Powered by Deep Web Technologies
Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals  

NLE Websites -- All DOE Office Websites (Extended Search)

J. Fauth and Yee Soong J. Fauth and Yee Soong U.S. Department of Energy National Energy Technology Laboratory Pittsburgh PA, 15236-0940 Mineral Sequestration Workshop National Energy Technology Laboratory August 8, 2001 Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001 Overview * Introduction - Objective - Goals - NETL Facilities * Effect of Solution Chemistry on Carbonation Efficiency - Buffered Solution + NaCl - Buffered Solution + MEA * Effect of Pretreatment on Carbonation Efficiency - Thermal Treatments - Chemical Treatments * Carbonation Reaction with Ultramafic Minerals - Serpentine - Olivine Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001 Overview * Carbonation Reaction with Industrial By-products

2

Oil, Gas, and Minerals, Exploration and Production, Lease of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa) Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa) Eligibility Utility...

3

Mineral Wool Production Monitoring Using Neural Networks  

E-Print Network (OSTI)

Homogeneity of the primary layer in mineral wool production process is required for high quality products. State-of-the-art measurement techniques for the evaluation of primary layer homogeneity are very slow and can only be applied after the product is manufactured. We present here a method that enables on-line monitoring and control and is based on experimental modeling using neural networks. The experimental method is based on image acquisition and image processing of the mineral wool primary layer structure. As a estimator of the mineral wool primary layer structure and quality, the weight of the primary wool layer is used, measured by an on- line weighting device in four locations of the conveyor belt. The instrumentation of on- line weighting device was upgraded for the purpose of the present experiment and enabled high speed acquisition of all measurement channels. The structure of the mineral wool primary layer was measured by visualization of the modified entrance to the on- line balance using a CCD camera. All data channels were simultaneously sampled. Radial basis neural networks are used for prediction. The structure of the mineral wool primary layer is predicted on the basis of experimentally provided weights data. The learning set consists of weights- images pairs. The prediction of the mineral wool primary layer structure consists of providing only weights. A good agreement between statistical properties of measured and modeled structures of the primary wool layer like spatial homogeneity of the primary mineral wool layer thickness, is shown. The results of the study confirm that the time- delayed vector of weights bears enough information for the monitoring of the production process. The modeling of primary mineral wool structure is of lesser quality due to high dimensionality of the modeled variable.

Marko Ho?evar; Brane Širok; Bogdan Blagojevi?

2005-01-01T23:59:59.000Z

4

Table 7.2 Coal Production, 1949-2011 (Million Short Tons)  

U.S. Energy Information Administration (EIA)

Natural Gas. Exploration and reserves, storage, imports and exports, production, prices, sales. ... 1 Beginning in 2001, includes a small amount of refuse recovery.

5

Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per ...  

U.S. Energy Information Administration (EIA)

dividing total production by total labor hours worked by all mine employees except office workers; beginning in ... 1978 and Coal—Pennsylvania Anthracite 1977; ...

6

Method for the Production of Mineral Wool and Iron from Serpentine Ore  

mineral wools. The mineral wool product yields advantages similar to asbestos while eliminating its inherent detriments.

7

Integrating Steel Production with Mineral Carbon Sequestration  

Science Conference Proceedings (OSTI)

The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

2008-05-01T23:59:59.000Z

8

Illinois mineral industry in 1978, and review of preliminary mineral production data for 1979  

SciTech Connect

This annual report of mineral production in Illinois in 1978 summarizes the output and value of minerals mined, and processed in Illinois, and of mineral products manufactured but not necessarily mined in Illinois. The total value of production in all three categories was $3170.7 million. The total value of mineral materials mined was $1637.0 million, with the mineral fuels-coal, crude oil, and natural gas-contributing 80.7 percent of the total value. Processed mineral materials were valued at $1206.9 million, and mineral products manufactured totaled $326.8 million in 1978. Coal continued to be the leading commodity in terms of value; oil ranked second; stone and sand and gravel, used largely for construction, ranked third and fourth; and fluorspar was fifth. Illinois remained the leading US producer of fluorspar, tripoli, and industrial sand, and ranked third in stone and peat, fifth in bituminous coal, sixth in total sand and gravel. Preliminary data indicate that the value of minerals mined in 1979 reached an all time high of $2131.0 million, from $1637.0 million in 1978. Detailed production summaries and analyses-including maps, tables, and graphs-are given for all mineral commodities.

Samson, I.

1981-02-01T23:59:59.000Z

9

Investigations on catalyzed steam gasification of biomass. Appendix B: feasibility study of methanol production via catalytic gasification of 2000 tons of wood per day  

SciTech Connect

A study has been made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL), operated by Battelle. PNL obtained this information from laboratory and process development unit testing. The plant is designed to process 2000 tons per day of dry wood to methanol. Plant production is 997 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $120,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are respectively $.45, $.48, $.55, and $.69 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $.59, $.62, $.69, and $.83 per gallon for the corresponding wood costs. Both calculation methods include a return on equity capital in the costs. The thermal efficiency of the plant is 52.9%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

10

Illinois mineral industry in 1984 and review of preliminary mineral production data for 1985. Illinois mineral notes  

SciTech Connect

The annual output and value of Illinois minerals extracted, processed, and manufactured into products in 1984 are summarized in the report. Materials used in manufacturing were not necessarily extracted within the state. Coal continued to be the leading commodity in terms of value; oil ranked second; stone and sand and gravel ranked third and fourth; fluorspar was fifth. Nationally, Illinois ranked eighteenth in value of nonfuel mineral production. It remained the principal U.S. producer of fluorspar, tripoli, and industrial sand and led in the manufacture of iron-oxide pigments. In stone and peat production, the state ranked fourth. Preliminary data for 1985 indicate that the value of minerals mined was $2,947.8 million, a decrease of 6.1 percent from the $3,138.0 million in 1984. Detailed production summaries and analyses--including maps, tables, and graphs--for all mineral commodities are based on data available for 1984.

Samson, I.E.; Bhagwat, S.B.

1986-01-01T23:59:59.000Z

11

Investigations on catalyzed steam gasification of biomass: feasibility study of methanol production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory (PNL). The goal of this additional work was to determine the feasibility of a smaller scale plant one tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 100 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $34,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are, respectively, $1.20, $1.23, $1.30, and $1.44 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $1.60, $1.63, $1.70, and $1.84 per gallon for the corresponding wood costs. The costs calculated by the utility financing method include a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency of the plant is 52.0%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

12

Investigations on catalyzed steam gasification of biomass: feasibility study of methane production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory. The goal of this additional work was to determine the feasibility of a smaller scale plant one-tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 2.16 MM Scfd of SNG with a HHV of 956 Btu per Scf. All process and support facilities necessary to convert wood to SNG are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $26,680,000 - September 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood prices represent the cost of unchipped wood delivered to the plant site. For utility financing, the gas production costs are, respectively, $14.34, $14.83, $15.86, and $17.84 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $18.76, $19.26, $20.28, and $22.31 per MM Btu for the corresponding wood costs. The costs calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for char is 57.4%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

13

Illinois mineral industry in 1981-83 and review of preliminary mineral production data for 1984. Illinois mineral notes  

SciTech Connect

The output and value of minerals mined, processed, and manufactured into products in Illinois are summarized in this report for 1981-83. Materials used in manufacturing were not necessarily extracted within the state. Coal continued to be the leading commodity in terms of value. Oil ranked second; stone, third; sand and gravel, fourth; and fluorspar, fifth.

Samson, I.E.; Bhagwat, S.B.

1985-01-01T23:59:59.000Z

14

Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day  

DOE Green Energy (OSTI)

A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

15

Production of mineral wool from lignite coal slag  

SciTech Connect

This is a report of research conducted at the University of North Dakota concerning the utilization of the ''molten state'' condition of lignite coal slag for the fabrication of a mineral wool insulant. The research was funded by the Mercer County Energy Development Board with monies allocated from the Department of Energy. The objective of the research was to investigate, on a preliminary basis, some critical criteria such as the chemical nature of the raw material, the ability of the slag to be fiberized, as well as the possibilities that such a insulant could indeed have a market in the immediate area. In essence it was felt that a mineral wool product could be produced at coal fired power plants which burn lignite at a minimal cost. The major cost saving would come from the fact that the raw material that would be used would not have to have a great deal of energy added at the expense of the consumer.

Manz, O.E.; Eaton, L.C.

1983-03-01T23:59:59.000Z

16

Method for the Production of Mineral Wool andIron from ...  

Method for the Production of Mineral Wool and Iron from Serpentine Ore Overview This invention discloses a method to fabricate a product that has the potential

17

Microscopic Analysis of Agriculture Products, 4th EditionChapter 8 Minerals of Agricultural Importance  

Science Conference Proceedings (OSTI)

Microscopic Analysis of Agriculture Products, 4th Edition Chapter 8 Minerals of Agricultural Importance Methods and Analyses eChapters Methods - Analyses Books Press Downloadable pdf of Chapter 8 Minerals of Agric

18

Mineral Nutrient Recovery from Pyrolysis Co-Products  

E-Print Network (OSTI)

Pyrolysis is the thermo-chemical degradation of biomass in an oxygen-free environment to product liquid, gaseous, and solid co-products. The liquid co-product, known as bio-oil, can be used as a transportation fuel. The gaseous co-product, known as synthesis gas, can be used to power the pyrolysis reactor or other machinery. The solid co-product, known as bio-char, has been studied as an amendment to enhance soil physical and chemical properties and nutrient status. Although previous publications have described the beneficial effects of pyrolysis bio-char on soil physical and chemical properties, relatively little has been published on the recovery of mineral nutrients from pyrolysis co-products. This work quantified the recovery of feedstock nutrients (P, K, Ca, and Mg) and micronutrients (Na, Zn, Fe, Cu, and Mn) from pyrolysis co-products from various feedstocks using three distinct pyrolysis reactor designs. The reactors comprised a laboratory-scale fixed-bed reactor and two fluidized-bed reactors located in College Station, TX and Wyndmoor, PA. Nutrient recoveries, on a feedstock basis, were calculated for a comparison of reactor efficiencies. In addition to nutrient recoveries, physical and chemical properties of input biomass and of bio-char generated by each reactor were characterized through ultimate and proximate analyses. For the fixed-bed reactor, results revealed variation among feedstocks for the recoveries of feedstock sources of macronutrients and Na, Fe, and Cu in pyrolysis co-products. Variation among species was also detected for the recoveries of feedstock sources of P, K, Ca, Mg, and Fe in pyrolysis co-products for samples pyrolyzed using the Wyndmoor reactor. For the College Station reactor, recoveries of feedstock sources of P, K, Ca, and Mg in pyrolysis co-products did not vary among species, but Zn did vary. Ultimate and proximate analyses of biomass and bio-chars generated by the three reactors revealed variation among species. Additionally, the results showed that the recovery of feedstock nutrients varied by reactor design. Statistical analysis revealed high correlations and linear relationships between the recovery of nutrients and reactor mass and energy efficiency and feedstock fiber properties.

Wise, Jatara Rob

2012-05-01T23:59:59.000Z

19

Minerals  

Science Conference Proceedings (OSTI)

Title, Author, Publisher, Product Type, In Stock, Date Published. Add to Cart, Image, Click on Title to view details, Member (Student) Price, Non-member Price.

20

Department of Energy Releases New 'Billion-Ton' Study Highlighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

report supports the conclusion of the original 2005 Billion-Ton Study with added in-depth production and costs analyses and sustainability studies. The 2011 report uses more...

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Department of Energy Releases New 'Billion-Ton' Study Highlighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Billion-Ton' Study 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources August 10, 2011 - 3:41pm Addthis Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock potential nationwide. The report examines the nation's capacity to produce a billion dry tons of biomass resources annually for energy uses without impacting other vital U.S. farm and forest products, such as food, feed, and fiber crops. The study provides industry, policymakers, and the agricultural community with county-level data and includes analyses of

22

Method for the Production of Mineral Wool andIron from Serpentine Ore  

NLE Websites -- All DOE Office Websites (Extended Search)

the Production of Mineral Wool and Iron from the Production of Mineral Wool and Iron from Serpentine Ore Overview This invention discloses a method to fabricate a product that has the potential to replace asbestos, which harbors health and environmental risks, with magnesium silicate-based mineral wools. The mineral wool product yields advantages similar to asbestos while eliminating its inherent detriments. Since the late 19th century and into the late 20th century, asbestos has been a commonly used building material for home and industrial use. The popularity of its use can be traced to advantages of high resistance to heat, aversion to electrical and chemical damage, high mechanical strength, and excellent acoustical properties. Despite those advantages, asbestos has been directly

23

Saving Tons at the Register  

SciTech Connect

Duct losses have a significant effect on the efficiency of delivering space cooling to U.S. homes. This effect is especially dramatic during peak demand periods where half of the cooling equipment's output can be wasted. Improving the efficiency of a duct system can save energy, but can also allow for downsizing of cooling equipment without sacrificing comfort conditions. Comfort, and hence occupant acceptability, is determined not only by steady-state temperatures, but by how long it takes to pull down the temperature during cooling start-up, such as when the occupants come home on a hot summer afternoon. Thus the delivered tons of cooling at the register during start-up conditions are critical to customer acceptance of equipment downsizing strategies. We have developed a simulation technique which takes into account such things as weather, heat-transfer (including hot attic conditions), airflow, duct tightness, duct location and insulation, and cooling equipment performance to determine the net tons of cooling delivered to occupied space. Capacity at the register has been developed as an improvement over equipment tonnage as a system sizing measure. We use this concept to demonstrate that improved ducts and better system installation is as important as equipment size, with analysis of pull-down capability as a proxy for comfort. The simulations indicate that an improved system installation including tight ducts can eliminate the need for almost a ton of rated equipment capacity in a typical new 2,000 square foot house in Sacramento, California. Our results have also shown that a good duct system can reduce capacity requirements and still provide equivalent cooling at start-up and at peak conditions.

Brown, Karl; Seigel, Jeff; Sherman, Max; Walker, Iain

1998-05-01T23:59:59.000Z

24

How do I convert between short tons and metric tons? - FAQ - U ...  

U.S. Energy Information Administration (EIA)

Other FAQs about Conversion & Equivalents. How do I convert between short tons and metric tons? How do I compare heating fuels?

25

Table 7.1 Coal Overview, 1949-2011 (Million Short Tons)  

U.S. Energy Information Administration (EIA)

Table 7.1 Coal Overview, 1949-2011 (Million Short Tons) Year: Production 1: Waste Coal Supplied 2: Trade: Stock Change 4,5: Losses and

26

Method for the production of mineral wool and iron from serpentine ore  

DOE Patents (OSTI)

Magnesium silicate mineral wools having a relatively high liquidus temperature of at least about 1400.degree. C. and to methods for the production thereof are provided. The methods of the present invention comprise melting a magnesium silicate feedstock (e.g., comprising a serpentine or olivine ore) having a liquidus temperature of at least about 1400.degree. C. to form a molten magnesium silicate, and subsequently fiberizing the molten magnesium silicate to produce a magnesium silicate mineral wool. In one embodiment, the magnesium silicate feedstock contains iron oxide (e.g., up to about 12% by weight). Preferably, the melting is performed in the presence of a reducing agent to produce an iron alloy, which can be separated from the molten ore. Useful magnesium silicate feedstocks include, without limitation, serpentine and olivine ores. Optionally, silicon dioxide can be added to the feedstock to lower the liquidus temperature thereof.

O' Connor, William K. (Albany, OR); Rush, Gilbert E. (Scio, OR); Soltau, Glen F. (Lebanon, OR)

2011-10-11T23:59:59.000Z

27

The influence of macrostructure and other physical characteristics on compressive parameters of mineral wool products.  

E-Print Network (OSTI)

??The dissertation investigates the influence of macrostructure and other physical properties on mineral wool compressive parameters. The subject of the research is rigid mineral wool… (more)

Buska,; Andrius

2010-01-01T23:59:59.000Z

28

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success...

29

Soil Minerals  

NLE Websites -- All DOE Office Websites (Extended Search)

Soil Minerals Soil Minerals Nature Bulletin No. 707 March 2, 1963 Forest Preserve District of Cook County Seymour Simon, President Roberts Mann, Conservation Editor SOIL MINERALS We all depend upon the land Our food is obtained from plants and animals -- bread and meat, potatoes and fish, fruit and eggs and milk and the rest of it. Our livestock feed on plants and plant products such as grass and grain. Plants, by means of their root systems, take moisture and nutrients from the soils on which they grow. Their food values, for us or for animals that furnish us food, depend upon the available nutrients in those soils. Soils contain solids, water and air. The solids, the bulk of a soil -- except in purely organic types such as peat and muck -- are mostly mineral materials. Ordinarily they also contain some organic material: decayed and decaying remains of plants and animals.

30

KCP relocates 18-ton machine | National Nuclear Security Administratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

relocates 18-ton machine | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

31

Ton père et autre débris ; suivi de Entretien.  

E-Print Network (OSTI)

??Ce mémoire en création littéraire est constitué de deux parties. La première, Ton père et autres débris, est un récit composé de vingt-quatre tableaux divisés… (more)

Grenier, Jacques

2006-01-01T23:59:59.000Z

32

The impact of mineral fertilizers on the carbon footprint of crop production  

E-Print Network (OSTI)

emissions in fertiliser production. IFS (The InternationalImpact of Agricultural Crop Production using the Life CycleN fertilizer rates in cereal production. Europ. J. Agronomy

Brentrup, Frank

2009-01-01T23:59:59.000Z

33

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network (OSTI)

with industries. Paper, woolen, flour, and cotton mills, starch factories, slaughterhouses, distilleriesTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

34

Development of an advanced gas-fired mineral-wool melter. Annual report, January-December 1988  

SciTech Connect

A gas-fired mineral-wool melter was designed to provide a melting technology option to the existing coke-fired cupola melters used by the mineral wool industry. Over the past few years, mineral-wool producers have been increasingly pressured to reduce their level of pollutant gaseous emissions. Including the fuel consumption for an afterburner required with a cupola melter, the direct production costs for fuel currently range from $32 to $44 per ton of melted product; dependent on the effectiveness of a heat-recovery system. The estimated direct fuel cost for a gas-fired mineral-wool melter could be as low as $16 per ton. The configuration of the prototype melter contributes to the energy savings because waste heat is reclaimed by preheating the feedstock in a counterflow shaft. Besides the beneficial decrease in energy costs, the proposed gas-fired melter will virtually eliminate carbon monoxide and unburned hydrocarbon emissions as well as substantially reduce emissions of hydrogen sulfide. Finally, with an improved capability to process the melted product at a controlled temperature and flow rate, the gas-fired melter should improve the overall quality of the mineral fiber product compared to the state-of-the-art coke-fired cupola melter.

Vereecke, F.J.; Thekdi, A.C.

1989-06-01T23:59:59.000Z

35

Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2  

SciTech Connect

Elevated atmospheric [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. However, sustained forest production will depend on the nutrient balance of the forested ecosystem. Our aim was to examine the causes and consequences of increased fine-root production and mortality throughout the soil profile under elevated CO2 with respect to potential gross nitrogen (N) cycling rates. Our study was conducted in a CO2-enriched sweetgum (Liquidambar styraciflua L.) plantation in Oak Ridge, TN, USA. We used isotope pool dilution methodology to measure potential gross N cycling rates in laboratory incubations of soil from four depth increments to 60 cm. Our objectives were two-fold: (1) determine whether N is available for root acquisition in deeper soil, and (2) determine whether increased inputs of labile C from greater fine-root mortality at depth under elevated [CO2] had altered N cycling rates. While gross N fluxes declined with soil depth, we found that N is potentially available for roots to access, especially below 15 cm depth where microbial consumption of mineral N was reduced. Overall, up to 60% of potential gross N mineralization, and 100% of potential net N mineralization, occurred below 15-cm depth at this site. This finding was supported by in situ measurements from ion-exchange resins, where total inorganic N availability at 55 cm depth was equal to or greater than N availability at 15 cm depth. While it is likely that trees grown under elevated [CO2] are accessing a larger pool of inorganic N by mining deeper soil, we found no effect of elevated [CO2] on potential gross or net N cycling rates. Thus, increased root exploration of the soil volume under elevated [CO2] may be more important than changes in potential gross N cycling rates in sustaining forest responses to rising atmospheric CO2.

Iversen, Colleen M [ORNL; Hooker, Toby [Utah State University (USU); Classen, Aimee T [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

2011-01-01T23:59:59.000Z

36

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

37

The impact of mineral fertilizers on the carbon footprint of crop production  

E-Print Network (OSTI)

Impact of Agricultural Crop Production using the Life Cyclefield with the harvested crops and the nutrients supplied bysee Fig. 1). Supply of crop residues & organic fertilizer

Brentrup, Frank

2009-01-01T23:59:59.000Z

38

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

39

Great Plains Coal Gasification Project will make 17. 5 tons/day of methanol  

SciTech Connect

The Great Plains Coal Gasification Project will make 17.5 tons/day of methanol in addition to 125 million cu ft/day of pipeline-quality substitute natural gas (SNG), making the facility the first commercial producer of methanol-from-coal in the United States, according to the consortium building the $1.5 billion facility in Beulah, North Dakota. As originally conceived, the plant would have used 17 tons/day of purchased methanol to clean the raw-gas product stream of impurities, primarily sulfur. But based on the cost of transporting methanol to the plant site and storing it for use, the consortium decided it was more economical to produce its own methanol from lignite. The construction started in July 1980, and the facility is to come on stream in 1984.

Not Available

1980-11-17T23:59:59.000Z

40

U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments September 25, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's efforts to double energy productivity by 2030 and help businesses save money and energy, the Energy Department today recognized more than 120 manufacturers that are making smart investments to save on energy costs, cut greenhouse gas emissions and improve their bottom lines. Through the Department's Better Buildings, Better Plants Program (Better Plants), over 1,750 plants across the United States have saved about $1 billion in energy costs and

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Minerals Yearbook, 1988. Boron  

Science Conference Proceedings (OSTI)

U.S. production and sales of boron minerals and chemicals decreased during the year. Glass-fiber insulation was the largest use for borates, followed by sales to distributors, textile-grade glass fibers, and borosilicate glasses. California was the only domestic source of boron minerals. The report discusses the following: domestic data coverage; legislation and government programs; domestic production; comsumption and uses; prices; foreign trade; world capacity; world review--Argentina, Chile, France, Italy, Turkey, United Kingdom; Technology.

Lyday, P.A.

1988-01-01T23:59:59.000Z

42

THERMAL MODELING ANALYSIS OF SRS 70 TON CASK  

SciTech Connect

The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

Lee, S.; Jordan, J.; Hensel, S.

2011-03-08T23:59:59.000Z

43

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly...

44

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...  

National Nuclear Security Administration (NNSA)

Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors January 23, 2002 Washington, DC DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for...

45

Dilution Refrigeration of Multi-Ton Cold Masses  

E-Print Network (OSTI)

Dilution refrigeration is the only means to provide continuous cooling at temperatures below 250 mK. Future experiments featuring multi-ton cold masses require a new generation of dilution refrigeration systems, capable of providing a heat sink below 10 mK at cooling powers which exceed the performance of present systems considerably. This thesis presents some advances towards dilution refrigeration of multi-ton masses in this temperature range. A new method using numerical simulation to predict the cooling power of a dilution refrigerator of a given design has been developed in the framework of this thesis project. This method does not only allow to take into account the differences between an actual and an ideal continuous heat exchanger, but also to quantify the impact of an additional heat load on an intermediate section of the dilute stream. In addition, transient behavior can be simulated. The numerical model has been experimentally verified with a dilution refrigeration system which has been designed, ...

Wikus, P; CERN. Geneva

2007-01-01T23:59:59.000Z

46

Minerals outlook for Wyoming  

Science Conference Proceedings (OSTI)

Wyoming drilling activity was down. The rig count was at a seven year low in February. Crude oil prices also affect Wyoming's gas production. Fuel oil prices are already low enough to compete with higher priced gas, and may edge out part of the market for natural gas. This year's coal production is still forecast at 112 million tons - a 3.7 percent increase over the 108 million tons produced in 1982. Average coal prices are currently forecast at $13.20 in 1982 and $13.86 in 1983. In 1983, demand for soda ash (trona), iron ore, limestone, and gypsum should reflect any improvements in the national economy. Bentonite is dependent enough on oil and gas drilling activity that significant improvements will probably mirror the status of the petroleum industry. Aggregate (sand, gravel, ballast, clinker, etc.) production will primarily depend on the levels of highway construction and railroad maintenance. Uranium production will remain at low levels, and may even decline with the closure of the Sweetwater mine. There will be some exploration for metals and diamonds in Wyoming this year, however, unless gold and silver prices improve, exploration will fall short of earlier expectations. (DP)

Glass, G.B.

1983-01-01T23:59:59.000Z

47

Illinois coal production pushes Illinois Basin production ...  

U.S. Energy Information Administration (EIA)

Coal production in the Illinois Basin during the first half of 2012 (64.4 million short tons) was 13% higher than the same period in 2011. This ...

48

Acceptance test report for the Westinghouse 100 ton hydraulic trailer  

DOE Green Energy (OSTI)

The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP`s facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson`s facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified.

Barrett, R.A.

1995-03-06T23:59:59.000Z

49

Transportation system benefits of early deployment of a 75-ton multipurpose canister system  

SciTech Connect

In 1993 the US Civilian Radioactive Waste Management System (CRWMS) began developing two multipurpose canister (MPC) systems to provide a standardized method for interim storage and transportation of spent nuclear fuel (SNF) at commercial nuclear power plants. One is a 75-ton concept with an estimated payload of about 6 metric tons (t) of SNF, and the other is a 125-ton concept with an estimated payload of nearly 11 t of SNF. These payloads are two to three times the payloads of the largest currently certified US rail transport casks, the IF-300. Although is it recognized that a fully developed 125-ton MPC system is likely to provide a greater cost benefit, and radiation exposure benefit than the lower-capacity 75-ton MPC, the authors of this paper suggest that development and deployment of the 75-ton MPC prior to developing and deploying a 125-ton MPC is a desirable strategy. Reasons that support this are discussed in this paper.

Wankerl, M.W. [Oak Ridge National Lab., TN (United States); Schmid, S.P. [Science Applications International Corp., Oak Ridge, TN (United States)

1995-12-31T23:59:59.000Z

50

By Thomas S. Jones Manganese (Mn) is essential to iron and silicomanganese increased about 7%. consisted of, in tons, natural battery-grade ore,  

E-Print Network (OSTI)

about 7%. consisted of, in tons, natural battery-grade ore, steel production by virtue of its sulfur aluminum alloys and is used in oxide form in dry cell batteries. The overall level and nature of manganese consumption in batteries was denoted by the expansion on schedule of domestic capacity for production

Torgersen, Christian

51

Vietnam National Coal Mineral Industries Group Vinacomin | Open...  

Open Energy Info (EERE)

Coal Mineral Industries Group Vinacomin Jump to: navigation, search Name Vietnam National Coal-Mineral Industries Group (Vinacomin) Place Vietnam Product Vietnam-based project...

52

Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System  

SciTech Connect

Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

Oliveira Neto, Francisco Moraes [ORNL; Chin, Shih-Miao [ORNL; Hwang, Ho-Ling [ORNL

2013-01-01T23:59:59.000Z

53

Application guide for 25-ton solar system (unitized)  

DOE Green Energy (OSTI)

Arkla has developed a unitary solar system for air conditioning, heating and service hot water loads in commercial buildings of up to 25 tons cooling requirement. A semi-exploded view shows the basic elements of the Arkla system. These elements, listed below, are described in individual sections of the guide in sufficient detail to enable a competent designer to duplicate the Arkla unitary system in a site built system. The elements are: (1) collectors with summary procedure guide; (2) storage/receiver; (3) pumps/piping/valves; (4) controls; (5) chiller; (6) cooling tower; (7) gas boiler back-up; (8) central air handling unit; and (9) service and DHW. Any successful solar HVAC system requires careful analysis of the integration of the elements. This is particularly true due to the large year-round variation in the temperature of the solar HW available. Several items of this nature are discussed in the element sections. Consequently, the designer should review this entire guide before proceeding to individual elements particularly A and B. This guide presumes that the monthly (and design) hot water loads have been determined for the heating, cooling, and service-DHW water Btu requirements. In addition to these normal calculations, an hourly profile for a typical day each month should be made. The hourly profile is necessary to maximize the solar fraction for a given amount of collector surface in conjunction with the size of the storage system; that is, the coincidence, or lack of, sunshine to the instantaneous demands.

Not Available

1983-01-01T23:59:59.000Z

54

Characterization of Arsenic Contamination on Rust from Ton Containers  

Science Conference Proceedings (OSTI)

The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5 oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.

Gary S. Groenewold; Recep Avci; Robert V. Fox; Muhammedin Deliorman; Jayson Suo; Laura Kellerman

2013-01-01T23:59:59.000Z

55

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with Recovery Act funds. Now, Recovery Act workers are surpassing that goal. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds More Documents & Publications EIS-0355: Record of Decision EIS-0355: Draft Environmental Impact Statement EIS-0355: Final Environmental Impact Statement

56

Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps (5.4 >=< 20 Tons) Heat Pumps (5.4 >=< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) October 8, 2013 - 2:22pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER - Existing Heating Efficiency * COP - Existing IPLV Efficiency * IPLV - New Capacity ton 10 tons New Cooling Efficiency EER 10.1 EER New Heating Efficiency COP 3.2 COP New IPLV Efficiency IPLV 10.4 IPLV Energy Cost $ per kWh $0.06 per kWh

57

Disposal Facility Reaches 15-Million-Ton Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone July 30, 2013 - 12:00pm Addthis Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. RICHLAND, Wash. - EM's Environmental Restoration Disposal Facility (ERDF) - a massive landfill for low-level radioactive and hazardous waste at the Hanford site - has achieved a major cleanup milestone. Since beginning operations in 1996, workers supporting the Richland

58

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Removes Nine Metric Tons of Plutonium From Nuclear Weapons Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

59

Billion-Ton Update: Home-Grown Energy Resources Across the Nation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation August 11, 2011 - 3:59pm Addthis Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What does this mean for me? With continued developments in biorefinery capacity and technology, the feedstock resources identified in the report could produce about 85 billion gallons of biofuels -- enough to replace approximately 30 percent

60

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

62

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

63

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 Grand Junction, CO- The U.S. Department of Energy (DOE) reached another milestone today for the Uranium Mill Tailings Remedial Action Project, having shipped 5 million tons of tailings from the massive pile located in Moab, Utah, to the engineered disposal cell near Crescent Junction, Utah. The pile comprised an estimated 16 million tons total when DOE's Remedial

64

Production of Recycled Lead  

Science Conference Proceedings (OSTI)

...production of lead from recycled and mined (primary) sources for 1980 to 1988. At present, just under half of the total world lead production of 4.3 million metric tons (4.7 million tons) comes from recycling of scrap materials. As indicated in Table 4, there has been very little change in recent...

65

“Critical Minerals Policy Act” (S. 1113)  

Science Conference Proceedings (OSTI)

Jul 23, 2012 ... surveys and production to research and recycling – and, in particular, to see that additional critical mineral supplies can ... Exploration. Strategic ...

66

Carbon Dioxide Sequestration: Aqueous Mineral Carbonation Studies...  

NLE Websites -- All DOE Office Websites (Extended Search)

appears independent of test time * Agitation phenomena (?) Solid product passes EPA TCLP Pittsburgh, PA, August 8, 2001 National Energy Technology Laboratory: Mineral...

67

Minerals yearbook: The mineral industry of Mexico. 1988 international review  

SciTech Connect

Mexico is one of the major mineral-producing countries in the world, continuing in 1988 a role that the nation had assumed since the first European settlement of the Western Hemisphere. With respect to nonfuel minerals, Mexico was the world's leading producer of bismuth and silver; was among the top 5 producers of barite, fluorspar, graphite, molybdenum, and strontium; and was among the top 10 producers of antimony, white arsenic, cadmium, copper, lead, manganese, mercury, salt, selenium, sulfur, and zinc. In the mineral fuels sector, Mexico was the sixth largest producer of crude oil and ranked eighth in terms of proven oil reserves. In addition, Mexico was the largest foreign supplier of crude oil and cement to the United States. Topics discussed in the report include: Government policies and programs; Production; Trade; Commodity review--Metals, Industrial minerals, and Mineral fuels.

Machamer, J.F.

1988-01-01T23:59:59.000Z

68

Proceedings of the sixteenth international symposium on mine planning and equipment selection (MPES 2007) and the tenth international symposium on environmental issues and waste management in energy and mineral production (SWEMP 2007)  

Science Conference Proceedings (OSTI)

Papers presented at MPES 2007 covered: coal mining and clean coal processing technologies; control, design and planning of surface and underground mines; drilling, blasting and excavation engineering; mining equipment selection; automation and information technology; maintenance and production management for mines and mining systems; health, safety and environment; cost effective methods of mine reclamation; mine closure and waste disposal; and rock mechanics and geotechnical issues. Papers from SWEMP 2007 discussed methods and technologies for assessing, minimizing and preventing environmental problems associated with mineral and energy production. Topics included environmental impacts of coal-fired power projects; emission control in thermal power plants; greenhouse gas abatement technologies; remediation of contaminated soil and groundwater; environmental issues in surface and underground mining of coal, minerals and ores; managing mine waste and mine water; and control of effluents from mineral processing, metallurgical and chemical plants.

Singhal, R.K.; Fytas, K.; Jongsiri, S.; Ge, Hao (eds.) [Universite Laval, Quebec, PQ (Canada)

2007-07-01T23:59:59.000Z

69

KCP relocates 18-ton machine | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

8 a.m. and by lunchtime that day, it was in place at the NSC. The machine will undergo laser alignment and build test parts around mid-June. It will be ready for production again...

70

Yemen Ministry of Oil and Minerals | Open Energy Information  

Open Energy Info (EERE)

Yemen Ministry of Oil and Minerals Yemen Ministry of Oil and Minerals Jump to: navigation, search Logo: Yemen Ministry of Oil and Minerals Country Yemen Name Yemen Ministry of Oil and Minerals Website http://www.mom.gov.ye/en/ References Yemen Ministry of Oil and Minerals Website[1] The Yemen Ministry of Oil and Minerals Website contains some content in English. Associated Organizations Yemeni Company for Oil-Product Distribution Petroleum Exploration and Production Authority Safr Company for Scouting Production Operations Organization of Oil Scouting Aden Refinery Company Yemen Company for Oil Refining Yemen Investments Company for Oil & Mineral Geological Land Survey & Mineral Wealth Organization References ↑ "Yemen Ministry of Oil and Minerals Website" Retrieved from "http://en.openei.org/w/index.php?title=Yemen_Ministry_of_Oil_and_Minerals&oldid=334954"

71

DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Project Hits 1-Million-Ton Milestone for Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 November 5, 2009 - 12:00pm Addthis Washington, DC - A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy for global climate change and move forward G-8 recommendations for launching 20 projects of this type internationally by 2010. The project, sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE), is located at the Cranfield site in Southwestern Mississippi. It is led by the Southeast Regional Carbon Sequestration

72

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Moab Uranium Mill Tailings Remedial Action The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with Recovery Act funds. Now, Recovery Act workers are surpass- ing that goal. "Although shipping 2 million tons was the original Recovery Act goal, we are planning to exceed this goal by shipping about 300,000 tons more using savings resulting from efficiencies we've gained in our first 2 years of moving tailings," Moab Federal Project Director Donald Metzler said. The project is using $108 million from the Recovery Act to move the tailings from the banks of the Colorado River by rail to a permanent

73

Moab Marks 6-Million-Ton Cleanup Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Marks 6-Million-Ton Cleanup Milestone Moab Marks 6-Million-Ton Cleanup Milestone Moab Marks 6-Million-Ton Cleanup Milestone June 20, 2013 - 12:00pm Addthis At Tuesday's Grand County Council meeting in Utah, Moab Federal Project Director Donald Metzler, center, moves a piece from a plaque representing Moab’s uranium mill tailings pile to a plaque representing the disposal cell in recognition of the site achieving a milestone by shipping 6 million tons of the tailings. Grand County Council Chair Gene Ciarus is on the left and Grand County Council Vice Chair Lynn Jackson is on the right. At Tuesday's Grand County Council meeting in Utah, Moab Federal Project Director Donald Metzler, center, moves a piece from a plaque representing Moab's uranium mill tailings pile to a plaque representing the disposal

74

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will remove up to 200 metric tons (MT) of Highly Enriched Uranium (HEU), in the coming decades, from further use as fissile material in U.S. nuclear weapons and prepare this material for other uses. Secretary Bodman made this announcement while addressing the 2005 Carnegie International Nonproliferation Conference in Washington, DC.

75

A Concept for a Scalable 2 kTon Liquid Argon TPC Detector for Astroparticle Physics  

E-Print Network (OSTI)

-module configuration and to its large liquid nitrogen consumption (~1 liquid m3 /hour), the 300-ton geometry purity (UHP) liquefied noble gas and for coping with the engineering and safety issues related

McDonald, Kirk

76

A Method for Detecting Miners in Underground Coal Mine Videos  

Science Conference Proceedings (OSTI)

Detecting miners in underground coal mine videos is significant for the production safety. But, the miners are very similar to the background in underground coal mine videos, it is difficult to detect. In this paper, we proposed a method to detect miners ... Keywords: moving detection, miner detection, underground coal mine video

Limei Cai; Jiansheng Qian

2009-12-01T23:59:59.000Z

77

DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin February 27, 2009 - 12:00pm Addthis Washington, D.C. -- Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the Michigan Basin near Gaylord, Mich., in a deep saline formation, the Silurian-age Bass Island dolomite. The MRCSP is one of seven partnerships

78

"Weekly U.S. Coal Production Overview"  

U.S. Energy Information Administration (EIA) Indexed Site

2" "Report Released: August 15, 2013" "Next Release Date: August 22, 2013" "Weekly U.S. Coal Production Overview" "(thousand short tons)" "Coal-Producing","Week...

79

NNSA's Global Threat Reduction Initiative Removes More Than One Ton of  

NLE Websites -- All DOE Office Websites (Extended Search)

Removes More Than One Ton of Removes More Than One Ton of Food | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA's Global Threat Reduction Initiative Removes More ... NNSA's Global Threat Reduction Initiative Removes More Than One Ton of Food Posted By Office of Public Affairs Contributing to DOE/NNSA's efforts to support the Office of Personnel

80

NETL: News Release - DOE Regional Partnerships Find Up To 3.5 Billion Tons  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2007 7, 2007 DOE Regional Partnerships Find More Than 3,500 Billion Tons of Possible CO2 Storage Capacity Atlas Details Stationary Sources and Geologic Reservoirs in U.S. and Canada WASHINGTON, DC - The Department of Energy's Regional Carbon Sequestration Partnerships have identified the powerplant and other stationary sources of more than 3.8 billion tons a year of the greenhouse gas CO2 in the United States and Canada and companion candidate storage capacity for more than 3,500 billion tons. The results are detailed in the new Carbon Sequestration Atlas of the United States and Canada which became available online today. MORE INFO Link to NETL's Carbon Sequestration Atlas web page Link to the Interactive Carbon Sequestration Atlas Learn more about DOE's Regional Carbon Sequestration Partnership program

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: News Release - DOE Partner Begins Injecting 50,000 Tons of Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

February 27, 2009 February 27, 2009 DOE Partner Begins Injecting 50,000 Tons of Carbon Dioxide in Michigan Basin Project Expected to Advance National Carbon Sequestration Program, Create Jobs Washington, DC-Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. MORE INFO Learn more about DOE's Regional Carbon Sequestration Partnership Program DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the

82

Absorbents for Mineral Oil Spill Cleanup  

Science Conference Proceedings (OSTI)

Residual mineral oil on the ground surface following electrical equipment spills is often removed using a surface application of an absorbent material. Traditional absorbent products include clays, sawdust-like products, silica-based products, and various organic industry byproduct materials. After the material has had time to absorb the mineral oil on the ground surface, it is removed and normally sent to a landfill with a liner and leachate collection system designed to Subtitle D standards for municip...

2011-08-23T23:59:59.000Z

83

Table 7.2 Coal Production, 1949-2011 (Short Tons)  

U.S. Energy Information Administration (EIA)

1954. 391,706,000 [2] [2] 29,083,000 : 305,964,000 : 114,825,000 : 395,413,000 : 25,376,000 : 420,789,000 : 1955. 464,633,000 [2] [2] 26,205,000 : ...

84

Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per ...  

U.S. Energy Information Administration (EIA)

anthracite, were originally ... in 1998, the calculation also includes office workers. R=Revised. P=Preliminary. NA=Not available. 2 Beginning in 2001, ...

85

High temperature mineral fiber binder  

SciTech Connect

A modified phenol formaldehyde condensate is reacted with boric acid and cured in the presence of a polyfunctional nitrogeneous compound to provide a binder for mineral wool fibers which is particularly suited for thermal insulation products intended for high temperature service.

Miedaner, P.M.

1980-11-25T23:59:59.000Z

86

Quarterly minerals outlook, June 1983  

Science Conference Proceedings (OSTI)

An overview is presented of the mineral industry of Wyoming. Petroleum production shows a slight annual decline. Many producers have been shutting in their natural gas wells due to the sharp decline in demand. Activities in the base, precious, and ferrous metals industry are summarized. Uranium and trona production is down from the previous year. Other minerals mentioned are gypsum, limestone, bentonite, and phosphorus. Production of coal is given by county. Electric utilities have not used all the coal they bought last year, and construction of several power plants have been delayed indefinitely. Underground coal gasification projects are mentioned. Tables present production forecasts for coal to 1990, for oil and gas to 1988, and for uranium and trona to 1987. 5 tables.

Glass, G.B.

1983-01-01T23:59:59.000Z

87

PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS  

Science Conference Proceedings (OSTI)

This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be economically competitive with current processes, and yet be environmentally friendly as well. The solvent extraction process developed uses mild hydrogenation of low cost oils to create powerful solvents that can dissolve the organic portion of coal. The insoluble portion, consisting mainly of mineral matter and fixed carbon, is removed via centrifugation or filtration, leaving a liquid solution of coal chemicals and solvent. This solution can be further refined via distillation to meet specifications for products such as synthetic pitches, cokes, carbon foam and fibers. The most economical process recycles 85% of the solvent, which itself is obtained as a low-cost byproduct from industrial processes such as coal tar or petroleum refining. Alternatively, processes have been developed that can recycle 100% of the solvent, avoiding any need for products derived from petroleum or coal tar.

Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

2004-08-31T23:59:59.000Z

88

Photo of the Week: An Incredible Journey -- Transporting a 50-ton Magnet |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Incredible Journey -- Transporting a 50-ton An Incredible Journey -- Transporting a 50-ton Magnet Photo of the Week: An Incredible Journey -- Transporting a 50-ton Magnet July 11, 2013 - 4:38pm Addthis The Muon g-2 (pronounced gee minus two) is an experiment that will use the Fermilab accelerator complex to create an intense beam of muons -- a type of subatomic particle -- traveling at the speed of light. The experiment is picking up after a previous muon experiment at Brookhaven National Laboratory, which concluded in 2001. In this photo, the massive electromagnet is beginning its 3,200-mile journey from the woods of Long Island to the plains near Chicago, where scientists at Fermilab will refill its storage ring with muons created at Fermilab’s Antiproton Source. The 50-foot-diameter ring is made of steel, aluminum and superconducting wire. It will travel down the East Coast, around the tip of Florida, and up the Mississippi River to Fermilab in Illinois. Transporting the 50-ton device by truck requires meticulous precision -- just a tilt or a twist of a few degrees could leave the internal wiring irreparably damaged.

89

The Arabidopsis TRM1TON1 Interaction Reveals a Recruitment Network Common to Plant Cortical  

E-Print Network (OSTI)

microtubules via its C-terminal TON1 interaction motif. Interestingly, three motifs of TRMs are found in CAP350, a human centrosomal protein interacting with FOP, and the C-terminal M2 motif of CAP350 is responsible., 2006). CAP350 has also been proposed to specifically stabilize Golgi-associated microtubules

Paris-Sud XI, Université de

90

2 million tons per year: A performing biofuels supply chain for  

E-Print Network (OSTI)

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

91

Oil, Gas, and Metallic Minerals (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

Operators of oil, gas, and metallic mineral exploration and production operations are required to obtain a drilling permit from the Iowa Department of Natural Resources and file specific forms with...

92

Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders  

Science Conference Proceedings (OSTI)

Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

1996-10-01T23:59:59.000Z

93

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas January 11, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365, Cameron.Hardy@rl.doe.gov Dieter Bohrmann, Ecology (509) 372-7954, Dieter.Bohrmann@ecy.wa.gov Emerald Laija, EPA (509) 376-4919, Laija.Emerald@epamail.epa.gov RICHLAND, WASH. - Department of Energy (DOE) contractor, Washington Closure Hanford, recently cleaned up 77 waste sites at Hanford to meet two Tri-Party Agreement (TPA) milestones before the end of 2011. The waste sites were located in the D and H Reactor Areas at Hanford along

94

NETL: News Release - DOE-Sponsored Mississippi Project Hits 1-Million-Ton  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 5, 2009 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 Project Helping Further CCS Technology and Meeting G-8 Goals for Deployment Washington, D.C. -A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy for global climate change and move forward G-8 recommendations for launching 20 projects of this type internationally by 2010. MORE INFO Learn more about DOE's Regional Carbon Sequestration Partnership Program Link to SECARB web site The project, sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE), is located at the Cranfield site in Southwestern

95

Asia leads growth in global coal production since 1980 - Today in ...  

U.S. Energy Information Administration (EIA)

Global coal production was up about 3.8 billion short tons (91%) from 1980 through 2010. China spearheaded overall growth in coal production, increasing 415% over the ...

96

Plastic Products Weights in MSW by Category, 2005  

U.S. Energy Information Administration (EIA)

Plastic Products Weights in Municipal Solid Waste (MSW) by Category, 2005 (Thousand Tons) ... with energy recovery, discards to landfill, and other disposal.

97

Wyoming mineral development monitoring system  

Science Conference Proceedings (OSTI)

The monitoring system covers, or will cover, all segments of the mineral industry except oil and gas exploration under one of eight main sections: coal uranium, bentonite, power plants, refineries, gas plants, synthetic fuels, trona, and others. Projects are grouped alphabetically by county and indexed by county, commodity, and company. Index maps all the location of projects within the state. A notebook format allows easy updating of information on ownership, production, numbers of employees, contracts, etc.

Not Available

1984-01-01T23:59:59.000Z

98

Characterization of Minerals  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... A Minimum Pollution, Low Energy Process for the Recovery of Cobalt and Copper from Complex Sulphide Minerals: Yotamu Hara1; 1Leeds ...

99

LANNDD -A line of liquid argon TPC detectors scalable in mass from 200 Tons to 100 KTons  

E-Print Network (OSTI)

and to its large liquid nitrogen consumption (~1 liquid m3/hour), the 300-ton geometry and construction required for a detector based on an ultra high purity (UHP) liquefied noble gas and for coping

McDonald, Kirk

100

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

SciTech Connect

China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Measurement of {nu}{sub {mu}-}induced charged-current neutral pion production cross sections on mineral oil at E{sub {nu}} is an element of 0.5-2.0 GeV  

SciTech Connect

Using a custom 3-Cerenkov ring fitter, we report cross sections for {nu}{sub {mu}-}induced charged-current single {pi}{sup 0} production on mineral oil (CH{sub 2}) from a sample of 5810 candidate events with 57% signal purity over an energy range of 0.5-2.0 GeV. This includes measurements of the absolute total cross section as a function of neutrino energy, and flux-averaged differential cross sections measured in terms of Q{sup 2}, {mu}{sup -} kinematics, and {pi}{sup 0} kinematics. The sample yields a flux-averaged total cross section of (9.2{+-}0.3{sub stat}{+-}1.5{sub syst})x10{sup -39} cm{sup 2}/CH{sub 2} at mean neutrino energy of 0.965 GeV.

Aguilar-Arevalo, A. A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, D.F. 04510 (Mexico); Anderson, C. E.; Curioni, A.; Fleming, B. T.; Linden, S. K.; Soderberg, M.; Spitz, J. [Yale University, New Haven, Connecticut 06520 (United States); Bazarko, A. O.; Laird, E. M.; Meyers, P. D.; Patterson, R. B.; Shoemaker, F. C.; Tanaka, H. A. [Princeton University, Princeton, New Jersey 08544 (United States); Brice, S. J.; Brown, B. C.; Finley, D. A.; Ford, R.; Garcia, F. G.; Kasper, P.; Kobilarcik, T. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

2011-03-01T23:59:59.000Z

102

Questions and Answers - How many atoms would it take to create a ton?  

NLE Websites -- All DOE Office Websites (Extended Search)

there in the world? there in the world? Previous Question (How many atoms are there in the world?) Questions and Answers Main Index Next Question (Could you please explain density?) Could you please explain density? How many atoms would it take to create a ton? There's a lot more to this question than first appears. There are many types of atoms and each of them has its own mass, so the answer varies depending on which atom you are talking about. Since even a tiny bit of matter has many atoms, it has become customary to use the unit "mole" to signify a standard number of atoms, namely, it is Avogadro's number which (almost) equals 6*1023, or 600,000 billion billon. If you look up the periodic table of elements, one of the numbers usually listed is the atomic mass which is the mass (in grams) of one mole of those atoms. Let's use

103

Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller  

SciTech Connect

The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

Borst, R.R.; Wood, B.D.

1985-05-01T23:59:59.000Z

104

Background studies for a ton-scale argon dark matter detector (ArDM)  

E-Print Network (OSTI)

The ArDM project aims at operating a large noble liquid detector to search for direct evidence of Weakly Interacting Massive Particles (WIMP) as Dark Matter in the universe. Background sources relevant to ton-scale liquid and gaseous argon detectors, such as neutrons from detector components, muon-induced neutrons and neutrons caused by radioactivity of rock, as well as the internal $^{39}Ar$ background, are studied with simulations. These background radiations are addressed with the design of an appropriate shielding as well as with different background rejection potentialities. Among them the project relies on event topology recognition, event localization, density ionization discrimination and pulse shape discrimination. Background rates, energy spectra, characteristics of the background-induced nuclear recoils in liquid argon, as well as the shielding performance and rejection performance of the detector are described.

L. Kaufmann; A. Rubbia

2006-12-05T23:59:59.000Z

105

EIA projects little change in U.S. coal production in 2013 - Today ...  

U.S. Energy Information Administration (EIA)

This Week in Petroleum › Weekly Petroleum Status Report ... Coal production for the first three quarters (January-September) of 2012 was 46 million short tons ...

106

Table 6. Coal production and number of mines by State and coal...  

U.S. Energy Information Administration (EIA) Indexed Site

Coal production and number of mines by State and coal rank, 2011" "(thousand short tons)" ,"Bituminous",,"Subbituminous",,"Lignite",,"Anthracite",,"Total" "Coal-Producing State and...

107

Absorbents for Mineral Oil Spill Cleanup, Phase 3: Field Performance  

Science Conference Proceedings (OSTI)

Residual mineral oil on the ground surface following electrical equipment spills is often removed using a surface application of an absorbent material. Traditional absorbent products include clays, sawdust-like products, silica-based products, and various organic industry byproduct materials. This project was performed in three phases. Phase 1 included testing to measure overall mineral oil absorption efficiency of 24 absorbents. In Phase 2, absorbents studied in Phase 1 were further ...

2012-12-10T23:59:59.000Z

108

Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders  

Science Conference Proceedings (OSTI)

A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

Lykins, M.L.

1995-08-01T23:59:59.000Z

109

Measurement of ?_?and \\bar?_?induced neutral current single $?^0$ production cross sections on mineral oil at E_?O(1 GeV)  

E-Print Network (OSTI)

MiniBooNE reports the first absolute cross sections for neutral current single \\pi^0 production on CH_2 induced by neutrino and antineutrino interactions measured from the largest sets of NC \\pi^0 events collected to date. The principal result consists of differential cross sections measured as functions of \\pi^0 momentum and \\pi^0 angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76+/-0.05_{stat}+/-0.76_{sys})*10^{-40} cm^2/nucleon at a mean energy of =808 MeV and (1.48+/-0.05_{stat}+/-0.23_{sys})*10^{-40} cm^2/nucleon at a mean energy of =664 MeV for \

The MiniBooNE Collaboration; A. A. Aguilar-Arevalo; C. E. Anderson; A. O. Bazarko; S. J. Brice; B. C. Brown; L. Bugel; J. Cao; L. Coney; J. M. Conrad; D. C. Cox; A. Curioni; Z. Djurcic; D. A. Finley; B. T. Fleming; R. Ford; F. G. Garcia; G. T. Garvey; J. Gonzales; J. Grange; C. Green; J. A. Green; T. L. Hart; E. Hawker; R. Imlay; R. A. Johnson; G. Karagiorgi; P. Kasper; T. Katori; T. Kobilarcik; I. Kourbanis; S. Koutsoliotas; E. M. Laird; S. K. Linden; J. M. Link; Y. Liu; Y. Liu; W. C. Louis; K. B. M. Mahn; W. Marsh; C. Mauger; V. T. McGary; G. McGregor; W. Metcalf; P. D. Meyers; F. Mills; G. B. Mills; J. Monroe; C. D. Moore; J. Mousseau; R. H. Nelson; P. Nienaber; J. A. Nowak; B. Osmanov; S. Ouedraogo; R. B. Patterson; Z. Pavlovic; D. Perevalov; C. C. Polly; E. Prebys; J. L. Raaf; H. Ray; B. P. Roe; A. D. Russell; V. Sandberg; R. Schirato; D. Schmitz; M. H. Shaevitz; F. C. Shoemaker; D. Smith; M. Soderberg; M. Sorel; P. Spentzouris; J. Spitz; I. Stancu; R. J. Stefanski; M. Sung; H. A. Tanaka; R. Tayloe; M. Tzanov; R. G. Van de Water; M. O. Wascko; D. H. White; M. J. Wilking; H. J. Yang; G. P. Zeller; E. D. Zimmerman

2009-11-11T23:59:59.000Z

110

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

SciTech Connect

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

111

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

112

New Mexico's energy resources '81. Annual report of Bureau of Geology in the Mining and Minerals Division of New Mexico Energy and Minerals Department  

DOE Green Energy (OSTI)

Although production of U/sub 3/O/sub 8/ declined only slightly in 1980, New Mexico's share of domestic production has declined from 48% in 1976 to 35% in 1980. Production projections indicate a continued decline in 1981 and lower production until at least 1984. New Mexico has 41% of total domestic reserves producible in the $50-per-lb cost category. In keeping with the anticipated steady depletion of reserves, production of crude oil in New Mexico was 69.9 million bls, a 6.3% decline in production from 1979. Condensate production of 5.4 million bbls in 1980, however, represented an increase of 7% from 1979 production. Although natural gas production was the lowest since 1970 and declined by 2.6% from 1979 production, 1980 was the 15th year that production exceeded 1 trillion cu ft. Despite declines in production, the valuation of oil and gas production has increased significantly with oil sales doubling from the previous year and gas sales increasing by $409 million because of higher prices. Reserves have been estimated to be 959 million bbls of crude oil and 17.667 trillion cu ft of natural gas. Production of 19.5 million short tons of coal in 1980 represented a 33% increase over 1979 production and an increase of 157% since 1970. Coal resources in New Mexico are estimated to be 180.79 billion short tons, and production is projected to incease to 39.61 million tons in 1985 and 67.53 million tons in 1990. The most notable developments in geothermal energy have been in technical advances in drilling, testing, and applications, especially in the area of hot dry rock systems. The US Bureau of Land Management has issued 113 geothermal leases that remain active. Recent geothermal exploration activity has been detailed for 21 companies.

Arnold, E.C.; Hill, J.M. (comps.)

1981-09-03T23:59:59.000Z

113

Building materials using binders and solid combustible minerals  

Science Conference Proceedings (OSTI)

Local materials including low-quality solid combustible minerals and their wastes, are being used to cheapen building costs. The author reviews the use of solid combustible minerals and their carbonaceous wastes as nonbaking binders of the lime-pozzolana type in the production of building and other materials.

Gorlov, E.G.

1982-01-01T23:59:59.000Z

114

Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996  

Science Conference Proceedings (OSTI)

From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

NONE

1996-03-01T23:59:59.000Z

115

MINERAL COUNTY COMMISSIONERS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Board of Board of MINERAL COUNTY COMMISSIONERS Telephone: 702-945-2446 Fax: 702-945-0706 P.O. Box 4150 Hawthorne, Nevada 89415 JACKIE WALLIS, Chairman GOVERNING BOARD FOR THE TOWNS OF DAN DILLARD, Vice Chairman HAWTHORNE, LUNING AND MINA BOB LYBARGER, Member LIQUOR BOARD GAMING BOARD U.S. Department of Energy Office of General Counsel, GC-52 1000 Independence Ave. S.W. Washington, DC 20585 Dear Sirs: Attached are the comments for modification of the Price-Anderson Act Notice of Inquiry(NOI) provided to the Board of Mineral County Commissioners, in a letter dated January

116

U.S. monthly coal production increases  

Annual Energy Outlook 2012 (EIA)

U.S. coal production in July totaled 88.9 million short tons, the highest level since August 2012, according to preliminary data from the U.S. Energy Information...

117

Weekly Coal Production by State - Energy Information Administration  

U.S. Energy Information Administration (EIA)

For the week ended October 12, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 6.7 percent higher than ...

118

Weekly Coal Production by State - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

For the week ended November 02, 2013: U.S. coal production totaled approximately 19.3 million short tons (mmst) This production estimate is 0.1 percent higher than ...

119

CO2 Mineral Sequestration Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Studies Sequestration Studies Introduction, Issues and Plans Philip Goldberg National Energy Technology Laboratory Workshop on CO 2 Sequestration with Minerals August 8, 2001 Mineral Sequestration Program Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Goals: * Understand the fundamental mechanisms involved in mineral carbonation * Generate data to support process development * Operate continuous, integrated small-scale process unit to support design Current Partnerships In order to effectively develop Mineral Sequestration, a multi-laboratory Working Group was formed in the Summer of 1998, participants include: * Albany Research Center * Arizona State University * Los Alamos National Laboratory

120

Phosphate-mineral interactions and potential consequences for nutrient cycling  

E-Print Network (OSTI)

Biogeochemical cycling of phosphate is a key component in the overall production rate of coastal ecosystems. Mineral phases in the near-shore sediments play a significant role in the return of phosphate remineralized in ...

Oates, Richard Hunter

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bioleaching of Minerals  

Science Conference Proceedings (OSTI)

Bioleaching is the term used to describe the microbial dissolution of metals from minerals. The commercial bioleaching of metals, particularly those hosted in sulfide minerals, is supported by the technical disciplines of biohydrometallurgy, hydrometallurgy, pyrometallurgy, chemistry, electrochemistry, and chemical engineering. The study of the natural weathering of these same minerals, above and below ground, is also linked to the fields of geomicrobiology and biogeochemistry. Studies of abandoned and disused mines indicate that the alterations of the natural environment due to man's activities leave as remnants microbiological activity that continues the biologically mediated release of metals from the host rock (acid rock drainage; ARD). A significant fraction of the world's copper, gold and uranium is now recovered by exploiting native or introduced microbial communities. While some members of these unique communities have been extensively studied for the past 50 years, our knowledge of the composition of these communities, and the function of the individual species present remains relatively limited. Nevertheless, bioleaching represents a major strategy in mineral resource recovery whose importance will increase as ore reserves decline in quality, become more difficult to process (due to increased depth, increased need for comminution, for example), and as environmental considerations eliminate traditional physical processes such as smelting, which have served the mining industry for hundreds of years.

F. Roberto

2002-02-01T23:59:59.000Z

122

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

123

US Minerals Databrowser | Open Energy Information  

Open Energy Info (EERE)

US Minerals Databrowser AgencyCompany Organization Jonathan Callahan Resource Type Maps Website http:mazamascience.comMiner References US Minerals Databrowser1 The US...

124

Mapping evaporate minerals by ASTER  

Science Conference Proceedings (OSTI)

Evaporate minerals are important industrial raw materials that have been used in diverse industries for many years. As one of the most extensively used evaporate minerals, gypsum is an important raw material in the construction, agriculture, textile, ...

N. Serkan Oztan; M. Lutfi Suzen

2011-03-01T23:59:59.000Z

125

Growing Mineral Wool Production through Electric Furnaces  

Science Conference Proceedings (OSTI)

Abstract Scope, The Tenova Group has collaborated to design and supply one of the largest .... Strengthening Sintering of Refractory Iron Ore with Biomass Fuel.

126

User cost in oil production  

E-Print Network (OSTI)

The assumption of an initial fixed mineral stock is superfluous and wrong. User cost (resource rent) in mineral production is the present value of expected increases in development cost. It can be measured as the difference ...

Adelman, Morris Albert

1990-01-01T23:59:59.000Z

127

By-Products Utilization  

E-Print Network (OSTI)

-lime fly ash in blended cements with minimum (less than 20%) portland cement in the blend. Keywords: Fly 232, Fly Ash and Natural Pozzolans. #12;4 INTRODUCTION Coal is the most widely used source of energy ash. In 1992, total coal ash production in the world was estimated to be 600 million tons, of which

Wisconsin-Milwaukee, University of

128

U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Underscoring the Obama Administration's efforts to double energy productivity by 2030 and help businesses save money and energy, the Energy Department today recognized more...

129

Cementation process for minerals recovery from Salton Sea geothermal brines  

DOE Green Energy (OSTI)

The potential for minerals recovery from a 1000-MWe combined geothermal power and minerals recovery plant in the Salton Sea is examined. While the possible value of minerals recovered would substantially exceed the revenue from power production, information is insufficient to carry out a detailed economic analysis. The recovery of precious metals - silver, gold, and platinum - is the most important factor in determining the economics of a minerals recovery plant; however, the precious metals content of the brines is not certain. Such a power plant could recover 14 to 31% of the US demand for manganese and substantial amounts of zinc and lead. Previous work on minerals extraction from Salton Sea brines is also reviewed and a new process, based on a fluidized-bed cementation reaction with metallic iron, is proposed. This process would recover the precious metals, lead, and tin present in the brines.

Maimoni, A.

1982-01-26T23:59:59.000Z

130

The estimation of the number of underground coal miners and the annual dose to coal miners in China  

Science Conference Proceedings (OSTI)

This paper introduces an estimation method for the number of underground coal miners and the annual dose to coal miners in China. It shows that there are about 6 million underground miners at present and the proportion is about 1, 1 and 4 million for national key coal mines, state-owned local coal mines, and township and private-ownership coal mines, respectively. The collective dose is about 1.65 X 10{sup 4} person-Sv y{sup -1}, of which township and private-ownership coal mines contribute about 91%. This paper also points out that the 2000 UNSCEAR report gives the number of miners of coal production and their collective dose, which are underestimated greatly because the report only includes the number of underground miners in national key coal mines, which only accounts for 1/6 of the workers all working under the best ventilation conditions in China.

Liu, F.D.; Pan, Z.Q.; Liu, S.L.; Chen, L.; Ma, J.Z.; Yang, M.L.; Wang, N.P. [China Institute of Atomic Energy, Beijing (China)

2007-08-15T23:59:59.000Z

131

Chemically Accelerated Carbon Mineralization: Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage  

SciTech Connect

IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.

2010-07-01T23:59:59.000Z

132

Hearing protection for miners  

Science Conference Proceedings (OSTI)

A NIOSH analysis showed that at age 50 approximately 90% of coal miners have a hearing impairment, yet noise included hearing loss is 100% preventable. The article discusses requirements of the MSHA regulations, 30 CFR Part 62 - occupational noise exposure (2000) and a 2008-MSHA document describing technologically achievable and promising controls for several types of mining machinery. Hearing protection is still required for exposure to greater than 90 dBA. These are now commercially available ways to determine how much attenuation an individual gets from a given hearing protector, known as 'fit testing'. 3 refs., 1 fig., 1 tab., 1 photo.

Schulz, T. [Sperian Hearing Protection (United States)

2008-10-15T23:59:59.000Z

133

Abiotic/Biotic Degradation and Mineralization of N-Nitrosodimethylamine in Aquifer Sediments  

Science Conference Proceedings (OSTI)

The N-nitrosodimethylamine (NDMA) degradation rate and mineralization rate were measured in two aquifer sediments that received treatments to create oxic, reducing, and sequential reducing/oxic environments. Chemically reduced sediments rapidly abiotically degraded NDMA to nontoxic dimethylamine (DMA) to parts per trillion levels, then degraded to further products. NDMA was partially mineralized in reduced sediments (6 to 28 percent) at a slow rate (half-life 3,460 h) by an unknown abiotic/biotic pathway. In contrast, NDMA was mineralized more rapidly (half-life 342 h) and to a greater extent (30 to 81 percent) in oxic sediments with propane addition, likely by a propane monooxygenase pathway. NDMA mineralization in sequential reduced sediment followed by oxic sediment treatment did result in slightly more rapid mineralization and a greater mineralization extent relative to reduced systems. These increases were minor, so aerobic NDMA mineralization with oxygen and propane addition was the most viable in situ NDMA mineralization strategy.

Szecsody, James E.; McKinley, James P.; Breshears, Andrew T.; Crocker, Fiona H.

2008-10-14T23:59:59.000Z

134

NETL Mineral Carbonation Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview Mineral Carbonation Workshop August 8, 2001 Carl O. Bauer, Associate Laboratory Director Descriptor - include initials, /org#/date We Are: * One of DOE's 15 national laboratories * Government owned and operated * Sites in Oklahoma, Pennsylvania, and West Virginia * Over 1,100 federal and support contractor employees * FY01 budget of $774 million July 2001 Descriptor - include initials, /org#/date Sites in Pennsylvania, West Virginia, Oklahoma Morgantown, WV Pittsburgh, PA Tulsa, OK Descriptor - include initials, /org#/date Our Mission * Resolve the environmental, supply, and reliability constraints of producing and using fossil resources to provide Americans with a stronger economy, healthier environment, and more secure future * Support development and deployment of environmental technologies that reduce

135

Table 13. Coal Production, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual Projected (million short tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 999...

136

Conceptual design study on incorporating a 25-ton/day pyrolysis unit into an operating total energy system. Final report  

DOE Green Energy (OSTI)

The results of a conceptual design study on incorporating a pyrolysis unit into an existing total energy plant are presented. The objectives of this study were to examine the institutional, technical and economic factors affecting the incorporation of a 25-ton/day pyrolysis unit into the Indian Creek Total Energy Plant. The Indian Creek total energy plant is described. Results of the conceptual design are presented. A survey of the availability of waste materials and a review of health and safety ordinances are included. The technical aspects of the pyrolysis system are discussed, including the results of the review of facilities requirements for the pyrolysis unit, the analysis of necessary system modification, and an estimate of the useful energy contribution by the pyrolysis unit. Results of the life-cycle cost analysis of the pyrolysis unit are presented. The major conclusions are that: there appears to be no institutional or technical barriers to constructing a waste pyrolysis unit at the Indian Creek Total Energy Plant; pyrolysis gas can be consumed in the engines and the boilers by utilizing venturi mixing devices; the engines can consume only 5% of the output of the 25-ton/day pyrolysis unit; Therefore, consumption of pyrolysis gas will be controlled by boiler energy demand patterns; a waste pyrolysis unit is not cost effective at the current natural gas price of $0.90/10/sup 6/ Btu; and pyrolysis is economically attractive at natural gas prices above $3.00/10/sup 6/ Btu.

None

1976-12-13T23:59:59.000Z

137

Assessment of industrial minerals and rocks in the controlled area  

Science Conference Proceedings (OSTI)

Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

Castor, S.B. [Nevada Bureau of Mines and Geology, Reno, NV (United States); Lock, D.E. [Mackay School of Mines, Reno, NV (United States)

1996-08-01T23:59:59.000Z

138

Mineral resources of the Devils Playground and Twin Buttes Wilderness study areas, Sweetwater County, Wyoming  

Science Conference Proceedings (OSTI)

The Devils Playground and Twin Buttes Wilderness Study Areas are contiguous, covering an area totalling 26,800 acres in Southwest Wyoming. The study areas have been withdrawn from mining claim location because of the rich oil shale deposits in the region. In addition, Minerals management Service considers the areas to have moderate development potential for sodium (trona), with as much as 1.2 billion tons of inferred resources. The study areas are classic sites for vertebrate fossils, yielding many thousands of specimens now in museums. Chert beds are common, and it is prized by collectors for its banded appearance. The study area shave a high resource potential for undiscovered natural gas. The study areas have a moderate potential for zeolites. A low potential exists for coal resources (coal is present at great depths) and for undiscovered metallic minerals.

Van Loenen, R.E.; Bryant, W.A. (US Geological Survey (US)); Lane, M.E. (US Bureau of Mines (US))

1991-01-01T23:59:59.000Z

139

Geology and Mineral Deposits of Churchill County, Nevada | Open Energy  

Open Energy Info (EERE)

Geology and Mineral Deposits of Churchill County, Nevada Geology and Mineral Deposits of Churchill County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and Mineral Deposits of Churchill County, Nevada Abstract Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern

140

Economical Recovery of By-products in the Mining Industry  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) Office of Industrial Technologies, Mining Industry of the Future Program, works with the mining industry to further the industry's advances toward environmental and economic goals. Two of these goals are (1) responsible emission and by-product management and (2) low-cost and efficient production (DOE 1998). DOE formed an alliance with the National Mining Association (NMA) to strengthen the basis for research projects conducted to benefit the mining industry. NMA and industry representatives actively participate in this alliance by evaluating project proposals and by recommending research project selection to DOE. Similarly, the National Research Council (NRC) has recently and independently recommended research and technology development opportunities in the mining industry (NRC 2001). The Oak Ridge National Laboratory (ORNL) and Colorado School of Mines engineers conducted one such project for DOE regarding by -product recovery from mining process residue. The results of this project include this report on mining industry process residue and waste with opportunity for by-product recovery. The U.S. mineral processing industry produces over 30,000,000 metric tons per year of process residue and waste that may contain hazardous species as well as valuable by-products. This study evaluates the copper, lead, and zinc commodity sectors which generate between 23,300,000 and 24,000,000 metric tons per year. The distribution of residual elements in process residues and wastes varies over wide ranges* because of variations in the original ore content as it is extracted from the earth's crust. In the earth's crust, the elements of interest to mining fall into two general geochemical classifications, lithophiles and chalcophiles** (Cox 1997). Groups of elements are almost always present together in a given geochemical classification, but the relative amounts of each element are unique to a particular ore body. This paper generally describes copper, lead, and zinc mining operations and their associated process wastes and residues. This description can serve as a basis for identifying those process residues and waste that contain both impurities and products which currently cannot be economically recovered. This information could be used to develop a market-based approach to by-product recovery by evaluating potential revenue generated from the sale of by-products along with innovative recovery techniques.

Berry, J.B.

2001-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

142

Process for Converting Waste Glass Fiber into Value Added Products, Final Report  

Science Conference Proceedings (OSTI)

Nature of the Event: Technology demonstration. The project successfully met all of its technical objectives. Albacem has signed an exclusive licensing agreement with Vitro Minerals Inc., a specialty minerals company, to commercialize the Albacem technology (website: www.vitrominerals.com). Location: The basic research for the project was conducted in Peoria, Illinois, and Atlanta, Georgia, with third-party laboratory verification carried out in Ontario, Canada. Pilot-scale trials (multi-ton) were conducted at a facility in South Carolina. Full-scale manufacturing facilities have been designed and are scheduled for construction by Vitro Minerals during 2006 at a location in the Georgia, North Carolina, and South Carolina tri-state area. The Technology: This technology consists of a process to eliminate solid wastes generated at glass fiber manufacturing facilities by converting them to value-added materials (VCAS Pozzolans) suitable for use in cement and concrete applications. This technology will help divert up to 250,000 tpy of discarded glass fiber manufacturing wastes into beneficial use applications in the concrete construction industry. This technology can also be used for processing glass fiber waste materials reclaimed from monofills at manufacturing facilities. The addition of take-back materials and reclamation from landfills can help supply over 500,000 tpy of glass fiber waste for processing into value added products. In the Albacem process, waste glass fiber is ground to a fine powder that effectively functions as a reactive pozzolanic admixture for use in portland ce¬ment-based building materials and products, such as concrete, mortars, terrazzo, tile, and grouts. Because the waste fiber from the glass manufacturing industry is vitreous, clean, and low in iron and alkalis, the resulting pozzolan is white in color and highly consistent in chemical composition. This white pozzolan, termed VCAS Pozzolan (for Vitreous Calcium-Alumino-Silicate). is especially suited for white concrete applications where it imparts desirable benefits such as increased long-term strength and improved long-term durability of concrete products. Two U.S. patents entitled have been issued to Albacem covering the technology. Third-party validation testing has confirmed that the pozzolanic product is an excellent, high performance material that conforms to a ASTM standards and improves the strength and durability of concrete. Currently, there are no known significant competing technologies to process glass fiber manufacturing by-products and con¬vert them into value-added products. Most glass fiber-forming and fabrication wastes continue to be disposed in landfills at significant costs and with associated negative environmental impact. It is estimated that in a typical glass fiber manufactur¬ing facility, 10-20% by weight of the processed glass material is sent for dis¬posal to a landfill. Today, supplementary ce¬menting materials or mineral admixtures are key to achieving strong and durable concrete. Recovered materials such as coal fly ash, ground granulated blast furnace slag and silica fume are widely accepted and used in concrete all over the world, espe¬cially in the construction of “high performance” structures such as massive dams, bridges, subway tunnels, etc. These min¬eral admixtures are not suitable for white concrete and light-colored architectural concrete applications. Converting waste glass fibers into a high performance white pozzolan would allow white concrete producers to gain from the same durability benefits currently realized by gray concrete producers. Description of the Benefit: Albacem’s technology will enable the glass fiber industry to eliminate nearly 100% of its glass fiber produc¬tion waste streams by converting them into viable value-added products. With this technology, the glass industry can prevent the landfilling of about 250,000 tons of waste glass fiber annually. Glass manufacturers will realize improved production efficiency by reducing process costs through the elimination of solid was

Hemmings, Raymond T.

2005-12-31T23:59:59.000Z

143

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

E-Print Network (OSTI)

Coal, oil and oil product, crude oil, other Coal, oiland oil product, crude oil, other Steam, diesel, electricityDomestic Internation al Crude oil, oil products, NG, other

Lin, Jiang

2008-01-01T23:59:59.000Z

144

Minerals yearbook: Mineral industries of the Middle East. Volume 3. 1989 international review  

SciTech Connect

The production and processing of crude petroleum and natural gas are the dominant economic sectors of the Middle East. The 15 countries that constitute the region accounted for 26% of world crude petroleum output, 17% of world natural gas plant liquid production, and almost 5% of world dry natural gas production. About 66% of total world crude petroleum reserves and 31% of total world natural gas reserves are in the Middle East. U.S. imports of mineral-based materials from the region were primarily energy products. U.S. net oil imports from the Middle East, which include crude petroleum, natural gas liquids, and petroleum refinery products, were about 26% of total U.S. net oil imports or about 680 million barrels in 1989.

Not Available

1989-01-01T23:59:59.000Z

145

Solar Cell Silicon: Production and Recyling - Programmaster.org  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium, Solar Cell Silicon: Production and Recyling. Sponsorship, The Minerals ...

146

Climate VISION: Private Sector Initiatives: Forest Products: Results  

Office of Scientific and Technical Information (OSTI)

Results Results Results to Date Taking direct and indirect emissions intensity together, AF&PA member companies decreased their emissions intensity from 0.738 to 0.637 tons of CO2 equivalents per ton of production - a decrease of 14 percent. This total is comprised of a direct greenhouse gas emissions intensity decrease of 24 percent, from 0.513 to 0.389 tons of CO2 equivalents per ton of production and an indirect emissions intensity increase of 10 percent. Indirect emissions are those generated by suppliers of purchased electricity. From 2000 to 2006, AF&PA member companies collectively reduced their absolute direct GHG emissions 34 percent, from 61.2 to 40.5 MMTCO2-eq. Absolute indirect emissions associated with the generation of purchased electricity decreased 4 percent from 26.8 to 25.8 MMTCO2-eq from 2000 to

147

MINERAL: A program for the propagation of analytical uncertainty through mineral formula recalculations  

Science Conference Proceedings (OSTI)

MINERAL (MINeral ERror AnaLysis) is a MATLAB^(R) based program that performs mineral formula recalculations and calculates the error on formula unit cations though the propagation of analytical uncertainties. The program is focused on 9 common mineral ... Keywords: Error, Mineral recalculation, Uncertainty

Sarah M. H. De Angelis; Owen K. Neill

2012-11-01T23:59:59.000Z

148

CRYSTAL CHEMISTRY OF HYDROUS MINERALS  

DOE Green Energy (OSTI)

Hydrogen has long been appreciated for its role in geological processes of the Earth's crust. However, its role in Earth's deep interior has been neglected in most geophysical thinking. Yet it is now believed that most of our planet's hydrogen may be locked up in high pressure phases of hydrous silicate minerals within the Earth's mantle. This rocky interior (approximately 7/8 of Earth's volume) is conjectured to contain 1-2 orders of magnitude more water than the more obvious oceans (the ''hydrosphere'') and atmosphere. This project is aimed at using the capability of neutron scattering from hydrogen to study the crystal chemistry and stability of hydrogen-bearing minerals at high pressures and temperatures. At the most basic level this is a study of the atomic position and hydrogen bond itself. We have conducted experimental runs on hydrous minerals under high pressure and high temperature conditions. The crystallographic structure of hydrous minerals at extreme conditions and its structural stability, and hydrogen bond at high P-T conditions are the fundamental questions to be addressed. The behavior of the hydrous minerals in the deep interior of the Earth has been discussed.

Y. ZHAO; ET AL

2001-02-01T23:59:59.000Z

149

Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder  

Science Conference Proceedings (OSTI)

Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

Rothman, A.B.

1996-02-01T23:59:59.000Z

150

Rules and Regulations Governing Leasing for Production or Extraction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands (Mississippi) Rules and Regulations Governing Leasing for Production or...

151

Federal Outer Continental Shelf Oil and Gas Production Statistics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tags Minerals Management Service, MMS, Production, natural gas, gas, condensate, crude oil, oil, OCS production, Outer Continental Shelf, OSC, EIA, Energy Information...

152

DOE - Office of Legacy Management -- International Minerals and Chemical  

Office of Legacy Management (LM)

International Minerals and Chemical International Minerals and Chemical Corp - Pilot Plant - FL 02 FUSRAP Considered Sites Site: International Minerals and Chemical Corp - Pilot Plant (FL.02) Designated Name: Not Designated Alternate Name: None Location: Mulberry , Florida FL.02-1 Evaluation Year: 1985 FL.02-2 Site Operations: Erected and operated a pilot plant to process material from the leached zone of the Florida pebble phosphate field for the recovery of uranium and other saleable products and also conducted experimental investigations to recover uranium from phosphates. FL.02-3 FL.02-4 Site Disposition: Eliminated - No Authority FL.02-6 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium FL.02-3 FL.02-4 Radiological Survey(s): Yes FL.02-1

153

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

and Oil Shale Minerals within the Production of Cement andin clinker production. If oil shale is burned separately,in cement production. Assuming that oil shale replaces 8

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

154

Can states tax Indian land production  

Science Conference Proceedings (OSTI)

The US Supreme Court this term is expected to rule on whether Congress has authorized the states to impose the full array of mineral taxes on production from Indian reservations. In the case under consideration, Blackfeet Tribe of indians V. Montana, the tribes claim that the states no longer have congressional authorization to tax mineral leases under the Indian Mineral Leasing Act of 1938 or joint ventures under the Indian Mineral Development Act of 1982. Operators claim it is unfair for mineral production on Indian reservations alone to be subject to double taxation.

Israel, D.H.

1984-12-01T23:59:59.000Z

155

Mineral Transformation and Biomass Accumulation Associated With  

E-Print Network (OSTI)

Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

Hubbard, Susan

156

Independent Mineral Processing Project Technical Due Diligence  

Science Conference Proceedings (OSTI)

Presentation Title, Independent Mineral Processing Project Technical Due Diligence ... CRIMM Energy-saving Magnetic Separation Equipment and Industrial ...

157

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

158

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

1993-10-29T23:59:59.000Z

159

DOE Hydrogen and Fuel Cells Program Record 11002: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year  

NLE Websites -- All DOE Office Websites (Extended Search)

02 Date: January 5, 2011 02 Date: January 5, 2011 Title: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year Originator: Andrea Chew & Tien Nguyen Approved by: Sunita Satyapal Date: January 25, 2011 A conventional mid-size gasoline car emits 0.45 kg of greenhouse gases (GHG) per mile. 1 One hundred (100) metric tons (t) of GHG per year are equivalent to emissions from 17 conventional gasoline cars. Item: The GHG emissions cited above are from an analysis record prepared by the Department of Energy's Fuel Cell Technologies and Vehicle Technologies Programs on life-cycle emissions of greenhouse gases and petroleum use for several light-duty vehicles. 1 For cars that are between 1 and 5 years old, the average mileage is approximately 13,000,

160

Accuracy in quantitative phase analysis of complex mineral ...  

Science Conference Proceedings (OSTI)

... Soil formed on a parent material rich in ferromagnesian minerals and amorphous soil minerals • Petroleum shale • Nickel laterite • Bauxite ...

2013-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Highwall miners extract coal cost effectively  

SciTech Connect

Contour Mining Corp's Powellton site in West Virginia has produced over 60,000 tons of coal per month using the Terex Highwall Mining System (HWM). The HWM can use a lower or high-seam cutter module. MTS Systems' Sensors Division provides mobile hydraulic magnetostrictive sensors for the HWM system, to increase the accuracy and reliability of linear positioning. 1 photo.

NONE

2009-08-15T23:59:59.000Z

162

A method for permanent CO2 mineral carbonation  

SciTech Connect

The Albany Research Center (ARC) of the U.S. Department of Energy (DOE) has been conducting research to investigate the feasibility of mineral carbonation as a method for carbon dioxide (CO2) sequestration. The research is part of a Mineral Carbonation Study Program within the Office of Fossil Energy in DOE. Other participants in this Program include DOE?s Los Alamos National Laboratory and National Energy Technology Laboratory, Arizona State University, and Science Applications International Corporation. The research has focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC reacts a slurry of magnesium silicate mineral with supercritical CO2 to produce a solid magnesium carbonate product. To date, olivine and serpentine have been used as the mineral reactant, but other magnesium silicates could be used as well. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and consequently, these results may also be applicable to strategies for in-situ geological sequestration. Baseline tests were begun in distilled water on ground products of foundry-grade olivine. Tests conducted at 150 C and subcritical CO2 pressures (50 atm) resulted in very slow conversion to carbonate. Increasing the partial pressure of CO2 to supercritical (>73 atm) conditions, coupled with agitation of the slurry and gas dispersion within the water column, resulted in significant improvement in the extent of reaction in much shorter reaction times. A change from distilled water to a bicarbonate/salt solution further improved the rate and extent of reaction. When serpentine, a hydrated mineral, was used instead of olivine, extent of reaction was poor until heat treatment was included prior to the carbonation reaction. Removal of the chemically bound water resulted in conversion to carbonate similar to those obtained with olivine. Recent results have shown that conversions of nearly 80 pct are achievable after 30 minutes at test conditions of 155 C and 185 atm CO2 in a bicarbonate/salt solution. The results from the current studies suggest that reaction kinetics can be further improved. Future tests will examine additional pressure/temperature regimes, various pretreatment options,and solution modifications.

Dahlin, David C.; O'Connor, William K.; Nilsen, David N.; Rush, G.E.; Walters, Richard P.; Turner, Paul C.

2000-01-01T23:59:59.000Z

163

Table H1. Estimated Hydrogen Production by Business Sector Business Sector Annual Hydrogen Production  

E-Print Network (OSTI)

In 2007, roughly 9 million metric tons per year of hydrogen was produced in the U.S. 1 in a variety of ways. This production results in about 60 million metric tons of CO2 emissions each year. Table H1 provides estimates of U.S. hydrogen production for the various business sectors. Merchant hydrogen is consumed at sites other than where it is produced. Captive hydrogen (e.g., hydrogen produced at oil refineries, ammonia, and methanol plants) is consumed at the site where it is produced. This technical support document assumes that CO2 emissions associated with captive hydrogen production facilities are included as part of the GHG emissions from the industry producing those other chemical products (e.g., ammonia, petroleum products, and methanol), and therefore this document is focused on merchant hydrogen production.

unknown authors

2008-01-01T23:59:59.000Z

164

Hybrid 320 Ton Off Highway Haul Truck: Quarterly Technical Status Report 7, DOE/AL68080-TSR07  

DOE Green Energy (OSTI)

Analysis and results show hybrid system weight and efficiency affect productivity and fuel usage. Analysis shows equivalent hybrid benefits for adjacent size classes of mine truck. Preparations are ongoing for full power test. The battery cycling test protocol was modified.

Lembit Salasoo

2004-08-25T23:59:59.000Z

165

DOE Hydrogen and Fuel Cells Program Record 12014: Current U.S. Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

12014 Date: June 18, 2012 12014 Date: June 18, 2012 Title: Current U.S. Hydrogen Production Originator: Fred Joseck Approved by: Sunita Satyapal Date: June 26, 2012 Item: The United States currently produces about 9 million metric tons of hydrogen per year, enough to power approximately ~36-41 million FCEVs. References/Calculations:  "...9 million metric tons of hydrogen per year" The United States produces about 9 million metric tons per year for the captive and merchant markets. U.S. Hydrogen Production By Merchant & Captive Types 2009-2016 (Thousand Metric Tons) 1 Source: MarketsandMarkets, GLOBAL HYDROGEN GENERATION MARKET BY MERCHANT & CAPTIVE TYPE, DISTRIBUTED & CENTRALIZED GENERATION, APPLICATION & TECHNOLOGY - TRENDS &

166

Mining and minerals policy: 1976 bicentennial edition  

DOE Green Energy (OSTI)

The report is organized into three basic parts. The first part, the Executive Summary, provides a brief description of the major topics and lists the issues and recommendations. The report then is divided into two sections. Section I, Summary, is comprised of three chapters: Increased Energy Security; Metals and Nonmetallic Minerals; and Trends and Events. Section II, Issues in Energy and Minerals Policy, is comprised of seven chapters: Federal Leasing; The Federal Role in Reducing the Fiscal Impacts of Energy Development; Availability of Federal Lands for Mineral Exploration and Development; Environmental Issues and the Mineral Industry; Developments in International Minerals Trade and Investment; Ocean Mining; and The Development of New Tools for Energy and Minerals Policy Analysis. (MCW)

Not Available

1976-07-01T23:59:59.000Z

167

Roadmap to the Project: Uranium Miners Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

suggested revisions of criteria for the compensation of lung cancer among underground uranium miners from the eligible regions of the U.S. Radioactive radon (more specifically...

168

World Economics of Selected Industrial Minerals  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... It is a very interesting field, different in many respects from metals and certainly far different from petroleum. The minerals chosen are celestite, ...

169

Multiphase Sequestration Geochemistry: Model for Mineral Carbonation  

SciTech Connect

Carbonation of formation minerals converts low viscosity supercritical CO2 injected into deep saline reservoirs for geologic sequestration into an immobile form. Until recently the scientific focus of mineralization reactions with reservoir rocks has been those that follow an aqueous-mediated dissolution/precipitation mechanism, driven by the sharp reduction in pH that occurs with CO2 partitioning into the aqueous phase. For sedimentary basin formations the kinetics of aqueous-mediated dissolution/precipitation reactions are sufficiently slow to make the role of mineralization trapping insignificant over a century period. For basaltic saline formations aqueous-phase mineralization progresses at a substantially higher rate, making the role of mineralization trapping significant, if not dominant, over a century period. The overlooked mineralization reactions for both sedimentary and basaltic saline formations, however, are those that occur in liquid or supercritical CO2 phase; where, dissolved water appears to play a catalyst role in the formation of carbonate minerals. A model is proposed in this paper that describes mineral carbonation over sequestration reservoir conditions ranging from dissolved CO2 in aqueous brine to dissolved water in supercritical CO2. The model theory is based on a review of recent experiments directed at understanding the role of water in mineral carbonation reactions of interest in geologic sequestration systems occurring under low water contents.

White, Mark D.; McGrail, B. Peter; Schaef, Herbert T.; Hu, Jian Z.; Hoyt, David W.; Felmy, Andrew R.; Rosso, Kevin M.; Wurstner, Signe K.

2011-04-01T23:59:59.000Z

170

Introducing International Minerals Innovation Institute of Saskatchewan  

Science Conference Proceedings (OSTI)

Cross Pollination between Industry and Engineering Programs/Students in Manitoba · Improving the Health & Performance of Miners Working at Moderate to

171

Mineral Processing Technology Development—Challenges and ...  

Science Conference Proceedings (OSTI)

Cross Pollination between Industry and Engineering Programs/Students in Manitoba · Improving the Health & Performance of Miners Working at Moderate to

172

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

173

RESEARCH AND DEVELOPMENT IN THE FIELD OF THORIUM CHEMISTRY AND METALLURGY. VOLUME III. COST ESTIMATE FOR 1,000 TON YR. THORIUM METAL PRODUCTION PLANT. Final Report  

SciTech Connect

The described plant will produce reactor grade Th at a price of 07 per pound. The plant operation is based on the preparation of electrolytic cell feed by fused salt chlorination techniques and converting the feed to high quality metal by high temperature electrolysis. (D.E.B.)

Wyatt, J.L.

1956-06-30T23:59:59.000Z

174

Minerals yearbook: Mineral industries of Africa. Volume 3. 1992 international review  

SciTech Connect

The 53 countries that constituted Africa in 1992 accounted for a significant portion of total world output of a number of mineral commodities. Among the most significant mineral commodities produced in Africa were andalusite, antimony, asbestos, bauxite, chromite, coal, cobalt, copper, diamond, fluorspar, gold, lithium minerals, manganese, phosphate, platinum-group metals, the titanium minerals-ilmenite and rutile, vanadium, vermiculite, uranium, and zircon. Chromite, cobalt, and manganese, were not mined in the Untied States.

Not Available

1992-01-01T23:59:59.000Z

175

A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF sub 6  

Science Conference Proceedings (OSTI)

Moderation control for maintaining nuclear criticality safety in 2-1/2-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a safetime,'' for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations. 2 refs., 5 figs., 1 tab.

Newvahner, R.L. (Portsmouth Gaseous Diffusion Plant, OH (United States)); Pryor, W.A. (PAI Corp., Oak Ridge, TN (United States))

1991-08-16T23:59:59.000Z

176

Minerals and Mining Program (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Mining Program (South Dakota) and Mining Program (South Dakota) Minerals and Mining Program (South Dakota) < Back Eligibility Commercial Developer Fed. Government Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources The Minerals and Mining Program has the authority to oversee mining activities in the state and issue regulations pertaining to the permitting and environmental impact mitigation of, and reclamation following, exploration, mining, and oil and gas production. Exploration and mining activities require permits, and mines require licenses for construction and

177

Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada  

SciTech Connect

This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

Jeremy Gwin and Douglas Frenette

2010-04-08T23:59:59.000Z

178

SOLERAS - Solar Cooling Engineering Field Tests Project: Arizona State University. Prototype carrier 10 ton air-cooled solar absorption chiller. Final evaluation report  

DOE Green Energy (OSTI)

A prototype air-cooled 10 ton solar absorption chiller was disassembled and inspected after having been field-tested for three consecutive cooling seasons. Included in the inspection were some flow visualization experiments which revealed some problems in the absorber header design. The objectives of this evaluation project were to determine possible causes for the frequent crystallization and generally below-design performance of the chiller during the testing period. The major conclusions reached were that a combination of leaks and of poor (50%) flow distribution in the absorber could account for most of the chiller's poor performance.

Not Available

1982-01-01T23:59:59.000Z

179

Exploration for uranium deposits, Grants mineral belt  

Science Conference Proceedings (OSTI)

Uranium ore deposits in the Grants mineral belt, New Mexico, occur in fluvial sandstones in the Morrison Formation (Jurassic). Uranium mineralization is concentrated by a dark-gray to black substance that has been identified as humate, which is derived from decaying vegetation. Black ore is truncated by overlying sandstone in at least three ore deposits, documenting an early age for mineralization. Ore deposits in the Grants mineral belt vary greatly in size and shape, tend to occur in clusters, and often present difficult drill targets. Current exploration is largely a matter of drilling in stages to distinguish favorable from unfavorable ground on a wide spacing, to seek mineralization in favorable ground, and to conduct close-spaced drilling in mineralized areas. Criteria for favorability differ among exploration groups but generally include 1) presence of a host sandstone, 2) anomalous mineralization, 3) color of the host rock, 4) presence of carbonaceous matter, and 5) position of the area relative to mineralized trends. A description of the drilling sequence, from ore discovery to the development of a mine at the Johnny M deposit (in the east part of the Ambrosia Lake district), exemplifies the problem of predicting where orebodies may occur. A study of the drill data at the Johnny M indicates the uranium ore is not related to specific geologic features other than humate, which is commonly associated with coalified plant fragments in mudstone-rich parts of the host sandstone.

Fitch, D.C.

1980-01-01T23:59:59.000Z

180

Nevada Division of Minerals | Open Energy Information  

Open Energy Info (EERE)

Nevada Division of Minerals Nevada Division of Minerals Jump to: navigation, search Logo: Nevada Division of Minerals Name Nevada Division of Minerals Address 400 W. King St. #106 Place Carson City, Nevada Zip 89703 Website http://minerals.state.nv.us/ Coordinates 39.16409°, -119.7699779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.16409,"lon":-119.7699779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Waste treatment by selective mineral ion exchanger  

Science Conference Proceedings (OSTI)

STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

Polito, Aurelie [Areva NC - BUA STMI, 1 route de la Noue - 91196 Gif sur Yvette, Cedex (France)

2007-07-01T23:59:59.000Z

182

SkyMine Carbon Mineralization Pilot Project  

Science Conference Proceedings (OSTI)

This Topical Report addresses accomplishments achieved during Phase 1 of the SkyMine{reg_sign} Carbon Mineralization Pilot Project. The primary objectives of this project are to design, construct, and operate a system to capture CO{sub 2} from a slipstream of flue gas from a commercial coal-fired cement kiln, convert that CO{sub 2} to products having commercial value (i.e., beneficial use), show the economic viability of the CO{sub 2} capture and conversion process, and thereby advance the technology to a point of readiness for commercial scale demonstration and proliferation. The project will also substantiate market opportunities for the technology by sales of chemicals into existing markets, and identify opportunities to improve technology performance and reduce costs at commercial scale. The primary objectives of Phase 1 of the project were to elaborate proven SkyMine{reg_sign} process chemistry to commercial pilot-scale operation and complete the preliminary design ('Reference Plant Design') for the pilot plant to be built and operated in Phase 2. Additionally, during Phase 1, information necessary to inform a DOE determination regarding NEPA requirements for the project was developed, and a comprehensive carbon lifecycle analysis was completed. These items were included in the formal application for funding under Phase 2. All Phase 1 objectives were successfully met on schedule and within budget.

Joe Jones; Clive Barton; Mark Clayton; Al Yablonsky; David Legere

2010-09-30T23:59:59.000Z

183

Wood Energy Production Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood Energy Production Credit Wood Energy Production Credit Wood Energy Production Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Maximum Rebate Credit may be claimed for a period of five years Program Info Start Date 12/30/1998 (most recent revision) State Missouri Program Type Corporate Tax Credit Rebate Amount $5 per ton of processed materials Provider Missouri Department of Natural Resources Note: No new credits are being issued, effective July 1, 2013. This entry is for informational purposes only. The Wood Energy Tax Credit, as effective January 1, 1997, allows individuals or businesses processing Missouri forestry industry residues into fuels an income tax credit of $5.00 per ton of processed material (e.g., wood pellets). A multiplier of 4 applies to charcoal, based on the

184

Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Mining Productivity by State, Mine Type, and Mine Production Range, 2012 Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Mine Production Range (thousand short tons) Coal-Producing State, Region 1 and Mine Type Above 1,000 Above 500 to 1,000 Above 200 to 500 Above 100 to 200 Above 50 to 100 Above 10 to 50 10 or Under Total 2 Alabama 1.69 2.50 1.95 1.72 1.83 0.69 0.55 1.68 Underground 1.73 - - - 1.08 0.31 - 1.64 Surface 1.36 2.50 1.95 1.72 2.11 1.19 0.55 1.75 Alaska 5.98 - - - - - - 5.98 Surface 5.98 - - - - - - 5.98 Arizona 7.38 - - - - - - 7.38 Surface

185

Resource Management Services: Mineral Resources, Parts 550-559 (New York) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mineral Resources, Parts 550-559 (New Mineral Resources, Parts 550-559 (New York) Resource Management Services: Mineral Resources, Parts 550-559 (New York) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Tribal Government Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation This section establishes a Bureau of Mineral Resources within the Department of Environmental Conservation, which has the authority to regulate the exploration and mining for oil and gas resources in New York State. The regulations include permitting and reporting requirements for exploration or production well drilling or deepening, well spacing, drilling practices, well plugging and abandonment, secondary recovery and

186

ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

Lofthouse, E.

1954-08-31T23:59:59.000Z

187

Production of Apatitic Material Using Turkish Colemanite Mineral  

Science Conference Proceedings (OSTI)

Characterization of Concentrate, Pellet and DRI Samples for Trace Elements · Characterization of Dust Generated in the BOF Converter · Characterization of ...

188

Towards Zero Waste Production in the Minerals and Metals Sector  

Science Conference Proceedings (OSTI)

ISASMELT™ for Recycling of Valuable Elements Contributing to a More Sustainable Society · Leaching of Uranium and Vanadium from Korean Domestic Ore.

189

The use of the logistic curve in forecasting mineral production  

E-Print Network (OSTI)

Introduction: The most apparent characteristic of the modern world economy is change, various in type, frequent in occurrence, and often striking. It is to be expected that economists have tried to approach these changes ...

White, James Anthony Lawrence

1958-01-01T23:59:59.000Z

190

DOE - Office of Legacy Management -- International Minerals and...  

Office of Legacy Management (LM)

International Minerals and Chemical Corp - Pilot Plant - FL 02 FUSRAP Considered Sites Site: International Minerals and Chemical Corp - Pilot Plant (FL.02) Designated Name: Not...

191

Relations Of Ammonium Minerals At Several Hydrothermal Systems...  

Open Energy Info (EERE)

minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic...

192

"Terrywallaceite" now in official roster of known minerals  

NLE Websites -- All DOE Office Websites (Extended Search)

metallic-black crystals of Terrywallaceite were found in the Julcani Mining District of Peru. June 8, 2011 The mineral "Terrywallaceite" The mineral "Terrywallaceite" I am honored...

193

Underground radio technology saves miners and emergency response...  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital...

194

Changing role of the nonfuel mineral industry in the state and local economies of Arizona (1981-1986)  

Science Conference Proceedings (OSTI)

The Bureau of Mines is currently analyzing the impacts of changes in nonfuel mineral industry activity upon regional economies. As part of the project the Bureau examined the impacts on Arizona and four of its counties resulting from significant changes in nonfuel mineral production between 1981 and 1986. Regional input-output models for Arizona and the counties of Gila, Greenlee, Pima, and Pinal were developed through IMPLAN, the U.S. Forest Service's economic impact model. These models generated multipliers to measure total impacts of changes in activity on employment, earnings, and indirect business taxes. From 1981 to 1983 metallic nonfuel mineral production in Arizona declined significantly. Findings show that county economies are quite sensitive to changes in nonfuel mineral production.

Opyrchal, A.M.; Swisko, G.M.; Adams, R.L.

1988-04-01T23:59:59.000Z

195

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

3473. Hilger, J. 2003. Combined Utilization of Oil ShaleEnergy and Oil Shale Minerals within the Production ofand Other Hydraulic Minerals. Oil Shale, Vol. 20, No. 3, pp.

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

196

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

Hilger, J. 2003. Combined Utilization of Oil Shale Energyand Oil Shale Minerals within the Production of Cement andOther Hydraulic Minerals. Oil Shale, Vol. 20, No. 3, pp.

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

197

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

Hilger, J. 2003. Combined Utilization of Oil Shale Energyand Oil Shale Minerals within the Production of Cement andHydraulic Minerals. Oil Shale, Vol. 20, No. 3, pp. 347-355.

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

198

Minerals on School and Public Lands  

Energy.gov (U.S. Department of Energy (DOE))

The Commissioner of School and Public Lands is authorized to lease the mineral interests of such lands for development. Section 5-7 of the SD Codified Laws describes provisions for the leasing of...

199

Hydrothermal alteration mineral mapping using hyperspectral imagery...  

Open Energy Info (EERE)

front of the Stillwater Mountain Range inDixie Valley, Nevada. Analysis of this data set reveals that severaloutcrops of these altered minerals exist in the area, and thatone...

200

Water and Energy in Mineral Processing  

Science Conference Proceedings (OSTI)

The theme will be "Water and energy in mineral processing". ... Analysis of Polymer Adsorption on Hematite Using Zeta Potential Distributions ... Trends with Selection and Sizing Large Flotation Circuits- What's Available in the Market Place.

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sustainable growth and valuation of mineral reserves  

E-Print Network (OSTI)

The annual change in the value of an in-ground mineral is equal to the increase or decrease of inventories ("reserves"), multiplied by the market value of a reserve unit. The limited shrinking resource base does not exist. ...

Adelman, Morris Albert

1994-01-01T23:59:59.000Z

202

Mineral Leases by Political Subdivisions (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes local political subdivisions to lease lands they own for the development of mineral interests, including coal and lignite. A public hearing process is required prior to...

203

Geochronologic studies in the Grants mineral belt  

SciTech Connect

Geologic observation coupled with radiometric age dating can be used to assess ages of ore formation and, in some cases, ages of sedimentation in the Grants mineral belt. Rb-Sr studies indicate the earliest mineralization is trend ore at Ambrosia Lake and Smith Lake, dated at 139 +- 9.5 m.y. This date is similar to that for barren-rock montmorillonite from the Jackpile sandstone (Late Jurassic): 142 +- 14 m.y.; it may be used, with caution, to indicate the minimum age of sedimentation for the Morrison Formation. Geologic evidence indicates epigenetic rather than syngenetic ore formation. Barren-rock montmorillonites from Ambrosia Lake yield a poorly defined isochron of 132 +- 26 m.y. Early formed ore at the Jackpile-Paguate mine, Laguna district, was remobilized and reprecipitated at 113 +- 7 m.y. This date is older than the range of dates for the Dakota Formation (Cretaceous) and Mancos Shale. The 113 +- 7 m.y. mid-Cretaceous date for the Jackpile-Paguate ore is consistent with geologic evidence; geologic control suggests that other ore deposits are post-Late Jurassic but pre-Dakota Formation. Based on geologic evidence, mineralization in the Dakota Formation is thought to be very young. Laramide mineralization (60 to 70 m.y.) is evidenced by the presence of some stack ore. At least one uranium deposit, located partly in oxidized ground at the main redox front of the Grants mineral belt, may represent Tertiary mineralization; the clay-mineral Rb-Sr systematics of this deposit have been severely perturbed. Younger mineralization is indicated by U-Pb dates on uranophane (9 to 10 m.y.), and Pleistocene mineralization is noted for some ore. U-Pb dates of U/sup 4 +/ -rich ore minerals cluster between 80 and 100 m.y., although some are as old as 140 to 150 m.y. K-Ar dates on clay minerals range from 49 to 138 m.y. The reasons for this scatter are not known, although loss of radiogenic /sup 40/Ar due to burial is probable.

Brookins, D.G.

1980-01-01T23:59:59.000Z

204

Minerals yearbook: Mineral industries of Africa. Volume 3. 1990 international review  

SciTech Connect

The 53 countries that constituted Africa in 1990 accounted for a significant portion of total world output of a number of mineral commodities. Among the most significant to be produced in Africa were andalusite, antimony, asbestos, bauxite, chromite, coal, cobalt, copper, diamond, fluorspar, gold, lithium minerals, manganese, phosphate, platinum-group metals, the titanium minerals--ilmenite and rutile, vanadium, vermiculite, uranium, and zircon. Several of these, chromite, cobalt, diamond, and manganese, were not produced in the United States.

Not Available

1990-01-01T23:59:59.000Z

205

Mineral and water resources of Nevada  

SciTech Connect

The mineral and water resources of Nevada are summarily described in this report. Following a general description of the mineral industry and of the geology of the State as a whole, the occurrence, distribution, and relative importance of individual commodities are discussed in some detail. All mineral commodities are described that are known to occur in Nevada and that might have economic significance in the foreseeable future, whether or not they have been mined. In the description of the geology of the State, a section on economic geology describes the distribution of the metallic and nonmetallic mineral deposits both areally and with respect to the general geologic features. A knowledge of the pattern of distribution of known mineral deposits of various types is essential to the successful search for new ore bodies. A section on mineral exploration discusses the methods and problems of exploration, and also considers which commodities in Nevada offer the greatest promise of new discoveries in the future. Water resources are described rather fully in this report; water in this generally arid part of the Great Basin is vital to the economy of the State and to the well-being of its people. Sources of waterpower and geothermal power are also discussed. (auth)

1974-01-01T23:59:59.000Z

206

Characterization of Minerals and Ceramics  

Science Conference Proceedings (OSTI)

Mar 13, 2012... FeCl2 and FeCl3 chlorides with ammonia in a microfluidic reactor; ... Synthesis and Characterization of Al, Ag, Ti, Cu, and B Substituted ... and the melting temperature and melting mechanisms has been studied. ... features such as stoichiometry, morphology of the products, reaction times and structures.

207

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2003-12-18T23:59:59.000Z

208

DUF6 Project Doubles Production in 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 November 26, 2013 - 12:00pm Addthis LEXINGTON, Ky. - The conversion plants at EM's Paducah and Portsmouth sites surpassed a fiscal year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier. EM's Portsmouth Paducah Project Office (PPPO) and contractor Babcock & Wilcox Conversion Services LLC (BWCS) began operations in 2011 to convert the nation's 800,000-metric-ton inventory of DUF6 to more benign forms for sale, ultimate disposal or long-term storage. "Since 2011, we have been ramping up production to determine and achieve the safe, sustainable operating rate of the plants," said George E.

209

DUF6 Project Doubles Production in 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 DUF6 Project Doubles Production in 2013 November 26, 2013 - 12:00pm Addthis LEXINGTON, Ky. - The conversion plants at EM's Paducah and Portsmouth sites surpassed a fiscal year 2013 goal by converting 13,679 metric tons of depleted uranium hexafluoride (DUF6), more than doubling production a year earlier. EM's Portsmouth Paducah Project Office (PPPO) and contractor Babcock & Wilcox Conversion Services LLC (BWCS) began operations in 2011 to convert the nation's 800,000-metric-ton inventory of DUF6 to more benign forms for sale, ultimate disposal or long-term storage. "Since 2011, we have been ramping up production to determine and achieve the safe, sustainable operating rate of the plants," said George E.

210

THE BLACK-EARED MINER A DECADE OF RECOVERY  

E-Print Network (OSTI)

THE BLACK-EARED MINER A DECADE OF RECOVERY David Baker-Gabb 2007 #12;Copyright © 2007. All or otherwise without prior written permission. The Black-eared Miner. A Decade of Recovery. © 2007 Black-eared Miner Recovery Team. Recommended citation: Baker-Gabb, D. (2007). The Black-eared Miner. A Decade

Frappell, Peter

211

FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

2006-12-06T23:59:59.000Z

212

FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

2007-03-31T23:59:59.000Z

213

Mining and Minerals Policy Act of 1970 | Open Energy Information  

Open Energy Info (EERE)

and Minerals Policy Act of 1970 and Minerals Policy Act of 1970 Jump to: navigation, search Statute Name Mining and Minerals Policy Act of 1970 Year 1970 Url Actof1970.jpg Description An amendment to the Mineral Leasing Act References Mining and Minerals Policy Act of 1970[1] The Mining and Minerals Policy Act of 1970 (30 U.S.C. § 21 et seq.) - An amendment to the Mineral Leasing Act, this statute encompasses both hard rock mining and oil and gas and established modern federal policy regarding mineral resources in the United States. The Act articulates a national interest to foster and encourage private enterprise while mitigating adverse environmental impacts. References ↑ "Mining and Minerals Policy Act of 1970" Retrieved from "http://en.openei.org/w/index.php?title=Mining_and_Minerals_Policy_Act_of_1970&oldid=334610"

214

Land Application Uses for Dry Flue Gas Desulfurization By-Products: Phase 2  

Science Conference Proceedings (OSTI)

The utility industry currently generates about 20 million tons of flue gas desulfurization (FGD) by-products annually, and the quantity is expected to increase as utilities institute further controls to comply with Clean Air Act requirements. This report presents the results of the second phase of a large-scale study of beneficial land-use applications of these by-products.

1998-04-10T23:59:59.000Z

215

Carbonate Mineralization of Volcanic Province Basalts  

Science Conference Proceedings (OSTI)

Flood basalts are receiving increasing attention as possible host formations for geologic sequestration of anthropogenic CO2, with studies underway in the United States, India, Iceland, and Canada. As an extension of our previous experiments with Columbia River basalt, basalts from the eastern United States, India, and South Africa were reacted with aqueous dissolved CO2 and aqueous dissolved CO2-H2S mixtures under supercritical CO2 (scCO2) conditions to study the geochemical reactions resulting from injection of CO2 in such formations. The results of these studies are consistent with cation release behavior measured in our previous experiments (in press) for basalt samples tested in single pass flow through dissolution experiments under dilute solution and mildly acidic conditions. Despite the basalt samples having similar bulk chemistry, mineralogy and apparent dissolution kinetics, long-term static experiments show significant differences in rates of mineralization as well as compositions and morphologies of precipitates that form when the basalts are reacted with CO2-saturated water. For example, basalt from the Newark Basin in the United States was by far the most reactive of any basalt tested to date. Carbonate reaction products for the Newark Basin basalt were globular in form and contained significantly more Fe than the secondary carbonates that precipitated on the other basalt samples. In comparison, the post-reacted samples associated with the Columbia River basalts from the United States contained calcite grains with classic dogtooth spar morphology and trace cation substitution (Mg and Mn). Carbonation of the other basalts produced precipitates with compositions that varied chemically throughout the entire testing period. Examination of polished cross sections of the reacted grains by scanning electron microscopy and energy dispersive x-ray spectroscopy show precipitate overgrowths with varying chemical compositions. Compositional differences in the precipitates suggest changes in fluid chemistry unique to the dissolution behavior of each basalt sample reacted with CO2-saturated water. The Karoo basalt from South Africa appeared the least reactive, with very limited mineralization occurring during the testing with CO2-saturated water. The relative reactivity of different basalt samples were unexpectedly different in the experiments conducted using aqueous dissolved CO2-H2S mixtures versus those reacted with aqueous dissolved CO2 mixtures. For example, the Karoo basalt was highly reactive in the presence of aqueous dissolved CO2-H2S, as evident by small nodules of carbonate coating the basalt grains after 181 days of testing. However the most reactive basalt in CO2-H2O, Newark Basin, formed limited amounts of carbonate precipitates in the presence of aqueous dissolved CO2-H2S mixture. Basalt reactivity in CO2-H2O mixtures appears to be controlled by the composition of the glassy mesostasis, which is the most reactive component in the basalt rock. With the addition of H2S to the CO2-H2O system, basalt reactivity appears to be controlled by precipitation of coatings of insoluble Fe sulfides.

Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

2010-03-31T23:59:59.000Z

216

MINERAL RESOURCES Mineral Resources is divided into two subsections: general and  

E-Print Network (OSTI)

: subsidies and tax incentives; regulations; research programs; and mining laws. The energy minerals; geothermal energy; coal; and other miscellaneous energy technology. General Folder 363. Mineral Resources-1965. Statement of Assistant Secretary of Interior C. Girard Davidson before the House Subcommittee on Mines

US Army Corps of Engineers

217

CO2 Mineral Sequestration Studies in US  

NLE Websites -- All DOE Office Websites (Extended Search)

Mineral Sequestration Studies in US Mineral Sequestration Studies in US Philip Goldberg 1 , Zhong-Ying Chen 2 , William O'Connor 3 , Richard Walters 3 , and Hans Ziock 4 1 National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, PA 15236, goldberg@netl.doe.gov, (412)386-5806 2 Science Applications International Corporation, 1710 Goodridge Dr. McLean, VA, zhong- ying.chen@saic.com, (703)676-7328 3 Albany Research Center, Albany, OR oconner@arc.doe.gov, walters@alrc.doe, (541)967-5834 4 Los Alamos National Laboratory, Los Alamos, NM, ksl@lanl.gov, ziock@lanl.gov, (505)667- 7265 Abstract Carbon sequestration by reacting naturally occurring Mg and Ca containing minerals with CO 2 to form carbonates has many unique advantages. Most notably is the fact that carbonates have a lower energy state than CO

218

Saving Tons at the Register  

NLE Websites -- All DOE Office Websites (Extended Search)

Brown, and Max H. Sherman Conference Name Proceedings of the 1998 ACEEE Summer Study on Energy Effciency in Buildings, Pacific Grove, CA Volume 1 Pagination 367-383 Publisher...

219

Property:MineralManager | Open Energy Information  

Open Energy Info (EERE)

MineralManager MineralManager Jump to: navigation, search Property Name MineralManager Property Type Page Pages using the property "MineralManager" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + BLM + C CA-017-05-051 + BLM + CA-170-02-15 + BLM + CA-650-2005-086 + BLM + CA-670-2010-107 + BLM + CA-670-2010-CX + BLM + D DOE-EA-1733 + California + DOE-EA-1759 + Naknek Electric Association + DOE-EA-1849 + BLM + DOE-EIS-0298 + BLM + DOI-BLM-CA-C050-2009-0005-EA + BLM + DOI-BLM-CA-EA-2002-??? + BLM + DOI-BLM-CA-ES-2013-002+1793-EIS + BLM +, BLM + DOI-BLM-ID-220-2009-EA-3709 + BLM + DOI-BLM-ID-B010-2010-0083-CX + BLM + DOI-BLM-ID-I020-2012-0017-CX + BLM + DOI-BLM-ID-T020-2012-0003-CX + BLM + DOI-BLM-NM-L000-2012-0020-DNA + BLM +

220

Energy Production from Zoo Animal Wastes  

SciTech Connect

Elephant and rhinoceros dung was used to investigate the feasibility of generating methane from the dung. The Knoxville Zoo produces 30 cubic yards (23 m{sup 3}) of herbivore dung per week and cost of disposal of this dung is $105/week. The majority of this dung originates from the Zoo's elephant and rhinoceros population. The estimated weight of the dung is 20 metric tons per week and the methane production potential determined in experiments was 0.033 L biogas/g dung (0.020 L CH{sub 4}/g dung), and the digestion of elephant dung was enhanced by the addition of ammonium nitrogen. Digestion was better overall at 37 C when compared to digestion at 50 C. Based on the amount of dung generated at the Knoxville Zoo, it is estimated that two standard garden grills could be operated 24 h per day using the gas from a digester treating 20 metric ton herbivore dung per week.

Klasson, KT

2003-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Carbon dioxide sequestration in cement kiln dust through mineral carbonation  

Science Conference Proceedings (OSTI)

Carbon sequestration through the formation of carbonates is a potential means to reduce CO{sub 2} emissions. Alkaline industrial solid wastes typically have high mass fractions of reactive oxides that may not require preprocessing, making them an attractive source material for mineral carbonation. The degree of mineral carbonation achievable in cement kiln dust (CKD) under ambient temperatures and pressures was examined through a series of batch and column experiments. The overall extent and potential mechanisms and rate behavior of the carbonation process were assessed through a complementary set of analytical and empirical methods, including mass change, thermal analysis, and X-ray diffraction. The carbonation reactions were carried out primarily through the reaction of CO{sub 2} with Ca(OH){sub 2}, and CaCO{sub 3} was observed as the predominant carbonation product. A sequestration extent of over 60% was observed within 8 h of reaction without any modifications to the waste. Sequestration appears to follow unreacted core model theory where reaction kinetics are controlled by a first-order rate constant at early times; however, as carbonation progresses, the kinetics of the reaction are attenuated by the extent of the reaction due to diffusion control, with the extent of conversion never reaching completion. 35 refs., 3 figs., 1 tab.

Deborah N. Huntzinger; John S. Gierke; S. Komar Kawatra; Timothy C. Eisele; Lawrence L. Sutter [University of Michigan, Ann Arbor, MI (United States). Department of Civil and Environmental Engineering

2009-03-15T23:59:59.000Z

222

Process for removal of mineral particulates from coal-derived liquids  

SciTech Connect

Suspended mineral solids are separated from a coal-derived liquid containing the solids by a process comprising the steps of: (a) contacting said coal-derived liquid containing solids with a molten additive having a melting point of 100.degree.-500.degree. C. in an amount of up to 50 wt. % with respect to said coal-derived liquid containing solids, said solids present in an amount effective to increase the particle size of said mineral solids and comprising material or mixtures of material selected from the group of alkali metal hydroxides and inorganic salts having antimony, tin, lithium, sodium, potassium, magnesium, calcium, beryllium, aluminum, zinc, molybdenum, cobalt, nickel, ruthenium, rhodium or iron cations and chloride, iodide, bromide, sulfate, phosphate, borate, carbonate, sulfite, or silicate anions; and (b) maintaining said coal-derived liquid in contact with said molten additive for sufficient time to permit said mineral matter to agglomerate, thereby increasing the mean particle size of said mineral solids; and (c) recovering a coal-derived liquid product having reduced mineral solids content. The process can be carried out with less than 5 wt. % additive and in the absence of hydrogen pressure.

McDowell, William J. (Knoxville, TN)

1980-01-01T23:59:59.000Z

223

Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during uranium bioremediation at Rifle, Colorado  

E-Print Network (OSTI)

2009. Mineral transformation and biomass accumulation duringof mineral precipitates and biomass during bioremediation aton mineral transformation and biomass accumulation during

Li, Li

2010-01-01T23:59:59.000Z

224

Rising production in the Permian basin - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

The source for the crude oil production data series published on July 10 was websites of the Railroad Commission of Texas and the New Mexico Energy, Minerals and ...

225

Fluidization Technologies for the Mineral, Materials, and Energy ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium, Fluidization Technologies for the Mineral, Materials, and Energy Industries.

226

Calculation of fluid-mineral equilibria using the simplex algorithm  

Science Conference Proceedings (OSTI)

Keywords: CHILLER, K-feldspar, PATH, SIMCALC, SIMPLEX, equilibria, fluid-mineral, geochemistry, hydrolysis, mass transfer, paragenesis

J. R. Wood

1993-01-01T23:59:59.000Z

227

SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1  

Science Conference Proceedings (OSTI)

Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron acceptors during anaerobic respiration. The components of respiratory metabolism are localized in the membrane fractions which include the outer membrane and cytoplasmic membrane. Many of the biological components that interact with the various iron forms are proposed to be localized in these membrane fractions. To identify the iron-binding proteins acting either as an iron transporter or as a terminal iron reductase, we used metal-catalyzed oxidation reactions. This system catalyzed the oxidation of amino acids in close proximity to the iron binding site. The carbonyl groups formed from this oxidation can then be labeled with fluoresceinamine (FLNH2). The peptide harboring the FLNH2 can then be proteolytically digested, purified by HPLC and then identified by MALDI-TOF tandem MS. A predominant peptide was identified to be part of SO2907 that encodes a putative TonB-dependent receptor. Compared to wild type (wt), the so2097 gene deletion (?SO2907) mutant has impaired ability to reduce soluble Fe(III), but retains the same ability to respire oxygen or fumarate as the wt. The ?SO2907 mutant was also impacted in reduction of insoluble iron. Iron binding assays using isothermal titration calorimetry and fluorescence tryptophan quenching demonstrated that a truncated form of heterologous-expressed SO2907 that contains the Fe(III) binding site, is capable of binding soluble Fe(III) forms with Kd of approximate 50 ?M. To the best of our knowledge, this is the first report of the physiological role of SO2907 in Fe(III) reduction by MR-1.

Qian, Yufeng; Shi, Liang; Tien, Ming

2011-09-30T23:59:59.000Z

228

West Virginia University College of Engineering and Mineral Resources  

E-Print Network (OSTI)

of designing and managing a modern coal or mineral mining operation, or continuing into research, banking, law or consulting. Fields of Study Surface Mining - Extracting minerals and coal from the earth's surface safely of extracting minerals from the earth. Materials Handling - Efficiently and safely moving people, equipment

Mohaghegh, Shahab

229

Mineral Oil Transport and Fate Investigation at Franklin Station  

Science Conference Proceedings (OSTI)

This report presents results of an investigation to evaluate the fate and transport of mineral oil in the subsurface of a substation. Understanding subsurface migration of mineral oil will help utilities who are involved in cleanup of past mineral oil spills and leaks.

1998-12-31T23:59:59.000Z

230

Solar Grade Silicon from Agricultural By-products  

DOE Green Energy (OSTI)

In this project, Mayaterials developed a low cost, low energy and low temperature method of purifying rice hull ash to high purity (5-6Ns) and converting it by carbothermal reduction to solar grade quality silicon (Sipv) using a self-designed and built electric arc furnace (EAF). Outside evaluation of our process by an independent engineering firm confirms that our technology greatly lowers estimated operating expenses (OPEX) to $5/kg and capital expenses (CAPEX) to $24/kg for Sipv production, which is well below best-in-class plants using a Siemens process approach (OPEX of 14/kg and CAPEX of $87/kg, respectively). The primary limiting factor in the widespread use of photovoltaic (PV) cells is the high cost of manufacturing, compared to more traditional sources to reach 6 g Sipv/watt (with averages closer to 8+g/watt). In 2008, the spot price of Sipv rose to $450/kg. While prices have since dropped to a more reasonable $25/kg; this low price level is not sustainable, meaning the longer-term price will likely return to $35/kg. The 6-8 g Si/watt implies that the Sipv used in a module will cost $0.21-0.28/watt for the best producers (45% of the cost of a traditional solar panel), a major improvement from the cost/wafer driven by the $50/kg Si costs of early 2011, but still a major hindrance in fulfilling DOE goal of lowering the cost of solar energy below $1/watt. The solar cell industry has grown by 40% yearly for the past eight years, increasing the demand for Sipv. As such, future solar silicon price spikes are expected in the next few years. Although industry has invested billions of dollars to meet this ever-increasing demand, the technology to produce Sipv remains largely unchanged requiring the energy intensive, and chlorine dependent Siemens process or variations thereof. While huge improvements have been made, current state-of-the-art industrial plant still use 65 kWh/kg of silicon purified. Our technology offers a key distinction to other technologies as it starts one step upstream from all other Sipv production efforts. Our process starts by producing high purity SiO2/C feedstocks from which Sipv can be produced in a single, chlorine free, final EAF step. Specifically, our unique technology, and the resultant SiO2/C product can serve as high purity feedstocks to existing metallurgical silicon (Simet) producers, allowing them to generate Sipv with existing US manufacturing infrastructure, reducing the overall capital and commissioning schedule. Our low energy, low CAPEX and OPEX process purifies the silica and carbon present in rice hull ash (RHA) at low temperatures (< 200C) to produce high purity (5-6 Ns) feedstock for production of Sipv using furnaces similar to those used to produce Simet. During the course of this project we partnered with Wadham Energy LP (Wadham), who burns 220k ton of rice hulls (RH)/yr generating 200 GWh of electricity/yr and >30k ton/yr RHA. The power generation step produces much more energy (42 kWh/kg of final silicon produced) than required to purify the RHA (5 kWh/kg of Sipv, compared to 65 kWh/kg noted above. Biogenic silica offers three very important foundations for producing high purity silicon. First, wastes from silica accumulating plants, such as rice, corn, many grasses, algae and grains, contain very reactive, amorphous silica from which impurities are easily removed. Second, plants take up only a limited set of, and minimal quantities of the heavy metals present in nature, meaning fewer minerals must be removed. Third, biomass combustion generates a product with intrinsic residual carbon, mixed at nanometer length scales with the SiO2. RHA is 80-90 wt% high surface area (20 m2/g), amorphous SiO2 with some simple mineral content mixed intimately with 5-15 wt% carbon. The mineral content is easily removed by low cost, acid washes using Mayaterials IP, leading to purified rice hull ash (RHAclean) at up to 6N purity. This highly reactive silica is partially extracted from RHAclean at 200 C in an environmentally benign process to adjust SiO2:C ratios to those needed in EA

Richard M. Laine

2012-08-20T23:59:59.000Z

231

Tribology of earthmoving, mining, and minerals processing  

Science Conference Proceedings (OSTI)

Earthmoving, mining, and minerals processing each involve frequent, and often severe, mechanical interactions between metals, and between metals and abrasive nonmetallic and metallic materials (i.e., mineral bearing ores). The abrasive nature of ores causes significant wear to extracting, handling, and processing equipment. Consequently, wear in earthmoving, mining, and minerals processing operations results in the removal of large amounts of material from the wear surfaces of scraping, digging, and ore processing equipment. From an energy point of view, material wear of this nature is classified as an indirect tribological loss (Imhoff et al., 1985). Additionally, a significant amount of energy is expended to overcome frictional forces in the operation of all earthmoving, mining, and minerals processing machinery (i.e., a direct tribological loss). However, in these particular processes, wear losses are more than five times those of frictional losses. In general, the amount of material lost from a particular component in these operations, before it becomes unserviceable, is far greater than that which can be tolerated in typical metal-to-metal wear situations (e.g., lubricated bearing-shaft wear couples in machinery). Consequently, much of the equipment used in earthmoving, mining, and ore processing makes use of easily replaceable or repairable, and preferably low-cost, wear components. The mechanisms by which metal-to-metal and abrasive wear occurs, and the relationships between material properties and wear behavior, are reasonably well-understood in general terms. However, the specific wear mechanisms/wear material interactions that occur during earthmoving, digging, and the processing of ore are more complex, and depend on the wear material, and on the nature of abrasive, the type of loading, and the environment. As a result of this general knowledge, reliable predictions can be made regarding the performance of particular materials under a range of in-service operating conditions. This knowledge has allowed the rational selection of wear-resistant materials for use as earthmoving, mining, and minerals processing components, and new wear-resistant materials can be designed using our knowledge of the impact and abrasion mechanisms encountered in the day-to-day operation of components used in these operations.

Hawk, Jeffrey A.; Wilson, Rick D.

2001-01-01T23:59:59.000Z

232

Indian Mineral Development Act of 1982 | Open Energy Information  

Open Energy Info (EERE)

Mineral Development Act of 1982 Mineral Development Act of 1982 Jump to: navigation, search Statute Name Indian Mineral Development Act Year 1982 Url IndianDevelopment1982.jpg Description Provides for tribes to enter into energy development agreements with DOI approval References Indian Mineral Development Act of 1982[1] Bureau of Indian Affairs[2] The Indian Mineral Development Act of 1982 (IMDA) 25 U.S.C. Secs. 2101-2108 was enacted to provide Indian tribes with flexibilty in the development and sale of mineral resources. S.Rep. No. 97-472, 97th Cong.2d Sess. 2 (1982). Foremost among the beneficial effects of IMDA was the opportunity for Indian tribes to enter into joint venture agreements with mineral developers. The contractual relationships permitted by IMDA were designed to meet two objectives: First, to further the policy of self-determination

233

Relations Of Ammonium Minerals At Several Hydrothermal Systems In The  

Open Energy Info (EERE)

Relations Of Ammonium Minerals At Several Hydrothermal Systems In The Relations Of Ammonium Minerals At Several Hydrothermal Systems In The Western Us Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Relations Of Ammonium Minerals At Several Hydrothermal Systems In The Western Us Details Activities (5) Areas (1) Regions (0) Abstract: Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing

234

Advanced Research Power Program--CO2 Mineral Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Sequestration Robert Romanosky National Energy Technology Laboratory Mineral Carbonation Workshop August 8, 2001 Advanced Research Power Program Descriptor - include initials, /org#/date Mineral Sequestration Research Research effort seeks to refine and validate a promising CO 2 sequestration technology option, mineral sequestration also known as mineral carbonation Descriptor - include initials, /org#/date What is Mineral Carbonation * Reaction of CO 2 with Mg or Ca containing minerals to form carbonates * Lowest energy state of carbon is a carbonate and not CO 2 * Occurs naturally in nature as weathering of rock * Already proven on large scale - Carbonate formation linked to formation of the early atmosphere Descriptor - include initials, /org#/date Advantages of Mineral Carbonation

235

Table 39. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

State/Refiner/Location Alkylates Aromatics State/Refiner/Location Alkylates Aromatics Isobutane Lubricants Isomers Isopentane and Isohexane Asphalt and Road Oil Marketable Petroleum Coke Hydrogen (MMcfd) Sulfur (short tons per day) Table 4. Production Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) Isooctane a

236

Goa, India Risk Assessment of Surface Miner for Estonian Oil Shale Mining Industry  

E-Print Network (OSTI)

The paper deals with risk assessment of a high-selective oil-shale mining technology using surface miner Wirtgen 2500SM. This study addresses risk associated with productivity and cutting quality on example of Estonian oil shale deposit in areas with complicated layering conditions. The risk assessment method allows choosing relevant technology with friendly environment and economic value. For risk estimation the event tree is used. The results of the risk assessment are of practical interest for different purposes. 1

S. Sabanov; J-r. Pastarus; O. Nikitin; E. Väli

2008-01-01T23:59:59.000Z

237

Roadmap to the Project: Uranium Miners Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Roadmap DOE Roadmap Experiments List Oral Histories Records Series Descriptions Overview Documents Declassified Documents Project Events ACHRE Report Uranium Miners Resources Building Public Trust Department of Defense Report FINAL REPORT OF THE RADIATION EXPOSURE COMPENSATION ACT COMMITTEE SUBMITTED TO THE HUMAN RADIATION INTERAGENCY WORKING GROUP JULY, 1996 CONTENTS Executive Summary Proposed Amendments to the Statute Recommended Modifications to the Department of Justice Regulations Introduction Issues Relating to Compensation for Lung Cancer Statutory and Regulatory Framework for Compensation Fairness of the Present Statutory Compensation Criteria Alternative Compensation Criteria Description of the Relative Risk Model Used to Derive Proposed Alternative Criteria, and Model Parameters

238

GIS-technologies for integrated assessment of the productive mining areas  

Science Conference Proceedings (OSTI)

The paper describes the bases of a new application of GIS-technologies for integrated assessment and comparison of the productive mining areas, involving a wide range of mining and technological factors, considering mineral properties, mineral occurrence conditions and geographical advantages of a mineral deposit location. The model capabilities are exemplified by a comparison of technological characteristics of coals, transportation and power supply infrastructure of the productive mining areas at the Kuznetsk Coal Basin.

Zamaraev, R.Y.; Oparin, V.N.; Popov, S.E.; Potapov, V.P.; Pyastunovich,O.L. [Russian Academy of Sciences, Kemerovo (Russian Federation)

2008-05-15T23:59:59.000Z

239

Development of a CO2 Sequestration Module by Integrating Mineral Activation and Aqueous Carbonation  

Science Conference Proceedings (OSTI)

Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw materials and the permanent storage of CO{sub 2} in solid form as carbonates. The sequestration of CO{sub 2} through the employment of magnesium silicates--olivine and serpentine--is beyond the proof of concept stage. For the work done in this project, serpentine was chosen as the feedstock mineral due to its abundance and availability. Although the reactivity of olivine is greater than that of serpentine, physical and chemical treatments have been shown to increase greatly the reactivity of serpentine. The primary drawback to mineral carbonation is reaction kinetics. To accelerate the carbonation, aqueous processes are preferred, where the minerals are first dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface-controlled. The relatively low reactivity of serpentine has warranted research into physical and chemical treatments that have been shown to greatly increase its reactivity. The use of sulfuric acid as an accelerating medium for the removal of magnesium from serpentine has been investigated. To accelerate the dissolution process, the mineral can be ground to very fine particle size, 185 C, >13 MPa, and control on the dissolution via the removal of water, which is closely correlated with the extraction of magnesium from serpentine. Single-variable experimentation demonstrated dissolution enhancements with increased reaction time and temperature. An increase in magnesium dissolution of 46% and 70%, relative to a baseline test, occurred for increased reaction time and temperature, respectively. In addition to the challenges presented by the dissolution of serpentine, another challenge is the subsequent carbonation of the magnesium ions. A stable hydration sphere for the magnesium ion reduces the carbonation kinetics by obstructing the formation of the carbonation products. Accordingly, this research has evaluated the solubility of carbon dioxide in aqueous solution, the interaction between the dissociation products of carbon dioxide, and the carbonation potential of the magnesium ion.

George Alexander; Parvana Aksoy; John Andresen; Mercedes Maroto-Valer; Harold Schobert

2006-08-14T23:59:59.000Z

240

Mineral revenues: the 1983 report on receipts from Federal and Indian leases with summary data from 1920 to 1983  

DOE Green Energy (OSTI)

Tables and figures abound for: mineral revenue management in 1983; offshore federal mineral revenues; onshore federal mineral revenues; Indian mineral revenues; distribution of federal and Indian mineral revenues; plus appended lease management data. (PSB)

Not Available

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

3rd International Conference on Sustainable Development Indicators 73 in the Minerals Industry, June 2007, Milos island, Greece  

E-Print Network (OSTI)

philosophy. Continued production of minerals and fossil energy fuels may not fit into commonly under- stood dominating the energy mix. US electricity generation relies heavily on fossil fu- els. Coal is the dominant to be a crucial element in a modern, bal- anced energy portfolio, providing a bridge to the future as an important

242

New Geophysical Technique for Mineral Exploration and Mineral Discrimination Based on Electromagnetic Methods  

DOE Green Energy (OSTI)

The research during the first two years of the project was focused on developing the foundations of a new geophysical technique for mineral exploration and mineral discrimination, based on electromagnetic (EM) methods. The developed new technique is based on examining the spectral induced polarization effects in electromagnetic data using effective-medium theory and advanced methods of 3-D modeling and inversion. The analysis of IP phenomena is usually based on models with frequency dependent complex conductivity distribution. In this project, we have developed a rigorous physical/mathematical model of heterogeneous conductive media based on the effective-medium approach. The new generalized effective-medium theory of IP effect (GEMTIP) provides a unified mathematical method to study heterogeneity, multi-phase structure, and polarizability of rocks. The geoelectrical parameters of a new composite conductivity model are determined by the intrinsic petrophysical and geometrical characteristics of composite media: mineralization and/or fluid content of rocks, matrix composition, porosity, anisotropy, and polarizability of formations. The new GEMTIP model of multi-phase conductive media provides a quantitative tool for evaluation of the type of mineralization, and the volume content of different minerals using electromagnetic data. We have developed a 3-D EM-IP modeling algorithm using the integral equation (IE) method. Our IE forward modeling software is based on the contraction IE method, which improves the convergence rate of the iterative solvers. This code can handle various types of sources and receivers to compute the effect of a complex resistivity model. We have demonstrated that the generalized effective-medium theory of induced polarization (GEMTIP) in combination with the IE forward modeling method can be used for rock-scale forward modeling from grain-scale parameters. The numerical modeling study clearly demonstrates how the various complex resistivity models manifest differently in the observed EM data. These modeling studies lay a background for future development of the IP inversion method, directed at determining the electrical conductivity and the intrinsic chargeability distributions, as well as the other parameters of the relaxation model simultaneously. The new technology introduced in this project can be used for the discrimination between uneconomic mineral deposits and the location of zones of economic mineralization and geothermal resources.

Michael S. Zhdanov

2009-03-09T23:59:59.000Z

243

Roadmap to the Project: Uranium Miners Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

EXECUTIVE SUMMARY EXECUTIVE SUMMARY On October 15, 1990, Congress passed the Radiation Exposure Compensation Act of 1990 (RECA), which provided for compassionate payments to individuals who suffered from specified diseases presumably as a result of exposure to radiation in connection with the federal government's nuclear weapons testing program. Among those eligible for compensation under the Act are individuals who were employed in underground uranium mines in Arizona, Colorado, New Mexico, Utah or Wyoming during the 1947 to 1971 time period, who were exposed to specified minimum levels of radon, and who contracted specified lung disorders. The Department of Justice administers the RECA through the Radiation Exposure Compensation Program (Program). The provisions of the RECA defining compensation for uranium miners have been characterized by critics as unfair and inconsistent with current scientific information. The regulations of the Department of Justice implementing the statute have also been criticized as being unnecessarily stringent and unreasonably burdensome. These criticisms were noted, and in some cases affirmed, by the President's Advisory Committee on Human Radiation Experiments, charged by the President to investigate the history of human radiation experimentation conducted by the federal government during the Cold War period. In its Final Report, issued on October 3, 1995, the Advisory Committee recommended, among other things, that the Administration review the provisions of RECA governing compensation for uranium miners and the implementing regulations to ensure that they are fair, consistent with current scientific evidence, and compatible with the objectives of the Act.

244

Thermally Speciated Mercury in Mineral Exploration | Open Energy  

Open Energy Info (EERE)

Thermally Speciated Mercury in Mineral Exploration Thermally Speciated Mercury in Mineral Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Thermally Speciated Mercury in Mineral Exploration Abstract Abstract unavailable. Author S.C. Smith Conference IGES; Dublin, CA; 2003/09/01 Published IGES, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Citation S.C. Smith. 2003. Thermally Speciated Mercury in Mineral Exploration. In: Programs & Abstracts: Soil and Regolith Geochemistry in the Search for Mineral Deposits. IGES; 2003/09/01; Dublin, CA. Dublin, CA: IGES; p. 78 Retrieved from "http://en.openei.org/w/index.php?title=Thermally_Speciated_Mercury_in_Mineral_Exploration&oldid=681717" Categories: References Geothermal References

245

Radioactive Mineral Occurences in Nevada | Open Energy Information  

Open Energy Info (EERE)

Radioactive Mineral Occurences in Nevada Radioactive Mineral Occurences in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Radioactive Mineral Occurences in Nevada Abstract Abstract unavailable. Author Larry J. Garside Organization Nevada Bureau of Mines and Geology Published Nevada Bureau of Mines and Geology, 1973 Report Number Open File Report 94-2 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Radioactive Mineral Occurences in Nevada Citation Larry J. Garside (Nevada Bureau of Mines and Geology). 1973. Radioactive Mineral Occurences in Nevada. Reno, NV: Nevada Bureau of Mines and Geology. Report No.: Open File Report 94-2. Retrieved from "http://en.openei.org/w/index.php?title=Radioactive_Mineral_Occurences_in_Nevada&oldid=690513"

246

Mineral Test Hole Regulatory Act (Tennessee) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mineral Test Hole Regulatory Act (Tennessee) Mineral Test Hole Regulatory Act (Tennessee) Mineral Test Hole Regulatory Act (Tennessee) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Mineral Hole Regulatory Act is applicable to any person (individual, corporation, company, association, joint venture, partnership, receiver, trustee, guardian, executor, administrator, personal representative or private organization of any kind) who wishes to drill a mineral test hole (any hole in excess of one hundred (100) feet drilled during the exploration for minerals but shall exclude auger drilling in surficial or

247

Minerals Processing Research Institute Louisiana State University  

E-Print Network (OSTI)

................................................202 5.8 Algae Oil Production ...................................................................................................................207 5.9 Gasification of Corn Stover...........................................252 7.4 Case Study III - Parametric Study of Algae Oil Production Costs

Pike, Ralph W.

248

Evaluation of coal minerals and metal residues as coal-liquefaction catalysts. Final report  

DOE Green Energy (OSTI)

The catalytic activity of various minerals, metallic wastes, and transition metals was investigated in the liquefaction of various coals. The effects of coal type, process variables, coal cleaning, catalyst addition mode, solvent quality, and solvent modification on coal conversion and oil production were also studied. Coal conversion and oil production improved significantly by the addition of pyrite, reduced pyrite, speculite, red mud, flue dust, zinc sulfide, and various transition metal compounds. Impregnation and molecular dispersion of iron gave higher oil production than particulate incorporation of iron. However, the mode of molybdenum addition was inconsequential. Oil production increased considerably both by adding a stoichiometric mixture of iron oxide and pyrite and by simultaneous impregnation of coal with iron and molybdenum. Hydrogenation activity of disposable catalysts decreased sharply in the presence of nitrogen compounds. The removal of heteroatoms from process solvent improved thermal as well as catalytic coal liquefaction. The improvement in oil production was very dramatic with a catalyst.

Garg, D.; Givens, E. N.; Schweighardt, F. K.; Tarrer, A. R.; Guin, J. A.; Curtis, C. W.; Huang, W. J.; Shridharani, K.; Clinton, J. H.

1982-02-01T23:59:59.000Z

249

Biogas yield and quality improvement and purification with natural minerals.  

E-Print Network (OSTI)

??Research goal and objective. To investigate the possibilities of the use of mineral raw materials of local origin for the purification of biogas produced from… (more)

?iutelyt?, R?ta

2013-01-01T23:59:59.000Z

250

DOE - Office of Legacy Management -- Heavy Minerals Inc - IL...  

Office of Legacy Management (LM)

Subject: FUSRAP Considered Site Recommendation; July 9, 1990. IL.14-2 - Heavy Minerals Co. Letter; Wyatt to Faulkner; Subject: Crude Thorium Hydroxide Proposal; December 1, 1954...

251

Climate VISION: PrivateSector Initiatives: Minerals - Industry...  

Office of Scientific and Technical Information (OSTI)

together to achieve common goals. Industrial minerals - ball clay, bentonite, borates, feldspar, industrial sand, mica, soda ash and talc - are a miraculous gift from times past....

252

Hyperspectral mineral mapping in support of geothermal exploration...  

Open Energy Info (EERE)

2004 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hyperspectral mineral mapping in support of geothermal exploration- Examples...

253

Epithermal Gold Mineralization and a Geothermal Resource at Blue...  

Open Energy Info (EERE)

1991 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,...

254

Climate VISION: Private Sector Initiatives: Minerals: GHG Information  

Office of Scientific and Technical Information (OSTI)

Read the Industrial Minerals Association - North America (IMA-NA) 2011 Greenhouse Gas and Energy Survey Industry Summary for the period from 2000 to 2010 (PDF 16 KB)...

255

Reclamation of Land Used for Mineral Mining (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation aims to provide for the rehabilitation and conservation of land affected by the mining of minerals through proper planning, proper use of appropriate methods of mining,...

256

Application of Biomass Waste Materials in the Nano Mineral Synthesis  

Science Conference Proceedings (OSTI)

Some of the biomass waste material were effectively applied to the nano-sized minerals synthesis under conrolled boundry experimenta conditions.

257

Energy Efficiency in Mineral Processing Industry Using High ...  

Science Conference Proceedings (OSTI)

Presentation Title, Energy Efficiency in Mineral Processing Industry Using High ... These studies were prepared by Tetra Tech on eight different projects at ...

258

Investigation on Mineral, Microstructure and Activity of Coal Gangue ...  

Science Conference Proceedings (OSTI)

In this study, seven coal gangue samples covering a wide range of chemical composition were collected from Shanxi Province, China. The mineral composition ...

259

Heterogeneous Reactions on Mineral Dust: Surface Reactions of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactions on Mineral Dust: Surface Reactions of Sulfur Dioxide, Ozone, Nitric and Acetic Acid on Oxide and Carbonate Particles Speaker(s): Vicki Grassian Date: June 14,...

260

Climate VISION: PrivateSector Initiatives: Minerals - Resources...  

Office of Scientific and Technical Information (OSTI)

of IntentAgreements Work Plans GHG Information GHG Inventory Protocols Resources & Links Energy Management Industry Associations Software Tools Results Minerals - Resources &...

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Review Of Water Contents Of Nominally Anhydrous Natural Minerals...  

Open Energy Info (EERE)

A Review Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

262

Climate VISION: Private Sector Initiatives: Minerals: GHG Inventory...  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols Read the Industrial Minerals Association - North America (IMA-NA) Borates and Soda Ash Sections Greenhouse Gas Inventory Protocol (PDF 75 KB) Download...

263

Mineralization of Synthetic Polymer Scaffolds: A Bottom-Up ...  

Mineralization of Synthetic Polymer Scaffolds: A Bottom-Up Approach for the Development of Artificial Bone Jie Song,*,†,‡ Viengkham Malathong,† and Carolyn R ...

264

Improving the Health & Performance of Miners Working at Moderate ...  

Science Conference Proceedings (OSTI)

Cross Pollination between Industry and Engineering Programs/Students in Manitoba · Improving the Health & Performance of Miners Working at Moderate to

265

Optimization on Compression Strength of Resin Mineral Composite  

Science Conference Proceedings (OSTI)

Abstract Scope, Using natural granite particles as aggregate and organic resin as binder, resin mineral composite (RMC) has good vibration damping properties ...

266

A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics  

SciTech Connect

Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. The injected CO{sub 2} is expected to react with the host rocks and these reactions can potentially alter the porosity, permeability, and mechanical properties of the host or cap rocks. Reactions can also result in precipitation of carbonate-containing minerals that favorably and permanently trap CO{sub 2} underground. Many numerical models have been used to predict these reactions for the carbon sequestration program. However, a firm experimental basis for predicting silicate reaction kinetics in CO{sub 2} injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation of silicate dissolution rates at conditions pertinent to geological carbon sequestration. In this four year research grant (three years plus a one year no cost extension), seven (7) laboratory experiments of CO{sub 2}-rock-water interactions were carried out. An experimental design allowed the collection of water samples during experiments in situ and thus prevented back reactions. Analysis of the in situ samples delineated the temporal evolution of aqueous chemistry because of CO{sub 2}-rock-water interactions. The solid products of the experiments were retrieved at the end of the experimental run, and analyzed with a suite of advanced analytical and electron microscopic techniques (i.e., atomic resolution transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron microprobe, X-ray diffraction, X-ray photoelectron spectroscopy (XPS)). As a result, the research project probably has produced one of the best data sets for CO{sub 2}-rock-water interactions in terms of both aqueous solution chemistry and solid characterization. Three experiments were performed using the Navajo sandstone. Navajo sandstone is geologically equivalent to the Nugget sandstone, which is a target formation for a regional partnership injection project. Our experiments provided the experimental data on the potential CO{sub 2}-rock-water interactions that are likely to occur in the aquifer. Geochemical modeling was performed to interpret the experimental results. Our single mineral (feldspar) experiments addressed a basic research need. i.e., the coupled nature of dissolution and precipitation reactions, which has universal implication to the reaction kinetics as it applied to CO{sub 2} sequestration. Our whole rock experiments (Navajo sandstone) addressed the applied research component, e.g., reacting Navajo sandstone with brine and CO{sub 2} has direct relevance on the activities of a number of regional partnerships. The following are the major findings from this project: (1) The project generated a large amount of experimental data that is central to evaluating CO{sub 2}-water-rock interactions and providing ground truth to predictive models, which have been used and will inevitably be increasingly more used in carbon sequestration. (2) Results from the feldspar experiments demonstrated stronger coupling between dissolution and precipitation reactions. We show that the partial equilibrium assumption did not hold in the feldspar hydrolysis experiments (Zhu and Lu, submitted, Appendix A-2). The precipitation of clay minerals influenced dissolution of primary silicate in a much stronger way as previously envisioned. Therefore, our experimental data indicated a much more complex chemical kinetics as it has been applied to carbon sequestration program in terms of preliminary predictive models of CO{sub 2}-rock-water interactions. Adopting this complexity (strong coupling) may influence estimates of mineral trapping and porosity/permeability for geological carbon sequestration. In general, our knowledge of the coupling of different reactions is poor, and we must consider the uncertainties resultin

Chen Zhu

2008-08-31T23:59:59.000Z

267

Rules and Regulations Governing Leasing for Production or Extraction of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leasing for Production or Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands (Mississippi) Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands (Mississippi) < Back Eligibility Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Retail Supplier Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Development Authority The Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands is applicable to the natural gas sector. This law delegates the power to lease, for mineral

268

Water-bearing minerals on mars: source of observed mid-latitude water?  

DOE Green Energy (OSTI)

The Odyssey spacecraft documented the existence of heterogeneously distributed hydrogen at martian mid-latitudes, suggesting that large areas of the near-equatorial highlands contain near-surface deposits of 'chemically and/or physically bound H20 and/or OH' in amounts up to 3 .8% equivalent H20. Shallow occurrences of water ice are not stable near the martian equator, making the hydrogen deposits at these latitudes somewhat enigmatic. Clay minerals and zeolites have both been proposed as possible water-bearing constituents on Mars, and both are common terrestrial alteration products of hydrovolcanic basaltic ashes and palagonitic material comparable to those that may be widespread on Mars. Smectites within martian meteorites, attributed to hydrous alteration on Mars rather than on Earth, provide direct evidence of clay minerals from Mars. In addition, new thermal emission spectrometer (TES) data provide good evidence for unspecified zeolites in martian surface dust [6] . The nature of the hydrogen-containing material observed in the equatorial martian regolith is of particular importance to the question of whether hydrous minerals have formed in the past on Mars. Also, whether these minerals exist in a hydrated (i .e., containing H2O molecules in their structures) or dehydrated state is a crucial question . The existence of hydrous minerals is also important in connection with their possible role in affecting the diurnal variation of the martian atmosphere, in their potential role in unraveling the paleohydrology and paleobiology of Mars, and in their possible use as a water resource to support exploration of the martian mid-latitudes.

Bish, D. L. (David L.); Carey, J. W. (James W.); Fialips, C. I. (Clair I.)

2003-01-01T23:59:59.000Z

269

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

Shale Energy and Oil Shale Minerals within the Production ofproduction – use of carbide slag Cement with low lime saturation factor Calcareous oil shaleoil shale can be used as an alternative feedstock and partial fuel substitute in clinker production.

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

270

New Geophysical Technique for Mineral Exploration and Mineral Discrimination Based on Electromagnetic Methods  

DOE Green Energy (OSTI)

The research during the first year of the project was focused on developing the foundations of a new geophysical technique for mineral exploration and mineral discrimination, based on electromagnetic (EM) methods. The proposed new technique is based on examining the spectral induced polarization effects in electromagnetic data using modern distributed acquisition systems and advanced methods of 3-D inversion. The analysis of IP phenomena is usually based on models with frequency dependent complex conductivity distribution. One of the most popular is the Cole-Cole relaxation model. In this progress report we have constructed and analyzed a different physical and mathematical model of the IP effect based on the effective-medium theory. We have developed a rigorous mathematical model of multi-phase conductive media, which can provide a quantitative tool for evaluation of the type of mineralization, using the conductivity relaxation model parameters. The parameters of the new conductivity relaxation model can be used for discrimination of the different types of rock formations, which is an important goal in mineral exploration. The solution of this problem requires development of an effective numerical method for EM forward modeling in 3-D inhomogeneous media. During the first year of the project we have developed a prototype 3-D IP modeling algorithm using the integral equation (IP) method. Our IE forward modeling code INTEM3DIP is based on the contraction IE method, which improves the convergence rate of the iterative solvers. This code can handle various types of sources and receivers to compute the effect of a complex resistivity model. We have tested the working version of the INTEM3DIP code for computer simulation of the IP data for several models including a southwest US porphyry model and a Kambalda-style nickel sulfide deposit. The numerical modeling study clearly demonstrates how the various complex resistivity models manifest differently in the observed EM data. These modeling studies lay a background for future development of the IP inversion method, directed at determining the electrical conductivity and the intrinsic chargeability distributions, as well as the other parameters of the relaxation model simultaneously. The new technology envisioned in this proposal, will be used for the discrimination of different rocks, and in this way will provide an ability to distinguish between uneconomic mineral deposits and the location of zones of economic mineralization and geothermal resources.

Michael S. Zhdanov

2005-03-09T23:59:59.000Z

271

Growth and Characterization of Complex Mineral Surfaces  

SciTech Connect

Precipitation of mineral aggregates near the Earth's surface or in subsurface fractures and cavities often produces complex microstructures and surface morphologies. Here we demonstrate how a simple surface normal growth (SNG) process may produce microstructures and surface morphologies very similar to those observed in some natural carbonate systems. A simple SNG model was used to fit observed surfaces, thus providing information about the growth history and also about the frequency and spatial distribution of nucleation events during growth. The SNG model can be extended to systems in which the symmetry of precipitation is broken, for example by fluid flow. We show how a simple modification of the SNG model in which the local growth rate depends on the distance from a fluid source and the local slope or fluid flow rate, produces growth structures with many similarities to natural travertine deposits.

P. Meakin; E. Jettestuen; B. Jamtveit; Y. Y. Podladchikov; S. deVilliers; H. E. F. Amundsen

2006-09-01T23:59:59.000Z

272

Energy Supply Crude Oil Production (a)  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Supply Energy Supply Crude Oil Production (a) (million barrels per day) .............................. 6.22 6.29 6.42 7.02 7.11 7.29 7.61 7.97 8.26 8.45 8.57 8.86 6.49 7.50 8.54 Dry Natural Gas Production (billion cubic feet per day) ........................... 65.40 65.49 65.76 66.34 65.78 66.50 67.11 67.88 67.99 67.74 67.37 67.70 65.75 66.82 67.70 Coal Production (million short tons) ...................................... 266 241 259 250 245 243 264 256 258 249 265 262 1,016 1,008 1,033 Energy Consumption Liquid Fuels (million barrels per day) .............................. 18.36 18.55 18.59 18.45 18.59 18.61 19.08 18.90 18.69 18.67 18.91 18.82 18.49 18.80 18.77 Natural Gas (billion cubic feet per day) ........................... 81.09 62.38 63.72 71.27 88.05 59.49 60.69 74.92 85.76 59.40 60.87 72.53 69.60 70.72 69.58 Coal (b) (million short tons) ......................................

273

Land Application Uses for Dry Flue Gas Desulfurization By-Products: Phase 3  

Science Conference Proceedings (OSTI)

The utility industry currently generates about 25 million tons of flue gas desulfurization (FGD) by-products annually in the United States -- a quantity that is expected to increase as utilities apply new controls to comply with Clean Air Act Amendments. This report presents results of the third and final phase of a large-scale study of beneficial land-use applications for these by-products.

1999-09-28T23:59:59.000Z

274

Reduction of carbon dioxide emissions by mineral carbonation  

Science Conference Proceedings (OSTI)

The study investigates the technologies that have the potential to provide feasible reduction of carbon dioxide (CO2) from a reference power plant. Particular focus has been given to mineral carbonation (at 1 bar) in which magnesium (Mg) and/or ... Keywords: carbon dioxide, emissions, mineral carbonation

C. J. Sturgeon; M. G. Rasul; Ashfaque Ahmed Chowdhury

2010-02-01T23:59:59.000Z

275

Use of hybrid intelligent computing in mineral resources evaluation  

Science Conference Proceedings (OSTI)

Mineral resources are a formal quantification of naturally occurring materials. Estimation of resource parameters such as grade and thickness may be carried out using different methodologies. In this paper, a soft methodology, which is artificial neural ... Keywords: Fuzzy-neural network, Grade estimation, Hybrid modelling, Mineral resource

B. Tutmez

2009-06-01T23:59:59.000Z

276

Mineral formation during simulated leaks of Hanford waste tanks  

E-Print Network (OSTI)

Mineral formation during simulated leaks of Hanford waste tanks Youjun Deng a , James B. Harsh a at the US DOE Hanford Site, Washington, caus- ing mineral dissolution and re-precipitation upon contact mimicking tank leak conditions at the US DOE Hanford Site. In batch experiments, Si-rich solutions

Flury, Markus

277

Value-Added Products from FGD Sulfite-Rich Scrubber Materials  

SciTech Connect

According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition.

Vivak Malhotra

2010-01-31T23:59:59.000Z

278

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,  

Open Energy Info (EERE)

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Abstract Shallow exploration drilling on the west flank of Blue Mountain discovered sub economic gold mineralization and a spatially associated active geothermal system. The gold mineralization is an unusual example of an acid sulfate type epithermal system developed in pre Tertiary sedimentary host rocks. The geothermal system is largely unexplored but is unusual in that surface manifestation s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival

279

Hydrothermal alteration mineral mapping using hyperspectral imagery in  

Open Energy Info (EERE)

alteration mineral mapping using hyperspectral imagery in alteration mineral mapping using hyperspectral imagery in Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydrothermal alteration mineral mapping using hyperspectral imagery in Dixie Valley, Nevada Abstract Hyperspectral (HyMap) data was used to map the location ofoutcrops of high temperature, hydrothermally alterated minerals(including alunite, pyrophyllite, and hematite) along a 15 kmswath of the eastern front of the Stillwater Mountain Range inDixie Valley, Nevada. Analysis of this data set reveals that severaloutcrops of these altered minerals exist in the area, and thatone outcrop, roughly 1 square kilometer in area, shows abundanthigh temperature alteration. Structural analysis of the alteredregion using a

280

Mineral Leasing Act of 1920 | Open Energy Information  

Open Energy Info (EERE)

Leasing Act of 1920 Leasing Act of 1920 Jump to: navigation, search Statute Name Mineral Leasing Act of 1920 Year 1920 Url MineralLeasingAct.jpg Description The Mineral Leasing Act established the authority of the Secretary of the Interior to oversee oil and gas operations on federal land. References Federal Oil and Gas Statutes[1] Mineral Leasing Act of 1920 (30 U.S.C. § 181 et seq.) - The Mineral Leasing Act established the authority of the Secretary of the Interior to oversee oil and gas operations on federal land. "The Secretary of the Interior is authorized to prescribe necessary and proper rules and regulations and to do any and all things necessary to carry out and accomplish the purposes of this Act." 30 U.S.C. § 189 References ↑ "Federal Oil and Gas Statutes"

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone  

Open Energy Info (EERE)

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Details Activities (3) Areas (1) Regions (0) Abstract: Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199°C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The Δ18O values of the thirty-two analyzed silica samples (quartz, chalcedony, α-cristobalite, and β-cristobalite) range from -7.5 to +2.8‰. About one

282

Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon |  

Open Energy Info (EERE)

Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano, Oregon Details Activities (2) Areas (1) Regions (0) Abstract: Isotopic compositions were determined for hydrothermal quartz, calcite, and siderite from core samples of the Newberry 2 drill hole, Oregon. The Δ15O values for these minerals decrease with increasing temperatures. The values indicate that these hydrothermal minerals precipitated in isotopic equilibrium with water currently present in the reservoirs. The Δ18O values of quartz and calcite from the andesite and basalt flows (700-932 m) have isotopic values which require that the equilibrated water Δ18O values increase slightly (- 11.3 to -9.2‰) with

283

Minerals on Public Lands (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minerals on Public Lands (Texas) Minerals on Public Lands (Texas) Minerals on Public Lands (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Program Info State Texas Program Type Siting and Permitting Provider Texas General Land Office Any tract of land that belongs to the state, including islands, salt and freshwater lakes, bays, inlets, marshes, and reefs owned by the state within tidewater limits, the part of the Gulf of Mexico within the state's jurisdiction, unsold surveyed public school land, rivers and channels that belong to the state, and land sold with a reservation of minerals to the state are subject to prospect by any person for those minerals which are

284

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Milling Capacity (short tons of ore per day) 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby Uranium One Americas, Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Changing License To Operational Standby

285

Coal Production | OpenEI  

Open Energy Info (EERE)

03 03 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279603 Varnish cache server Coal Production Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 140, and contains only the reference case. The unit of measurement in this dataset is million short tons. The data is broken down into northern Appalachia, central Appalachia, southern Appalachia, eastern interior, western interior, gulf, Dakota medium, western montana, Wyoming, Rocky Mountain, Arizona/New Mexico and Washington/Alaska. Source EIA Date Released April 26th, 2011 (3 years ago)

286

National Mineral Development Corporation Ltd NMDC | Open Energy Information  

Open Energy Info (EERE)

Development Corporation Ltd NMDC Development Corporation Ltd NMDC Jump to: navigation, search Name National Mineral Development Corporation Ltd. (NMDC) Place Hyderabad, Andhra Pradesh, India Zip 500028 Sector Solar, Wind energy Product Hyderabad-based BSE listed iron ore producer and exporter. The firm also owns wind project and is planning to foray into solar sector. Coordinates 17.6726°, 77.5971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.6726,"lon":77.5971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Mineralization of hydrocarbons in soils under decreasing oxygen availability  

SciTech Connect

Techniques for remediation of soils contaminated with hydrocarbons (HCs) can be improved when the factors that control the decomposition rate are identified. In this study, the effect of O{sub 2} availability on the decomposition rate of hydrocarbons in soils is examined. A kinetic second-order model with the O{sub 2} concentration and biomass concentration as rate-controlling variables is used to quantify HC decomposition, O{sub 2} consumption, and CO{sub 2} production. Concentrations O{sub 2} and CO{sub 2} are calculated analytically as a function of time in a three-phase closed system. These calculations are compared with measurements of repetitive O{sub 2}-depletion experiments in closed jars containing a layer of soil contaminated with HCs. About 80% of the HC decrease could be attributed to mineralization, while the other 20% was assumed to be converted into biomass and metabolites. After calibration, model calculations agree with the experimental results, which makes the concept of O{sub 2} concentration and biomass concentration as rate-controlling variables plausible. The parameter values that are obtained by calibration have a clear biochemical significance. It is concluded that attention has to be paid to the O{sub 2} supply in closed-jar experiments to avoid erroneous interpretation of the results. 34 refs., 5 figs., 4 tabs.

Freijer, J.I. [Univ. of Amsterdam (Netherlands)

1996-03-01T23:59:59.000Z

288

Production of precipitated calcium carbonate from industrial by-product slags (Slag2PCC)  

E-Print Network (OSTI)

a commercial carbonate product by mineral carbonation could allow for higher process costs than what the CO2 a commercial calcium carbonate product should contain as little impurities as possible. Solution temperatureC Carbonation at 30 ºC (XCa = 68 %) Thickener Condenser Acetic acid 5.2 kg Gel residue 1.1 kg NaOH, 2.6 kg

Zevenhoven, Ron

289

Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet  

SciTech Connect

The US Department of Energy is responsible for managing the disposal of radioactive liquid waste in underground storage tanks at the Hanford site in Washington State. The Hanford waste treatment and immobilization plant (WPT) will separate the waste into a small volume of high level waste (HLW), containing most of the radioactive constituents, and a larger volume of low activity waste (LAW), containing most of the non-radioactive chemical and hazardous constituents. The HLW and LAW will be converted into immobilized waste forms for disposal. Currently there is inadequate LAW vitrification capacity planned at the WTP to complete the mission within the required timeframe. Therefore additional LAW capacity is required. One candidate supplemental treatment technology is the fluidized bed steam reformer process (FBSR). This report describes the demonstration testing of the FBSR process using a mineralizing flowsheet for treating simulated Hanford LAW and secondary waste from the WTP (WTP SW). The FBSR testing project produced leach-resistant solid products and environmentally compliant gaseous effluents. The solid products incorporated normally soluble ions into an alkali alumino-silicate (NaS) mineral matrix. Gaseous emissions were found to be within regulatory limits. Cesium and rhenium were captured in the mineralized products with system removal efficiencies of 99.999% and 99.998 respectively. The durability and leach performance of the FBSR granular solid were superior to the low activity reference material (LMR) glass standards. Normalized product consistency test (PCT) release rates for constituents of concern were approximately 2 orders of magnitude less than that of sodium in the Hanford glass [standard].

Arlin Olson

2012-02-28T23:59:59.000Z

290

Venezuela. [LPG marketing and production  

SciTech Connect

Liquefied petroleum gas marketing and production from Venezuela are not very complicated or big in the business. There is moderate LPG production since the main production comes from oil. There is about 2.3 million bpd of oil production compared with less than 70,000 bpd of gas liquids. Of more than 95% of the associated gas produced with the oil, 50% is injected as a condensate recovery process. Up to now, the LPG plants have been producing only a trickle, most of it from gas before it was injected. In the future program for gas utilization, it is estimated that by 1980 about twice the liquid that is now being produced would be available for exportation to natural markets of the Gulf of Mexico and the east coast. The production of about 7 million tons until the year 2000 can be continued with good conservation and with the future potential area that has been discovered in the south part of the lake and offshore Venezuela.

Reyes, A.

1977-01-01T23:59:59.000Z

291

Probabilistic neural networks applied to mineral potential mapping for platinum group elements in the Serra Leste region, Carajás Mineral Province, Brazil  

Science Conference Proceedings (OSTI)

This work presents an application of probabilistic neural networks to map the potential for platinum group elements (PGE) mineralization sites in the northeast portion of the Carajas Mineral Province (CMP), Brazilian Amazon. Geological and geophysical ... Keywords: Carajás Mineral Province, Leave-one-out test, Mineral potential mapping, Probabilistic neural network

Emilson Pereira Leite; Carlos Roberto de Souza Filho

2009-03-01T23:59:59.000Z

292

STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TON 11 2005 16:10 FR IPL D*H 630 252 2779 TO RG,:0, P.02/073 TON 11 2005 16:10 FR IPL D*H 630 252 2779 TO RG,:0, P.02/073 STATEMENT OF CONSIDERATIONS REQUEST BY AIR PRODUCTS AND CHEMICALS, INC. FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC36- 02AL67613 ENTITLED "DEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION"; W(A)-05-001; CH-1253 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Air Products and Chemicals, Inc. (Air Products) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions

293

A New Method for Production of Titanium Dioxide Pigment - Eliminating CO2 Emission  

SciTech Connect

The objective of this project was to demonstrate the potential of a new process technology to reduce the energy consumption and CO{sub 2} emission from the production of titanium dioxide (TiO{sub 2}) pigment. TiO{sub 2} is one of the most commonly used minerals in the chemical manufacturing industry. It has been commercially processed as a pigment since the early 1900's, and has a wide variety of domestic and industrial applications. TiO{sub 2} pigment is currently produced primarily by the use of the so called ?chloride process?. A key step of the chloride process relies on high temperature carbo-chlorination of TiO{sub 2} bearing raw materials, hence producing large quantities of CO{sub 2}. The new method uses a chemical/metallurgical sequential extraction methodology to produce pigment grade TiO{sub 2} from high-TiO{sub 2} slag. The specific project objectives were to 1) study and prove the scientific validity of the concept, 2) understand the primary chemical reactions and the efficiency of sequential extraction schemes, 3) determine the properties of TiO{sub 2} produced using the technology, and 4) model the energy consumptions and environmental benefits of the technology. These objectives were successfully met and a new process for producing commercial quality TiO{sub 2} pigment was developed and experimentally validated. The process features a unique combination of established metallurgical processes, including alkaline roasting of titania slag followed by leaching, solvent extraction, hydrolysis, and calcination. The caustic, acidic, and organic streams in the process will also be regenerated and reused in the process, greatly reducing environmental waste. The purpose and effect of each of these steps in producing purified TiO{sub 2} is detailed in the report. The levels of impurities in our pigment meet the requirements for commercial pigment, and are nearly equivalent to those of two commercial pigments. Solvent extraction with an amine extractant proved to be extremely effective in achieving these targets. A model plant producing 100,000 tons TiO{sub 2} per year was designed that would employ the new method of pigment manufacture. A flow sheet was developed and a mass and energy balance was performed. A comparison of the new process and the chloride process indicate that implementation of the new process in the US would result in a 21% decrease in energy consumption, an annual energy savings of 42.7 million GJ. The new process would reduce CO{sub 2} emissions by 21% in comparison to the chloride process, an annual reduction of 2.70 million tons of CO{sub 2}. Since the process equipment employed in the new process is well established in other industrial processes and the raw materials for the two processes are identical we believe the capital, labor and materials cost of production of pigment grade TiO{sub 2} using the new method would be at least equivalent to that of the chloride process. Additionally, it is likely that the operating costs will be lower by using the new process because of the reduced energy consumption. Although the new process technology is logical and feasible based on its chemistry, thermodynamic principles, and experimental results, its development and refinement through more rigorous and comprehensive research at the kilogram scale is needed to establish it as a competitive industrial process. The effect of the recycling of process streams on the final product quality should also be investigated. Further development would also help determine if the energy efficiency and the environmental benefits of the new process are indeed significantly better than current commercial methods of pigment manufacture.

Fang, Zhigang Zak [University of Utah] [University of Utah

2013-11-05T23:59:59.000Z

294

Mechanical Activation of Al-Oxyhydroxide Minerals  

Science Conference Proceedings (OSTI)

Decrease of Heat Consumption at Nepheline Processing to Alumina and By- Products ... Extracting Alumina from Coal Fly Ash Using Acid Sintering-Leaching Process ... Flash -and CFB Calciners, History and Difficulties of Development of Two ...

295

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

SciTech Connect

The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida) are oversupplied as well. While the total US demand for ultrafine pozzolan is currently equal to demand, there is no reason to expect a significant increase in demand. Despite the technical merits identified in the pilot plant work with regard to beneficiating the entire pond ash stream, market developments in the Ohio River Valley area during 2006-2007 were not conducive to demonstrating the project at the scale proposed in the Cooperative Agreement. As a result, Cemex withdrew from the project in 2006 citing unfavorable local market conditions in the foreseeable future at the demonstration site. During the Budget Period 1 extensions provided by the DOE, CAER has contacted several other companies, including cement producers and ash marketing concerns for private cost share. Based on the prevailing demand-supply situation, these companies had expressed interest only in limited product lines, rather than the entire ash beneficiation product stream. Although CAER had generated interest in the technology, a financial commitment to proceed to Budget Period 2 could not be obtained from private companies. Furthermore, the prospects of any decisions being reached within a reasonable time frame were dim. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007. The activities presented in this report were carried out during the Cooperative Agreement period 08 November 2004 through 31 March 2007.

Thomas Robl; John Groppo

2009-06-30T23:59:59.000Z

296

Quantitative room-temperature mineralization of airborne formaldehyde using  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantitative room-temperature mineralization of airborne formaldehyde using Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts Title Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts Publication Type Journal Article Year of Publication 2011 Authors Sidheswaran, Meera A., Hugo Destaillats, Douglas P. Sullivan, Joern Larsen, and William J. Fisk Journal Applied Catalysis B - Environmental Issue 107 Pagination 34-41 Date Published 2011 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group DOI 10.1016/j.apcatb.2011.06.032 Attachment Size

297

Can hydrous minerals account for the observed mid-latitude water on Mars?  

DOE Green Energy (OSTI)

Great interest was generated with the discovery by the Odyssey spacecraft OC heterogeneously distributed hydrogcn at martian mid-latitudes, suggesting that large areas of the near-equatorial highlands contain near-surface deposits of 'chemically and/or physically bound 1120 and/or OH' in amounts up to 3.8% equivalent H20. More recent interpretations of the Odyssey data using new calibrations suggest that some near-equatorial areas, such as Arabia Terra, contain up to 8.5f I .3% water-equivalent hydrogen. Such shallow occurrences (minerals and zeolites, have been proposed as possible M20-bearing constituents on Mars, and both groups of minerals are common terrestrial alteration products of hydrovolcanic basaltic ashes and palagonitic material comparable io those that may be widespread on Mars. Smectites within martian meteorites, attributed to hydrous alteration on Mars rather than on Earth, provide direct evidence of clay minerals from Mars. In addition, new thermal emission spectrometer (TES) data provide evidence for unspecified zeolites in martian surface dust, and concluded that spectral deconvolution of MGS TES and Mariner 9 IRIS data is consistent with the presence of zeolite in the martian surface dust.

Bish, D. L. (David L.); Vaniman, D. T. (David T.); Fialips, C. I. (Clair I.); Carey, J. W. (James W.); Feldman, W. C. (William C.)

2003-01-01T23:59:59.000Z

298

Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado  

E-Print Network (OSTI)

phase transformation and biomass accumulation associatedMineral Transformation and Biomass Accumulation Associatedof new mineral phases and biomass. Word count: 5496 (text) +

Li, L.

2009-01-01T23:59:59.000Z

299

Development of a CO2 Sequestration Module by Integrating Mineral Activation and Aqueous Carbonation  

SciTech Connect

Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw materials and the permanent storage of CO{sub 2} in solid form as carbonates. The sequestration of CO{sub 2} through the employment of magnesium silicates--olivine and serpentine--is beyond the proof of concept stage. For the work done in this project, serpentine was chosen as the feedstock mineral due to its abundance and availability. Although the reactivity of olivine is greater than that of serpentine, physical and chemical treatments have been shown to increase greatly the reactivity of serpentine. The primary drawback to mineral carbonation is reaction kinetics. To accelerate the carbonation, aqueous processes are preferred, where the minerals are first dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface-controlled. The relatively low reactivity of serpentine has warranted research into physical and chemical treatments that have been shown to greatly increase its reactivity. The use of sulfuric acid as an accelerating medium for the removal of magnesium from serpentine has been investigated. To accelerate the dissolution process, the mineral can be ground to very fine particle size, <37 {micro}m, but this is a very energy-intensive process. Previous work in our laboratory showed that chemical surface activation helps to dissolve magnesium from the serpentine (of particle size {approx} 100 {micro}m) and that the carbonation reaction can be conducted under mild conditions (20 C and 4.6 MPa) compared to previous studies that required >185 C, >13 MPa, and <37 {micro}m particle size. This work also showed that over 70% of the magnesium can be extracted at ambient temperature, leaving an amorphous silica with surface area of about 330 m{sup 2}/g. The overall objective of this research program is to optimize the active carbonation process to design an integrated CO{sub 2} sequestration module. A parametric study was conducted to optimize conditions for mineral activation, in which serpentine and sulfuric acid were reacted. The study focused on the effects of varying the acid concentration, particle size, and reaction time. The reaction yield was as high as 48% with a 5 M acid concentration, with lower values directly corresponding to lower acid concentrations. Significant improvements in the removal of moisture, as well as in the dissolution, can be realized with comminution of particles to a D{sub 50} less than 125 ?m. A minimum threshold of 3 M concentration of sulfuric acid was found to exist in terms of removal of moisture from serpentine. The effect of reaction time was insignificant. The treated serpentine had low BET surface areas. Results demonstrated that acid concentration provided primary control on the dissolution via the removal of water, which is closely correlated with the extraction of magnesium from serpentine. Single-variable experimentation demonstrated dissolution enhancements with increased reaction time and temperature. An increase in magnesium dissolution of 46% and 70%, relative to a baseline test, occurred for increased reaction time and temperature, respectively. In addition to the challenges presented by the dissolution of serpentine, another challenge is the subsequent carbonation of the magnesium ions. A stable hydration sphere for the magnesium ion reduces the carbonation kinetics by obstructing the formation of the carbonation products. Accordingly, this research has evaluated the solubility of carbon dioxide in aqueous solution, the interaction between the dissociation products of carbon dioxide, and the carbonation potential of the magnesium ion.

George Alexander; Parvana Aksoy; John Andresen; Mercedes Maroto-Valer; Harold Schobert

2006-08-14T23:59:59.000Z

300

The Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada, was the site for a 12-kiloton-ton nuclear test  

Office of Legacy Management (LM)

NV/13609-53 NV/13609-53 Development of a Groundwater Management Model for the Project Shoal Area prepared by Gregg Lamorey, Scott Bassett, Rina Schumer, Douglas P. Boyle, Greg Pohll, and Jenny Chapman submitted to Nevada Site Office National Nuclear Security Administration U.S. Department of Energy Las Vegas, Nevada September 2006 Publication No. 45223 Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. Available for sale to the public, in paper, from: U.S. Department of Commerce

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mineral Deformation at Earth's Core-Mantle Boundary  

NLE Websites -- All DOE Office Websites (Extended Search)

Mineral Deformation at Earth's Core-Mantle Boundary Print Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of the constituent minerals. To understand the deformation mechanisms of mineral phases at this depth, researchers from Yale and UC Berkeley re-created the ultrahigh pressures of the deep Earth at ALS Beamline 12.2.2 while conducting in situ x-ray diffraction experiments to probe changes in crystal orientations.

302

Mineral Deformation at Earth's Core-Mantle Boundary  

NLE Websites -- All DOE Office Websites (Extended Search)

Mineral Deformation at Earth's Core-Mantle Boundary Print Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of the constituent minerals. To understand the deformation mechanisms of mineral phases at this depth, researchers from Yale and UC Berkeley re-created the ultrahigh pressures of the deep Earth at ALS Beamline 12.2.2 while conducting in situ x-ray diffraction experiments to probe changes in crystal orientations.

303

Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Mineral Springs Pool & Spa Low Temperature Geothermal Facility Mineral Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Stewart Mineral Springs Pool & Spa Low Temperature Geothermal Facility Facility Stewart Mineral Springs Sector Geothermal energy Type Pool and Spa Location Weed, California Coordinates 41.4226498°, -122.3861269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

304

DOE - Office of Legacy Management -- Foote Mineral Co - PA 27  

NLE Websites -- All DOE Office Websites (Extended Search)

Foote Mineral Co - PA 27 Foote Mineral Co - PA 27 FUSRAP Considered Sites Site: Foote Mineral Co. (PA.27 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Exton , Pennsylvania PA.27-1 Evaluation Year: 1987 PA.27-1 Site Operations: Processed rare earth, principally zirconium and monazite sand was processed on a pilot-plant scale. PA.27-2 Site Disposition: Eliminated - Limited quantity of material handled - Potential for contamination considered remote PA.27-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Zirconium, Possibly Uranium PA.27-1 PA.27-2 PA.27-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to Foote Mineral Co.

305

Indian Mineral Leasing Act of 1938 | Open Energy Information  

Open Energy Info (EERE)

Act of 1938 Act of 1938 Jump to: navigation, search Statute Name Indian Mineral Leasing Act Year 1938 Url IndianMineralLeasing1938.jpg Description Provides for leasing of minerals on tribal lands References IMLA[1] United States v. Navajo Nation[2] The Indian Mineral Leasing Act of 1938 (IMLA) provides that "[u]nallotted lands within any Indian reservation," or otherwise under federal jurisdiction, "may, with the approval of the Secretary [of the Interior (Secretary)] ... , be leased for mining purposes, by authority of the tribal council or other authorized spokesmen for such Indians." 25 U.S.C. § 396a. The Act aims to provide Indian tribes with a profitable source of revenue and to foster tribal self-determination by giving Indians a greater

306

Carbon Dioxide Sequestration by Direct Mineral Carbonation: Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration by Direct Mineral Carbonation: Results from Recent Studies and Current Status W.K. OConnor (oconnor@alrc.doe.gov) D.C. Dahlin (dahlin@alrc.doe.gov) D.N Nilsen...

307

Mercury Contents of Natural Thermal and Mineral Fluids, In- U...  

Open Energy Info (EERE)

Office, 1970 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological...

308

CRITICAL MINERALS AND EMERGING ENERGY TECHNOLOGIES Statement of  

E-Print Network (OSTI)

as in compact-fluorescent light bulbs. These technological developments raise two concerns. First Minerals, and the U.S. Economy2 It was in this light that the standing Committee on Earth Resources

309

Research on Using Carbide Slag to Mineralize the Carbon Dioxide ...  

Science Conference Proceedings (OSTI)

... we come up with the crafts of using waste calcium carbide to mineralize CO2 in electrolytic aluminum waste gas, design and make out “Venturi gas-liquid-solid ...

310

Removal of mineral matter including pyrite from coal  

SciTech Connect

Mineral matter, including pyrite, is removed from coal by treatment of the coal with aqueous alkali at a temperature of about 175.degree. to 350.degree. C, followed by acidification with strong acid.

Reggel, Leslie (Pittsburgh, PA); Raymond, Raphael (Bethel Park, PA); Blaustein, Bernard D. (Pittsburgh, PA)

1976-11-23T23:59:59.000Z

311

Mineral Deformation at Earth's Core-Mantle Boundary  

NLE Websites -- All DOE Office Websites (Extended Search)

Mineral Deformation at Earth's Core-Mantle Boundary Print Mineral Deformation at Earth's Core-Mantle Boundary Print Earth is a dynamic planet in which convection takes place on the scale of thousands of kilometers. Because Earth is mostly solid (except for its liquid-iron outer core), this convection causes deformation of solid rocks by plastic flow. At the core-mantle boundary (CMB), 2900 km deep, seismologists have discovered that seismic waves travel faster in certain directions. This seismic anisotropy appears to be related to the deformation of the constituent minerals. To understand the deformation mechanisms of mineral phases at this depth, researchers from Yale and UC Berkeley re-created the ultrahigh pressures of the deep Earth at ALS Beamline 12.2.2 while conducting in situ x-ray diffraction experiments to probe changes in crystal orientations.

312

Hyperspectral mineral mapping in support of geothermal exploration-  

Open Energy Info (EERE)

mineral mapping in support of geothermal exploration- mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hyperspectral mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA Abstract N/A Authors B. A. Martini, E. A. Silver, W. L. Pickles and P. A. Cocks Conference Geothermal Resources Council Annual Meeting; Morelia, Mexico; 2004 Published Geothermal Resources Council Annual Meeting;, 2004 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Hyperspectral mineral mapping in support of geothermal exploration- Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

313

Global fish production and climate change  

Science Conference Proceedings (OSTI)

Current global fisheries production of {approx}160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but there is low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are giverned by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipiation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the pricipal feasible means of reducing the impacts of climate change.

Brander, K.M. [International Council for the Exploration of the Sea, Copenhagen (Denmark)

2007-12-11T23:59:59.000Z

314

Inducing Mineral Precipitation in Groundwater by Addition of Phosphate  

SciTech Connect

Induced precipitation of phosphate minerals to scavenge trace metals and radionuclides from groundwater is a potential remediation approach for contaminated aquifers. Phosphate minerals can sequester trace elements by primary mineral formation, solid solution formation and/or adsorption, and they are poorly soluble under many environmental conditions, making them attractive for long-term sustainable remediation. The success of such engineered schemes will depend on the particular mineral phases generated, their rates of formation, and their long term stability. The purpose of this study was to examine the precipitation of calcium phosphate minerals under conditions representative of a natural groundwater. Because microorganisms are present in groundwater, and because some proposed schemes for induced phosphate mineral precipitation rely on the stimulation of native groundwater populations, we also tested the effect of bacterial cells (initial densities of 105 and 107 ml-1) within the precipitation medium. We also tested the effect of a trace mixture of propionic, isovaleric, formic and butyric acids (total concentration 0.035 mM). The experiments showed that the general progression of mineral precipitation was similar under all of the conditions, with initial formation of amorphous calcium carbonate, and transformation to poorly crystalline hydroxyapatite (HAP) by the end of the week-long experiments. The presence of the bacterial cells appeared to delay precipitation, although by the end of 7 days the overall extent of precipitation was similar for all of the treatments. The stoichiometry of the final precipitates as well as results of Rietveld refinement of x-ray diffraction data indicated that the treatments including organic acids and bacterial cells resulted in increased distortion of the HAP crystal lattice, with the higher concentration of cells resulting in the greatest distortion. Uptake of Sr into the phosphate minerals was decreased in the treatments with cells and organic acids, compared to the control. The results of the experiments enable a greater understanding of the challenges associated with phosphate-based remediation schemes for contaminated environments.

Karen E. Wright; Yoshiko Fujita; Thomas Hartmann; Mark Conrad

2011-10-01T23:59:59.000Z

315

Source category survey: mineral wool manufacturing industry. Final report  

SciTech Connect

This report contains background information which was used for determining the need for new source performance standards (NSPS) for the mineral wool manufacturing industry in accordance with Section 111 of the Clean Air Act. Air pollution emissions and growth trends of the mineral wool industry are examined. Manufacturing processes, control strategies, and state and local air pollution regulations are discussed. The impact of a potential NSPS on particulate and carbon monoxide emissions is calculated.

Not Available

1980-06-01T23:59:59.000Z

316

Mineral processing techniques for recycling investment casting shell  

Science Conference Proceedings (OSTI)

The Albany Research Center of the U.S. Department of Energy used materials characterization and minerals beneficiation methods to separate and beneficially modify spent investment-mold components to identify recycling opportunities and minimize environmentally sensitive wastes. The physical and chemical characteristics of the shell materials were determined and used to guide bench-scale research to separate reusable components by mineral-beneficiation techniques. Successfully concentrated shell materials were evaluated for possible use in new markets.

Dahlin, Cheryl L.; Nilsen, David N.; Dahlin, David C.; Hunt, Alton H.; Collins, W. Keith

2002-01-01T23:59:59.000Z

317

Selective flotation of phosphate minerals with hydroxamate collectors  

DOE Patents (OSTI)

A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

Miller, Jan D. (Salt Lake City, UT); Wang, Xuming (Salt Lake City, UT); Li, Minhua (Salt Lake City, UT)

2002-01-01T23:59:59.000Z

318

Iowa State Mining and Mineral Resources Research Institute  

SciTech Connect

During 1990--1991, the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) has worked diligently to further the objectives of the Mineral Institute Program. About 70% of our Allotment Grant funding goes toward research and education of graduate students within the participating departments of the university. It is our goal to encourage graduate students in diverse fields such as agronomy, engineering, geology, landscape architecture, and many others to pursue a career in mining- and mineral-related fields by preparing them to either enter the private or public sectors. During the 1990 calendar year, ISMMRRI granted research assistantships to 17 graduate students to perform research in topics relating to mineral exploration, characterization and processing, extractive metallurgy, mining engineering, fuel science, mineral waste management, and mined-land reclamation. Research areas include the following: Fluid-inclusion studies on fluorspar mineral deposits in an actively mined region; Geochemical modeling of gold and gold-telluride deposits; Characterization of coal particles for surface-based beneficiation; Impact of surface mining and reclamation of a gypsum deposit area on the surrounding community; Stress-strain response of fine coal particles during transport and storage; Recovery of metal values from mining wastes using bioleaching; Coal beneficiation utilizing triboelectric charging in a fast fluidized bed; and Mathematical modeling of breakage for optimum sizing during crushing of rock.

Not Available

1991-08-01T23:59:59.000Z

319

Environmental Monitoring of Abandoned Mined Land Revegetated Using Dry FGD By-Products and Yard Waste Compost  

Science Conference Proceedings (OSTI)

The utility industry currently generates about 25 million tons of flue gas desulfurization (FGD) by-products annually in the United States. Utilities expect this quantity to increase as they apply new controls to comply with Clean Air Act Amendments. This report presents the results of a field-scale study of beneficial land-use applications of these by-products in surface mine reclamation.

2000-12-06T23:59:59.000Z

320

AN INNOVATIVE INTEGRATED APPROACH TO MINIMIZING GYPSUM AND PYRITE WASTES BY CONVERSION TO MARKETABLE PRODUCTS  

Science Conference Proceedings (OSTI)

The objective of this research program is to develop a novel integrated process to eliminate millions of tons of gypsum and pyrite wastes generated annually by the U.S. energy industries and reduce the emission of millions of tons of greenhouse gas carbon dioxide. This was accomplished by converting gypsum and pyrite wastes to marketable products such as lime, direct reduced iron (DRI), and sulfur products and obviating the need to calcine millions of tons of limestone for use in utility scrubbers. Specific objectives included: (1) Develop a novel, integrated process for utilizing two major wastes generated by mining and energy industries to produce lime for recycling and other marketable products. (2) Study individual chemical reactions involved in pyrite decomposition, DRI production, and Muller-Kuhne process for lime regeneration to determine optimum process variables such as temperature, time, and reactant composition. (3) Investigate techniques for effective concentration of pyrite from tailing waste and methods for effective separation of DRI from calcium sulfide.

Daniel Tao

2000-06-27T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Table 13. Coal Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Production, Projected vs. Actual" Coal Production, Projected vs. Actual" "Projected" " (million short tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",999,1021,1041,1051,1056,1066,1073,1081,1087,1098,1107,1122,1121,1128,1143,1173,1201,1223 "AEO 1995",,1006,1010,1011,1016,1017,1021,1027,1033,1040,1051,1066,1076,1083,1090,1108,1122,1137 "AEO 1996",,,1037,1044,1041,1045,1061,1070,1086,1100,1112,1121,1135,1156,1161,1167,1173,1184,1190 "AEO 1997",,,,1028,1052,1072,1088,1105,1110,1115,1123,1133,1146,1171,1182,1190,1193,1201,1209 "AEO 1998",,,,,1088,1122,1127.746338,1144.767212,1175.662598,1176.493652,1182.742065,1191.246948,1206.99585,1229.007202,1238.69043,1248.505981,1260.836914,1265.159424,1284.229736

322

Production of High Quality Dust Control Foam to Minimize Moisture Addition to Coal  

E-Print Network (OSTI)

Foam is displacing wet suppression as the method of choice for controlling fugitive emissions from coal. Coal treated by wet suppression consumes through moisture addition, a heat energy equivalent of 1 ton out of every 500 tons fired. The application of foam requires less than 10% of the moisture usually required for wet suppression. In addition, foam is a much more effective dust suppressant, especially on respirable dust (particle with an aerodynamic diameter less than 10 microns). To achieve maximum benefit from foam dust control, efficient on-site production of dry, stable foam is required. This paper discusses the basics of foam production and the many variables affecting foam expansion ratios. Successful applications of foam are also described.

Termine, F.; Jordan, S. T.

1985-05-01T23:59:59.000Z

323

Glass Production  

E-Print Network (OSTI)

40, pp. 162 - 186. Glass Production, Shortland, UEE 2009AINES Short Citation: Shortland 2009, Glass Production. UEE.Andrew, 2009, Glass Production. In Willeke Wendrich (ed. ),

Shortland, Andrew

2009-01-01T23:59:59.000Z

324

Production Targets  

E-Print Network (OSTI)

Hall (2005), “Prices, Production, and Inventories over theProduction Targets ? Guillermo Caruana CEMFI caruana@cem?.esthe theory using monthly production targets of the Big Three

Caruana, Guillermo; Einav, Liran

2005-01-01T23:59:59.000Z

325

Pottery Production  

E-Print Network (OSTI)

Paul T. Nicholson. ) Pottery Production, Nicholson, UEE 2009Short Citation: Nicholson 2009, Pottery Production. UEE.Paul T. , 2009, Pottery Production. In Willeke Wendrich (

Nicholson, Paul T.

2009-01-01T23:59:59.000Z

326

Cordage Production  

E-Print Network (OSTI)

294: fig. 15-3). Cordage Production, Veldmeijer, UEE 2009Short Citation: Veldmeijer, 2009, Cordage Production. UEE.André J. , 2009, Cordage Production. In Willeke Wendrich (

Veldmeijer, André J.

2009-01-01T23:59:59.000Z

327

AN ELECTROMAGNETIC PNEUMO CAPSULE SYSTEM FOR CONVEYING MINERALS AND MINE WASTES  

SciTech Connect

The purpose of this project is to investigate the technical and economic feasibility of using a new and advanced pneumatic capsule pipeline (PCP) system for transporting minerals and mine wastes. The new system is different from conventional PCPs in two main respects: (1) it uses linear induction motors (LIMs) instead of blowers (fans) at the inlet of the pipeline to drive (pump) the capsules and the air through the pipeline; and (2) the capsules in the PCP have steel wheels running on steel rails as opposed to capsules in conventional systems, which use wheels with rubber tires running inside a pipe without rail. The advantage of using LIM pump instead of blower is that the former is non-intrusive and hence does not block the passage of capsules, enabling the system to run continuously without having to make the capsules bypass the pump. This not only simplifies the system but also enables the system to achieve much larger cargo throughput than that of PCPs using blowers, and use of LIMs as booster pumps which enables the system to have any length or to be used for transporting cargoes over practically any distance, say even one thousand kilometers or miles. An advantage of using steel wheels rolling on steel rails instead of using rubber tires rolling inside a pipeline is that the rolling friction coefficient and hence the use of energy is greatly reduced from that of conventional PCP systems. Moreover, rails enable easy control of capsule motion, such as switching capsules to a branch line by using railroad switching equipment. The advanced PCP system studied under this project uses rectangular conduits instead of circular pipe, having cross-sectional areas of 1 m by 1 m approximately. The system can be used for various transportation distances, and it can transport up to 50 million tonnes (metric tons) of cargo annually--the throughput of the largest mines in the world. Both an aboveground and an underground system were investigated and compared. The technical feasibility of this new PCP system was determined by designing the details of the system and conducting a detail analysis of the system--both steady and unsteady analyses. Through the detailed design and analyses, it was found that no technical problem or hurdle exist that would otherwise prevent commercial use of the system today. Still, since it is a new technology, it will be prudent and advantageous to run a demonstration project before this technology is used.

Henry Liu; Charles W. Lenau

2005-03-01T23:59:59.000Z

328

Development of mineral wool from industrial wastes. Phase i. Final report 1 Sep 80-28 Feb 81  

SciTech Connect

The feasibility of using unprocessed industrial wastes to produce mineral wool was investigated by literature and patent searches and by experimental production of mineral wool. Slag ash from coal burning utilities and cement kiln waste from cement companies were combined in batch formulations having acid to alkali ratios of 0.8 to 1.2, then melted, fiberized, and analyzed for physical, thermal, chemical, and optical properties. Cement kiln waste added to the slag ash in controlled quantities served as a fluxing agent, and lowered the melting point of the slag ash from 2800 degrees F to 2500 degrees F. The softening point of the fibers was between 1250 degrees F and 1480 degrees F. The surface of the fibers was smooth at a magnification of 800x, and X-ray analysis showed no crystallization. The glasses were chemically stable, and possessed the rheological properties necessary to produce mineral wool. Potential applications include using the mineral wool for insulation. Immersion in cement slurry for 24 hours did not affect the fibers, indicating that they might also be used as alkali resistant components for fiber-reinforced concrete.

Ali, M.A.

1981-02-01T23:59:59.000Z

329

Analysis of the Production Cost for Various Grades of Biomass Thermal Treatment  

SciTech Connect

Process flow sheets were developed for the thermal treatment of southern pine wood chips at four temperatures (150, 180, 230, and 270 degrees C) and two different scales (20 and 100 ton/hour). The larger capacity processes had as their primary heat source hot gas assumed to be available in quantity from an adjacent biorefinery. Mass and energy balances for these flow sheets were developed using Aspen Plus process simulation software. The hot gas demands in the larger processes, up to 1.9 million lb/hour, were of questionable feasibility because of the volume to be moved. This heat was of low utility because the torrefaction process, especially at higher temperatures, is a net heat producer if the organic byproduct gases are burned. A thermal treatment flow sheet using wood chips dried in the biorefinery to 10% moisture content (rather than 30% for green chips) with transfer of high temperature steam from the thermal treatment depot to the biorefinery was also examined. The equipment size information from all of these cases was used in several different equipment cost estimating methods to estimate the major equipment costs for each process. From these, factored estimates of other plant costs were determined, leading to estimates (+ / - 30% accuracy) of total plant capital cost. The 20 ton/hour processes were close to 25 million dollars except for the 230 degrees C case using dried wood chips which was only 15 million dollars because of its small furnace. The larger processes ranged from 64-120 million dollars. From these capital costs and projections of several categories of operating costs, the processing cost of thermally treated pine chips was found to be $28-33 per ton depending on the degree of treatment and without any credits for steam generation. If the excess energy output of the two 20 ton/hr depot cases at 270 degrees C can be sold for $10 per million BTU, the net processing cost dropped to $13/ton product starting with green wood chips or only $3 per ton if using dried chips from the biorefinery. Including a 12% return on invested capital raised all of the operating cost results by about $20/ton.

Robert S Cherry; Rick A. Wood; Tyler L Westover

2013-12-01T23:59:59.000Z

330

Solar Grade Silicon from Agricultural By-products  

Science Conference Proceedings (OSTI)

In this project, Mayaterials developed a low cost, low energy and low temperature method of purifying rice hull ash to high purity (5-6Ns) and converting it by carbothermal reduction to solar grade quality silicon (Sipv) using a self-designed and built electric arc furnace (EAF). Outside evaluation of our process by an independent engineering firm confirms that our technology greatly lowers estimated operating expenses (OPEX) to $5/kg and capital expenses (CAPEX) to $24/kg for Sipv production, which is well below best-in-class plants using a Siemens process approach (OPEX of 14/kg and CAPEX of $87/kg, respectively). The primary limiting factor in the widespread use of photovoltaic (PV) cells is the high cost of manufacturing, compared to more traditional sources to reach 6 g Sipv/watt (with averages closer to 8+g/watt). In 2008, the spot price of Sipv rose to $450/kg. While prices have since dropped to a more reasonable $25/kg; this low price level is not sustainable, meaning the longer-term price will likely return to $35/kg. The 6-8 g Si/watt implies that the Sipv used in a module will cost $0.21-0.28/watt for the best producers (45% of the cost of a traditional solar panel), a major improvement from the cost/wafer driven by the $50/kg Si costs of early 2011, but still a major hindrance in fulfilling DOE goal of lowering the cost of solar energy below $1/watt. The solar cell industry has grown by 40% yearly for the past eight years, increasing the demand for Sipv. As such, future solar silicon price spikes are expected in the next few years. Although industry has invested billions of dollars to meet this ever-increasing demand, the technology to produce Sipv remains largely unchanged requiring the energy intensive, and chlorine dependent Siemens process or variations thereof. While huge improvements have been made, current state-of-the-art industrial plant still use 65 kWh/kg of silicon purified. Our technology offers a key distinction to other technologies as it starts one step upstream from all other Sipv production efforts. Our process starts by producing high purity SiO2/C feedstocks from which Sipv can be produced in a single, chlorine free, final EAF step. Specifically, our unique technology, and the resultant SiO2/C product can serve as high purity feedstocks to existing metallurgical silicon (Simet) producers, allowing them to generate Sipv with existing US manufacturing infrastructure, reducing the overall capital and commissioning schedule. Our low energy, low CAPEX and OPEX process purifies the silica and carbon present in rice hull ash (RHA) at low temperatures (30k ton/yr RHA. The power generation step produces much more energy (42 kWh/kg of final silicon produced) than required to purify the RHA (5 kWh/kg of Sipv, compared to 65 kWh/kg noted above. Biogenic silica offers three very important foundations for producing high purity silicon. First, wastes from silica accumulating plants, such as rice, corn, many grasses, algae and grains, contain very reactive, amorphous silica from which impurities are easily removed. Second, plants take up only a limited set of, and minimal quantities of the heavy metals present in nature, meaning fewer minerals must be removed. Third, biomass combustion generates a product with intrinsic residual carbon, mixed at nanometer length scales with the SiO2. RHA is 80-90 wt% high surface area (20 m2/g), amorphous SiO2 with some simple mineral content mixed intimately with 5-15 wt% carbon. The mineral content is easily removed by low cost, acid washes using Mayaterials IP, leading to purified rice hull ash (RHAclean) at up to 6N purity. This highly reactive silica is partially extracted from RHAclean at 200 C in an environmentally benign process to adjust SiO2:C ratios to those needed in EA

Richard M. Laine

2012-08-20T23:59:59.000Z

331

Coke mineral transformations in the experimental blast furnace  

SciTech Connect

Blast furnace efficiency may be improved by optimizing coke reactivity. Some but not all forms of mineral matter in the coke modify its reactivity, but changes in mineral matter that occur within coke while in the blast furnace have not been fully quantified. To determine changes in mineral matter forms in the blast furnace, coke samples from a dissection study in the LKAB experimental blast furnace (EBF) were characterized using SEM/EDS analysis, EPMA (microprobe), and low-temperature ashing/quantitative XRD analysis. Variations in alkali concentration, particularly potassium, dominated the compositional changes. At high concentrations of potassium, the mineral matter was largely potassium-bearing but even more potassium was diffused throughout the coke and not associated with mineral matter. There was little difference in potassium concentration between the core and surface of the coke pieces, suggesting that potassium diffused rapidly through the whole coke. Iron, calcium, silicon, and aluminum concentrations were relatively constant in comparison, although the mineralogy of all elements changed significantly with changing temperature. 23 refs., 20 figs., 9 tabs.

Kelli Kazuberns; Sushil Gupta; Mihaela Grigore; David French; Richard Sakurovs; Mats Hallin; Bo Lindblom; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development (CCSD)

2008-09-15T23:59:59.000Z

332

Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy...

333

Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid  

Open Energy Info (EERE)

Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Lake Paiute Reservation, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Hyperspectral Mineral Mapping For Geothermal Exploration On The Pyramid Lake Paiute Reservation, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: Over 2000 km2 (772 mi2) of 5 m resolution Hymap hyperspectral data was acquired over the Pyramid Lake Paiute Reservation in the Fall of 2004. Subsequent image processing and data analysis has identified reflectance spectra for alunite, kaolinite/halloysite, illite, gypsum, vegetation, and carbonate. A portable spectrometer is being used for in situ validation, along with laboratory measurements and X-ray diffraction analyses of samples collected in the field. We are in the process of

334

STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES  

NLE Websites -- All DOE Office Websites (Extended Search)

OREGON OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES Portland, Oregon 97201 910 State Office Building r DOE/ID/12526--T2 OPEN-FILE REPORT 0-86-3 DE87 013077 INVESTIGATION OF THE TEIERMAL REGIME AND GEOLOGIC HISTORY OF THE DRILLING IN THE CASCADE RANGE CASCADE VOLCANIC ARC: FIRST PHASE OF A PROGRAM FOR SCIENTIFIC Prepared by George R . Priest Oregon Department of Geology and Mineral Industries Preparation and publication of this document were supported b the Ore on Department of Geology and Mineral Industries and Grant No. DE-%G07-841&.2526 from the U . S . Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees,

335

Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Buckhorn Mineral Wells Pool & Spa Low Temperature Geothermal Facility Facility Buckhorn Mineral Wells Sector Geothermal energy Type Pool and Spa Location Mesa, Arizona Coordinates 33.4222685°, -111.8226402° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

336

Mineral Recovery from Geothermal Fluids | Open Energy Information  

Open Energy Info (EERE)

Mineral Recovery from Geothermal Fluids Mineral Recovery from Geothermal Fluids Jump to: navigation, search Geothermal ARRA Funded Projects for Mineral Recovery from Geothermal Fluids Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

337

Underground radio technology saves miners and emergency response personnel  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground radio technology saves miners and emergency response Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital Alert Technologies, Inc. (Vital Alert) has launched a wireless, two-way real-time voice communication system that is effective through 1,000+ feet of solid rock. April 3, 2012 Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock strata and other solid media. Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock

338

Lung cancer epidemiology in New Mexico uranium miners  

SciTech Connect

This investigation assesses the health effects of radon progeny exposure in New Mexico uranium miners. Cumulative exposures sustained by most New Mexico miners are well below those received earlier in the Colorado Plateau. This project utilizes the research opportunity offered by New Mexico miners to address unresolved issues related to radon progeny exposure: (1) the lung cancer risk of lower levels of exposure, (2) interaction between radon progeny exposure and cigarette smoking in the causation of lung cancer, (3) the relationship between lung cancer histologic type and radon progeny exposure, and (4) possible effects of radon progeny exposure other than lung cancer. A cohort study of 3800 men with at least one year of underground uranium mining experience in New Mexico is in progress. Results are discussed.

Samet, J.M.

1991-11-01T23:59:59.000Z

339

Hyperspectral Mineral Mapping In Support Of Geothermal Exploration-  

Open Energy Info (EERE)

Mineral Mapping In Support Of Geothermal Exploration- Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Details Activities (2) Areas (2) Regions (0) Abstract: Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic

340

Iowa State Mining and Mineral Resources Research Institute  

SciTech Connect

This final report describes the activities of the Iowa State Mining and Mineral Resources Research Institute (ISMMRRI) at Iowa State University for the period July 1, 1989, to June 30, 1990. Activities include research in mining- and mineral-related areas, education and training of scientists and engineers in these fields, administration of the Institute, and cooperative interactions with industry, government agencies, and other research centers. During this period, ISMMRRI has supported research efforts to: (1) Investigate methods of leaching zinc from sphalerite-containing ores. (2) Study the geochemistry and geology of an Archean gold deposit and of a gold-telluride deposit. (3) Enchance how-quality aggregates for use in construction. (4) Pre-clean coal by triboelectric charging in a fluidized-bed. (5) Characterize the crystal/grain alignment during processing of yttrium-barium-copper-perovskite (1-2-3) superconductors. (5) Study the fluid inclusion properties of a fluorite district. (6) Study the impacts of surface mining on community planning. (7) Assess the hydrophobicity of coal and pyrite for beneficiation. (8) Investigate the use of photoacoustic absorption spectroscopy for monitoring unburnt carbon in the exhaust gas from coal-fired boilers. The education and training program continued within the interdepartmental graduate minor in mineral resources includes courses in such areas as mining methods, mineral processing, industrial minerals, extractive metallurgy, coal science and technology, and reclamation of mined land. In addition, ISMMRRI hosted the 3rd International Conference on Processing and Utilization of High-Sulfur Coals in Ames, Iowa. The Institute continues to interact with industry in order to foster increased cooperation between academia and the mining and mineral community.

Not Available

1990-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

PRODUCTION VERIFICATION TESTS  

Science Conference Proceedings (OSTI)

A summary of the demonstration of 14 stages (in 10 wells) of a unique liquid-free stimulation process which employs carbon dioxide (CO{sub 2}) as the working fluid in ten Candidate Wells. Three were situated in Perry County and seven in Pike County of eastern kentucky's Big Sandy gas field. These activities included four individual efforts which have previously been described in detail in four submitted Final Reports, and are herein summarized. These ten Candidate wells produce from the Devonian Shale which is well known to be damaged by liquid based stimulation processes. They were treated with a total of fourteen stages; four as a single stage, and the others in two stages per well all containing approximately 120 tons of CO{sub 2} per stage. These liquid free stimulations also contained proppant quantities on the order of 45,000 lbs per stage. The results show in the three Perry Co Candidate wells that the stimulations were not as effective as the best conventional technology, and resulted in a stimulation cost for produced gas of $0.69 per Mcf vs $0.43 for N{sub 2} gas stimulations. The results in the Pike County Candidates, where the shale section is thicker--1,025 vs. 350 feet, indicated a superior response from the wells stimulated with the CO{sub 2}/sand process. A five year production benefit of 67.7 MMcf per stage, or 135.4 MMcf per well over that from the closest competing technology which results in a 3.41 benefit ratio and a stimulation cost for produced gas of $0.47 per Mcf vs $1.14 for N{sub 2} gas.

Raymond L. Mazza

2003-09-30T23:59:59.000Z

342

Catalytic steam gasification of bagasse for the production of methanol  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) tested the catalytic gasification of bagasse for the production of methanol synthesis gas. The process uses steam, indirect heat, and a catalyst to produce synthesis gas in one step in fluidized bed gasifier. Both laboratory and process development scale (nominal 1 ton/day) gasifiers were used to test two different catalyst systems: (1) supported nickel catalysts and (2) alkali carbonates doped on the bagasse. This paper presents the results of laboratory and process development unit gasification tests and includes an economic evaluation of the process. 20 references, 6 figures, 9 tables.

Baker, E.G.; Brown, M.D.

1983-12-01T23:59:59.000Z

343

Production of charcoal and activated carbon at elevated pressure  

SciTech Connect

With its wide range of properties, charcoal finds many commercial applications for domestic cooking, refining of metals (steel, copper, bronze, nickel, aluminum and electro-manganese), production of chemicals (carbon disulfide, calcium carbide, silicon carbide, sodium cyanide, carbon black, fireworks, gaseous chemicals, absorbents, soil conditioners and pharmaceuticals), as well as production of activated carbon and synthesis gas. In 1991, the world production of charcoal was 22.8 million cubic meters (3.8 million metric tons) as shown in Table 1. Brazil is the world`s largest charcoal producer --- 5.9 million cubic meters or one million metric tons was produced in 1991, most of which is used in steel and iron industry. African countries produced 45% of the world total amount of charcoal, where 86% of the wood-based energy is for domestic use, most of which is inefficiently used. Charcoal is produced commercially in kilns with a 25% to 30% yield by mass on a 7 to 12 day operating cycle. Until recently, the highest yield of good quality charcoal reported in the literature was 38%. In this paper, and ASME code rated experimental system is presented for producing charcoal and activated carbon from biomass.

Dai, Xiangfeng; Norberg, N.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

1995-12-31T23:59:59.000Z

344

Division of Energy and Mineral Development | Open Energy Information  

Open Energy Info (EERE)

Division of Energy and Mineral Development Division of Energy and Mineral Development Jump to: navigation, search Logo: IEED Division of Energy and Mineral Development Name IEED Division of Energy and Mineral Development Address 13922 Denver West Parkway, Ste. 200 Place Lakewood, CO Zip 80401-3142 Phone number (303) 969-5270 Website http://www.bia.gov/WhoWeAre/AS Coordinates 39.745142°, -105.154088° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.745142,"lon":-105.154088,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Oregon State Department of Geology and Mineral Industries | Open Energy  

Open Energy Info (EERE)

State Department of Geology and Mineral Industries State Department of Geology and Mineral Industries Jump to: navigation, search Logo: Oregon State Department of Geology and Mineral Industries Name Oregon State Department of Geology and Mineral Industries Address Ste. 965 Northeast Oregon Street Place Portland, OR Zip 97232 Website http://www.oregongeology.org/s Coordinates 45.5286301°, -122.656652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5286301,"lon":-122.656652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Fluidization Technologies for the Mineral, Materials, and Energy ...  

Science Conference Proceedings (OSTI)

Fluidized Bed Applications for the Minerals Industry and Renewable Energy: Marcus ... adaptation and scale-up to meet specific customer/market requirements. ... In the course of developing a new industrial process, information produced at the ... Chemical analysis of the reduced ore sample, the metal sample and the slag ...

347

Commissioning Of The MINER{nu}A Tracking Prototype  

Science Conference Proceedings (OSTI)

MINER{nu}A is a neutrino scattering experiment that uses the NuMI beamline at Fermilab. A Tracking Prototype was assembled, commissioned and tested at Fermilab before moving it into the NuMI beamline. A description of some of the main commissioning activities is presented here.

Castorena, J.; Felix, J.; Higuera, A.; Urrutia, Z. [Universidad De Guanajuato, Division De Ciencias E Ingenierias, Leon, Guanajuato (Mexico); Zavala, G. [Universidad De Guanajuato, DCEA, Guanajuato, Guanajuato (Mexico)

2009-12-17T23:59:59.000Z

348

SoS Minerals Expert Group Science and Implementation Plan  

E-Print Network (OSTI)

resources, including wind and solar; a growth in the use electric and hybrid vehicles; and increasing energy of these minerals and elements, governed by the imperative to decrease environmental impact. Figure 1 Historical compounded by low substitutability and recycling rates (commonly

Brierley, Andrew

349

Coop: 02-2011 COLLEGE OF ENGINEERING AND MINERAL RESOURCES  

E-Print Network (OSTI)

work assignment: List any suggestions for improvement of the Co-op Program: Fall 2011 1 May 2011 hour that you performed is a value to your employer? PROGRAM ASSESSMENT 1 2 3 4 5 1. Was the work that you wereCoop: 02-2011 COLLEGE OF ENGINEERING AND MINERAL RESOURCES COOPERATIVE EDUCATION PROGRAM STUDENT

Mohaghegh, Shahab

350

Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology  

SciTech Connect

Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62%. The process achieved about a 90% turnover of the starting bed. Samples of mineralized solid product materials were analyzed for chemical/physical properties. Results of product performance testing conducted by SRNL will be reported separately by SRNL.

Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

2004-12-01T23:59:59.000Z

351

Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology  

SciTech Connect

The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved essentially complete bed turnover within approximately 40 hours. Samples of mineralized solid product materials were analyzed for chemical/physical properties. SRNL will report separately the results of product performance testing that were accomplished.

Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

2004-11-01T23:59:59.000Z

352

Radioactive mineral occurences of Colorado and bibliography. [2500 citations in bibliography  

SciTech Connect

This two-part report provides an essentially complete listing of radioactive occurrences in Colorado, with a comprehensive bibliography and bibliographic cross-indexes. Part 1 lists approximately 3000 known radioactive occurrences with their locations and brief accounts of the geology, mineralogy, radioactivity, host rock, production data, and source of data for each. The occurrences are classified by host rock and plotted on U.S. Geological Survey 1/sup 0/ x 2/sup 0/ topographic quadrangle maps with a special 1 : 100,000-scale base map for the Uravan mineral belt. Part 2 contains the bibliography of approximately 2500 citations on radioactive mineral occurrences in the state, with cross-indexes by county, host rock, and the special categories of ''Front Range,'' ''Colorado Plateau,'' and ''thorium.'' The term ''occurrence'' as used in this report is defined as any site where the concentration of uranium or thorium is at least 0.01% or where the range of radioactivity is greater than twice the background radioactivity. All citations and occurrence data are stored on computer diskettes for easy retrieval, correction, and updating.

Nelson-Moore, J.L.; Collins, D.B.; Hornbaker, A.L.

1978-01-01T23:59:59.000Z

353

World petroleum-derived sulfur production  

SciTech Connect

Research efforts in new uses for sulfur, among them those of the Sulfur Development Institute of Canada, have resulted in the development of several new product markets. Petroleum and natural gas derived sulfurs are finding use as asphalt extenders in road construction throughout North America and as concrete extenders and substitutes for Portland cement in the construction industries of Mexico and the Middle East. Their use in masonry blocks is now being commercialized. Canada is the world's largest producer of commercial sulfur; 80% of it is used as a processing chemical in the form of sulfuric acid. Saudi Arabia, recently having begun to commercialize its vast resources, is constructing plants for the extraction of sulfur from natural gas and plans to export between 6 and 7 x 10/sup 5/ tons annually, much of it for fertilizer manufacture to India, Tunisia, Italy, Pakistan, Greece, Morocco, and Thailand.

Cantrell, A.

1982-08-02T23:59:59.000Z

354

Reaction mechanisms for enhancing mineral sequestration of CO{sub 2}  

Science Conference Proceedings (OSTI)

Storage of CO{sub 2} through mineral sequestration using olivine has been shown to produce environmentally benign carbonates. However, due to the formation of a rate-limiting reaction product layer, the rate of reaction is insufficient for large-scale applications. We report the results of altering the reactant solution composition and the resultant reaction mechanism to enhance the reaction rate. The products were analyzed for total carbon content with thermal decomposition analysis, product phase compositions with Debye-Scherrer X-ray powder diffraction (XRD), surface morphology with scanning electron microscopy (SEM), and composition with energy dispersive X-ray spectroscopy (EDXS). Carbon analysis showed that an increase in bicarbonate ion activity increased the olivine to carbonate conversion rate. The fastest conversion rate, 63% conversion in one hour, occurred in a solution of 5.5 M KHCO{sub 3}. Additionally, SEM confirmed that when the bicarbonate ion activity was increased, magnesium carbonate product particles significantly increased in both number density and size and the rate passivating-reaction layer exfoliation was augmented. 30 refs., 5 figs., 1 tab.

Karalee Jarvis; R.W. Carpenter; Todd Windman; Youngchul Kim; Ryan Nunez; Firas Alawneh [Arizona State University, Tempe, AR (United States). School of Materials

2009-08-15T23:59:59.000Z

355

Uranium Mines and Uranium Mineral Localities Visited Country State/Province County/District Mine Name U Minerals Present  

E-Print Network (OSTI)

Uranium Mines and Uranium Mineral Localities Visited Country State/Province County/District Mine USA New Mexico Grants Zia Mines Tyuyamunite 1999 USA Arizona Gila Hope Mine Uraninite 2001 USA Arizona Gila Red Bluff Mine Uraninite 2001 USA Wyoming Fremont Congo (Section 16 Mine) Carnotite 2003 USA

356

Coal combustion products: trash or treasure?  

Science Conference Proceedings (OSTI)

Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

Hansen, T.

2006-07-15T23:59:59.000Z

357

Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems  

DOE Patents (OSTI)

Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

Zhdanov; Michael S. (Salt Lake City, UT)

2008-01-29T23:59:59.000Z

358

RIETVELD REFINEMENT OF REAL STRUCTURE PARAMETERS OF DISORDERED CLAY MINERALS IN  

E-Print Network (OSTI)

-conventional hydrocarbons in Germany) Germany's potential for shale oil and shale gas NIKO seal gas-rich shale shale: sedimentary rock which contains quartz, carbonates and clay minerals #12;clay minerals in shales quartz

Magee, Joseph W.

359

Rend Lake College celebrates the opening of a new coal miner training facility  

SciTech Connect

The Coal Miner Training Center at Rend Lake College recently hosted the Illinois Mining Institute's annual conference and a regional mine rescue competition. The article gives an outline of the coal miner training and refresher course offered. 3 photos.

Buchsbaum, L.

2009-09-15T23:59:59.000Z

360

Advanced Multi-Product Coal Utilization By-Product Processing Plant  

Science Conference Proceedings (OSTI)

The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida) are oversupplied as well. While the total US demand for ultrafine pozzolan is currently equal to demand, there is no reason to expect a significant increase in demand. Despite the technical merits identified in the pilot plant work with regard to beneficiating the entire pond ash stream, market developments in the Ohio River Valley area during 2006-2007 were not conducive to demonstrating the project at the scale proposed in the Cooperative Agreement. As a result, Cemex withdrew from the project in 2006 citing unfavorable local market conditions in the foreseeable future at the demonstration site. During the Budget Period 1 extensions provided by the DOE, CAER has contacted several other companies, including cement producers and ash marketing concerns for private cost share. Based on the prevailing demand-supply situation, these companies had expressed interest only in limited product lines, rather than the entire ash beneficiation product stream. Although CAER had generated interest in the technology, a financial commitment to proceed to Budget Period 2 could not be obtained from private companies. Furthermore, the prospects of any decisions being reached within a reasonable time frame were dim. Thus, CAER concurred with the DOE to conclude the project at the end of Budget Period 1, March 31, 2007. The activities presented in this report were carried out during the Cooperative Agreement period 08 November 2004 through 31 March 2007.

Thomas Robl; John Groppo

2009-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Products of an Artificially Induced Hydrothermal System at Yucca Mountain  

DOE Green Energy (OSTI)

Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than during the deposition of natural calcite-opal deposits.

S. Levy

2000-08-07T23:59:59.000Z

362

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3rd Quarter 2013 Domestic Uranium Production Report 3rd Quarter 2013 Domestic Uranium Production Report 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 Capacity (short tons of ore per day) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Permitted And Licensed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725 - Undeveloped Undeveloped Undeveloped Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000

363

Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model  

E-Print Network (OSTI)

The expanded growth model is developed to describe accumulation of plant biomass (Mg ha 21) and mineral elements (kg ha 21) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation.

Allen R. Overman; Richard V. Scholtz Iii

2011-01-01T23:59:59.000Z

364

A Novel Approach to Experimental Studies of Mineral DIsoolution Kinetics  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel ApproAch to experimeNtAl Novel ApproAch to experimeNtAl StudieS of miNerAl diSSolutioN KiNeticS Background DOE is conducting pilot CO 2 injection tests to evaluate the concept of geologic sequestration. One strategy that has the potential to enhance CO 2 solubility and reduce the risk of CO 2 leaking back to the surface is dissolution of indigenous minerals in the geological formation and formation of secondary carbonate precipitates. This both increases the brine pH and immobilizes the CO 2 . Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this option. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory-measured and field-derived

365

Finding a Link between Microbes and Mineral Deposits  

NLE Websites -- All DOE Office Websites (Extended Search)

Finding a Link between Microbes and Mineral Deposits Finding a Link between Microbes and Mineral Deposits Contamination around mining sites is a significant problem worldwide. Acid mine drainage, for example, is a threat to surface and groundwater near mines. It occurs when metal-sulfide ores are exposed to air and water and the sulfide is transformed to sulfuric acid. Moreover, metals such as zinc are toxic and can leach into groundwater and contaminate wells and other drinking water supplies. Results of EDX (bottom left) and x-ray microprobe fluorescence (top right) analysis of specific biomineralized zinc sulfide precipitates. The sensitivity of the x-ray microprobe enables identification of arsenic and selenium constituents in the zinc sulfide precipitate. Above: Results of EDX (bottom left) and x-ray microprobe fluorescence (top

366

Interaction Between Toxic Metals and Complex Biofilm/Mineral/Solution  

NLE Websites -- All DOE Office Websites (Extended Search)

highlights highlights title by Alexis S. Templeton, Thomas P. Trainor, and Gordon E. Brown, Jr., Stanford University Sorption reactions on particle surfaces can dramatically affect the speciation, cycling and bioavailability of essential micronutrients (i.e. PO43-, Cu, Zn etc.) and toxic metals and metalloids (i.e. Pb, Hg, Se, As) in soils and aquatic environments. Considerable attention has been focused on understanding metal sorption reactions at a molecular/mechanistic level and the effects of metal concentration, pH, ionic strength, and complexing ligands on the ways in which metal ions bind to the surfaces of common mineral phases such as Fe-, Mn- and Al-(hydr)oxides and clays. However, a significant fraction of mineral surfaces in natural environments are extensively colonized by microbial organisms, which can also be potent sorbents for metals due to the large number of reactive functional groups that decorate the cell walls and outer membranes of bacterial surfaces.

367

Miner County, South Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Miner County, South Dakota: Energy Resources Miner County, South Dakota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0643951°, -97.6982272° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0643951,"lon":-97.6982272,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Hydrodesulfurization and hydrodenitrogenation catalysts obtained from coal mineral matter  

SciTech Connect

A hydrotreating catalyst is prepared from coal mineral matter obtained by low temperature ashing coals of relatively low bassanite content by the steps of: (a) depositing on the low temperature ash 0.25-3 grams of an iron or nickel salt in water per gram of ash and drying a resulting slurry; (b) crushing and sizing a resulting solid; and (c) heating the thus-sized solid powder in hydrogen.

Liu, Kindtoken H. D. (Newark, DE); Hamrin, Jr., Charles E. (Lexington, KY)

1982-01-01T23:59:59.000Z

369

Mineral Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mineral Hot Springs Geothermal Area Mineral Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mineral Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.78833333,"lon":-114.7216667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

New Mexico Energy, Minerals and Natural Resources Department | Open Energy  

Open Energy Info (EERE)

New Mexico Energy, Minerals and Natural Resources Department New Mexico Energy, Minerals and Natural Resources Department Jump to: navigation, search Name New Mexico Energy, Minerals and Natural Resources Department Address 1220 South St. Francis Drive Place Santa Fe, NM Zip 87505 Phone number (505) 476-3200 Website http://www.emnrd.state.nm.us/E Coordinates 35.669674°, -105.957212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.669674,"lon":-105.957212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Pion production in neutrino-nucleus collisions  

E-Print Network (OSTI)

We compare our pion production results with recent MiniBooNE data measured in mineral oil. Our total cross sections lie below experimental data for neutrino energies above 1 GeV. Differential cross sections show our model produces too few high energy pions in the forward direction as compared to data. The agreement with experiment improves by artificially removing pion final state interaction.

Hernández, E; Vacas, M J Vicente

2013-01-01T23:59:59.000Z

372

Pion production in neutrino-nucleus collisions  

E-Print Network (OSTI)

We compare our pion production results with recent MiniBooNE data measured in mineral oil. Our total cross sections lie below experimental data for neutrino energies above 1 GeV. Differential cross sections show our model produces too few high energy pions in the forward direction as compared to data. The agreement with experiment improves by artificially removing pion final state interaction.

E. Hernández; J. Nieves; M. J. Vicente Vacas

2013-10-16T23:59:59.000Z

373

Developing a Mechanistic Understanding of Lamellar Hydroxide Mineral Carbonation Reaction Processes to Reduce CO2 Mineral Sequestration Process Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanistic Understanding of Lamellar Hydroxide Mechanistic Understanding of Lamellar Hydroxide Mineral Carbonation Reaction Processes to Reduce CO 2 Mineral Sequestration Process Cost Michael J. McKelvy (mckelvy@asu.edu; 480-965-4535), Andrew V. G. Chizmeshya (chizmesh@asu.edu; 480-965-6072), Hamdallah Bearat (Hamdallah.Bearat@asu.edu; 480-965-2624), Renu Sharma (Renu.Sharma@asu.edu; 480-965-4541), and Ray W. Carpenter (carpenter@asu.edu; 480-965-4549) Center for Solid State Science and Science and Engineering of Materials PhD Program, P.O. Box 871704, Arizona State University, Tempe, Arizona 85287 USA ABSTRACT The potential environmental effects of increasing atmospheric CO 2 levels are of major worldwide concern. One alternative for managing CO 2 emissions is carbon sequestration: the capture and secure confinement of CO

374

RMOTC - Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production RMOTC Pumpjack in action During the process of the sale of NPR-3, RMOTC will focus on maximizing the value of the NPR-3 site and will continue with its Production Optimization Projects. NPR-3 includes 9,481 acres with more than 400 oil-producing wells. Current oil production is at approximately 240 barrels of oil per day. In July 2013, RMOTC began working on a number of Production Optimization Projects within the NPR-3 field, with the goal to optimize and improve flow and efficiency. Production Optimization Projects include repairing and replacing existing infrastructure with new infrastructure in order to optimize current wells and bring additional wells online. These Production Optimization Projects will continue throughout 2013 and are focused on improving current production and creating revenue for the America tax payer.

375

Antihydrogen production  

SciTech Connect

Antihydrogen production in ATHENA is analyzed more carefully. The most important peculiarities of the different experimental situations are discussed. The protonium production via the first matter-antimatter chemical reaction is commented too.

Rizzini, Evandro Lodi; Venturelli, Luca; Zurlo, Nicola [Dipartimento di Chimica e Fisica per l'Ingegneria e per i Materiali, Universita di Brescia, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, 25133 Brescia (Italy)

2008-08-08T23:59:59.000Z

376

Tin Production  

Science Conference Proceedings (OSTI)

...descending order, Brazil, Indonesia, Malaysia, Thailand, Bolivia, and Australia. These countries supply more than 85% of total world production....

377

Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas  

Science Conference Proceedings (OSTI)

Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

Brent Constantz; Randy Seeker; Martin Devenney

2010-06-30T23:59:59.000Z

378

Alternative Energy Product Manufacturers Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Product Manufacturers Tax Credit Product Manufacturers Tax Credit Alternative Energy Product Manufacturers Tax Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Maximum Rebate 5% of taxpayer's qualified expenditures Program Info Start Date 7/1/2006 State New Mexico Program Type Industry Recruitment/Support Rebate Amount Determined by New Mexico Department of Taxation and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing alternative energy products and components, including renewable energy systems, fuel cell systems, and electric and hybrid-electric vehicles. Alternative energy components include parts,

379

Hydrogen production from municipal solid waste  

DOE Green Energy (OSTI)

We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

1996-06-28T23:59:59.000Z

380

The Minerals, Metals and Materials Society, Warrendale, PA  

Science Conference Proceedings (OSTI)

TMS ENERGY INITIATIVES · KNOWLEDGE RESOURCE CENTER ... Corporate, Hydro Aluminium Rolled Products Wagstaff Inc. Foundation Founders

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Non-Traditional Soil Additives: Can They Improve Crop Production?  

E-Print Network (OSTI)

Non-traditional soil additives include soil conditioners such as organic materials and minerals, soil activators that claim to stimulate soil microbes or inoculate soil with new beneficial organisms, and wetting agents that may be marketed to improve crop yields. As this publication advises, growers should evaluate such products carefully and conduct field trials to determine their merit.

McFarland, Mark L.; Stichler, Charles; Lemon, Robert G.

2002-06-26T23:59:59.000Z

382

Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit  

Science Conference Proceedings (OSTI)

During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

2007-01-01T23:59:59.000Z

383

Products, Applications & Services Showcase  

Science Conference Proceedings (OSTI)

Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA. 01923 USA ... A Publication of TMS (The Minerals, Metals & Materials Society). 184 Thorn Hill Road.

384

How EIA Estimates Natural Gas Production  

Reports and Publications (EIA)

The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing States and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The States and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

Information Center

2004-02-01T23:59:59.000Z

385

NOVEL IN-SITU METAL AND MINERAL EXTRACTION TECHNOLOGY  

SciTech Connect

This white paper summarizes the state of art of in-situ leaching of metals and minerals, and describes a new technology concept employing improved fragmentation of ores underground in order to prepare the ore for more efficient in-situ leaching, combined with technology to continuously improve solution flow patterns through the ore during the leaching process. The process parameters and economic benefits of combining the new concept with chemical and biological leaching are described. A summary is provided of the next steps required to demonstrate the technology with the goal of enabling more widespread use of in-situ leaching.

Glenn O'Gorman; Hans von Michaelis; Gregory J. Olson

2004-09-22T23:59:59.000Z

386

Select Minerals and Potable Use of Reclaimed Wastewaters  

E-Print Network (OSTI)

The long-observed relationships of an influence of drinking water mineral content on heart-circulatory deaths are developed to indicate that sodium -- when present in sufficiently high concentrations -- may be detrimental to human health. An hypothesis is presented that suggests that drinking water sodium contributes more to the health effects picture than is ordinarily attributed to this normally minor avenue of ingestion by virtue of its influence on taste behavior. Mechanisms of action for metals as they relate to cancer and for sulfates as they relate to urinary calculi were also observed in the literature.

Wolf, H.

1977-03-01T23:59:59.000Z

387

Geothermal alteration of clay minerals and shales: diagenesis  

DOE Green Energy (OSTI)

The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes.

Weaver, C.E.

1979-07-01T23:59:59.000Z

388

How do I convert between short tons and metric tons? - FAQ - U.S ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies ... What are the sources of energy-related carbon dioxide emissions by type of fuel ...

389

Two (2) 175 Ton (350 Tons total) Chiller Geothermal Heat Pumps...  

Open Energy Info (EERE)

pump system is fully automated. The details of its optimized sequence of operation in all weather and building load conditions will be documented and shared. - Data Collection: The...

390

How do I convert between short tons and metric tons? - FAQ - U ...  

U.S. Energy Information Administration (EIA)

Energy Conversion Calculators. Metric and Other Physical Conversion Factors. Last reviewed: September 13, 2013. Other FAQs about Coal.

391

How do I convert between short tons and metric tons? - FAQ - U ...  

U.S. Energy Information Administration (EIA)

Energy Conversion Calculators. Metric and Other Physical Conversion Factors. Last reviewed: September 13, 2013. Other FAQs about Prices.

392

NETL: IEP - Coal Utilization By-Products Current Regulations Governing Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Products Current Regulations Governing Coal Combustion By-Products - Database of State Regulations Database of State Regulations Affecting Disposal and Utilization of Coal Combustion By-Products A Summary Provided by the National Energy Technology Laboratory and the American Coal Ash Association Coal Combustion By-Products (CCBs) are generated when coal is used to generate electricity and power industrial processes. Tens of millions of tons of these materials are produced each year. Many uses of these byproducts are possible, but currently most of them wind up in landfills. Previous work at the National Energy Technology Laboratory (NETL) identified regulatory issues as one factor preventing more widespread reuse of CCBs. CCBs are generally regulated by state authorities, and the various states have developed widely differing rules. This web site was developed as one way to help CCB generators, users, and regulators share information across state boundaries.

393

Topic: Productivity  

Science Conference Proceedings (OSTI)

... General Information: 301-975-5020 mfg@nist ... competitive in the global market, companies need to ... become more efficient in energy, production and ...

2013-09-26T23:59:59.000Z

394

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

395

Hydrogen Production  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Increase your H2IQ More information Making...

396

Silicon Production  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... An Investigation into the Electrochemical Production of Si by the FFC Cambridge Process: Emre Ergül1; ?shak Karakaya2; Metehan Erdo?an2; ...

397

Biological production of ethanol from coal. [Quarterly report], December 22, 1989--March 21, 1990  

DOE Green Energy (OSTI)

A batch kinetic study involving Clostridium lungdahlii in a mineral medium was carried out in order to provide baseline data for the effects of nutrients on product ratio and kinetics. The use of this minimal medium containing vitamins, minerals, select amino acids and salts showed both a lower maximum specific growth rate and a lower maximum specific uptake rate than found when using a complex medium supplemented with 0.01% yeast extract. At the same time, the product ratio was improved slightly in favor of ethanol over acetate. Future experiments will measure the effects of ammonia and phosphate limitation on product ratio and process kinetics.

Not Available

1990-12-31T23:59:59.000Z

398

Can Dynamic Bubble Templating Play a Role in Corrosion Product Morphology?  

DOE Green Energy (OSTI)

Dynamic templating as a result of cathodic hydrogen gas production is suggested as a possible mechanism for the formation of tube-like corrosion products on an unlined cast iron pipe in a drinking water distribution system. Mounds of corrosion product, with protruding tubes and freestanding tubes, were observed within a single 30 cm section of piping. Internal morphologies for all shapes were texturally complex although mineralogically simple, composed of two iron oxide/oxyhydroxides minerals: {alpha}-FeOOH (goethite) and Fe{sub 3}O{sub 4} (magnetite). Static templating by either microorganisms or minerals was rejected as a possible mechanism for tube formation in this study.

Gerke, T.L.; Scheckel, K.G.; Ray, R.I.; Little, B.J. (EPA); (UCIN); (NRL)

2012-05-09T23:59:59.000Z

399

ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT  

SciTech Connect

The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

Robert Jewell; Thomas Robl; John Groppo

2005-03-01T23:59:59.000Z

400

GRR/Section 3-HI-b - State Mineral Leasing Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 3-HI-b - State Mineral Leasing Process GRR/Section 3-HI-b - State Mineral Leasing Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-HI-b - State Mineral Leasing Process 03HIBStateMineralLeasingProcess.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Land and Natural Resources Engineering Division Regulations & Policies Hawaii Administrative Rules Title 13, Subtitle 7, Chapter 183 Hawaii Revised Statutes 182 Triggers None specified Click "Edit With Form" above to add content 03HIBStateMineralLeasingProcess.pdf 03HIBStateMineralLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Hawaii Department of Land and Natural Resources (DLNR) Engineering

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy  

Science Conference Proceedings (OSTI)

Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are compared and assessed. The analysis shows that only high temperature gas cooled reactor (HTGR) and sodium fast breed reactor might be available in China in 2020 for hydrogen production. Further development of very high temperature gas cooled reactor (VHTR) and gas-cooled fast reactor (GCFR) is necessary to ensure China's future capability of hydrogen production with nuclear energy as the primary energy. It is obvious that hydrogen production with high efficient nuclear energy will be a suitable strategic technology road, through which future clean vehicles burning hydrogen fuel cells will become dominant in future Chinese transportation industry and will play sound role in ensuring future energy security of China and the sustainable prosperity of Chinese people. (author)

Zhiwei Zhou [Tsinghua University, Beijing, 100084 (China)

2006-07-01T23:59:59.000Z

402

FACT SHEET The Minerals, Metals & Materials Society (TMS) is the ...  

Science Conference Proceedings (OSTI)

primary metals production to basic research and the advanced applications of ... and manufacturing systems and processes at significantly reduced costs.

403

Ex Situ Bioremediation of Mineral Oil in Soils: Land Treatment and Composting  

Science Conference Proceedings (OSTI)

Mineral oil dielectric fluid (MODF) has replaced PCB oil as the insulating medium in electrical transformers. Although eliminating PCBs has reduced the environmental impact resulting from transformer leaks, soil contaminated with mineral oil still often requires remediation. This study evaluated the feasibility of ex situ biotreatment by land farming and composting for Southern Company Services/Georgia Power. Research results indicate that composting does not enhance the biodegradation of mineral oil com...

1998-06-18T23:59:59.000Z

404

Mineral resource potential and geology of the Challis National Forest, Idaho  

SciTech Connect

This book presents an assessment of the mineral potential of the Challis National Forest based on geological, geochemical, and geophysical data compiled at a 1:250,000 scale and on published information on mineral deposits and occurrences. More than half of the forest has a high to moderate resource potential for one or more of the following commodities: Ag, Au, Ba, Bi, Cu, Mo, Nb, Pb, REE, Ta, Th, Sb, Sn, U, V, W, Zn, fluorspar, geothermal energy, and common variety minerals.

Worl, R.G.; Wilson, A.B.; Smith, C.L.; Kleinkopf, M.D.

1989-01-01T23:59:59.000Z

405

Quantitative determination of mineral composition by powder x-ray diffraction  

DOE Patents (OSTI)

An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

Pawloski, G.A.

1984-08-10T23:59:59.000Z

406

Quantitative determination of mineral composition by powder X-ray diffraction  

DOE Patents (OSTI)

An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

Pawloski, Gayle A. (Livermore, CA)

1986-01-01T23:59:59.000Z

407

Federal Outer Continental Shelf Oil and Gas Production Statistics - Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Pacific Pacific Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Federal Outer Continental Shelf Oil and Gas Production Statistics - Pacific Dataset Summary Description Federal Outer Continental Shelf Oil and Gas Production Statistics for the Pacific by month and summarized annually. Tags {"Minerals Management Service",MMS,Production,"natural gas",gas,condensate,"crude oil",oil,"OCS production","Outer Continental Shelf",OSC,EIA,"Energy Information Agency",federal,DOE,"Department of Energy",DOI,"Department of the Interior","Pacific "} Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes yet Usefulness

408

Plutonium and tritium produced in the Hanford Site production reactors  

SciTech Connect

In a news release on December 7, 1993, the Secretary of Energy announced declassification action that included totals for plutonium and tritium production in the Hanford Site production reactors. This information was reported as being preliminary because it was not fully supported by documentation. Subsequently, production data were made available from the US Department of Energy-Headquarters (DOE-HQ) records that indicated an increase of about one and one-half metric tons in total plutonium production. The Westinghouse Hanford Company was tasked by the US Department of Energy-Richland Operations Office to substantiate production figures and DOE-HQ data and to provide a defensible report of weapons- (6 wt% {sup 240}Pu) and nonweapons- (fuels-)grade (nominally 9 wt% or higher {sup 240}Pu) plutonium and tritium production in the Hanford Site production reactors. The task was divided into three parts. The first part was to determine plutonium and tritium production based on available reported accountability records. The second part was to determine plutonium production independently by calculational checks based on reactor thermal power generation and plutonium conversion factors representing the various reactor fuels. The third part was to resolve differences, if they occurred, in the reported and calculational results. In summary, the DOE-HQ-reported accountability records of plutonium and tritium production were determined to be the most defensible record of Hanford Site reactor production. The DOE-HQ records were consistently supported by the independent calculational checks and the records of operational data. Total production quantities are 67.4 MT total plutonium, which includes 12.9 MT of nonweapons-grade plutonium. The total tritium production was 10.6 kg.

Roblyer, S.P.

1994-09-28T23:59:59.000Z

409

I HEAVY MINERALS CO. 836 South Michigan Avenue Chic&o-5, Illinois  

Office of Legacy Management (LM)

, .' " I HEAVY MINERALS CO. 836 South Michigan Avenue Chic&o-5, Illinois December 1, 1954 , etomic Energy Commiesion Raw Materials Division Washington, D. C. - - Attention: Mr....

410

Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds  

E-Print Network (OSTI)

The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

Labushev, Mikhail M

2013-01-01T23:59:59.000Z

411

Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds  

E-Print Network (OSTI)

The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

Mikhail M. Labushev

2013-03-20T23:59:59.000Z

412

1983 annual report on Alaska's mineral resources. Geological Survey Circular 908  

Science Conference Proceedings (OSTI)

This report describes activity during 1982 in Alaska relating to oil and gas, uranium, coal and peat, geothermal resources, and non-fuel, critical and strategic minerals. (ACR)

Not Available

1983-01-01T23:59:59.000Z

413

Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

414

Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts  

E-Print Network (OSTI)

extent of mineralization Carbon dioxide levels produced as athe formation of carbon dioxide and water. The concentrationformaldehyde and carbon dioxide concentrations were recorded

Sidheswaran, Meera A.

2012-01-01T23:59:59.000Z

415

Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties  

E-Print Network (OSTI)

global emissions of reactive chlorine from anthropogenic andnatural sources: Reactive Chlorine Emissions Inventory, J.Mineral dust is a sink for chlorine in the marine boundary

Sullivan, Ryan Christopher

2008-01-01T23:59:59.000Z

416

Thermogravimetric Study of Effect of Mineral Content and Maceral Composition on Illinois Coal Gasification.  

E-Print Network (OSTI)

??The effects of mineral and maceral composition on Illinois coal gasification were studied by thermogravimetric analysis and semi-batch reactor. Macerals were separated from coal samples.… (more)

Zhang, Quan

2013-01-01T23:59:59.000Z

417

Insight in the Organic-Mineral Interface Structure of Intact Human ...  

Science Conference Proceedings (OSTI)

Here, we will present our recent results on a solid state NMR investigation of the structure of the organic-mineral interface in intact human bone samples.

418

Evolution of the quaternary magmatic system, Mineral Mountains, Utah: Interpretations from chemical and experimental modeling  

DOE Green Energy (OSTI)

The evolution of silicic magmas in the upper crust is characterized by the establishment of chemical and thermal gradients in the upper portion of magma chambers. The chemical changes observed in rhyolite magmas erupted over a period of 300,000 years in the Mineral Mountains are similar to those recorded at Twin Peaks, Utah, and in the spatially zoned Bishop Tuff from Long Valley, California. Chemical and fluid dynamic models indicate that cooling of a silicic magma body from the top and sides can result in the formation of a roof zone above a convecting region which is chemically and thermally stratified, as well as highly fractionated and water rich. Crystallization experiments have been performed with sodium carbonate solutions as an analog to crystallization in magmatic systems. Top and side cooling of a homogeneous sodium carbonate solution results in crystallization along the top and sides and upward convection of sodium carbonate-depleted fluid. A stably stratified roof zone, which is increasingly water rich and cooler upwards, develops over a thermally and chemically homogeneous convecting region. Crystallization at the top ultimately ceases, and continued upward convection of water-rich fluid causes a slight undersaturation adjacent to the roof despite cooler temperatures. By analogy, crystallization at the margins of a magma chamber and buoyant rise of the fractionated boundary layer into the roof zone can account for the chemical evolution of the magma system at the Mineral Mountains. To produce compositionally stratified silicic magmas requires thermal input to a silicic system via mafic magmas. The small volume, phenocryst-poor rhyolite magma which persisted for at least 300,000 years in the Mineral Mountains requires the presence of a continued thermal input from a mafic magma source. The presence of silicic lavas signifies that there is a substantial thermal anomaly both in the crust and upper mantle. The production of silicic lavas requires (1) the heating of the lower crust to near the solidus for silicic melts, (2) partial fusion by the additional convective transfer of heat from the mantle by injection of the basaltic magma, (3) continued input of heat in excess of the conductive and convective heat loss to allow the crustal melt to grow to some critical size so that it can rise buoyantly into the upper crust. In the Mineral Mountains there has been an inadequate prolonged thermal flux to produce caldera-forming eruptions. Moreover, the distributed extension in the Basin and Range allows for the propagation of small volumes of magma upward probably in dike-like bodies parallel to the direction of maximum horizontal compressive stress. The erupted lavas represent a highly differentiated and presumably small fraction of the total volume of silicic magma which is contained at considerable depth.

Nash, W.P.; Crecraft, H.R.

1982-09-01T23:59:59.000Z

419

Effect of fresh green waste and green waste compost on mineral nitrogen, nitrous oxide and carbon dioxide from a Vertisol  

Science Conference Proceedings (OSTI)

Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N{sub 2}O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N (14%). Both products were applied at 3 t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N{sub 2}O production over the 28 day incubation from the control soil was 1.5 mg/N{sub 2}O/m{sup 2}, and 11 mg/N{sub 2}O/m{sup 2} from the control + N. The N{sub 2}O emission decreased with GWC addition (P < 0.05) for the high N soil, reducing cumulative N{sub 2}O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N{sub 2}O production during the first week of the trial, when soil N{sub 2}O emissions peaked. An additional finding was that FGW + N did not decrease cumulative N{sub 2}O emissions compared to the control + N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N{sub 2}O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N{sub 2}O, an important greenhouse gas.

Vaughan, Sarah M., E-mail: s.vaughan@uq.edu.au [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia); Dalal, Ram C. [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia); Department of Environment and Resource Management, 80 Meiers Rd., Indooroopilly, QLD 4068 (Australia); Harper, Stephen M. [Department of Employment, Economic Development and Innovation, Warrego Highway, Gatton, QLD 4343 (Australia); Menzies, Neal W. [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia)

2011-08-15T23:59:59.000Z

420

An innovative concept for deep water oil production platform design  

E-Print Network (OSTI)

As more oil and gas are discovered in deep water, the offshore industry has become increasingly interested in the design of deep water offshore production facilities. A new design concept tentatively called FPSOT (Floating Production, Storage and Off loading Tower) is studied in this thesis. Instead of using a single large cylindrical structure as in the spar configuration, the FPSOT utilizes a jacket-type framed structure supported by a buoyancy/storage tank deep below the ocean surface. This new structure concept is suitable for water depths up to 1000 meters or more. 20000 tons of concrete and 67000 tons of oil, serving as ballast, provide a good stability of the structure. The stored oil, used as a ballast, can also be replaced by sea water. The deck and the drilling/production equipment of 10000 tons are supported by a framed structure made of small cylindrical members. Because of the smallness of these cylindrical members, wave forces on the upper structure is very small. The forces on the lower structure (buoyancy/ballast tank), which is deeply submerged, are also small. Thus, the platform will be very stable even in a very severe sea state, with maximum surge and heave motions are less than two meters and the pitch motion is always smaller than one degree. All the natural frequencies are very small (less than 0.055 rd/sec). All the calculations are performed for regular and random waves. It was found that the platform motions were extremely small even in stormy waves as compared to the other platform configurations. A model with a scale 1:60 of this concept has been built and tested in deep water wave at the Offshore Technology Research Center on campus. The experimental and theoretical results are very close. A comparison is performed between this new concept and a spar buoy of same draft, weight, buoyancy and catenary system. The motions of the FPSOT, specially in pitch, are smaller than the spar buoy. Thus, this new concept is proved to be feasible and to be a very interesting approach for the future offshore platform design.

Racine, Florian

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE - Office of Legacy Management -- International Minerals and Chemicals  

NLE Websites -- All DOE Office Websites (Extended Search)

and and Chemicals Corp - Bonnie Mill Plant - FL 03 FUSRAP Considered Sites Site: International Minerals and Chemicals Corp., Bonnie Mill Plant (FL.03) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: CF Industries Bonnie Uranium Plant FL.03-2 Location: Approximately 2 miles south of Highway 60 between Mulberry and Bartow , Bartow , Florida FL.03-2 Evaluation Year: 1985 FL.03-2 Site Operations: Recovered uranium concentrates from phosphate solutions produced at this plant. FL.03-2 Site Disposition: Eliminated - No Authority FL.03-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium FL.03-2 Radiological Survey(s): Yes FL.03-4 Site Status: Eliminated from consideration under FUSRAP

422

Buckhorn Mineral Wells Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Buckhorn Mineral Wells Sector Geothermal energy Type Space Heating Location Mesa, Arizona Coordinates 33.4222685°, -111.8226402° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

423

MINER{nu}A, a Neutrino--Nucleus Interaction Experiment  

SciTech Connect

With the fantastic results of KamLAND and SNO for neutrino physics, a new generation of neutrino experiments are being designed and build, specially to study the neutrino oscillations to resolve most of the incognita still we have in the neutrino physics. At FERMILAB we have the experiments MINOS and, in a near future, NO{nu}A, to study this kind of oscillations. One big problem these experiments will have is the lack of a good knowledge of the Physics of neutrino interactions with matter, and this will generate big systematic errors. MINER{nu}A, also at FERMILAB, will cover this space studying with high statistics and great precision the neutrino--nucleus interactions.

Solano Salinas, C. J.; Chamorro, A.; Romero, C. [Instituto de Fisica, Universidad Nacional de Ingenieria (Peru)

2007-10-26T23:59:59.000Z

424

Plutonium Oxidation and Subsequent Reduction by Mn (IV) Minerals  

Science Conference Proceedings (OSTI)

Plutonium sorbed to rock tuff was preferentially associated with manganese oxides. On tuff and synthetic pyrolusite (Mn{sup IV}O{sub 2}), Pu(IV) or Pu(V) was initially oxidized, but over time Pu(IV) became the predominant oxidation state of sorbed Pu. Reduction of Pu(V/VI), even on non-oxidizing surfaces, is proposed to result from a lower Gibbs free energy of the hydrolyzed Pu(IV) surface species versus that of the Pu(V) or Pu(VI) surface species. This work suggests that despite initial oxidation of sorbed Pu by oxidizing surfaces to more soluble forms, the less mobile form of Pu, Pu(IV), will dominate Pu solid phase speciation during long term geologic storage. The safe design of a radioactive waste or spent nuclear fuel geologic repository requires a risk assessment of radionuclides that may potentially be released into the surrounding environment. Geochemical knowledge of the radionuclide and the surrounding environment is required for predicting subsurface fate and transport. Although difficult even in simple systems, this task grows increasingly complicated for constituents, like Pu, that exhibit complex environmental chemistries. The environmental behavior of Pu can be influenced by complexation, precipitation, adsorption, colloid formation, and oxidation/reduction (redox) reactions (1-3). To predict the environmental mobility of Pu, the most important of these factors is Pu oxidation state. This is because Pu(IV) is generally 2 to 3 orders of magnitude less mobile than Pu(V) in most environments (4). Further complicating matters, Pu commonly exists simultaneously in several oxidation states (5, 6). Choppin (7) reported Pu may exist as Pu(IV), Pu(V), or Pu(VI) oxic natural groundwaters. It is generally accepted that plutonium associated with suspended particulate matter is predominantly Pu(IV) (8-10), whereas Pu in the aqueous phase is predominantly Pu(V) (2, 11-13). The influence of the character of Mn-containing minerals expected to be found in subsurface repository environments on Pu oxidation state distributions has been the subject of much recent research. Kenney-Kennicutt and Morse (14), Duff et al. (15), and Morgenstern and Choppin (16) observed oxidation of Pu facilitated by Mn(IV)-bearing minerals. Conversely, Shaughnessy et al. (17) used X-ray Absorption near-edge spectroscopy (XANES) to show reduction of Pu(VI) by hausmannite (Mn{sup II}Mn{sub 2}{sup III}O{sub 4}) and manganite ({gamma}-Mn{sup III}OOH) and Kersting et al., (18) observed reduction of Pu(VI) by pyrolusite (Mn{sup IV}O{sub 2}). In this paper, we attempt to reconcile the apparently conflicting datasets by showing that Mn-bearing minerals can indeed oxidize Pu, however, if the oxidized species remains on the solid phase, the oxidation step competes with the formation of Pu(IV) that becomes the predominant solid phase Pu species with time. The experimental approach we took was to conduct longer term (approximately two years later) oxidation state analyses on the Pu sorbed to Yucca Mountain tuff (initial analysis reported by Duff et al., (15)) and measure the time-dependant changes in the oxidation state distribution of Pu in the presence of the Mn mineral pyrolusite.

KAPLAN, DANIEL

2005-09-13T23:59:59.000Z

425

A study of dermatitis in trona miners and millers  

Science Conference Proceedings (OSTI)

Trona (sodium sesquicarbonate) is mined from an underground deposit in Wyoming and processed for use in the manufacture of glass, paper, and detergents, and in chemical applications. Trona dust is alkaline (pH 10.5) and may have an irritant effect on the respiratory airways, mucous membranes, and the skin. One hundred forty-two underground miners and 88 surface workers from one trona facility participated voluntarily in an epidemiologic and clinical study. Their mean age was 37.6 and their mean working period, 10.0 years. One half of the study participants complained of skin symptoms; dermatologic symptoms increased from twofold to fifteenfold after the subjects began trona mining. Trona dermatitis consists of pruritic, erythematous, raised, dry, and fissured lesions commonly affecting the hands, arms, and legs. A dose-response relationship was observed among underground workers. Patch testing with 10% aqueous trona and sodium carbonate was negative, suggesting that the dermatitis was primarily irritant in nature.

Rom, W.N.; Moshell, A.; Greaves, W.; Bang, K.M.; Holthouser, M.; Campbell, D.; Bernstein, R.

1983-04-01T23:59:59.000Z

426

"Weekly and Monthly U.S. Coal Production Overview"  

U.S. Energy Information Administration (EIA) Indexed Site

48" 48" "Report Released: December 05, 2013" "Next Release Date: January 09, 2014" "Weekly and Monthly U.S. Coal Production Overview" "(thousand short tons)" "Coal-Producing","Week Ended",,"Year-To-Date[1]",,"Month Ended",,"January - November" "Region and State","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","application/vnd.ms-excel","November 2013","November 2012",2013,2012,"% Change" "Alabama",314.49,339.32,16938.35,18080.05,1450.46,1425.29,16938.35,18080.05,-6.3 "Alaska",37.08,45.44,1592.19,1874.56,170.87,187.66,1592.19,1874.56,-15.1

427

Assessment of municipal solid waste for energy production in the western United States  

Science Conference Proceedings (OSTI)

Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

Goodman, B.J.; Texeira, R.H.

1990-08-01T23:59:59.000Z

428

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

429

Table 14. Coal Production, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Coal Production, Projected vs. Actual Coal Production, Projected vs. Actual (million short tons) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 914 939 963 995 1031 1080 AEO 1983 900 926 947 974 1010 1045 1191 AEO 1984 899 921 948 974 1010 1057 1221 AEO 1985 886 909 930 940 958 985 1015 1041 1072 1094 1116 AEO 1986 890 920 954 962 983 1017 1044 1073 1097 1126 1142 1156 1176 1191 1217 AEO 1987 917 914 932 962 978 996 1020 1043 1068 1149 AEO 1989* 941 946 977 990 1018 1039 1058 1082 1084 1107 1130 1152 1171 AEO 1990 973 987 1085 1178 1379 AEO 1991 1035 1002 1016 1031 1043 1054 1065 1079 1096 1111 1133 1142 1160 1193 1234 1272 1309 1349 1386 1433 AEO 1992 1004 1040 1019 1034 1052 1064 1074 1087 1102 1133 1144 1156 1173 1201 1229 1272 1312 1355 1397 AEO 1993 1039 1043 1054 1065 1076 1086 1094 1102 1125 1136 1148 1161 1178 1204 1237 1269 1302 1327 AEO 1994 999 1021

430

EIA - Weekly U.S. Coal Production  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Production U.S. Coal Production Report No.: DOE/EIA 0218/50 Report Released: December 19, 2013 Next Release Date: December 30, 2013 Week Ended Year-To-Date1 52 Weeks Ended Coal-Producing Region and State (thousand short tons) 12/14/2013 12/7/2013 12/15/2012 12/14/2013 12/14/2012 Percent Change 12/14/2013 12/15/2012 Percent Change Alabama 355 351 338 17,644 18,754 -5.9 18,343 19,394 -5.4 Alaska 42 41 45 1,675 1,964 -14.7 1,764 2,045 -13.7 Arizona 151 149 141 7,328 7,226 1.4 7,596 7,513 1.1 Arkansas 1 1 3 37 92 -59.3 44 96 -54.6 Colorado 487 473 419 22,198 27,630 -19.7 23,090 28,655 -19.4 Illinois 997 983 890 50,272 46,828 7.4 52,170 48,271 8.1 Indiana 737 728 693 36,141 35,248 2.5 37,590 36,686 2.5

431

Assay products from Green River oil shale  

DOE Green Energy (OSTI)

Data from 66 material-balanced assays conducted at Lawrence Livermore National Laboratory, Laramie Energy Technology Center, and The Oil Shale Corporation were compiled and analyzed to determine the pyrolysis stoichiometry for Green River formation oil shales originating in and near the Mahogany zone. Shale samples came from four sites in Colorado and one in Utah, and ranged in oil content from 12 to 258 L/Mg (3 to 62 gal/ton). Average values and pairwise correlation coefficients are reported for all data (except sulfur analyses) available on the shales, e.g., elemental analyses of shales and oils, distribution of organic carbon in products, gas composition, and some ratios of elemental composition. The wide range of organic carbon contents made it possible to demonstrate the sensitivity of assay product distribution to oil shale grade. A linear correlation for shale grade as a function of weight percent organic carbon in raw shale is presented. An average stoichiometry for pyrolysis of the organic material is also calculated and compared with others available in the literature.

Singleton, M.F.; Koskinas, G.J.; Burnham, A.K.; Raley, J.H.

1982-04-12T23:59:59.000Z

432

Uranium mineralization in fluorine-enriched volcanic rocks  

Science Conference Proceedings (OSTI)

Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

1980-09-01T23:59:59.000Z

433

Enhanced Microbial Pathways for Methane Production from Oil Shale  

Science Conference Proceedings (OSTI)

Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

Paul Fallgren

2009-02-15T23:59:59.000Z

434

Oxidative Mineralization and Characterization of Polyvinyl Alcohol Solutions for Wastewater Treatment  

SciTech Connect

The principal objectives of this study are to identify an appropriate polyvinyl alcohol (PVA) oxidative mineralization technique, perform compatibility and evaporation fate tests for neat and mineralized PVA, and determine potential for PVA chemical interferences which may affect ion exchange utilization for radioactive wastewater processing in the nuclear industry.

Oji, L.N.

1999-08-31T23:59:59.000Z

435

Objective selection of suitable unit cell size in data-driven modeling of mineral prospectivity  

Science Conference Proceedings (OSTI)

In GIS-based data-driven modeling of mineral prospectivity, a suitably fine unit cell size is used for spatial representation of known occurrences of mineral deposits of the type sought (D) in a study area (T). However, until now, the unit cell size ... Keywords: Fractal analysis, GIS, Point pattern analysis, Spatial contrast, Weights-of-evidence

Emmanuel John M. Carranza

2009-10-01T23:59:59.000Z

436

Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China  

E-Print Network (OSTI)

Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW, People's Republic of China c Northwest Institute of Uranium Geology, China National Nuclear Corporation, Wuyiyi and Shihongtan sandstone-hosted roll-front uranium deposits, northwest China. The mineralization

Fayek, Mostafa

437

Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks  

Science Conference Proceedings (OSTI)

This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

CW Enderlin; DG Alberts; JA Bamberger; M White

1998-09-25T23:59:59.000Z

438

Discovery of Mineralization Predication Classification Rules by Using Gene Expression Programming Based on PCA  

Science Conference Proceedings (OSTI)

Classification is one of the fundamental tasks in geology field. In this paper, we propose an evolutionary approach for discovering classification rules of mineralization predication from distinct combinations of geochemistry elements by using gene expression ... Keywords: GEP, Principal Component Analysis, mineralization predication

Dongmei Zhang; Yue Huang; Jing Zhi

2009-08-01T23:59:59.000Z

439

Clean Production of Coke from Carbonaceous Fines  

Science Conference Proceedings (OSTI)

In order to produce steel (a necessary commodity in developed nations) using conventional technologies, you must have metallurgical coke. Current coke-making technology pyrolyzes high-quality coking coals in a slot oven, but prime coking coals are becoming more expensive and slot ovens are being shut-down because of age and environmental problems. The United States typically imports about 4 million tons of coke per year, but because of a world-wide coke scarcity, metallurgical coke costs have risen from about $77 per tonne to more than $225. This coke shortage is a long-term challenge driving up the price of steel and is forcing steel makers to search for alternatives. Combustion Resources (CR) has developed a technology to produce metallurgical coke from alternative feedstocks in an environmentally clean manner. The purpose of the current project was to refine material and process requirements in order to achieve improved economic benefits and to expand upon prior work on the proposed technology through successful prototype testing of coke products. The ultimate objective of this project is commercialization of the proposed technology. During this project period, CR developed coke from over thirty different formulations that meet the strength and reactivity requirements for use as metallurgical coke. The technology has been termed CR Clean Coke because it utilizes waste materials as feedstocks and is produced in a continuous process where pollutant emissions can be significantly reduced compared to current practice. The proposed feed material and operating costs for a CR Clean Coke plant are significantly less than conventional coke plants. Even the capital costs for the proposed coke plant are about half that of current plants. The remaining barrier for CR Clean Coke to overcome prior to commercialization is full-scale testing in a blast furnace. These tests will require a significant quantity of product (tens of thousands of tons) necessitating the construction of a demonstration facility. Talks are currently underway with potential partners and investors to build a demonstration facility that will generate enough coke for meaningful blast furnace evaluation tests. If the testing is successful, CR Clean Coke could potentially eliminate the need for the United States to import any coke, effectively decreasing US Steel industry dependence on foreign nations and reducing the price of domestic steel.

Craig N. Eatough

2004-11-16T23:59:59.000Z

440

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miner productivity tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-08-01T23:59:59.000Z

442

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-07-29T23:59:59.000Z

443

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-04-26T23:59:59.000Z

444

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-28T23:59:59.000Z

445

MINERALIZING, STEAM REFORMING TREATMENT OF HANFORD LOW-ACTIVITY WASTE (a.k.a. INEEL/EXT-05-02526)  

SciTech Connect

The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.4 hours of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved essentially complete bed turnover within approximately 40 hours. Samples of mineralized solid product materials were analyzed for chemical/physical properties. SRNL will report separately the results of product performance testing that were accomplished.

A. L. Olson; N. R. Soelberg; D. W. Marshall; G. L. Anderson

2005-02-01T23:59:59.000Z

446

Mineral Leasing Act for Acquired Lands of 1947 | Open Energy Information  

Open Energy Info (EERE)

Acquired Lands of 1947 Acquired Lands of 1947 Jump to: navigation, search Statute Name Mineral Leasing Act for Acquired Lands of 1947 Year 1947 Url Acquiredlands.jpg Description (30 U.S.C. § 351 et seq.) - Extends the provisions of the Mineral Leasing Act and the authority of the Secretary of the Interior over oil and gas operations to federal "acquired lands." References Mineral Leasing Act for Acquired Lands of 1947 [1] The Mineral Leasing Act for Acquired Lands of 1947 (30 U.S.C. § 351 et seq.) - Extends the provisions of the Mineral Leasing Act and the authority of the Secretary of the Interior over oil and gas operations to federal "acquired lands." "To promote the mining of coal, phosphate, sodium, potassium, oil, oil shale, gas, and sulfur on lands acquired by the United States."

447

Combined SWIR and LWIR Mineral Mapping Using MASTER/ASTER | Open Energy  

Open Energy Info (EERE)

SWIR and LWIR Mineral Mapping Using MASTER/ASTER SWIR and LWIR Mineral Mapping Using MASTER/ASTER Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Combined SWIR and LWIR Mineral Mapping Using MASTER/ASTER Details Activities (1) Areas (1) Regions (0) Abstract: This research uses multispectral short-waveinfrared (SWIR) and long-wave-infrared (LWIR) remote sensing to map mineralogy associated with hot springs and epithermal mineral deposits. Selected sites around the world covering a range of active/inactive hot springs and deposit types are being studied using the ODIS/ASTER airborne simulator (MASTER) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). MASTER and ASTER data analysis contribute to mineral mapping in the VNIR/SWIR, however, their main contribution is improved mapping of

448

GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process | Open  

Open Energy Info (EERE)

GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process GRR/Section 3-AK-d - State Noncompetitive Mineral Leasing Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-AK-d - State Noncompetitive Mineral Leasing Process 03AKDStateNoncompetitiveMineralLeasingProcess.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Land Act: AS 38.05 Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 03AKDStateNoncompetitiveMineralLeasingProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

<