National Library of Energy BETA

Sample records for minimum fuel economy

  1. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  2. Predicting Individual Fuel Economy

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2011-01-01

    To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

  3. Fuel Economy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Fuel Economy Ltd. Place: United Kingdom Product: Fuel Economy Ltd is perhaps better known by their core product 'Savastat', the highly...

  4. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  5. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  6. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  7. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  8. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  9. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  10. Model Year 2007 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  11. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  12. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  13. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  14. Model Year 2008 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  15. Model Year 2006 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2005-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  16. Fuel Economy Valentines | Department of Energy

    Energy Savers [EERE]

    Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin ... Anytime spent on the road can be a great time to track your vehicle's fuel economy, and ...

  17. 2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 Fuel Economy Guide and FuelEconomy.gov 2009 Fuel Economy Guide and FuelEconomy.gov October 24, 2008 - 4:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With energy costs looming as winter approaches, saving money is on everyone's minds these days. Fortunately, improving your vehicle's fuel economy is both economically and environmentally smart. In the winter, one of the easiest ways to decrease gasoline consumption is to warm up your engine for no more than

  18. Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet ...

    Open Energy Info (EERE)

    Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet AgencyCompany Organization: FIA...

  19. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    SciTech Connect (OSTI)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for

  20. Turbocharged Spark Ignited Direct Injection - A Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI ...

  1. EPA-Fuel Economy Guide | Open Energy Information

    Open Energy Info (EERE)

    EPA-Fuel Economy Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy Guide AgencyCompany Organization: United States Environmental Protection Agency...

  2. Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards Fact 589: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards On September ...

  3. Technological trends for improving automobile fuel economy

    SciTech Connect (OSTI)

    Katoh, K.

    1984-01-01

    Since the first oil embargo in 1973, energy conservation has been receiving greater attention. In the field of automobiles, the last decade has seen significant improvement in vehicle fuel economy attained by inter-industries comprehensive efforts. Today the theme of ''Age of Unlimited Fuel Economy Competition'' or ''Age of Unlimited MPG Competition'' is often heard and the development of super fuel economy vehicles is being pursued actively. For example, it should be noted that the VW experimental vehicle with a direct-injection diesel engine has already exceeded 80 mpg in the U.S. test cycle. This paper will discuss the recent technological approach, especially from the standpoint of engine design, to achieve further improvements in vehicle fuel economy and its impacts on the properties of fuel and lubricants.

  4. Fueling the Economy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Economy Argonne helps make the United States a front-runner in the production of materials for advanced lithium-ion batteries used in plug-in hybrid electric vehicles...

  5. Global Fuel Economy Initiative: 50by50 Prospects and Progress...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentglobal-fuel-economy-initiative-50by50 Language: English Policies: Regulations Regulations: "Fuel Efficiency Standards,Mandates...

  6. 2004 FUEL ECONOMY GUIDE BEST IN CLASS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 FUEL ECONOMY GUIDE BEST IN CLASS 2004 FUEL ECONOMY GUIDE BEST IN CLASS A chart describing the 2004 fuel economy best in class vehicles. 2004 FUEL ECONOMY GUIDE BEST IN CLASS (65.53 KB) More Documents & Publications Microsoft Word - Document1 2010 Vehicle Technologies Market Report EPA Mobile Source Rule Update

  7. Fuel Economy.gov - Mobile | Open Energy Information

    Open Energy Info (EERE)

    Economy.gov - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy.gov - Mobile AgencyCompany Organization: United States Department of Energy Sector:...

  8. 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles November 5, 2015 - 1:07am Addthis Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Shannon Brescher Shea Communications Manager, Clean Cities Program The 2016 Fuel Economy Guide is now available. It provides fuel economy, greenhouse gas emission, and projected fuel cost information on model year

  9. Fuel Economy Fact and Fiction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    than ever, there's a lot of information-true and false-floating around about fuel economy. ... Just the facts... The best device for improving your fuel economy is a tire gauge. There ...

  10. SEP Success Story: Fueling South Carolina's Clean Energy Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling South Carolina's Clean Energy Economy SEP Success Story: Fueling South Carolina's Clean Energy Economy June 6, 2012 - 2:47pm Addthis Pure Power, LLC makes products that ...

  11. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms. | Photo...

  12. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms....

  13. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Excel file and ...

  14. The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 - ...

  15. 2011 Fuel Economy Guide Now Available | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agency (EPA) released the 2011 Fuel Economy Guide. This annual guide provides consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. ...

  16. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel ... President Obama announced a landmark agreement with automakers that sets aggressive new ...

  17. Natural Gas Pathways and Fuel Economy Guide Comparison

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I presentation slides: Natural Gas pathways and Fuel economy Guide Comparison Bob Wimmer, Toyota Natural Gas Pathways Toyota estimation Vehicle Total Fuel efficiency Range ...

  18. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  19. NREL: Transportation Research - Emissions and Fuel Economy Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions and Fuel Economy Analysis Photo of a man hooking up test instruments to an engine mounted on an engine dynamometer. An NREL engineer maintains an engine fuel economy and emissions test stand at the ReFUEL Laboratory. Photo by Dennis Schroeder, NREL NREL's emissions and fuel economy testing and analysis projects help address greenhouse gas and pollutant emissions by advancing the development of new fuels and engines that deliver both high efficiency and reduced emissions. Emissions that

  20. International Partnership for Hydrogen and Fuel Cells in the Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partnership for Hydrogen and Fuel Cells in the Economy International Partnership for Hydrogen and Fuel Cells in the Economy The United States is a founding member of the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE), which was created in 2003 to foster international cooperation on hydrogen and fuel cell R&D, common codes and standards, and information sharing on infrastructure development. The IPHE's 17 partners organize, evaluate, and

  1. Fuel economy and range estimates for fuel cell powered automobiles

    SciTech Connect (OSTI)

    Steinbugler, M.; Ogden, J.

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  2. Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The US | Department of Energy Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers double digit fuel economy benefits, much lower cost than diesel or hybrid. deer09_whitaker.pdf (488.25 KB) More Documents & Publications E85 Optimized

  3. Estimate of Technical Potential for Minimum Efficiency Performance Standards in 13 Major World Economies

    SciTech Connect (OSTI)

    Letschert, Virginie; Desroches, Louis-Benoit; Ke, Jing; McNeil, Michael

    2012-07-01

    As part of the ongoing effort to estimate the foreseeable impacts of aggressive minimum efficiency performance standards (MEPS) programs in the worlds major economies, Lawrence Berkeley National Laboratory (LBNL) has developed a scenario to analyze the technical potential of MEPS in 13 major economies around the world1 . The best available technology (BAT) scenario seeks to determine the maximum potential savings that would result from diffusion of the most efficient available technologies in these major economies.

  4. National Labs Work to Settle PHEV Fuel Economy Conundrum - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Labs Work to Settle PHEV Fuel Economy Conundrum NREL-developed methodology shows ... joined forces with researchers from Idaho National Laboratory (INL) and Argonne ...

  5. DOE and EPA Release 2011 Annual Fuel Economy Guide | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPA and DOE will provide additional fuel economy information online as more 2011 vehicles, including electric and plug-in hybrid cars, become available. In addition to being ...

  6. Fact #629: June 28, 2010 Top Ten Misconceptions about Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about Fuel Economy The Fuel Economy Guide Web site, sponsored by the U. S. Department of ... fuel economy on the www.fueleconomy.gov Web site, Find a Car. 3. It takes more fuel to ...

  7. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Classes | Department of Energy 4: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes The graph below shows the range of the lowest and highest fuel economy for each vehicle class, along with the lowest and highest annual fuel cost (in parentheses). For example, the two-seater model with the lowest fuel economy gets 10 miles per gallon (MPG) with an estimated annual fuel

  8. Natural Gas Pathways and Fuel Economy Guide Comparison | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Pathways and Fuel Economy Guide Comparison Natural Gas Pathways and Fuel Economy Guide Comparison Presentation by Bob Wimmer, Toyota, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois. oct11_infrastructure_wimmer.pdf (398.09 KB) More Documents & Publications Vehicle Technologies Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Natural Gas and

  9. Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_crane.pdf (549.96 KB) More Documents & Publications Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle Applications Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS,

  10. Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: July 18, 2011 Fuel Economy versus Fuel Savings Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings An increase in fuel economy by 5 miles per gallon (mpg) does not translate to a constant fuel savings amount. Thus, trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car or truck for one that is even higher. For example, trading a truck that gets 15 mpg for a new one that gets 20 mpg will save 16.7 gallons of fuel

  11. Assessment of California reformulated gasoline impact on vehicle fuel economy

    SciTech Connect (OSTI)

    Aceves, S., LLNL

    1997-01-01

    Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

  12. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1978-2014 - Dataset | Department of Energy 0: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 - Dataset Excel file and dataset for Corporate Average Fuel Economy Progress, 1978-2014 fotw#870_web.xlsx (17.92 KB) More Documents & Publications Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2

  13. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  14. Biomass Fueling America’s Growing Clean Energy Economy

    Broader source: Energy.gov [DOE]

    Biomass is the most abundant biological material on the planet. It is renewable; it grows almost everywhere; and it provides fuel, power, chemicals, and many other products. Find out how biomass is helping grow America's clean energy economy.

  15. Fuel Economy on the Fly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FuelEconomy.gov has a mobile version of its popular Find and Compare Cars tool that allows you to search anytime, anywhere. The mobile tool works just like the one on the ...

  16. "Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Economy, Selected Survey Years (Miles Per Gallon)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",15.1,16.1,18.3,19.3,19.8,20.2 "Household Characteristics" "Census...

  17. 2012 Fuel Economy of New Vehicles Sets Record High: EPA

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon.

  18. DOE and EPA Release 2012 Annual Fuel Economy Guide

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. - The Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) are releasing the 2012 Fuel Economy Guide, providing consumers with information that can help...

  19. Fuel economy and emissions reduction of HD hybrid truck over...

    Broader source: Energy.gov (indexed) [DOE]

    Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks p-12gao.pdf (345.05 KB) More Documents & Publications Advanced HD Engine Systems and ...

  20. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in ... The CAFE levels that must be met by the fleet of each manufacturer will be determined by ...

  1. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sets aggressive new fuel-economy standards for cars and light-duty trucks. A number of Energy Department projects and investments are unleashing innovation that will create jobs...

  2. 2010 Annual Fuel Economy Guide Now Available | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy ...

  3. Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort March 2, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has demonstrated that ventilated automotive seats not only can improve passenger comfort but also a vehicle's fuel economy. That's because ventilated seats keep drivers and passengers cooler, so they need less air conditioning to be comfortable. NREL's Vehicle Ancillary Loads Reduction team has been

  4. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  5. Fueling South Carolina's Clean Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy June 6, 2012 - 4:15pm Addthis Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of <a href="http://www.flickr.com/photos/clatiek/47587765/">Flickr user ClatieK</a>. Pure Power, LLC makes products that allow truck engines to reduce emissions and

  6. Real-World PHEV Fuel Economy Prediction

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  7. California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher

    Broader source: Energy.gov [DOE]

    In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses.

  8. EERE Success Story—California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher

    Broader source: Energy.gov [DOE]

    In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses.

  9. Fuel Economy Sticker Revs Up Used Car Sales | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    FuelEconomy.govs newest tool -- the Used Car Fuel Economy Label -- makes it easier for consumers to compare used cars, select the most fuel-efficient model and save money at ...

  10. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  11. Global Fuel Economy Initiative | Open Energy Information

    Open Energy Info (EERE)

    & North America, Europe, Latin America & Caribbean, Africa & Middle East Related Tools Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Turn Down the...

  12. Advanced Aerodynamic Technologies for Improving Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Such non-engine losses can account for about a 45% decrease in efficiency. The need for technologies to reduce these parasitic losses has gained significant attention as fuel costs ...

  13. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  14. Chapter 11. Fuel Economy: The Case for Market Failure

    SciTech Connect (OSTI)

    Greene, David L; German, John; Delucchi, Mark A

    2009-01-01

    The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of water heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be

  15. New Methodology for Estimating Fuel Economy by Vehicle Class

    SciTech Connect (OSTI)

    Chin, Shih-Miao; Dabbs, Kathryn; Hwang, Ho-Ling

    2011-01-01

    Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

  16. CleanFleet. Final report: Volume 4, fuel economy

    SciTech Connect (OSTI)

    1995-12-01

    Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day. The energy adjusted fuel economy (distance per energy consumed) of the alternative fuel vans operating on a typical FedEx duty cycle was between 13 percent lower and 4 percent higher than that of control vans from the same manufacturer. The driving range of vans operating on liquid and gaseous alternative fuels was 1 percent to 59 percent lower than for vans operating on unleaded gasoline. The driving range of the electric G-Vans was less than 50 miles. These comparisons are affected to varying degrees by differences in engine technology used in the alterative fuel and control vehicles. Relative fuel economy results from dynamometer emissions tests were generally consistent with those obtained from FedEx operations.

  17. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  18. Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    Nearly 64% of new cars sold in model year (MY) 1975 had combined highway/city fuel economy of 15 miles per gallon (mpg) or less [blue shading]. By 2010, 63% of cars had fuel economy of 25 mpg or...

  19. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight...

  20. 2012 Fuel Economy of New Vehicles Sets Record High: EPA | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Fuel Economy of New Vehicles Sets Record High: EPA 2012 Fuel Economy of New Vehicles Sets Record High: EPA December 18, 2013 - 12:00am Addthis The U.S. Environmental...

  1. Fact #680: June 20, 2011 Fuel Economy is "Most Important" When...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle Fact 680: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle A June 2011 survey asked the ...

  2. Fact #818: April 21, 2014 The Effect of Winter Weather on Fuel Economy

    Broader source: Energy.gov [DOE]

    Winter driving conditions and cold temperatures can have a significant effect on a vehicle’s fuel economy. For a conventional gasoline-powered vehicle, fuel economy at 20°F is about 12% lower than...

  3. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy...

    Office of Environmental Management (EM)

    Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis ...

  4. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by ...

  5. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the ...

  6. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings - Dataset Excel file and dataset for Improvements in Fuel Economy for Low-MPG ...

  7. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014

    Broader source: Energy.gov [DOE]

    The Corporate Average Fuel Economy (CAFE) is the sales-weighted harmonic mean fuel economy of a manufacturer’s fleet of new cars or light trucks in a certain model year (MY). First enacted by...

  8. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February ...

  9. Fact #772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save Fuel

    Broader source: Energy.gov [DOE]

    A recent study by Oak Ridge National Laboratory shows that the fuel economy of cars and light trucks in the study decreases rapidly at speeds above 50 miles per hour (mph). The study of 74 light...

  10. Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement | Department of Energy 7: September 7, 2009 Cash for Clunkers Program - Fuel Economy Improvement Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel Economy Improvement The Car Allowance Rebate System (CARS), also known as the Cash for Clunkers Program, provided Federal rebate money for consumers who traded old vehicles with an EPA combined fuel economy of 18 miles per gallon or less for brand new vehicles with improved fuel economy. The program was active from July 1

  11. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity | Department of Energy 9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The Environmental Protection Agency has developed a new methodology for determining how fuel economy information will be displayed on the window sticker of a vehicle that operates on electricity. The fuel economy will be displayed in miles per gallon equivalent (MPGequivalent), so that

  12. DOE and EPA Release Annual Fuel Economy Guide with 2013 Models

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency and the Department of Energy release the 2013 Fuel Economy Guide.

  13. Examining new fuel economy standards for the United States.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-01-01

    After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with

  14. Vehicle Technologies Office Merit Review 2015: Fuel Economy Information Project- Research, Data Validation, and Technical Assistance Related to Collecting, Analyzing, and Disseminating Accurate Fuel Economy Information

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel economy...

  15. Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content

    Broader source: Energy.gov [DOE]

    The fuel economy of a vehicle is dependent on many things, one of which is the fuel used in the vehicle. Two National Laboratories recently studied the effects that ethanol blends have on the fuel...

  16. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Speed | Department of Energy 1: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed of 55 miles per hour (mph) to 75 mph was between 20% and 30%. The Honda Insight, which is a hybrid vehicle, had the greatest fuel

  17. Fuel vaporization improves fuel economy of alcohol-burning Sl engines

    SciTech Connect (OSTI)

    Hardenberg, H.O.; Metsch, H.I.; Schaefer, A.J.

    1982-10-01

    Fuel vaporization and combustion of the thereby achieved homogeneous mixtures improve the overall efficiency of SI engines in comparison to operation with liquid fuels. The improvements result from a recovery of waste heat and the thus achieved greater usable energy of the fuel, which is increased by the heat of vaporization over the lower calorific value of the liquid fuel, and from the fact that very lean mixtures can be burnt without misfiring. The favorable fuel economy of the air/fuel-vapor mixture-aspirating engine is explained with the aid of engine cycle computation which also enables comparison of different combustion processes. Consideration of common substances shows that methanol is the fuel best suited for this type of SI engine.

  18. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect (OSTI)

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected

  19. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  20. NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy September 28, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently completed a performance evaluation report that showed significant fuel economy benefits of hybrid electric delivery vans compared to similar conventional vans. "During the on-road portion of our study, the hybrid vans demonstrated a 13 to 20 percent higher fuel economy than the

  1. The Road to Improved Heavy Duty Fuel Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Road to Improved Heavy Duty Fuel Economy The Road to Improved Heavy Duty Fuel Economy Heavy duty diesel engine fuel economy is improved by lowering the viscosity of engine lubricant, especially when engine speed is increased or load is decreased, as in long distance on-highway driving deer10_miller.pdf (2.25 MB) More Documents & Publications Development of High Performance Heavy Duty Engine Oils Technical Demonstration of 2010 Emissions Regulations over Transient Operation Lubricants -

  2. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs) the average fuel economy has noticeably increased in the last few years. These data are weighted by the number of vehicles sold. New Vehicle

  3. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Years 2012-2016 | Department of Energy 4: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016 The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model produced for sale in the United States will have a fuel economy target based on its footprint. A vehicle's footprint is defined as the wheelbase

  4. Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: June 7, 2010 Fuel Economy for Light and Heavy Vehicles Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles In the next few years it is expected that fuel economy standards will be imposed on new medium and heavy trucks sold in the U.S. Currently, the estimates of the medium and heavy truck population range from a high of 15 miles per gallon (mpg) for class 2b trucks to a low of 2.5 mpg for class 8a trucks. The chart below shows the range of fuel economy

  5. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David; Gibson, Robert

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  6. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov?

    Broader source: Energy.gov [DOE]

    On Monday, you read about the resources on Fueleconomy.gov and how they can help you compare the fuel economy of vehicles.

  7. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates

    Broader source: Energy.gov [DOE]

    Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

  8. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  9. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

    Broader source: Energy.gov [DOE]

    Historically, manual transmissions have delivered better fuel economy than automatic transmissions. However, improvements in the efficiency of automatic transmissions have closed that gap in recent...

  10. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings

    Broader source: Energy.gov [DOE]

    The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Thus, an increase in fuel economy by 5 mpg does not translate to a constant fuel savings amount...

  11. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  12. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise

    Broader source: Energy.gov [DOE]

    The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2013 was 1.6 miles per gallon (mpg) higher than MY 2011. This increase brings the new light vehicle fuel...

  13. Vehicle Technologies Office Merit Review 2015: Improve Fuel Economy through Formulation Design and Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Ashland Inc. at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about improve fuel economy through...

  14. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol

  15. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. analysis_saab2007.pdf (248.89 KB) More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon

  16. Analysis of In-Use Fuel Economy Shortfall Based on Voluntarily Reported MPG Estimates

    SciTech Connect (OSTI)

    Greene, David L; Goeltz, Rick; Hopson, Dr Janet L; Tworek, Elzbieta

    2007-01-01

    The usefulness of the Environmental Protection Agency's (EPA) passenger car and light truck fuel economy estimates has been the subject of debate for the past three decades. For the labels on new vehicles and the fuel economy information given to the public, the EPA adjusts dynamometer test results downward by 10% for the city cycle and 22% for the highway cycle to better reflect real world driving conditions. These adjustment factors were developed in 1984 and their continued validity has repeatedly been questioned. In March of 2005 the U.S. Department of Energy (DOE) and EPA's fuel economy information website, www.fueleconomy.gov, began allowing users to voluntarily share fuel economy estimates. This paper presents an initial statistical analysis of more than 3,000 estimates submitted by website users. The analysis suggests two potentially important results: (1) adjusted, combined EPA fuel economy estimates appear to be approximately unbiased estimators of the average fuel economy consumers will experience in actual driving, and (2) the EPA estimates are highly imprecise predictors of any given individual's in-use fuel economy, an approximate 95% confidence interval being +/-7 MPG. These results imply that what is needed is not less biased adjustment factors for the EPA estimates but rather more precise methods of predicting the fuel economy individual consumers will achieve in their own driving.

  17. Examining the potential for voluntary fuel economy standards in the United States and Canada.

    SciTech Connect (OSTI)

    Plotkin, S.; Greene, D.; Duleep, K.

    2003-03-19

    This report is designed to assist the U.S. Department of Energy, the U.S. government in general, and Natural Resources Canada with understanding the potential for voluntary fuel economy standards designed to increase the fuel economy of the North American fleet of light-duty vehicles (LDVs-passenger cars and light trucks) within a 10-15-year timeframe. The approach of this study has been: First, to examine and evaluate recent fuel economy initiatives taken in Japan and Europe; Second, to review the technologies available to improve fuel economy in the U.S. (and Canadian) fleets, focusing on their costs and fuel economy improvement potential; Third, to identify and broadly evaluate some alternatives to the current U.S. and Canadian Corporate Average Fuel Economy system of specifying uniform fuel economy targets (27.5 mpg for cars, 20.7 mpg for light trucks) for individual companies; and Fourth, to try to determine an approximate level of fuel economy increase and form of company agreements that would be conducive to a voluntary agreement, based on the assumption that an acceptable voluntary standard would impose an equitable burden on each manufacturer and would be approximately cost-effective from consumers' private perspectives.

  18. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  19. Fuel economy and emissions reduction of HD hybrid truck over transient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    driving cycles and interstate roads | Department of Energy economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks p-12_gao.pdf (345.05 KB) More Documents & Publications Advanced HD Engine Systems and Emissions Control Modeling and Analysis

  20. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    SciTech Connect (OSTI)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  1. High Fuel Economy Heavy-Duty Truck Engine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Heavy-Duty Truck Engine High Fuel Economy Heavy-Duty Truck Engine 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace060_tai_2011_o.pdf (434.09 KB) More Documents & Publications Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement Vehicle Technologies Office Merit Review 2016: Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement SuperTruck Program: Engine Project Review

  2. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings

  3. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  4. Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0: July 5, 2010 Fuel Economy vs. Weight and Performance Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance From 1980 to 2009, there have been significant gains made in automotive technology, but those advancements have been applied toward improved performance and safety rather than fuel economy. Horsepower has more than doubled, top speed has climbed from 107 miles per hour to 139 miles per hour, and "0-to-60" times have dropped from 14.3 seconds

  5. Fact #730: June 4, 2012 Fuel Economy of New Light Vehicles is Up 19% from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1980 to 2011 | Department of Energy 0: June 4, 2012 Fuel Economy of New Light Vehicles is Up 19% from 1980 to 2011 Fact #730: June 4, 2012 Fuel Economy of New Light Vehicles is Up 19% from 1980 to 2011 In addition to a 120% increase in horsepower and 35% decrease in 0-60 time from 1980 to 2011, the fuel economy of vehicles improved nearly 19%. All of these data series are sales-weighted averages that have been indexed to 1980, showing the relative relationship among the years since 1980. In

  6. Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attribute | Department of Energy 3: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute A 2014 survey asked a sample of the U.S. population the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low price, quality, and safety. This same question was asked in

  7. Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attribute - Dataset | Department of Energy 3: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute - Dataset Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute - Dataset Excel file with dataset for Fact #833: Fuel Economy Rated Second Most Important Vehicle Attribute fotw#833_web.xlsx (16.8 KB) More Documents & Publications National Skills Assessment of the U.S. Wind Industry in 2012 Sub-scale Drum Test Memo Fact #833: August 11,

  8. EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light-Duty Advanced Technology Powertrain | Department of Energy FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain March 7, 2016 - 10:57am Addthis EERE Success Story—FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story—FCA and Partners Achieve 25%

  9. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be used in vehicles. | Photo courtesy

  10. New Find-a-Car App Brings Fuel Economy Right to Your Phone

    Broader source: Energy.gov [DOE]

    With more car buyers than ever using the Internet to research their future vehicles, accessing information on fuel economy needs to be simple and convenient. To make searching easier on mobile...

  11. Fact #696: October 10, 2011 Top Ten "Real World" Fuel Economy Leaders

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency (EPA) fuel economy ratings on the window stickers of new cars are based on strict test cycles conducted in a controlled laboratory setting. These official EPA...

  12. Energy Department and Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles

    Broader source: Energy.gov [DOE]

    The U.S. Energy Department and the Environmental Protection Agency (EPA) released a new label that features EPA fuel economy estimates and CO2 estimates for used vehicles sold in the United States since 1984.

  13. Fact #804: November 18, 2013 Tool Available to Print Used Vehicle Fuel Economy Window Stickers

    Broader source: Energy.gov [DOE]

    Because used vehicle sales outnumber new vehicle sales by about three to one, a new tool has been developed that allows those selling used vehicles to produce a fuel economy label for the vehicle....

  14. Fact #826: June 23, 2014 The Effect of Tire Pressure on Fuel Economy

    Broader source: Energy.gov [DOE]

    Researchers at Oak Ridge National Laboratory recently conducted a study that measured the effect of tire pressure on fuel economy at speeds ranging from 40 to 80 miles per hour. The figure below...

  15. Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy

    Broader source: Energy.gov [DOE]

    The "Gas Guzzler Tax" is collected from the public for each new car purchased with fuel economy less than 22.5 miles per gallon (mpg). The Gas Guzzler Tax does not apply to light trucks, only cars....

  16. We Can’t Wait: Driving Forward with New Fuel Economy Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    An overview of the new fuel economy program, designed to save American families money at the pump, reduce our country’s dependence on oil, and boost domestic manufacturing.

  17. EERE Success Story- Novel Engine Lubrication Anti-Wear Additives Demonstrate Improved Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oak Ridge National Laboratory (ORNL) has been working with General Motors, Lubrizol, and Shell to develop new additives for lubricants that could boost fuel economy by 2% compared to commercially...

  18. Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute A 2014 survey asked a sample of the U.S. population the question "Which one of the following ...

  19. Fact #773: April 1, 2013 Fuel Economy Penalty at Higher Speeds

    Broader source: Energy.gov [DOE]

    Each vehicle reaches an optimal fuel economy at a different speed or range of speeds. A recent study by Oak Ridge National Laboratory illustrates that point with a wide range of data collected on...

  20. Fact #680: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle

    Broader source: Energy.gov [DOE]

    A June 2011 survey asked the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low...

  1. Policy Discussion - Heavy-Duty Truck Fuel Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Discussion - Heavy-Duty Truck Fuel Economy Policy Discussion - Heavy-Duty Truck Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER) Conference Presesntation: National Commission on Energy Policy 2004_deer_kodjak.pdf (168.97 KB) More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 The Energy Efficiency Potential of Global Transport to 2050 Vehicle Technologies Office Merit Review 2014: DOE's Effort to

  2. DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources, and More | Department of Energy H-Prize Safety Guidelines, Fuel Economy Resources, and More DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy Resources, and More August 6, 2015 - 8:30am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch

  3. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  4. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  5. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  6. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yield the Greatest Savings | Department of Energy 5: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings SUBSCRIBE to the Fact of the Week The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car

  9. Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed

    SciTech Connect (OSTI)

    Thomas, John F; Hwang, Ho-Ling; West, Brian H; Huff, Shean P

    2013-01-01

    The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

  10. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  11. EERE Success Story- Chrysler and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain

    Broader source: Energy.gov [DOE]

    Internal combustion engines have the potential to become substantially more efficient, with laboratory tests indicating that new technologies could increase passenger vehicle fuel economy by more...

  12. Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Proposed statement of work for the upcoming solicitation for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy.

  13. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

  14. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  15. Review of alternate automotive engine fuel economy. Final report January-October 78

    SciTech Connect (OSTI)

    Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

    1980-11-01

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

  16. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  17. What Steps Do You Take to Improve Your Fuel Economy? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Shannon told you some facts about fuel economy and how you can use less gas and save money at the pump. What steps do you take to improve your fuel economy? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles How Do You Save Energy at Home While on Vacation? How Do You Make Greener Transportation Choices?

  18. Fuel Economy on the Fly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It displays an annual fuel cost, allowing you to figure out the real cost of that sports car. Because the database reaches all the way back to 1984, you can even compare used and ...

  19. Annual Fuel Economy Guide with 2014 Models Released | Department...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Environmental Protection Agency (EPA) and the Energy ... including an estimated annual fuel cost for each vehicle. ... like air conditioning usage and a variety of speed and ...

  20. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  1. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Light Vehicle Fuel Economy, 1975-2013 Model Year Miles per Gallon 1975 13.1 1976 14.2 1977 15.1 1978 15.8 1979 15.9 1980 19.2 1981 20.5 1982 21.1 1983 21.0 1984 21.0 1985 21.3 ...

  2. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

  3. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E; Franzese, Oscar

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  4. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect (OSTI)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  5. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project

  6. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Class 4 Parcel Delivery Vehicle | Department of Energy Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the U.S. and improve air quality. p-13_thornton.pdf (476.67

  7. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results

    SciTech Connect (OSTI)

    John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

    2009-09-01

    Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting “raw” fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such “raw” PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

  8. Survey Evidence on the Willingness of U.S. Consumers to Pay for Automotive Fuel Economy

    SciTech Connect (OSTI)

    Greene, David L; Evans, David H; Hiestand, John

    2013-01-01

    Prospect theory, which was awarded the Nobel Prize in Economics in 2002, holds that human beings faced with a risky bet will tend to value potential losses about twice as much as potential gains. Previous research has demonstrated that prospect theory could be sufficient to explain an energy paradox in the market for automotive fuel economy. This paper analyzes data from four random sample surveys of 1,000 U.S. households each in 2004, 2011, 2012 and 2013. Households were asked about willingness to pay for future fuel savings as well as the annual fuel savings necessary to justify a given upfront payment. Payback periods inferred from household responses are consistent over time and across different formulations of questions. Mean calculated payback periods are short, about 3 years, but there is substantial dispersion among individual responses. Calculated payback periods do not appear to be correlated with the attributes of respondents. Respondents were able to quantitatively describe their uncertainty about both vehicle fuel economy and future fuel prices. Simulation of loss averse behavior based on this stated uncertainty illustrate how loss aversion could lead consumers to substantially undervalue future fuel savings relative to their expected value.

  9. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    SciTech Connect (OSTI)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  10. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion whenmore » speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  11. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    SciTech Connect (OSTI)

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.

  12. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower

    Broader source: Energy.gov (indexed) [DOE]

    07-01-3994 Fuel Economy and Emissions of the Ethanol- Optimized Saab 9-5 Biopower Brian H. West, Alberto J. López, Timothy J. Theiss, Ronald L. Graves, John M. Storey and Samuel A. Lewis Oak Ridge National Laboratory ABSTRACT Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp (112 kW) on

  13. US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing

    SciTech Connect (OSTI)

    Donald Karner; J.E. Francfort

    2005-09-01

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

  14. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Multi-mode RCCI (Reactivity-Controlled Compression Ignition), a promising advanced combustion process, has the potential to improve fuel economy of passenger cars by at least 15%, according to a...

  15. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

    Broader source: Energy.gov [DOE]

    Despite a 124% increase in horsepower and 47% decrease in 0-60 time from 1980 to 2014, the fuel economy of vehicles improved 27%. All of these data series are sales-weighted averages. The weight of...

  16. Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower

    SciTech Connect (OSTI)

    West, Brian H; Lopez Vega, Alberto; Theiss, Timothy J; Graves, Ronald L; Storey, John Morse; Lewis Sr, Samuel Arthur

    2007-01-01

    Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full useful life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.

  17. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    SciTech Connect (OSTI)

    Letschert, Virginie E.; Bojda, Nicholas; Ke, Jing; McNeil, Michael A.

    2012-07-01

    This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programs while still saving consumers money?

  18. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared to current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.

  19. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  20. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

  1. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014

  2. Fact #941: September 5, 2016 Mid-term Evaluation of the Corporate Average Fuel Economy Standards May Impact Future Standards for Model Years 2022 to 2025- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Mid-term Evaluation of the Corporate Average Fuel Economy Standards May Impact Future Standards for Model Years 2022 to 2025

  3. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; Smith, David E.; Wagner, Robert M.; Daw, C. Stuart; Edwards, K. Dean; Thomas, John F.

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  4. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; Smith, David E.; Wagner, Robert M.; Daw, C. Stuart; Edwards, K. Dean; Thomas, John F.

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.

  5. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    SciTech Connect (OSTI)

    1982-01-01

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  6. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect (OSTI)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  8. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  9. On feasibility of a closed nuclear power fuel cycle with minimum radioactivity

    SciTech Connect (OSTI)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.

    2015-12-15

    Practical implementation of a closed nuclear fuel cycle implies solution of two main tasks. The first task is creation of environmentally acceptable operating conditions of the nuclear fuel cycle considering, first of all, high radioactivity of the involved materials. The second task is creation of effective and economically appropriate conditions of involving fertile isotopes in the fuel cycle. Creation of technologies for management of the high-level radioactivity of spent fuel reliable in terms of radiological protection seems to be the hardest problem.

  10. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    SciTech Connect (OSTI)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  11. The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions

    Broader source: Energy.gov [DOE]

    Statistical models developed from designed esperiments (varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints.

  12. Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle

    Broader source: Energy.gov [DOE]

    A 2012 survey asked the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low price,...

  13. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-01-2049 Measured Laboratory and In-Use Fuel Economy Published Observed over Targeted Drive Cycles for 09/24/2012 Comparable Hybrid and Conventional Package Delivery Vehicles Michael P. Lammert, Kevin Walkowicz, Adam Duran and Petr Sindler National Renewable Energy Laboratory ABSTRACT This research project compares the in-use and laboratory- derived fuel economy of a medium-duty hybrid electric drivetrain with "engine off at idle" capability to a conventional drivetrain in a typical

  14. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  15. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real

  16. Vehicle Technologies Office Merit Review 2015: Fuel Economy Guide and fueleconomy.gov Website

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the fuel...

  17. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car or truck for one that is even higher. An improvement in fuel ...

  18. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Vehicle Technologies Office Merit Review 2016: Integrated Boosting and Hybridization for Extreme Fuel Economy and Downsizing

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  20. EPA and DOE Release Annual Fuel Economy Guide with 2014 Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the most fuel efficient and low greenhouse gas-emitting vehicles that meet their needs. ... Also, for the second consecutive year, the guide includes a 110 greenhouse ...

  1. Vehicle Technologies Office Merit Review 2015: Integrated Boosting and Hybridization for Extreme Fuel Economy and Downsizing

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated boosting and hybridization...

  2. EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the most fuel-efficient and low greenhouse gas emitting vehicles that meet their needs. ... The guide includes a greenhouse gas rating (from one to 10) for each model, giving ...

  3. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car or truck for one that is even higher. For example, trading a truck ...

  4. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

    2009-08-01

    Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

  5. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-02-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains a minimum of 231 citations and includes a subject term index and title list.)

  6. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect (OSTI)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  7. Hybrid Taxis Give Fuel Economy a Lift -Clean Cities Fleet Experiences -

    SciTech Connect (OSTI)

    2009-04-01

    The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids.

  8. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar; Davidson, Diane

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel

  9. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    SciTech Connect (OSTI)

    Keating, Edward; Gough, Charles

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  10. Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M

    2012-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

  11. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid drivetrains have shown signifcant promise as part of an overall petroleum reduction feet strategy [1, 2, 3, 4, 5, 6]. Hybrid drivetrains consist of an energy storage device and a motor integrated into a traditional powertrain and offer the potential fuel savings by capturing energy normally lost during deceleration through the application of regenerative braking. Because hybrid technologies, especially hydraulic hybrids, have low adoption rates in the medium-duty vehicle segment and

  12. Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.

  13. Fuel Economy and Emissions Effects of Low Tire Pressure, Open Windows, Roof Top and Hitch-Mounted Cargo, and Trailer

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2014-01-01

    To quantify the fuel economy (FE) effect of some common vehicle accessories or alterations, a compact passenger sedan and a sport utility vehicle (SUV) were subjected to SAE J2263 coastdown procedures. Coastdowns were conducted with low tire pressure, all windows open, with a roof top or hitch-mounted cargo carrier, and with the SUV pulling an enclosed cargo trailer. From these coastdowns, vehicle dynamometer coefficients were developed which enabled the execution of vehicle dynamometer experiments to determine the effect of these changes on vehicle FE and emissions over standard drive cycles and at steady highway speeds. The FE penalty associated with the rooftop cargo box mounted on the compact sedan was as high as 25-27% at higher speeds, where the aerodynamic drag is most pronounced. For both vehicles, use of a hitch mounted cargo tray carrying a similar load resulted in very small FE penalties, unlike the rooftop cargo box. The results for the SUV pulling a 3500 pound enclosed cargo trailer were rather dramatic, resulting in FE penalties ranging from 30%, for the city cycle, to 50% at 80 mph, at which point significant CO generation indicated protective enrichment due to high load. Low tire pressure cases resulted in negligible to 10% FE penalty depending on the specific case and test point. Driving with all four windows open decreased FE by 4-8.5% for the compact sedan, and 1-4% for the SUV.

  14. Vehicle Technologies Office Merit Review 2016: Integrated Friction Reduction Technology to Improve Fuel Economy without Sacrificing Durability

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by George Washington University at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Fuel &...

  15. Evaluation of the Fuel Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Vehicle Efficiency and Tractive Work: Rate of Change for the Past Decade and Accelerated Progress Required for U.S. Fuel Economy and CO2 Regulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, John

    2016-04-05

    A major driving force for change in light-duty vehicle design and technology is the National Highway Traffic Safety Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) joint final rules concerning Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emissions for model years (MY) 2016 through 2025 passenger cars and light trucks. The chief goal of this current study is to compare the already rapid pace of fuel economy improvement and technological change over the previous decade to the needed rate of change to meet regulations over the next decade. EPA and NHTSA comparisons of the MY 2004 USmore » light-duty vehicle fleet to the MY 2014 fleet shows improved fuel economy (FE) of approximately 28% using the same FE estimating method mandated for CAFE regulations. Future predictions by EPA and NHTSA concerning ensemble fleet fuel economy are examined as an indicator of needed vehicle rate-of-change. A set of 40 same-model vehicle pairs for MY 2005 and MY 2015 is compared to examine changes in energy use and related technological change over the 10 year period. Powertrain improvements measured as increased vehicle efficiency, and vehicle mass-glider improvements measured as decreased tractive work requirements are quantified. The focus is first on conventional gasoline powertrain vehicles which currently dominate the market, with hybrids also examined due to their high potential importance for CAFE compliance. Most hybrid vehicles with significant sales in 2014 were represented in the study. Results show 10 years of progress for the studied vehicle set includes lowered tractive effort of about 5.6% and improved powertrain efficiency of about 16.5%. Further analysis shows that this high rate of past progress must increase by about 50% in order to meet the 2025 CAFE standards. Examination of where certain MY 2015 vehicle compare to CAFE regulations is offered as well as some simple conjecture on what is needed to meet regulations under

  17. Supporting a Hawaii Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Supporting a Hawaii Hydrogen Economy Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Supporting a Hawaii...

  18. Vehicle Technologies Office Merit Review 2016: Methods to Measure, Predict, and Relate Friction, Wear, and Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Ricardo at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  19. Emissions and fuel economy of a vehicle with a spark-ignition, direct-injection engine : Mitsubishi Legnum GDI{trademark}.

    SciTech Connect (OSTI)

    Cole, R. L.; Poola, R. B.; Sekar, R.

    1999-04-08

    A 1997 Mitsubishi Legnum station wagon with a 150-hp, 1.8-L, spark-ignition, direct-injection (SIDI) engine was tested for emissions by using the FTP-75, HWFET, SC03, and US06 test cycles and four different fuels. The purpose of the tests was to obtain fuel-economy and emissions data on SIDI vehicles and to compare the measurements obtained with those of a port-fuel-injection (PFI) vehicle. The PFI vehicle chosen for the comparison was a 1995 Dodge Neon, which meets the Partnership for a New Generation of Vehicles (PNGV) emissions goals of nonmethane hydrocarbons (NMHC) less than 0.125 g/mi, carbon monoxide (CO) less than 1.7 g/mi, nitrogen oxides (NO{sub x} ) less than 0.2 g/mi, and particulate matter (PM) less than 0.01 g/mi. The Mitsubishi was manufactured for sale in Japan and was not certified to meet current US emissions regulations. Results show that the SIDI vehicle can provide up to 24% better fuel economy than the PFI vehicle does, with correspondingly lower greenhouse gas emissions. The SIDI vehicle as designed does not meet the PNGV goals for NMHC or NO{sub x} emissions, but it does meet the goal for CO emissions. Meeting the goal for PM emissions appears to be contingent upon using low-sulfur fuel and an oxidation catalyst. One reason for the difficulty in meeting the NMHC and NO{sub x} goals is the slow (200 s) warm-up of the catalyst. Catalyst warm-up time is primarily a matter of design. The SIDI engine produces more NMHC and NO{sub x} than the PFI engine does, which puts a greater burden on the catalyst to meet the emissions goals than is the case with the PFI engine. Oxidation of NMHC is aided by unconsumed oxygen in the exhaust when the SIDI engine operates in stratified-charge mode, but the same unconsumed oxygen inhibits chemical reduction of NO{sub x} . Thus, meeting the NO{sub x} emissions goal is likely to be the greatest challenge for the SIDI engine.

  20. Emissions and fuel economy of a Comprex pressure wave supercharged diesel. Report EPA-AA-TEB-81-1

    SciTech Connect (OSTI)

    Barth, E.A.; Burgenson, R.N.

    1980-10-01

    In order to increase public interest in vehicles equipped with diesel engines, methods of improving diesel-fueled engine performance, as compared to current gasoline-fueled counterparts, are being investigated. One method to increase performance is to supercharge or turbocharge the engine. This report details an EPA assessment of a supercharging technique previously evaluated, however, since that evaluation, specific areas of operation have been refined.

  1. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2004 Structural Studies of Catalytically Stabilized Industrial Hydrotreating Catalysts Myriam Perez De la Rosa 1 , Gilles Berhault 2 , Apurva Mehta 3 , Russell R. Chianelli 1 1 University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2 Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3 Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS 2 layered structure. As the world economy continues to expand the demand for

  2. Supporting a Hawaii Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Pete Devlin U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Supporting a Hawaii Hydrogen Economy Mitch Ewan Hawaii Natural Energy Institute University of Hawaii at Manoa 29 July 2014 CHALLENGES Hawaii is Most Petroleum-Dependent State in US Highest/Most Volatile Electricity Rates in US Import 90% of Energy $11Billion leaves Hawaii economy* * Based

  3. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M; Edwards, Kevin Dean; Smith, David E

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Fuel Economy and Greenhouse Gas Emissions Standards Vehicle manufacturers must meet fuel economy and greenhouse gas (GHG) emissions standards for vehicles sold in the United States. The U.S. Department of Transportation's (DOT) National Highway Traffic Safety Administration (NHTSA) regulates fuel economy standards, while the U.S. Environmental Protection Agency (EPA) regulates GHG emissions. NHTSA's Corporate Average Fuel Economy (CAFE) program and EPA's light-duty vehicle GHG emissions

  5. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Fact 591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Seven vehicles were tested by ...

  6. Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7, 2009 Cash for Clunkers Program - Fuel Economy Improvement Fact 587: September 7, 2009 Cash for Clunkers Program - Fuel Economy Improvement The Car Allowance Rebate System ...

  7. The Methanol Economy Project

    SciTech Connect (OSTI)

    Olah, George; Prakash, G. K.

    2014-02-01

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO2 capture using supported amines, co-electrolysis of CO2 and water to formate and syngas, decomposition of formate to CO2 and H2, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.

  8. EERE Success Story-California and Connecticut: National Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher EERE Success Story-California and Connecticut: National Fuel Cell Bus Programs Drive Fuel ...

  9. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find alternative fuel vehicle resources. Alternative Fuels Data Center FuelEconomy.gov-Gas Mileage, Emissions, Air Pollution Ratings, and Safety Data National Renewable Energy ...

  10. Renewable Fuels and Vehicles Overview

    Broader source: Energy.gov (indexed) [DOE]

    Product Recovery Products By-products Enzyme Production ... waste CO 2 resource (e.g. coal power plant) * Potential ... ReFUEL * Emissions * Fuel Economy * Combustion * Durability ...

  11. Northeast States' Hydrogen Economy Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy Webinar Northeast States' Hydrogen Economy Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Northeast States' Hydrogen Economy" held on December 1, 2015. Northeast States' Hydrogen Economy Webinar Slides (4.34 MB) More Documents & Publications Connecticut Fuel Cell Activities: Markets, Programs, and Models 2009 DOE Hydrogen Program Review Presentation Transportation and Stationary

  12. Supporting a Hawaii Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Supporting a Hawaii Hydrogen Economy Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Supporting a Hawaii Hydrogen Economy" held on July 29, 2014. Supporting a Hawaii Hydrogen Economy Webinar Slides (2.12 MB) More Documents & Publications 2010 Smart Grid Peer Review Day One Morning Presentations 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update Hawaii Hydrogen Energy Park

  13. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  14. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  15. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  16. Energy Economy

    U.S. Energy Information Administration (EIA) Indexed Site

    Adam Sieminski (202) 662-1624 April 2010 Energy and the Economy US EIA & JHU SAIS 2010 Energy Conference April 6, 2010 All prices are those current at the end of the previous trading session unless otherwise indicated. Prices are sourced from local exchanges via Reuters, Bloomberg and other vendors. Data is sourced from Deutsche Bank and subject companies. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. Adam Sieminski, CFA Chief Energy Economist adam.sieminski@db.com +1 202

  17. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Northeast States Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy U.S. Department of Energy Fuel Cell Technologies Office December 1 st , 2015 Presenter: Joel Rinebold - Connecticut Center for Advanced Technology, Inc. DOE Host: Peter Devlin- DOE Fuel Cell Technologies Office Question and Answer * Please type your questions into the question box 2 Northeast States' Hydrogen Economy Economic Development, Environmental Performance, Energy Reliability Joel M. Rinebold Connecticut Center for Advanced Technology, Inc. December 1,

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Economy Test Procedures and Labeling The U.S. Environmental Protection Agency (EPA) is responsible for motor vehicle fuel economy testing. Manufacturers test their own vehicles and report the results to EPA. EPA reviews the results and confirms a portion of them using their own testing facilities. To aid consumers shopping for new vehicles, EPA redesigned the fuel economy window sticker posted on all new cars and light trucks starting with Model Year 2013 vehicles to be easier to read and

  20. NREL: Hydrogen and Fuel Cells Research - Evaluation Results Show...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation Results Show Continued Improvements in Fuel Cell Electric Vehicle Durability, Fuel Economy, Driving Range Project Technology Validation: Fuel Cell Electric Vehicle ...

  1. The Effect of Diesel Fuel Properties on Emissions-Restrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions Statistical models developed from designed esperiments (varying fuel properties and ...

  2. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy ...

  3. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Office of Environmental Management (EM)

    vehicle could cut your fuel costs and help the environment. See FuelEconomy.gov's Find a Car tool for more information on buying a new fuel-efficient car or truck. Learn more about...

  4. International Partnership for a Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership for a Hydrogen Economy International Partnership for a Hydrogen Economy "Presentation summarizing the vision, mission, goals and plans for DOE's International Partnership for a Hydrogen Economy " iphe_overview.pdf (637.95 KB) More Documents & Publications Hydrogen Program Goal-Setting Methodologies Report to Congress The Non-Petroleum Based Fuel Initiative - NPBF The Pathway to Energy Security

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduced Registration Fee for Fuel-Efficient Vehicles A new motor vehicle with a U.S. Environmental Protection Agency estimated average city fuel economy of at least 40 miles per ...

  6. Fuel FX International Inc | Open Energy Information

    Open Energy Info (EERE)

    on development and distribution of proprietary products focused on improving fuel economy and reducing environmental emissions in diesel and gasoline engines. References: Fuel...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirements Alternative fuel dispensers must be labeled with information to help consumers make informed decisions about fueling a vehicle, including the name of the fuel and the minimum percentage of the main component of the fuel. Labels may also list the percentage of other fuel components. This requirement applies to, but is not limited to, the following fuel types: methanol, denatured ethanol, and/or other alcohols; mixtures containing 85% or more by volume of

  8. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  9. NREL: Transportation Research - Alternative Fuel Fleet Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... gas (LNG) is a non-toxic, non-corrosive alternative fuel that offers reduced emissions and similar fuel economy compared to conventional fuels. Norcal Waste Systems LNG Refuse ...

  10. Emission Performance of Modern Diesel Engines Fueled with Biodiesel

    Broader source: Energy.gov [DOE]

    This study presents full quantification of biodiesel's impact on emissions and fuel economy with the inclusion of DPF regeneration events.

  11. Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of ...

  12. Study Reveals Fuel Injection Timing Impact on Particle Number...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines. In an ongoing quest to meet ever-more-rigorous fuel economy and ...

  13. Alternative Fuels Data Center: Techniques for Drivers to Conserve...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel is required to provide the energy necessary to overcome resistance from air and tire ... Devices and additives claiming to improve fuel economy and reduce pollution are usually ...

  14. Webinar December 1: Northeast States’ Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Northeast States’ Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. EST. The webinar will focus on state efforts to support the regional development of hydrogen infrastructure for the deployment of fuel cell electric vehicles in the Northeast United States.

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel economy of 22 miles per gallon (as listed at www.fueleconomy.gov) and may not be a sport utility vehicle. Exemptions apply to security, emergency rescue, snow removal, and...

  16. The Booming App Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is tapping into the App Economy -- offering cash prizes to the developers of the best energy-focused applications.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Carbon Fuel Standard California's Low Carbon Fuel Standard (LCFS) Program requires a reduction in the carbon intensity of transportation fuels that are sold, supplied, or offered for sale in the state by a minimum of 10% by 2020. The California Air Resources Board (ARB) regulations require transportation fuel producers and importers to meet specified average carbon intensity requirements for fuel. In the regulations, carbon intensity reductions are based on reformulated gasoline mixed with

  18. Fuel Economy Coach | Open Energy Information

    Open Energy Info (EERE)

    driving performance - green means you are doing well, yellow means you are average and red means you are being inefficient. An audible tone will be played by the app when you are...

  19. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deercrane.pdf (549.96 KB) More Documents & Publications Potential of Thermoelectrics forOccupant ...

  20. International Partnerships for the Hydrogen Economy Fact Sheet | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy The U.S. has committed $1.7 billion to implement collaborative and cooperative efforts to advance research, development and deployment of hydrogen production, storage, transport and distribution, fuel cell technologies, common codes and standards for hydrogen fuel utilization, and coordination of international efforts to develop a global hydrogen economy.

  1. Turning Sun and Water Into Hydrogen Fuel

    Broader source: Energy.gov [DOE]

    In a key step towards advancing a clean energy economy, scientists have engineered a cheap, abundant way to make hydrogen fuel from sunlight and water.

  2. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect (OSTI)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  3. Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy | Department of Energy 7: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy since the Environmental Protection Agency (EPA) began recording new car fuel economy data in 1975. In addition, the 22.4

  4. International Partnership for a Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Partnership for the Hydrogen Economy (IPHE) U.S. Department of Energy Why Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources. . Distributed Generation Transportation Biomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With Carbon Sequestration HIGH EFFICIENCY & RELIABILITY ZERO/NEAR ZERO EMISSIONS 3 President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1.2 billion in research funding ....

  5. Fact #764: January 28, 2013 Model Year 2013 Brings More Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a consumer purchasing a new large car in 2008, the highest combined cityhighway fuel economy available was 25 miles per gallon (mpg); for 2013, the top fuel economy of the ...

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Sales Volume Goals The Wisconsin Legislature sets goals for minimum annual renewable fuel sales volumes based on annual renewable fuel volumes required under the federal Renewable Fuel Standard. On an annual basis, the Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP), in cooperation with the Department of Commerce, the Department of Revenue, and the Energy Office, must determine whether the annual goals for the previous year were met. If the goals were

  7. A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics

    Broader source: Energy.gov [DOE]

    Results indicate a strong tradeoff between maximum rate of cylinder pressure rise (which also correlates to NOx and peak cylinder pressure) and fuel economy for 21 tested fuels.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities The mission of Clean Cities is to advance the energy, economic, and environmental security of the United States by supporting local initiatives to adopt practices that reduce the use of petroleum in the transportation sector. Clean Cities carries out this mission through a network of nearly 100 volunteer coalitions, which develop public/private partnerships to promote alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean

  9. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that...

  10. CODES & STANDARDS FOR THE HYDROGEN ECONOMY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CODES & STANDARDS FOR THE HYDROGEN ECONOMY CODES & STANDARDS FOR THE HYDROGEN ECONOMY 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. scsp_01_nakarado.pdf (806.45 KB) More Documents & Publications CSA International Certification Discussion Hydrogen Technology Workshop Fueling Components Testing and Certification US DRIVE Hydrogen Codes and Standards Technical Team Roadmap

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement All gasoline-powered vehicles purchased with state funds must be flexible fuel vehicles (FFVs) or fuel-efficient hybrid electric vehicles (HEVs). Fuel-efficient HEVs are defined as automobiles or light trucks that use a gasoline or diesel engine and an electric motor to provide power and that gain at least a 20% increase in combined U.S. Environmental Protection Agency city-highway fuel economy over the equivalent or most-similar

  12. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Fuel Efficient Vehicle Program Update Gasoline Ultra Fuel Efficient Vehicle Program Update Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions performance improvements compared to a production baseline vehicle. deer12_confer.pdf (1.38 MB) More Documents & Publications Gasoline Ultra Fuel Efficient Vehicle Gasoline Ultra Fuel Efficient Vehicle Gasoline Ultra Fuel Efficient Vehicle

  13. Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Energy Economy The clean energy economy continues to grow, creating new job opportunities for tens of thousands of Americans along the way. <a href="/node/385315">Learn more</a> about the growth of America's clean energy economy. | Infographic by Sarah Gerrity, Energy Department. The clean energy economy continues to grow, creating new job opportunities for tens of thousands of Americans along the way. Learn more about the growth of America's clean energy economy. |

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fueling Station Regulations The Colorado Department of Labor and Employment, Division of Oil and Public Safety (Division), must create rules concerning retail hydrogen fueling stations. The rules must include information regarding inspections, specifications, shipment notification, record keeping, labeling of containers, use of meters or mechanical devices for measurement, submittal of installation plans, and minimum standards for the design, construction, location, installation, and

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Tire Program Development The California Energy Commission (CEC) must adopt and implement a state-wide Fuel-Efficient Tire Program that includes a consumer information and education program and minimum tire efficiency standards. The CEC must consult with the California Integrated Waste Management Board on the program's adoption, implementation, and regular review. (Reference California Public Resources Code 25770-2577

  16. Clean Economy Network Foundation | Open Energy Information

    Open Energy Info (EERE)

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  17. Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

  18. Advanced Bio-based Jet Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Approach * Biochemical conversion to Ethanol * Biochemical conversion to Advanced ...Costing and Raw Material Accounting Ethanol Yield Cost gal MFSP Minimum Fuel ...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Infrastructure Tax Credit NOTE: This incentive originally expired on December 31, 2013, but was retroactively extended through December 31, 2016, by H.R. 2029. Fueling equipment for natural gas, liquefied petroleum gas (propane), liquefied hydrogen, electricity, E85, or diesel fuel blends containing a minimum of 20% biodiesel installed between January 1, 2015, and December 31, 2016, is eligible for a tax credit of 30% of the cost, not to exceed $30,000. Permitting and inspection

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Use Requirement All diesel-powered motor vehicles, light trucks, and equipment owned or leased by a state agency must operate using diesel fuel that contains a minimum of 2% biodiesel (B2). For the purpose of this requirement, biodiesel includes renewable diesel and other renewable, biodegradable mono alkyl ester combustible fuel derived from biomass. Waivers to the B2 requirement for state agency vehicles may be granted if the fuel is not available in certain geographic areas, the

  1. Contribution of the Ethanol Industry to the Economy of the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Contribution of the Ethanol Industry to the Economy of the United States Contribution of the Ethanol Industry to the Economy of the United States By all accounts, 2009 was a volatile year for the American economy, and the ethanol industry was no exception. The combination of unstable commodity prices and weak motor fuel demand caused by the worst recession in decades presented a significant challenge for ethanol producers. Commodity prices retreated from the record

  2. The Effect of Airborne Contaminants on Fuel Cell Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Supporting a Hawaii Hydrogen Economy Effects of Impurities of Fuel Cell Performance and Durability Effect of System and Air Contaminants on PEMFC ...

  3. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of Public Affairs The Obama Administration's new national fuel economy standards for passenger vehicles will improve ...

  4. Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    options that enable high fuel economy with low emissions, and contribute to petroleum displacement. 2012fuellubricant.pdf (14.81 MB) More Documents & Publications ...

  5. Lowering On-Road Fuel Use: A Component Approach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tested in New Vehicles z Lights z Air conditioner z Alternator z Some motors, pumps and fans z ... efficiency alternator * Customized control chips for greater fuel economy * ...

  6. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles In conventional vehicles, most engine operating points ...

  7. Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    They also create less noise and pollution than standard delivery vehicles. CCE drivers ... in Fleet: 327 Motivation: Fuel economy, air quality Related Links Hybrid and Plug-In ...

  8. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    SciTech Connect (OSTI)

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations Box-type trailers that are at least 53 feet long and the heavy-duty tractors that pull these trailers must be equipped with fuel-efficient tires and aerodynamic trailer devices that improve fuel economy and lower greenhouse gas emissions. Tractors and trailers subject to the regulation must either use U.S. Environmental Protection Agency SmartWay certified tractors and trailers or retrofit existing equipment with SmartWay verified

  10. Program Evaluation: Minimum EERE Requirements

    Broader source: Energy.gov [DOE]

    The minimum requirements for EERE's in-progress peer reviews are described below. Given the diversity of EERE programs and activities, a great deal of flexibility is provided within these...

  11. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    In Electric Vehicle (PEV) Annual Fee PEV owners are required to pay an annual license fee of $200 for non-commercial PEVs and $300 for commercial PEVs. The Georgia Department of Revenue may adjust fees annually based on vehicle fuel economy and the Consumer Price Index through July 1, 2018. (Reference Georgia Code 40-2-15

  13. Impact of Policy on Fuels RD&D (Presentation)

    SciTech Connect (OSTI)

    Gearhart, C.

    2013-12-01

    This presentation provides an overview of fuel economy and emissions policy and its relationship with fuel research, development, and deployment (RD&D). Solutions explored include biofuels and increased engine efficiency.

  14. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy above 25 Miles per Gallon | Department of Energy 8: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon In 1975, only three percent of all new cars had a fuel economy above 25 miles per gallon (mpg), but by 2014, 73% did. Great improvements were made in the fuel economy of cars from 1975 to 1985, so that by 1985 most of the cars produced

  15. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Fuel Cell Technologies Publication and Product Library (EERE)

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) as a motor fuel must report fuel use and remit taxes due to the Kansas Department of Revenue on a monthly basis. The minimum tax imposed on CNG is $0.24 per gasoline gallon equivalent (GGE), LNG is $0.26 per GGE, and propane is $0.23 per gallon. The state imposes a tax rate of $0.24 per gallon on conventional motor fuel. Alternatively,

  17. NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Fuel Cell and Hydrogen Technology Validation Previous Next Pause/Resume Fuel Cell Electric Vehicles Show Continued Improvements in Durability, Fuel Economy, Driving Range Image of chart that shows a comparison of fuel cell operation hours and durability for four time periods. The maximum fleet operation time to 10% voltage degradation, 4,130 hours, has increased 129% since 2006-2007. Read more Fuel Cell Electric Bus Reliability Surpasses 2016 and Ultimate Technical Targets Image

  18. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-12-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. FY2013 Progress Report for Fuel & Lubricant Technologies

    SciTech Connect (OSTI)

    none,

    2014-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Acquisition and Petroleum Reduction Requirements The California Department of General Services (DGS) is responsible for maintaining specifications and standards for passenger cars and light-duty trucks that are purchased or leased for state office, agency, and department use. These specifications include minimum vehicle emissions standards and encourage the purchase or lease of fuel-efficient and alternative fuel vehicles (AFVs). On an annual basis, DGS must compile information

  1. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    system-efficiency Go Generated_thumb20140708-12454-1nsa79k U.S. Light-Duty Fuel Consumption and Vehicle Miles Traveled (VMT) Generated_thumb20140708-12454-1nsa79k Trend of per capita VMT and fuel use in U.S. light-duty vehicles from 1970-2012 Last update July 2014 View Graph Graph Download Data Generated_thumb20141209-960-hxf1gg Clean Cities Petroleum Savings by Fuel Economy and VMT Reductions Generated_thumb20141209-960-hxf1gg Trend of displacement by fuel economy improvement and VMT reduction

  2. Careers in Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Careers in Fuel Cell Technologies Careers in Fuel Cell Technologies Fact sheet produced by the Fuel Cell Technologies Office describing job growth potential in existing and emerging fuel cell applications. Careers in Fuel Cell Technologies (872.3 KB) More Documents & Publications Education and Outreach Fact Sheet Effects Of a Transition to a Hydrogen Economy on Employment in the United States: Report to Congress Hydrogen and Fuel Cell Technologies Overview

  3. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Through Product Diversity: Integrated Biorefineries Economy Through Product Diversity: Integrated Biorefineries Achieving national energy and climate goals will require an...

  4. Green Economy Toolbox | Open Energy Information

    Open Energy Info (EERE)

    Economy Toolbox Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Green Economy Toolbox AgencyCompany Organization: United Nations Economic Commission for Europe Sector:...

  5. Where's the Hydrogen Economy? | Open Energy Information

    Open Energy Info (EERE)

    Where's the Hydrogen Economy? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Where's the Hydrogen Economy? AgencyCompany Organization: Canada Library of Parliament...

  6. fuels and lubricants | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels and Lubricants The DOE Vehicle Technologies Office supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement. Transportation fuels are anticipated to be produced from future refinery feedstocks that may increasingly be from non-conventional sources including, but not milted to, heavy crude, oil sands, shale oil, and coal, as well as

  7. Webinar: Northeast States’ Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Northeast States’ Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. Eastern Standard Time (EST).

  8. GMTI radar minimum detectable velocity.

    SciTech Connect (OSTI)

    Richards, John Alfred

    2011-04-01

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  9. Potential Roles of Ammonia in a Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Roles of Ammonia in a Hydrogen Economy A Study of Issues Related to the Use Ammonia for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Primary Authors: George Thomas 1 and George Parks 2 1 U.S. Department of Energy (retired, Sandia National Laboratory, on assignment to DOE Hydrogen Program) and member of FreedomCAR & Fuel Partnership Hydrogen Storage Technical Team 2 ConocoPhillips; member of FreedomCAR & Fuel Partnership Hydrogen Storage Technical Team and

  10. Microsoft PowerPoint - 2013_summer_fuels.pptx

    Gasoline and Diesel Fuel Update (EIA)

    S F l O tl k 2013 Summer Fuels Outlook April 9, 2013 www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Key factors driving the short-term outlook * World liquid fuels consumption growth driven by emerging economies, with continuing consumption declines in OECD economies, with continuing consumption declines in OECD countries. * Non-OPEC supply growth, particularly in North America, pp y g , p y , expected to keep pace with world liquid fuels consumption

  11. Propane-Diesel Dual Fuel for CO2 and Nox Reduction

    Broader source: Energy.gov [DOE]

    Test results show significant CO2 and NOx emission reductions, fuel economy gains, and overall energy savings with propane injection in a diesel engine.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Technology Vehicle (ATV) Manufacturing Incentives Through the Advanced Technology Vehicles Manufacturing Loan Program, ATV and ATV components manufacturers may be eligible for direct loans for up to 30% of the cost of re-equipping, expanding, or establishing manufacturing facilities in the United States used to produce qualified ATVs or ATV components. Qualified ATVs are light-duty or ultra-efficient vehicles that meet specified federal emission standards and fuel economy requirements.

  13. Manufacturing R&D for the Hydrogen Economy Workshop Summary | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Workshop Summary Manufacturing R&D for the Hydrogen Economy Workshop Summary This report summarizes the results of the Manufacturing R&D for the Hydrogen Economy Workshop held July 13-14, 2005 in Washington, D.C. manufacturing_workshop_summary.pdf (388.44 KB) More Documents & Publications Manufacturing R&D of PEM Fuel Cells Breakout Group 2: Membrane Electrode Assemblies Breakout Group 3: Water Management

  14. Manufacturing R&D for the Hydrogen Economy Workshop Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Workshop: Summary Report About the Workshop On July 13-14, 2005, representatives from the hydrogen, fuel cell, and manufacturing communities gathered in Washington D.C. to develop a roadmap for R&D on manufacturing for the hydrogen economy. The workshop was led by the U.S. Department of Energy, supported by the National Institute of Standards and Technology (NIST), and coordinated with the Manufacturing Research and Development Interagency Working Group (IWG) of the President's

  15. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Overview Richard Farmer Acting Program Manager 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010)  Double Renewable Energy Capacity by 2012  Invest $150 billion over ten years in energy R&D to transition to a clean energy economy  Reduce GHG emissions 83% by 2050 The Administration's Clean Energy Goals 2 3 Fuel Cells Address Our Key Energy Challenges Increasing Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use

  16. Minimum Day Time Load Calculation and Screening

    Office of Environmental Management (EM)

    ... and TOV requirements Battery storage ... Energy Planning Grid Technologies ... Planning System Planning Department Supplemental Review: 100% minimum load ...

  17. Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Energy Economy May 6, 2016 <div class="field field-name-field-map-byline field-type-text-with-summary field-label-hidden"><div class="field-items"><div class="field-item odd">This GIF shows how CO2 emissions vary across the United States. Each bar represents a 50x50 kilometer grid. Bar height is proportional to total CO2 emissions and bar color represents the type of CO2 emissions. Red bars represent proportionately more CO2 emissions from

  18. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA

  19. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  20. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  1. FY 2012 Progress Report for Fuel & Lubricant Technologies

    SciTech Connect (OSTI)

    Stork, Kevin

    2013-06-28

    Annual progress report of the Fuel & Lubricant Technologies subprogram supporting fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Agency Petroleum Reduction and Reporting Requirements Colorado state agencies and departments must reduce petroleum-based fuel consumption on a per vehicle basis and across the fleet. For non-exempt vehicles, the minimum annual reduction is 4% per vehicle, and at least 20% by Fiscal Year (FY) 2020 compared to a FY 2015 baseline. The exempt vehicle requirement is a minimum annual reduction of 2% per vehicle, and at least 10% by FY 2020. State agencies and departments must also achieve a

  3. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  4. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  5. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the economy: ...

  6. Azerbaijan-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    Azerbaijan-UNEP Green Economy Advisory Services Jump to: navigation, search Logo: Azerbaijan-UNEP Green Economy Advisory Services Name Azerbaijan-UNEP Green Economy Advisory...

  7. China-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    UNEP Green Economy Advisory Services Jump to: navigation, search Logo: China-UNEP Green Economy Advisory Services Name China-UNEP Green Economy Advisory Services AgencyCompany...

  8. Constructing a Cleaner Economy Info Graphic

    Broader source: Energy.gov [DOE]

    An overview of the impact that the clean energy economy is having on the U.S. construction industry.

  9. EERE Success Story-Multi-Mode RCCI Has Great Potential to Improve Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy in Light-Duty Diesel Engines | Department of Energy Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines EERE Success Story-Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February 26, 2015 - 11:47am Addthis Multi-mode RCCI (Reactivity-Controlled Compression Ignition), a promising advanced combustion process, has the potential to improve fuel economy of passenger cars by at least 15%, according to a recent

  10. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Requirement for School Buses Every school bus that is capable of operating on diesel fuel must be capable of operating using blends of at least 20% biodiesel (B20). At least 2% of the total volume of fuel purchased annually by local school districts statewide for use in diesel school buses must be a minimum of B20, to the extent that biodiesel blends are available and compatible with the technology of the vehicles and the equipment used. (Reference North Carolina General Statutes 115C-240 and

  12. EPA-Fuel Economy Guide | Open Energy Information

    Open Energy Info (EERE)

    Organization: United States Environmental Protection Agency Focus Area: Energy Efficiency, Transportation Resource Type: Guidemanual User Interface: Website Website:...

  13. Fact #692: September 12, 2011 Fuel Economy Distribution for New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0.3% 33.6% 29.5% 24.8% 9.5% 1.9% 0.4% 0.0% 1984 0.0% 0.1% 26.9% 33.1% 30.8% 5.6% 3.0% 0.4% ... 0.6% 1983 20.8% 41.4% 27.1% 9.7% 0.9% 0.2% 1984 0.1% 23.9% 42.8% 25.4% 7.0% 0.7% 0.1% 1985 ...

  14. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1980 20 16 24.3 18.5 1981 22 16.7 25.9 20.1 1982 24 17.5 26.6 20.5 1983 26 19 26.4 20.7 1984 27 20 26.9 20.6 1985 27.5 19.5 27.6 20.7 1986 26 20 28.2 21.5 1987 26 20.5 28.5 21.7 ...

  15. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation SAE Standards Development Advanced Technology Vehicle Lab Benchmarking - Level 1

  16. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Broader source: Energy.gov (indexed) [DOE]

    The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the ...

  17. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...

    Broader source: Energy.gov (indexed) [DOE]

    9 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ft10wu.pdf (1.41 MB) More Documents & ...

  18. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles...

    Energy Savers [EERE]

    The Leaf charges at 34 kW-hrs per 100 miles and can go 73 miles on a fully charged battery. The annual electric cost for this vehicle is 561.00. Chevy Volt Graphic of EPA window ...

  19. Oxygen enhanced switching to combustion of lower rank fuels

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Wu, Kuang Tsai

    2004-03-02

    A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.

  20. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  1. Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy, Prepare for Advanced Vehicles | Department of Energy Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles November 19, 2012 - 2:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced 20 new projects to help states and local

  2. Effects of Biomass Fuels on Engine & System Out Emissions for...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications High Fuel Economy Heavy-Duty Truck Engine A European Perspective of EURO 5U.S. 07 Heavy-Duty Engine Technologies and Their Related Consequences ...

  3. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    money at the pump, all while reducing our dependence on foreign oil and growing the U.S. economy. Learn more in the 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles blog...

  4. Motor Fuel Excise Taxes

    SciTech Connect (OSTI)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  5. Checklist for transition to new highway fuel(s).

    SciTech Connect (OSTI)

    Risch, C.; Santini, D.J.

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  6. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Fuel Technologies R&D Annual Progress Report Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement. 2010_fuels_technologies.pdf (11.05 MB) More Documents & Publications Vehicle

  7. Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Progress Report | Department of Energy Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D Annual Progress Report The Fuel & Lubricant Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement. 2012_fuel_lubricant.pdf

  8. Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year?

    Broader source: Energy.gov [DOE]

    According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline vehicle with that fuel...

  9. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.4 Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUEL CELLS SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.4 - 1 3.4 Fuel Cells Fuel cells efficiently convert diverse fuels directly into electricity without combustion, and they are key elements of a broad portfolio for building a competitive, secure, and sustainable clean energy economy. They offer a broad range of benefits, including reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power (through the use of hydrogen derived from

  10. President's Hydrogen Fuel Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) Lane Exemption and Discount New Jersey Turnpike Authority (Authority) allows qualified hybrid electric vehicles to travel in the HOV lanes located between Interchange 11 and Interchange 14 on the New Jersey Turnpike. The Authority offers a 10% discount on off-peak New Jersey Turnpike and Garden State Parkway toll rates through NJ EZ-Pass for drivers of vehicles that have a fuel economy of 45 miles per gallon or higher and meet the California Super Ultra Low Emission

  12. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  13. Share Your Clean Energy Economy Story

    Broader source: Energy.gov [DOE]

    How did you get involved in the Clean Energy Economy? Help other people learn the opportunities available in the clean energy sector by sharing your own story below.

  14. Clean Economy Network | Open Energy Information

    Open Energy Info (EERE)

    Network Jump to: navigation, search Name: Clean Economy Network Place: Washington, Washington, DC Zip: 20004 Product: Washingt (DC-based advocacy group focused on clean energy and...

  15. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  16. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  17. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  18. HEAT Loan Minimum Standards and Requirements

    Energy Savers [EERE]

    you must meet the following minimum standards listed below. * New natural gas or propane boilers must be at least 90% AFUE to be eligible. * New oil boilers must be at least...

  19. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  20. Minimum Day Time Load Calculation and Screening

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimum Daytime Load Calculation and Screening Page 1 of 30 Kristen Ardani, Dora Nakfuji, Anthony Hong, and Babak Enayati Page 1 of 30 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for our DG interconnection collaborative informational webinar. Today we are going to talk about minimum day time load calculation and screening procedures and their role in the distributed PV interconnection process. We're going to hear from Babak Enayati of the Massachusetts

  1. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Deputy Program Manager United States Department of Energy Fuel Cell Technologies Program 6 th International Hydrogen and Fuel Cell Expo, Japan March 3, 2010 Advancing Presidential Priorities Economic * Create green jobs through Recovery Act energy projects * Double renewable energy generation by 2012 * Weatherize one million homes annually Environmental * Implement an economy-wide cap-and-trade program to reduce greenhouse gas emissions 80 percent by 2050 * Make the US a leader on climate

  2. Fueling Components Testing and Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Components Testing and Certification Fueling Components Testing and Certification These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. componentstesting_certification_ostw.pdf (257.49 KB) More Documents & Publications CSA International Certification Discussion Hydrogen Technology Workshop Component and System Qualification Workshop Proceedings CODES & STANDARDS FOR THE HYDROGEN ECONOMY

  3. Fuel-tolerance tests with the Ford PROCO engine

    SciTech Connect (OSTI)

    Choma, M.A.; Havstad, P.H.; Simko, A.O.; Stockhausen, W.F.

    1981-01-01

    A variety of fuel tolerance tests were conducted utilizing Ford's PROCO engine, a direct fuel injection stratified charge engine developed for light duty vehicles. These engine tests were run on the dynamometer and in vehicles. Data indicate an 89 RON octane requirement, relatively low sensitivity to volatility characteristics and good fuel economy, emission control and operability on a certain range of petroleum fuel and alcohol mixes including 100% methanol. Fuels such as JP-4 and Diesel fuel are not at present suitable for this engine. There were no engine modifications tested that might improve the match between the engine and a particular fuel. The 100% methanol test was conducted with a modified fuel injection pump. Durability aspects including compatibility of various fuels with the materials in the fuel system were not addressed.

  4. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  5. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  6. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  7. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  8. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  9. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  10. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  11. TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS

    SciTech Connect (OSTI)

    J.M. Wight; G.A. Moore; S.C. Taylor

    2008-10-01

    This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculations for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.

  12. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  13. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  14. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  15. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect (OSTI)

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  16. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  17. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (OSTI)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  18. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Equipped with a Lean-NOx Trap | Department of Energy Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Lean-burn improves PFI fuel economy by ~3% relative to best stoichiometric VCT/EGR conditions, when used in combination with VCT & EGR. deer09_lymburner.pdf (522.69 KB) More Documents & Publications Vehicle

  19. Fact# 905: December 28, 2015 Alternative Fuels Account for One-Third of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transit Bus Fuel Use - Dataset | Department of Energy Fact# 905: December 28, 2015 Alternative Fuels Account for One-Third of Transit Bus Fuel Use - Dataset Fact# 905: December 28, 2015 Alternative Fuels Account for One-Third of Transit Bus Fuel Use - Dataset Excel file and dataset for Alternative Fuels Account for One-Third of Transit Bus Fuel Use fotw#905_web.xlsx (18.48 KB) More Documents & Publications Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy

  20. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect (OSTI)

    Brennan, A.

    2011-04-01

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  1. Fuel Cell and Hydrogen Pathways to Clean Cities: A Stakeholder – Government Engagement

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will be taking part in the "Fuel Cell and Hydrogen Pathways to Clean Cities: A Stakeholder – Government Engagement" on May 20 as part of the annual meeting of the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE).

  2. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  3. The low-temperature partial-oxidation reforming of fuels for transportation fuel cell systems

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.

    1996-12-31

    Passenger cars powered by fuel cell propulsion systems with high efficiency offer superior fuel economy, very low to zero pollutant emissions, and the option to operate on alternative and/or renewable fuels. Although the fuel cell operates on hydrogen, a liquid fuel such as methanol or gasoline is more attractive for automotive use because of the convenience in handling and vehicle refueling. Such a liquid fuel must be dynamically converted (reformed) to hydrogen on board the vehicle in real time to meet fluctuating power demands. This paper describes the low-temperature Argonne partial-oxidation reformer (APOR) developed for this application. The APOR is a rapid-start, compact, lightweight, catalytic device that is efficient and dynamically responsive. The reformer is easily controlled by varying the feed rates of the fuel, water, and air to satisfy the rapidly changing system power demands during the vehicle`s driving cycle.

  4. ITP Steel: Theoretical Minimum Energies to Produce Steel for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ITP Steel: Theoretical Minimum Energies to Produce Steel for Selected Conditions, March 2000 ...

  5. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  6. SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...

    Office of Environmental Management (EM)

    SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential ...

  7. DOE and Japanese Ministry of Economy, Trade, and Industry Sign...

    Energy Savers [EERE]

    DOE and Japanese Ministry of Economy, Trade, and Industry Sign Memorandum of Cooperation DOE and Japanese Ministry of Economy, Trade, and Industry Sign Memorandum of Cooperation ...

  8. Low Carbon Economy Index 2010 | Open Energy Information

    Open Energy Info (EERE)

    Economy Index 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Economy Index 2010 AgencyCompany Organization: PricewaterhouseCoopers Sector: Energy,...

  9. 2016 American Council for an Energy-Efficient Economy (ACEEE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2016 American Council for an Energy-Efficient Economy (ACEEE) Energy Efficiency Finance Forum 2016 American Council for an Energy-Efficient Economy (ACEEE) Energy Efficiency ...

  10. Before the Subcommittee on Environment and the Economy -- House...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environment and the Economy -- House Energy and Commerce Committee Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee Testimony of Peter ...

  11. Recent Trends in Car Usage in Advanced Economies - Slower Growth...

    Open Energy Info (EERE)

    Trends in Car Usage in Advanced Economies - Slower Growth Ahead? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Recent Trends in Car Usage in Advanced Economies -...

  12. Promoting a Green Economy through Clean Transportation Alternatives...

    Broader source: Energy.gov (indexed) [DOE]

    KB) More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives EV ...

  13. Promoting a Green Economy through Clean Transportation Alternatives...

    Broader source: Energy.gov (indexed) [DOE]

    Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives Town of Hempstead: Project Energy, From ...

  14. China and a Sustainable Future: Towards a Low Carbon Economy...

    Open Energy Info (EERE)

    Carbon Economy and Society Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China and a Sustainable Future: Towards a Low Carbon Economy and Society AgencyCompany...

  15. Hunan Yongzhou Hengli Economy Trade Investment Co Ltd | Open...

    Open Energy Info (EERE)

    Yongzhou Hengli Economy Trade Investment Co Ltd Jump to: navigation, search Name: Hunan Yongzhou Hengli Economy&Trade Investment Co.,Ltd Place: Yongzhou, Hunan Province, China Zip:...

  16. Clean Economy Network-Rockies | Open Energy Information

    Open Energy Info (EERE)

    Economy Network-Rockies Jump to: navigation, search Name: Clean Economy Network-Rockies Place: Denver, CO Region: Rockies Area Website: rockies.cleaneconomynetwork.or Coordinates:...

  17. Farming First-Agriculture and the Green Economy | Open Energy...

    Open Energy Info (EERE)

    Farming First-Agriculture and the Green Economy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Farming First-Agriculture and the Green Economy AgencyCompany...

  18. Ohio Business Council for a Clean Energy Economy | Open Energy...

    Open Energy Info (EERE)

    Business Council for a Clean Energy Economy Jump to: navigation, search Name: Ohio Business Council for a Clean Energy Economy Place: Ohio Website: www.ohiocleaneconomy.biz...

  19. Fuel cell systems for passenger cars - opportunities and requirements

    SciTech Connect (OSTI)

    Tachtler, J.; Bourne, C.

    1996-12-31

    From the point of view of energy density, handling and economy, present-day motor fuels are superior to all known alternatives. The internal combustion engine powered by them satisfies the requirements of customers to an excellent degree. The search for alternatives can therefore only be justified if emissions can be avoided totally and non-fossil primary energy sources can be used or at least partially our dependence on mineral oil can be reduced. What was long suspected has been increasingly confirmed, not least by developments at BMW: electricity (stored in batteries) and hydrogen offer the best prerequisites for achieving these goals in the long term. These forms of energy can be produced in sufficient quantities and with relatively little effect on the environment. They promise to produce an absolute minimum of pollutants when used in vehicles. Natural gas, which is very similar to hydrogen, and hybrid systems, that would compensate for battery risks, could perform a valuable function in the transitional phase.

  20. Federal Fuel Cell Tax Incentives: An Investment in Clean and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Fuel Cell Tax Incentives; An investment in clean and efficient technologies On ... OWNER (Section 103) * Credit of 30% of the cost up to 3,000 per kW * Minimum 0.5 kW ...

  1. Improving Vehicle Fuel Efficiency Through Tire Design, Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To develop a new class of tires in the replacement market that improves fuel efficiency by a minimum of 3% and reduces overall tire weight by 20%. This presentation does...

  2. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs

    SciTech Connect (OSTI)

    Committee on Alternatives and Strategies for Future Hydrogen Production and Use

    2004-08-31

    The announcement of a hydrogen fuel initiative in the President’s 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation’s long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation’s future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.

  3. Vaporized alcohol fuel boosts engine efficiency

    SciTech Connect (OSTI)

    Hardenburg, H.O.; Bergmann, H.K.; Metsch, H.I.; Schaefer, A.J.

    1983-02-01

    An effort is being made at Daimler-Benz AG to utilize the special characteristics of vaporized methanol and ethanol in an alcohol-gas spark-ignited engine. Describes laboratory testing which demonstrates that waste heat recovery and very lean air/fuel mixtures improve the efficiency and economy of a spark-ignition engine running on alcohol vapors. Presents graph comparing performance and torque of the alcohol-gas and diesel engines. Finds that the fuel consumption of the methanol-fueled version approaches that of a diesel engine, with other advantages including low engine noise, good acceleration, and favorable exhaust emissions.

  4. Tribes and the New Energy Economy Conference

    Broader source: Energy.gov [DOE]

    Hosted by the COTA Holdings, this two-day conference brings tribes, government, and industry together to discuss the new energy economy. Attendees will hear speakers from the U.S. Department of...

  5. Webinar: Supporting a Hawaii Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Supporting a Hawaii Hydrogen Economy" on Tuesday, July 29, from 3:00 p.m. to 4:00 p.m. Eastern Daylight Time (EDT). The webinar will...

  6. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  7. Develop Improved Materials to Support the Hydrogen Economy

    SciTech Connect (OSTI)

    Dr. Michael C. Martin

    2012-07-18

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

  8. Terms of Reference for the International Partnership for the Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TERMS OF REFERENCE FOR THE INTERNATIONAL PARTNERSHIP FOR THE HYDROGEN ECONOMY Introduction A growing number of countries have made commitments to accelerate the development and commercial use of hydrogen energy technologies in order to improve their energy, economic, and environmental security. These commitments demonstrate that many countries share a common interest in advanced research and development needed to enable the demonstration and commercial use of hydrogen and fuel cell technologies.

  9. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Except for two-seater cars, these vehicle classes all contain hybrid models which greatly extend the range of their respective classes. Consumers interested in purchasing a vehicle ...

  10. Biofacts: Fueling a stronger economy. Renewable fuel solutions for petroleum refineries

    SciTech Connect (OSTI)

    1995-07-01

    The DOE Biofuels Program is investigating processes to condition synthesis gas (syngas) produced from the gasification of biomass, coke, waste oils, and other inexpensive feedstocks and low-cost by-products. Syngas technologies offer refiners economical, flexible solutions to the challenges presented by today`s market forces and regulatory environment, such as: increasingly stringent environmental regulations that dictate the composition of petroleum products; increasingly sour crudes; increased coke production and hydrogen use resulting from heavier crude; increased disposal cost for coke and residuals oils; and decreasing hydrogen supply resulting from decreased catalytic reforming severity--a necessity to comply with requirements for reduced aromatic content. Most importantly, refiners can use the DOE syngas processes to upgrade refinery residuals and coke, which minimizes environmental problems and maximizes profitability. DOE`s solution also offers refiners the flexibility to economically supplement petroleum feedstocks with a wide variety of locally available renewable feedstocks that can be fed into the gasifier--feedstocks such as energy crops, municipal solid wastes, many industrial wastes, and agricultural by-products.

  11. Analysis of Corporate Average Fuel Economy (CAFE) Standards for Light Trucks and Increased Alternative Fuel Use

    Reports and Publications (EIA)

    2002-01-01

    Sen. Frank Murkowski, the Ranking Minority Member of the Senate Committee on Energy and Natural Resources requested an analysis of selected portions of Senate Bill 1766 (S. 1766, the Energy Policy Act of 2002), House Resolution 4 (the Securing America's Future Energy Act of 2001) and Senate Bill 517 (S. 517, the Energy Policy Act of 2002). In response, the Energy Information Administration (EIA) has prepared a series of analyses showing the impacts of each of the selected provisions of the bills on energy supply, demand, and prices, macroeconomic variables where feasible, import dependence, and emissions.

  12. The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Amy Foster Parish This year for Christmas, Santa was kind enough to bring me a new wireless printer to replace my old one. When I opened the box, you can't imagine my glee. I'm a fan of using my laptop as its name implies, so you'll typically find me typing away with it on my lap while snugly ensconced in the living room in front of the fire. Without a wireless printer, though, my cozy work was constantly interrupted so I could schlep into the office to print things-all

  13. Linear air-fuel sensor development

    SciTech Connect (OSTI)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  14. Development of an ORC system to improve HD truck fuel efficiency

    Broader source: Energy.gov [DOE]

    Describes a waste heat recovery system developed for a class 8 truck engine using an organic Rankine cycle (ORC), which promises fuel economy benefits of up to 6% at cruise conditions

  15. Two variants of minimum discarded fill ordering

    SciTech Connect (OSTI)

    D'Azevedo, E.F. ); Forsyth, P.A.; Tang, Wei-Pai . Dept. of Computer Science)

    1991-01-01

    It is well known that the ordering of the unknowns can have a significant effect on the convergence of Preconditioned Conjugate Gradient (PCG) methods. There has been considerable experimental work on the effects of ordering for regular finite difference problems. In many cases, good results have been obtained with preconditioners based on diagonal, spiral or natural row orderings. However, for finite element problems having unstructured grids or grids generated by a local refinement approach, it is difficult to define many of the orderings for more regular problems. A recently proposed Minimum Discarded Fill (MDF) ordering technique is effective in finding high quality Incomplete LU (ILU) preconditioners, especially for problems arising from unstructured finite element grids. Testing indicates this algorithm can identify a rather complicated physical structure in an anisotropic problem and orders the unknowns in the preferred'' direction. The MDF technique may be viewed as the numerical analogue of the minimum deficiency algorithm in sparse matrix technology. At any stage of the partial elimination, the MDF technique chooses the next pivot node so as to minimize the amount of discarded fill. In this work, two efficient variants of the MDF technique are explored to produce cost-effective high-order ILU preconditioners. The Threshold MDF orderings combine MDF ideas with drop tolerance techniques to identify the sparsity pattern in the ILU preconditioners. These techniques identify an ordering that encourages fast decay of the entries in the ILU factorization. The Minimum Update Matrix (MUM) ordering technique is a simplification of the MDF ordering and is closely related to the minimum degree algorithm. The MUM ordering is especially for large problems arising from Navier-Stokes problems. Some interesting pictures of the orderings are presented using a visualization tool. 22 refs., 4 figs., 7 tabs.

  16. Minimum Day Time Load Calculation and Screening

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minimum Day Time Load Calculation and Screening" Dora Nakafuji and Anthony Hong, Hawaiian Electric Co. Babak Enayati, DG Techincal Standards Review Group April 30, 2014 2 Speakers Babak Enayati Chair of Massachusetts DG Technical Standards Review Group Dora Nakafuji Director of Renewable Energy Planning Hawaiian Electric Company (HECO) Kristen Ardani Solar Analyst, (today's moderator) NREL Anthony Hong Director of Distribution Planning Hawaiian Electric Company (HECO) Standardization of

  17. Minimum Day Time Load Calculation and Screening

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Generation Interconnection Collaborative (DGIC) "Minimum Day Time Load Calculation and Screening" Dora Nakafuji and Anthony Hong, Hawaiian Electric Co. Babak Enayati, DG Techincal Standards Review Group April 30, 2014 2 Speakers Babak Enayati Chair of Massachusetts DG Technical Standards Review Group Dora Nakafuji Director of Renewable Energy Planning Hawaiian Electric Company (HECO) Kristen Ardani Solar Analyst, (today's moderator) NREL Anthony Hong Director of

  18. Alternative fuel transit buses: Interim results from the National Renewable Energy Laboratory (NREL) Vehicle Evaluation Program

    SciTech Connect (OSTI)

    Motta, R.; Norton, P.; Kelly, K.J.; Chandler, K.

    1995-05-01

    The transit bus program is designed to provide a comprehensive study of the alternative fuels currently used by the transit bus industry. The study focuses on the reliability, fuel economy, operating costs, and emissions of vehicles running on the various fuels and alternative fuel engines. The alternative fuels being tested are methanol, ethanol, biodiesel and natural gas. The alternative fuel buses in this program use the most common alternative fuel engines from the heavy-duty engine manufacturers. Data are collected in four categories: Bus and route descriptions; Bus operating data; Emissions data; and, Capital costs. The goal is to collect 18 months of data on each test bus. This report summarizes the interim results from the project to date. The report addresses performance and reliability, fuel economy, costs, and emissions of the busses in the program.

  19. Framework for the International Partnership for the Hydrogen Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Framework for the International Partnership for the Hydrogen Economy Framework for the International Partnership for the Hydrogen Economy Framework for the International Partnership for the Hydrogen Economy iphe_framework_final.pdf (113.5 KB) More Documents & Publications International Partnerships for the Hydrogen Economy Fact Sheet International Partnerships for the Hydrogen Economy Fact Sheet Terms of Reference for the International Partnership for the Hydrogen

  20. Business management practices in the power industry: Decision making in a market economy

    SciTech Connect (OSTI)

    Brown, J.H.; Rosel, V.

    1995-12-01

    Management of a free market power industry, or managing the transition from a planned economy to a free market one, is driven by a fundamental economic premise - it is unrealistic (and economically unsound) to try to shelter end users (manufacturers or otherwise) from the true cost of energy: (i) energy prices are a function of fuel inputs (ii) fuel inputs are world priced (iii) end users must pay prices based on true costs Trying to counter any of these dictates will cause economic inefficiencies and misallocations. Managers of energy production in a free market economy must therefore learn to acquire data, and learn to extrapolate. As information is never complete, or perfect, managers must learn to consider contingencies, alternatives and options. In a free market economy, the decision to build a power facility is not controlled simply by the recognition of a perceived need for more power in an area. Because survival in a free market economy requires making a profit, as part for the decision process managers must: (i) talk to their customers to determine power needs into the future (ii) talk to their input suppliers, and arrange contracts (iii) make sure that there is a spread between cost and revenue As stated this is a simple recipe, but is difficult in practice. To perform any forecasting, managers must acquire control over cost, so as to have a base from which to judge the continued profitability or potential profitability, of any current activity or future ventures. It should be noted that planning for the future is difficult at any time but even more so when moving through an era where in the entire economy is undergoing systemic changes. Historic customer base, and historic supply arrangements, may not mean much. Therefore, managers must keep acquiring information, and updating forecasts.

  1. The Effect of Airborne Contaminants on Fuel Cell Performance & Durability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Effect of Airborne Contaminants on Fuel Cell Performance & Durability The Effect of Airborne Contaminants on Fuel Cell Performance & Durability Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 rocheleau_uhawaii_kickoff.pdf (340.84 KB) More Documents & Publications Supporting a Hawaii Hydrogen Economy Effects of Impurities of Fuel Cell Performance and Durability Effect of System and Air Contaminants on

  2. Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Vehicle Applications | Department of Energy of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle Applications Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle Applications Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_bell.pdf (1.19 MB) More Documents & Publications Vehicle Fuel Economy

  3. Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.

    SciTech Connect (OSTI)

    Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

    2003-01-01

    The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  4. The potential effect of future energy-efficiency and emissions-improving technologies on fuel consumption of heavy trucks.

    SciTech Connect (OSTI)

    Vyas, A.; Saricks, C.; Stodolsky, F.

    2003-03-14

    Researchers at Argonne National Laboratory analyzed heavy-duty truck technologies to support the Energy Information Administration's long-term energy use projections. Researchers conducted an analysis of several technology options that have potential to improve heavy truck fuel economy and emissions characteristics. The technologies are grouped as fuel-economy-enhancing and emissions-improving. Each technology's potential impact on heavy truck fuel economy has been estimated, as has the cost of implementation. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

  5. Fuels Technologies

    Office of Environmental Management (EM)

    Displacement of petroleum n Approach n Example Project Accomplishments n Research Directions Fuels Technologies R&D Budget by Activities Major Activities FY 2007 ...

  6. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  7. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  8. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  9. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  10. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy than Midsize Non-Hybrid Cars in 2014 | Department of Energy 9: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 For the 2014 model year, midsize hybrid cars averaged 43.4 miles per gallon (mpg) while midsize non-hybrid cars averaged 28.7 mpg; the difference between the two has narrowed due to the rising average

  11. Fuel control for gas turbine with continuous pilot flame

    DOE Patents [OSTI]

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  12. Fuel injector

    DOE Patents [OSTI]

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  13. HEAT Loan Minimum Standards and Requirements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEAT Loan Minimum Standards and Requirements HEAT Loan Minimum Standards and Requirements Presents additional resources on loan standards and requirements from Elise Avers' presentation on HEAT Loan Minimum Standards and Requirements. Minimum Standards and Requirements (63.33 KB) More Documents & Publications Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners STEP Financial Incentives Summary Energy Saver 101: Home

  14. DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS puzzle-693870_960_720.jpg DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS (78.26 KB) More Documents & Publications DOE CYBER SECURITY EBK: MINIMUM CORE COMPETENCY TRAINING REQUIREMENTS DOE CYBER SECURITY EBK: CORE COMPETENCY TRAINING REQUIREMENTS: CA Authorizing Official Designated Representative (AODR)

  15. Antioxidants and stabilizers for lubricants and fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-05-01

    The bibliography contains citations concerning the design, manufacture, and evaluation of antioxidants and stabilizers used in lubricants and fuels. The synthesis, stability, degradation, and storage life of lubricant and fuel additives are discussed. Additives used in jet engine, turbine, natural-gas, and coal-water fuels are examined. (Contains a minimum of 129 citations and includes a subject term index and title list.)

  16. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  17. Fuel Cells and Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsFuel Cells and Renewable Gaseous FuelsSarah Studer, ORISE Fellow—Fuel Cell Technologies Office, U.S. Department of Energy

  18. Use of DRACS to Enhance HTGRs Passive Safety and Economy

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Ling Zou

    2011-06-01

    This paper discusses the use of DRACS to Enhance HTGRs Passive Safety and Economy. One of the important requirements for Gen. IV High Temperature Gas Cooled Reactors (HTGR) is passive safety. Currently all the HTGR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. [1] The decay heat first is transferred to core barrel by conduction and radiation, and then to reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. Similar concepts have been widely used in sodium cooled fast reactor (SFR) designs, advanced light water reactors like AP1000. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area. RVACS tends to be less expensive. However, it limits the largest achievable power level for modular HTGRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface). When the relative decay heat removal capability is reduced, the peak fuel temperature increases, even close to the design limit. Annual designs with internal reflector can mitigate this effect therefore further increase the power. Another way to increase power is to increase power density. However, it is also limited by the decay heat removal capability. Besides safety, HTGRs also need to be economical in order to compete with other reactor designs. The limit of decay heat removal capability set by using RVACS has affected the economy of HTGRs. Forsberg [2] pointed out other disadvantages of using RVACS such as conflicting functional requirements for the reactor vessel and scaling distortion for integral effect test of the system performance. A potential alternative solution is to use a volume based passive decay removal system, call Direct Reactor Auxiliary Cooling Systems (DRACS), to remove

  19. Minimum wear tube support hole design

    DOE Patents [OSTI]

    Glatthorn, Raymond H. (St. Petersburg, FL)

    1986-01-01

    A minimum-wear through-bore (16) is defined within a heat exchanger tube support plate (14) so as to have an hourglass configuration as determined by means of a constant radiused surface curvature (18) as defined by means of an external radius (R3), wherein the surface (18) extends between the upper surface (20) and lower surface (22) of the tube support plate (14). When a heat exchange tube (12) is disposed within the tube support plate (14) so as to pass through the through-bore (16), the heat exchange tube (12) is always in contact with a smoothly curved or radiused portion of the through-bore surface (16) whereby unacceptably excessive wear upon the heat exchange tube (12), as normally developed by means of sharp edges, lands, ridges, or the like conventionally part of the tube support plates, is eliminated or substantially reduced.

  20. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty

    SciTech Connect (OSTI)

    Charles Park

    2006-12-01

    High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

  1. Fuel Cell R&D Pre-Solicitiation Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Pre-Solicitiation Workshop Fuel Cell R&D Pre-Solicitiation Workshop Presentation on upcoming fuel cell solicitation presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA. pre_sol_wrkshp_valri.pdf (1 MB) More Documents & Publications Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy US DRIVE Fuel Cell Technical Team Roadmap PEM Fuel Cell Pre-Solicitation

  2. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Richard Farmer Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Mountain States Hydrogen Business Council September 14, 2010  Double Renewable Energy Capacity by 2012  Invest $150 billion over ten years in energy R&D to transition to a clean energy economy  Reduce GHG emissions 83% by 2050 Administration's Clean Energy Goals 2 U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 3 4 Technology Barriers* Economic &

  3. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    driving-behavior Go Generated_thumb20130810-31804-1jtc9qa Fuel Economy at Various Driving Speeds Generated_thumb20130810-31804-1jtc9qa Trend of fuel efficiency at different speeds, grouped by vehicle age Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-pe0nga Average Vehicle Trip Length by Purpose Generated_thumb20130810-31804-pe0nga Average trip length and distribution by trip type in U.S., 2009 Last update May 2012 View Graph Graph Download Data

  4. Alternative Fuels Data Center: Vehicle Search

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    526 vehicles Search small New Search | Download | Print Spinner Filter by: Fuel/Technology: All | Class/Type: All | Manufacturer: All View: Matrix List Your search returned no results. You can modify your search using the filters on the right or start a new search. Acura RLX Hybrid (2016) 2016 acura rlx Hybrid Electric Sedan/Wagon Fuel Economy: 28 mpg city / 32 mpg hwy Emission Certification: LEV III SULEV30, Tier 2 Bin 3 Engine: 3.5L V6 Transmission: Auto Find a Dealer Audi A3 Sportback e-tron

  5. IPHE Hydrogen and Fuel Cell Student Symposium

    Broader source: Energy.gov [DOE]

    A Hydrogen and Fuel Cell Student Symposium for California graduate students is being held on May 17 in Berkeley, California, as part of the annual meeting of the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE). The meeting will offer attendees the opportunity to learn about the role of the technologies and the growing market for relevant applications, understand the needs and opportunities in the associated workforce, and directly engage with leaders in the academic, government, and private sectors through a series of small-table discussions.

  6. FUEL ELEMENT

    DOE Patents [OSTI]

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  7. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    DOE R&D Accomplishments [OSTI]

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  8. #YearofAction: Growing the Clean Energy Economy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    YearofAction: Growing the Clean Energy Economy YearofAction: Growing the Clean Energy Economy January 29, 2014 - 6:03pm Addthis During the State of the Union address, President ...

  9. A National Vision of America's Transition to a Hydrogen Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond The summary ...

  10. Manufacturing R&D for the Hydrogen Economy Roadmap Workshop ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Workshop Manufacturing R&D for the Hydrogen Economy Roadmap Workshop Agenda for the 2005 Manufactuirng R&D for the Hydrogen Economy Roadmap Workshop mfgwkshpagenda.pdf ...

  11. RECONDITIONING FUEL ELEMENTS

    DOE Patents [OSTI]

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  12. South Africa-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    Peru, Philippines, Russian Federation, Rwanda, Senegal, Serbia, South Africa and Ukraine." References "UNEP Green Economy Advisory Services" Retrieved from "http:...

  13. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of 175 per kW, and ...

  14. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  15. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    SciTech Connect (OSTI)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the

  16. Manufacturing R&D of PEM Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM Fuel Cells Manufacturing R&D of PEM Fuel Cells Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. mfg_wkshp_fuelcell.pdf (414.43 KB) More Documents & Publications Manufacturing R&D for the Hydrogen Economy Workshop Summary Manufacturing R&D for systems that will produce and distribute hydrogen

  17. Alternative fuel trucks case studies: Running refuse haulers on compressed natural gas

    SciTech Connect (OSTI)

    Norton, P.; Kelly, K.

    1996-07-01

    This document details the experience of New York City`s compressed natural gas refuse haulers. These 35 ton vehicles have engines that displace 10 liters and provide 240 horsepower. Fuel economy, range, cost, maintenance, repair issues, and emissions are discussed. Photographs and figures illustrate the attributes of these alternative fuel vehicles.

  18. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance were combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.

  19. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  20. Onboard fuel reformers for fuel cell vehicles: Equilibrium, kinetic and system modeling

    SciTech Connect (OSTI)

    Kreutz, T.G.; Steinbugler, M.M.; Ogden, J.M.

    1996-12-31

    On-board reforming of liquid fuels to hydrogen for use in proton exchange membrane (PEM) fuel cell electric vehicles (FCEVs) has been the subject of numerous investigations. In many respects, liquid fuels represent a more attractive method of carrying hydrogen than compressed hydrogen itself, promising greater vehicle range, shorter refilling times, increased safety, and perhaps most importantly, utilization of the current fuel distribution infrastructure. The drawbacks of on-board reformers include their inherent complexity [for example a POX reactor includes: a fuel vaporizer, a reformer, water-gas shift reactors, a preferential oxidation (PROX) unit for CO cleanup, heat exchangers for thermal integration, sensors and controls, etc.], weight, and expense relative to compressed H{sub 2}, as well as degraded fuel cell performance due to the presence of inert gases and impurities in the reformate. Partial oxidation (POX) of automotive fuels is another alternative for hydrogen production. This paper provides an analysis of POX reformers and a fuel economy comparison of vehicles powered by on-board POX and SRM fuel processors.

  1. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  2. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  3. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  4. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report and Appendices, Alameda-Contra Costa Transit District (AC Transit)

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2009-01-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).

  5. Capacity planning in a transitional economy: What issues? Which models?

    SciTech Connect (OSTI)

    Mubayi, V.; Leigh, R.W.; Bright, R.N.

    1996-03-01

    This paper is devoted to an exploration of the important issues facing the Russian power generation system and its evolution in the foreseeable future and the kinds of modeling approaches that capture those issues. These issues include, for example, (1) trade-offs between investments in upgrading and refurbishment of existing thermal (fossil-fired) capacity and safety enhancements in existing nuclear capacity versus investment in new capacity, (2) trade-offs between investment in completing unfinished (under construction) projects based on their original design versus investment in new capacity with improved design, (3) incorporation of demand-side management options (investments in enhancing end-use efficiency, for example) within the planning framework, (4) consideration of the spatial dimensions of system planning including investments in upgrading electric transmission networks or fuel shipment networks and incorporating hydroelectric generation, (5) incorporation of environmental constraints and (6) assessment of uncertainty and evaluation of downside risk. Models for exploring these issues include low power shutdown (LPS) which are computationally very efficient, though approximate, and can be used to perform extensive sensitivity analyses to more complex models which can provide more detailed answers but are computationally cumbersome and can only deal with limited issues. The paper discusses which models can usefully treat a wide range of issues within the priorities facing decision makers in the Russian power sector and integrate the results with investment decisions in the wider economy.

  6. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  7. Fuel injection for internal combustion engines. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning research and development of fuel injection systems applied to internal combustion engines and turbines. Gasoline, diesel, synthetic fuels, and liquid gas systems are discussed relative to systems' variations and performances. Fuel injection atomization and combustion are considered in theory, and fuel injection relative to emission control is included. (Contains a minimum of 223 citations and includes a subject term index and title list.)

  8. Bulk characterization of (U, Pu) mixed carbide fuel for distribution of plutonium

    SciTech Connect (OSTI)

    Devi, K. V. Vrinda Khan, K. B.; Biju, K.; Kumar, Arun

    2015-06-24

    Homogeneous distribution of plutonium in (U, Pu) mixed fuels is important from fuel performance as well as reprocessing point of view. Radiation imaging and assay techniques are employed for the detection of Pu rich agglomerates in the fuel. A simulation study of radiation transport was carried out to analyse the technique of autoradiography so as to estimate the minimum detectability of Pu agglomerates in MC fuel with nominal PuC content of 70% using Monte Carlo simulations.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  10. Minimum Efficiency Requirements Tables for Heating and Cooling Product

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categories | Department of Energy Minimum Efficiency Requirements Tables for Heating and Cooling Product Categories Minimum Efficiency Requirements Tables for Heating and Cooling Product Categories The Federal Energy Management Program (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency requirements for FEMP-designated and ENERGY STAR-qualified heating and cooling product

  11. World nuclear fuel cycle requirements 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-26

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

  12. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  13. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  14. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  15. Optimizing minimum free-energy crossing points in solution: Linear...

    Office of Scientific and Technical Information (OSTI)

    Optimizing minimum free-energy crossing points in solution: Linear-response free energyspin-flip density functional theory approach Citation Details In-Document Search Title:...

  16. Fact #667: March 21, 2011 Fuel Wasted in Traffic Congestion | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 7: March 21, 2011 Fuel Wasted in Traffic Congestion Fact #667: March 21, 2011 Fuel Wasted in Traffic Congestion The researchers at the Texas Transportation Institute have recently published new estimates of the effects of traffic congestion. The trend toward increased congestion eased in 2007 and 2008 with the downturn in the economy but began to rise again in 2009 along with economic activity. In 2009, nearly 4 billion gallons of fuel were wasted due to traffic congestion; up 160

  17. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  18. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  19. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  20. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  1. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon Clean Fuels Program (Program), which requires fuel producers and ...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle and Fueling Infrastructure Grants and Loans The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, ...

  4. Criticality safety evaluation report for FFTF 42% fuel assemblies

    SciTech Connect (OSTI)

    Richard, R.F.

    1997-10-28

    An FFTF tritium/isotope production mission will require a new fuel supply. The reference design core will use a mixed oxide fuel nominally enriched to 40 wt% Pu. This enrichment is significantly higher than that of the standard Driver Fuel Assemblies used in past operations. Consequently, criticality safety for handling and storage of this fuel must be addressed. The purpose of this document is to begin the process by determining the minimum critical number for these new fuel assemblies in water, sodium and air. This analysis is preliminary and further work can be done to refine the results reported here. Analysis was initially done using 45 wt 5 PuO. Additionally, a preliminary assessment is done concerning storage of these fuel assemblies in Interim Decay Storage (IDS), Fuel Storage Facility (FSF), and Core Component Containers/Interim Storage Casks (CCC/ISC).

  5. International Energy Outlook 2016-Petroleum and other liquid fuels - Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration 2. Petroleum and other liquid fuels print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, worldwide consumption of petroleum and other liquid fuels increases from 90 million barrels per day (b/d) in 2012 to 100 million b/d in 2020 and 121 million b/d in 2040. Much of the growth in world liquid fuels consumption is projected for the emerging, non-Organization for Economic Cooperation and Development (non-OECD) economies of Asia,

  6. 2010 Fuel Cell Project Kick-off Welcome

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Fuel Cell Project Kick-off Dr. Dimitrios Papageorgopoulos Fuel Cells Team Leader U.S. Department of Energy gy Fuel Cell Technologies Program September 28, 2010 September 28, 2010 Administration's Clean Energy Goals Double Renewable Energy Capacity by 2012 9 Invest $150 billion over 9 Invest $150 billion over 9 Double Renewable ten years in energy R&D to transition to a clean energy economy 9 Reduce GHG emissions 9 Reduce GHG emissions 83% by 2050 2 U.S. Energy Consumption U.S. Primary

  7. APEX nuclear fuel cycle for production of LWR fuel and elimination of radioactive waste

    SciTech Connect (OSTI)

    Steinberg, M.; Powell, J.R.

    1981-08-01

    The development of a nuclear fission fuel cycle is proposed which eliminates all the radioactive fission product waste effluent and the need for geological-age high level waste storage and provides a long term supply of fissile fuel for an LWR power reactor economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 years old) to remove the stable nonradioactive (NRFP, e.g. lanthanides, etc.) and short-lived fission products (SLFP e.g. half-lives of (1 to 2 years) and returning, in dilute form, the long-lived fission products, ((LLFPs, e.g. 30 y half-life Cs, Sr, and 10 y Kr, and 16 x 10/sup 6/ y I) and the transuranics (TUs, e.g. Pu, Am, Cm, and Np) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel are to be supplied through the use of a Spallator (linear accelerator spallation-target fuel-producer). The reprocessing of LWR fuel elements is to be performed by means of the Chelox process which consists of Airox treatment (air oxidation and hydrogen reduction) followed by chelation with an organic reagent (..beta..-diketonate) and vapor distillation of the organometallic compounds for separation and partitioning of the fission products.

  8. Apex nuclear fuel cycle for production of light water reactor fuel and elimination of radioactive waste

    SciTech Connect (OSTI)

    Steinberg, M.; Hiroshi, T.; Powell, J.R.

    1982-09-01

    The development of a nuclear fission fuel cycle is proposed that eliminates all the radioactive fission product (FP) waste effluent and the need for geological age high-level waste storage and provides a longterm supply of fissile fuel for a light water reactor (LWR) economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 yr old) to remove the stable nonradioactive FPs (NRFPs) e.g., lanthanides, etc.) and short-lived FPs (SLFP) (e.g., half-lives of less than or equal to 1 to 2 yr) and returning, in dilute form, the long-lived FPs (LLFPs) (e.g., 30-yr half-life cesium and strontium, 10-yr krypton, and 16 X 10/sup 6/-yr iodine) and the transuranics (TUs) (e.g., plutonium, americium, curium, and neptunium) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel (FF) are to be supplied through the use of the spallator (linear accelerator spallation-target fuel producer). The reprocessing of LWR fuel elements is to be performed by means of the chelox process, which consists of chopping and leaching with an organic chelating reagent (..beta..-diketonate) and distillation of the organometallic compounds formed for purposes of separating and partitioning the FPs. The stable NRFPs and SLFPs are allowed to decay to background in 10 to 20 yr for final disposal to the environment.

  9. Fuel Cells & Alternative Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and ...

  10. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect (OSTI)

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  11. Theoretical minimum energies to produce steel for selected conditions

    SciTech Connect (OSTI)

    Fruehan, R. J.; Fortini, O.; Paxton, H. W.; Brindle, R.

    2000-03-01

    An ITP study has determined the theoretical minimum energy requirements for producing steel from ore, scrap, and direct reduced iron. Dr. Richard Fruehan's report, Theoretical Minimum Energies to Produce Steel for Selected Conditions, provides insight into the potential energy savings (and associated reductions in carbon dioxide emissions) for ironmaking, steelmaking, and rolling processes (PDF459 KB).

  12. California Fuel Cell Partnership: Alternative Fuels Research...

    Broader source: Energy.gov (indexed) [DOE]

    This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research. cafcpinitiativescall.pdf (133.97 KB) More ...

  13. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7/14/2015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy June 24, 2015 Washington, DC Fuel Cell Technologies Office | 2 7/14/2015 7/14/2015 DOE Hydrogen and Fuel Cells Program Integrated approach to widespread commercialization of H 2 and fuel cells Fuel Cell Cost Durability H 2 Cost

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Distributor and Vehicle Manufacturer Liability Protection Renewable fuel refiners, suppliers, terminals, wholesalers, distributors, retailers, and motor vehicle manufacturers and dealers are not liable for property damages related to a customer's purchase of renewable fuel, including blends, if the consumer selected the fuel for use. Motor fuel blended with any amount of renewable fuel will not be considered a defective product provided the fuel compiles with motor fuel quality

  15. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  16. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  17. Increasing Access to Materials Critical to the Clean Energy Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Access to Materials Critical to the Clean Energy Economy Increasing Access to Materials Critical to the Clean Energy Economy January 9, 2013 - 12:30pm Addthis Europium, a rare earth element that has the same relative hardness of lead, is used to create fluorescent lightbulbs. With no proven substitutes, europium is considered critical to the clean energy economy. | Photo courtesy of the Ames Laboratory. Europium, a rare earth element that has the same relative hardness

  18. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  19. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  20. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on