Sample records for mineral product manufacturing

  1. Alternative Energy Product Manufacturers Tax Credit | Department...

    Broader source: Energy.gov (indexed) [DOE]

    and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing...

  2. Advanced Manufacturing Initiative Improves Turbine Blade Productivity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

  3. Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System

    E-Print Network [OSTI]

    Diaz, Nancy; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Product Manufacture in a Flexible Manufacturing System Nancypart production under flexible process routings is studiedMachining; Cost; Energy; Flexible Manufacturing INTRODUCTION

  4. Photographic lens manufacturing and production technologies

    E-Print Network [OSTI]

    Kubaczyk, Daniel Mark

    2011-01-01T23:59:59.000Z

    An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

  5. The Productivity Dilemma in Manufacturing

    E-Print Network [OSTI]

    Byrer, T. G.

    1983-01-01T23:59:59.000Z

    industry's needs, improve productivity, and reduce costs is known, but the technology transfer needed to impact our industrial productivity has not taken place. A key factor in accomplishing technology transfer and implementation is the availability...

  6. Energy Report: U.S. Wind Energy Production and Manufacturing...

    Energy Savers [EERE]

    Report: U.S. Wind Energy Production and Manufacturing Surges, Supporting Jobs and Diversifying U.S. Energy Economy Energy Report: U.S. Wind Energy Production and Manufacturing...

  7. Quantifying Energy Savings from Lean Manufacturing Productivity Increases

    E-Print Network [OSTI]

    Seryak, J.; Epstein, G.; D'Antonio, M.

    2006-01-01T23:59:59.000Z

    from existing use due to additional equipment or operating hours. Alternately, in the post-event scenario, Lean Manufacturing techniques enable production gains without increasing operating hours or adding manufacturing equipment. Hence.... The Lean Manufacturing techniques listed above improve productivity in several ways, which may or may not have impacts on energy use. Additionally, Lean Manufacturing techniques can also improve energy use in ways that have no relation to productivity...

  8. Lean manufacturing in a semiconductor environment : production leveling

    E-Print Network [OSTI]

    Subramanian, Nima

    2007-01-01T23:59:59.000Z

    Intel Corporation's Fab17 located at Hudson, MA underwent a large scale manufacturing ramp-up, increasing its production volume by over 50%. As a result of this manufacturing ramp-up, the factory is faced with various ...

  9. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect (OSTI)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01T23:59:59.000Z

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  10. Alignment strategies for drug product process development and manufacturing

    E-Print Network [OSTI]

    Garvin, Christopher John

    2012-01-01T23:59:59.000Z

    The transfer of information between the drug product development and manufacturing organizations is fundamental to drug product commercialization. This information is used to characterize the product-process interaction ...

  11. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    KEYWORDS: Life Cycle Assessment, LCA, Green manufacturing,cycle phases, Life Cycle Assessment (LCA). The followingimpact. 2.2 Life Cycle Assessment (LCA) and Related Metrics

  12. Solder technology in the manufacturing of electronic products

    SciTech Connect (OSTI)

    Vianco, P.T.

    1993-08-01T23:59:59.000Z

    The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

  13. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03T23:59:59.000Z

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  14. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23T23:59:59.000Z

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  15. Introducing Energy Performances in Production Management: Towards Energy Efficient Manufacturing

    E-Print Network [OSTI]

    Boyer, Edmond

    Introducing Energy Performances in Production Management: Towards Energy Efficient Manufacturing.taisch}@polimi.it Abstract. Energy consumption is one of the main economic, environmental and societal issues. As stated by recent researches, manufacturing plays a major role in energy consumption. To react to this situation

  16. Property Tax Abatement for Production and Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable...

  17. Streamlining data management in drug product commercialization and manufacturing

    E-Print Network [OSTI]

    Anderson, Spencer C. (Spencer Clark)

    2014-01-01T23:59:59.000Z

    Effective execution and alignment of data management across development and manufacturing teams is essential for Amgen's Drug Product Technology group to realize its main goals of shortening the development timeline and ...

  18. Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility

    E-Print Network [OSTI]

    Zhang, Endong, M. Eng. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

  19. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

    1995-11-01T23:59:59.000Z

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  20. Products information interoperability in manufacturing Tursi A.1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    Products information interoperability in manufacturing systems Tursi A.1,2 , Dassisti M.1 , Panetto (France), herve.panetto@cran.uhp-nancy.fr. Abstract Information flows and products traceability a system able to trace all relevant information related to the product lifecycle. This information is quite

  1. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Hazardous Substances Directive WEEE = Waste Electrical andelectronic products (RoHS, WEEE). Complementary metal oxide

  2. Energy Impacts of Productivity Improvements in Manufacturing 

    E-Print Network [OSTI]

    Mitrovic, B.; Muller, M. R.

    2002-01-01T23:59:59.000Z

    for potential improvements in energy use in concert with examination of waste streams and potential productivity improvements. The benefits of this new approach are substantial in particular with respect to productivity improvements. Such projects are much...

  3. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    = LCI = Mfg = MRR = RoHS = WEEE = Application programmingelectronic products (RoHS, WEEE). Complementary metal oxide

  4. COSTS MODELS IN DESIGN AND MANUFACTURING OF SAND CASTING PRODUCTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    COSTS MODELS IN DESIGN AND MANUFACTURING OF SAND CASTING PRODUCTS Nicolas PERRY Ass. Prof., IRCCy.Bernard@irccyn.ec-nantes.fr Abstract: In the early phases of the product life cycle, the costs controls became a major decision tool difficulties, we will present an approach using a concept of cost entity related to the design and realization

  5. Industrialization and manufacturing steps within the Global Product Lifecycle context

    E-Print Network [OSTI]

    Boyer, Edmond

    steps within the Product Life cycle Management (PLM) context. Initially, PLM was focused almost. In the same time, the industrialization and the manufacturing are not sufficiently integrated into the PLM solutions. Actually, there is much to be gained by extending the coverage of PLM to production stage

  6. An Innovative Framework Supporting SME Networks for Complex Product Manufacturing

    E-Print Network [OSTI]

    Boyer, Edmond

    An Innovative Framework Supporting SME Networks for Complex Product Manufacturing Luis Maia.kankaanpaa@uwasa.fi, ahsh@uwasa.fi Abstract. Current market dynamics require European SME's to focus on complex products collaboration processes and supporting ICT tools. This paper presents a framework to support SME

  7. Method of drill bit manufacture and product

    SciTech Connect (OSTI)

    Miller, R.R.; Ault, J.E.; Barber, R.B. Jr.; Hampel, D.A.

    1984-06-12T23:59:59.000Z

    A method is claimed for making a drill bit and product resulting therefrom in which carbide elements are coated with carbide and nitride materials such as those of titanium as by chemical vapor deposition after which the elements are cast in molten steel.

  8. V-Miner: Using Enhanced Parallel Coordinates to Mine Product Design and Test Data 1

    E-Print Network [OSTI]

    Liu, Bing

    V-Miner: Using Enhanced Parallel Coordinates to Mine Product Design and Test Data 1 Kaidi Zhao patterns can be easily detected visually. The Visual Miner (V-Miner) software includes both automated or data mining. This paper begins with an introduction to the proposed techniques and the V-Miner system

  9. A decomposition-based approach for the integration of product development and manufacturing system design

    E-Print Network [OSTI]

    Kim, Yong-Suk, 1975-

    2002-01-01T23:59:59.000Z

    Using a structured approach to understand the interaction between product design decisions and manufacturing system design is critical to reflect manufacturing system issues early in the product development process. Early ...

  10. Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing...

    Office of Environmental Management (EM)

    Wind Energy Production and Manufacturing Reaches Record Highs Energy Dept. Reports: U.S. Wind Energy Production and Manufacturing Reaches Record Highs August 6, 2013 - 8:00am...

  11. Manufacturing Ultra-Precision Meso-scale Products by Coining

    SciTech Connect (OSTI)

    Seugling, R M; Davis, P J; Rickens, K; Osmer, J; Brinksmeier, E

    2010-02-18T23:59:59.000Z

    A method for replicating ultra-precision, meso-scale features onto a near-net-shape metallic blank has been demonstrated. The 'coining' technology can be used to imprint a wide range of features and/or profiles into two opposing surfaces. The instrumented system provides the ability to measure and control the product thickness and total thickness variation (TTV). The coining mechanism relies on kinematic principles to accurately and efficiently produce ultra-precision work pieces without the production of by products such as machining chips, or grinding swarf while preserving surface finish, material structure and overall form. Coining has been developed as a niche process for manufacturing difficult to machine, millimeter size components made from materials that may present hazardous conditions. In the case described in this paper a refractory metal part, tantalum (Ta) was produced with 4 {micro}m peak to valley 50 {micro}m special wavelength sine wave coined into the surface of 50 {micro}m blank. This technique shows promise for use on ductile materials that cannot be precision machined with conventional single crystal diamond tooling and/or has strict requirements on subsurface damage, surface impurities and grain structure. As a production process, it can be used to reduce manufacturing costs where large numbers of ultra-precision, repetitive designs are required and produce parts out of hazardous materials without generating added waste.

  12. Impact of nano-size weathering products on the dissolution rates of primary minerals

    E-Print Network [OSTI]

    Simon, Emmanuel

    Impact of nano-size weathering products on the dissolution rates of primary minerals Simon.O. Box 208109, New Haven, CT 06520-8109 USA Abstract The natural weathering rates of primary minerals are often orders of mag- nitude lower than the rates of mineral dissolution measured in laboratory

  13. Viable System Model approach for holonic product-driven manufacturing systems

    E-Print Network [OSTI]

    Boyer, Edmond

    Viable System Model approach for holonic product-driven manufacturing systems Carlos Herrera , Sana manuscript, published in "1st Workshop on Service Orientation in Holonic and Multi Agent Manufacturing

  14. Productivity and system improvements in an organic photovoltaic panel manufacturing facility

    E-Print Network [OSTI]

    Chow, Jason (Jason Tsz Lok)

    2011-01-01T23:59:59.000Z

    The MIT Master of Engineering in Manufacturing team worked on productivity and operational improvement projects with Konarka Technologies, Inc., a world-leading organic photovoltaic panel manufacturing facility that is in ...

  15. DURABILITY EVALUATION AND PRODUCTION OF MANUFACTURED AGGREGATES FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect (OSTI)

    M. M. Wu

    2005-02-01T23:59:59.000Z

    Under the cooperative agreement with DOE, the Research and Development Department of CONSOL Energy (CONSOL R&D), teamed with Universal Aggregates, LLC, to conduct a systematic study of the durability of aggregates manufactured using a variety of flue gas desulfurization (FGD), fluidized-bed combustion (FBC) and fly ash specimens with different chemical and physical properties and under different freeze/thaw, wet/dry and long-term natural weathering conditions. The objectives of the study are to establish the relationships among the durability and characteristics of FGD material, FBC ash and fly ash, and to identify the causes of durability problems, and, ultimately, to increase the utilization of FGD material, FBC ash and fly ash as a construction material. Manufactured aggregates made from FGD material, FBC ash and fly ash, and products made from those manufactured aggregates were used in the study. The project is divided into the following activities: sample collection and characterization; characterization and preparation of manufactured aggregates; determination of durability characteristics of manufactured aggregates; preparation and determination of durability characteristics of manufactured aggregate products; and data evaluation and reporting.

  16. Process reengineering for the product development process at an analytical instrument manufacturer

    E-Print Network [OSTI]

    Tandon, Shubhang

    2014-01-01T23:59:59.000Z

    In an analytical instrument manufacturing company, the new product development process was analyzed with the objective of reducing time to market, to full scale production of new products and to improve project management ...

  17. Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling

    E-Print Network [OSTI]

    to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able associated with both the manufacture of carbon fibers themselves as well as their composites. Traditional

  18. A tool to estimate materials and manufacturing energy for a product

    E-Print Network [OSTI]

    Duque Ciceri, Natalia

    This study proposes an easy-to-use methodology to estimate the materials embodied energy and manufacturing energy for a product. The tool requires as input the product's Bill of Materials and the knowledge on how these ...

  19. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale 

    E-Print Network [OSTI]

    Skibsted, Joergen; Hall, Christopher

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, ...

  20. Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa)

    Broader source: Energy.gov [DOE]

    The state, counties and cities and other political subdivisions may lease publicly owned lands for the purpose of oil or gas or metallic minerals exploration and production.  Any such leases shall...

  1. Lost Opportunities in Industrial Energy Efficiency: New Production Lean Manufacturing and Lean Energy

    E-Print Network [OSTI]

    Seryak, J.; Epstein, G.; D'Antonio, M.

    2006-01-01T23:59:59.000Z

    companies regularly increase production by adding additional manufacturing equipment, or increasing operating hours. This approach can add large new energy loads to the electrical grid and gas distribution networks. Alternately, increasing production...Lost Opportunities in Industrial Energy Efficiency: New Production, Lean Manufacturing and Lean Energy John Seryak Gary Epstein Mark D’Antonio Engineer jseryak@ers-inc.com President gepstein@ers-inc.com Vice President mdantonio...

  2. Economic Contributions of Florida's Agricultural, Natural Resource, Food and Kindred Product Manufacturing and

    E-Print Network [OSTI]

    Florida, University of

    Manufacturing and Distribution, and Service Industries in 20081 Alan W. Hodges and Mohammad Rahmani2 1 economic sectors for food and kindred product manufacturing, wholesale and retail distribution, input supplies, support services, and nature-based recreation/eco-tourism. In addition to farming, forestry

  3. Economic Contributions of Florida Agriculture, Natural Resources, Food and Kindred Product Manufacturing

    E-Print Network [OSTI]

    Florida, University of

    Manufacturing and Distribution, and Service Industries in 20061 Alan W. Hodges, Mohammad Rahmani, and W. David range of other economic sectors for food and kindred products manufacturing, wholesale and retail distribution, input suppliers, support services, and nature-based recreation. In addition to farms, forests

  4. Production, Manufacturing and Logistics Managing inventories in a two-echelon dual-channel

    E-Print Network [OSTI]

    Chiang, Wei-yu Kevin

    Production, Manufacturing and Logistics Managing inventories in a two-echelon dual-channel supply We present a two-echelon dual-channel inventory model in which stocks are kept in both a manufacturer the Internet-based direct channel. The demand of retail customers is met with the on-hand inventory from

  5. WPMT (Fall 2009) Page 1 June 8, 2009 Wood Products Manufacturing Technology

    E-Print Network [OSTI]

    positions in wood products manufacturing, particularly for the hardwood cabinet and furniture industries to Lean Manufacturing (3) MET 14100 Materials I (4) Physics elective3 (3) STAT 30100 Elementary Sixth Semester (3) ECON 21000 Principles of Economics (3) FNR 31100 Wood Structure, Identification

  6. The design and manufacture of mass production equipment for a pencil with a seed

    E-Print Network [OSTI]

    Del Castillo, Eric A. (Eric Anthony)

    2013-01-01T23:59:59.000Z

    Autosprout is the mass manufacturing equipment envisioned to produce Sprout, a pencil with a seed. This pencil concept was developed by MIT students a successful round of funding and first production run through Kickstarter. ...

  7. A study of the manufacturing and product possibilities of a cork/polylactic acid compound

    E-Print Network [OSTI]

    Reed, Sarah BR

    2011-01-01T23:59:59.000Z

    A study of the manufacturing and product capabilities of a cork/polylactic acid compound was conducted. Fine granulated cork, 1mm in diameter, was compounded with Natureworks' IngeoTM3051D PLA and extruded into pellets. ...

  8. Highlights of Industrial Energy Audits with Application in Paper Product Manufacturing

    E-Print Network [OSTI]

    Hart, M. N.; Bond, S. K.

    1979-01-01T23:59:59.000Z

    Experience in executing comprehensive energy audits in varied industrial plants has resulted in a basic audit methodology and has revealed several interesting energy conservation opportunities applicable to paper products manufacturing. The most...

  9. Strategic development of a manufacturing execution system (MES) for cold chain management using information product mapping

    E-Print Network [OSTI]

    Waldron, Todd Andrew

    2011-01-01T23:59:59.000Z

    The Vaccines & Diagnostics (V&D) division of Novartis recently developed a global automation strategy that highlights the need to implement a manufacturing execution system (MES). Benefits of an MES (electronic production ...

  10. SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION

    SciTech Connect (OSTI)

    Eric J. Carlson; Yong Yang; Chandler Fulton

    2004-04-20T23:59:59.000Z

    The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin goals.

  11. Industrialization and manufacturing steps within the Global Product Lifecycle context

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    steps within the Product Life cycle Management (PLM) context. Initially, PLM was focused almost. In the same time, the industrialization and the production are not sufficiently integrated into the PLM solutions. Currently, there is much to be gained by extending the coverage of PLM to production step

  12. TEHNOMUS -New Technologies and Products in Machine Manufacturing Technologies" USING VIRTUAL PARTS TO OPTIMIZE THE METROLOGY

    E-Print Network [OSTI]

    Boyer, Edmond

    TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies" 9 USING VIRTUAL is a perfect perpendicular cylinder and all plane surfaces #12;TEHNOMUS - New Technologies and Products the dispersion of the position of different drilled holes (XYZ values in a coordinate system) when we change

  13. Manufacturers of Noncompliant Products Agree to Civil Penalties...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    equipment found in violation included automatic commercial ice makers, distribution transformers, external power supplies, showerheads and lighting products. The companies ceased...

  14. Improving Product and Manufacturing Process Design through a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    enable more accurate modeling of machining processes, which will result in improved productivity. Graphic credit Third Wave Systems. fluid. This inefficient trial-and-error process...

  15. Graphene as a manufactured product : a look forward

    E-Print Network [OSTI]

    Frost, Stephen T

    2013-01-01T23:59:59.000Z

    Graphene's unique electrical and mechanical properties have brought it into the spotlight in recent years. With the number of patents increasing rapidly every year, production of the material is becoming more and more ...

  16. Costs Models in Design and Manufacturing of Sand Casting Products

    E-Print Network [OSTI]

    Nicolas Perry; Magali Mauchand; Alain Bernard

    2010-11-26T23:59:59.000Z

    In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

  17. The simulation and analysis of continuous single product manufacturing systems

    E-Print Network [OSTI]

    Snyder, Theodore Robert

    1974-01-01T23:59:59.000Z

    there was insufficient time to develop new methods or concepts in ammunition production, even though more ad- vanced techn1ques were being employed by private 1ndustry in similar fields. After the war the Government Owned Contractor Operated (GOCO) Plants were either...

  18. ME 4171 Environmentally Conscious Design & Manufacturing (Bras) Assignment Aircraft Fuel Tank Production Pollution Prevention

    E-Print Network [OSTI]

    mainly in the aircraft industry. The main reasons for using fabric in the construction of these tanks Production Pollution Prevention A local company manufactures a wide variety of fabric fuel tanks for use are durability and shape requirements imposed by aircraft design. The construction process involves first

  19. The production of consumption: addressing the impact of mineral mining on tuberculosis in southern Africa

    E-Print Network [OSTI]

    Basu, Sanjay; Stuckler, David; Gonsalves, Gregg; Lurie, Mark

    2009-01-01T23:59:59.000Z

    of South Africa: Department of Minerals and Energy; SouthSouth Africa, various departments, ranging from the Minerals and Energyof Minerals and Energy: Mining and minerals in South Africa:

  20. Design of a demand driven multi-item-multi-stage manufacturing system : production scheduling, WIP control and Kanban implementation

    E-Print Network [OSTI]

    Zhou, Xiaoyu, M. Eng Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The project is conducted in a multi-item-multi-stage manufacturing system with high volume products. The objectives are to optimize the inventory structure and improve production scheduling process. The stock building plan ...

  1. Method for the production of mineral wool and iron from serpentine ore

    SciTech Connect (OSTI)

    O'Connor, William K. (Albany, OR); Rush, Gilbert E. (Scio, OR); Soltau, Glen F. (Lebanon, OR)

    2011-10-11T23:59:59.000Z

    Magnesium silicate mineral wools having a relatively high liquidus temperature of at least about 1400.degree. C. and to methods for the production thereof are provided. The methods of the present invention comprise melting a magnesium silicate feedstock (e.g., comprising a serpentine or olivine ore) having a liquidus temperature of at least about 1400.degree. C. to form a molten magnesium silicate, and subsequently fiberizing the molten magnesium silicate to produce a magnesium silicate mineral wool. In one embodiment, the magnesium silicate feedstock contains iron oxide (e.g., up to about 12% by weight). Preferably, the melting is performed in the presence of a reducing agent to produce an iron alloy, which can be separated from the molten ore. Useful magnesium silicate feedstocks include, without limitation, serpentine and olivine ores. Optionally, silicon dioxide can be added to the feedstock to lower the liquidus temperature thereof.

  2. Electricity Diffusion and Trend Acceleration in Inter-War Manufacturing Productivity

    E-Print Network [OSTI]

    Ristuccia, Cristiano A; Solomou, Solomos

    2004-06-16T23:59:59.000Z

    counting both the horse power capacity of a steam turbine attached to an electric generator within the plant, and the horse power capacity of all the electric motors that use the electricity so generated to run production machinery in the factory. Clearly... for the period 1875-1885 also exist. Inspection of the trend of the pre-1913 period and the interwar period does not suggest that the inter-war period was one of trend accelerated growth rates. Growth rates of manufacturing sector labour productivity were high...

  3. The production of consumption: addressing the impact of mineral mining on tuberculosis in southern Africa

    E-Print Network [OSTI]

    Basu, Sanjay; Stuckler, David; Gonsalves, Gregg; Lurie, Mark

    2009-01-01T23:59:59.000Z

    and Rights Alliance: The Mining Sector, Tuberculosis andthe impact of mineral mining on tuberculosis in southernbetween mineral mining activities and tuberculosis incidence

  4. A new Energy Saving method of manufacturing ceramic products from waste glass

    SciTech Connect (OSTI)

    Haun Labs

    2002-07-05T23:59:59.000Z

    This final report summarizes the activities of the DOE Inventions and Innovations sponsored project, ''A New Energy Saving Method of Manufacturing Ceramic Products from Waste Glass.'' The project involved an innovative method of lowering energy costs of manufacturing ceramic products by substituting traditional raw materials with waste glass. The processing method is based on sintering of glass powder at {approx}750 C to produce products which traditionally require firing temperatures of >1200 C, or glass-melting temperatures >1500 C. The key to the new method is the elimination of previous processing problems, which have greatly limited the use of recycled glass as a ceramic raw material. The technology is aligned with the DOE-OIT Glass Industry Vision and Roadmap, and offers significant energy savings and environmental benefits compared to current technologies. A U.S. patent (No. 6,340,650) covering the technology was issued on January 22, 2002. An international PCT Patent Application is pending with designations made for all PCT regions and countries. The goal of the project was to provide the basis for the design and construction of an energy-efficient manufacturing plant that can convert large volumes of waste glass into high-quality ceramic tile. The main objectives of the project were to complete process development and optimization; construct and test prototype samples; and conduct market analysis and commercialization planning. Two types of ceramic tile products were targeted by the project. The first type was developed during the first year (Phase I) to have a glazed-like finish for applications where slip resistance is not critical, such as wall tile. The processing method optimized in Phase I produces a glossy surface with a translucent appearance, without the extra glazing steps required in traditional tile manufacturing. The second type of product was developed during the second year (Phase II). This product was designed to have an unglazed appearance for applications requiring slip resistance, such as floor tile. The coarser matte finish of this product type was produced by modifying the basic process to include crystalline fillers and partial crystallization of the glass. Additional details of the project results are discussed in Section III.

  5. MINERAL COMMODITY SUMMARIES 2002

    E-Print Network [OSTI]

    Torgersen, Christian

    MINERAL COMMODITY SUMMARIES 2002 MINERAL COMMODITY SUMMARIES 2002 U.S. Department of the Interior U for Mineral Products . . . . . . . . . . . . . . . . . . . . . . . . . 3 The Role of Nonfuel Minerals in the U.S. Economy . . . 4 2001 U.S. Net Import Reliance for Selected Nonfuel Mineral Materials

  6. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect (OSTI)

    Michael J. Haun

    2005-07-15T23:59:59.000Z

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  7. Method of manufacturing metallic products such as sheet by cold working and flash anealing

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  8. Method of manufacturing metallic products such as sheet by cold working and flash annealing

    DOE Patents [OSTI]

    Hajaligol, Mohammad R. (Midlothian, VA); Sikka, Vinod K. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A metallic alloy composition is manufactured into products such as press formed or stamped products or rolled products such as sheet, strip, rod, wire or band by one or more cold working steps with intermediate or final flash annealing. The method can include cold rolling an iron, nickel or titanium aluminide alloy and annealing the cold worked product in a furnace by infrared heating. The flash annealing is preferably carried out by rapidly heating the cold worked product to an elevated temperature for less than one minute. The flash annealing is effective to reduce surface hardness of the cold worked product sufficiently to allow further cold working. The product to be cold worked can be prepared by casting the alloy or by a powder metallurgical technique such as tape casting a mixture of metal powder and a binder, roll compacting a mixture of the powder and a binder or plasma spraying the powder onto a substrate. In the case of tape casting or roll compaction, the initial powder product can be heated to a temperature sufficient to remove volatile components. The method can be used to form a cold rolled sheet which is formed into an electrical resistance heating element capable of heating to 900.degree. C. in less than 1 second when a voltage up to 10 volts and up to 6 amps is passed through the heating element.

  9. MANUFACTURING Manufacturing and Biomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

  10. The MS-Q Force Field for Clay Minerals: Application to Oil Production Sungu Hwang, Mario Blanco, Ersan Demiralp, Tahir Cagin, and William A. Goddard, III*

    E-Print Network [OSTI]

    Çagin, Tahir

    The MS-Q Force Field for Clay Minerals: Application to Oil Production Sungu Hwang, Mario Blanco inhibitor oil production chemical. 1. Introduction Molecular modeling studies of clay and related zeolite of water, hydrocarbons, and polar organic compounds such as oil field production chemicals on clay mineral

  11. Hunchback Shelter: A Fremont Lithic Production Site in the Mineral Mountains of Eastern Utah

    E-Print Network [OSTI]

    Greubel, Rand A.; Andrews, Bradford W.

    2008-01-01T23:59:59.000Z

    Mineral Mountains or Black Rock sources (Talbot et al. 2000:Canyon, and Black Rock obsidian source areas. occupations

  12. Productivity genefits from new energy technology: A case study of a paint manufacturing company

    SciTech Connect (OSTI)

    Raghunathan, P.; Capehart, B.L.

    1997-06-01T23:59:59.000Z

    In many cases, implementing new energy efficiency technologies not only helps facilities reduce their energy costs, but it also creates greater profits by increasing productivity. These added benefits from productivity improvements can sometimes be greater than the energy cost savings, and can result in an attractive overall payback period for implementing the new technology. This paper presents a case study of productivity improvement at a paint manufacturing company as a result of implementing new energy efficiency technology. During an industrial energy assessment, it was noted that the company had experienced frequent failures of motor belts and sheaves on five paint mixers resulting in significant replacement costs and labor costs. In addition, a bigger loss was being suffered due to lost potential profit associated with the frequent work stoppages. The IAC recommendation was to install motor soft starters (also known as motor voltage controllers) on the five mixing machines. Installation of soft starters would have the following benefits: lower energy costs, lower replacement costs for transmission components, lower labor costs, and higher production levels and increased profits. The total annual benefits were estimated at $122,659, of which the benefits from increased productivity were nearly $67,000. The overall simple payback period for installing the soft starters was less than 2 months.

  13. MINERAL COMMODITY SUMMARIES 2014

    E-Print Network [OSTI]

    Torgersen, Christian

    MINERAL COMMODITY SUMMARIES 2014 #12;U.S. Department of the Interior U.S. Geological Survey MINERAL contained within this report. Suggested citation: U.S. Geological Survey, 2014, Mineral commodity summaries and Coincident Indexes for Mineral Products......................................................... 4 The Role

  14. MINERAL COMMODITY SUMMARIES 2012

    E-Print Network [OSTI]

    Fleskes, Joe

    MINERAL COMMODITY SUMMARIES 2012 #12;U.S. Department of the Interior U.S. Geological Survey MINERAL contained within this report. Suggested citation: U.S. Geological Survey, 2012, Mineral commodity summaries and Coincident Indexes for Mineral Products......................................................... 4 The Role

  15. MINERAL COMMODITY SUMMARIES 2003

    E-Print Network [OSTI]

    Torgersen, Christian

    MINERAL COMMODITY SUMMARIES 2003 MINERAL COMMODITY SUMMARIES 20 U.S. Department of the Interior U MINERAL COMMODITY SUMMARIES 2003 #12;U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary For sale;CONTENTS Page General: Growth Rates of Leading and Coincident Indexes for Mineral Products

  16. Capacity analysis, cycle time optimization, and supply chain strategy in multi-product biopharmaceutical manufacturing operations

    E-Print Network [OSTI]

    Fetcho-Phillips, Kacey L. (Kacey Lynn)

    2011-01-01T23:59:59.000Z

    Application of system optimization theory, supply chain principles, and capacity modeling are increasingly valuable tools for use in pharmaceutical manufacturing facilities. The dynamics of the pharmaceutical industry - ...

  17. Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments

    E-Print Network [OSTI]

    Diaz-Elsayed, Nancy; Jondral, Annabel; Greinacher, Sebastian; Dornfeld, David; Lanza, Gisela

    2013-01-01T23:59:59.000Z

    manufacturing system’s performance indicators while using amanufacturing system’s performance indicators while using atheir impact on performance indicators [2–4], and bundling

  18. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

  19. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

  20. Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands (Mississippi)

    Broader source: Energy.gov [DOE]

    The Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands is applicable to the natural gas sector. This law delegates...

  1. Customized digital manufacturing : concept to construction methods across varying product scales

    E-Print Network [OSTI]

    Botha, Marcel

    2006-01-01T23:59:59.000Z

    Architectural design and construction is rapidly changing through the extensive adoption of digital design, manufacture and assembly tools. Customized assemblies are paired and recombined to create unique spatial enclosures. ...

  2. Production and characterization of carbamazepine nanocrystals by electrospraying for continuous pharmaceutical manufacturing

    E-Print Network [OSTI]

    Wang, Mao

    In this paper, an electrospray technique followed by annealing at high temperatures was developed to produce nanocrystals of carbamazepine (CBZ), a poorly water-soluble drug, for continuous pharmaceutical manufacturing ...

  3. A practical application of simulation for production planning in a flexible pharmaceutical manufacturing environment

    E-Print Network [OSTI]

    Wilson, Christopher J. (Christopher James)

    2014-01-01T23:59:59.000Z

    In pursuit of Novartis Pharmaceutical's vision to "Make Quality Medicine-On Time, Every Time" Novartis Ringaskiddy Limited (NRL), is pursuing Class A Manufacturing (MRP II) certification. Achieving Class A certification ...

  4. Introduction of a method for presenting health-based impacts of the emission from products, based on emission measurements of materials used in manufacturing of the products

    SciTech Connect (OSTI)

    Jřrgensen, Rikke Bramming, E-mail: rikke.jorgensen@iot.ntnu.no

    2013-11-15T23:59:59.000Z

    A method for presenting the health impact of emissions from furniture is introduced, which could be used in the context of environmental product declarations. The health impact is described by the negative indoor air quality potential, the carcinogenic potential, the mutagenic and reprotoxic potential, the allergenic potential, and the toxicological potential. An experimental study of emissions from four pieces of furniture is performed by testing both the materials used for production of the furniture and the complete piece of furniture, in order to compare the results gained by adding emissions of material with results gained from testing the finished piece of furniture. Calculating the emission from a product based on the emission from materials used in the manufacture of the product is a new idea. The relation between calculated results and measured results from the same products differ between the four pieces of furniture tested. Large differences between measured and calculated values are seen for leather products. More knowledge is needed to understand why these differences arise. Testing materials allows us to compare different suppliers of the same material. Four different foams and three different timber materials are tested, and the results vary between materials of the same type. If the manufacturer possesses this type of knowledge of the materials from the subcontractors it could be used as a selection criterion according to production of low emission products. -- Highlights: • A method for presenting health impact of emissions is introduced. • An experimental study of emissions from four pieces of furniture is performed. • Health impact is calculated based on sum of contribution from the materials used. • Calculated health impact is compared to health impact of the manufactured product. • The results show that health impact could be useful in product development and for presentation in EPDs.

  5. Solar Manufacturing Incentive Grant (SMIG) Program

    Broader source: Energy.gov [DOE]

    Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

  6. Manufacturing industry challenges and responses to EU, California, and other product-targeted environmental regulations

    E-Print Network [OSTI]

    Kirschner, Michael

    2008-01-01T23:59:59.000Z

    and manage their “product lifecycle process” has now comePRELIMINARY DRAFT The Product Lifecycle Process In order toproducts called the “product lifecycle process”. Often a “

  7. Production and inventory control of a multi-item multi-stage manufacturing system : simulation modeling, capacitated shipment planning and Kanban design

    E-Print Network [OSTI]

    Rizvi, Syed Zia Abbas

    2009-01-01T23:59:59.000Z

    The project work presented in this thesis has proposed solutions related to the control of production and work-in-process inventory in a multi-item multi-stage manufacturing system. A suitable base-stock inventory control ...

  8. Productivity Enhancement for Manufacturing of Amorphous Silicon PV Modules: Final Technical Progress Report; 1 July 2002--31 October 2004

    SciTech Connect (OSTI)

    Volltrauer, H.; Jansen, K.

    2005-02-01T23:59:59.000Z

    The overall objective of this subcontract over its two-year duration is to continue the advancement of Energy Photovoltaics, Inc.'s (EPV) a-Si production manufacturing technology and improve the production equipment used in manufacturing. This will allow EPV to reduce module costs by increasing module output, throughput, and yield. EPV conducted parallel research efforts for achieving higher stabilized module power output through improvements in several manufacturing processing steps, with particular emphasis on the thin-film deposition process. The dual goals of achieving a 20% gain in stabilized output and a 20% reduction in direct costs were accomplished. The 20% gain in stabilized output increased the power of the standard 0.79 m2 module to about 45 watts. This was achieved through optimizing the a-Si deposition process to improve stability, increasing the active area of the module, and developing a ZnO/Al back reflector to increase the light absorption of the a-Si. Additionally, improvements were made to the a-Si uniformity, and an improved TCO was incorporated into the standard product. The goal of reducing costs by 20% was exceeded, resulting in an estimated direct cost of $1.41/W, for the process in EPV's New Jersey facility. This was accomplished through a complete review of the process that resulted in lower material costs, lower labor costs, less downtime, and higher module power, as noted above. The process was streamlined and made more efficient by eliminating or combining process steps, and selected processes were automated. In addition, improvements were made to the characterization and measurement techniques used in the module optimization process.

  9. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  10. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing manufacturing industries and result in creative new products. Stronger, more corrosion-resistant and lower cost steel alloys are being developed and commercialized to...

  11. Minerals Yearbook 1989: Lithium

    SciTech Connect (OSTI)

    Ober, J.A.

    1989-01-01T23:59:59.000Z

    The United States led the world in lithium mineral and compound production and consumption. Estimated consumption increased slightly, and world production also grew. Sales increased for domestic producers, who announced price increases for the third consecutive year. Because lithium is electrochemically reactive and has other unique properties, there are many commercial lithium products. Producers sold lithium as mineral concentrate, brine, compound, or metal, depending upon the end use. Most lithium compounds were consumed in the production of ceramics, glass, and primary aluminum.

  12. Process reengineering for new product introduction at an analytical instrument manufacturing firm

    E-Print Network [OSTI]

    Ranjan, Aditya

    2014-01-01T23:59:59.000Z

    The process of transforming Research and Development knowledge to successfully introducing new products in the market forms a key competency of an innovative company. This new product introduction process was studied at ...

  13. Process for manufacture of inertial confinement fusion targets and resulting product

    DOE Patents [OSTI]

    Masnari, Nino A. (Ann Arbor, MI); Rensel, Walter B. (Ann Arbor, MI); Robinson, Merrill G. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI); Wise, Kensall D. (Ann Arbor, MI); Wuttke, Gilbert H. (Ypsilanti Township, Washtenaw County, MI)

    1982-01-01T23:59:59.000Z

    An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.

  14. Manufacturing Energy and Carbon Footprint - Sector: Forest Products (NAICS 321, 322), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturingAllComputers,Food

  15. Lost Opportunities in Industrial Energy Efficiency: New Production Lean Manufacturing and Lean Energy 

    E-Print Network [OSTI]

    Seryak, J.; Epstein, G.; D'Antonio, M.

    2006-01-01T23:59:59.000Z

    , plant wide energy use is mainly a function of three variables: weather conditions, production quantity and operating hours. For example, as outdoor temperatures increase in the summer time, plant electricity use may also increase due to air... of production factors. Next, imagine dedicated production presses that shut off during idle cycle times. This equipment uses energy directly proportional to production quantity, regardless of the operating hours. Lighting equipment for this same operation...

  16. Productivity and Firm Size Distribution: Evidence from India's Organized and Unorganized Manufacturing Sectors

    E-Print Network [OSTI]

    Nataraj, Shanthi

    2010-01-01T23:59:59.000Z

    Synthetic Fibers Jute and Vegetable Fibers Textile Products Wood Paper Leather Basic Chemicals Rubber,Synthetic Textiles Jute, Vegetable Fiber Textile Products Wood, Furniture, Fixtures Paper, Printing, Finishing Leather Basic Chemicals Rubber,Synthetic Textiles Jute, Vegetable Fiber Textile Products Wood, Furniture, Fixtures Paper, Printing, Finishing Leather Basic Chemicals Rubber,

  17. Production, Manufacturing and Logistics Using real time information for effective dynamic scheduling

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    In many production processes real time information may be obtained from process control computers of the revised schedule against the production disturbance which results from changing the planned schedule. We into scheduling the complex production processes of steel continuous caster planning. Ó 2002 Elsevier Science B

  18. The impact of mineral fertilizers on the carbon footprint of crop production

    E-Print Network [OSTI]

    Brentrup, Frank

    2009-01-01T23:59:59.000Z

    the GHG emissions (“carbon footprint”) of crop production inMaterials and methods – “carbon footprint” calculation basedLCA) principles A carbon footprint is “the total set of

  19. Prebiotic Metabolism: Production by Mineral Photoelectrochemistry of a-Ketocarboxylic Acids

    E-Print Network [OSTI]

    acid (rTCA) cycle could have fixed carbon dioxide as biochemically useful energy- storage molecules- tions in the past (Fig. 3). Ultraviolet light penetrates into the water, interacting with carbon dioxide energies of formation that disfavor their production. We report herein the production of pyruvate from

  20. Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments

    E-Print Network [OSTI]

    Diaz-Elsayed, Nancy; Jondral, Annabel; Greinacher, Sebastian; Dornfeld, David; Lanza, Gisela

    2013-01-01T23:59:59.000Z

    total quality management [TQM]) q x Less inventory; improvement in lead times; shorter waiting times Structural changes depending on the production control

  1. Manufacturing Cost Analysis for YSZ-Based FlexCells at Pilot and Full Scale Production Scales

    SciTech Connect (OSTI)

    Scott Swartz; Lora Thrun; Robin Kimbrell; Kellie Chenault

    2011-05-01T23:59:59.000Z

    Significant reductions in cell costs must be achieved in order to realize the full commercial potential of megawatt-scale SOFC power systems. The FlexCell designed by NexTech Materials is a scalable SOFC technology that offers particular advantages over competitive technologies. In this updated topical report, NexTech analyzes its FlexCell design and fabrication process to establish manufacturing costs at both pilot scale (10 MW/year) and full-scale (250 MW/year) production levels and benchmarks this against estimated anode supported cell costs at the 250 MW scale. This analysis will show that even with conservative assumptions for yield, materials usage, and cell power density, a cost of $35 per kilowatt can be achieved at high volume. Through advancements in cell size and membrane thickness, NexTech has identified paths for achieving cell manufacturing costs as low as $27 per kilowatt for its FlexCell technology. Also in this report, NexTech analyzes the impact of raw material costs on cell cost, showing the significant increases that result if target raw material costs cannot be achieved at this volume.

  2. STATE OF CALIFORNIA NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor Attention: Air Filter product manufacturers

    E-Print Network [OSTI]

    in order to size and specify HVAC systems that perform properly with these filters. Our understanding link below) for your California-market filter products to the Energy Commission. Air

  3. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

  4. Manufacturability Study and Scale-Up for Large Format Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    integrators - Original equipment manufacturers * Development of processes, process optimization, manufacturing schemes, materials improvements, diagnostics, and production yield...

  5. Properties of Field Manufactured Cast-Concrete Products Utilizing Recycled Materials

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    in appropriate concrete mixtures, thus reducing the need to landfill or otherwise dispose it. Fly ash from coal, coal-combustion bottom ash, and used foundry sand. A total of 18 mixture proportions with and without for these products or even improving these properties. Although coal- combustion fly ash, bottom ash, and used

  6. Productivity and Market Selection of French Manufacturing Firms in the Nineties

    E-Print Network [OSTI]

    Boyer, Edmond

    ,version1-3Apr2014 #12;Abstract: This paper analyses post-entry and pre-exit performance of French firms11, L60. Keywords: entry and exit patterns, firm level data, TFP indexes, market selection hal productive firm heterogeneity and industrial dynamics (entry, exit and reallocation of market shares) have

  7. Product development of a device for manufacturing medical equipment for use in low-resource settings

    E-Print Network [OSTI]

    Schlecht, Lisa (Lisa Anne)

    2010-01-01T23:59:59.000Z

    The objective of this paper is to describe the product design of a device that can be used to create medical supplies on-site in clinics in low-resource settings. The machine uses purely mechanical elements to cut and fold ...

  8. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  9. Measurement of ??-induced [nu subscript mu -induced] charged-current neutral pion production cross sections on mineral oil at E??0.5–2.0??[E subscript nu ?0.5–2.0?] GeV

    E-Print Network [OSTI]

    Bugel, Leonard G.

    Using a custom 3-?erenkov ring fitter, we report cross sections for ??-induced [nu subscript mu -induced] charged-current single ?0 production on mineral oil (CH2) [CH subscript 2] from a sample of 5810 candidate events ...

  10. The critical role of manufacturing-process innovation on product development excellence in high-technology companies

    E-Print Network [OSTI]

    Duarte, Carlos E. A., 1962-

    2004-01-01T23:59:59.000Z

    Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

  11. Clean Energy Manufacturing Incentive Grant Program

    Broader source: Energy.gov [DOE]

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  12. INFORMATION SYSTEMS SUPPORT FOR MANUFACTURING PROCESSES

    E-Print Network [OSTI]

    activities. The feature overlapping of production planning and quality control between both systems raises and distribution (Merrit1999) and have extend their scope to support quality control and production tracking: Manufacturing Enterprises, Enterprise Resource Planning, Manufacturing Execution Systems, Discrete Processes

  13. Petrick Technology Trends Of Manufacturing

    E-Print Network [OSTI]

    #12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: · that firms sophisticated modeling and simulation of both new products and production processes; · that additive

  14. Measurement of ??-induced charged-current neutral pion production cross sections on mineral oil at Ev?0.5–2.0 GeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Mauger, C.; McGary, V. T.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Mousseau, J.; Nelson, R. H.; Nienaber, P.; Nowak, J. A.; Osmanov, B.; Ouedraogo, S.; Patterson, R. B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Spitz, J.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.

    2011-03-01T23:59:59.000Z

    Using a custom 3-Cerenkov ring fitter, we report cross sections for ??-induced charged-current single ?? production on mineral oil (CH?) from a sample of 5810 candidate events with 57% signal purity over an energy range of 0.5–2.0 GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of Q˛, ?? kinematics, and ?? kinematics. The sample yields a flux-averaged total cross section of (9.2±0.3stat±1.5syst)×10?ł? cm˛/CH˛ at mean neutrino energy of 0.965 GeV.

  15. Clay Minerals

    SciTech Connect (OSTI)

    Mueller, Karl T.; Sanders, Rebecca L.; Washton, Nancy M.

    2014-03-14T23:59:59.000Z

    Clay minerals are important components of the environment and are involved or implicated in processes such as the uptake of pollutants and the release of nutrients and as potential platforms for a number of chemical reactions. Owing to their small particle sizes (typically, on the order of microns or smaller) and mixing with a variety of other minerals and soil components, advanced characterization methods are needed to study their structures, dynamics, and reactivities. In this article, we describe the use of solid-state NMR methods to characterize the structures and chemistries of clay minerals. Early one-pulse magic-angle spinning (MAS) NMR studies of 27Al and 29Si have now been enhanced and extended with new studies utilizing advanced methodologies (such as Multiple Quantum MAS) as well as studies of less-sensitive nuclei. In additional work, the issue of reactivity of clay minerals has been addressed, including studies of reactive surface area in the environment. Utilizations of NMR-sensitive nuclides within the clay minerals themselves, and in molecules that react with speci?c sites on the clay mineral surfaces, have aided in understanding the reactivity of these complex aluminosilicate systems.

  16. PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX M. Im, X. Den& II. C. Ovshinsky,R. Crucetand S.R Ovshimky

    E-Print Network [OSTI]

    Deng, Xunming

    PRODUCTION START-UP OF 2 MW a-Si PV MANUFACTURING LINE AT SOVLUX PLANT M. Im, X. Den& II. C start-up efforts at the 2MW Sovlux photovoltaic production line. Triple-junction solar cells with higher than 10% initial effXency were producedin this production line with subcell yield up to 96

  17. 2011 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    2011 Minerals Yearbook U.S. Department of the Interior U.S. Geological Survey BORON [ADVANCE production table was prepared by Lisa D. Miller, international data coordinator. U.S. consumption of minerals of boron minerals (table 6). World production of boron minerals increased in 2011 to an estimated 4

  18. Join Us for the Clean Energy Manufacturing Initiative's Western...

    Energy Savers [EERE]

    resources, as well as best practices and cutting-edge technologies, to boost energy productivity across the entire U.S. manufacturing supply chain will make our manufacturing...

  19. Creation and sustainment of manufacturing technology roadmaps

    E-Print Network [OSTI]

    Grillon, Louis S

    2012-01-01T23:59:59.000Z

    Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

  20. Additive Manufacturing: Implications on Research and Manufacturing

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

  1. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    SciTech Connect (OSTI)

    Fatemi, H.

    2012-07-01T23:59:59.000Z

    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  2. MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION

    E-Print Network [OSTI]

    Schumacher, Russ

    MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

  3. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Chiang, Wei-yu Kevin

    an upstream firm, as a result of charging a wholesale price above the marginal cost, induces its intermediary Dynamics and Channel Efficiency in Durable Product Pricing and Distribution Wei-yu Kevin Chiang College the single-period vertical price interaction in a manufacturer­retailer dyad to a multi- period setting

  4. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  5. Resource Conservative Manufacturing Transforming Waste into High Value Resource through Closed-Loop Product Systems (ResCoM)

    E-Print Network [OSTI]

    Arleo, Angelo

    and the environment, the EU has no choice but to go for the transition to a resource-efficient and ultimately), supply chain management (integrated supply chains), business model development (closed-loop business of closed loop product design in terms of resource efficiency, CO2 production and energy use

  6. Supply chain networks, consisting of manufacturers, distributors, retailers, and consumers, provide the critical infrastructure for the production of goods,

    E-Print Network [OSTI]

    Nagurney, Anna

    developed in Part I to energy supply chains in the form of electric power generation and distri- bution not only in terms of the product flows but also in terms of pricing in order to satisfy the consumers competition as well as cooperation and yield the resulting product and ma- terial flows and prices

  7. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Plants Challenge Manufacturing R&D Facilities Manufacturing Demonstration Facility Manufacturing Institutes National Additive Manufacturing Innovation Institute - Pilot Now...

  8. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  9. 2010 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    2010 Minerals Yearbook U.S. Department of the Interior U.S. Geological Survey BORON [ADVANCE of minerals and compounds reported in boron oxide continued to increase in 2010 but quantities are withheld's leading producers of boron minerals (table 6). World production of boron minerals increased in 2010

  10. Multiple-part-type systems in high volume manufacturing : long-term capacity planning & time-based production control

    E-Print Network [OSTI]

    Hua, Xia, M. Eng. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    This project examines a production station that faces fluctuating demand with seasonal pattern. The cumulative capacity exceeds the cumulative demand in a one year period; however, its weekly capacity is not able to meet ...

  11. Mineral Resource Information System for Field Lab in the Osage Mineral Reservation Estate

    SciTech Connect (OSTI)

    Carroll, H.B.; Johnson, William I.

    1999-04-27T23:59:59.000Z

    The Osage Mineral Reservation Estate is located in Osage County, Oklahoma. Minerals on the Estate are owned by members of the Osage Tribe who are shareholders in the Estate. The Estate is administered by the Osage Agency, Branch of Minerals, operated by the U.S. Bureau of Indian Affairs (BIA). Oil, natural gas, casinghead gas, and other minerals (sand, gravel, limestone, and dolomite) are exploited by lessors. Operators may obtain from the Branch of Minerals and the Osage Mineral Estate Tribal Council leases to explore and exploit oil, gas, oil and gas, and other minerals on the Estate. Operators pay a royalty on all minerals exploited and sold from the Estate. A mineral Resource Information system was developed for this project to evaluate the remaining hydrocarbon resources located on the Estate. Databases on Microsoft Excel spreadsheets of operators, leases, and production were designed for use in conjunction with an evaluation spreadsheet for estimating the remaining hydrocarbons on the Estate.

  12. Pseudomonas fluorescens -A robust manufacturing platform

    E-Print Network [OSTI]

    Lebendiker, Mario

    Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

  13. Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning (MRP)

    E-Print Network [OSTI]

    Cook, Diane J.

    -time controller. The controller uses four matrices: Fv and Sv describe ordering constraints between plan by allowing limited production capacity Inputs to Control System Researchers studying issues in intelligentCombining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning

  14. President Obama's National Network for Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material, to digital methods that use "additive" technologies. Often referred to as 3D printing, additive manufacturing is a way of making products and components of almost any...

  15. Process for the manufacture of an electrode for electrochemical process and a cathode for the electrolytic production of hydrogen

    SciTech Connect (OSTI)

    Nicolas, E.; Merckaert, L.

    1985-08-13T23:59:59.000Z

    An electrically conductive substrate is coated with a material containing an unsintered powder of a metal active for electrochemical proton reduction and colloidal silica and the said material is heated on the substrate successively in an oxidizing atmosphere and then in a reducing atmosphere. The electrode may be employed as a cathode for electrolytic production of hydrogen in an alkaline medium.

  16. Market analysis of shale oil co-products. Summary report

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  17. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31T23:59:59.000Z

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  18. Posted 5/10/12 Manufacturing /Process Engineer

    E-Print Network [OSTI]

    Heller, Barbara

    . Plymouth Tube Company is committed to providing products and services that meet or exceed customers to improve safety, quality, and manufacturing efficiency throughout the manufacturing area. Utilization, reduce cycle times, improve productivity, create and find capacity, improve process reliability

  19. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  20. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    manufacturing of metal components suffers from low production rates and high energy intensity due to the use of lasers

  1. Modular Process Equipment for Low Cost Manufacturing of High...

    Broader source: Energy.gov (indexed) [DOE]

    information Energy & Environmental Solutions Alternative Energy Products Overview 2 Cost of manufacturing Cycling lifetime of high capacity materials Prismatic cell...

  2. Solid-State Lighting Manufacturing Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and to help define a new DOE manufacturing initiative to reduce the cost of light-emitting diode (LED) products to competitive levels, ensure high product quality and...

  3. Oak Ridge Centers for Manufacturing Technology, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more than 1,600 businesses nationwide. These industries ran the gamut of all types of industry in the nation. Automotive part production, food product manufacturing, ceramic...

  4. MINERAL FACILITIES MAPPING PROJECT

    E-Print Network [OSTI]

    Gilbes, Fernando

    MINERAL FACILITIES MAPPING PROJECT Yadira Soto-Viruet Supervisor: David Menzie, Yolanda Fong-Sam Minerals Information Team (MIT) USGS Summer Internship 2009 U.S. Department of the Interior U.S. Geological Minerals Information Team (MIT): Annually reports on the minerals facilities of more than 180 countries

  5. Earth's Mineral Evolution

    E-Print Network [OSTI]

    Downs, Robert T.

    Earth's Mineral Evolution :: Astrobiology Magazine - earth science - evol...rth science evolution Extreme Life Mars Life Outer Planets Earth's Mineral Evolution Summary (Nov 14, 2008): New research. Display Options: Earth's Mineral Evolution Based on a CIW news release Mineral Kingdom Has Co

  6. The Future of Manufacturing Takes Shape: 3D Printed Car on Display...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead, Advanced Manufacturing Office Additive manufacturing - often referred to as 3D printing - is a revolutionary way to design and build products. Until now, 3D printing has...

  7. Manufacturing Innovation in the DOE

    Broader source: Energy.gov (indexed) [DOE]

    Robert McEwan GE America Makes The National Accelerator for Additive Manufacturing & 3D Printing Advanced Manufacturing Office (AMO) manufacturing.energy.gov 13 Manufacturing...

  8. The Productivity Dilemma in Manufacturing 

    E-Print Network [OSTI]

    Byrer, T. G.

    1983-01-01T23:59:59.000Z

    in industry, and (2) provide assistance in mak ng these changes once the decision to proceed as been made. An example involves the consideration of m re efficient welding processes in the metals fabri a tion industry. Traditionally, a variety of h nd... welding techniques involving considerable perso al skills have been and continue to be used. Wait ng for implementation is the widespread availabil ty of semiautomatic and automatic arc welding eqUjP ment, as well as the use of lasers, electron be m...

  9. Oil, Gas, and Metallic Minerals (Iowa)

    Broader source: Energy.gov [DOE]

    Operators of oil, gas, and metallic mineral exploration and production operations are required to obtain a drilling permit from the Iowa Department of Natural Resources and file specific forms with...

  10. The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and

    E-Print Network [OSTI]

    Liu, Y. A.

    Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter

  11. 2008 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    2008 Minerals Yearbook U.S. Department of the Interior U.S. Geological Survey TITANIUM October 2010, international data coordinator. World production of titanium dioxide (TiO2 ) contained in titanium mineral to be heavily reliant on imports of titanium mineral concentrates from Australia, Canada, and South Africa

  12. 2011 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    2011 Minerals Yearbook U.S. Department of the Interior U.S. Geological Survey ZIRCONIUM AND HAFNIUM mineral concentrates in 2011, excluding U.S. production, was about 1.62 million metric tons (Mt) compared with 1.25 Mt in 2010. The primary source of zirconium was the mineral zircon (ZrSiO4 ), principally found

  13. 2008 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    2008 Minerals Yearbook U.S. Department of the Interior U.S. Geological Survey BORON October 2010, international data coordinator. U.S. consumption of minerals and compounds reported in boron oxide continued and the United States were the world's leading producers of boron minerals (table 6). World production of boron

  14. Minerals handbook 1984/1985

    SciTech Connect (OSTI)

    Crowson, P.

    1985-01-01T23:59:59.000Z

    This handbook consists of statistical tables giving a profile of almost 50 strategic minerals. A compendium of statistics on reserves, production, and trade, the book provides a view of international supply and demand. Information is complied here which is otherwise available only through scattered sources. The 1984/1985 edition has been updated and expanded. Reserves have been recalculated on the new basis instituted by the United States. Seven new minerals have been added: arsenic, berrylium, bismuth, boron, gallium, rare earths, and tellurium. Growth rates of consumption have been extended and the section on end use of patterns for each mineral now shows the percentage for Europe and Japan as well as the U.S.

  15. An Interdisciplinary Undergraduate Manufacturing Option for Chemical Engineering, page

    E-Print Network [OSTI]

    Lamancusa, John S.

    institutions: Product Dissection, Concurrent Engineering, and Entrepreneurship. The sequence of coursesAn Interdisciplinary Undergraduate Manufacturing Option for Chemical Engineering, page ASEE Conference Summer 1996 1 An Interdisciplinary Undergraduate Manufacturing Engineering Option for Chemical

  16. Inbound freight consolidation for US manufacturers at China

    E-Print Network [OSTI]

    Fang, Yi, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    In recent years, China has become the world factory for a sizable portion of products. Most manufacturing conglomerates in the United States now have contract manufacturing plants in China. Because many of these US companies ...

  17. Manufacturing Engineering The research activities of the Manufacturing Engineering group are concerned with the

    E-Print Network [OSTI]

    Calgary, University of

    Planning and Control. Research in this area focuses on understanding the tradeoffs and improving of this research is to develop insights into the performance improvement of complex production systems. l Intelligent Manufacturing Systems. Use of advanced computing techniques in manufacturing. l Production

  18. (Data in metric tons of contained lithium, unless noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and

    E-Print Network [OSTI]

    by Joyce A. Ober, (703) 648-7717. #12;97 LITHIUM Events, Trends, and Issues: The Department of Energy (DOE produced lithium compounds for domestic consumption as well as for export to other countries. The use% of estimated domestic consumption. Other major end uses for lithium were in the manufacture of lubricants

  19. Level schedule implementation in unstable manufacturing environments

    E-Print Network [OSTI]

    López de Haro, Santiago

    2008-01-01T23:59:59.000Z

    American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

  20. 4D printing : towards biomimetic additive manufacturing

    E-Print Network [OSTI]

    Tsai, Elizabeth Yinling

    2013-01-01T23:59:59.000Z

    Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

  1. Climate VISION: Private Sector Initiatives: Automobile Manufacturers

    Office of Scientific and Technical Information (OSTI)

    emissions from their U.S. automotive manufacturing facilities, based on U.S. vehicle production, by 2012 from a base year of 2002. The following documents are available for...

  2. Manufacturing Tech Team | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find...

  3. Diagnosing spatial variation patterns in manufacturing processes

    E-Print Network [OSTI]

    Lee, Ho Young

    2004-09-30T23:59:59.000Z

    This dissertation discusses a method that will aid in diagnosing the root causes of product and process variability in complex manufacturing processes when large quantities of multivariate in-process measurement data are available. As in any data...

  4. Agile manufacturing from a statistical perspective

    SciTech Connect (OSTI)

    Easterling, R.G. [Sandia National Labs., Albuquerque, NM (United States). New Initiatives Dept.

    1995-10-01T23:59:59.000Z

    The objective of agile manufacturing is to provide the ability to quickly realize high-quality, highly-customized, in-demand products at a cost commensurate with mass production. More broadly, agility in manufacturing, or any other endeavor, is defined as change-proficiency; the ability to thrive in an environment of unpredictable change. This report discusses the general direction of the agile manufacturing initiative, including research programs at the National Institute of Standards and Technology (NIST), the Department of Energy, and other government agencies, but focuses on agile manufacturing from a statistical perspective. The role of statistics can be important because agile manufacturing requires the collection and communication of process characterization and capability information, much of which will be data-based. The statistical community should initiate collaborative work in this important area.

  5. Quantifying the role of the electronics industry in managing conflict minerals using printers

    E-Print Network [OSTI]

    Lee, Jason S., S.B. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    The electronics manufacturing industry has been experiencing a fast-changing landscape with recent legislations targeting the supply chains for the 3TG minerals: tin, tantalum, tungsten, and gold mined from the Democratic ...

  6. RRR Niobium Manufacturing Experience

    SciTech Connect (OSTI)

    Graham, Ronald A. [ATI Wah Chang, An Allegheny Technologies Company, Albany, Oregon 97321 (United States)

    2007-08-09T23:59:59.000Z

    ATI Wah Chang has been manufacturing RRR niobium for more than 30 years using electron beam melting techniques. Fabricated forms include plate, sheet, foil, bar, rod and tubing. This paper provides manufacturing information.

  7. The Advanced Manufacturing Partnership

    E-Print Network [OSTI]

    Das, Suman

    ;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

  8. DOE Offers Support for Innovative Manufacturing Plant That Will...

    Broader source: Energy.gov (indexed) [DOE]

    of traditional polysilicon purification processes, which will reduce the overall cost of solar modules and panels. At full production, the manufacturing plant is expected to...

  9. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    process control charts (SPC) for product quality and processstatistical process control (SPC) charts. The concept is toMethods Univariate SPC for semiconductor manufacturing

  10. A hybrid genetic algorithm for manufacturing cell formation

    E-Print Network [OSTI]

    José F. Gonçalves

    ... in cellular manufacturing is the formation of product families and machine cells. ... Computational experience with the algorithm on a set of group technology ...

  11. Manufacture of radiopharmaceuticals-recent advances

    SciTech Connect (OSTI)

    Krieger, J.K.

    1996-12-31T23:59:59.000Z

    Trends in radiopharmaceutical manufacturing have been influenced by the demands of the regulatory agencies, the demands of the customers, and the ever-increasing complexity of new products. Process improvements resulting from automation in the production of radionuclides for diagnostic imaging products, {sup 99m}/Tc generators, {sup 67}Ga, and {sup 201}Tl have been introduced to enhance compliance with current good manufacturing practices and to improve worker safety, both by reducing dose in accord with as low as reasonably achievable levels of radiation and by providing an ergonomically sound environment. Tighter process control has resulted in less lot-to-lot variability and ensures reliability of supply. Reduced manufacturing lapse time for {sup 99m}Tc generators minimizes decay and conserves the supply of {sup 99}Mo. Automation has resulted in an even greater degree of remote operation and has led to reductions in dose, improved process control, and faster throughput in the manufacture of radionuclides.

  12. A new DFM approach to combine machining and additive manufacturing

    E-Print Network [OSTI]

    Kerbrat, Olivier; Hascoët, Jean-Yves; 10.1016/j.compind.2011.04.003

    2011-01-01T23:59:59.000Z

    Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

  13. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    to the manufacturing sector in Western Michigan. In addition to serving as director of the MRC, Dr. Patten is alsoManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  14. IT/Automation Cost Reduction in Intel’s Manufacturing Environment

    E-Print Network [OSTI]

    Subirana, Brian

    2004-03-05T23:59:59.000Z

    Intel manufacturing relies heavily on IT and Factory Automation during the manufacturing processes. At Intel, everything from scheduling products on the floor and product delivery systems to statistical process control is ...

  15. Comparison of the ANP model with the data for neutrino induced single pion production from the MiniBooNE and MINER$?$A experiments

    E-Print Network [OSTI]

    J. -Y. Yu; E. A. Paschos; I. Schienbein

    2014-11-24T23:59:59.000Z

    We present theoretical predictions in the framework of the ANP model for single pion production ($\\pi^+, \\pi^0$) in $\

  16. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  17. Specific PVMaT R and D in CdTe product manufacturing: Phase 1 annual report, 5 May 1998--4 May 1999

    SciTech Connect (OSTI)

    Bohland, J.; Kormanyos, K.; Faykosh, G.; Champion, V.; Cox, S.; McCarthur, M.; Dapkus, T.; Kamm, K.; Flis, M.

    2000-03-01T23:59:59.000Z

    This report documents the work performed by First Solar, LLC, during the first year of this Photovoltaic Manufacturing Technology (PVMaT) subcontract. The following milestones were successfully completed: (1) Initiate lamination development program by interviewing key suppliers and experts such as STR, Inc., ARRI, and automotive glass manufacturers; (2) Complete process specification for high-throughput laminator; (3) Initiate contact with module testing laboratory and complete preliminary module design review; (4) Complete review and survey of current environmental, health and safety (EHS) programs; (5) Complete design specifications for the high-throughput laminator; (6) Complete preliminary testing of modules; (7) Establish Qualification Testing Schedule; (8) Develop plans for critical areas of EHS improvement with the assistance of industry experts such as OSHA On-Site Consultation; (9) Begin de-bug of high-throughput laminator; (10) Initiate qualification testing on First Solar's standard modules; (11) Initiate EHS improvement projects; (12) Complete prove-in of high-throughput laminator at a rate of 30 modules per hour; (13) Complete report on lamination rates, yields, and reductions in labor and equipment costs; (14) Complete qualification testing on First Solar's standard module for IEEE 1262 and UL 1703; and (15) Complete implementation of critical EHS improvements.

  18. College of Engineering MFS Manufacturing Systems Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    ) The topics will include fundamentals of concurrent engineering, product life cycle, product specificationCollege of Engineering MFS Manufacturing Systems Engineering KEY: # = new course * = course changed of these processes. Lecture, two hours; laboratory; two hours. Prereq: EM 302, EM 313, and engineering standing

  19. REMEDIAT1NG AT MANUFACTURED GAS

    E-Print Network [OSTI]

    Peters, Catherine A.

    , comhusti- hle gas manufactured Pfrom coke, coal, and oil 1 served as the major gas- eous fuel for urban for the three primary gas production meth- ods: coal carbonization, carbureted water gas production, and oil gas, and metals. Tar resid- uals were produced from the vola- tiIe component of bituminous coals in coal

  20. Locating Chicago Manufacturing

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    Renaissance Council, is among the nation's leading public high schools focused on manufac- turing area's econ- omy, including how important manufacturing is to that economy, which manufac- turing

  1. Presentation to DOE Fuel Cell Manufacturing Workshop 2011

    E-Print Network [OSTI]

    : JP-8, diesel Fuel Cell Project Scope #12;Soldier Power Unmanned UAV Emergency Power Tactical Vehicle Automation · Production Material · QC during Manufacturing · QC for Product · BOP Hardware · BOP Performance

  2. Estimating the expected latency to failure due to manufacturing defects 

    E-Print Network [OSTI]

    Dorsey, David Michael

    2004-09-30T23:59:59.000Z

    Manufacturers of digital circuits test their products to find defective parts so they are not sold to customers. Despite extensive testing, some of their products that are defective pass the testing process. To combat ...

  3. LED Manufacturing Process Modifications Will Boost Quality and

    E-Print Network [OSTI]

    2012 The Issue Highly energyefficient LightEmitting Diode (LED) lighting products have made great process that will enable LED manufacturers to produce higher quality, energyefficient products at lower

  4. Decision support tool for dynamic workforce scheduling in manufacturing environments \\

    E-Print Network [OSTI]

    Malik, Radhika, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    Scheduling for production in manufacturing environments requires an immense amount of planning. A large number of factors such as part availability, production cost, space constraints and labor supply must be taken into ...

  5. Reduction of rework at a large aerospace manufacturer

    E-Print Network [OSTI]

    Lieberman, Jeremy A. (Jeremy Alan)

    2012-01-01T23:59:59.000Z

    It is an axiom of the manufacturing of any complex product that errors will occur that require repair or discard of said product. In building aircraft, Raptor Aerospace encounters and repairs numerous deviations from the ...

  6. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  7. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30T23:59:59.000Z

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  8. Manufacturing improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project

    SciTech Connect (OSTI)

    Witt, C.E.; Mitchell, R.L.; Thomas, H.P.; Symko, M.I. [National Renewable Energy Lab., Golden, CO (United States); King, R. [Dept. of Energy, Washington, DC (United States); Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1998-08-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology Project (PVMaT) is a government/industry research and development (R and D) partnership between the US federal government (through the US Department of Energy [DOE]) and members of the US PV industry. The goals of PVMaT are to help the US PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance the investment opportunities for substantial scale-ups of US-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share risk taking by industry as it explores new manufacturing options and ideas for improved PV modules and other components, advances system and product integration, and develops new system designs, all of which will lead to overall reduced system life-cycle costs for reliable PV end products. The PVMaT Phase 4A module manufac turing R and D projects are just being completed, and initial results for the work directed primarily to module manufacture are reported in this paper. Fourteen new Phase 5A subcontracts have also just been awarded, and planned R and D areas for the ten focused on module manufacture are described. Finally, government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are presented.

  9. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect (OSTI)

    Eastwood, Eric

    2009-02-16T23:59:59.000Z

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  10. MCM-C Multichip Module Manufacturing Guide

    SciTech Connect (OSTI)

    Blazek, R.J.; Kautz, D.R.; Galichia, J.V.

    2000-11-20T23:59:59.000Z

    Honeywell Federal Manufacturing & Technologies (FM&T) provides complete microcircuit capabilities from design layout through manufacturing and final electrical testing. Manufacturing and testing capabilities include design layout, electrical and mechanical computer simulation and modeling, circuit analysis, component analysis, network fabrication, microelectronic assembly, electrical tester design, electrical testing, materials analysis, and environmental evaluation. This document provides manufacturing guidelines for multichip module-ceramic (MCM-C) microcircuits. Figure 1 illustrates an example MCM-C configuration with the parts and processes that are available. The MCM-C technology is used to manufacture microcircuits for electronic systems that require increased performance, reduced volume, and higher density that cannot be achieved by the standard hybrid microcircuit or printed wiring board technologies. The guidelines focus on the manufacturability issues that must be considered for low-temperature cofired ceramic (LTCC) network fabrication and MCM assembly and the impact that process capabilities have on the overall MCM design layout and product yield. Prerequisites that are necessary to initiate the MCM design layout include electrical, mechanical, and environmental requirements. Customer design data can be accepted in many standard electronic file formats. Other requirements include schedule, quantity, cost, classification, and quality level. Design considerations include electrical, network, packaging, and producibility; and deliverables include finished product, drawings, documentation, and electronic files.

  11. Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals

    SciTech Connect (OSTI)

    Lowe, Terry C. [Los Alamos National Laboratory

    2012-07-24T23:59:59.000Z

    Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

  12. Implementing variation risk management during product development

    E-Print Network [OSTI]

    Padgalskas, Nicholas (Nicholas Keith)

    2007-01-01T23:59:59.000Z

    All manufactured systems exhibit some degree of variation. Manufacturing organizations should be aware of those parameters whose variation will impact product performance and customer satisfaction. Such parameters are ...

  13. Manufacturing Licenses Available | Tech Transfer | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deposition Manufacturing 201303127 Methods and Materials for Room Temperature Polymer Additive Manufacturing 201303140 Reactive Polymer Fused Deposition Manufacturing 201303151...

  14. Photovoltaic Manufacturing Technology, Phase 1, Final report

    SciTech Connect (OSTI)

    Easoz, J.R.; Herlocher, R.H. (Westinghouse Electric Corp., Pittsburgh, PA (United States))

    1991-12-01T23:59:59.000Z

    This report examines the cost-effective manufacture of dendritic-web-based photovoltaic modules. It explains how process changes can increase production and reduce manufacturing costs. Long-range benefits of these improved processes are also discussed. Problems are identified that could impede increasing production and reducing costs; approaches to solve these problems are presented. These approaches involve web growth throughput, cell efficiency, process yield, silicon use, process control, automation, and module efficiency. Also discussed are the benefits of bifacial module design, unique to the dendritic web process.

  15. A. Kusiak, Data Mining in Design of Products and Production Systems, Proceedings of INCOM'2006: 12th IFAC/IFIP/IFORS/IEEE Symposium on Control Problems in Manufacturing, May 2006, Saint-Etienne, France, Vol. 1, pp. 49-53.

    E-Print Network [OSTI]

    Kusiak, Andrew

    A. Kusiak, Data Mining in Design of Products and Production Systems, Proceedings of INCOM'2006: 12-Etienne, France, Vol. 1, pp. 49-53. 49 DATA MINING IN DESIGN OF PRODUCTS AND PRODUCTION SYSTEMS Andrew Kusiak://www.icaen.uiowa.edu/~ankusiak Abstract: As a new science, data mining is acquiring its own identity by refining the concepts from other

  16. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect (OSTI)

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18T23:59:59.000Z

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  17. COAL DERIVED MATRIX PITCHES FOR CARBON-CARBON COMPOSITE MANUFACTURE/PRODUCTION OF FIBERS AND COMPOSITES FROM COAL-BASED PRECURSORS

    SciTech Connect (OSTI)

    Peter G. Stansberry; John W. Zondlo

    2001-07-01T23:59:59.000Z

    The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.

  18. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  19. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02T23:59:59.000Z

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  20. 11th IFAC Workshop on Intelligent Manufacturing System IMS'13, Sao Paulo, Brazil, May 22-24, 2013 Improving production process performance thanks to neuronal analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    processes is linked to the quality problem. Policies such as Total Quality Management (TQM) are defined.chaprentier@univ-lorraine.fr and andre.thomas@univ-lorraine.fr). Abstract: Product quality level is become a key factor for companies can ensure the required quality thanks to an "on-line quality approch" and proposes a neural network

  1. GE Healthcare Life Sciences provides products and services used as tools for biopharmaceutical manufacturing, drug discovery and the latest in cellular technologies, thereby enabling our customers

    E-Print Network [OSTI]

    Uppsala Universitet

    GE Healthcare Life Sciences provides products and services used as tools for biopharmaceutical protein purification at Protein Tools, GE Healthcare, Uppsala Background Immobilized metal affinity independently and in collaborations. The master thesis will be carried out at GE Healthcare in Uppsala and last

  2. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger [University of Arizona

    2014-12-17T23:59:59.000Z

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  3. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced manufacturing and materials technologies for commercial applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood of...

  4. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  5. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update (EIA)

    Coal Products Manufacturing 135 212 530 325 Chemical Manufacturing 407 444 639 326 Plastics and Rubber Products Manufacturing 162 169 208 327 Nonmetallic Mineral Product...

  6. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update (EIA)

    Coal Products Manufacturing 138 215 547 325 Chemical Manufacturing 417 460 657 326 Plastics and Rubber Products Manufacturing 164 174 211 327 Nonmetallic Mineral Product...

  7. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update (EIA)

    Coal Products Manufacturing 224 240 254 325 Chemical Manufacturing 428 441 488 326 Plastics and Rubber Products Manufacturing 166 168 173 327 Nonmetallic Mineral Product...

  8. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update (EIA)

    Coal Products Manufacturing 227 242 265 325 Chemical Manufacturing 440 452 509 326 Plastics and Rubber Products Manufacturing 168 171 175 327 Nonmetallic Mineral Product...

  9. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update (EIA)

    Coal Products Manufacturing 136 218 551 325 Chemical Manufacturing 419 452 662 326 Plastics and Rubber Products Manufacturing 164 172 212 327 Nonmetallic Mineral Product...

  10. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update (EIA)

    Coal Products Manufacturing 221 241 254 325 Chemical Manufacturing 437 468 510 326 Plastics and Rubber Products Manufacturing 162 181 175 327 Nonmetallic Mineral Product...

  11. U.S. GEOLOGICAL SURVEY--MINERALS INFORMATION--1997 1 By James B. Hedrick

    E-Print Network [OSTI]

    U.S. GEOLOGICAL SURVEY--MINERALS INFORMATION--1997 1 ZIRCONIUM By James B. Hedrick Zirconium production and consumption of zircon concentrates were mineral and gemstone had been known since ancient oxides. The zirconium silicate mineral, zircon (ZrSiO ), is the primary4 naturally occurring material

  12. Mineral resource assessment: Compliance between Emergy1 and Exergy respecting Odum's hierarchy concept2

    E-Print Network [OSTI]

    Boyer, Edmond

    Mineral resource assessment: Compliance between Emergy1 and Exergy respecting Odum's hierarchy mineral resources, taking into account their abundance, their8 chemical and physical properties of mineral, dispersed in the Earth's10 crust, is a co-product of the latter. The specic emergies of dispersed

  13. An empirical analysis of manufacturing re-shoring and supply chain risk

    E-Print Network [OSTI]

    Kyratzoglou, loannis M

    2013-01-01T23:59:59.000Z

    After an exodus of jobs in the last few years, the U.S. is committed to improving its manufacturing competiveness by investing in manufacturing innovation and increasing its labor force productivity. With rising labor costs ...

  14. CIMplementation™: Evaluating Manufacturing Automation

    E-Print Network [OSTI]

    Krakauer, J.

    management and labor. In the new shop, ma~? agers will be unable to succeed unless thet earn the respect and cooperation of their I subordinates. Managers need to address th~ fear and resistance of manufacturing emPlofees before and during a transition.... Managers are becoming more interested in these methods, but they should be aware that implementing them will be a slow, complex task. This technology will require changes in manufacturing organization. This paper discusses changes required...

  15. The health of manufacturing in the UK is assuming greater

    E-Print Network [OSTI]

    Mottram, Nigel

    , energy production and mineral extraction would place the total to nearer 25% of the economy manufac- turing processes, are in- volved. A wider definition, including, for example, con- struction

  16. Measurement of ?_?and \\bar?_?induced neutral current single $?^0$ production cross sections on mineral oil at E_?O(1 GeV)

    E-Print Network [OSTI]

    The MiniBooNE Collaboration; A. A. Aguilar-Arevalo; C. E. Anderson; A. O. Bazarko; S. J. Brice; B. C. Brown; L. Bugel; J. Cao; L. Coney; J. M. Conrad; D. C. Cox; A. Curioni; Z. Djurcic; D. A. Finley; B. T. Fleming; R. Ford; F. G. Garcia; G. T. Garvey; J. Gonzales; J. Grange; C. Green; J. A. Green; T. L. Hart; E. Hawker; R. Imlay; R. A. Johnson; G. Karagiorgi; P. Kasper; T. Katori; T. Kobilarcik; I. Kourbanis; S. Koutsoliotas; E. M. Laird; S. K. Linden; J. M. Link; Y. Liu; Y. Liu; W. C. Louis; K. B. M. Mahn; W. Marsh; C. Mauger; V. T. McGary; G. McGregor; W. Metcalf; P. D. Meyers; F. Mills; G. B. Mills; J. Monroe; C. D. Moore; J. Mousseau; R. H. Nelson; P. Nienaber; J. A. Nowak; B. Osmanov; S. Ouedraogo; R. B. Patterson; Z. Pavlovic; D. Perevalov; C. C. Polly; E. Prebys; J. L. Raaf; H. Ray; B. P. Roe; A. D. Russell; V. Sandberg; R. Schirato; D. Schmitz; M. H. Shaevitz; F. C. Shoemaker; D. Smith; M. Soderberg; M. Sorel; P. Spentzouris; J. Spitz; I. Stancu; R. J. Stefanski; M. Sung; H. A. Tanaka; R. Tayloe; M. Tzanov; R. G. Van de Water; M. O. Wascko; D. H. White; M. J. Wilking; H. J. Yang; G. P. Zeller; E. D. Zimmerman

    2010-01-27T23:59:59.000Z

    MiniBooNE reports the first absolute cross sections for neutral current single \\pi^0 production on CH_2 induced by neutrino and antineutrino interactions measured from the largest sets of NC \\pi^0 events collected to date. The principal result consists of differential cross sections measured as functions of \\pi^0 momentum and \\pi^0 angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76+/-0.05_{stat}+/-0.76_{sys})*10^{-40} cm^2/nucleon at a mean energy of =808 MeV and (1.48+/-0.05_{stat}+/-0.23_{sys})*10^{-40} cm^2/nucleon at a mean energy of =664 MeV for \

  17. DOE's Hydrogen and Fuel Cells Technologies Manufacturing

    E-Print Network [OSTI]

    · Advanced fuel cell testing & diagnostics Wet Direct coated Anode #1 Direct coated Anode #2 Control Anode #3DOE's Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base

  18. Advanced Manufacturing: Using Composites for Clean Energy

    Broader source: Energy.gov [DOE]

    Advanced fiber-reinforced polymer composites, which combine strong fibers with tough plastics, are lighter and stronger than steel. These materials could lower overall production costs in U.S. manufacturing and ultimately drive the adoption of a new clean energy way of life.

  19. Pollution Prevention and Lean Manufacturing Paper # 360

    E-Print Network [OSTI]

    Pollution Prevention and Lean Manufacturing Paper # 360 Harry W. Edwards and Jason M. Jonkman, the CSU IAC promotes energy conservation, pollution prevention, and productivity improvement. During that generated a total of 467 assessment recommendations (ARs) with pollution prevention benefits. Such benefits

  20. 8th Global Conference on Sustainable Manufacturing

    E-Print Network [OSTI]

    Berlin,Technische Universität

    8th Global Conference on Sustainable Manufacturing Architecture for Sustainable Engineering to competent partners in the global village. Sustainability engineering has evolved as a means to meet mankind, Germany Co-Chairman Prof. Dr. N. Ibrahim Abu Dhabi University, UAE for a sustainable product and process

  1. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02T23:59:59.000Z

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  2. Solid-State Lighting R&D Manufacturing Roadmap

    Broader source: Energy.gov [DOE]

    This document provides a description of activities the Department plans to undertake to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products, representing industry consensus on the expected evolution of SSL manufacturing, best practices, and opportunities for improvement and collaboration.

  3. Engineering and Mineral Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    News ????????????????? ® College of Engineering and Mineral Resources Winter 2008 table of contents. . . . . . . . . . . . . . . . . . . . 7 wvCROSSROADS DepartmentofCivilandEnvironmentalEngineering Civil engineering exchange program and environmental engineering with a focus in transportation will have the opportunity to study abroad as part

  4. Biomimetic Mineralization: Mesoporous Biological mineral synthesis, in contrast to conven-

    E-Print Network [OSTI]

    Biomimetic Mineralization: Mesoporous Structures Biological mineral synthesis, in contrast of mineral crystals. Mesophases are materials which have domain length scales of the order of a few as a molecular blueprint for the site- directed formation of the inorganic phase, by providing an interface

  5. Manufacturing Demonstration Facilities Workshop Agenda, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Manufacturing Demonstration Facility Workshop Critical Materials Workshop Agenda Innovative Manufacturing Initiatives Recognition Day...

  6. Clay mineral reactions in clastic diagenesis

    SciTech Connect (OSTI)

    Hower, J.

    1983-03-01T23:59:59.000Z

    Studies of clastic sediments have documented the formation and transformation of clay mineral assemblages during burial diagensis. The transformation of smectite to illite in shale by its reaction with the decomposition products of detrital K-feldspar and mica results in the production of new pore water at depth. The overall reaction mobilizes all the major chemical components in the shale, most of which are consumed in the formation of the diagenetic assemblage illite/smectite + chlorite + quartz. However, part of all the components is undoubtedly transported from the shale to sandstone units and is involved in cementation, replacement, and diagenetic clay mineral formation in these reservoir rocks. In contrast to burial diagenetic reactions in shale, where the sequence is monotonic and reasonably predictable, diagenetic reactions in sandstone are frequently variable. This variability is probably attributable to the fact that sandstones are open systems in which the reactions that proceed are controlled in part by the influx of new pore water, the chemistry of which is determined by an outside source. The useful understanding role of clay minerals in hydrocarbon exploration will follow from a determination of the system shale/sandstone/organic material. We need to tie in the nature and timing of shale mineral reactions and their control on the fluid and mass transfer from shale to sandstone.

  7. 2009 Solid-State Lighting Vancouver Manufacturing Workshop Highlights

    Broader source: Energy.gov [DOE]

    Well over 150 lighting industry leaders gathered in Vancouver, Washington, on June 24-25, 2009, for the second DOE Solid-State Lighting (SSL) Manufacturing Workshop. The primary purpose was to review and refine a "strawman" roadmap for SSL manufacturing, based on insights and recommendations from the first workshop, which was held in April in Fairfax, Virginia. These insights and recommendations focused on identifying and overcoming the key barriers to developing lower-cost, higher-quality SSL products. The outcome of both workshops will be a working roadmap to guide SSL manufacturing in general and to inform a new DOE manufacturing initiative.

  8. User cost in oil production

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1990-01-01T23:59:59.000Z

    The assumption of an initial fixed mineral stock is superfluous and wrong. User cost (resource rent) in mineral production is the present value of expected increases in development cost. It can be measured as the difference ...

  9. Mineral Rights and Proceeds (Nebraska)

    Broader source: Energy.gov [DOE]

    This section contains provisions which determine when mineral rights are presumed to be abandoned by property owners.

  10. ATS materials/manufacturing

    SciTech Connect (OSTI)

    Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

    1997-11-01T23:59:59.000Z

    The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

  11. Manufacturing Success Stories

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartment of EnergyManagementORNL isManufacturingManufacturing6

  12. The business case for continuous manufacturing of pharmaceuticals

    E-Print Network [OSTI]

    Wilburn, Kristopher Ray

    2010-01-01T23:59:59.000Z

    Manufacturing in the pharmaceutical industry is presently characterized as a batch production system, which has existed in its current form for decades. This structure is the result of historical regulatory policy as well ...

  13. An application of lean principles within a semiconductor manufacturing environment

    E-Print Network [OSTI]

    Wildeman, Roy C

    2005-01-01T23:59:59.000Z

    Intel Corporation's Fab 23 is committed to implementing lean manufacturing to reduce their production cycle times and cost. This thesis is focused around the development of the principles of lean that are most relevant to ...

  14. Information tracking and sharing in organic photovoltaic panel manufacturing

    E-Print Network [OSTI]

    Gong, Ming, M. Eng. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    The MIT MEng team of four worked with Konarka Technologies, a world leading organic solar panel manufacturer, on production tracking and analysis as well as various operational improvement projects. MIT's collaborative ...

  15. Energy Used in Manufacturing Sales and Use Tax Exemption

    Broader source: Energy.gov [DOE]

    Georgia enacted legislation in April 2012 (HB 386) creating an exemption for energy used in the manufacturing of a product from the state's sales and use taxes. The sale, use, storage, or...

  16. Recovery Act Helps GE in-source Manufacturing | Department of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interior and making a modern, efficient space inside the existing 1950s shell. The hybrid water heaters, which had previously been manufactured in China, will go into production at...

  17. Quality improvement strategy in a dynamic aerospace manufacturing environment

    E-Print Network [OSTI]

    English, Orion T. (Orion Tyler)

    2014-01-01T23:59:59.000Z

    In the manufacturing of any complex product it is a generally accepted phenomenon that defects will occur at various stages in the process. In aircraft modification and repair facilities, the low levels of automation and ...

  18. Multiphase Sequestration Geochemistry: Model for Mineral Carbonation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multiphase Sequestration Geochemistry: Model for Mineral Carbonation. Multiphase Sequestration Geochemistry: Model for Mineral Carbonation. Abstract: Carbonation of formation...

  19. Mineral Requirements of Sheep.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1918-01-01T23:59:59.000Z

    constituents in feed, residues, and excrements were estimated. In connection with other digestion experiments, estimates were made of certain ash constituents in feeds, excrements and urine. The results of this work throw light upon the mineral requirements...,11 grams phosphoric acid. The ratio of lime to phosphoric acid in tri- calcium phosphate is 1 :0.80. Table 7.-Average magnesia eaten and digested. BALANCE EXPEBIMENTS In twenty tests with ten rations, the urine was analyzed in addition to the feeds...

  20. Chemically Accelerated Carbon Mineralization: Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.

  1. Abiotic/Biotic Degradation and Mineralization of N-Nitrosodimethylamine in Aquifer Sediments

    SciTech Connect (OSTI)

    Szecsody, James E.; McKinley, James P.; Breshears, Andrew T.; Crocker, Fiona H.

    2008-10-14T23:59:59.000Z

    The N-nitrosodimethylamine (NDMA) degradation rate and mineralization rate were measured in two aquifer sediments that received treatments to create oxic, reducing, and sequential reducing/oxic environments. Chemically reduced sediments rapidly abiotically degraded NDMA to nontoxic dimethylamine (DMA) to parts per trillion levels, then degraded to further products. NDMA was partially mineralized in reduced sediments (6 to 28 percent) at a slow rate (half-life 3,460 h) by an unknown abiotic/biotic pathway. In contrast, NDMA was mineralized more rapidly (half-life 342 h) and to a greater extent (30 to 81 percent) in oxic sediments with propane addition, likely by a propane monooxygenase pathway. NDMA mineralization in sequential reduced sediment followed by oxic sediment treatment did result in slightly more rapid mineralization and a greater mineralization extent relative to reduced systems. These increases were minor, so aerobic NDMA mineralization with oxygen and propane addition was the most viable in situ NDMA mineralization strategy.

  2. Bolt Manufacture: Process Selection

    E-Print Network [OSTI]

    Colton, Jonathan S.

    file · Selective Laser Sintering (SLS) 3 D P i ti· 3-D Printing · Light Engineered Net Shaping (LENS Processes and Systems Prof. J.S. Colton © GIT 2009 20 #12;3D Printing Process (Soligen) ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 21 #12;3D Printing Head (Soligen)3D Printing

  3. COOPERATION BETWEEN BUSINESS AND HOLONIC MANUFACTURING DECISION SYSTEMS

    E-Print Network [OSTI]

    Boyer, Edmond

    COOPERATION BETWEEN BUSINESS AND HOLONIC MANUFACTURING DECISION SYSTEMS Rémi Pannequin, André holonic products, in order to enable cooperation between centralised business and distributed of the holonic product and finally study the possible interaction protocols between the products and the decision

  4. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides

    SciTech Connect (OSTI)

    Chan, Clara S.; Fakra, Sirine C.; Edwards, David C.; Emerson, David; Banfield, Jillian F.

    2010-06-22T23:59:59.000Z

    Iron biominerals can form in neutral pH microaerophilic environments where microbes both catalyze iron oxidation and create polymers that localize mineral precipitation. In order to classify the microbial polymers that influence FeOOH mineralogy, we studied the organic and mineral components of biominerals using scanning transmission X-ray microscopy (STXM), micro X-ray fluorescence ({mu}XRF) microscopy, and high-resolution transmission electron microscopy (HRTEM). We focused on iron microbial mat samples from a creek and abandoned mine; these samples are dominated by iron oxyhydroxide-coated structures with sheath, stalk, and filament morphologies. In addition, we characterized the mineralized products of an iron-oxidizing, stalk-forming bacterial culture isolated from the mine. In both natural and cultured samples, microbial polymers were found to be acidic polysaccharides with carboxyl functional groups, strongly spatially correlated with iron oxyhydroxide distribution patterns. Organic fibrils collect FeOOH and control its recrystallization, in some cases resulting in oriented crystals with high aspect ratios. The impact of polymers is particularly pronounced as the materials age. Synthesis experiments designed to mimic the biomineralization processes show that the polysaccharide carboxyl groups bind dissolved iron strongly but release it as mineralization proceeds. Our results suggest that carboxyl groups of acidic polysaccharides are produced by different microorganisms to create a wide range of iron oxyhydroxide biomineral structures. The intimate and potentially long-term association controls the crystal growth, phase, and reactivity of iron oxyhydroxide nanoparticles in natural systems.

  5. Additive Manufacturing for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  6. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  7. DOE Requires Manufacturers to Halt Sales of Heat Pumps and Air...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit Manufacturing, and Advanced Distributor Products -- must stop distributing 61 heat pump models and 1 air conditioner model that DOE has determined do not comply with...

  8. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    of Automobile Manufacturers The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers with about 600,000...

  9. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01T23:59:59.000Z

    Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

  10. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

  11. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01T23:59:59.000Z

    Hague, "Sustainability of additive manufacturing: measuringASTM Committee F42 on Additive Manufacturing Technologies,"ASTM Committee F42 on Additive Manufacturing Technologies. -

  12. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  13. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Energy Savers [EERE]

    ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing:...

  14. 2008 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    statistics and world tungsten concentrate production for 2008 and the previous 4 years are listed in table 1 for lead in bullets, shot, and other products. Tungsten chemicals are used to make catalysts, corrosion2008 Minerals Yearbook U.S. Department of the Interior U.S. Geological Survey TUNGSTEN October 2010

  15. U.S. Geological Survey China's Growing Appetite for Minerals

    E-Print Network [OSTI]

    , crude 23 1 Tin 32 1 Tungsten 83 1 Zinc 22 1 #12;Infrastructure Cement #12;Production of Hydraulic Cement's exportation of some metals is declining (rare-earth elements, tin, and tungsten) Foreign investment is increasing (minerals, infrastructure, aid) Environmental residuals from production could rise #12;Background

  16. 2006 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    , international data coordinator. No U.S. tungsten mine production was reported in 2006. U.S. supply of tungsten Service (FWS) granted final approval to four new tungsten shot products for hunting waterfowl and coots--iron-tungsten2006 Minerals Yearbook TUNGSTEN U.S. Department of the Interior U.S. Geological Survey April 2008

  17. 2011 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    consumption increased significantly in 2011, as compared with that of 2010. World tungsten mine production. salient u.s. tungsten statistics and world tungsten concentrate production for 2007­11 are listed in table2011 Minerals Yearbook U.S. Department of the Interior U.S. Geological Survey TUNGSTEN [ADVANCE

  18. PRODUCT AND COMPANY IDENTIFICATION1 Manufacturer

    E-Print Network [OSTI]

    Holsinger, Kent

    engineering controls are completed. Ventilation: Local exhaust or other ventilation that will reduce dust

  19. Energy Impacts of Productivity Improvements in Manufacturing

    E-Print Network [OSTI]

    Mitrovic, B.; Muller, M. R.

    The complexity of industrial processes and the need to consider the interaction of various systems has led in many cases to the maturing of the “energy audit” in to a more sophisticated “industrial assessment.” The assessment team typically looks...

  20. Washington: Battery Manufacturer Brings Material Production Home...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    most of the project's equipment, and this project is helping to build out a domestic industry that creates jobs for U.S. workers. EnerG2 created more than 200 temporary...

  1. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01T23:59:59.000Z

    in Indiana (IN), USA electricity is mostly generated byUSA, where gas, nuclear and hydro are the main sources of electricity.

  2. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01T23:59:59.000Z

    University, Germany Edited by Prof. Dr. -lng. habil. Prof.E. h. Dr. -lng. E. h. Dr. h.c. Reimund Neugebauer Prof. T.

  3. Manufacturing/Production Steering Committee Meeting

    SciTech Connect (OSTI)

    Nuckols, Matthew M. [Los Alamos National Laboratory; Hedley, Richard [AWE; McKamy, Dr. Jerry N. [NNSA

    2012-08-14T23:59:59.000Z

    JOWOG 30 has been reorganized and reinvigorated over the past couple of years to: (1) Drive an increased level of value and accomplishment; (2) Broaden engagement from LANL to both NNSA and full Weapons Complex; and (3) Incorporate the Strategic Technical Facilities Modernization (STFM) initiative into J30 structure. Recent/Ongoing Exchanges (2011 and 2012) - Current Exchanges entirely focused within the five J30 tasking areas: Capability Gap, Facility Re-Kit, Commissioning, Environmental Liabilities, Safety Basis. Future Exchanges (2012 to 2015) - Continue current tasks according to plan, include additional tasks/teams in areas such as Criticality Safety and Radiation Protection.

  4. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01T23:59:59.000Z

    house gas emissions and carbon footprint are numerous. Thisgas emissions and carbon footprint are numerous. In thispayback time • Carbon footprint • Efficiency improvement (

  5. Manufacturing/Production Steering Committee Meeting

    SciTech Connect (OSTI)

    Castro, Richard G. [Los Alamos National Laboratory

    2012-08-09T23:59:59.000Z

    This presentation discusses the following: (1) Nuclear Material Science - 22/1: Uranium Metallography and Metallurgy, 22/7: Plutonium Metallurgy, 22/8: Plutonium Corrosion; (2) Nuclear Materials Chemistry - 22/2: Actinide Chemistry, 22/7: Analytical Chemistry; (3) Tritium Science & Technology - 22/4: Tritium Science and Technology; and (4) Nuclear Materials Management - 22/5: Nuclear Materials Management, 22/9: Packaging, Storage and Transportation.

  6. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01T23:59:59.000Z

    cycle phases, Life Cycle Assessment (LCA). The followingvs use phase [3] 2.2 Life Cycle Assessment (LCA) and Relatedused method is Life Cycle Assessment (LCA), including its

  7. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 ofEmergencyAcrobatBetterbyDepartment of

  8. Washington: Battery Manufacturer Brings Material Production Home |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacks |VisualizingWarm Weather and

  9. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01T23:59:59.000Z

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  10. Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive

  11. Posted 10/18/11 MANUFACTURING ENGINEER

    E-Print Network [OSTI]

    Heller, Barbara

    manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

  12. Faculty Position in Mechanical Engineering Additive Manufacturing

    E-Print Network [OSTI]

    Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

  13. Integrating Energy Management and Lean Manufacturing

    E-Print Network [OSTI]

    Stocki, M.

    Reduced Building Energy through Lean Case Study Facility floor space typically must be heated, ventilated, and illuminated. When space runs outs, a facility usually looks to expand by adding floor space. A farm equipment manufacturer was facing just... Procedures to optimize operational and production tasks ? Encouraging energy efficiency through the use of Visual Dashboards (sample in Figure 3). ? Root cause analysis to determine the underlying causes (and possible solutions) of energy wastes in a...

  14. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Environmental Management (EM)

    Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting...

  15. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B. [Nevada Bureau of Mines and Geology, Reno, NV (United States); Lock, D.E. [Mackay School of Mines, Reno, NV (United States)

    1996-08-01T23:59:59.000Z

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  16. Energy and mineral resource systems: An introduction

    SciTech Connect (OSTI)

    Tapp, B.A.; Watkins, J.R.

    1990-01-01T23:59:59.000Z

    This book provides a welcome approach to understanding the fundamental role that energy and mineral resources play in the affairs of nations and individuals. Chapter 1 presents background material on energy in the human environment. Chapter 2 deals with historical changes in predominant energy sources, energy efficiencies based on the first and second laws of thermodynamics, potential utility of secondary energy sources, and the distribution of energy reserves among political and economic units. Chapter 3 discusses the methods and pitfalls of projecting future energy demand and technologies of alternative energy sources. Chapter 4 analyzes the projected growth-decline patterns in world oil and coal production, viability of alternative sources, and three possible future energy scenarios. Chapter 5 concludes with methods of energy flow analysis and further discussion on future energy scenarios. Chapter 6 begins by establishing several basic points about mineral resource systems then proceeds with a discussion of consumption-production patterns of metals. Chapter 7 presents estimates of global metal stocks, outlines factors determining metal demand, and examines metal import-export balances and resource potential for Australia and the Pacific Basin region. Chapter 8 highlights current issues that affect the mineral resource industry. Chapter 9 recounts the historical changes in exploration approaches, from prospecting to the utilization of genetic models, specialist teams, and regional geochemical and geophysical surveys. Chapter 10 assesses the implications of the previously noted trends in metal consumption and new technologies and concludes that future energy and mineral resource system evaluations will be according to new strategems and economic criteria.

  17. Manufacturing Demonstration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and aHistoricMannManufacturing

  18. Institute for Mineral and Energy

    E-Print Network [OSTI]

    for energy. Mining and processing are vulnerable to energy price increases. Power is the largest contributingInstitute for Mineral and Energy Resources Answering Global Resource and Energy Challenges #12;Answering Global Resource and Energy Challenges 2 Vision The vision of the Institute for Mineral and Energy

  19. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

  20. Manufacturing Energy Bandwidth Studies: Chemical, Peroleum Refining, Pulp and Paer, and Iron and Steel Sectors

    E-Print Network [OSTI]

    Brueske, S.; Cresko, J.; Capenter, A.

    2014-01-01T23:59:59.000Z

    on the chemical product results and other energy consumption details can be found in the bandwidth studies. MECS Data/Energy Footprints A large range of sources were consulted to provide data and insight on the manufacturing process and product energy... Consumption Survey (MECS) data, for the latest survey year of 2010 [1]. MECS is a national sample survey of U.S. manufacturing establishments conducted every four years. Information is collected and reported on U.S. manufacturing energy consumption...

  1. Mineral dissolution kinetics at the pore scale

    E-Print Network [OSTI]

    Li, L.; Steefel, C.I.; Yang, L.

    2008-01-01T23:59:59.000Z

    Weathering Rates of Silicate Minerals , Vol. 31 (ed. A. F.as a result of secondary mineral precipitation and approachWeathering Rates of Silicate Minerals , Vol. 31, pp. 565-

  2. KLA-Tencor's Inspection Tool Reduces LED Manufacturing Costs

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, KLA-Tencor is developing an improved inspection tool for LED manufacturing that promises to significantly increase overall process yields and minimize expensive waste. The power of the inspection tool lies in optical detection techniques coupled with defect source analysis software to statistically correlate front-end geometric anomalies in the substrate to killer defects on the back end of the manufacturing line, which give rise to an undesirable or unusable end product.

  3. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  4. Sandia National Laboratories: wind manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale, Arizona-based company that operates a turbine blade factory in...

  5. Manufacturing Spotlight: Boosting American Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  6. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  7. Wireless technology for integrated manufacturing

    SciTech Connect (OSTI)

    Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

    1996-08-01T23:59:59.000Z

    This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

  8. Solar collector manufacturing activity 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-15T23:59:59.000Z

    The report presents national and State-level data on the U.S. solar thermal collector and photovoltaic cell and module manufacturing industry.

  9. Migrating Contaminant Sticks To Minerals | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Migrating Contaminant Sticks To Minerals Aluminum oxide in common soil minerals captures uranium Using computational chemistry models, scientists at Pacific Northwest National...

  10. Investigation of Mineral Transformations in Wet Supercritical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Transformations in Wet Supercritical CO2 by Electron Microscopy. Investigation of Mineral Transformations in Wet Supercritical CO2 by Electron Microscopy. Abstract: The...

  11. Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 761-771 3D Texture Mapping for Rapid Manufacturing

    E-Print Network [OSTI]

    Chen, Yong

    , and product design [6]. · Layer manufacturing: Layer-based additive manufacturing processes Manufacturing Yong Chen University of Southern California, yongchen@usc.edu ABSTRACT Inspired by the developments of biomimetic design and layer manufacturing, we present a microstructure design method which uses

  12. A study of the Mighty Motors operating system : making sustainable improvements at a powertrain manufacturing facility

    E-Print Network [OSTI]

    Dibb, Gregory David, 1974-

    2004-01-01T23:59:59.000Z

    Many manufacturing companies are developing their own production or operating system, particularly in an effort to duplicate the widely renowned Toyota Production System. Toyota has demonstrated its potential for improving ...

  13. Model for inventory management in valve manufacturing cell at Waters Corporation

    E-Print Network [OSTI]

    Yao, Bingxin

    2013-01-01T23:59:59.000Z

    This thesis addresses the challenges of improving the on-time delivery performance of a high-volume critical part type in a high-product-mix manufacturing facility of valves. Preliminary analysis on the push-type production ...

  14. Lean manufacturing in a mass customization plant : inventory correction and shortage measurement

    E-Print Network [OSTI]

    Raykar, Sumant (Sumant Shreechandra)

    2011-01-01T23:59:59.000Z

    This thesis documents the application of the principles of lean manufacturing and supply chain planning at Varian Semiconductor Equipment Associates. The company's products are highly customizable, and the production ...

  15. Innovation enabling manufacturing processes

    E-Print Network [OSTI]

    Lu, Ilyssa Jing

    2008-01-01T23:59:59.000Z

    Global operations for multinational companies today pose a particularly challenging environment for maintaining fluid knowledge transfer and effective communication methodologies. In a continuous drive for product innovation, ...

  16. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  17. Universal ripper miner

    DOE Patents [OSTI]

    Morrell, Roger J. (Bloomington, MN); Larson, David A. (Minneapolis, MN)

    1991-01-01T23:59:59.000Z

    A universal ripper miner used to cut, collect and transfer material from an underground mine working face includes a cutter head that is vertically movable in an arcuate cutting cycle by means of drive members, such as hydraulically actuated pistons. The cutter head may support a circular cutter bit having a circular cutting edge that may be indexed to incrementally expose a fresh cutting edge. An automatic indexing system is disclosed wherein indexing occurs by means of a worm gear and indexing lever mechanism. The invention also contemplates a bi-directional bit holder enabling cutting to occur in both the upstroke and the downstroke cutting cycle. Another feature of the invention discloses multiple bits arranged in an in-line, radially staggered pattern, or a side-by-side pattern to increase the mining capacity in each cutting cycle. An on-board resharpening system is also disclosed for resharpening the cutting edge at the end of cutting stroke position. The aforementioned improvement features may be used either singly, or in any proposed combination with each other.

  18. Productive Economy InternetMobilephonesBudgetanalysisGreeneconomyRapid

    E-Print Network [OSTI]

    Berzins, M.

    manufacturing work 1990s A new process, `Selective Laser Sintering', paves way for rapid manufacture of productsProductive Economy InternetMobilephonesBudgetanalysisGreeneconomyRapid manufacturing 1967 UK computer design files ­ using plastic lays foundation for new low-cost, low- waste manufacturing techniques

  19. Rapid prototyping applications for manufacturing

    SciTech Connect (OSTI)

    Atwood, C.L.; Maguire, M.C.; Pardo, B.T.; Bryce, E.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-01-01T23:59:59.000Z

    Recent advances in stereolithography and selective laser sintering have had a significant impact on the overall quality of parts produced using these rapid prototyping processes. The development and implementation of 3D System`s QuickCast{sup TM} resin and software for building investment casting patterns have proven to be major steps toward fabricating highly accurate patterns with very good surface finishes. As participants in the Beta test program for QuickCast{sup TM} resin and software, we experienced a steep learning curve and were able to build accurate parts in a short period of time. It is now possible using this technology to produce highly accurate prototype parts as well as acceptable first article and small lot size production parts. We use the Selective Laser Sintering (SLS) process to fabricate prototype wax patterns for investment casting. DTM Corporation recently introduced the use of their polycarbonate material for fabricating investment casting patterns. The polycarbonate material is processed significantly faster with improved strength, dimensional stability, and without a support structure during the build process. Sandia is currently changing from investment casting wax to polycarbonate for the fabrication of investment casting patterns using the SLS process. This report will focus on our successes with these new materials from the standpoints of application, accuracy, surface finish, and post processing. Also presented will be examples of parts manufactured by these processes. 6 refs., 10 figs.

  20. RON MINER MEMORIAL BIOENGINEERING SCHOLARSHIP The Ron Miner Memorial Scholarship honors the memory of J. Ronald Miner, an

    E-Print Network [OSTI]

    Tullos, Desiree

    RON MINER MEMORIAL BIOENGINEERING SCHOLARSHIP The Ron Miner Memorial Scholarship honors the memory of J. Ronald Miner, an Agricultural Engineering professor at OSU for over thirty years. Ron came to OSU from the Ron Miner Memorial Scholarship which resides with the OSU Foundation. The name

  1. Final report: An enabling architecture for information driven manufacturing

    SciTech Connect (OSTI)

    Griesmeyer, J.M.

    1997-08-01T23:59:59.000Z

    This document is the final report for the LDRD: An Enabling Architecture for Information Driven Manufacturing. The project was motivated by the need to bring quality products to market quickly and to remain efficient and profitable with small lot sizes, intermittent production and short product life cycles. The emphasis is on integration of the product realization process and the information required to drive it. Enterprise level information was not addressed except in so far as the enterprise must provide appropriate information to the production equipment to specify what to produce, and the equipment must return enough information to record what was produced. A production script approach was developed in which the production script specifies all of the information required to produce a quality product. A task sequencer that decomposes the script into process steps which are dispatched to capable Standard Manufacturing Modules. The plug and play interface to these modules allows rapid introduction of new modules into the production system and speeds up the product realization cycle. The results of applying this approach to the Agile Manufacturing Prototyping System are described.

  2. Out of Bounds Additive Manufacturing Christopher

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

  3. Overview of the Photovoltaic Manufacturing Technology (PVMaT) project

    SciTech Connect (OSTI)

    Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

    1993-08-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project`s ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ``generic`` problem areas are being addressed through a teamed research approach.

  4. FROM PLANT AND LOGISTICS CONTROL TO MULTI-ENTERPRISE COLLABORATION: Milestone report of the Manufacturing & Logistics Systems Coordinating Committee

    E-Print Network [OSTI]

    Boyer, Edmond

    , product life cycles shrink, and profit margins decrease. In addition, the capital costs of manufacturing of the Manufacturing & Logistics Systems Coordinating Committee S.Y. Nofa* , G. Morelb , L. Monostoric , A. Molinad , F-765-494-1299 Abstract: Current and emerging manufacturing and logistics systems are posing new challenges

  5. 2007 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    statistics and world tungsten concentrate production for 2007 and the previous 4 years are listed in table 12007 Minerals Yearbook U.S. Department of the Interior U.S. Geological Survey TUNGSTEN May 2010 #12;TUNGSTEN--2007 79.1 TUNGSTEN By Kim B. Shedd Domestic survey data and tables were prepared by Danielle L

  6. 2005 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    2005 Minerals Yearbook TungsTen U.S. Department of the Interior U.S. Geological Survey #12;TungsTen--2005 79.1 TungsTen ByKimB.shedd Domestic survey data and tables were prepared by Amy C. Tolcin, statistical assistant, and the world production table was prepared by Glenn J. Wallace, international data

  7. 2010 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    with that of 2009. Salient U.S. tungsten statistics and world tungsten concentrate production for 20102010 Minerals Yearbook U.S. Department of the Interior U.S. Geological Survey TUNGSTEN [ADVANCE RELEASE] February 2012 #12;TUNGSTEN--2010 [ADVANCE RELEASE] 79.1 TUNGSTEN By Kim B. Shedd Domestic survey

  8. J Bone Miner Metab . Author manuscript Mineral maturity and crystallinity index are distinct characteristics of bone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    J Bone Miner Metab . Author manuscript Page /1 13 Mineral maturity and crystallinity index are distinct characteristics of bone mineral Delphine Farlay 1 * , G rard Panczeré 2 , Christian Rey 3 , Pierre the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral

  9. MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS

    E-Print Network [OSTI]

    Magee, Joseph W.

    MANUFACTURING ACCELERATING THE INCORPORATION OF MATERIALS ADVANCES INTO MANUFACTURING PROCESSES NATIONAL NEED The proposed topic "Accelerating the Incorporation of Materials Advances into Manufacturing organizations, leading researchers from academic institutions, and others. Materials performance is often

  10. Method for manufacture of neutron absorbing articles

    SciTech Connect (OSTI)

    Owens, D.

    1980-07-22T23:59:59.000Z

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form.

  11. PCB origami : folding circuit boards into electronic products

    E-Print Network [OSTI]

    Sterman, Yoav

    2013-01-01T23:59:59.000Z

    PCB origami is a concept for an alternative manufacturing process of electronic products, in which the electronic material will be manufactured flat and folded into functional 3D graspable products by the user. PCBs will ...

  12. Manufacturing development of low activation vanadium alloys

    SciTech Connect (OSTI)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01T23:59:59.000Z

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported.

  13. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  14. Additive Manufacturing Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

  15. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors,...

  16. Welcome and Advanced Manufacturing Partnership (Text Version...

    Broader source: Energy.gov (indexed) [DOE]

    200 school aged students go into this manufacturing demonstration facility and make 3D printing or other manufacturing parts. Design and make parts for their robots. For their...

  17. National Electrical Manufacturers Association (NEMA) Response...

    Energy Savers [EERE]

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  18. Technologies Enabling Agile Manufacturing (TEAM) ? an ORCMT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Enabling Agile Manufacturing (TEAM) - An ORCMT success story Technologies Enabling Agile Manufacturing (TEAM) was one of the larger programs to come from the...

  19. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Advanced Manufacturing Office Overview Microwave and Radio Frequency Workshop...

  20. Additive Manufacturing Opportunities for Transportation | ornl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Opportunities for Transportation Mar 13 2015 10:00 AM - 11:00 AM Lonnie Love, Manufacturing Systems Research Group Transportation Science Seminar Series...

  1. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Broader source: Energy.gov (indexed) [DOE]

    for a Clean Energy Manufacturing Innovation Institute related to composite materials and structures. The Manufacturing Demonstration Facility at Oak Ridge National...

  2. Vehicle Technologies Office Merit Review 2014: Manufacturability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturability Study and Scale-Up for Large Format Lithium Ion Batteries Vehicle Technologies Office Merit Review 2014: Manufacturability Study and Scale-Up for Large Format...

  3. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  4. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    key terms and details assumptions and references used in the Manufacturing Energy and Carbon Footprints (2010 MECS) Definitions and Assumptions for the Manufacturing Energy and...

  5. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis Cement...

  6. Process systems engineering of continuous pharmaceutical manufacturing

    E-Print Network [OSTI]

    Abel, Matthew J

    2010-01-01T23:59:59.000Z

    Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

  7. AdditiveManufacturing Sustainable

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    fabrication techniques (e.g., 3D printing) into viable platforms for the realization of end-use products · VIRGINIA TECH · www.ictas.vt.edu Above: printed result of a 3D print- er. Below: researcher Amy Elliott should contact the Office for Equity and Inclusion. Key Personnel Current Activities · 3D Printing

  8. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  9. Wind Energy Manufacturing Tax Incentive

    Broader source: Energy.gov [DOE]

    With the passage of [http://www.arkansasenergy.org/media/261385/act736.pdf HB 2230 (2009)] in April 2009, the Arkansas Legislature expanded a tax incentive for manufacturers of windmill blades or...

  10. Manufacturing System Design Framework Manual

    E-Print Network [OSTI]

    Vaughn, Amanda

    2002-01-01T23:59:59.000Z

    Previous Lean Aerospace Initiative research in factory operations had indicated that the greatest performance gains are realized when the manufacturing system is designed from the top down and from supplier to the customer. ...

  11. CFL Manufacturers: ENERGY STAR Letters

    Broader source: Energy.gov [DOE]

    DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program.

  12. Cost effective manufacturing of the SEA 10X concentrator array

    SciTech Connect (OSTI)

    Kaminar, N.; McEntee, J.; Curchod, D. (Solar Engineering Applications Corp., San Jose, CA (United States))

    1991-11-01T23:59:59.000Z

    This report describes a low-cost, mass-producible 10X concentrator system that has been claimed to produce electricity at $0.04/kWh. It details changes in manufacturing techniques that could produce a concentrator system at a selling price of $0.71/W. (A simple design and a minimum number of parts and manufacturing steps reduced production costs.) Present production techniques, changes to improve these techniques, impediments to changes, and solutions to the impediments are described. This 10X concentrator system uses available components and manufacturing processes and one-sun solar cells in conjunction with inexpensive plastic lenses to generate about eight times the amount of electricity normally produced by these cells.

  13. 2010 Minerals Yearbook U.S. Department of the Interior

    E-Print Network [OSTI]

    and production capacity of batteries for electric-drive vehicles and battery recycling--lithium-ion battery for batteries, ceramics and glass, grease, and other industrial applications increased in 2010 from those at 20 ARRA-funded battery and component manufacturing facilities, and 8 demonstration projects were

  14. Steam Champions in Manufacturing

    E-Print Network [OSTI]

    Russell, C.

    for human resource management. Under-trained apprentices are easier on the payroll, but a corresponding loss in productivity is the trade off. It is desirable to develop these personnel, assuming they can be retained after completing their training... performance contractor, or managing a staff with a few key professionals and a complement of apprentices who essentially learn on the job. In the best of circumstances, the stearn champion can plan staffing needs in response to statutory certification...

  15. Utilization of coal associated minerals. Quarterly report No. 11, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-08-29T23:59:59.000Z

    The purpose of this research program is to examine the effects of coal mineral materials on coal waste by-product utilization and to investigate new and improved methods for the utilization of waste by-products from cleaning, combustion and conversion processing of coal. The intermediate objectives include: (1) the examination of the effects of cleaning, gasification and combustion on coal mineral materials; and (2) the changes which occur in the coal wastes as a result of both form and distribution of mineral materials in feed coals in conjunction with the coal treatment effects resulting from coal cleaning or either gasification or combustion.

  16. 1989 U. S. A. oilfield service, supply and manufacturers directory

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    This book lists and describes principal activities of more than 3,600 companies providing oil-field services, wholesale and retail products, and companies involved in the design, manufacture and construction of oilfield equipment. It gives company address and phone; principal officers; telex, cable, and facsimile numbers; branch offices; and subsidiaries.

  17. Energy Manufacturing: Principles and Recent June 28 July 1, 2011

    E-Print Network [OSTI]

    MacIver, Malcolm A.

    ) June 29, 2011 Wednesday (Solar Panels) 8:30 ­ 9:00 Introduction of Solar Energy - Steven Danyluk in algae biofuel production, overview of various photovoltaic solar cell technologies and manufacturing:30 ­ 17:30 Design of Advanced Heat-transfer fluids for Concentrated Solar Power - Amy Sun, Sandia (SNL

  18. CLOUD MANUFACTURING: CURRENT STATUS AND FUTURE TRENDS INTRODUCTION

    E-Print Network [OSTI]

    and integrating inter-organizational and heterogeneous services in CM environments. · Business Model: For CM to be embraced by service consumers and providers, current business models incorporate the concepts manufacturing resources to form temporary, reconfigurable production lines which enhance efficiency, reduce

  19. Implementing SPC in a Simulation Model for Manufacturing Transitions

    E-Print Network [OSTI]

    Nembhard, Harriet Black

    - ~(~-;::;: Implementing SPC in a Simulation Model for Manufacturing Transitions Harriet Black and 2). Product quality often suffers during such transition periods. Statistical process control (SPC the design and development of an integrated SPC and simulation model. Figure 1 shows a screen snapshot

  20. Model-Based Engineering and Manufacturing CAD/CAM Benchmark.

    SciTech Connect (OSTI)

    Domm, T.C.; Underwood, R.S.

    1999-10-13T23:59:59.000Z

    The Benchmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus for Y-12 modernization efforts. The companies visited included several large established companies and a new, small, high-tech machining firm. As a result of this effort, changes are recommended that will enable Y-12 to become a more modern, responsive, cost-effective manufacturing facility capable of supporting the needs of the Nuclear Weapons Complex (NWC) into the 21st century. The benchmark team identified key areas of interest, both focused and general. The focus areas included Human Resources, Information Management, Manufacturing Software Tools, and Standards/Policies and Practices. Areas of general interest included Infrastructure, Computer Platforms and Networking, and Organizational Structure. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were somewhere between 3-D solid modeling and surfaced wire-frame models. The manufacturing computer tools were varied, with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) from a common model. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system than a single computer-aided manufacturing (CAM) system. The Internet was a technology that all companies were looking to either transport information more easily throughout the corporation or as a conduit for business, as the small firm was doing successfully.

  1. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Christenson, Norm; Walters, Jerel

    2014-12-31T23:59:59.000Z

    This Topical Report addresses accomplishments achieved during Phase 2b of the SkyMine® Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO2 from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO2 to products having commercial value (i.e., beneficial use), show the economic viability of the CO2 capture and conversion process, and thereby advance the technology to the point of readiness for commercial scale demonstration and deployment. The overall process is carbon negative, resulting in mineralization of CO2 that would otherwise be released into the atmosphere. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at the commercial scale. The project is being conducted in two phases. The primary objectives of Phase 1 were to evaluate proven SkyMine® process chemistry for commercial pilot-scale operation and complete the preliminary design for the pilot plant to be built and operated in Phase 2, complete a NEPA evaluation, and develop a comprehensive carbon life cycle analysis. The objective of Phase 2b was to build the pilot plant to be operated and tested in Phase 2c.

  2. Carbon fiber manufacturing via plasma technology

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    2002-01-01T23:59:59.000Z

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  3. Improvements in manufacture of iridium alloy materials

    SciTech Connect (OSTI)

    Ohriner, E.K. (Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6083 (United States))

    1993-01-15T23:59:59.000Z

    Iridium alloys are used as fuel-cladding material in radioisotope thermoelectric generators (RTGs). Hardware produced at the Oak Ridge National Laboratory (ORNL) has been used in Voyager 1 and 2, Galileo, and Ulysses spacecrafts. This hardware was fabricated from small, 500-g drop-cast ingots. Porosity in these ingots and the resulting defects in the rolled sheets caused rejection of about 30% of the product. An improved manufacturing process was developed with the goal of substantially reducing the level of defects in the rolled sheets. The ingot size is increased to 10 kg and is produced by vacuum arc remelting. In addition, the ingot is hot extruded prior to rolling. Since implementation of the process in 1989, the average rate of rejection of the product has been reduced to below 10%.

  4. The Impact of Dr.Shigeo Shingo on Modern Manufacturing Practices

    E-Print Network [OSTI]

    Vardeman, Stephen B.

    1 The Impact of Dr.Shigeo Shingo on Modern Manufacturing Practices IE 361 Dr. Stephen B. Vardem manufacturing fundamentals. Biography Dr. Shigeo's expertise was a result of his vast experience and knowledge. In addition, by focusing on production rather than management alone, he was able to establish himself

  5. UNDERSTANDING MANUFACTURING ENERGY USE THROUGH STATISTICAL ANALYSIS KELLY KISSOCK AND JOHN SERYAK

    E-Print Network [OSTI]

    Kissock, Kelly

    , OHIO ABSTRACT Energy in manufacturing facilities is used for direct production of goods, spaceUNDERSTANDING MANUFACTURING ENERGY USE THROUGH STATISTICAL ANALYSIS KELLY KISSOCK AND JOHN SERYAK for statistically analyzing plant energy use in terms of these major end uses. The methodology uses as few as 60

  6. int. j. prod. res., 2001, vol. 39, no. 16, 35613600 A review of agile manufacturing systems

    E-Print Network [OSTI]

    Nagi, Rakesh

    literature on agile manufacturing. About 73 papers from premier scien- ti®c journals and conferences have Manufacturing International Journal of Production Research ISSN 0020±7543 print/ISSN 1366±588X online # 2001 Taylor & Francis Ltd http://www.tandf.co.uk/journals DOI: 10.1080/00207540110068790 Revision received

  7. Designing a National Network for Manufacturing Innovation

    E-Print Network [OSTI]

    Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

  8. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1BP-14 Power andAdvancedCMWG

  9. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect (OSTI)

    None

    2011-05-15T23:59:59.000Z

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: ? Deeper oil exploration in higher temperature and pressure environments ? Enabling power electronic and control equipment to operate in higher temperature environments ? Enabling reduced cooling requirements of electronics ? Increasing reliability and life of capacitors operating below rated temperature ? Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: ? FPE Film is difficult to handle and wind, resulting in poor yields ? Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) ? Encapsulation technologies must be improved to enable higher temperature operation ? Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/?m. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  10. New Manufacturing Method for Paper filler and Fiber Material

    SciTech Connect (OSTI)

    Doelle, Klaus

    2011-11-22T23:59:59.000Z

    The study compares commercial available filler products with a new developed â??Hybrid Fiber Filler Composite Materialâ?ť and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12â?ť pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.

  11. King Fahd University of Petroleum and Minerals

    E-Print Network [OSTI]

    Al-Ghadhban, Samir

    King Fahd University of Petroleum and Minerals Summer Training Report 2010 Abdul-Aziz Al ...........................................................................................13 #12;2 1. Introduction King Fahd University of Petroleum and Minerals (KFUPM) give an opportunity

  12. Mineral Supplementation of Beef Cows in Texas

    E-Print Network [OSTI]

    Herd, Dennis B.

    1997-06-04T23:59:59.000Z

    Nutrient balance is the key to any effective nutrition program, especially where trace minerals are concerned. Many factors cannot be optimized when mineral intake is not properly balanced. Recommendations are given for the producer....

  13. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  14. Enabling effective product launch decisions

    E-Print Network [OSTI]

    Akamphon, Sappinandana

    2008-01-01T23:59:59.000Z

    The present work looks into the question of optimizing the performance of product launch decisions-in particular, the decisions of product development duration and manufacturing ramp-up. It presents an innovative model for ...

  15. Mineral Selection for Multicomponent Equilibrium Geothermometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Plamer, C. D.; Ohly, S. R.; Smith, R. W.; Neupane, G.; McLing, T.; Mattson, E.

    2015-04-01T23:59:59.000Z

    Muliticomponent geothermometry requires knowledge of the mineral phases in the reservoir with which the geothermal fluids may be equilibrated.

  16. Mineral Supplementation of Beef Cows in Texas 

    E-Print Network [OSTI]

    Herd, Dennis B.

    1997-06-04T23:59:59.000Z

    in these problem herds returned to acceptable levels with mineral supplementation practices described in this publication. Need for Minerals Maintenance, growth, lactation, reproduction and animal health cannot be optimized where mineral intake is not properly... than during lactation. Since milk is low in copper, the cow must build the fetal liver concentration of copper 4 Table 1. Diet Formulation Guidelines 1996 Beef NRC Common Requirements Formulation Lactating Lactating Maximum Mineral Dry Cow Cow Dry Cow...

  17. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01T23:59:59.000Z

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  18. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01T23:59:59.000Z

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  19. Abstract--This study proposes an easy-to-use methodology to estimate the materials embodied energy and manufacturing

    E-Print Network [OSTI]

    Gutowski, Timothy

    to the manufacturing energy requirements to process the materials. The database contains a total of 74 entriesAbstract-- This study proposes an easy-to-use methodology to estimate the materials embodied energy and manufacturing energy for a product. The tool requires as input the product's Bill of Materials and the knowledge

  20. Mineral minimization in nature's alternative teeth

    E-Print Network [OSTI]

    Zok, Frank

    REVIEW Mineral minimization in nature's alternative teeth Christopher C. Broomell1, , Rashda K, University of California, Santa Barbara, CA 93106, USA Contrary to conventional wisdom, mineralization, with little to no help from mineralization. Based on biochemical analyses, three of these mouthparts, the jaws

  1. PROGRAM AND ABSTRACTS FOR CLAY MINERALS SOCIETY

    E-Print Network [OSTI]

    Rathbun, Julie A.

    r PROGRAM AND ABSTRACTS FOR CLAY MINERALS SOCIETY 28th ANNUAL MEETING NI\\SI\\National Aeronautit &II LPI #12;PROGRAM AND ABSTRACTS FOR CLAY MINERALS SOCIETY 28th ANNUAL MEETING Houston, Texas October contains abstracts that have been accepted for presentation at the Clay Minerals Society 28th Annual

  2. 2.20 Properties of Rocks and Minerals -Magnetic Properties of Rocks and Minerals

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    2.20 Properties of Rocks and Minerals - Magnetic Properties of Rocks and Minerals R. J. Harrison, R 621 622 623 623 579 #12;580 Magnetic Properties of Rocks and Minerals 2.20.5.3 2.20.5.4 2, and are present in all types of rocks, sediments, and soils. These minerals retain a memory of the geomagnetic

  3. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30T23:59:59.000Z

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  4. Power Quality from the Manufacturer’s Standpoint

    E-Print Network [OSTI]

    McEachern, A.

    Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

  5. Manufacturing for the Hydrogen Economy Manufacturing Research & Development

    E-Print Network [OSTI]

    to coordinate and leverage the current federal efforts focused on manufacturability issues such as low-cost of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

  6. Overcoming the Barrier to Achieving Large-Scale Production -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Semprius Confidential 1 Overcoming the Barriers to Achieving Large-Scale Production - A Case Study From concept to large-scale production, one manufacturer tells the story and...

  7. The Technical and Economic Potential for Electricity Energy Efficiency in a Semiconductor Manufacturing Plant

    E-Print Network [OSTI]

    Lee, A. H. W.; Golden, J. W.; Zarnikau, J. W.

    In recent years, there has been renewed interest in energy efficiency in the semiconductor industry. The declining prices for semiconductor products has prompted semiconductor manufacturing plants to control costs so as to maintain profitability...

  8. Development of a manufacturing Applet's user interface to enhance its properties as a teaching tool

    E-Print Network [OSTI]

    Dobson, Michael, S.B. (Michael J.). Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    A manufacturing system's design and operation plays a critical part is the cost, rate and quality of any product. As a result optimization techniques and cost benefit analysis are common practices in any industry involving ...

  9. The Case for Casein Fiber: Local Design Solutions for Sustainability in Manufacturing

    E-Print Network [OSTI]

    McKenna, Kimberly Fisher

    2012-05-31T23:59:59.000Z

    and apparel manufacturing, this paper examines the problem of environmental harm caused by the creation, use, and disposal of garments inherent in the current global system. Localizing the production of textiles using casein fiber sourced from waste milk...

  10. Design and implementation of a continuous improvement framework for an organic photovoltaic panels manufacturer

    E-Print Network [OSTI]

    Colaci, Gregorio

    2011-01-01T23:59:59.000Z

    The MIT MEng Team worked at Konarka Technologies, the world leader organic photovoltaic panels (OPV) manufacturer, on several improvement projects. The concentration was on operations improvement as well as production ...

  11. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01T23:59:59.000Z

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  12. A List of Kansas Minerals

    E-Print Network [OSTI]

    Grover, Charles H.

    1895-01-01T23:59:59.000Z

    Master Th e s i s Geology Grov e r , C h a r l e s H. 1895 L i s t of Kansas m i n e r a l s * A l i s t of Kansas Minerals with "brief notes on the^cr^stjalogr&phio (form, chemical composition, and the p r i n c i p a l l o c a l i t i e s f...Łom which Łhey have been reported* ^S/V-y The f o l l o w i n g l i s t , i t i s believed, embraces a l l the minerals of the state that have been so f a r discovered and reported. Two s i m i l a r i i s t s have been heretofore published i n...

  13. Mineral bridges in nacre revisited

    E-Print Network [OSTI]

    Antonio G. Checa; Julyan H. E. Cartwright; Marc-Georg Willinger

    2012-07-20T23:59:59.000Z

    We confirm with high-resolution techniques the existence of mineral bridges between superposed nacre tablets. In the towered nacre of both gastropods and the cephalopod Nautilus there are large bridges aligned along the tower axes, corresponding to gaps (150-200 nm) in the interlamellar membranes. Gaps are produced by the interaction of the nascent tablets with a surface membrane that covers the nacre compartment. In the terraced nacre of bivalves bridges associated with elongated gaps in the interlamellar membrane (> 100 nm) have mainly been found at or close to the edges of superposed parental tablets. To explain this placement, we hypothesize that the interlamellar membrane breaks due to differences in osmotic pressure across it when the interlamellar space below becomes reduced at an advanced stage of calcification. In no cases are the minor connections between superimposed tablets (mineral bridges, found to be such.

  14. Production Scheduling with Energy Efficiency Constraints

    E-Print Network [OSTI]

    Lee, J.; Kozman, T. A.; Wang, X.

    2007-01-01T23:59:59.000Z

    This research is motivated by a real world production scheduling problem in a continuous manufacturing system involving multiple objectives, multiple products and multiple processing lines with various inventory, production and energy efficiency...

  15. The photovoltaic manufacturing technology project: A government/industry partnership

    SciTech Connect (OSTI)

    Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

    1991-12-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

  16. Cost-benefit analysis for design of environmentally conscious manufacturing

    SciTech Connect (OSTI)

    Matysiak, L.M.

    1993-09-01T23:59:59.000Z

    In recent years, much attention has been focused on reducing the environmental impacts of products and manufacturing processes. Concerned about rising compliance costs and stringent regulatory requirements, companies are carefully evaluating the environmental impacts of their products. In response, designers, engineers, and managers are beginning to use life-cycle analysis, design for environment techniques, and environmentally conscious manufacturing (ECM) as tools to help them to not only do what is best for the environment, but also to do what is best for their company. These tools are also a useful aid in evaluating the trade-offs that may exist between different product and process alternatives. However, how does one choose the optimal solution from these various product and process alternatives? Cost versus benefit analysis is an effective tool that can be used to evaluate various manufacturing alternatives and to choose a solution that is both cost effective and environmentally compatible. Many companies are beginning to use cost benefit analyses as a means to justify product or process modifications that result in a benefit to the environment.

  17. Manufacturing Energy and Carbon Footprints 

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01T23:59:59.000Z

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  18. Additive manufacturing method of producing

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

  19. Manufacture of finely divided carbon

    SciTech Connect (OSTI)

    Walker, D.G.

    1980-01-22T23:59:59.000Z

    Finely divided carbon is manufactured by a process producing a gaseous stream containing carbon monoxide by reacting coal and air in a slagging ash gasifier, separating carbon monoxide from the gaseous mixture, and disproportionating the carbon monoxide to produce finely divided carbon and carbon dioxide, the latter of which is recycled to the gasifier.

  20. Optimizing Manufactured Housing Energy Use

    E-Print Network [OSTI]

    McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

    2004-01-01T23:59:59.000Z

    In partnership with the Florida Solar Energy Center (FSEC), two manufactured homes were located on North Carolina A&T State University's campus in Greensboro, NC and used in a side-by-side energy consumption comparison. One of the homes was built...

  1. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01T23:59:59.000Z

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  2. Manufacturing Energy and Carbon Footprints

    E-Print Network [OSTI]

    Brueske, S.; Lorenz, T.

    2012-01-01T23:59:59.000Z

    Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

  3. Mineral Scavenger Hunt 1. CONTRIBUTOR'S NAME: Johnny MacLean

    E-Print Network [OSTI]

    Brewer, Carol

    Mineral Scavenger Hunt 1. CONTRIBUTOR'S NAME: Johnny MacLean 2. NAME OF INQUIRY: Mineral Scavenger from minerals? What are some objects in the classroom that come from minerals? What minerals did these objects come from? b. Ecological Theme(s): Minerals are the building blocks of rocks. Rocks

  4. Mineralization of Carbon Dioxide: Literature Review

    SciTech Connect (OSTI)

    Romanov, V; Soong, Y; Carney, C; Rush, G; Nielsen, B; O'Connor, W

    2015-01-01T23:59:59.000Z

    CCS research has been focused on CO2 storage in geologic formations, with many potential risks. An alternative to conventional geologic storage is carbon mineralization, where CO2 is reacted with metal cations to form carbonate minerals. Mineralization methods can be broadly divided into two categories: in situ and ex situ. In situ mineralization, or mineral trapping, is a component of underground geologic sequestration, in which a portion of the injected CO2 reacts with alkaline rock present in the target formation to form solid carbonate species. In ex situ mineralization, the carbonation reaction occurs above ground, within a separate reactor or industrial process. This literature review is meant to provide an update on the current status of research on CO2 mineralization. 2

  5. The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R&D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

  6. The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

  7. Integration of rapid prototyping into design and manufacturing

    SciTech Connect (OSTI)

    Atwood, C.L.; McCarty, G.D.; Pardo, B.T.; Bryce, E.A.

    1993-10-01T23:59:59.000Z

    The introduction of rapid prototyping machines into the marketplace promises to revolutionize the process of producing prototype parts with production-like quality. In the age of concurrent engineering and agile manufacturing, it is necessary to exploit applicable new technologies as soon as they become available. The driving force behind integrating these evolutionary processes into the design and manufacture of prototype parts is the need to reduce lead times and fabrication costs, improve efficiency, and increase flexibility without sacrificing quality. Sandia utilizes Stereolithography (SL) and Selective Laser Sintering (SLS) capabilities to support internal design and manufacturing efforts. SL is used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. SLS is used to produce wax patterns for the lost wax process of investment casting in support of an internal Sandia National Laboratories program called FASTCAST which integrates experimental and computational technologies into the investment casting process. This presentation will provide a brief overview of the SL and SLS processes and address our experiences with these technologies from the standpoints of application, accuracy, surface finish, and feature definition. Also presented will be several examples of prototype parts manufactured by the Stereolithography and Selective Laser Sintering rapid prototyping machines.

  8. Distributed Integrated Scheduling in Automated Manufacturing Systems with Transient Machine Failures

    E-Print Network [OSTI]

    Wedde, Horst F.

    as for a larger variety of products. At the same time better adaptability of transportation planning, electronic negotiations 1. Introduction Distributed Computer Control for Just-in- Time Production and production flows. The Just-in-Time method has not yet been used in computer-controlled manufacturing systems

  9. Climate VISION: Private Sector Initiatives: Forest Products:...

    Office of Scientific and Technical Information (OSTI)

    carbon dioxide; manufacture products that store carbon; produce and use carbon-neutral renewable energy; continuously work to reduce our own emissions of greenhouse gases; and...

  10. Method of manufacturing nuclear fuel bundle spacers

    SciTech Connect (OSTI)

    White, D.W.; Muncy, D.G.; Schoenig, F.C. Jr.

    1989-09-26T23:59:59.000Z

    This patent describes a method of manufacturing nuclear fuel bundle spacers on an automated production line basis. It comprises: cutting elongated tubing stock into shorter tubular ferrules; checking the length of each ferrule and rejecting those ferrules of unacceptable lengths; cutting predetermined features in the sidewall of each ferrule; forming the sidewall of each ferrule to impart predetermined surface formations thereto; checking a critical dimension of each sidewall surface formation of each ferrule and rejecting those of unacceptable dimensions; assembling successive pairs of ferrules into subassemblies; assembling successive subassemblies into a spacer assembly fixture; assembling a peripheral band in the spacer assembly fixture; conjoining the ferrules to each other and to the peripheral band to create a structurally rigid, finished spacer; and providing a separate controller for automatically controlling and monitoring the performances of these steps.

  11. TX-100 manufacturing final project report.

    SciTech Connect (OSTI)

    Ashwill, Thomas D.; Berry, Derek S. (TPI Composites, Inc., Warren, RI)

    2007-11-01T23:59:59.000Z

    This report details the work completed under the TX-100 blade manufacturing portion of the Carbon-Hybrid Blade Developments: Standard and Twist-Coupled Prototype project. The TX-100 blade is a 9 meter prototype blade designed with bend-twist coupling to augment the mitigation of peak loads during normal turbine operation. This structural coupling was achieved by locating off axis carbon fiber in the outboard portion of the blade skins. The report will present the tooling selection, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. The molds used for the production of the TX-100 were originally built for the production of the CX-100 blade. The same high pressure and low pressure skin molds were used to manufacture the TX-100 skins. In order to compensate for the difference in skin thickness between the CX-100 and the TX-100, however, a new TX-100 shear web plug and mold were required. Both the blade assembly fixture and the root stud insertion fixture used for the CX-100 blades could be utilized for the TX-100 blades. A production run of seven TX-100 prototype blades was undertaken at TPI Composites during the month of October, 2004. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI Composites facility in Rhode Island, the blades were shipped to various test sites: two blades to the National Wind Technology Center at the National Renewable Energy Laboratory in Boulder, Colorado, two blades to Sandia National Laboratory in Albuquerque, New Mexico and three blades to the United States Department of Agriculture turbine field test facility in Bushland, Texas. An adapter plate was designed to allow the TX-100 blades to be installed on existing Micon 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the TX-100 blade testing at the three testing facilities.

  12. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  13. Solid Oxide Fuel Cell Manufacturing Overview

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R Reserved. 3 The Solid Oxide Fuel Cell Electrochemistry #12;Copyright © 2011 Versa Power Systems. All Rights

  14. Manufacturing Metallic Parts with Designed Mesostructure

    E-Print Network [OSTI]

    Additive Manufacturing Laser Engineered Net Shaping Electron Beam Melting Williams, C. B., F. M. Mistree, D Additive Manufacturing © Christopher B. Williams Electron Beam Melting Electron Beam Melting Direct Metal

  15. Mechanics and Design, Manufacturing Professor Hani Naguib

    E-Print Network [OSTI]

    Mechanical and Industrial Engineering Manufacturing What is Manufacturing? The transformation of materials. Apple Canada(Se12), Revenue: $5,067,109 9. CGI Group(Se12), Revenue: $4,786,857 10. Siemens Canada(Se12

  16. Clean Energy Manufacturing Incentive Program (Virginia)

    Broader source: Energy.gov [DOE]

    In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

  17. Arnold Schwarzenegger HIGH-VOLUME MANUFACTURING FOR

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor HIGH-VOLUME MANUFACTURING FOR LOW-COST, FLEXIBLE SOLAR CELL Prepared-VOLUME MANUFACTURING FOR LOW-COST, FLEXIBLE SOLAR CELL EISG AWARDEE InterPhases Research 166 N. Moorpark Rd. Suite 204

  18. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  19. Goodman Manufacturing: Order (2012-CE-1509)

    Broader source: Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  20. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  1. Mechanical and Manufacturing Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Calgary, University of

    of Chemical and Petroleum Engineering for their petroleum engineering minor. As well, mechanical engineeringMechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major

  2. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01T23:59:59.000Z

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  3. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  4. (Data in thousand metric tons of boric oxide (B O ), unless otherwise noted)2 3 Domestic Production and Use: The estimated value of boric oxide contained in minerals and compounds produced in

    E-Print Network [OSTI]

    was centered in southern California. The largest producer operated an open pit tincal and kernite mine in the world. Importation of borates from northern Chile continued. Ulexite is mined in Chile production during the year. Neodymium-iron-boron alloys are used to produce the strongest magnetic material

  5. (Data in thousand metric tons of boric oxide (B2O3) unless otherwise noted) Domestic Production and Use: Two companies in southern California produced boron minerals, mostly sodium

    E-Print Network [OSTI]

    proprietary data, U.S. boron production and consumption in 2010 were withheld. The leading boron producer standards with respect to heat conservation, which directly correlates to higher consumption of borates32 BORON (Data in thousand metric tons of boric oxide (B2O3) unless otherwise noted) Domestic

  6. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    shape part, e.g. , additive manufacturing, Transactions offace operations. Additive manufacturing of metal componentsenvironmen- tal merits of additive manufacturing relative to

  7. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Analysis May 2013 Additive Manufacturing in China: Aviationan overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  8. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Fuel Cell Manhattan Project Manufacturing Fuel Cell Manhattan Project The Office of Naval Research recently sponsored and completed the Manufacturing Fuel Cell...

  9. Additive Manufacturing in China: Aviation and Aerospace Applications (Part 2)

    E-Print Network [OSTI]

    ANDERSON, Eric

    2013-01-01T23:59:59.000Z

    Bulletin Analysis May 2013 Additive Manufacturing in China:an overview of China’s additive manufacturing industry wasmilitary achievements in additive manufacturing. 2 Initial

  10. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place: San Bruno,...

  11. Webinar: Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

  12. FY 2011 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  13. FY 2009 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  14. FY 2010 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  15. FY 2007 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  16. FY 2008 Honeywell Federal Manufacturing & Technologies, LLC,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  17. FY 2006 Honeywell Federal Manufacturing & Technologies, LLC,...

    National Nuclear Security Administration (NNSA)

    Honeywell Federal Manufacturing & Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  18. Clean Energy Manufacturing Innovation Institute for Composite...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Fiber Reinforced Polymer Composite Manufacturing Workshop...

  19. Additive manufacturing of metallic tracks on

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

  20. ICME & MGI Big Area Additive Manufacturing

    E-Print Network [OSTI]

    ICME & MGI · Big Area Additive Manufacturing · Neutron Characterization for AM · Materials problems in additive manu- facturing (AM). Additive manufacturing, or three-dimensional (3-D) printing of the world's most advanced neu- tron facilities, the HFIR and SNS, to characterize additive manufactured

  1. Energy Manufacturing Matthew Realff and Steven Danyluk

    E-Print Network [OSTI]

    Das, Suman

    Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

  2. EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING

    E-Print Network [OSTI]

    Boyer, Edmond

    will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

  3. Manufacturing Research & Development for Systems that will

    E-Print Network [OSTI]

    focused on manufacturability issues such as low-cost, high-volume manufacturing systems, advanced to move the United States toward a future hydrogen economy. While many scientific, technical's laboratory-scale fabrication technologies to high-volume commercial manufacturing has been identified as one

  4. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M [Los Alamos National Laboratory

    2012-08-01T23:59:59.000Z

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  5. Panetto H., Bana, S., Morel G. (2007). Mapping the IEC 62264 models onto the Zachman framework for analysing products information traceability: a case study. Journal of Intelligent Manufacturing, Springer Verlag,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2007-01-01T23:59:59.000Z

    Panetto H., Baďna, S., Morel G. (2007). Mapping the IEC 62264 models onto the Zachman framework Verlag, ISSN 0956-5515, ŕ paraître -1- MAPPING THE IEC 62264 MODELS ONTO THE ZACHMAN FRAMEWORK is recorded. The IEC 62264 standards define generic logical models for exchanging product and process

  6. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30T23:59:59.000Z

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  7. In Brief . ... resident scholar in the Center for Energy and Mineral Resources, will

    E-Print Network [OSTI]

    In Brief . ... resident scholar in the Center for Energy and Mineral Resources, will administer production of hatchery seed and the culture of marketable oysters. They also hope to increase productivity director of Texas A&M Univer- sity's Center for Marine Resources, the University reports. Hann, who

  8. Manufacturing

    Office of Environmental Management (EM)

    674 Academy Press. Washington, DC. 675 Pre. 2014. SimaPro Database Manual - Methods Library (2.7). Available at: www.pre- 676 sustainability.comdownload...

  9. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy UniversityOversightFlow of Materials

  10. Research on advanced photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

    1991-11-01T23:59:59.000Z

    This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

  11. Minerals and Mining Program (South Dakota)

    Broader source: Energy.gov [DOE]

    The Minerals and Mining Program has the authority to oversee mining activities in the state and issue regulations pertaining to the permitting and environmental impact mitigation of, and...

  12. Understanding microbe-mineral electron exchange | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    insight into how bacteria, such as S. oneidensis (above), exchange electrons with minerals in their surroundings as part of cellular respiration-a series of electron exchanges...

  13. Mineral Test Hole Regulatory Act (Tennessee)

    Broader source: Energy.gov [DOE]

    The Mineral Hole Regulatory Act is applicable to any person (individual, corporation, company, association, joint venture, partnership, receiver, trustee, guardian, executor, administrator,...

  14. Hydrothermal alteration mineral mapping using hyperspectral imagery...

    Open Energy Info (EERE)

    in Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal alteration mineral mapping using hyperspectral...

  15. Electrostatic Potential of Specific Mineral Faces. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions, and in testing surface complexation theories. Citation: Zarzycki PP, SME Chatman, T Preocanin, and KM Rosso.2011."Electrostatic Potential of Specific Mineral...

  16. Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and aHistoricMannManufacturing

  17. The Fourth Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    Two hundred lighting industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipment—gathered in San Jose, CA, June 13–14, 2012, to share insights, ideas, and updates at the fourth annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes, and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  18. The Third Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 lighting industry leaders from across the country, representing every link in the supply chain—from chip makers, to luminaire manufacturers, to material and equipment suppliers, to packagers, to luminaire testers, to the makers of testing equipment—gathered in Boston April 12–13, 2011, to share insights, ideas, and updates at the third annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. The workshop is a key component of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in Boston, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  19. The Second Annual DOE Solid-State Lighting Manufacturing R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 250 industry leaders from all corners of the supply chain – including chip makers, luminaire manufacturers, material and equipment suppliers, packagers, luminaire testers, and makers of testing equipment – gathered in San Jose, CA, April 21-22, 2010, to share insights, ideas, and updates at the second annual Solid-State Lighting (SSL) Manufacturing R&D Workshop, hosted by DOE. This workshop is a key part of an initiative launched by DOE in 2009 to enhance the quality and lower the cost of SSL products through improvements in manufacturing equipment and processes and to foster a significant manufacturing role in the U.S. This year in San Jose, attendees explored a wide range of related topics and focused on reexamining and updating the DOE Manufacturing R&D Roadmap.

  20. Multiple oligo nucleotide arrays: Methods to reduce manufacture time and cost

    E-Print Network [OSTI]

    Ning, Kang

    2010-01-01T23:59:59.000Z

    The customized multiple arrays are becoming vastly used in microarray experiments for varies purposes, mainly for its ability to handle a large quantity of data and output high quality results. However, experimenters who use customized multiple arrays still face many problems, such as the cost and time to manufacture the masks, and the cost for production of the multiple arrays by costly machines. Although there is some research on the multiple arrays, there is little concern on the manufacture time and cost, which is actually important to experimenters. In this paper, we have proposed methods to reduce the time and cost for the manufacture of the customized multiple arrays. We have first introduced a heuristic algorithm for the mask decomposition problem for multiple arrays. Then a streamline method is proposed for the integration of different steps of manufacture on a higher level. Experiments show that our methods are very effective in reduction of the time and cost of manufacture of multiple arrays.

  1. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, October 2012 2010 Manufacturing Energy and Carbon Footprints: Definitions...

  2. The mission of the USGS National Minerals Information Center (formerly

    E-Print Network [OSTI]

    Torgersen, Christian

    The mission of the USGS National Minerals Information Center (formerly the Minerals Information of and demand for minerals and mineral materials essential to the U.S. economy and national security. Examples with the information required to ensure that the Nation has an adequate and dependable supply of minerals and materials

  3. Atomistic Models for the absorption of Oil Production Chemicals on

    E-Print Network [OSTI]

    Goddard III, William A.

    Atomistic Models for the absorption of Oil Production Chemicals on Clay minerals Sungu Hwang, Mario The atomistic simulation of the minerals in oil production Prediction of the performance of the oil production: a model for oil -19 -18 -17 -16 -15 -14 0 0.2 0.4 0.6 0.8 1 Coverage Bindingenergyper adsorbate

  4. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29T23:59:59.000Z

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  5. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24T23:59:59.000Z

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  6. Sandia Energy - Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-VoltagePowerUpdates Techno-EconomicLaunchManufacturing

  7. Manufacturing Innovation in the DOE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturing Innovation in the DOE

  8. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006)R&D The Manufacturing

  9. Manufacturing Technical Assistance Program Guidelines The University of Connecticut (UConn), a public research university with an academic health center, and

    E-Print Network [OSTI]

    Alpay, S. Pamir

    's manufacturing problems or will support a company's ability to begin the manufacturing of new products for technology transition when applicable. Specific project areas will include: · Machining process improvements (MTA) award from UConn and/or CCAT. Ideal projects will utilize technology solutions to solve a company

  10. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    SciTech Connect (OSTI)

    Fullenkamp, Patrick H; Holody, Diane S

    2014-06-15T23:59:59.000Z

    The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers’ readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.

  11. Lipid Peroxidation Induced by Expandable Clay Minerals

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Lipid Peroxidation Induced by Expandable Clay Minerals D A R I A K I B A N O V A , A N T O N I O N and toxicity. Herein, potential hazards of clay particle uptake areaddressed.Thispaperreportsthatthecontentanddistribution of structural Fe influence the ability of expandable clay minerals to induce lipid peroxidation (LP), a major

  12. Clay Minerals and Italy the Nannobacterial

    E-Print Network [OSTI]

    Yang, Zong-Liang

    Clay Minerals and Italy ­ the Nannobacterial Connection R. L. FOLK THE UNIVERSITY OF TEXAS AT AUSTIN This work is dedicated to F. Leo Lynch, a brilliant clay mineralogist who died in 2009. During Leo of nannobacterial precipitation of clay minerals were identified. (Lynch, 1994; Folk, Lynch & Rasbury, 1994). Leo

  13. Institute for Mineral and Energy Resources

    E-Print Network [OSTI]

    Institute for Mineral and Energy Resources #12;IMER VISION IMER's vision is to enable the efficient and sustainable use and development of the world's mineral and energy resources for the benefit of society resources. IMER OBJECTIVES · Advance the science and technology required to enhance the prospectivity

  14. Chapter 15 Mineral Resources and the Environment

    E-Print Network [OSTI]

    Pan, Feifei

    Materials produced from natural gas or crude oil, such as plastics Fertilizers for agriculture, phosphate tons per year. Gold and silver have annual consumption rates of 10,000 tons or less. Worldwide consumption of minerals #12; The fundamental problem associated with the availability of mineral resources

  15. Energy and Mineral Development in Indian Country

    Broader source: Energy.gov [DOE]

    The Rocky Mountain Mineral Law Foundation is hosting the Special Institute on Energy and Mineral Development in Indian Country. This two-day conference will cover laws, policies, and practices regarding natural resources development in Indian Country and how they've evolved in the recent years.

  16. New Mexico Bureau Mines and Mineral

    E-Print Network [OSTI]

    Dunbar, Nelia W.

    Number22 - 1999 New Mexico Bureau of Mines and Mineral Resources a division of Nei~, Mexico Tech forsandblasting five times! ThisIssue Earth Briefs-Better age estimates on some New Mexico volcanic rocks Have You) NewMexico's Most Wanted Minera Is (pageT) Magnification of microscopic miner- als and glass (page 8

  17. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R #12;1 HIGH-STRENGTH HVFA CONCRETE CONTAINING CLEAN COAL ASH By Tarun R. Naik, Shiw S. Singh, and Bruce for manufacture of cement-based products using ashes generated from combustion of high-sulfur coals. A clean coal

  18. Climate VISION: Private Sector Initiatives: Minerals: Resources...

    Office of Scientific and Technical Information (OSTI)

    Resources & Links Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's...

  19. SkyMine Carbon Mineralization Pilot Project

    SciTech Connect (OSTI)

    Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

    2010-09-30T23:59:59.000Z

    This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

  20. CIRP Design Conference 2011 Product Lifecycle Management Model for Design Information Management in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CIRP Design Conference 2011 Product Lifecycle Management Model for Design Information Management Product Lifecycle Management (PLM) is one way to improve productivity in all manufacturing companies. Keywords: Product Lifecycle Management, Product Process Organisation Model, Unified Modelling Language 1

  1. Minerals yearbook: Mineral industries of Europe and central Eurasia. Volume 3. 1992 international review

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Volume III, Minerals Yearbook -- International Review contains the latest available mineral data on more than 175 foreign countries and discusses the importance of minerals to the economies of these nations. Since the 1989 International Review, the volume has been presented as six reports. The report presents the Mineral Industries of Europe and Central Eurasia. The report incorporates location maps, industry structure tables, and an outlook section previously incorporated in the authors' Minerals Perspectives Series quinquennial regional books, which are being discontinued. This section of the Minerals Yearbook reviews the minerals industries of 45 countries: the 12 nations of the European Community (EC); 6 of the 7 nations of the European Free Trade Association (EFTA); Malta; the 11 Eastern European economies in transition (Albania, Bosnia and Hercegovina, Bulgaria, Croatia, Czechoslovakia, Hungary, Macedonia, Poland, Romania, Serbia and Montenegro, and Slovenia); and the countries of Central Eurasia (Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgystan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan).

  2. A collaborative research venture between the minerals industry and

    E-Print Network [OSTI]

    Michelson, David G.

    A collaborative research venture between the minerals industry and The University of British Columbia MDRUMINERAL DEPOSIT RESEARCH UNIT To increase the understanding of mineral deposits and highly trained geologists for employment in the minerals industry. Mission Vision MDRU

  3. FORMATION OF SEPIOLITE-PALYGORSKITE AND RELATED MINERALS FROM SOLUTION

    E-Print Network [OSTI]

    Ahmad, Sajjad

    FORMATION OF SEPIOLITE-PALYGORSKITE AND RELATED MINERALS FROM SOLUTION REZAN BIRSOY* Dokuz Eylu's sepiolite-palygorskite precipitates in lacustrine and perimarine environments. Although these minerals can transform from precursor minerals, the most common formation mechanism involves crystallization from

  4. Senior Research Associate Taconite Industry Minerals Research Endowed Chair

    E-Print Network [OSTI]

    Netoff, Theoden

    Senior Research Associate Taconite Industry Minerals Research Endowed Chair Job Requisition 170892 Coleraine Minerals Research Laboratory Natural Resources Research Institute University of Minnesota Duluth (www.nrri.umn.edu) Position Description The Taconite Industry Minerals Research Endowed Chair

  5. Mineral Deposit Research Unit The University of British Columbia

    E-Print Network [OSTI]

    Ollivier-Gooch, Carl

    1 Mineral Deposit Research Unit The University of British Columbia Earth Sciences Building metallogenic constraints on mineralization in poorly understood or exposed portions of Yukon and Alaska. The mineral deposit studies, models, and metallogenic frameworks developed in this project

  6. INVENTORY MANAGEMENT PROBLEM A particular material is used in manufacturing a

    E-Print Network [OSTI]

    Shier, Douglas R.

    1 INVENTORY MANAGEMENT PROBLEM · A particular material is used in manufacturing a product. An initial inventory of 10 units is on hand. The maximum inventory capacity is 20 units. An inventory of 8 of keeping the material in inventory is 0.25 per month. · Contractual obligations require production which

  7. 1 Copyright 2014 by ASME Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference

    E-Print Network [OSTI]

    and manufacturing (CBDM) refers to "a service-oriented product development model in which service consumers are able-as-a-Service (IaaS), Platform-as-a-Service (PaaS), Hardware-as-a-Service (HaaS), and Software-as-a- Service (Saa product lifecycle costs and allow for optimal resource loading in response to variable- demand customer

  8. Product grammar : construction and exploring solution spaces

    E-Print Network [OSTI]

    Chin, Ryan C. C., 1974-

    2004-01-01T23:59:59.000Z

    Developing a design methodology that accounts for system- and component-level parameters in the design of products is a challenge for design and manufacturing organizations. Designed products like automobiles, personal ...

  9. Process management applications in biopharmaceutical drug production

    E-Print Network [OSTI]

    Smith, Stephen E

    2011-01-01T23:59:59.000Z

    Genzyme's manufacturing and supply chain organization is responsible for the production and delivery of medically necessary medicines for patients with rare diseases around the world. Because of the nature of the products ...

  10. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Hilger, J. 2003. Combined Utilization of Oil Shale Energyand Oil Shale Minerals within the Production of Cement andOther Hydraulic Minerals. Oil Shale, Vol. 20, No. 3, pp.

  11. Climate VISION: Private Sector Initiatives

    Office of Scientific and Technical Information (OSTI)

    Manufacturing Electric Power Forest Products Iron and Steel Lime Magnesium Minerals Mining Oil and Gas Semiconductors Progress Report Aluminum Automobile Manufacturers Business...

  12. Continuous production of conducting polymer

    E-Print Network [OSTI]

    Gaige, Terry A. (Terry Alden), 1981-

    2004-01-01T23:59:59.000Z

    A device to continuously produce polypyrrole was designed, manufactured, and tested. Polypyrrole is a conducting polymer which has potential artificial muscle applications. The objective of continuous production was to ...

  13. Sandia National Laboratories: Advanced Manufacturing Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  14. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  15. 2014 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

  16. Green Manufacturing Initiative Annual Report 2010

    E-Print Network [OSTI]

    de Doncker, Elise

    Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

  17. Tank Manufacturing, Testing, Deployment and Field Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpvnewhouse.pdf More Documents & Publications Fuel Tank Manufacturing, Testing,...

  18. Manufacturing Energy and Carbon Footprints Scope

    Office of Environmental Management (EM)

    involves one or more of the following activities: (1) fractionation; (2) straight distillation of crude oil; and (3) cracking. 325 - Chemical Manufacturing The Chemical...

  19. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results...

  20. MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS

    E-Print Network [OSTI]

    Wu, David

    MANUFACTURING LOGISTICS RESEARCH: TAXONOMY AND DIRECTIONS S. DAVID WU Lehigh University, Bethlehem formed in the workshop. To convey this vision we suggest a taxonomy that characterizes research problems

  1. Energy & Manufacturing Workforce Training Topics List - Version...

    Broader source: Energy.gov (indexed) [DOE]

    View this searchable list of the training programs in the areas of energy andor manufacturing. Information provided in this list includes: the subjects being taught, grantee,...

  2. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  3. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  4. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  5. Natural Fiber Composites: Retting, Preform Manufacture & Molding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retting, Preform Manufacture & Molding (Start:06.22.07) PI: Jim Holbery Presenter: Mark Smith Pacific Northwest National Laboratory Wednesday, February 27, 2008 This presentation...

  6. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01T23:59:59.000Z

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  7. Oak Ridge Centers for Manufacturing Technology ? testimonials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the program did save jobs and did create opportunities for the American manufac- turing industry to grow and to continue to operate because of the tough manufacturing...

  8. Renewable Energy Manufacturing Tax Credit (South Carolina)

    Broader source: Energy.gov [DOE]

    South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015.

  9. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constraints relevant to the Industrialization of Thermoelectric Devices Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and...

  10. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    Thrust Advanced Manufacturing Office Identify timely, high-impact, foundational clean energy technologies with the potential to transform energy use and accelerate their...

  11. New Sensor Network Technology Increases Manufacturing Efficiency...

    Energy Savers [EERE]

    Increases Manufacturing Efficiency April 11, 2013 - 12:00am Addthis EERE supported Eaton Corporation in the development and successful deployment of an electric motor...

  12. Advanced Materials and Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

  13. Company Name Tax Credit* Manufacturing Facility's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new, distributed, utility-scale hydropower projects, as well as for retrofitting dams and irrigation canals. With more than 2 million in 48C Advanced Energy Manufacturing Tax...

  14. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    Resources & Links Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's...

  15. Project Profile: Improved Large Aperture Collector Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feasibility demonstrations focused in three main areas: an aggressive manufacturing optimization of the collector sub-structures for lower input material costs & mechanized...

  16. Sandia National Laboratories: Materials & Manufacturing Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials & Manufacturing Reliability Program Biofouling Studies on Sandia's Marine Hydrokinetic Coatings Initiated at PNNL's Sequim Bay On June 26, 2014, in Energy, Materials...

  17. Synthesis of supported carbon nanotubes in mineralized silica...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supported carbon nanotubes in mineralized silica-wood composites. Synthesis of supported carbon nanotubes in mineralized silica-wood composites. Abstract: Multiwall carbon...

  18. ITP Mining: Mining Industry of the Future Mineral Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future Mineral Processing Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap mptroadmap.pdf More Documents & Publications ITP...

  19. Determining Individual Mineral Contributions To U(VI) Adsorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Determining Individual Mineral Contributions To U(VI)...

  20. Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at mineral-water interfaces is of fundamental importance to geochemistry, but for minerals that are natural semiconductors the pursuit of mechanistic understanding is uniquely...