMUM ORBITS

    E-Print Network [OSTI]

    California at Berkeley, University of

    ). The top three panels correspond to the southern segment of the solar minimum orbit; repeated passesLANGMUIR WAVE ACTIVITY: COMPARING THE ULYSSES SOLAR MINIMUM AND SOLAR MAXIMUM ORBITS R. J at the electron plasma frequency) during the solar minimum and solar maximum orbits of Ulysses. At high latitudes

  11. Analysis of Minimum Cost in Shape-Optimized Litz-Wire Inductor Windings

    E-Print Network [OSTI]

    Analysis of Minimum Cost in Shape-Optimized Litz-Wire Inductor Windings C. R. Sullivan J. D. Mc the IEEE. #12;Analysis of Minimum Cost in Shape-Optimized Litz-Wire Inductor Windings Charles R. Sullivan://engineering.dartmouth.edu/inductor Abstract--Litz-wire windings for gapped inductors are optimized for minimum cost within a loss constraint

  12. An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network

    E-Print Network [OSTI]

    Brown, Timothy X.

    An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network Sheetalkumar Doshi the necessary features of an on-demand minimum energy routing protocol and suggests mechanisms the performance of an on-demand minimum energy routing protocol in terms of energy savings with an existing on

  13. An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network

    E-Print Network [OSTI]

    An On-demand Minimum Energy Routing Protocol for a Wireless Ad Hoc Network Sheetalkumar Doshi of an on-demand minimum energy routing protocol and suggests mechanisms for their imple- mentation. We of an on-demand minimum energy routing protocol in terms of energy savings with an existing on-demand ad

  14. Web Content Filtering 1 User Guidelines Web content filter guidelines

    E-Print Network [OSTI]

    Web Content Filtering 1 User Guidelines Web content filter guidelines Introduction The basic criterion for blocking a Web page Categories of material which will be blocked Requesting the unblocking of Aberdeen applies a Web Content Filtering service to all web pages accessed from the undergraduate network

  15. Does the current minimum validate (or invalidate) cycle prediction methods?

    E-Print Network [OSTI]

    Hathaway, David H

    2010-01-01T23:59:59.000Z

    This deep, extended solar minimum and the slow start to Cycle 24 strongly suggest that Cycle 24 will be a small cycle. A wide array of solar cycle prediction techniques have been applied to predicting the amplitude of Cycle 24 with widely different results. Current conditions and new observations indicate that some highly regarded techniques now appear to have doubtful utility. Geomagnetic precursors have been reliable in the past and can be tested with 12 cycles of data. Of the three primary geomagnetic precursors only one (the minimum level of geomagnetic activity) suggests a small cycle. The Sun's polar field strength has also been used to successfully predict the last three cycles. The current weak polar fields are indicative of a small cycle. For the first time, dynamo models have been used to predict the size of a solar cycle but with opposite predictions depending on the model and the data assimilation. However, new measurements of the surface meridional flow indicate that the flow was substantially fa...

  16. Theoretical Minimum Energies to Produce Steel for Selected Conditions

    SciTech Connect (OSTI)

    Fruehan, R.J.; Fortini, O.; Paxton, H.W.; Brindle, R.

    2000-05-01T23:59:59.000Z

    The energy used to produce liquid steel in today's integrated and electric arc furnace (EAF) facilities is significantly higher than the theoretical minimum energy requirements. This study presents the absolute minimum energy required to produce steel from ore and mixtures of scrap and scrap alternatives. Additional cases in which the assumptions are changed to more closely approximate actual operating conditions are also analyzed. The results, summarized in Table E-1, should give insight into the theoretical and practical potentials for reducing steelmaking energy requirements. The energy values have also been converted to carbon dioxide (CO{sub 2}) emissions in order to indicate the potential for reduction in emissions of this greenhouse gas (Table E-2). The study showed that increasing scrap melting has the largest impact on energy consumption. However, scrap should be viewed as having ''invested'' energy since at one time it was produced by reducing ore. Increasing scrap melting in the BOF mayor may not decrease energy if the ''invested'' energy in scrap is considered.

  17. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-07-01T23:59:59.000Z

    Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance. A specific goal is to achieve a material that will sinter to desired density without compromising other variables such as reaction to binder systems or phase purity. Oxygen-enhanced combustion requires a facility which is capable of supplying high purity oxygen (>99.5%) at low costs. This goal can be achieved through the thermal integration of high temperature air separation with ceramic OTM. The objective of the OTM process development program (Task 2.3) is to demonstrate successfully the program objectives on a lab-scale single OTM tube reactor under process conditions comparable to those of an optimum large-scale oxygen facility. This quarterly technical progress report will summarize work accomplished for the Program through the first quarter April--June 2000 in the following task areas: Task 1 Oxygen Enhanced Coal Combustion; Task 2 Oxygen Transport Membranes; and Task 4 Program Management.

  18. Fermilab Today - Related Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOEFigure 1.Related Content Subscribe

  19. Mentoring Guide TABLE OF CONTENTS

    E-Print Network [OSTI]

    Dasgupta, Dipankar

    Mentoring Guide 1 #12;TABLE OF CONTENTS Introduction...........................................................................................................3 CCFA Mentoring Guide.........................................................................................3 Why Do I Need A Mentor

  20. High energy density lithium-oxygen secondary battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1989-02-07T23:59:59.000Z

    A high energy density lithium-oxygen secondary cell is described comprising a lithium-containing negative electrode; a lithium ion conducting molten salt electrolyte contacting the negative electrode; an oxygen ion conducting solid electrolyte contacting and containing the molten salt electrolyte; and an oxygen redox positive electrode contacting the oxygen ion conducting solid electrolyte.