Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Leadership Team | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Find People General Contacts Leadership Team Media Contacts User Facility Contacts Internal Users Corporate Fellows Staff Directory Home | Our People | Leadership Team Leadership...

2

Team Leaders | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Leadership » Team Leaders Leadership » Team Leaders Team Leaders David Shafer Acting Director, Office of Site Operations and Team Leader, Asset Management More about David Shafer Patricia Poole-Shirriel Team Leader, Human Resource Management More about Patricia Poole-Shirriel John Montgomery Team Leader, Archives and Information Management Team More about John Montgomery Patrick Ring Team Leader, Benefits Continuity Team More about Patrick Ring Teresa Collins Team Leader, Administrative Team More about Teresa Collins April VanCamp Gil Team Leader, Environmental Team 1 More about April VanCamp Gil Karen Reed Team Leader, Environmental Team 2 More about Karen Reed Jane Powell Team Leader Planning, Budget, and Acquisition More about Jane Powell Raymond Plieness Acting Team Leader, Asset Management

3

Virtual Teams Demystified: An Integrative Framework for Understanding Virtual Teams  

Science Journals Connector (OSTI)

Virtual teams have been researched intensely in the last ten years and there is a growing body of literature on the topic. At this point, the authors need an integrative theory-driven framework through which they can conceptualize the notion of virtual ... Keywords: Emergent Team Processes, Emergent Team States, Information Technology, Team Design, Virtual Team Effectiveness, Virtual Teams

Olivier Caya; Mark Mortensen; Alain Pinsonneault

2013-04-01T23:59:59.000Z

4

ORISE: Research Team Experiences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Education (ORISE) brings together mentors and research teams to serve as a bridge between the classroom and the profession. ORISE recognizes the important role these...

5

The ESnet Engineering Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications and Presentations Galleries ESnet Awards and Honors ESnet Live Blog Home Engineering Services The ESnet Engineering Team Engineering Services The Network OSCARS...

6

Project Team Participants Summary  

E-Print Network [OSTI]

-sponsored by Information, Society & Culture) Energy--7 project teams 15 Schools and Institutes Represented Trinity College-Year Seminar: Mapping and Modeling Early Modern Venice #12;

Ferrari, Silvia

7

Grid Interaction Tech Team  

Broader source: Energy.gov (indexed) [DOE]

Team 2011 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 10, 2011 Keith Hardy (PI) Argonne National Laboratory Sponsored by Lee Slezak This presentation does...

8

TEAM Technologies, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies, Inc. Technologies, Inc. A New Mexico owned, SBA certified 8(a)/SDB Small Business Pulsed Power Support TEAM Technologies Inc. opened its doors in 1985 as a one-man operation in support of Sandia's Z Machine, a mainstay of the Lab's Pulsed Power program. No longer a one-man shop, TEAM employs more than 70 people and operates over 36,000 square feet of work space in Sandia's Science & Technology Park. According to TEAM's owner and CEO Bob Sachs, much of TEAM's growth over the years has been as a supplier working with Sandia on the Z-Pinch fusion research program. "We were part of the original design and fabrication group for the supporting target hardware on the Z Machine, and we still work closely with that program. Over the years we've responded successfully to the

9

A-Team Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 A-Team Report We are pleased to introduce a new department to CBS News. In each issue, you will find a brief update on projects being conducted by our new Applications Team. The Houston air traffic control tower The A-Team has completed the first phase of work to help the Federal Aviation Administration become more energy-efficient (CBS News, Fall 1994). Phase one includes a detailed energy audit of an example of each type of facility in the FAA building stock, located in the Houston metropolitan region. Air route traffic control center Terminal radar approach control Automated flight service station Air traffic control tower (commercial airport) Air traffic control tower (private airport) Air surveillance radar Air route surveillance radar The team has identified significant potential energy savings from energy-

10

A-Team Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 A-Team Report The Applications Team is a joint venture of the Energy & Environment Division and the Lab's Facilities/In-House Energy Management Section. Its goals are to speed the transfer of new and underused energy-efficient technology for buildings, to support demonstrations of these technologies in a variety of facilities showing how they can be adopted widely, and to improve communication between the Lab and the users of efficient building technologies, from engineering construction firms to building managers. The A-Team is involved in a growing number of chiller plant efficiency projects aimed at demonstrating how cooling systems in many settings can be made more efficient. In addition to the projects described in the cover story, A-Team efforts in

11

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

12

Nuclear Emergency Search Team  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

1991-09-20T23:59:59.000Z

13

Rocky flats teams forming  

SciTech Connect (OSTI)

Bidding teams are shaping up to go after the $3.5-billion, five-year contract to manage ongoing operations and cleanup of the US Dept. of Energy`s Rocky Flats nuclear weapon plant near Denver.

NONE

1994-08-01T23:59:59.000Z

14

ARM - Science Team Meeting Proceedings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Style Guide (PDF, 448KB) Acronyms Glossary Logos Contacts RSS for Publications Science Team Meeting Proceedings Science Team Meeting Proceedings Note: For proper viewing,...

15

The I in Team: Coach Incivility, Coach Sex, and Team Performance in Female Basketball Teams  

E-Print Network [OSTI]

emergent states relationship. The current study used a sample of female college basketball teams to test the proposed model. Results revealed that leader incivility had a detrimental effect on team emergent states and subsequently team performance...

Smittick, Amber Leola

2012-10-19T23:59:59.000Z

16

Rediness Review Team Leader Training  

Broader source: Energy.gov (indexed) [DOE]

LEADER LEADER TRAINING Idaho National Engineering Laboratory Idaho National Engineering Laboratory Michael Hillman DOE-HSS HQ Dan M. Stover, PE Technical And Professional Services, Inc. November 10 2010 Official DOE Team Leader Readiness Review Training November 10, 2010 READINESS REVIEW TEAM LEADER TRAINING Introduction & Course Conduct Readiness Review Official DOE Team Leader Readiness Review Training TRAINING READINESS REVIEW TEAM LEADER TRAINING Purpose of this Course Provide prospective Readiness Review Team Leaders with: -An understanding of the Team Leader Roles and Responsibilities -Methods to control team dynamics -Methods to manage interaction with the assessed organization Methods to manage interaction with the assessed organization

17

An I-P-O model of team goal, leader goal orientation, team cohesiveness, and team effectiveness  

E-Print Network [OSTI]

Based on a proposed input-process-output model of team goal, leader goal orientation, team cohesion, and team effectiveness, this study examined the influences of the leader trait goal orientation on the relationships between team goals and team...

Yu, Chien-Feng

2006-04-12T23:59:59.000Z

18

Delivery Tech Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tech Team Tech Team Oak Ridge National Laboratory January, 2005 Team Members * Tony Bouza: DOE * Nick Burkhead: SC * Dan Casey: CVX * Maria Curry- Nkansah: BP* * Jim Kegerreis: XOM * George Parks: COP** * Mark Paster: DOE** * Steve Pawel: ORNL * Jim Simnick: BP * FOG Liaison ** Co-Leads Shawna McQueen (Energetics): Facilitator Mission * Provide a forum for the Partnership to help advance research aimed at developing low cost, safe, and energy efficient hydrogen delivery systems * Catalyze the development of hydrogen delivery technologies that enable the introduction and long-term viability of hydrogen as an energy carrier for transportation and stationary power Useful Facts * 1 kg H 2 = 1 gallon gasoline * Eff FCV = 2-3 x Eff ICEV = 1.2-1.4 x Eff HEV * Energy Density - 10,000 psi H 2 = 1.3 kWhr/l

19

Fuel Cells Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Judith Valerio at one of our 31 single-cell test stands Fuel Cell Team The FC team focus is R&D on polymer electrolyte membrane (PEM) fuel cells for commercial and military applications. Our program has had ongoing funding in the area of polymer electrolyte fuel cells since 1977 and has been responsible for enabling breakthroughs in the areas of thin film electrodes and air bleed for CO tolerance. For more information on the history of fuel cell research at Los Alamos, please click here. Fuel cells are an important enabling technology for the Hydrogen Economy and have the potential to revolutionize the way we power the nation and the world. The FC team is exploring the potential of fuel cells as energy-efficient, clean, and fuel-flexible alternatives that will

20

Composite Adversary Team Program  

Broader source: Energy.gov (indexed) [DOE]

introduCtion introduCtion The Office of Security Evaluations, within the Office of Health, Safety and Security's Office of Independent Oversight, provides national-level oversight of safeguards and security programs throughout the Department of Energy (DOE) and the National Nuclear Security Administration. Independent Oversight established the Composite Adversary Team (CAT) to provide a group of

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Project Year Project Team  

E-Print Network [OSTI]

An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

Gray, Jeffrey J.

22

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

23

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

24

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

25

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

26

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

27

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

28

Team Summary | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Team Summary Team Summary Team Summary Team Summary Purpose: Identify, prioritize, and resolve issues for effective site revitalization. Address crosscutting issues. Incorporate ARI's mission into programmatic business practices. Team Attributes and Functions: Coordinate using existing site and program protocols (ARI Task Force is not responsible for site-specific ARI projects or programs). Resolve issues through: Lessons learned Information resources Policy statements Process improvement techniques Proposed legislative changes Partnering with other agencies Facilitation Define, prioritize, and establish deliverable timelines and manage resources. Incorporate co-leadership and cross-functional membership. Team Summaries: Steering Committee Objective: Set the strategic direction, provide overarching leadership,

29

Commissioning Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commissioning Team Commissioning Team Commissioning Team October 16, 2013 - 4:45pm Addthis Assembling a committed team is a critical part of the commissioning process for renewable energy projects. Members of the team vary based on the size, complexity, and funding mechanism used for the project at hand. The commissioning team lead is a commissioning agent, an independent agent representing the agency's interests. In addition to the commissioning agent, participants in the commissioning process can include the agency, operations and management (O&M) personnel, contractors, subcontractors, and the architectural and engineering (A&E) firm. The project energy lead should also be an active member of the commissioning team and work closely with the commissioning agent. Renewable energy projects often require a team of experts in specific

30

Roadmap Integration Team Presentation  

Broader source: Energy.gov (indexed) [DOE]

Presentation Presentation NP03-00 Slide 1 Generation IV Technology Roadmap NERAC Meeting: Washington, D.C. September 30, 2002 Roadmap Integration Team Presentation NP03-00 Slide 2 NERAC Meeting September 30, 2002 Generation IV Technology Roadmap * Identifies systems deployable by 2030 or earlier * Specifies six systems that offer significant advances towards: - Sustainability - Economics - Safety and reliability - Proliferation resistance and physical protection * Summarizes R&D activities and priorities for the systems * Lays the foundation for Generation IV R&D program plans Roadmap Integration Team Presentation NP03-00 Slide 3 NERAC Meeting September 30, 2002 The Technical Roadmap Report * Discusses the benefits, goals and challenges, and the importance of the fuel cycle * Describes evaluation and selection process

31

Integrated Project Team RM  

Broader source: Energy.gov (indexed) [DOE]

Integrated Project Team (IPT) Review Module Integrated Project Team (IPT) Review Module March 2010 CD-0 This R O 0 Review Modul OFFICE OF Inte C CD-1 le was piloted F ENVIRO Standard R grated P Rev Critical Decis CD-2 M at the OR U 23 incorporated ONMENTAL Review Plan Project Te view Module sion (CD) Ap CD March 2010 33 Disposition in the Review L MANAGE n (SRP) eam (IPT e pplicability D-3 Project in 200 Module. EMENT T) CD-4 09. Lessons lea Post Ope arned have been eration n Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM

32

LBNL Ergo Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL Ergo Team LBNL Ergo Team With LBNL Ergo Advocates and Safety Coordinators, we have, together, built a world- class Ergonomics Program. In an effort to sustain this momentum, we"re launching a semi-annual forum for advancing our knowledge in ergonomics. Our first seminar will occur on Wednesday, February 22 nd from 1:30-3PM in Perseverance Hall. UC Prof. David Rempel, MD, MPH will discuss how recent research on computer use can help us all become more effective in our ergo work. Click here for further info on this world- renowned researcher. No need to sign up ahead of time, just come on down and bring your questions and curiosity - we"re sure it will be worth your while. Please see schedule at left. Volume 3, Issue 3 February 2012 By Popular Demand -- Ergo Seminar Series!

33

A-Team Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 A-Team Report Cool Sense The Cool Sense program, the latest project undertaken by the Applications Team, aims to bring information about integrated chiller retrofits to the people in charge of the 80,000 chillers in the United States currently using CFC refrigerants. Production of CFC refrigerants ceased in 1996 as a result of an international agreement to limit their effects on the atmosphere's ozone layer. This moratorium is expected to bring about an unprecedented wave of 20,000 chiller replacements or conversions by the year 2000. If no integrated retrofits are made, the capital investment needed to replace these chillers will be $1.8 billion, for a savings of $5 billion over the lifetime of the chillers. If only half the replacements are made in conjunction with integrated retrofits, the investment will be $7.89

34

Water Energy Tech Team  

Broader source: Energy.gov [DOE]

The purpose of the DOE Water-Energy Tech Team (WETT) is to identify and pursue cross-cutting technology, data, modeling, analysis, and policy priorities for the Department relevant to the water-energy nexus. The WETT also facilitates coordination of activities within the department and outreach with other stakeholders. The water-energy nexus is integral to two DOE policy priorities: climate change and energy security.

35

TRU TeamWorks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, 2004 , 2004 By the Numbers WIPP marks five-year anniversary Shipments scheduled to arrive at WIPP for the week of 4/4/04 - 4/10/04: 18 Total shipments received at WIPP: 2,456 Total volume disposed at WIPP: 19,042 m 3 FY04 Performance Metrics D E P A R T M E N T O F E N E R G Y U N I T E D S T A T ES O F A M E R I C A TeamWorks TeamWorks TRU A weekly e-newsletter for the Waste Isolation Pilot Plant team For those who endured the early morning cold of March 26, 1999, to witness WIPP's first shipment, it may seem like yesterday. Yet Friday marked five years of WIPP operations. Relative newcomer to WIPP - but not to the waste management industry - CBFO Deputy Manager Lloyd Piper observed, "The transformation from a facility in "standby" mode to operational mode has been nothing short of amazing."

36

PI & Project Team PAF Changes  

E-Print Network [OSTI]

Proposal Management PI & Project Team PAF Changes Step-By-Step Procedures Last updated: 4/1/2013 1 of 10 http://eresearch.umich.edu PAF Changes This procedure details how the PI & Project Team can: Make Management PI & Project Team PAF Changes Step-By-Step Procedure Last updated: 4/1/2013 3 of 10 http

Shyy, Wei

37

Rediness Review Team Member Training  

Broader source: Energy.gov (indexed) [DOE]

MEMBER MEMBER TRAINING Idaho National Engineering Laboratory Michael Hillman DOE HQ - HSS Idaho National Engineering Laboratory Dan M. Stover, PE Technical And Professional Services, Inc. 47 James Habersham Blvd Beaufort, SC 29906 Official DOE Team Member Readiness Review Training November 8-9, 2010 Module 1 Module 1 READINESS REVIEW TEAM MEMBER TRAINING Introduction & Course Conduct Readiness Review Readiness Review Official DOE Team Member Readiness Review Training November 2010 TRAINING READINESS REVIEW TEAM MEMBER TRAINING Purpose of this Course Provide Prospective Readiness Review Team members h with: * An understanding of the background behind the Readiness Review Process; e e ocess; * Training in the mechanics of performance and reporting of

38

Planning Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Planning Team Planning Team Planning Team October 16, 2013 - 5:11pm Addthis Photo of three men standing together reviewing a large print document. The men have bright orange and yellow construction vests and hard hats. A data center manager reviews blueprints with an IT project manager and data center coordinator during construction of a Federal facility. Planning is the time to bring renewable energy expertise to the table, including a strong renewable energy planning team that will be part of the project though completion. It is important to have a team in place with the skills required to advocate for renewable energy and the agency's best interests throughout the project. The planning team set the goals and objectives for the project as well as criteria for design team selection and should be convened at the outset of

39

DOE Solar Decathlon: 2005 Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

talking. talking. Members of the Maryland and Colorado teams became good neighbors and friends during Solar Decathlon 2002. Solar Decathlon 2005 Teams Eighteen teams of college and university students competed in the 2005 Solar Decathlon. The students and their amazing work took center stage on the National Mall in the nation's capital. Teams began assembly of their "solar village" on the Mall on September 29, 2005. Teams are made up of students pursuing degrees in engineering, architecture, computer science, public relations, marketing, and other disciplines. Just like the Olympic decathletes, they need to draw on all of their strengths and skills to troubleshoot, communicate, dream, and build these original solar homes. So, having a well-balanced team-rather than a team with just one or two

40

Information Visualization for Agile Software Development Teams  

E-Print Network [OSTI]

Information Visualization for Agile Software Development Teams Julia Paredes Department of Computer software development teams. The results of the systematic mapping show that Agile teams use visualization artifacts amongst team members. Keywords--Agile software development, information visualiza- tion, software

Maurer, Frank

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Team Total Points Beta Theta Pi 2271  

E-Print Network [OSTI]

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

42

Design Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Design Team Design Team Design Team October 16, 2013 - 5:17pm Addthis Key Actions in Selecting a Design Team Work with project energy lead to include renewable energy provisions when procuring architectural and engineering services. List specific requirements, including: Energy-related requirements from building program. In-depth energy efficiency and renewable expertise on team. Ability to integrate renewable energy and custom control strategies into energy modeling. An integrated design process and coordination with other contractors. History of verifying building performance. Determine selection criteria ahead of the RFP, including the ability to judge on best-value versus lowest-cost. Create design review team across disciplines, including project energy lead, commissioning agent, and

43

Proposal Team: C. Burger  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMPLEX MATERIALS SCATTERING ( ) COMPLEX MATERIALS SCATTERING ( ) Proposal Team: C. Burger 1 , K. Cavicchi 2 , E. DiMasi 3 , A. Fluerasu 3 , S. Fraden 4 , M. Fukuto 3 , O. Gang 3 , B.S. Hsiao 1 , R.J. Kline 5 , S. Kumar 6 , O. Lavrentovich 6 , B. Ocko 3 , R. Pindak 3 , M. Rafailovich 1 , R.A. Register 7 , S. Sprunt 6 , H.H. Strey 1 , B.D. Vogt 8 , W.-L. Wu 5 , L. Wiegart 3 , K.G. Yager 3 1 Stony Brook University, 2 University of Akron, 3 Brookhaven National Lab, 4 Brandeis University, 5 NIST, 6 Kent State University, 7 Princeton University, 8 Arizona State University TECHNIQUES AND CAPABILITIES KEY CONCEPTS SELECTED APPLICATIONS * Small- and wide-angle x-ray scattering on 3PW source, in transmission and reflection mode: USAXS, SAXS, WAXS, GISAXS, GIXRD * High-throughput x-ray scattering for intelligent exploration of vast parameter spaces

44

Hazmat Team Planning Guide  

Broader source: Energy.gov (indexed) [DOE]

EPA 540/G-90/003 EPA 540/G-90/003 Directive: 9285.3-05 September 1990 Hazmat Team Planning Guidance Office of Emergency and Remedial Response U.S. Environmental Protection Agency Washington, DC 20460 NOTICE The policies and procedures set forth in this document are intended solely to provide guidance. This guidance does not constitute rulemaking by the U.S. Environmental Protection Agency (EPA), and may not be relied on to create a substantive or procedural right enforceable by any party in litigation with the United States. EPA may take action that is at variance with the policies and procedures in these guidelines and may change them at any time without public notice. The mention of trade names or commercial products in this manual is for illustration purposes and does not constitute endorsement or recommendation for use by EPA. Cost

45

A-Team Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 A-Team Report Energy Savings Performance Contracts The federal government is the largest single consumer of energy in the United States, spending more than $3 billion yearly to light, heat, and operate its buildings. Money is also spent to maintain aging buildings, many of which are inefficient, having been built before the 1970s. As these costs have increased, budgets have been dramatically cut back during the last two years at the Departments of Energy and Defense and the General Services Administration. Last spring, DOE announced the award of a new type of contract for federal agencies to purchase "energy services," the super energy savings performance contract (Super-ESPC). This contract is a partnership between a Federal agency and a private-sector energy service company (ESCO). The ESCO

46

TRU TeamWorks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2012 8, 2012 WIPP Quick Facts (As of 9-26-12) 10,849 Shipments received since opening (10,252 CH and 597 RH) 83,693 Cubic meters of waste disposed (82,394 CH and 299 RH) 162,472 Containers disposed in the underground (161,882 CH and 590 RH) Photo above right: CBFO Deputy Manager Ed Ziemianski presents a WIPP team with the Green Zia Program Silver Level Award from the New Mexico Environment Department on Aug. 15, 2012 in recognition of environmental initiatives. Shown right of Ziemianski is Farok Sharif, WTS President and General Manager. New WIPP Management and Operating Contractor to start October 1 Nuclear Waste Partnership LLC (NWP) will start work as the WIPP Management and Operating Contractor on Monday, October 1. WIPP receives Green Zia Award The Waste Isolation Pilot Plant (WIPP), the U.S. Department of Energy (DOE)

47

HLW System Integrated Project Team  

Broader source: Energy.gov (indexed) [DOE]

l l W S Hi h l W S High Level Waste System High Level Waste System Integrated Project Team Integrated Project Team Integrated Project Team Integrated Project Team Steve Schneider Steve Schneider Office of Engineering and Technology High Level Waste Corporate Board March 5, 2009 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. 1 Introduction Introduction Introduction Introduction Challenges and Priorities High Level Waste Strategic Initiative Results High Level Waste System Integrated

48

EM-PDRI Team Concurrence  

Office of Environmental Management (EM)

Management's Project Definition Rating Index (EM*PDRI) The Environmental Management (EM) PDRI Team concurs that Revision 1, January, 2001, reflects the requirements in DOE Order...

49

2008 TEAM BUILDING DAY For the teams of the  

E-Print Network [OSTI]

2008 TEAM BUILDING DAY For the teams of the DST/NRF CENTRE OF EXCELLENCE IN TREE HEALTH BIOTECHNOLOGY (CTHB) AND THE TREE PROTECTION COOPERATIVE PROGRAMME (TPCP) AT FABI Prepared by James Mehl, administrative and technical personnel, research and postdoctoral fellows, and postgraduate students (MSc and Ph

50

The influence of team mental models and team planning on team performance  

E-Print Network [OSTI]

approaches on post-planning MM similarity. Third, I examined the influence of post-planning teamwork and taskwork MM similarity on team performance. I tested these relationships with 172 three-person ad hoc teams performing a problem-solving execution task...

Leiva Neuenschwander, Pedro Ignacio

2009-06-02T23:59:59.000Z

51

Setting the stage for effective teams: a meta-analysis of team design variables and team effectiveness  

E-Print Network [OSTI]

and is inconsistent, and conclusions regarding optimal team design are difficult to make. The present study sought to unify the team design research by proposing a conceptual model and testing hypothesized relationships between specified design variables and team...

Bell, Suzanne Tamara

2004-11-15T23:59:59.000Z

52

International Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

International Team International Team International Team The Office of Energy Efficiency and Renewable Energy's (EERE's) International Team advances the progress of EERE's domestic programs and accelerates global deployment of U.S. clean energy products and services through international collaboration. To realize the benefits of international collaboration, we coordinate with other offices in the U.S. Department of Energy and U.S. government agencies to identify, negotiate and actively manage targeted partnerships and projects that help advance our strategic goals. The collaborative research we support is either in the "pre-competitive" space or includes intellectual property issues that have been agreed upon in advance. All funds support U.S.-based project performers or international organizations

53

Hydrogen Production Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Production Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Hydrogen Production Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

54

Communications Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Communications Team Communications Team Communications Team The Communications Team leads strategic communications and outreach activities for the Office of Energy Efficiency and Renewable Energy (EERE) by ensuring that key information about the nature and impact of EERE activities is accessible, reliable, and delivered through multiple communications channels to stakeholders and the public. Why it Matters We manage and continually update the EERE Web enterprise and its digital tools, including EERE's corporate website, the EnergySaver.gov content on Energy.gov, and several other EERE sites. We ensure compliance with federal requirements and enable the broad distribution and management of content. We lead the planning and execution of EERE's press and public announcements, media outreach, social media, multimedia activities, and

55

BPA Wind Integration Team Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BPA Wind Integration Team Update Customer Supplied Generation Imbalance (CSGI) Pilot Transmission Services Customer Forum 29 July 28, 2010 B O N N E V I L L E P O W E R A D M I N...

56

Water Energy Tech Team | Department of Energy  

Energy Savers [EERE]

Water Energy Tech Team Water Energy Tech Team Featured Publication Featured Publication Water-Energy Nexus: Challenges and Opportunities Report June 2014 Read more Water &...

57

ARM - 1993 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Past Science Team Meetings 1993 ARM Science Team Meeting March 1 - 4 | Norman, Oklahoma | Norman, Oklahoma, is the home of the National Weather Service. Norman, Oklahoma, is...

58

Research Teams - Combustion Energy Frontier Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Teams Research Teams Associates Greg Smith, Senior Research Chemist, SRI International Jeffrey A. Sutton, Assistant Professor, Ohio State Univeristy Combustion Energy...

59

DOE Solar Decathlon: 2007 Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Three Penn State students (wearing matching blue t-shirts) lay brochures about their team's home on a bench. One student gives another a "bear hug" when they learn they won third-place in the 2007 Solar Decathlon Communication contest. Three Penn State students (wearing matching blue t-shirts) lay brochures about their team's home on a bench. One student gives another a "bear hug" when they learn they won third-place in the 2007 Solar Decathlon Communication contest. Working hard on their communications activities, Penn State students spread the word about sustainability. Here, they show their elation at bringing home a third-place finish in that contest. Solar Decathlon 2007 Teams Twenty teams of college and university students competed in the 2007 Solar Decathlon. The students and their amazing work took center stage on the National Mall in the nation's capital. Teams began assembly of their "solar village" on the Mall on October 3, 2007. Teams are made up of students

60

The Relationship Between Team Sex Composition and Team Performance in the Context of Training Complex, Psychomotor, Teambased Tasks  

E-Print Network [OSTI]

, the theory that males play more video games and thus, are better at psychomotor tasks does not fully explain performance differences and there may be some differences in ability based on sex. Given the performance differences between males and females...) who participated in 92 4?person teams. Of the 92 teams, 14 (15.22%) were 4?male teams, 21 (22.83%) were 3?male teams, 38 (41.30%) were 2? male teams, and 19 (20.65%) were 1?male teams. There were no all?female teams (the possible implications...

Jarrett, Steven

2011-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Team learning center design principles  

SciTech Connect (OSTI)

This is a preliminary report of a multi-year collaboration of the authors addressing the subject: Can a facility be designed for team learning and would it improve the efficiency and effectiveness of team interactions? Team learning in this context is a broad definition that covers all activities where small to large groups of people come together to work, to learn, and to share through team activities. Multimedia, networking, such as World Wide Web and other tools, are greatly enhancing the capability of individual learning. This paper addresses the application of technology and design to facilitate group or team learning. Many organizational meetings need tens of people to come together to do work as a large group and then divide into smaller subgroups of five to ten to work and then to return and report and interact with the larger group. Current facilities were not, in general, designed for this type of meeting. Problems with current facilities are defined and a preliminary design solution to many of the identified problems is presented.

Daily, B.; Loveland, J.; Whatley, A. [New Mexico State Univ., Las Cruces, NM (United States)] [and others

1995-06-01T23:59:59.000Z

62

Team | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team Team Research team: John R. Bargar (SLAC), Research manager and co-principle investigator, bargar@slac.stanford.edu Scott Fendorf (Stanford), co-principle investigator, fendorf@stanford.edu Gordon E. Brown, Jr. (Stanford), gordon.brown@stanford.edu Sharon Bone (SLAC), Post doctoral scientist Noémie Janot (SLAC), Post doctoral scientist Morris Jones (SLAC), Post doctoral scientist Collaborators: D.S. Alessi (University of Alberta) R. Bernier-Latmani (EPFL) J.A. Davis (LBNL) J. Dynes (Canadian Light Source) P.A. Fox (LBNL) E. Herndon (Kent State) D.E. Giammar (WUStL) D.E. Graham (ORNL) B. Gu (ORNL) E. Ilton (PNNL) L. Liang (ORNL) P.E. Long (LBNL) B. Mann (ORNL) P.S. Nico (LBNL) L. Pasa-Tolic (EMSL) P. Persson (University of Lund) T. Regier (Canadian Light Source) J.O. Sharp (School of Mines)

63

Team China Solar Decathlon 2011 Project Manual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

China China TongjiUniversity 1 Project Manual Team China 20110715 Project Name: Y container, Solar Decathlon 2011 USA. Team Name: Team China, Tongji University Primary Student: HuaGuodong Faculty Advisor: Prof.TanHongwei Contact: , jellyhua@gmail.com,tong_team@yahoo.com Address: 1239 Siping Rd, Shanghai, China 200092 Tel: +86 65987788-8074 Team China TongjiUniversity 2 Table of contents Table of contents ................................................................................................................................................................. 2 1. Summary of Changes ...................................................................................................................................................... 6

64

Web Team Forum 27 August 2014  

E-Print Network [OSTI]

18/09/2014 1 Web Team Forum 27 August 2014 · Web Team Update · WCMS Update (Perrine Baker, WCMS Web Team Update · http://www.canterbury.ac.nz/web/ · When was the last time you visited the Web Team site: ­ August 2014? ­ May, June, July 2014? ­ 1st half of 2014? ­ 2013? ­ Never? Web Team website

Hickman, Mark

65

Understanding the Team Dynamics of an Executive Virtual Team  

E-Print Network [OSTI]

is to be multidimensional in use. That means that honest communication is necessary for the board to perform at their optimal level. Therefore, the theoretical framework is based on team performance as a teamwork process-based construct which depends on communication...

Riley, Ramona Leonard

2011-10-21T23:59:59.000Z

66

National Climate Assessment: Production Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NCA & Development Advisory Committee NCA & Development Advisory Committee Production Team Indicators System Coastal Resilience Resources Make Our Science Accessible Link Climate Change & Health Provide Data and Tools Coordinate Internationally National Climate Assessment: Production Team Print E-mail National Climate Assessment Staff (USGCRP National Coordination Office) Current NCA Staff Dr. Fabien Laurier, Director, Third National Climate Assessment Dr. Glynis Lough, Chief of Staff for the National Climate Assessment Emily Therese Cloyd, Engagement Coordinator for the National Climate Assessment Bryce Golden-Chen, Program Coordinator for the National Climate Assessment Alison Delgado, Scientist Dr. Ilya Fischhoffkri, Scientist Melissa Kenney, Indicators Coordinator Dr. Fred Lipschultz, Regional Coordinator for the National Climate Assessment

67

Extreme Work Teams: Using SWAT Teams As a Model for Coordinating Distributed Robots  

E-Print Network [OSTI]

Extreme Work Teams: Using SWAT Teams As a Model for Coordinating Distributed Robots Hank Jones phinds@leland.stanford.edu ABSTRACT We present a field study of police SWAT teams for the purpose observations. Keywords Distributed work, distributed teams, leadership, extreme work teams, field robotics

68

Science Quest 2006 ~Team Aquanauts~  

E-Print Network [OSTI]

nutrient levels) Pond Water Motor Oil (pollution) Vinegar (acid rain) In each container two plants ­ one plant container. The motor oil solution was made by 1 part oil and 2 parts water. When addingScience Quest 2006 ~Team Aquanauts~ Activity: Plants and Water Quality OBJECTIVE: How does the type

Benitez-Nelson, Claudia

69

ARM - 1997 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 ARM Science Team Meeting 7 ARM Science Team Meeting 1997 Meeting 1997 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 1997 ARM Science Team Meeting March 3 -7 | San Antonio, Texas | St. Anthony Hotel & Municipal Auditorium The St. Anthony Hotel as well as the Municipal Auditorium and Conference Center provided rooms and meeting space. The St. Anthony Hotel as well as the Municipal Auditorium and Conference Center provided rooms and meeting space. The seventh ARM Science Team Meeting was held in San Antonio, Texas. This year the ARM Science Team Meeting and the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP) science team meetings were held jointly. The Science Team Meetings were intended to provide opportunities

70

Building America Research Teams | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Teams Teams Building America Research Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions

71

ARM - 2000 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 ARM Science Team Meeting 0 ARM Science Team Meeting 2000 Meeting 2000 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2000 ARM Science Team Meeting March 13 - 17 | San Antonio, Texas | St. Anthony Hotel & The Municipal Auditorium St. Anthony Hotel provided rooms along with the Municipal Auditorium for the 2000 ARM Science Team Meeting. St. Anthony Hotel provided rooms along with the Municipal Auditorium for the 2000 ARM Science Team Meeting. The tenth ARM Science Team Meeting was held in San Antonio, Texas. The Science Team Meetings were intended to provide opportunities to share scientific findings, focused technical exchanges, and collectively examine the implementation and operation of ARM.

72

Team Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Team Solar Inc Team Solar Inc Jump to: navigation, search Name Team Solar Inc Place McClellan, California Zip 95652 Sector Solar Product Team Solar Inc (TSI) is a contracting company based in Sacramento, California that specialises in photovoltaic products and installation. The company was bought by SunEdison of Baltimore, Maryland in August 2006. References Team Solar Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Team Solar Inc is a company located in McClellan, California . References ↑ "Team Solar Inc" Retrieved from "http://en.openei.org/w/index.php?title=Team_Solar_Inc&oldid=352056" Categories: Clean Energy Organizations Companies Organizations

73

Building Technologies Office: Building America Research Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

74

Team Bug Bag Biogas For Nicaragua  

E-Print Network [OSTI]

Team Bug Bag Biogas For Nicaragua Project Recap The task for Team Bug Bag was to create for under $100 (USD), and be able to produce biogas that could boil water for a thirty minute time period

Demirel, Melik C.

75

INL Equipment to Aid Regional Response Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INL Equipment to Aid Regional Response Team DOE-ID is transferring equipment to the Idaho Falls Police Department's Hazardous Materials Response Team for their use in responding to...

76

Delivery Tech Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delivery Tech Team Delivery Tech Team Presentation by 02-Parks to DOE Hydrogen Pipeline R&D Project Review Meeting held January 5-6, 2005 at Oak Ridge National Laboratory in Oak...

77

Learning strategies and performance in organizational teams  

E-Print Network [OSTI]

(cont.) shows that vicarious learning is positively associated with performance. I argue that vicarious team learning is an under-explored dimension of what makes teams and organizations competitive. The chapter concludes ...

Bresman, Henrik M

2005-01-01T23:59:59.000Z

78

Industrial Team Plans for AEO2015  

Gasoline and Diesel Fuel Update (EIA)

you for your attention 7 Industrial Team Washington DC, July 24, 2014 Macro Team: Kay Smith (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov...

79

Yates and Nissan Teaming Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yates Services Nissan Yates Services Nissan 983 Nissan Drive 983 Nissan Drive Smyrna, TN 37166 Smyrna, TN 37166 Business: Maintenance Services Business: Automotive Manufacturing Randy Cook Ken Roden, CEM Energy Analyst Energy Team Facilitator Phone: 615-459-1703 Phone: 615-459-1832 Email: randy.cook@nmm.nissan-usa.com Email: ken.roden@nmm.nissan-usa.com Yates partners with Nissan to save over $300,000 annually in energy expenses Project Scope Yates Services is an integral member of various plant energy teams at Nissan, providing building maintenance, HVAC, electrical, and production support services. As such, Yates addresses a wide variety of energy reduction opportunities including equipment shutdowns, retro-commissioning, upgrades, and promotion of energy efficiency initiatives at all North American manufacturing sites.

80

Argonne Team Challenges Physical Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering & Systems Analysis Engineering & Systems Analysis Success Stories For further information, contact Roger Johnston, rogerj@anl.gov "Real security is thinking like the bad guys," maintains Roger Johnston, head of Argonne's VAT. Argonne Team Challenges Physical Security Physical security-the art of protecting tangible assets-is the counterpart to cyber security. Physical security can take the form of locks, tamper-indicating seals, guards who stand watch

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Stakeholder Engagement Team | Department of Energy  

Energy Savers [EERE]

stakeholders, which include leadership regulators and governments, industry, think tanks, universities, foundations, and other institutions. The Stakeholder Engagement Team...

82

Nuclear Incident Team | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Incident Team | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing...

83

TEAM CUMBERLAND MEETING- April 30, 2014  

Broader source: Energy.gov [DOE]

The Team Cumberland Meeting was held at the Nashville Electric Service, Nashville, Tennessee on April 30, 2014.

84

Readiness Review Training - Team Leader | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Team Leader November 10, 2010 Readiness Review Team Leader Training at the Idaho National Laboratory Course provides tools and tips to be an effective readiness review team leader....

85

US DRIVE Fuel Cell Technical Team Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technical Team Roadmap US DRIVE Fuel Cell Technical Team Roadmap The Fuel Cell Technical Team (FCTT) conducts the following activities: (1) Reviews and evaluates...

86

Universitt Mannheim Paulheim, Bizer: Team Project Introduction FSS2013 Slide 1 Team Project  

E-Print Network [OSTI]

Universität Mannheim ­ Paulheim, Bizer: Team Project Introduction ­ FSS2013 ­ Slide 1 Team Project;Universität Mannheim ­ Paulheim, Bizer: Team Project Introduction ­ FSS2013 ­ Slide 2 Ingredients A hot topic;Universität Mannheim ­ Paulheim, Bizer: Team Project Introduction ­ FSS2013 ­ Slide 3 Ingredient 1: A Hot

Mannheim, Universität

87

Nuclear / Radiological Advisory Team | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

/ Radiological Advisory Team | National Nuclear Security / Radiological Advisory Team | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Nuclear / Radiological Advisory Team Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Operations > Nuclear / Radiological Advisory Team Nuclear / Radiological Advisory Team

88

Design Team Charrette | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Design Team Charrette Design Team Charrette Design Team Charrette October 16, 2013 - 4:37pm Addthis Holding a design team charrette is a key first step in bringing together the entire design team, including the agency, the winning architectural and engineering (A&E) firm, other design team members, and key experts that can inform the early design process. For renewable energy integration, the agency's project energy lead must be involved at this stage. Bringing the design team members together early is essential in ensuring that design requirements for energy are incorporated into the design efforts moving forward. A design charrette provides an opportunity for designers, users, and other decision makers to give input on how to best integrate their respective efforts into the project. The design charrette is a process that allows

89

Case Study: USPS - Lean Green Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use of "Lean Green" teams and a Use of "Lean Green" teams and a detailed guidebook helps develop a conservation culture throughout the USPS USPS - Lean Green Teams The Postal Service's 630+ Lean Green Teams are made up of postal employees who collaborate across functions to identify and implement low- and no-cost ways to con- serve natural resources, purchase fewer consumable products, and reduce waste of all kinds. Teams are organized at the area, district, and facility levels. The teams employ on-line tools including a Lean Green Team Guide, a Green Project List, and a Green Initiative Tracking Tool that tracks both leading indicators (status of project imple- mentation) and lagging indicators (financial and environmental impacts).

90

Search Response Team | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Response Team | National Nuclear Security Administration Search Response Team | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Search Response Team Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Search Response Team Search Response Team Search Response Team logo NNSA's Search Response Team (SRT) is a national

91

ARM - 1996 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 ARM Science Team Meeting 6 ARM Science Team Meeting 1996 Meeting 1996 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 1996 ARM Science Team Meeting March 4 - 7 | San Antonio, Texas | Municipal Auditorium The St. Anthony Hotel, as well as the Municipal Auditorium and Conference Center, provided rooms and meeting space. The St. Anthony Hotel, as well as the Municipal Auditorium and Conference Center, provided rooms and meeting space. The fifth ARM Science Team Meeting was held in San Antonio, Texas, at the Municipal Auditorium and Conference Center. The Science Team Meetings were intended to provide opportunities to share scientific findings, focused technical exchanges, and collectively examine the implementation and

92

Search Response Team | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Search Response Team | National Nuclear Security Administration Search Response Team | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Search Response Team Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > First Responders > Search Response Team Search Response Team Search Response Team logo NNSA's Search Response Team (SRT) is a national

93

Power lunch: Teaming to train  

SciTech Connect (OSTI)

In 1990, the Hanford Site, a US Department of Energy project, changed missions from defense production to environmental restoration. An engineering group at Westinghouse Hanford Company, prime contractor at the Hanford Site, hired a trainer to help publish documents and develop group-specific courses. Boeing Computer Services Richland, subcontractor providing publications services, hired editor trainers. Kaiser Engineers Hanford, another subcontractor, provides site-wide Quality training. Four trainers, friends, met weekly for lunch: These meetings evolved into training exchanges. This presentation illustrates ways that inter- or intra-company teaming can work to improve technical communication. Additional benefits are significant cost and time savings to all companies involved.

Sartoris, B.E. (Westinghouse Hanford Co., Richland, WA (United States)); Snow, E.A.; Whitehead, J.K. (Boeing Computer Services Co., Richland, WA (United States))

1991-05-01T23:59:59.000Z

94

Team-Teaching Freshman Physics  

Science Journals Connector (OSTI)

Team teaching in which two or more instructors share responsibility for the same class section is being increasingly adopted in elementary schools and is already familiar to physicists in the film and television presentations of Ivey and Hume. For several years we have been utilizing team teaching as a method of handling large university freshman classes. The system appears to have several advantages provided that the two professors have a compatible outlook on physics: (1) Since the professors share administrative responsibility for such activities as tutorials and laboratories these can be well integrated with the lectures; (2) the dialog between the two professors seems to create a sense of participation and rapport with the class; (3) any mistakes or obscurities in one professor's presentation are immediately cleared up (in a diplomatic way) by the other; (4) the change in pace provided by the two lecturers enlivens and lightens the course; (5) the interaction of the two professors tends to generate enthusiasm fresh viewpoints and greater care in lecturing all of which is felt by the class. Student reaction has been highly favorable.

J. R. Prescott; C. D. Anger

1972-01-01T23:59:59.000Z

95

NSLS-II Integrated Project Team (IPT)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NSLS-II Integrated Project Team NSLS-II Integrated Project Team DOE uses an integrated project teaming approach for managing the NSLS-II Project. This Integrated Project Team (IPT), organized and led by the NSLS-II Federal Project Director, is an essential element in DOE's acquisition process and is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the Federal Project Director in successfully executing the project. The IPT for the NSLS-II Project will consist of members from both DOE and the contractor, Brookhaven Science Associates (BSA). The team membership will change as the project progresses from initiation to closeout to ensure the necessary skills are always represented to meet the project's needs.

96

DOE Solar Decathlon: News Blog » Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

'Teams' 'Teams' Apply To Compete in Solar Decathlon 2015! Friday, November 1, 2013 By Solar Decathlon In support of President Obama's commitment to a clean energy future, the Energy Department today began the process to select collegiate teams to compete in the U.S. Department of Energy Solar Decathlon 2015. Colleges, universities, and other post-secondary educational institutions are welcome to submit proposals. Up to 20 teams will be selected to begin two-year projects to build solar-powered, highly energy-efficient houses that combine affordability, consumer appeal, and design excellence. Selected teams will design, construct, and test their houses before reassembling them at the Solar Decathlon 2015 competition site, which will be announced in the coming months. As part of the Solar Decathlon, teams

97

Standard Contracts Team | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Standard Contracts Team Standard Contracts Team Standard Contracts Team The Standard Contracts Team has responsibility to: Act as Federal contracting officer for contracts with the nuclear power utilities; Evaluate materials related to the on-going Applications for Allowable and Reasonable Costs (claims) pursuant to settlement agreements; Support proposed settlement discussions and litigation preparation and court proceedings for the Deputy General Counsel for Environment and Nuclear Programs and Department of Justice; Prepare responses to correspondence regarding Nuclear Waste Policy Act issues raised by congressional, Inspector General, Government Accountability Office and Freedom of Information Act enquiries; and Collect, verify, track and assess the annual fees paid by nuclear

98

Solar Technical Assistance Team | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(NREL) Solar Technical Assistance Team (STAT). STAT leverages the expertise of NREL solar energy technology and deployment experts in order to provide information on solar...

99

ARM - 2007 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Award-Winning Posters Presentations Cover Competition Winners Meeting Archives ARM Science Team Meeting...

100

ARM - 2007 Science Team Meeting Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Award-Winning Posters Presentations Cover Competition Winners Meeting Archives ARM Science Team Meeting...

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ARM - 2008 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Award-Winning Posters Presentations Cover Competition Winners Meeting Archives ARM Science Team Meeting...

102

ARM - 2009 Science Team Meeting Pictures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Award-Winning Posters Presentations Cover Competition Winners Meeting Archives ARM Science Team Meeting...

103

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A.A., and Emilenko, A.S., A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Regular...

104

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Measurement (ARM) Science Team Meeting The Unmanned Aerospace Vehicle (UAV) Program conducted an ARM Enhanced Shortwave Experiment (ARESE) II Intensive...

105

Advanced Vehicle Technology Analysis & Evaluation Team  

Broader source: Energy.gov [DOE]

Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

106

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A High-Altitude Cloud Climatology From Satellite Data Hobbs, R. and Rusk, D.J., Aeromet, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Tenuous,...

107

Nuclear / Radiological Advisory Team | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

as needed. The NRAT is composed of scientists and technicians who can provide advice or conduct limited operations. NRAT Team performing analysis Mission The NRAT's mission is to...

108

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meteorological Operations Rusk, D.J., Aeromet, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It is highly desirable to use cloud radar data in...

109

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continued Evaluation of the Microwave Radiometer Profiler Liljegren, J.C., Argonne National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Final...

110

TEAM CUMBERLAND MEETING- September 10, 2014  

Broader source: Energy.gov [DOE]

The Team Cumberland Meeting was held at the U.S. Army Corps of Engineers Center Hill Project, Nashville, Tennessee on September 10, 2014.

111

Light to Energy Team, MPA-11 Expertise  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Light to Energy Team, MPA-11 Expertise * Photophysics & interfaces for energy conversions * Synthesis, characterizations & fabrications of integrated devices based on emerging...

112

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Analysis of Surface Heat Budget of the Arctic Ocean (SHEBA) data has identified three distinct, preferred...

113

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Intercomparison of 3D Radiation Codes (I3RC) Cahalan, R.F., NASAGoddard Space Flight Center Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting...

114

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at the ARM Southern Great Plains Iziomon, M.G. and Lohmann, U., Dalhousie University, Canada Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Hansen et...

115

Free agents are not guaranteed a position on a team. Every effort will be made to place you on a team or create a team comprised of other  

E-Print Network [OSTI]

FREE AGENT Free agents are not guaranteed a position on a team. Every effort will be made to place you on a team or create a team comprised of other free agents. Please fill out this form COMPLETELY

Mitchison, Tim

116

Decision-Making Authority, Team Efficiency and Human Worker Satisfaction in Mixed Human-Robot Teams  

E-Print Network [OSTI]

Decision-Making Authority, Team Efficiency and Human Worker Satisfaction in Mixed Human-Robot Teams@csail.mit.edu Abstract-- In manufacturing, advanced robotic technology has opened up the possibility of integrating highly autonomous mobile robots into human teams. However, with this capability comes the issue of how

Reif, Rafael

117

MMS establishes team to resolve royalty disputes  

SciTech Connect (OSTI)

This paper reports that the U.S. Minerals Management Service has set up a permanent negotiating team to resolve royalty disputes with producers. MMS plans to use the team approach to negotiate multiple settlements in single, marathon negotiations covering issues such as production monitoring, production valuation, royalty reporting, and royalty payments.

Not Available

1992-06-22T23:59:59.000Z

118

Solar Technical Assistance Team (Fact Sheet)  

SciTech Connect (OSTI)

The Solar Technical Assistance Team (STAT) is a team of solar technology and deployment experts who ensure that the best information on policies, regulations, financing, and other issues is getting into the hands of state government decision makers whey they need it. This fact sheet provides information about STAT and the STAT webinar series for the summer of 2012.

Not Available

2012-07-01T23:59:59.000Z

119

eRA Training Team1 Terminations  

E-Print Network [OSTI]

eRA Training Team1 xTrain Terminations Electronic Research Administration Sponsored by: The National Institutes of Health, Office of Extramural Research March 2012 #12;eRA Training Team2 xTrain General Information xTrain Overview The following section provides general information on the xTrain

Baker, Chris I.

120

eRA Training Team1 Terminations  

E-Print Network [OSTI]

eRA Training Team1 xTrain Terminations Electronic Research Administration Sponsored by: The National Institutions of Health, Office of Extramural Research April 2010 #12;eRA Training Team2 xTrain General Information xTrain Overview The following section provides general information on the xTrain

Baker, Chris I.

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Contract Team Update Presented by Connie Motoki  

E-Print Network [OSTI]

Contract Team Update Presented by Connie Motoki January 15, 2008 #12;STC Form #12;#12;· Summary of Terms & Conditions · A Contract Manager initiates the STC. · STC is required for: New incoming subagreements & contracts Amendments to the existing agreement · Grants Team profiler cannot add money or date

Kroll, Kristen L.

122

The Environment Team to Waste & Recycling  

E-Print Network [OSTI]

The Environment Team A-Z Guide to Waste & Recycling www.le.ac.uk/environment #12;Welcome ...to the University of Leicester's `A-Z Guide to Waste and Recycling'. Over the last 3 years, the Environment Team has introduced an award- winning recycling scheme across the campus that allows us to recycle paper, plastics

St Andrews, University of

123

Solar Technical Assistance Team (STAT) (Fact Sheet)  

SciTech Connect (OSTI)

The Solar Technical Assistance Team (STAT) is a team of solar technology and deployment experts who ensure that the best information on policies, regulations, financing, and other issues is getting into the hands of state government decision makers when they need it.

Not Available

2014-05-01T23:59:59.000Z

124

Project Construction Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Construction Team Project Construction Team Project Construction Team October 16, 2013 - 5:06pm Addthis Photo of two men reviewing a large print document. Both men are wearing construction hats and bright vests. A construction team reviews plans for a 1.9 megawatt methane power generator for a U.S. Marine Corps landfill gas-to-energy project. Assembling the right project construction team is crucial and begins with the request for proposal (RFP). Federal agencies create and RFP for construction services using construction documents developed during the final stage of building design. Construction documents are the blueprints on which every project is built and will be used to generate bids for the construction phase of the project. Renewable energy will either be specified in detail in the

125

DOE Solar Decathlon: Team China: Tongji University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team China: Tongji University Team China: Tongji University Team China's entry to the U.S. Department of Energy Solar Decathlon 2011, Y Container, was constructed from six recycled shipping containers arranged to form an equilateral Y shape. The Y Container concept targeted young professionals in China, where disparities between incomes and housing costs make owning a home prohibitive. At the time of the competition, Y Container was scheduled to be transported back to Tongji University, where it was to be part of a new Green Energy Exhibition on campus. No further information is available. Photo of the Y Container. Enlarge image Team China's Y Container consists of six containers that were shipped to Washington, D.C., with all the team's parts and materials inside-ready for assembly on the National Mall.

126

Teaming Arrangement Pitfalls Misty D. Mayes, PMP  

Broader source: Energy.gov (indexed) [DOE]

Teaming Arrangement Pitfalls Teaming Arrangement Pitfalls Misty D. Mayes, PMP www.ManagementSolutionsLLC.com Outline * Best Intentions??? * The Basics * Case Studies - David and Goliath - Cool Hand Luke - The Wizard of Oz * Summary 2 The Best Intentions??? 3 Teaming Issues * The majority of negative teaming experiences stem from one thing: - Failure to set expectations and then manage to them. 4 The Best Laid Plans??? 5 Basic Questions * What are the company's strategic objectives? * What are the company's strengths and weaknesses? * Is the company capable of being the Prime? * Who should the company team with and why? * What type of collaborative business arrangement is appropriate? * What's the relationship of the Parties? * What's the duration and are there any off-ramps?

127

ARM - 2006 Science Team Meeting Pictures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pictures Pictures 2006 Meeting 2006 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Posters Presentations Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2006 Science Team Meeting Pictures Photos ARM Chief Scientist Warren Wiscombe presents "The ARM Chief Scientist Report" during Tuesday morning's plenary session. The Instantaneous Radiative Flux (IRF) Working Group report is presented at Tuesday morning's plenary session. Dr. David Thomassen, Acting Associate Director of DOE's Office of Biological and Environmental Research, attended this year's ARM Science Team Meeting. Meeting attendees listen at the morning plenary session. Rick Petty engages in a discussion after the plenary session. The ARM Science Team meeting allows scientists to collaborate and share their data and research.

128

WIPP Mine Rescue Team Wins, Retires Trophy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wins, Retires Trophy Wins, Retires Trophy CARLSBAD, N.M., April 9, 2001 - For the third consecutive year, a Waste Isolation Pilot Plant (WIPP) mine rescue has team won the Southwestern Regional Mine Rescue Competition. The competition was April 5-6 at the Pecos River Village in Carlsbad. The WIPP Blue Mine Rescue team has been designated the best in New Mexico by winning the New Mexico State Mine Inspector's Traveling Trophy three years in a row to retire the trophy. Second place was awarded to FMC Corporation from Green River, Wyoming, while the WIPP Silver team placed third. Kevin Cummins of IMC-Kalium won first place in the benchman's competition. Joe Baca of the WIPP Blue Team won second place. Mine Rescue teams have been participating in this competition since 1981.

129

Consumption and meanings of team licensed merchandise  

Science Journals Connector (OSTI)

This study examined the motives driving the purchase of team licensed merchandise and the meanings embedded in those products. Data from 135 attendees at two National Football League (USA) games revealed that the primary motives for the display of team licensed merchandise were fans' desire to publicly show their affiliation with the team and to express their support for the organisation, while the need to belong in the group of team supporters was also a strong motive. Furthermore, study participants overwhelmingly attached symbolic meanings to their possessions, emphasising social relationships and connectedness as well as elements of personal history. To a lesser extent, experiential meanings were attached to team licensed products. This study makes original contributions to the relatively narrow in scope research on sport licensing by exploring the functional, experiential and symbolic meanings that create value for those products and for their owners.

Artemisia Apostolopoulou; Dimitra Papadimitriou; David Synowka; John S. Clark

2012-01-01T23:59:59.000Z

130

Global Team Boundary Complexity: A Social Network Perspective  

Science Journals Connector (OSTI)

In this paper we propose and develop a "global team boundary complexity" construct based on coordination and complexity theories, to quantify the complexity of the global collaboration environment, from a coordination perspective. The construct contains ... Keywords: Global teams, virtual teams, global team boundaries, team boundary complexity, social networs

J. Alberto Espinosa; Gwanhoo Lee; William DeLone

2014-01-01T23:59:59.000Z

131

Performance assessment task team progress report  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Headquarters EM-35, established a Performance Assessment Task Team (referred to as the Team) to integrate the activities of the sites that are preparing performance assessments (PAs) for disposal of new low-level waste, as required by Chapter III of DOE Order 5820.2A, {open_quotes}Low-Level Waste Management{close_quotes}. The intent of the Team is to achieve a degree of consistency among these PAs as the analyses proceed at the disposal sites. The Team`s purpose is to recommend policy and guidance to the DOE on issues that impact the PAs, including release scenarios and parameters, so that the approaches are as consistent as possible across the DOE complex. The Team has identified issues requiring attention and developed discussion papers for those issues. Some issues have been completed, and the recommendations are provided in this document. Other issues are still being discussed, and the status summaries are provided in this document. A major initiative was to establish a subteam to develop a set of test scenarios and parameters for benchmarking codes in use at the various sites. The activities of the Team are reported here through December 1993.

Wood, D.E.; Curl, R.U.; Armstrong, D.R.; Cook, J.R.; Dolenc, M.R.; Kocher, D.C.; Owens, K.W.; Regnier, E.P.; Roles, G.W.; Seitz, R.R. [and others

1994-05-01T23:59:59.000Z

132

Adaptive heterogeneous multi-robot teams  

SciTech Connect (OSTI)

This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since such cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail the experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.

Parker, L.E.

1998-11-01T23:59:59.000Z

133

ARM - Selected Science Team Proposals - FY 1995  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings User Meetings Annual Meetings of the Atmospheric System Research (ASR) Science Team and Fall Working Groups Accomplishments Read about the 20 years of accomplishments (PDF, 696KB) from the ARM Program and user facility. Performance Metrics ASR Metrics 2009 2008 2007 2006 Selected Science Team Proposals - FY 1995 Dr. R. Nelson Byrne, SAIC: "Evolution of a New GCM-Capable Stochastic Cloud/Radiation Parameterization Using ARM Data - Phase II" Dr. Steven J. Ghan, Pacific Northwest National Laboratory: "Parameterization of Convective Cloud Coverage in GCMs" Dr. George Golitsyn, Russian Academy of Sciences, Institute of

134

Team Identity and Performance-based Compensation Effects on Performance  

E-Print Network [OSTI]

This study investigates whether team members work harder and perform better when they are compensated based on both team and individual performance than when compensated based on team or individual performance alone and whether teammates...

Blazovich, Janell L.

2010-01-16T23:59:59.000Z

135

Alliance mental models and strategic alliance team effectiveness.  

E-Print Network [OSTI]

??This study examined the relationship between alliance mental models and strategic alliance team effectiveness using the input-process-output model of team effectiveness. Strategic alliance team effectiveness (more)

Zoogah, Baniyelme David

2006-01-01T23:59:59.000Z

136

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Science Team Meeting 7 Science Team Meeting 1997 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1997, March 1997 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. Poster abstracts are not available online for this year. However, if you would like to request a copy of a specific poster abstract, please contact the Web Administrator. A Comparison of Integrated Water Vapor Sensors: WVIOP-96 J.C. Liljegren, E.R. Westwater, and Y. Han A Comparison of Observed Clear-Sky Surface Irradiance with

137

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Science Team Meeting 8 Science Team Meeting 1998 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1998, March 1998 Tucson, Arizona For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). History and Status of the ARM Program - March 1998 Session Papers A Cloud Climatology of the ARM CART Site S.M. Lazarus, S.K. Krueger, and G.G. Mace A Combination of the Separation of Variable and the T-Matrix Method for Computing Optical Properties of Spheroidal Particles*

138

NREL: Technology Deployment - Solar Technical Assistance Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Assistance Team Technical Assistance Team Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions Recent NREL analysis of state policies revealed that the sequence of policy implementation can accelerate solar photovoltaic (PV) markets-and that policy change doesn't have to be costly. Download the full report or summary to learn more, or view the webinar. The Solar Technical Assistance Team (STAT) gathers NREL solar technology and deployment experts to provide information on solar policies, regulations, financing, and other issues for state and local government decision makers. The team provides a variety of technical assistance, including: Quick Response. For state and local governments that require a fast turnaround in response to a time-sensitive question or expert testimony on

139

Operations and Maintenance Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Team Team Operations and Maintenance Team October 16, 2013 - 5:00pm Addthis Assembling the right set of skills and resources to operate and maintain a renewable energy system is critical. Renewable energy technologies only perform as specified when managed by a well-trained, highly motivated operations and maintenance (O&M) team. For a renewable energy project financed through an energy savings performance contract (ESPC) or a power purchase agreement (PPA), primary O&M services are typically delivered as part of the agreement, but in-house staff will need some familiarity with the system. For agency-funded projects, O&M services may be provided by in-house facilities staff, a contracted service provider, or a combination of the two. Experienced O&M staff can provide valuable input and should be included in

140

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Science Team Meeting 3 Science Team Meeting 1992 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Third Atmospheric Radiation Measurement (ARM) Science Team Meeting CONF-9303112, March 1-4,1993 Norman, Oklahoma For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. History and Status of the ARM Program - March 1993 History and Status of the Atmospheric Radiation Measurement Program - March 1993 P. Lunn, T. Cress, and G. Stokes Clear Skies A Study of Longwave Radiaiton Codes for Climate Studies: Validation with Observations and Tests in General Circulation Models - an Update R.G. Ellingson and F. Baer

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Science Team Meeting 6 Science Team Meeting 1996 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Sixth Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE CONF-9603149, March 1996 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. Poster abstracts are not available online for this year. However, if you would like to request a copy of a specific poster abstract, please contact the Web Administrator. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, T.P. A Comparison Between Clear Sky Shortwave Flux Calculations and Observations During ARESE

142

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Science Team Meeting 1 Science Team Meeting 2001 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2001, March 2001 Atlanta, Georgia For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains M.M. Khaiyer, A.D. Rapp, D.R. Doelling, M.L. Nordeen, W.L. Smith, Jr., and P. Minnis A 4-Year Study of the RASS Temperature Bias

143

MR Instrument Team - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MR-Instrument Team MR-Instrument Team MR instrument team MR Team (left to right): Valeria Lauter, Lead Instrument Scientist, Primary Contact Artur Glavic, Instrument Scientist Hailemariam Ambaye, Scientific Associate Rick Goyette, Scientific Associate Lead Instrument Scientist: Dr. Valeria Lauter Valeria Lauter Beam line 4A's lead instrument scientist is Valeria Lauter. Valeria received her PhD in Experimental and Theoretical Solid State Physics from the Joint Institute for Nuclear Research in Dubna, Russia. Her previous work has been as a Research Scientist at the Technical University of Munich, Germany; Research Scientist at the University of Konstanz, Germany; Visiting Scientist at the Institute Laue-Langevin in Grenoble, France; Research Scientist at the Laboratoire de Magnetisme CNRS in Grenoble,

144

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Science Team Meeting 2 Science Team Meeting 1992 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Second Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE CONF-9110336, October 26-30, 1992 Denver, Colorado For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, T. An Integrated Cloud Observation and Modeling Investigation in Support of the Atmospheric Radiation Measurement Program Tropical Western Pacific Project: Status Albrecht, B.

145

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Science Team Meeting 7 Science Team Meeting 1997 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1997, March 1997 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. Poster abstracts are not available online for this year. However, if you would like to request a copy of a specific poster abstract, please contact the Web Administrator. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Acharya, P. Spectral Resolution Effects on Solar Irradiance Calculations Ackerman, S.A.

146

Electrochemical Energy Storage Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

147

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Science Team Meeting 3 Science Team Meeting 2003 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2003, April 2003 Broomsfield, Colorado For proper viewing, extended abstracts should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A 20-year Data Set of Downwelling Longwave Flux at the Arctic Surface from TOVS Satellite Data Francis, J.A., Schweiger, A., and Key, J. A Comparison of Aerosol Scattering Parameters Obtained by Ground-Based Remote Sensing and In-situ Profile Flights*

148

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Science Team Meeting 4 Science Team Meeting 1994 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Fourth Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE CONF-940277, March 1994 Charleston, South Carolina For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abreu, L.W. MODTRAN3: Suitability as a Flux-Divergence Code Acharya, P. MODTRAN3: Suitability as a Flux-Divergence Code Ackerman, S.A. Atmospheric Emitted Radiance Interferometer Data Analysis Methods

149

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Science Team Meeting 2 Science Team Meeting 1992 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Second Atmospheric Radiation Measurement (ARM) Science Team Meeting DOE CONF-9110336, October 26-30, 1992 Denver, Colorado For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. Technical Sessions A Field Evaluation of NOAA Remote Sensor Measurements of Wind, Temperature, and Moisture B.E. Martner A Stochastic Formulation of Radiant Transfer in Clouds and Radiative Properties of Non-Uniform Clouds G.L. Stephens and P.D. Gabriel A Study of Longwave Radiation Codes for Climate Studies: Validation

150

Christmas in April Energy Teams Get Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Christmas in April Energy Teams Get Results Christmas in April Energy Teams Get Results Christmas in April logo July 2000 On April 29, volunteers from throughout the Bay Area visited 110 homes and public buildings such as schools and community centers, installing energy efficiency measures as part of Christmas in April's National Rebuilding Day. Twelve Berkeley Lab employees were among the volunteers, with four serving as Energy Team captains. The lifetime savings of all these efficiency measures works out to more than $78,000. The annual savings in all homes amount to 53,000 kWh, more than 11,000 therms of natural gas, and 500,000 gallons of water per year. For a second year, Lisa Gartland, a former post-doc in the Lab's Environmental Energy Technologies Division, now a private consultant on energy efficiency, organized the energy teams for local chapters of

151

Fuel Pathway Integration Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Pathway Integration Fuel Pathway Integration Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Fuel Pathway Integration Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

152

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Science Team Meeting 5 Science Team Meeting 1995 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Proceedings of the Fifth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1995, March 1995 San Diego, California For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, T.P. A Boundary-Layer Cloud Study Using Southern Great Plains Cloud and Radiation Testbed (CART) Data A Comparison of Radiometric Fluxes Influenced by Parameterized Cirrus Clouds with Observed Fluxes at the Southern Great Plains (SGP) Cloud

153

ARM - 2006 ARM Science Team Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Meeting 2006 Meeting 2006 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Posters Presentations Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2006 ARM Science Team Meeting March 27-18 | Albuquerque, New Mexico | Hyatt Regency Albuquerque The Hyatt Regency - Albequerque The Hyatt Regency - Albequerque Meeting Highlights Just over 300 ARM scientists and ACRF infrastructure staff took part in the 16th ARM Science Team meeting held in Albuquerque, New Mexico, on March 27-31, 2006. After an initial day of focused meetings among the ARM Working Groups, Dr. David Thomassen, Acting Associate Director of DOE's Office of Biological and Environmental Research (BER), opened the meeting's plenary session with remarks about the role of ARM within the DOE, and its

154

DOE Solar Decathlon: News Blog » Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

'Teams' 'Teams' Solar Decathlon 2013: Designing the Houses of Today Thursday, September 12, 2013 By Rebecca Matulka Editor's Note: This entry has been cross-posted from DOE's Energy Blog. Designing an energy-efficient, solar-powered house for the U.S. Department of Energy Solar Decathlon is like solving a riddle that has more than one answer. Instead of just thinking about building materials and cost in the design process, teams have to consider a myriad of factors to create a winning house. Although the design process never officially ends, the teams spend more than a year focusing on design before breaking ground on their houses. Early in the process, they select a target client for their house-one of the biggest impacts on their final design-and decide how they will

155

DOE Solar Decathlon: Team Belgium: Ghent University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team Belgium: Ghent University Team Belgium: Ghent University Ghent University's E-Cube is being rebuilt at the West Flemish Greenbridge Science Park, located in the outer port of Oostende, Belgium. Following U.S. Department of Energy Solar Decathlon 2011, the Ghent University team applied for funding to rebuild the E-Cube as a zero-energy test house to provide experimental data for faculty and other researchers. The house will also be used as a demonstration project for innovative renewable energy technologies. For the Solar Decathlon 2011, Team Belgium aimed for simplicity with E-Cube. Its market appeal was its simple construction methods and its affordability. The house was designed as a building kit for a self-builder who lacks the time and expertise to build a house from scratch. This

156

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Science Team Meeting 0 Science Team Meeting 2000 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Tenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2000, March 2000 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). Poster abstracts are not available online for this year. However, if you would like to request a copy of a specific poster abstract, please contact the Web Administrator. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abshire, J.B.

157

Our Teams | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Overview History Staff Directory Our Teams User Advisory Council Careers Margaret Butler Fellowship Visiting Us Contact Us Need Help? support@alcf.anl.gov 630-252-3111...

158

WIPP Mine Rescue Team Wins Regional Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Competition CARLSBAD, N.M., May 31, 2001 - The Blue Mine Rescue Team from the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) placed first in the...

159

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Satellite Data Link on the ARM-UAV Payload McCoy, R.F, Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

160

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instrumentation for the AMR-UAV Payload McCoy, R.F., Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Information Seeking and Sharing in Design Teams  

E-Print Network [OSTI]

Information Seeking and Sharing in Design Teams Abstract. Information retrieval is generally considered an individual activity, and information retrieval research and tools reflect this view. As digitally mediated communication and information sharing increase, collaborative information retrieval

Narasayya, Vivek

162

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Dataset of the Evaluation of Large-Scale Models Using ARM Data at Manus and Nauru Jakob, C. and May, P.T., BMRC Thirteenth Atmospheric Radiation Measurement (ARM) Science Team...

163

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team Meeting Counting from when MMCR's were first intalled at the 4 ARM sites, the ARM dataset consists of nearly 10 years of total data collected. This volume of data presents...

164

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of MODIS Cloud Mask Products (MOD35) with MMCR Data Zhang, Q. and Mace, G.G., University of Utah Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting...

165

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Measurement (ARM) Science Team Meeting Data collected during the SHEBA (Surface Heat Budget of the Arctic Ocean) field experiment and at the Barrow ARM site are used to...

166

Grid Interaction Tech Team, and International Smart Grid Collaboration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

167

NNSA Releases UPF "Red Team" Report | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

the Uranium Processing Facility (UPF) "Red Team" report, written by a team led by Oak Ridge National Laboratory's Thom Mason. The report outlines options for NNSA to...

168

2014 Race to Zero Student Design Competition: Grand Winner Teams...  

Office of Environmental Management (EM)

2014 Race to Zero Student Design Competition: Grand Winner Teams 2014 Race to Zero Student Design Competition: Grand Winner Teams 2014 Race to Zero Student Design Competition:...

169

Knowledge integration in teams : a systematic knowledge processing perspective.  

E-Print Network [OSTI]

???Knowledge integration plays an important role in teams, and prior research has found that it can positively influence team performance. However, knowledge integration is not (more)

Zhang, Yixiang (???)

2010-01-01T23:59:59.000Z

170

Delegation of Approval Authority for Integrated Project Team...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team Charter Documents for Office of Environmental Management Major System Projects by surash DelegationApprovalAuthorityIntegratedProjectTeamCharterDocuments-EMMajorSysProject-Sur...

171

New Energy Department Team Established to Help Local Authorities...  

Broader source: Energy.gov (indexed) [DOE]

Department Team Established to Help Local Authorities Get Gas Stations Impacted by Hurricane Sandy Back Online New Energy Department Team Established to Help Local Authorities Get...

172

University Teams to Showcase Affordable, Energy Efficient Living...  

Broader source: Energy.gov (indexed) [DOE]

of Florida) Team Massachusetts (Massachusetts College of Art and Design and University of Massachusetts at Lowell) Team New Jersey (Rutgers - The State University of New Jersey and...

173

National Science Bowl Update: Middle School Teams from Maryland...  

Broader source: Energy.gov (indexed) [DOE]

Science Bowl Update: Middle School Teams from Maryland and Indiana to Compete for National Championship on Monday National Science Bowl Update: Middle School Teams from Maryland...

174

National Science Bowl Update: Teams from North Carolina and California...  

Broader source: Energy.gov (indexed) [DOE]

Science Bowl Update: Teams from North Carolina and California to Compete for High School Championship National Science Bowl Update: Teams from North Carolina and California to...

175

DOE Transition Team President-Elect's 2008 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transition Team President-Elect's 2008 DOE Transition Team President-Elect's 2008 COMPILATION OF OFFICE OF GENERAL COUNSEL MATERIALS PROVIDED TO THE PRESIDENT-ELECT'S DOE...

176

EECBG Success Story: Seven Cities and a Utility Company Team...  

Broader source: Energy.gov (indexed) [DOE]

Seven Cities and a Utility Company Team Up to Deliver Residential Energy Savings EECBG Success Story: Seven Cities and a Utility Company Team Up to Deliver Residential Energy...

177

CESP Tool 1.2: Leadership Team Charter Elements  

Broader source: Energy.gov [DOE]

CESP Tool 1.2: Leadership Team Charter Elements in Step 1: Establish and Charge a Leadership Team in the Introduction to Community Energy Strategic Planning.

178

Establishing and operating an incident response team  

SciTech Connect (OSTI)

Occurrences of improprieties dealing with computer usage are on the increase. They range all the way from misuse by employees to international computer telecommunications hacking. In addition, natural disasters and other disasters such as catastrophic fires may also fall into the same category. These incidents, like any other breach of acceptable behavior, may or may not involve actual law breaking. A computer incident response team should be created as a first priority. This report discusses the establishment and operation of a response team.

Padgett, K.M.

1992-09-01T23:59:59.000Z

179

Establishing and operating an incident response team  

SciTech Connect (OSTI)

Occurrences of improprieties dealing with computer usage are on the increase. They range all the way from misuse by employees to international computer telecommunications hacking. In addition, natural disasters and other disasters such as catastrophic fires may also fall into the same category. These incidents, like any other breach of acceptable behavior, may or may not involve actual law breaking. A computer incident response team should be created as a first priority. This report discusses the establishment and operation of a response team.

Padgett, K.M.

1992-01-01T23:59:59.000Z

180

DOE Solar Decathlon: Team Ontario: Queen's University, Carleton University,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team Ontario: Queen's University, Carleton University, and Algonquin Team Ontario: Queen's University, Carleton University, and Algonquin College Team website: ontariosd.ca Photo of members of the Queen's University, Carleton University, and Algonquin College Solar Decathlon 2013 team on the deck of their partially constructed house. Several members are laughing and throwing snowballs. Enlarge image The Queen's University, Carleton University, and Algonquin College Solar Decathlon 2013 team (Courtesy of the Queen's University, Carleton University, and Algonquin College Solar Decathlon 2013 team) he Queen's University, Carleton University, and Algonquin College audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SunShot Initiative: Rooftop Solar Challenge I Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rooftop Solar Challenge I Teams Rooftop Solar Challenge I Teams to someone by E-mail Share SunShot Initiative: Rooftop Solar Challenge I Teams on Facebook Tweet about SunShot Initiative: Rooftop Solar Challenge I Teams on Twitter Bookmark SunShot Initiative: Rooftop Solar Challenge I Teams on Google Bookmark SunShot Initiative: Rooftop Solar Challenge I Teams on Delicious Rank SunShot Initiative: Rooftop Solar Challenge I Teams on Digg Find More places to share SunShot Initiative: Rooftop Solar Challenge I Teams on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Reducing Non-Hardware Costs Lowering Barriers Fostering Growth Rooftop Solar Challenge I Teams The first round of the Rooftop Solar Challenge supported 22 teams working to spur solar power deployment by cutting red tape and improving finance

182

Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon |  

Broader source: Energy.gov (indexed) [DOE]

Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon July 14, 2011 - 11:57am Addthis Team Massachusetts' Project Manager Spencer Culhane puts the finishing touches on the team's design model. | Courtesy of the Team Massachusetts Flickr photostream Team Massachusetts' Project Manager Spencer Culhane puts the finishing touches on the team's design model. | Courtesy of the Team Massachusetts Flickr photostream Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy In honor of the U.S. Department of Energy Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive -- we are

183

Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon |  

Broader source: Energy.gov (indexed) [DOE]

Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon July 14, 2011 - 11:57am Addthis Team Massachusetts' Project Manager Spencer Culhane puts the finishing touches on the team's design model. | Courtesy of the Team Massachusetts Flickr photostream Team Massachusetts' Project Manager Spencer Culhane puts the finishing touches on the team's design model. | Courtesy of the Team Massachusetts Flickr photostream Erik Hyrkas Erik Hyrkas Media Relations Specialist, Office of Energy Efficiency & Renewable Energy In honor of the U.S. Department of Energy Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive -- we are

184

ARM - 2006 Science Team Meeting Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations Presentations 2006 Meeting 2006 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Posters Presentations Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2006 Science Team Meeting Presentations Monday, March 27, 2006 ARM Orientation for New and Current PIs: Overview and History Warren Wiscombe (PDF, 6 MB) ARM Orientation for New and Current PIs: Infrastructure Overview 2006 Jimmy Voyles (PDF, 4MB) ARM Orientation for New and Current PIs: An Incomplete Introduction to ACRF Instrumentation Jim Liljegren (PDF, 4MB) ARM Orientation for New and Current PIs: ARM Data Quality Office - Real-Time Assessment of ARM Data Randy Peppler (PDF, 12MB) ARM Orientation for New and Current PIs: Getting Data from the ARM Archive

185

ARM - 2009 Science Team Meeting Presentations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Presentations Presentations 2009 Meeting 2009 Meeting Home Proceedings Sorted by Author Proceedings Sorted by Title Pictures Posters Presentations Meeting Archives ARM Science Team Meeting Proceedings Past Science Team Meetings 2009 Science Team Meeting Presentations Monday, March 30, 2009 ARM Orientation for New and Current PIs Chief Scientist's Perspective (PDF, 3,362K) Warren Wiscombe ARM Instruments (PDF, 1,828K) Jimmy Voyles Infrastructure (PDF, 607K) Jim Mather How to Get Data (PDF, 9,307) Raymond McCord Working Group Sessions Radiative Properties Working Group 2009 Breakout Session Agenda (PDF, 36K) Dave Turner Radiative Constraints in Tropical Upper Troposphere and Lower Stratosphere (PDF, 281K) Qiang Fu Ground-Based Microwave Cloud Tomography Experiment (PDF, 597K) Dong Huang

186

Leading Teams and Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Leading Teams and Projects Leading Teams and Projects Leading Teams and Projects February 18, 2014 8:30AM EST to February 19, 2014 4:00PM EST Registration Procedure: Please use the Corporate Human Resource Information System (CHRIS) Workflow process to request training enrollment. Session: 002487 Course Code: 0001. Cost $400. For organizations not currently using the CHRIS workflow process, please follow your existing interoffice training registration process. The Office of Learning and Workforce Development (HC-20) will assess the course cost for this training session directly through each Headquarters organization's Working Capital Fund account. Field office participants should register via CHRIS. They should ensure to note the cost of the training course in the tuition field of the training request.

187

Ecosystem Management Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ecosystem Management Team Ecosystem Management Team Ecosystem Management Team Objectives The U.S. Department of Energy (DOE) is evaluating methods of reducing the long-term costs and risks associated with operating, monitoring, and managing its legacy sites. For example, vegetation management is a significant and growing component of annual maintenance costs at legacy sites. Long-term surveillance plans often require suppression of plant growth on rock-covered disposal cells because scientists have concerns that (1) plants' roots may increase water percolation through compacted soil layers into buried contaminated material (and hence, increase the potential for spreading contamination), or (2) roots may take up and disperse buried contaminants (e.g., wind may spread contaminated plant materials or

188

TeamWorks09-30-04  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30, 2004 30, 2004 By the Numbers Congressional delegates tour WIPP Transportation and disposal statistics are available on pages 3 and 4. D E P A R T M E N T O F E N E R G Y U N I T E D S T A T ES O F A M E R I C A TeamWorks TeamWorks TRU A biweekly e-newsletter for the Waste Isolation Pilot Plant team roject personnel were honored to host a group of distinguished visitors on a rare weekend tour that included Chairman David Hobson of the U.S. House of Representatives Energy and Water Development Appropriations subcommittee; Ambassador Linton Brooks, Under Secretary for Nuclear Security; Congressman Steve Pearce; Ines Triay, DOE-EM Deputy Chief Operating Officer, Susan Grant, DOE Chief Financial Officer and several state and city officials. CBFO Deputy Manager Lloyd Piper said it was apparent that the

189

Legislative Affairs Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Legislative Affairs Team Legislative Affairs Team Legislative Affairs Team The mission of Legislative Affairs is working in close coordination with the U.S. Department of Energy's (DOE's) Office of Congressional Affairs, the Chief Financial Officer, and the Office of Energy Efficiency and Renewable Energy's (EERE's) budget office to serve as the primary liaison between EERE technology offices and congressional authorizing committees, as well as other committees and offices. Legislative Affairs also provides corporate guidance on congressional interaction and strategic advice on legislation relevant to EERE. Why it Matters We lead EERE interactions with Congress, including preparing and staffing EERE leadership and program offices for congressional briefings and hearings, in addition to educating members of Congress and their staff

190

DOE Solar Decathlon: News Blog » Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Teams Teams Below you will find Solar Decathlon news from the Teams archive, sorted by date. Affordability and Market Appeal Contest Winners Announced! Thursday, October 10, 2013 Solar Decathlon At an awards ceremony this morning, winners of the U.S. Department of Energy Solar Decathlon 2013 Affordability and Market Appeal contests took center stage by demonstrating that innovative, energy-efficient houses can be cost-effective and appealing to a variety of target markets. Photo of Richard Anderson and Robert Best at a desk looking at paperwork. The Affordability Contest juror, Richard Anderson, left, speaks with Robert Best from Stanford University during the Affordability Contest walkthrough. (Credit: Eric Grigorian/U.S. Department of Energy Solar Decathlon)

191

Policy and Analysis Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Policy and Analysis Team Policy and Analysis Team Policy and Analysis Team The mission of Policy and Analysis is to provide a consistent, objective, and credible analysis for the Office of Energy Efficiency and Renewable Energy's (EERE's) activities and an understanding of the effect of various policies on EERE's core mission. This includes guiding investment decisions through credible data and scenario analyses in order to maximize their effectiveness and return on investment for the taxpayer. To browse our collection of energy analysis publications and resources, visit our resource library here. Why it Matters We inform EERE's corporate decisions and program implementation through data-driven, portfolio-based analysis of technology and policy to help drive cost-effective decisions.

192

WRIGHT, MELANIE CLAY. The Effects of Automation on Team Performance and Team Coordination. (Under the direction of David B. Kaber).  

E-Print Network [OSTI]

ABSTRACT WRIGHT, MELANIE CLAY. The Effects of Automation on Team Performance and Team Coordination OF AUTOMATION ON TEAM PERFORMANCE AND TEAM COORDINATION By MELANIE CLAY WRIGHT A dissertation submitted #12;BIOGRAPHY Melanie Clay Wright was born Melanie Carol Clay in Bethesda, Maryland in April, 1966

Kaber, David B.

193

Vulnerability Assessment Team (VAT) - Nuclear Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vulnerability Assessment Team Vulnerability Assessment Team VAT Projects Introducing the VAT Adversarial Vulnerability Assessments Safety Tags & Product Counterfeiting Election Security Spoofing GPS Defeating Existing Tamper-Indicating Seals Specialty Field Tools & Sampling Tools Insider Threat Mitigation Drug Testing Security Microprocessor Prototypes The Journal of Physical Security Vulnerability Assessments Vulnerability Assessments Insanely Fast µProcessor Shop Insanely Fast µProcessor Shop Seals About Seals Applications of Seals Common Myths about Tamper Indicating Seals Definitions Findings and Lessons Learned New Seals Types of Seals Seals References Selected VAT Papers Selected VAT Papers Selected Invited Talks Self-Assessment Survey Security Maxims Devil's Dictionary of Security Terms

194

RRTT - Rapid Response Team for Transmission  

Broader source: Energy.gov (indexed) [DOE]

Rapid Response Team- Rapid Response Team- Transmission Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West TRIBAL LEADER FORUM SERIES February 7, 2012 Laura Smith Morton Department of Energy Laura.morton@hq.doe.gov Nine Agency MOU * Improves uniformity, consistency, and transparency - Establishes the roles and responsibilities of the nine signatory agencies regarding electric transmission infrastructure project applicants * Provides single point of contact for coordinating all federal authorizations required to locate electric transmission facilities on federal land * Establishes DOE (under authority pursuant to section 216(h) of the FPA) as lead agency for coordinating all federal authorizations and related environmental

195

The effects of team diversity on a team process and team performance in the National Hockey League  

E-Print Network [OSTI]

and managers, while also contributing to the theoretical body of literature for sport and diversity research. This research examined National Hockey League teams and players during a three year period (2001-2004). English Canadians made up 42.5% of the players...

Waltemyer, David Scott

2009-05-15T23:59:59.000Z

196

Northeastern University # Team Wins Losses Ties Forfeits  

E-Print Network [OSTI]

and Date Time Facility Home Scr Away Scr 6:00pm Cabot Phi Delta Theta 1 WBM 1 yard long LBM 7:00pm Cabot Day and Date Time Facility Home Scr Away Scr 6:15pm Cabot CJ SACkers WBF The Pipe Team LBF 6:00pm

Sridhar, Srinivas

197

TEAMS: Indoor Air Quality (IAR) Program  

E-Print Network [OSTI]

in place since April of 2002. Recognizing the need to expand the program in depth and breadth, we designed TEAMS. We were able to do this by assistance from Mike Miller and the EPA, who gave the District six Tools for Schools test kits (TfS Kit...

Melton, V.

198

NAME/TEAM: ______________________________________ GCMS postlab -1  

E-Print Network [OSTI]

NAME/TEAM: ______________________________________ GCMS postlab - 1 GC/MS of Gasoline Postlab Last (%) (w/w) % Ethanol Benzene ________ Convert your v/v % ethanol in gasoline to units of mass % (w/w %) of oxygen in gasoline. (Density of ethanol = 0.789 g/mL, Density of gasoline = 0.66 g/mL). Use dimensional

Nizkorodov, Sergey

199

Team 175: Command and Control of UAV  

E-Print Network [OSTI]

6868 #12;69 Team 175: Command and Control of UAV Sponsored by: UConn ECE Department and L with microprocessor is the Pandaboard, which was used to process visual sensor data to execute SLAM and path-planning algortihms. The quad-copter is tested in a contained enviroment with static dimensions and obstacles

Zhou, Shengli

200

Energy Monitoring of Software project-team  

E-Print Network [OSTI]

Energy Monitoring of Software Systems project-team Romain Rouvoy Aurélien Bourdon Adel Noureddine Lionel Seinturier firstname.lastname@inria.fr #12;ICT & Energy 2% of the global energy consumption in 2007 [1] [1] Gartner #12;ICT & Energy [1] 2008 ICT report, Ecology Ministry 13.5% of the electricity

Lefèvre, Laurent

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Competition: School team launches a rocket  

Science Journals Connector (OSTI)

Competition: School team launches a rocket Conference: Norway focuses on physics teaching Science on Stage: Canadian science acts take to the stage Particle Physics: Teachers get a surprise at CERN Teaching: Exploring how students learn physics University: Oxford opens doors to science teachers Lasers: Lasers shine light on meeting Science Fair: Malawi promotes science education

202

PRODUCTION TEAM Team Leader: Julia C. White Publication Director: Dawn Levy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PRODUCTION TEAM PRODUCTION TEAM Team Leader: Julia C. White Publication Director: Dawn Levy Editors: Priscilla Henson, Dawn Levy Contributing Science Writers: Cheryl Drugan, Eric Gedenk, Kathryn Jandeska, Scott Jones, Dawn Levy, Caitlin Rockett, Leo Williams, Laura Wolf Graphic Designer: Jason Smith Reviewers: Arthur Bland, Susan Coghlan, James J. Hack, Bronson Messer, Paul Messina, Michael Papka, Katherine Riley, Julia C. White Advisors: Ashley Barker, Jayson Hines, David Martin CONTACT Julia C. White INCITE Manager Phone: 865-241-8796 whitejc@DOEleadershipcomputing.org The research described herein was made possible through awards of computer time provided through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. The research

203

Team Middlebury On How to Create Buildings That Improve Communities  

Broader source: Energy.gov (indexed) [DOE]

Team Middlebury On How to Create Buildings That Improve Communities Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally July 8, 2013 - 4:36pm Addthis Team Middlebury at their Spring Build of the InSite, a 954 sq. ft. solar-powered home that's set to compete in the 2013 Solar Decathlon. Cordelia, Team Manager, is pictured sixth from the right. Team Middlebury at their Spring Build of the InSite, a 954 sq. ft. solar-powered home that's set to compete in the 2013 Solar Decathlon. Cordelia, Team Manager, is pictured sixth from the right. Cordelia Newbury Team Manager, InSite: Team Middlebury Solar Decathlon Looking back on my experience with the Solar Decathlon, I am a firm

204

Team Middlebury On How to Create Buildings That Improve Communities  

Broader source: Energy.gov (indexed) [DOE]

Team Middlebury On How to Create Buildings That Improve Communities Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally Team Middlebury On How to Create Buildings That Improve Communities Socially, Economically, and Environmentally July 8, 2013 - 4:36pm Addthis Team Middlebury at their Spring Build of the InSite, a 954 sq. ft. solar-powered home that's set to compete in the 2013 Solar Decathlon. Cordelia, Team Manager, is pictured sixth from the right. Team Middlebury at their Spring Build of the InSite, a 954 sq. ft. solar-powered home that's set to compete in the 2013 Solar Decathlon. Cordelia, Team Manager, is pictured sixth from the right. Cordelia Newbury Team Manager, InSite: Team Middlebury Solar Decathlon Looking back on my experience with the Solar Decathlon, I am a firm

205

Protocol, Small Team Oversight Activities - June 2012 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Small Team Oversight Activities - June 2012 Small Team Oversight Activities - June 2012 Protocol, Small Team Oversight Activities - June 2012 June 2012 Protocol for Small Team Oversight Activities The purpose of this protocol is to establish the requirements and responsibilities for conducting and managing an Office of Health, Safety and Security (HSS) small team oversight activity. These activities are the primary means of gathering independent performance data to support the independent oversight function. This protocol further discusses and categorizes these activities as oversight and operational awareness activities. Protocol, Small Team Oversight Activities - June 2012 More Documents & Publications Protocol, Site Leads - May 2011 Independent Oversight Assessment, Waste Treatment and Immobilization Plant

206

Team New Jersey's Beach House Approaches Sustainable Design from a  

Broader source: Energy.gov (indexed) [DOE]

Team New Jersey's Beach House Approaches Sustainable Design from Team New Jersey's Beach House Approaches Sustainable Design from a Different Angle Team New Jersey's Beach House Approaches Sustainable Design from a Different Angle April 28, 2011 - 4:38pm Addthis Team New Jersey | Photo courtesy of 2011 Solar Decathlon Team New Jersey Team New Jersey | Photo courtesy of 2011 Solar Decathlon Team New Jersey Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. In honor of the U.S Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build and operate solar-powered houses that are cost-effective, energy-efficient and attractive -- we are

207

Team New Jersey's Beach House Approaches Sustainable Design from a  

Broader source: Energy.gov (indexed) [DOE]

Team New Jersey's Beach House Approaches Sustainable Design from Team New Jersey's Beach House Approaches Sustainable Design from a Different Angle Team New Jersey's Beach House Approaches Sustainable Design from a Different Angle April 28, 2011 - 4:38pm Addthis Team New Jersey | Photo courtesy of 2011 Solar Decathlon Team New Jersey Team New Jersey | Photo courtesy of 2011 Solar Decathlon Team New Jersey Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. In honor of the U.S Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build and operate solar-powered houses that are cost-effective, energy-efficient and attractive -- we are

208

Building America FY14 Research Projects by Research Team | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research Projects by Research Team Building America FY14 Research Projects by Research Team This table shows the U.S. Department of Energy Building America FY14 research projects...

209

Energy Department Opens Competition to Select Student Teams for...  

Office of Environmental Management (EM)

Opens Competition to Select Student Teams for Solar Decathlon 2015 Energy Department Opens Competition to Select Student Teams for Solar Decathlon 2015 November 1, 2013 - 3:17pm...

210

Hazardous devices teams showcase skills at Robot Rodeo June 24...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Bomb squads compete in timed scenarios at Los...

211

Registration Now Open for 2013 Science Bowl Teams | Department...  

Office of Environmental Management (EM)

Registration Now Open for 2013 Science Bowl Teams Registration Now Open for 2013 Science Bowl Teams October 2, 2012 - 10:00am Addthis NEWS MEDIA CONTACT (202) 586-4940 Washington -...

212

Coordinated Searching and Target Identification Using Teams of Autonomous Agents  

E-Print Network [OSTI]

Coordinated Searching and Target Identification Using Teams of Autonomous Agents Christopher Lum;#12;University of Washington Abstract Coordinated Searching and Target Identification Using Teams of Autonomous & Astronautics Many modern autonomous systems actually require significant human involvement. Often, the amount

Washington at Seattle, University of

213

Geographic dispersion in teams : its history, experience, measurement, and change  

E-Print Network [OSTI]

This thesis begins with the simple argument that geographic dispersion has gone surprisingly unexamined despite its role as the domain-defining construct for geographically dispersed teams (a.k.a. "virtual teams"). The ...

O'Leary, Michael Boyer, 1969-

2002-01-01T23:59:59.000Z

214

Clean Cities: Clean Cities Technical Assistance (Tiger Teams)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Clean Cities: Clean Cities Technical Assistance (Tiger Teams) to someone by E-mail Share Clean Cities: Clean Cities Technical Assistance (Tiger Teams) on Facebook Tweet about Clean Cities: Clean Cities Technical Assistance (Tiger Teams) on Twitter Bookmark Clean Cities: Clean Cities Technical Assistance (Tiger Teams) on Google Bookmark Clean Cities: Clean Cities Technical Assistance (Tiger Teams) on Delicious Rank Clean Cities: Clean Cities Technical Assistance (Tiger Teams) on Digg Find More places to share Clean Cities: Clean Cities Technical Assistance (Tiger Teams) on AddThis.com... Publications Technical Assistance Clean Cities Technical Assistance (Tiger Teams) Clean Cities offers technical assistance for eligible projects through the

215

Tank Waste System Integrated Project Team  

Broader source: Energy.gov (indexed) [DOE]

Decisional Draft Decisional Draft 1 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve Schneider Office of Engineering and Technology Tank Waste Corporate Board July 29, 2009 2 This document is intended for planning and analysis purposes, assuming a continuing constrained budget environment. Every effort will be made to comply with all applicable environmental and legal obligations, while also assuring that essential functions necessary

216

Balance Engineering - Eli Lilly Teaming Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial SPP / Partner Teaming Profile Industrial SPP / Partner Teaming Profile UService/Product Provider Balance Engineering Inc. 3711 East Carmel Drive Carmel, IN 46033 Business: Consulting Engineering Jack F. Staley President Phone: 317-844-3178 Email: HTUjack@balanceeng.comUT U I ndustrial Partner Eli Lilly and Company Lilly Corporate Center Indianapolis, IN 46285 Business: Pharmaceuticals David S. Drzewiecki Group Leader, Energy & Utilities Phone: 317-433-0336 Email: HTUDrzewiecki_David_S@Lilly.comUT Balance Engineering identifies $3 million in energy savings at Lilly facility Project Scope Balance Engineering conducted a facility energy assessment of the Eli Lilly Clinton Laboratories, a large multi-building pharmaceutical campus. The goals of the assessment were to determine the major uses of

217

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Meeting 2002 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2002, April 2002 St. Petersburg, Florida For proper viewing, extended abstracts should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Ackerman, S.A. Cloud Phase Determination in the Arctic Using AERI Data ERBE OLR and Cloud Type by Split Window* Ackerman, T.P. A Climatology of Shortwave Cloud Radiative Forcing Using Ground-Based Broadband Radiometric Time-Series*

218

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Meeting 2003 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-2003, April 2003 Broomsfield, Colorado For proper viewing, extended abstracts should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abdou, W.A. Intercomparison of MISR Aerosol Retrievals with Sunphotometer and MODIS Results* Ackerman, T.P. Comparison of Observed and Modelled Liquid Water Path for Stratus and Stratocumulus Clouds at the SGP*

219

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting Meeting 1999 Proceedings Proceedings Sorted by Title Proceedings Sorted by Author Science Team Meeting Proceedings Cover image Proceedings of the Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM-CONF-1999, March 1999 San Antonio, Texas For proper viewing, many of these proceedings should be viewed with Adobe Acrobat Reader. Download the latest version from the Adobe Reader website. View session papers by Author or Title. * Poster abstract only; an extended abstract was not provided by the author(s). A B C D E F G H I J K L M N O P Q R S T U V W X Y Z A Abshire, J.B. Development of a Compact Lidar to Profile Water Vapor in the Lower Troposphere Ackerman, T.P. A 25-Month Database of Stratus Cloud Properties Generated from Ground-Based Measurements at the ARM SGP Site

220

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM In The Classroom: Developing an Operational Forecasting Site for the ARM In The Classroom: Developing an Operational Forecasting Site for the NSA Harrington, J. Y.(a) and Olsson, P. Q.(b), The Pennsylvania State University (a), The University of Alaska Anchorage (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting During the fall 2002 semester, the Department of Meteorology's Computer Applications in Meteorology course took on the project of developing an operational forecasting site for the ARM North Slope of Alaska and the Alaska Region. The course was designed around team-driven forecast products similar to what the students will find in the job environment. During the fall semester, the students were provided with a data feed from Alaska consisting of various forecast fields for the ETA model Alaska grid. The

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NEVADA TEAM AGREEMENT BETWEEN WACKENHUT SERVICES, INCORPORATED  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEVADA TEAM NEVADA TEAM AGREEMENT BETWEEN WACKENHUT SERVICES, INCORPORATED AND INDEPENDENT GUARD ASSOCIATION OF NEVADA LOCAL NO. 1 2009 - 2014 LAS VEGAS, NEVADA LAS VEGAS, NEVADA AGREEMENT BETWEEN WSI AND INDEPENDENT GUARD ASSOCIATION OF NEVADA LOCAL NO. 1 2009 - 2014 LAS VEGAS, NEVADA 1 AGREEMENT BETWEEN WSI AND INDEPENDENT GUARD ASSOCIATION OF NEVADA LOCAL NO. 1 2009 - 2014 LAS VEGAS, NEVADA 2 PREAMBLE This Agreement is entered into this first day of July 2009, by and between WSI, hereinafter referred to as the "Company" and the Independent Guard Association of Nevada, Local No. 1, hereinafter referred to as the "Union" as the sole and exclusive representative for the purposes of collective bargaining for the Company's employees employed at the locations described in

222

PARS II - Integrated Project Team Meeting  

Broader source: Energy.gov (indexed) [DOE]

Integrated Project Team Meeting Integrated Project Team Meeting John Makepeace (OECM) Ken Henderson (EES), Norm Ayers (EES) November 19, 2009 2 2 Agenda * Brief Review Last Meeting * List of Action Items * Project Milestones * Communications Channels for Deployment * Requesting Contacts for EM Group 1 & 2 Projects * Information Package to Contractor * Letter of Introduction * CPP Upload Document * Project Data Template * New Action Items * List of EM Group 1 & 2 Projects 3 Action Items Item Action Item Status 1 EES will write the marketing cover letter for the Information Package. C 2 EES will deliver the Preliminary Information Package to OECM by Monday Nov 16, close of business, for review. C 3 A placeholder of COB Tuesday Nov 17 was established for EES to give OECM the Information Package. C 4 Distribution of the package will commence after review by OECM.

223

Industrial SSP Partner Teaming Profile SWEPCO Intertape  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial SPP / Partner Teaming Profile Industrial SPP / Partner Teaming Profile Industrial Partner Intertape Polymer Group 1101 Eagle Springs Rd. Danville, VA 24540 Business: Specialized Polyolefin Plastic/Paper Products Mike Jones Manager of Engineering Phone: 434-797-8359 Email: mbjones@itape.com Service/Product Provider Southwestern Petroleum Corporation 534 N. Main St Fort Worth, TX 76164 Business: High Performance Lubricants Paul J. Dickerson Senior Vice President & COO Phone: 817-348-7275 Email: pjd@swepcousa.com Southwestern Petroleum Corporation (SWEPCO) captures "low-hanging fruit" with superior lubricants for Intertape Polymer Project Scope SWEPCO analyzed four problematic gear boxes at the Intertape Polymer Group facility in Danville, VA, which over-heated and tripped the circuit due to high amperage overload. SWEPCO implemented

224

TEAM 1 Drivers License.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I I Core Status: new users must complete 2 training sessions and pass a sample exchange exam to work independently during Core sessions (regular work hours). Flex Status: core users must complete 5 Core sessions and pass a driving test to work during Flex sessions (evening and weekend hours). All TEAM I scheduling must be coordinated through Peter Ercius at PErcius@lbl.gov. You may only be assigned two sessions per month. CORE LICENSE TEST Safety  Understand emergency shutdown procedure  Understand potential X-ray hazards of the modified instrument and shielding  Read and understand the Low Dose Machine Authorization document  Recognize high voltage hazards with the TEAM stage  Demonstrate handling of column valves  Point out where emergency contact numbers are posted

225

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Availability and Status of MISR Geophysical Data Products Availability and Status of MISR Geophysical Data Products Diner, D.J. and the MISR Science Team, Jet Propulsion Laboratory, California Institute of Technology Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra spacecraft has been collecting Earth imagery since February 2000. MISR contains nine cameras pointed at fixed along-track directions, and acquires images with view angles at the Earth’s surface ranging from 70.5º forward of nadir to 70.5º aftward, in four spectral bands. The MISR experiment routinely generates geophysical data products using new algorithms developed specifically to capitalize on MISR's observational strategy. Included among these products are aerosol optical depths and

226

DOE Transition Team President-Elect's 2008  

Broader source: Energy.gov (indexed) [DOE]

E--NERGY E--NERGY COMPILATION OF OFFICE OF GENERAL COUNSEL MATERIALS PROVIDED TO THE PRESIDENT-ELECT'S DOE TRANSITION TEAM 2008-2009 Cynthia Quarterman from Janet Barsy - Office of General [GAO Report; Other I Congressional Matters; FY 2008 DOE AFR S | December 1 " ... 2008, Memor-andum, to - Cynthia Quarterman from Janet Barsy - Requested Information [List of Pending 2 Litigation Cases; Federal Facility Agreements ...... ] December 5, 2008, Memorandum to Cynthia Quarterman from Janet Barsy - Paper on "Other Major Litigation of Director Interest to DOE" 1 Department of Energy Washington, DC 20585 NOTE TO: Cynthia L. Quarterman Department of Energy Agency Review Team FROM: Janet Z. Barsy Special Assistant Office of the General Counsel SUBJECT: Office of General Counsel Information

227

First National Climate Assessment: Production Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Team Print E-mail Production Team Print E-mail The National Assessment Synthesis Team (NAST) was a committee of experts drawn from governments, universities, industry, and non- governmental organizations. It was responsible for broad oversight of the First National Assessment, with the Federal agencies of the USGCRP. Click on the buttons below to read more about the NAST team members. Jerry M. Melillo (Co-chair) Dr. Jerry M. Melillo (B.A. Wesleyan University, CT; Ph.D. Yale University) is in his twenty-fifth year as a research scientist at The Ecosystems Center of the Marine Biological Laboratory in Woods Hole, Massachusetts, and currently serves as the Center's Co-Director. Dr. Melillo's research on biogeochemistry includes work on global change, the ecological consequences of tropical deforestation, and sustainable management of forest ecosystems. He was a covening lead author on the 1990 and 1995 IPCC assessments of climate change. He has served as a vice-chair of the International Geosphere-Biosphere Programme (IGBP) and is currently President of ICSU's Scientific Committee on Problems of the Environment (SCOPE). Dr. Melillo founded the Marine Biological Laboratory's Semester in Environmental Science, an education program for undergraduates from small liberal arts colleges and universities in which students spend a term learning and doing environmental science in Woods Hole. Dr. Melillo also has a strong interest in science policy. He served as the Associate Director for Environment at the Office of Science and Technology Policy in the Executive Office of the President for 15 months in 1996 and 1997.

228

Driving Energy Performance with Energy Management Teams  

E-Print Network [OSTI]

Driving Energy Performance with Energy Management Teams Meredith Younghein ENERGY STAR Industrial Communications Mgr. U.S. Environmental Protection Agency Washington, DC ABSTRACT Companies today face an uncertain energy future. Businesses... face escalating energy prices which can erode profits. Concerns over supply reliability, and possible regulation of carbon emissions create risk. For many industries in the U.S., energy costs are equal to the cost of raw materials or even employee...

Younghein, M.; Tunnessen, W.

2006-01-01T23:59:59.000Z

229

US DRIVE Grid Interaction Technical Team Roadmap | Department...  

Energy Savers [EERE]

More Documents & Publications Grid Interaction Tech Team, and International Smart Grid Collaboration Grid Connectivity Research, Development & Demonstration Projects...

230

UNL 2012 BAJA SAE TEAM UNIVERSITY OF NEBRASKA-LINCOLN  

E-Print Network [OSTI]

business or special events. Share the energy of youth and ambition as an integral member of our team

Farritor, Shane

231

2014 Race to Zero Student Design Competition: Grand Winner Teams  

Broader source: Energy.gov [DOE]

2014 Race to Zero Student Design Competition: Grand Winner Teams, from the U.S. Department of Energy.

232

Baldrige Enterprise: Updates on Taskforce Teams September/October 2013  

E-Print Network [OSTI]

with the "nonChoir." Integrated Examiner Training Team (Team Leader: Sandra Byrne; Goal: Design a training members used survey findings to custom design and deliver a fourhour workshop. Kellie Glenn and Brian applicants, regardless of where they are located #12;2 Team has identified core principles to guide

233

PI & Project Team Step-By-Step Procedure  

E-Print Network [OSTI]

Proposal Management PI & Project Team Cancel PAF Step-By-Step Procedure Last updated: 4/1/2013 1;Proposal Management PI & Project Team Cancel PAF Step-By-Step Procedure Last updated: 10/01/09 2 of 2 http of 2 http://eresearch.umich.edu Project Team Cancel PAF A PAF can be cancelled during the following

Shyy, Wei

234

The role of socialization in Knowledge management in virtual teams  

Science Journals Connector (OSTI)

The literature shows that new Knowledge creation methods underline the importance of team networks as a pillar of Knowledge creation in modern Organizations. Sharing tacit Knowledge is one of the difficulties of virtual teams (VTs). This is due to knowledge ... Keywords: cultural facilitator factors, knowledge management, learning socialization content, socialization tactics, virtual teams

Artemis Akhgar; Aryan Gholipour

2011-07-01T23:59:59.000Z

235

EcoCAR 2: Meet the Teams Part I  

Office of Energy Efficiency and Renewable Energy (EERE)

Next month, 15 university teams facing off in EcoCAR 2 will reach the home stretch of the race. A two part contest will determine which team is crowned winners of the Energy Departments latest advanced vehicle technology competition. Meet five of the teams and learn about their unique approaches to building innovative vehicles on the cutting edge of clean transportation.

236

Teams in transition: an ethnographic case-study highlighting cohesion and leadership in a collegiate athletic team  

E-Print Network [OSTI]

and managed the cohesion within the team. To explore these issues, an ethnographic study was conducted with a Division 1- A, collegiate basketball team called Private U. Over 50 practices were attended and 20 formal interviews were completed. Results showed...

Browning, Blair Wilson

2009-05-15T23:59:59.000Z

237

E-Print Network 3.0 - assessment review team Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plans. Team members... Environmental Assessment capabilities to teams evaluating shale gas extraction from developing plays... Environmental Analysis Team Capabilities in Fossil...

238

Communication differences in virtual design teams: findings from a multi-method analysis of high and low performing experimental teams  

Science Journals Connector (OSTI)

This multi-method study distinguishes between four high performing and four low performing fully distributed virtual design teams, through an analysis of their asynchronous communication. Results indicate that these teams were similar in terms of the ... Keywords: computer-mediated communication, creativity, distributed software development, innovation, software design, software requirements analysis, virtual teams

Rosalie J. Ocker; Jerry Fjermestad

2008-01-01T23:59:59.000Z

239

Texas Stream Team: Ambassadors for Texas water quality  

E-Print Network [OSTI]

tx H2O | pg. 23 Story by Kathy Wythe Ambassadors for Texas water Roger Miranda of Texas Commission on Environmental Quality volunteers as a certified trainer for Texas Stream Team. Photo by Robert Sams, Texas Stream Team Texas stream... team continued tx H2O | pg. 24 An African proverb says it takes a village to raise a child. However, the Texas Stream Team would say it takes a group of citizens to monitor Texas waters. The Texas Stream Team, formerly Texas Watch, is based...

Wythe, Kathy

2010-01-01T23:59:59.000Z

240

WIPP's Mine Rescue Teams Lead Competition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

WIPP's Mine Rescue Teams Lead Competition WIPP's Mine Rescue Teams Lead Competition WIPP's Mine Rescue Teams Lead Competition July 30, 2013 - 12:00pm Addthis WIPP’s mine rescue team members, back row from left, are NWP President and Project Manager Farok Sharif; Heath Fowler; Manny Marquez; Mat Ridgway; Gary Kessler; Curtis Sanders, III; Jim Pierce; Tony Mihelic; Joe Baca; Justin Bailey; Ty Zimmerly; Fabian Carrasco; Chauncey Ortega; Nico Dominguez; and CBFO Manager Joe Franco. In front are Richard West, team trainer; and Ann Strait, of NWP emergency management. Not pictured is Doug Pitzer, a Red Team member. WIPP's mine rescue team members, back row from left, are NWP President and Project Manager Farok Sharif; Heath Fowler; Manny Marquez; Mat Ridgway; Gary Kessler; Curtis Sanders, III; Jim Pierce; Tony Mihelic; Joe Baca;

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE Solar Decathlon: Solar Decathlon Team-Produced Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Video Walkthroughs Video Walkthroughs Animated Walkthroughs Architecture Presentations Engineering Presentations Sales Presentations Consumer Workshops Building Industry Workshops Technical Resources Sponsors Where Are the Houses Now? Quick Links Solar Decathlon Home Solar Decathlon 2011 Solar Decathlon 2009 Solar Decathlon 2007 Solar Decathlon 2005 Solar Decathlon 2002 Solar Decathlon 2011 Solar Decathlon Team-Produced Videos Watch videos produced by the teams themselves for the U.S. Department of Energy Solar Decathlon 2011 competition. Solar Decathlon 2011 Team Video Walkthroughs See inside the Solar Decathlon 2011 houses in these team-produced video tours. Solar Decathlon 2011 Team Computer-Animated Walkthroughs Learn about the teams' plans and concepts by watching these team-produced

242

DOE Solar Decathlon: Team Alberta: University of Calgary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Team Alberta: University of Calgary Team Alberta: University of Calgary Team website: www.solardecathlon.ca Photo of members of the University of Calgary Solar Decathlon 2013 team standing at the mouth of an elevated tunnel. Enlarge image The University of Calgary Solar Decathlon 2013 team (Courtesy of the University of Calgary Solar Decathlon 2013 team) he University of Calgary audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings Menu and Recipes Neither the United States, nor the Department of Energy, nor the Alliance for Sustainable Energy LLC, nor any of their contractors, subcontractors, or their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or

243

TRU drum corrosion task team report  

SciTech Connect (OSTI)

During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

1996-05-01T23:59:59.000Z

244

CESP Tool 1.1: Leadership Team Invite | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1.1: Leadership Team Invite CESP Tool 1.1: Leadership Team Invite Tool 1.1 Leadership Team Invite in Step 1: Establish and Charge a Leadership Team. cesptool1-1sampleleadership...

245

Is Everyone Created Equal? A Social Network Perspective on Personality in Teams  

E-Print Network [OSTI]

One important research topic in team research concerns how team composition (i.e., the configuration of team member attributes such as personality factors) affects team effectiveness. To date, researchers have almost exclusively focused on the role...

Li, Ning

2012-10-19T23:59:59.000Z

246

Tiger Teams Provide Coalitions Technical and Market Assistance. Clean Cities Alternative Fuel Information Series, Tiger Teams Technical Assistance Fact Sheet.  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Cities Technical Assistance Teams (Tiger Teams) Clean Cities Technical Assistance Teams (Tiger Teams) were formed in 2001 to work directly with Clean Cities coordinators, stakeholders, and partners to tackle difficult technical and market challenges that might otherwise stall alternative fuel vehicle (AFV) implementation projects. The Tiger Team project, managed by the National Renewable Energy Laboratory (NREL), was established by the U.S. Department of Energy (DOE) to provide technical expertise to the 80 Clean Cities coalitions operating across the country. The Tiger Teams provide assistance when coalitions encounter barriers that challenge local resources. Tiger Team specialists contracted by NREL have expertise in compressed natural gas (CNG) fueling station design and implementation; natural gas, propane, and biofuel

247

The T-Sat1 Nanosatellite Design and Implementation Through a Team of Teams  

Science Journals Connector (OSTI)

It is very challenging to design complex machines and systems that operate in very difficult remote locations, under largely unknown or uncertain conditions. Specifications for such systems must be extremely detailed and extensive, with input from professionals ... Keywords: Cognitive Design, Cognitive Management, Complex Systems, Creating Teams, Nanosatellite Design, Nanosatellite Implementation

Witold Kinsner, Dario Schor, Reza Fazel-Darbandi, Brendan Cade, Kane Anderson, Cody Friesen, Scott McKay, Diane Kotelko, Philip Ferguson

2013-01-01T23:59:59.000Z

248

AE Work Team Short Roster Strategic Purchasing-Office Supplies v 1.1 2012-01-06 dgk Project Member Team Role UW-Madison Role  

E-Print Network [OSTI]

AE Work Team Short Roster Strategic Purchasing- Office Supplies v 1.1 2012-01-06 dgk Project Member II Work Team Roster: Strategic Purchasing - Office Supplies #12; Team Role UW-Madison Role Tammy Starr Team Leader Office of Human Resources (OHR) Mike Marean Team

Sheridan, Jennifer

249

DOE Solar Decathlon: News Blog » Team Massachusetts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Massachusetts Massachusetts Below you will find Solar Decathlon news from the Team Massachusetts archive, sorted by date. Solar Decathlon Teams Continue Fast-Paced Assembly Saturday, September 17, 2011 By Richard King Under mostly cloudy skies and occasional light rain, U.S. Department of Energy Solar Decathlon teams continue assembling their houses around the clock to finish the assembly phase of the competition, which for most (and hopefully all) teams will end Tuesday. Photo of a group of people wearing hard hats, safety vests, and safety glasses standing in front of a house. A sign in front reads "101: New Zealand." New Zealand celebrates a team member's birthday and says goodbye to its Canadian team crew from Fenshawe College in Ontario. (Credit: Richard

250

Move Over Transformers, Meet the REACON Team | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Move Over Transformers, Meet the REACON Team Move Over Transformers, Meet the REACON Team Move Over Transformers, Meet the REACON Team July 6, 2011 - 10:30am Addthis Johanna Sevier Project Officer, Golden Field Office Businesses in Stockton, California are increasing their bottom line by going green, thanks to the Greater Stockton Chamber of Commerce's energy waste-fighting REACON (Recycling-Energy-Air-Conservation) Team. The REACON team swoops in to save the day with visits local businesses, offering suggestions on reducing waste, energy usage and other costly items. During a typical visit, the REACON audit team will dive into dumpsters, reviews past utility bills with scrutiny and inspects appliances. Their research yields a series of suggestions, designed to increase the businesses's earnings, save energy and enhance their status as

251

Composite Adversary Team Brochure - April 9, 2008 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Composite Adversary Team Brochure - April 9, 2008 Composite Adversary Team Brochure - April 9, 2008 Composite Adversary Team Brochure - April 9, 2008 April 9, 2008 This brochure provides basic information about the CAT Program and its role in the Independent Oversight process. Independent Oversight established the Composite Adversary Team (CAT) to provide a group of tactical operators to role-play as terrorist adversaries and facilitate rigorous performance testing of the Department's most critical protection systems. This brochure provides basic information about the CAT Program and its role in the Independent Oversight process. Composite Adversary Team Brochure - April 9, 2008 More Documents & Publications Standard Operating Procedure Composite Adversary Team Training Health and Safety - June 30, 2009

252

Energy Department Announces Student Teams, New Location for Solar Decathlon  

Broader source: Energy.gov (indexed) [DOE]

Announces Student Teams, New Location for Solar Announces Student Teams, New Location for Solar Decathlon 2013 Energy Department Announces Student Teams, New Location for Solar Decathlon 2013 January 26, 2012 - 10:56am Addthis WASHINGTON, DC - At an event today in Albuquerque, New Mexico, U.S. Department of Energy Secretary Steven Chu announced the 20 collegiate teams selected to compete in the U.S. Department of Energy Solar Decathlon 2013 and unveiled the competition's location, the Orange County Great Park in Irvine, California. The 20 teams from colleges and universities across the United States and from around the world will now begin a two-year process to build solar-powered, highly energy-efficient homes that combine affordability, consumer appeal and design excellence. Throughout the two-year process, the teams will design, construct and test their homes

253

Composite Adversary Team Brochure - April 9, 2008 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Composite Adversary Team Brochure - April 9, 2008 Composite Adversary Team Brochure - April 9, 2008 Composite Adversary Team Brochure - April 9, 2008 April 9, 2008 This brochure provides basic information about the CAT Program and its role in the Independent Oversight process. Independent Oversight established the Composite Adversary Team (CAT) to provide a group of tactical operators to role-play as terrorist adversaries and facilitate rigorous performance testing of the Department's most critical protection systems. This brochure provides basic information about the CAT Program and its role in the Independent Oversight process. Composite Adversary Team Brochure - April 9, 2008 More Documents & Publications Standard Operating Procedure Composite Adversary Team Training Health and Safety - June 30, 2009

254

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Humidity Halos Around Trade Wind Cumulus Clouds Analysis of Humidity Halos Around Trade Wind Cumulus Clouds Lu, M.-L.(a), Wang, J.(b), Freedman, A.(c), Jonsson, H.H.(d), Flagan, R.C.(a), McClatchey, R.A.(c), and Seinfeld, J.H.(a), California Institute of Technology (a), Brookhaven National Laboratory (b), Aerodyne Research, Inc. (c), Naval Postgraduate School (d) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Regions of enhanced humidity in the vicinity of cumulus clouds, so-called cloud halos, reflect features of cloud evolution, exert radiative effects and may serve as a locus for new particle formation. We describe here the results of an aircraft sampling campaign carried out near Oahu, Hawaii from July 31- Aug. 10, 2001, aimed at characterizing the properties of trade wind cumulus cloud halos. An Aerodyne Research Inc. fast spectroscopic

255

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Vapor Intensive Operating Periods: General Results, Status and Plans Water Vapor Intensive Operating Periods: General Results, Status and Plans Revercomb, H.E., Tobin, D.C., Knuteson, R.O., and Feltz, W.F., University of Wisconsin-Madison; Turner, D.D., Pacific Northwest National Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate measurements of atmospheric water vapor are very important for climate research and monitoring. Unexpectedly large uncertainties of sonde water vapor observations implied by Atmospheric Radiation Measurement (ARM) Program's radiation measurements led to special Water Vapor Intensive Observation Periods (IOPs) conducted in 1996 and 1997 at the Southern Great Plains (SGP) central facility. The goal was to use the complement of ARM advanced instrumentation to better quantify the problem and to find ways of

256

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Interferometric Measurements of the Air-Sea Temperature Difference Infrared Interferometric Measurements of the Air-Sea Temperature Difference Minnett, P.J., Rosenstiel School of Marine and Atmospheric Science, University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Marine Atmosphere Emitted Radiance Interferometers (M-AERI) have been mounted on several research ships on cruises in the world?s oceans, several in the areas of the ARM TWP and NSA-AAO sites. Accurate measurements of the skin sea-surface temperature and near-surface air temperatures are derived from the infrared spectral measurements, which, unlike conventional measurements of air-sea temperature difference, have a common calibration. This removes the largest source of uncertainty in the measurement of air-sea temperature differences, and thereby a major uncertainty in

257

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radar Observations of Large-Eddy Circulations and Turbulence in Boundary Radar Observations of Large-Eddy Circulations and Turbulence in Boundary Layer Clouds Albrecht, B.A. and Kollias, P., Umiversity of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting With the development and application of Doppler short wavelength radars, there has been an increased capability for explicitly resolving the vertical structure of boundary layer cloud circulations. Further, Doppler mm-wavelength radars used in a vertically pointing mode can provide information on the turbulence structure within the cloud volume sampled by the radar. Since these radar large eddy observations (LEO) are of the same resolution as that of Large Eddy Simulation models, they provide a means for explicitly evaluating LES (LEO for LES). Further the radar observations

258

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactions of Cumulus Convection and the Boundary Layer Over the Southern Interactions of Cumulus Convection and the Boundary Layer Over the Southern Great Plains Krueger, S.K. (a), Luo, Y. (a), Lazarus, S.M. (a), and Xu, K.-M. (b), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting We are using observations and cloud-resolving model (CRM) simulations to better understand the interaction between deep cumulus convection and the boundary layer over the southern Great Plains of the United States. The observations are from a 29-day ARM SCM IOP that took place at the ARM SGP site during June and July 1997. The cumulus effects in the boundary layer are due to rain evaporation and fluxes due to cumulus updrafts and downdrafts. These effects can substantially modify the boundary layer in

259

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Full Spectrum Correlated-k for Shortwave Atmospheric Radiative Transfer Full Spectrum Correlated-k for Shortwave Atmospheric Radiative Transfer Pawlak, D.T.(a,b), Clothiaux, E.E.(a), Modest, M.M.(c), and Cole, J.N.S.(a), Department of Meteorology, The Pennsylvania State University (a), Air Force Institute of Technology, Civilian Institutions Graduate Programs Division (b), Department of Mechanical Engineering, The Pennsylvania State University (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fast and accurate atmospheric radiation heating and cooling rate calculations are important for improving global climate and numerical weather prediction model performance. The radiative transfer calculations in atmospheric models must be fast so that the underlying methods can actually be implemented in the models and the calculations must be accurate

260

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Second ARM Diffuse Horizontal Irradiance Comparison Fall 2003 The Second ARM Diffuse Horizontal Irradiance Comparison Fall 2003 Michalsky, J.J.(a), Dolce, R.(b), Dutton, E.G.(c), Long, C.N.(d), Jeffries, W.Q.(e), McArthur, L.J.B.(f), Philipona, R.(g), Reda, I.(h), and Stoffel, T.L.(h), State University of New York at Albany (a), Kipp & Zonen, Inc. (b), Climate Monitoring and Diagnostics Laboratory, NOAA (c), Pacific Northwest National Laboratory (d), Yankee Environmental Systems, Inc. (e), Meteorological Service of Canada (f), World Radiation Center (g), National Renewable Energy Laboratory (h) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The first diffuse horizontal irradiance comparison in the Fall 2001 revealed a consistency near the 2 W/m2 level among more than half of the pyranometers that participated. In planning for this second comparison the

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Absorption of NIR Solar Radiation by Precipitation The Absorption of NIR Solar Radiation by Precipitation Evans, W.F.J.(a) and Puckrin, E.(b), Physics Department, Trent University (a), DRDC,Canada (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It has recently been shown by Ackerman (Physics Today; 2003) that good radiation codes can model the absorption of up to 100 W/m2 of short wave by clouds. However, spectral measurements of the transmission of solar infrared radiation through clear and cloudy skies with FTIR spectroscopy have indicated that still are certain clouds which absorb unexpectedly large amounts of near-infrared (NIR) radiation. The amounts are unexpected in the sense that radiation codes, including sophisticated algorithms such as MODTRAN4, do not model this strong NIR absorption effect. The absorption

262

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Enhancement of Cloud Albedo Shown by Satellite Measurements and Aerosol Enhancement of Cloud Albedo Shown by Satellite Measurements and Chemical Transport Modeling Schwartz, S.E. (a), Harshvardhan (b), and Benkovitz C.M.(a), Brookhaven National Laboratory (a), Purdue University (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo due to anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. Present model-based estimates of this indirect forcing are highly uncertain. Increased cloud drop concentration and decreased effective radius indicative of the indirect effect have previously been shown in interhemispheric comparisons of satellite remote sensing data, but efforts

263

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Darwin 2005 IOP The Darwin 2005 IOP May, P.T.(a), Jakob,C.(a), Long, C.N.(b), and Keenan, T.D.(a), Bureau of Meteorology Research Centre (a), Pacific Northwest National Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A major field project is planned for Darwin in January to February 2005. Amongst its aims are the study of the structure and evolution of cirrus in monsoonal convection and how it differs from coastal and island storm generated cirrus, providing a data set suitable for CRM and SCM single column modeling efforts and validation of ground based remote sensors. Northern Australia experiences three distinct cloud regimes, a pronounced dry season, a transition season dominated by deep coastal convection and continental squall lines and a monsoon where the convection has a

264

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Solar Spectrum 360 to 1050 nm from Rotating Shadowband The Solar Spectrum 360 to 1050 nm from Rotating Shadowband Spectroradiometer (RSS) Measurements at the Southern Great Plains Site Harrison, L.C., Berndt, J.L., Kiedron, P.W., Michalsky, J.J., Min, Q., and Schlemmer, J., Atmospheric Sciences Research Center, State University of New York, Albany Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Two years of Langley extrapolations made from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program using two very different RSS instruments and a NIST-derived irradiance scale show larger extraterrrestrial solar irradiances in the 400 to 600 nm domain by as much as 4.5% compared to the Labs and Neckels [1968] data. Our results are more congruent with Thuiller et al. [1998] in this domain, but do not

265

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Formation of Fair-Weather Cumuli Formation of Fair-Weather Cumuli Zhu, P. and Albrecht, B., University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This study includes two related parts. In the first part, The formation of fair-weather cumuli has been analyzed based on both a simple mixed layer model and the data collected from the Atmospheric Radiation Measurement (ARM) program at the Southern Great Plains (SGP) site. By analyzing the conditions for the formation of fair-weather cumuli, we illustrate how different processes, such as the surface heat fluxes, the entrainment process at the boundary layer top, the vertical thermodynamic structure above the boundary layer, and the large-scale subsidence, control the formation of clouds. The results of our analysis show that it is the highly

266

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Surface Emissivities Derived from Multispectral Satellite Data Improved Surface Emissivities Derived from Multispectral Satellite Data Over the ARM SGP Smith, W.L., Jr., Minnis, P., and Young, D.F., NASA Langley Research Center Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Surface emissivity is an important parameter for many remote sensing applications but is difficult to determine because it requires an accurate specification of the surface skin temperature. Because of this, laboratory estimates of the emissivity of pure surfaces are often relied on which generally do not adequately simulate the Earth's natural surfaces as seen from a satellite imager in space. A technique has been developed to derive surface emissivity from clear-sky, multispectral satellite data for three infrared channels (3.9 or 3.7, 10.8 and 12.0 um) common to many of today's

267

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using ARM Measurements to Evaluate and Improve the Turbulent Boundary-Layer Using ARM Measurements to Evaluate and Improve the Turbulent Boundary-Layer Parameterization in the CCM Zhang, M.H. (a) and Yu, R.C. (a), State University of New York(a) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Three-Dimensional advective tendencies at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site, together with diurnal variation of the clear-sky boundary layer atmosphere temperature and moisture, are used to study the down-gradient and "non-local" turbulent transport of heat and moisture in the atmospheric boundary layer. The observational results are then used to evaluate the boundary layer parameterization in the National Center for Atmospheric Research (NCAR) CCM3. It is found that the down-gradient turbulent transport in the CCM3 is

268

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Climatology of Cloud & Radiative Properties Derived from GMS-5 Data Over A Climatology of Cloud & Radiative Properties Derived from GMS-5 Data Over the Tropical Western Pacific Nordeen, M.L.(a), Doelling, D.R.(a), Khaiyer, M.M.(a), Rapp, A.D.(a), and Minnis, P.(b), Analytical Services & Materials, Inc. (a), National Aeronautics and Space Administration-Langley Research Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite derived cloud and radiative properties can provide continuous spatial and temporal coverage over the Tropical Western Pacific (TWP). The TWP is an area with few meteorological stations, but is an interesting region in global climate studies. Starting with the Nauru99 Intensive Operational Period (IOP) (June-July 1999), two years of hourly Geostationary Meteorological Satellite (GSM-5) images are used in the

269

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resolving Models as Scaffolding for Cloud Parameterizations in Resolving Models as Scaffolding for Cloud Parameterizations in Large-Scale Models Pincus, R.(a), Klein, S.A.(b), Hannay, C.(a), and Xu, K.-M.(c), NOAA-CIRES Climate Diagnostics Center (a), NOAA Geophysical Fluid Dynamics Laboratory (b), NASA Langley Research Center (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The treatment of clouds in large scale models has evolved from fixed to diagnostics to predictive as the importance of cloud feedbacks has become clear. In development now are schemes which account for the resolution-dependent sub-grid scale variability in condensate, which is thought to be a significant factor driving ad hoc model tuning. Parameterizations have their roots in theory, experiment, and observational data. It's very hard, though, to observe the four-dimensional structure of

270

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud and Radiative Properties Derived Over the ARM NSA Domain From AVHRR Cloud and Radiative Properties Derived Over the ARM NSA Domain From AVHRR Data Heck, P.W., Nguyen, L., Smith, W. L., Jr., Ayers, J.K., Doelling, D.R., and Spangenberg, D.A., Analytical Services and Materials, Inc.; Minnis, P., and Young, D.F., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program's polar sites on the North Slope of Alaska (NSA) measure time series of various atmospheric, cloud and radiative properties over a few selected areas. Satellite data are needed to provide measurements of similar properties between the sites and to estimate the radiation budget at the top of the atmosphere. Over the other ARM sites in the central United States and the Pacific, geostationary

271

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Some Results of the Comparison of the Solar Almucantar Sky Brightness Some Results of the Comparison of the Solar Almucantar Sky Brightness Observed Under the Cirri Conditions and the Calculated One Petrushin, A.G.(b), Shukurov, A.K.(a), Shukurov, K.A.(a), and Golitsyn, G.S.(a), A.M. Obukhov Institute of Atmospheric Physics, RAS (a), Institute of Experimental Meteorology, NPO "Typhoon" (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The selected measurements of the solar almucantar sky brightness were carried out at the Zvenigorod Research Facility of the A.M.Obukhov Institute of Atmospheric Physics (IAPh) RAS using the scanning photometer [1] developed in IAPh. These measurements were took place at the cloudy sky and the clear one and at various optical depth t that was controlled with

272

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boundary Layer Structure and Fair-Weather Cumulus Characteristics at the Boundary Layer Structure and Fair-Weather Cumulus Characteristics at the TWP ARM Site - Comparisons with Other Tropical and Subtropical Sites Albrecht, B. and Kollias, P., University of Miami Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earths atmosphere over vast areas of the oceans. Boundary layer structures and cloud characteristics observed at Nauru (ARM TWP) during suppressed convective conditions are compared with those observed at other tropical and subtropical sites. Over three years of data from the mm-wavelength cloud radar and ceilometer observations at the Nauru site are analyzed and a statistical description of the field of fair weather cumulus is inferred.

273

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Continuous Initial Estimate of Cloud Microphysical Structure Using A Continuous Initial Estimate of Cloud Microphysical Structure Using Surface-Based Remote Sensors and Parameterized Microphysics Miller, M.A. and Johnson, K.L., Brookhaven National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Realistic heating rate profiles require an accurate and continuous accounting of cloud microphysical structure. To date, several highly constrained microphysical retrieval algorithms have been designed that operate on specific cloud systems. These algorithms are sufficiently specialized that they are generally applicable in a relatively narrow range of conditions. When these conditions are satisfied, heating profiles can be computed. While it may be possible to link several of these specialized algorithms to produce a semi-continuous description of cloud microphysical

274

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effective Diameter in Radiation Transfer: Definition, Applications and Effective Diameter in Radiation Transfer: Definition, Applications and Limitations Mitchell, D. L., Desert Research Institute Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Although the use of an effective radius for radiation transfer calculations in water clouds has been common for many years, the export of this concept to ice clouds has been fraught with uncertainty. A consensus appears to be building that a general definition of effective diameter, Deff, should involve the ratio of the size distribution (SD) volume (at bulk density) to projected area. This work further endorses this concept, describes its physical basis in terms of an effective photon path, and demonstrates the equivalency of a derived Deff definition for both water and ice clouds.

275

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploration of Statistical Angular Radiance Closure in Cloudy Skies Exploration of Statistical Angular Radiance Closure in Cloudy Skies Evans, K.F.(a) and Wiscombe, W.J.(b), University of Colorado (a), NASA/Goddard (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Most ARM cloudy sky radiation closure experiments have been performed with broadband fluxes. However, it is difficult to understand the causes of the inevitable discrepencies between the modeled and observed broadband fluxes in those closure experiments because the fluxes are extensively integrated over angle and wavelength. For example, knowing that a particular comparison disagrees by 50 W/m^2 is not particularly helpful in discovering which aspects of cloud remote sensing, radiative transfer, or measurements might be in error. Angular radiance closure compares the measured and

276

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Towards Parameterization of Frontal Mesoscale Circulations and Cloudiness Towards Parameterization of Frontal Mesoscale Circulations and Cloudiness in GCMs Based on ARM Observations Norris, J.R.(a), Weaver, C.P.(b), Gordon, N.D.(c), and Klein, S.A.(d), Scripps Institution of Oceanography (a), Rutgers University (b), Scripps Institution of Oceanography (c), GFDL/NOAA (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloudiness associated with extratropical cyclones is currently poorly represented in GCMs due to incorrect and insufficient representation of subgrid-scale processes. Since this can lead to erroneous cloud-climate feedbacks it is necessary to develop an understanding of the relationship between mesoscale cloud variability and large-scale synoptic forcing that will result in improved parameterization. Observations from the ARM

277

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Methods for Broadband Outdoor Radiometer Calibration (BORCAL) Improved Methods for Broadband Outdoor Radiometer Calibration (BORCAL) Wilcox, S.M., Andreas, A.M., Reda, I., and Myers, D.R., National Renewable Energy Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM Program deploys approximately 100 radiometers to measure broadband solar radiation at stations in the North Slope of Alaska (NSA), Southern Great Plains (SGP), and Tropical Western Pacific (TWP) Cloud and Radiation Testbed (CART) sites. Two calibration events performed at the SGP Radiometer Calibration Facility (RCF) each year maintain radiometer calibration traceability to the World Radiometric Reference and assure reliable and uniform measurements at each CART site. Calibrations are performed using the Radiometer Calibration and Characterization (RCC)

278

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparison of the TSI/WSI Cloud Fraction Estimates at the SGP A Comparison of the TSI/WSI Cloud Fraction Estimates at the SGP Slater, D.W.(a), Long, C.N.(a), and Tooman, T.P.(b), Pacific Northwest National Laboratory (a), Sandia National Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Beginning with the installation of the Total Sky Imager (TSI) at the ARM Southern Great Plains site in July, 2000, both the TSI and the Whole Sky Imager (WSI) have operated simultaneously in close proximity to one another. Both systems produce all-sky cloud fraction estimates as part of their primary products, though each uses distinctly different methods to arrive at these estimates. The purpose of this study is to provide a link between the large body of estimates produced by the WSI before the

279

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mean 3D Radiative Transfer in Cloudy Columns: Further Empirical Evidence Mean 3D Radiative Transfer in Cloudy Columns: Further Empirical Evidence for Propagation Kernels with Power-Law Tails Davis, A.B. (a), Marshak, A. (b), and Barker, H.W. (c), Los Alamos National Laboratory (a), NASA Goddard Space Flight Center (b), Meteorological Service of Canada (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting For reasons of computational efficiency, current radiation parameterizations in GCMs are uniformly based on analytical 2-stream solutions of the 1D integro-differential radiative transfer equation (RTE). This is true even when there is an effort to account for subgrid variability which would normally call for the full 3D RTE. Indeed, state-of-the-art GCM radiation schemes use linear combinations of clear-

280

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Tale of Two Cirrus A Tale of Two Cirrus Poellot, M.R.(a), Mace, G.G.(b), and Arnott, W.P. (c), University of North Dakota (a), University of Utah (b), Desert Research Institute (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting On May 8, 1998, an orographically-forced cirrus layer overspread the DOE ARM Program's Southern Great Plains site and subsequently became mixed with anvil outflow from thunderstorms. These clouds were sampled in situ by the University of North Dakota Citation aircraft and remotely by an array of ground-based radar, lidar and radiometric instrumentation. The first of two aircraft flights sampled the orographic cirrus through a series of step climbs and spirals. During that time, the cloud was relatively uniform in depth and structure. Shortly after the start of the second flight, the

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation of the Aerosol Indirect Effect at the Southern Great Plains Investigation of the Aerosol Indirect Effect at the Southern Great Plains Using Ground Based Remote Sensors and Modeling Feingold, G.(a), Lane, D.(b), and Min, Q.(c), NOAA/ETL (a), Rutgers University (b), ASRC, SUNY Albany (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting We are using ground-based remote sensors, supplemented by in situ measurements when available, to explore the aerosol indirect effect in non-precipitating, ice-free clouds. The study uses archived ARM data on sub-cloud aerosol extinction, cloud liquid water path, cloud optical depth, drop effective radius, and boundary layer dynamics to investigate the relationship between aerosol extinction and drop effective radius. Two approaches are being taken: the first is an empirical approach which

282

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Eddy Simulations of Fair-Weather Cumulus Case at SGP Site Large Eddy Simulations of Fair-Weather Cumulus Case at SGP Site Zhu, P. and Albrecht, B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A fair-weather cumulus (FWC) case observed on July 6, 1997 at the ARM SGP site is simulated using RAMS model. In this study, we performed a series of numerical experiments to study the basic physics underlying the FWC and the evolution of these clouds in response to the change of external forcings and conditions. The simulations indicate that the evolution of shallow cumuli is very sensitive to the initial vertical structure of moisture and the variation of the entrainment moisture fluxes. Based on the penetration theory, we are able to develop a cloud initiation parameterization using

283

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I Method I Method Potter, G.L.(a), Boyle, J.S.(a), Cederwall, R.T.(a), Fiorino, M.(a), Hnilo, J.J.(a), Phillips, T.J.(a), and Williamson, D.(b), Lawrence Livermore National Laboratory (a), National Center for Atmospheric Research (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting We present a methodology to diagnose GCM errors by using NWP analyses to initialize a climate model. The analysis is used as input in conjunction with ARM data to study the initial model drift (6-36 hours) from the observations. Simply put, a climate model is used in a weather forecast mode to see how quickly it drifts from the observed weather and detailed observations provided by the ARM program. This approach can be used to improve parameterizations responsible for models errors on longer time

284

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Anthology of Tropical Convection: Dynamical and Thermodynamical An Anthology of Tropical Convection: Dynamical and Thermodynamical Interactions and the Organization of Large-Scale Tropical Convection Webster, P.J., Program in Atmospheric and Oceanic Sciences, University of Colorado Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting There appears to be no universal relationship between large-scale organized convection and the magnitude of sea surface temperature (SST). Convection and mean precipitation maxima are often found on the equatorward side of maximum SST or even in the winter hemisphere of the tropics. Thus, there must exist other rules besides thermodynamical forcing that provide necessary conditions for convection. A survey of large-scale organized convection has been conducted in order to find necessary conditions for the

285

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combination of the Separation of Variable and the T-matrix Method for Combination of the Separation of Variable and the T-matrix Method for Computing Optical Properties of Spheroidal Particles Schulz, F.M., Eide, H.A., and Stamnes, K., University of Alaska, Fairbanks; Stamnes, J.J., University of Bergen, Norway Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The growing interest in nonspherical particles in recent years has led to significant improvements of various light scattering models for different kinds of nonspherical particles. One approach is to model size-shape distributions of randomly oriented particles by spheroids, whose light scattering properties can be rigorously calculated with the separation of variable method (SVM). The SVM can be used to model particles with spheroidal shapes departing significantly from sphericity. In contrast, the

286

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Empirical Model of Aerosol Uplifting from the Arid Area Empirical Model of Aerosol Uplifting from the Arid Area Gorchakov, G.I., Shukurov, K.A., and Golitsyn, G.S., A.M. Obukhov Institute of Atmospheric Physics, RAS Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The model enables to make the estimates of the vertical fluxes of arid aerosol using measured data of the wind velocity. The model includes the following main elements: 1. The parameterization of the microstructure of the aerosol uplifted from the area. 2. Relationship between wind velocity and the submicron aerosol concentration. 3. The aerosol uplifting rates. It is found that there is the synchronism of the submicron and coarse aerosol fluctuation in convective conditions at the arid area. Vertical turbulent fluxes of the aerosol were determined regarding two regimes of aerosol

287

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Variations in the Ratio of IR Window Radiance to Microwave Water Path Variations in the Ratio of IR Window Radiance to Microwave Water Path Observed Under Cloudless Convection Platt, C.M.(a) and Austin, R.T.(b), Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The measurement of the radiance of cirrus (and other) clouds at atmospheric window 8-13 micron wavelengths requires a correction for the water vapor radiance and transmittance below the clouds. Calculating radiances at the times of routine radiosonde ascents and interpolating the radiance/water path ratio between ascents can achieve this. However it has been observed experimentally that IR radiance/water path ratios appear to vary between radiosonde ascents away from the interpolated values. This occurs

288

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combination of Temperature and Humidity Profiles from a Scanning 5-mm Combination of Temperature and Humidity Profiles from a Scanning 5-mm Radiometer and MWR-Scaled Radiosondes During the 1999 Winter NSA/AAO Radiometer Experiment Westwater, E.R.(a), Leuski, V.(a), and Racette, P.(b), CIRES, University of Colorado/NOAA-ETL (a), NASA/ Goddard Space Flight Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A scanning 5-mm-wavelength radiometer was deployed during an Intensive Operating Periods (IOP) at the Atmospheric Radiation Measurement Program's Cloud and Radiation Testbed (CART) facilities. at the North Slope of Alaska/Adjacent Arctic Ocean site near Barrow, Alaska, during March of 1999. One goal was to evaluate the ability of an oxygen-band 5-mm microwave radiometer for measuring sharp temperature inversions that are typical

289

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison at the NSA ARM site Barrow Stamnes, K. (a), Dutton, E.G. (b), Marty, Ch. (c), Michalsky, J.J. (d), Philipona, R. (e), Stoffel, T. (f), Storvold, R. (c), and Zak, B.D. (g), Stevens Institute of Technology, New Jersey (a), NOAA, Climate Monitoring and Diagnostics Laboratory (b), University of Alaska Fairbanks (c), State University of New York at Albany (d), World Radiation Center, Davos, Switzerland (e), National Renewable Energy Lab, Boulder (f), Sandia National Laboratories, Albuquerque (g) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The first International Prgeometer and Absolute Sky-scanning Radiometer Comparison (IPASRC I), which was held in fall 1999 at the ARM SGP site in

290

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Terra Aerosol and Water Vapor Measurements Using ARM SGP Data Evaluation of Terra Aerosol and Water Vapor Measurements Using ARM SGP Data Ferrare, R.A.(a), Brasseur, L.H.(b), Clayton, M.B.(b), Turner, D.D.(c), Remer, L.(d), and Gao, B.C.(e), NASA Langley (a), SAIC (b), Pacific Northwest National Laboratory (c), NASA Goddard (d), Naval Research Laboratory (e) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to evaluate atmospheric measurements derived from NASA's Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) sensors on board the Terra satellite. MODIS and MISR AOT retrievals are evaluated using ARM SGP Cimel Sun photometer and MultiFilter Rotating

291

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Influence of Smoke over Haze on Heating Rate and Radiative Forcing: Influence of Smoke over Haze on Heating Rate and Radiative Forcing: Consistency of Measurements from Aircraft, Ground and Satellite Vant-Hull, B., Taubman, B.F., and Li, Z., Department of Meteorology, University of Maryland, College Park Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting On 8 July 2002, heavy and widespread smoke advected from fires in Quebec to the eastern seaboard of the US, rending an interesting aerosol scenario with strong absorbing aerosols (smoke) overlying scattering aerosols (industrial pollution). An aircraft equipped with a variety of aerosol and chemical sensors flew over five locations in Virginia and Maryland. This study evaluates the consistency of aerosol measurements made by a suite of air-borne, space-borne and ground-based instruments and evaluates the

292

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Approach for Computing Single Scattering Properties of Ice Clouds A New Approach for Computing Single Scattering Properties of Ice Clouds Using a Size-Shape Distribution of Spheroidal Particles Eide, H.A., and Stamnes, K., University of Alaska, Fairbanks; Stamnes, J.J., University of Bergen, Norway; Schulz, F.M., University of Rochester Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Clouds are of paramount importance for the global energy balance and hence for our climate. In global circulation models (GCMs), designed to predict future climate, the effects of clouds are commonly based on the scattering and absorption properties of spherical particles. At high latitudes as well as at high enough altitudes anywhere on our planet, clouds frequently consist of ice particles that are far from spherical in shape. Ice

293

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spurious Oscillation in Simulating Boundary-Layer Cumulus Clouds with Spurious Oscillation in Simulating Boundary-Layer Cumulus Clouds with Third-Order Turbulence Closure Models Fischer, M.L.(a), Billesbach, D.P.(b), Riley, W.J.(a), Berry, J.A.(c), and Torn, M.S.(a), E.O. Lawrence Berkeley National Laboratory (a), University of Nebraska (b), Carnegie Institution of Washington (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Spatial heterogeneity in the mass and energy fluxes in the Southern Great Plains are controlled by a combination of driving variables (e.g. climate, topography and soil, vegetation, and land use and management). Accurate estimation of landscape-averaged ecosystem-atmosphere exchange hence suggests the need for predictive models tested with extensive ground based measurements and/or a measurement method with regional coverage. This is

294

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale Analysis of Spatial and Temporal Variability of Aerosol Optical Scale Analysis of Spatial and Temporal Variability of Aerosol Optical Properties Over the SGP Site based on MFRSR and MODIS Data Alexandrov, M.D.(a,b), Marshak, A.(b), Cairns, B.(a,b), Lacis, A.A.(b), and Carlson, B.E.(b), Columbia University (a), NASA (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We present scale-by-scale analysis of variability of atmospheric aerosol optical thickness (AOT) and (preliminary) of the Angstrom exponent. This analysis is based on retrievals from Multi-Filter Rotating Shadowband Radiometers (MFRSRs) and from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. This type of analysis has been applied to a remote sensing aerosol dataset for the first time. The MFRSR data were collected

295

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Time-Height Cross-Sections of Cumulus Cloud Fields for Solar Using Time-Height Cross-Sections of Cumulus Cloud Fields for Solar Radiative Transfer Pincus, R.(a), Hannay, C.(a), and Evans, K.F.(b), NOAA-CIRES Climate Diagnostics Center (a), University of Colorado (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting How much must be known about a cloud field in order to accurately compute the reflected and transmitted flux? Given our limited abilities to measure the time-evolving three-dimensional structure of clous, and the high cost of making three-dimensional (3D) radiative transfer computations, we would like to determine the accuracy of various approximations used to convert remote sensing observations to domain averaged solar fluxes. We use highly resolved (50 m, 1 min) clouds fields from large eddy simulations of

296

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Partially Prognostic Third-Order Closure Model for Modeling the Boundary A Partially Prognostic Third-Order Closure Model for Modeling the Boundary Layer Cheng, A.C.(a) and Xu, K.-M.(b), Center for Atmospheric Sciences, Hampton University (a), Atmospheric Sciences, NASA Langley Research Center (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new partially prognostic third-order closure (TOC) model is developed to model boundary-layer clouds in this study. The model assumes joint double Gaussian distributions of vertical velocity, temperature and moisture. The first and second moments of all variables as well as the third moments of vertical velocity, liquid-water potential temperature and total water mixing ratio are predicted to determine a proper probability density function (PDF). Once the PDF is known, the rest of the third moments and

297

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Results of the Atmospheric Aerosol Condensation Activity Studies Results of the Atmospheric Aerosol Condensation Activity Studies Isakov, A.A. and Golitsyn, G.S., A.M.Obukhov Institute of Atmospheric Physics Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Some new results are presented. of investigations of optical and microphysical characteristics of the atmospheric surface layer aerosol by means of spectropolarimeter The daily measurements were carried out in February - April 2000 at the Zvenigorod Scientific Station of the Institute within the Institut's ARM measurements Program. The spectropolarimeter measured the spectral dependencies of the polarization components of direct scattering coefficient D at three angles j = 450,900,1350 in spectral region l= 0.4 -0.75 mcm. During the measurement period about 500 records

298

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fair - Weather Cumuli Climatology at the TWP ARM Site Fair - Weather Cumuli Climatology at the TWP ARM Site Kollias, P. and Albrecht B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earths atmosphere over vast areas of the oceans. Over two years of data from the mm-wavelength cloud radar, at the Nauru (TWP-ARM) site, are analyzed and a statistical description of the field of fair weather cumulus is inferred. Frequency diagrams of cloud thickness, fractional coverage, updraft-downdraft magnitudes and cloud reflectivity are calculated for four different classes of fair weather cumuli. Seasonal patterns are identified and their relationship to the thermodynamic structure of the boundary layer (wet-dry

299

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sun Photometer Laser and Lamp Based Radiometric Calibrations Sun Photometer Laser and Lamp Based Radiometric Calibrations Allen, D.W.(a), Souaidia, N.(a), Pietras, C.(b), Brown, S.(a), Lykke, R.(a), Frouin, R.(c), Deschamps, P.Y.(d), Fargion, G.(b), and Johnson, B.C.(a), National Institute of Standards and Technology (a), National Aeronautics and Space Administration, SAIC (b), Scripps Institution of Oceanography (c), Laboratoire d'Optique Atmospherique, France (d) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The goals of this study were to calibrate the radiometers using independent methods, evaluate the uncertainties for each method, and assess the influence of the results in terms of the science requirements. The radiometers were calibrated in irradiance and radiance mode using a monochromatic, laser-illuminated integrating sphere, in radiance mode using

300

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrared Cloud Imager (ICI) Measurements of Cloud Statistics During the Infrared Cloud Imager (ICI) Measurements of Cloud Statistics During the 2003 Cloudiness Intercomparison Campaign Gregory, L., Wagener, R., Ma, L.L., and Cialella, A., Brookhaven National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The process of creating ARM data-streams from external data sources is described from identification of scientific need as determined by the science working groups to implementation and documentation, which involves ARM's task management tools: Engineering Change Request/Order, Baseline Change Request, Data Object Design/Birth of a Data Stream, eXternal Data Stream documentation. Pitfalls and typical delays are illustrated with recently completed data-stream ingests. Some procedural changes are

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrieval of Cirrus Particle Sizes Using a Spit-Window Technique: A Retrieval of Cirrus Particle Sizes Using a Spit-Window Technique: A Sensitivity Study Fu, Q. (a) and Sun, W.B. (b), University of Washington (a), Dalhousie University (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The 8 - 12 um atmospheric window is an important spectral region for the remote sensing of the earth-atmosphere system. Since clouds are the major regulator of the global radiative energy budget, numerous methods have been developed to detect clouds and cloud properties based on satellite observations. Among them are the split-window techniques which are particularly useful for remote sensing of cirrus clouds. Owing to the large spectral variation of ice's imaginary refractive index over the atmospheric window, one can infer the effective ice particle sizes of cirrus clouds

302

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Passive Remote Sensing of Aerosol Properties from Aircraft Measurements Passive Remote Sensing of Aerosol Properties from Aircraft Measurements Over the SGP Cairns, B. (a), Lacis, A.A. (b), Carlson, B.E. (b), Alexandrov, A. (a), and Barnard, J.C. (c), Columbia University (a), NASA Goddard Institute for Space Studies (b), Pacific Northwest National Laboratory (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The principal difficulties in retrieving aerosol loadings and microphysical properties using passive remote sensing measurements over land surfaces are the significant spectral and spatial variations in the observed intensities that are caused by the land surface. The may also be of use in remote sensing of the surface, being indicative of its roughness, or in the case of vegetation its leaf inclination distribution. It is believed that the

303

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diurnal Cycle of Cloud Microphysical Properties from GOES Over the ARM Diurnal Cycle of Cloud Microphysical Properties from GOES Over the ARM Southern Great Plains Minnis, P., and Young, D.F., National Aeronautics and Space Administration-Langley Research Center; Smith, W.L., Jr., and Heck, P.W., Analytical Services and Materials, Inc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud coverage, height and optical depth have been derived from the Geostationary Operational Environmental Satellite (GOES) data taken over the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) domain since 1994. While these parameters provide a valuable basis for understanding the interaction of clouds with the radiation budget, they do not provide a complete characterization of the cloud field. Phase

304

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Simulated Clouds in the Community Atmospheric Model (CAM2): Evaluation of Simulated Clouds in the Community Atmospheric Model (CAM2): Over the Globe and at the ARM Site Zhang, M.H.(a) and Lin, W.Y.(a), Stony Brook University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We first compare seasonal climatology of the global distribution of ISCCP-type clouds in the NCAR CAM2 with observations from ISCCP. Model deficiencies in simulated clouds are highlighted. Model capability of simulating the observed response of different cloud types to ENSO is also discussed. We then use ARM cloud measurements at the ARM SGP to compare with the CAM cloud statistics at the same site. It is shown that several model deficiencies in the global cloud distribution are also present at the ARM site. Relevance of these model deficiencies to the interpretation of

305

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intial Results from an Automated High Spectral Resolution Lidar Intial Results from an Automated High Spectral Resolution Lidar Eloranta, E.W., University of Wisconsin-Madison Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An automated High Spectral Resolution Lidar constructed at the University of Wisconsin is nearly ready for an Arctic deployment. It is designed for remote operation as an Internet appliance requiring only minimal onsite attention. The system is currently installed in our roof top laboratory and is operating continuously as part of an extended shakedown test. Several months of data have been collected and archived on our web site (see arctic HSRL at "lidar.ssec.wisc.edu"). A web interface to browse and visualize data is provided along with tools to generate calibrated plots of

306

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Use of Performance Metrics to Enhance Meteorological Operations The Use of Performance Metrics to Enhance Meteorological Operations Jakob, C.(a), Pincus, R.(b), Hannay, C.(b), and Xu, K.-M.(c), BMRC (a), NOAA/CIRES CDC (b), NASA Langley (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It is highly desirable to use cloud radar data in the evaluation of model simulations of clouds at various scales. Unfortunately there is an inherent mismatch between the spatial and temporal scales of the models and the observations. Usually this mismatch is overcome by time-averaging the observations and declaring the averages as representative for a given model spatial scale. Here we explore an alternative method of model evaluation that is based on the interpretation of model cloud predictions as probabilistic forecasts at the observation point. First we contrast

307

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of MM5 Forecast Shortwave Radiation with ARM SGP Data Comparison of MM5 Forecast Shortwave Radiation with ARM SGP Data Armstrong, M.A. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The performance of the Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model 5 (MM5), in particular the shortwave downwelling (SW) flux calculations, is examined in this paper. Selected quantities output from the MM5 were compared with ARM SGP data gathered during the SCM intensive observation period (IOP) from June 18 to July 18, 1997. MM5 was run 29 times with a forecast length of 24 hours. The data were saved and then compared to radiosonde and pyranometer data. SW flux calculated from the MM5 deviated severely from that observed at the SGP

308

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Narrowband, Narrow Field-of-View Fast Infrared Filter Radiometry: Future Narrowband, Narrow Field-of-View Fast Infrared Filter Radiometry: Future Operation at CART Sites and Some Aspects of Water Vapor Absorption and Emission Platt, C.M.R. (a), Bennett, J.A. (b), Petraitis, B. (b), Austin, R.T. (a), and Young, S.A. (b), Colorado State University, Fort Collins (a), CSIRO Atmospheric Research, Aspendale, Australia (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting An infrared filter radiometer is being installed at the SGP CART site early in 2001. The radiometer is based on a previous Mark I version that was used successfully in field experiments in tropical Australia. The radiometer has a narrow field-of-view, compatible with lidar, is fast, at one-second-time constant, and has three channels at 8.62, 10.86 and 12.12 microns. It

309

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of ARM Cloud Property Observations with CRM Simulations Comparison of ARM Cloud Property Observations with CRM Simulations Xu, K.-M. (a), Cederwall, R.T. (b), Xie, S.C. (b), and Yio, J.J. (b), NASA Langley Research Center (a), Lawrence Livermore National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The cloud property observations are compared with cloud-resolving model simulated cloud properties in this study, using the Summer 1997 Intensive Observation Period (IOP) data of the ARM program. Midlatitude continental cumulus convection are simulated by seven 2-D and two 3-D cloud resolving models (CRMs), driven by observed large-scale advective temperature and moisture tendencies, surface turbulence fluxes, and radiative heating profiles during three subperiods of the Summer 1997 IOP. Each subperiod

310

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiative Effects of Cloud Inhomogeneity and Geometric Association over the Radiative Effects of Cloud Inhomogeneity and Geometric Association over the Tropical Western Pacific Warm Pool Jensen, M.P.(a) and DelGenio, A.D.(b), Department of Applied Physics and Applied Mathematics, Columbia University, NASA GISS (a), NASA GISS (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The radiative and microphysical characteristics for several precipitating anvil systems observed by the TRMM satellite over the Manus or Nauru Island ARM sites are modelled. Reflectivity data from the TRMM Precipitation radar and GMS satellite infrared radiometer measurements are used to parametrize the three-dimensional cloud microphysics of each precipitating cloud system. These parameterized cloud properties are used as input for a

311

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The North Slope of Alaska CART and Arctic Change 2002 The North Slope of Alaska CART and Arctic Change 2002 Zak, B.D., Zirzow, J.A., and Einfeld, W., Sandia National Laboratories Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART), operational since spring of 1998, is maturing just in time for the push to understand the far-reaching changes in the Arctic presently occurring. From the mid 1970s to the mid 1990s, arctic sea ice areal coverage has decreased about 5%, but ice thickness appears to have decreased about 40%. In addition, temperature and salinity patterns in the Arctic Ocean and the associated thermohaline circulation have been affected, as have many other climate-related processes. An Arctic

312

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Measurements of Liquid Water Path Comparison of Measurements of Liquid Water Path Lane, D.E. (a), Fairall, C.W. (b), Hazen, D. (b), and Orr, B. (b), Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder (a), Environmental Technology Laboratory, National Oceanic and Atmospheric Administration, Boulder (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Investigation of ship-based microwave radiometer observations from the equatorial Pacific during EPIC 99 indicated anomalously high values of liquid water content during clear sky conditions. Several possible sources of error were examined including the radiative transfer model employed to the original sondings, and application of the TIP calibrations. Further research has suggested that incorrect brightness temperatures were observed

313

Advanced Vehicle Technology Analysis & Evaluation Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office of FreedomCAR and Vehicle Technologies DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 Charter * AVTAET's mission is to develop and apply the tools and skills necessary to: - Identify technology development needs and requirements to support OFCVT goals and - Collect, analyze, and disseminate unbiased information on advanced transportation technology components, systems, and vehicles that potentially support OFCVT goals. * Goal of analytical groups at ANL, NREL and ORNL - Develop and apply modeling and simulation tools to help DOE, manufacturers and suppliers design and develop clean, energy efficient components and systems for

314

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterizing and Filling Temporal and Spatial Gaps in Time-Aggregated ARM Characterizing and Filling Temporal and Spatial Gaps in Time-Aggregated ARM Measurements for Use in Carbon Models Hargrove, W.W.(a), Brandt, C.C.(a), Jager, H.I.(a), Hanan, N.(b), and McCord, R.A.(a), Oak Ridge National Laboratory (ORNL)(a), Natural Resource Ecology Laboratory (NREL)(b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data gaps limit the use of ARM data as input for simulation models. Because the ARM program records actual measurements, circumstances unavoidably arise when instrument and storage failures create gaps in the temporal stream of measurements. Most temporal gaps are short in duration and affect only one or a few related parameters. However, some rare failures, such as wide-area power outages or ice storms, occasionally affect many measurement

315

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introducing WEB_MADS Introducing WEB_MADS Dedecker, R.G., Quinn, G.M., Garcia, R.K., and Revercomb, H.E., University of Wisconsin-Madison Space Science and Engineering Center Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Multiple AERI Display System (MADS) is a software package developed to allow remote access to and viewing of the operational AERI data streams produced by remotely operated AERI instruments. The MADS system was developed some years ago and operates on stand alone Personal Computers that run the OS/2 operating system and that acquire remote AERI data via the Internet. WEB-MADS is a Web based prototype version of MADS that allows remote access to the same AERI data and information using any standard Web Browser. As was the case with the original MADS, WEB-MADS provides a means for real

316

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping of Surface Reflectance over the Southern Great Plains Region from Mapping of Surface Reflectance over the Southern Great Plains Region from Multiple Satellites Trishchenko, A.P.(a), Li, Z. (a,b), and Park, W. (a), Canada Centre for Remote Sensing, Ottawa, Canada (a), Now at ESSIC, Department of Meteorology, College Park (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The ground-based ARM observations are limited to a handful of locations sparsely distributed in the South Great Plains (SGP). Mapping of surface narrow and broadband albedos are necessary for modeling and remote sensing studies to better describe the spatial variability of surface boundary conditions. In this study, we present surface narrowband and broadband reflectance, as well as the normalized difference vegetation index over the

317

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Three-Dimensional Radiative Transfer Computations to Complement the ARM Three-Dimensional Radiative Transfer Computations to Complement the ARM Broadband Heating Rate Profile (BBHRP) Value Added Product (VAP) OHirok, W.(a), Gautier, C.(a), and Miller, M.A.(b), University of California, Santa Barbara (a), Brookhaven National Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A core programmatic goal of ARM is to understand how cloud variability is associated with radiative flux variability. A major effort among the ARM working groups is now underway to produce the Broadband Heating Rate Profile (BBHRP) Value Added Product (VAP). The heating rate profiles are derived from Rapid Radiative Transfer Models (RRTMs) that use best estimates of cloud characteristics, gaseous profiles, aerosols and surface

318

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Impact of a Revised Treatment of Cirrus Microphysics on the Radiation The Impact of a Revised Treatment of Cirrus Microphysics on the Radiation Budget of the Unified Model Edwards, J.M. (a), Mitchell, D.L. (b), Ivanova, D. (b), and Wilson, D.R. (a), Met Office, Hadley Centre for Climate Prediction and Research (a), Desert Research Institute (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Unified Model is used for both NWP and climate simulations at the Met Office. A parametrization of ice crystals as planar polycrystals was recently introduced into the climate and mesoscale NWP versions of this model, resulting in improvements to the radiation budget and a reduction in the upper tropospheric cold bias. Based on field observations, the size distribution is taken as bimodal and is characterized by a mean maximum

319

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uncertainties in the Line Intensities in the 1130 nm Band of Water Vapor Uncertainties in the Line Intensities in the 1130 nm Band of Water Vapor Giver, L.P. (a), Pilewskie, P. (a), Gore, W.J. (a), Chackerian, Jr., C. (b), Varanasi, P. (c), Freedman, R.S. (d), and Bergstrom, R. (e), NASA-Ames Research Center (a), SETI Institute (b), State University of New York at Stony Brook (c), Space Physics Research Institute (d), Bay Area Environmental Research Insitute (e) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Belmiloud et al (GRL 27, 3703-3706 (2000)) have recently asserted that the line intensities in the 1130 nm band of water vapor band listed in the HITRAN database are much too weak. Giver et al (JQSRT 66, 101-105(2000)) pointed unit-conversion errors out in the intensity data previously appearing in the HITRAN database and corrected the intensity data so that

320

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Remote Sensing of the Single Scattering Albedo of Aerosols Evaluation of Remote Sensing of the Single Scattering Albedo of Aerosols During the Aerosol IOP Cairns, B.(a), Gianelli, S.M.(a), Carlson, B.E.(b), and Lacis, A.A.(b), Columbia University (a), NASA GISS (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting It has long been known that diffuse sky radiance and irradiance measurements are sensitive to the single scattering albedo of aerosols. The main difficulties in exploiting this sensitivity to try and remotely estimate the single scattering albedo of aerosols are uncertainties in the albedo and bidirectional reflectance distribution function of the surface and uncertainties in the calibration of the instruments used to make the measurements. The surface albedo measurements that are currently being

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of a Bulk Cloud Microphysics Model in Simulating Low-Level Evaluation of a Bulk Cloud Microphysics Model in Simulating Low-Level Arctic Mixed-Phase Clouds Using a New Single-Column Model Morison, H., Curry, J.A., and Mirocha, J., University of Colorado Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The MM5 NCAR/Penn State mixed-phase bulk microphysical parameterization is evaluated using a new single column model (ARCSCM) in the context of arctic low-level mixed-phase clouds. ARCSCM is developed from the Arctic Regional Climate System Model (ARCSyM). Three mixed-phase clouds over SHEBA in May 1998 are simulated using the MM5 parameterization. Liquid water path (LWP) is underpredicted by ~ 75% compared to observations for the two cases that have a significant ice content, while LWP is accurately predicted (within

322

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Case Studies of Water Vapor Variability During the International H20 Case Studies of Water Vapor Variability During the International H20 Project 2002 Using GPS Braun, J., Rocken, C., and Kuo, Y.H., UCAR/COSMIC Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The International H20 Project 2002 (IHOP_2002) was a field experiment located in the United States Southern Great Plains whose primary objective was to improve warm season rainfall prediction through the collection of precise observations of the water cycle and their assimilation into numerical weather models. As part of a wide range of observing systems, more than 40 Global Positioning System (GPS) stations were operating in the experiment region during IHOP_2002. We present an analysis of the evolution of the water vapor field for significant storms that were captured by the

323

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Initial Measurements from the Compact Millimeter-Wave Radar Initial Measurements from the Compact Millimeter-Wave Radar Roman-Nieves, J.(a), Sekelsky, S.M.(a), Tooman, T.T.(b), and Bolton, W.B.(b), University of Massachusetts at Amherst (a), Sandia National Laboratories (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The University of Massachusetts at Amherst has developed a solid state compact 95 GHz millimeter-wave radar (CMR) for the ARM Unmanned Aerospace Vehicle (UAV) program. CMR has recently flown in ARM-UAV sponsored engineering flights and a cirrus science mission flying aboard the NASA Proteus aircraft. This poster presents the final CMR hardware configuration and results from ground-based and airborne engineering measurements. In addition we show airborne measurements form from the ARM-UAV 2002 Cirrus

324

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simplifying Access to the North Slope of Alaska Data Streams Simplifying Access to the North Slope of Alaska Data Streams Bahrmann, C.P.(a), Richardson, S.R.(a), Clothiaux, E.E.(a), Verlinde, J.(a), McCord, R.A.(b), and Horwedel, B.(b), Department of Meteorology, The Pennsylvania State University (a), Oak Ridge National Laboratory (b) In August 2003, the NSA Site Scientist Team initiated a meta-data investigation on all NSA data streams. This investigation started by examining data streams for measurement name discrepancies. For example, the nsaskyrad60sC1.a1 data stream contains the measurement from a Shaded PSP. From 1998-02-14 through 2001-03-31 the measurement was called psps_mean (PSP shaded mean). On 2003-04-01 the measurement was renamed to down_short_diffuse_hemisp (Downwelling Shortwave Diffuse Hemispheric

325

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Improved Technique for Producing MPL Backscatter Profiles Properly An Improved Technique for Producing MPL Backscatter Profiles Properly Characterized at All Ranges Flynn, C.J. and Powell, D.M., Pacific Northwest National Laboratory Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting An important part of ARM's mission is the quantitative study of the effect of clouds and aerosol on radiative transfer and the energy budget. Micropulse Lidar (MPL) are an integral component of the ARM Program's measurement strategy with one deployed at each of the four major sites (SGP, TWP1, TWP2, and NSA). The MPL system is capable of producing vertical profiles of cloud and aerosol from ground level to the top of the atmosphere. However, the legitimacy of these profiles is sensitive to the calibration and system corrections of the individual MPL. In particular,

326

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Parameterization of Shallow Cumulus Convection The Parameterization of Shallow Cumulus Convection Zhu, P. and Albrecht, B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A successful representation of shallow cumulus convection in GCMs requires two parameterizations: one for calculating the subgrid fluxes of heat, moisture, and momentum; and the other for estimating the cloud cover and the associated cloud liquid water. Two common schemes used for these two parameterizations are the mass flux approach and the distribution approach such as SDM's (Sommeria, Deardorff, and Mellor) scheme, respectively. In this study, we verified the assumptions that lead to these schemes using LES data. The analyses indicate that the assumptions may not be appropriate for shallow cumulus convections, especially those over land when diurnal

327

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation of CERES/MODIS Cloud Property Retrievals Using Ground-Based Validation of CERES/MODIS Cloud Property Retrievals Using Ground-Based Measurements Obtained at the DOE ARM SGP Site Dong, X.(a), Minnis, P.(b), Sun-Mack, S.(b), and Mace, G.G.(a), University of Utah (a), NASA Langley Research Center (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud macrophysical and microphysical properties derived from the NASA TERRA (EOS-AM) Moderate Resolution Spectroradiometer (MODIS) as part of the Clouds and the Earth's Radiant Energy System (CERES) project during November 2000-June 2001 are compared to simultaneous ground-based observations. The ground-based data taken by the Atmospheric Radiation Measurement (ARM) Program are used as "ground truth" data set in the validation of the CERES cloud products and to improve the CERES daytime and

328

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dust-Climate Interactions: A Conceptual Model Dust-Climate Interactions: A Conceptual Model Shell, K. M. and Somerville, R. C. J., Scripps Institution of Oceanography, University of California, San Diego Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Paleoclimatic evidence strongly suggests that airborne mineral dust can be a climatically important atmospheric aerosol, but little is known quantitatively about the mechanisms of dust-climate interactions. We have developed a conceptual global model with which to study processes and feedbacks within the dust-climate system. We solve numerically for equilibrium climate states defined by temperature as a function of latitude. Our zonally averaged model includes both an atmosphere and a surface that becomes ice-covered at sufficiently low temperatures. We

329

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Daily Broadband Surface Albedos Measured at Six Extended Comparison of Daily Broadband Surface Albedos Measured at Six Extended Facilities in the ARM Southern Great Plains Cloud and Radiation Testbed Hamm, K.G., University of Oklahoma Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting An analysis of time series of daily hemispherical broadband surface albedo for 1998-1999 from six ARM Extended Facilities has been performed. The results show that the mean annual albedo differs by as much as 30% among the six sites. The annual range of daily albedos also varies among the sites. For example, albedos measured at the tallgrass prairie near Pawhuska, OK show a range of daily albedo between 0.15 and 0.20 for 1998, while daily albedos measured at a grazed pasture near Cordell, OK for the same time period have a range between 0.17 and 0.24 (or 40% higher than at

330

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intraseasonal Variation Observed from Multi-Infrared Channel Intraseasonal Variation Observed from Multi-Infrared Channel Inoue, T., Meteorological Research Institute Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Intraseasonal variations (MJO) of convective cloud, sea surface temperature (SST) and water vapor information are studied using three infrared channels (6.7, 11, 12 um). Split window(11 and 12 um) can classify optically thin ice cloud and optically thick cloud. Further SST and water vapor information can be retrieved from the split window over the cloud free region. We can estimate upper level relative humidity from the 6.7 um data. Composite analysis of cloud type associated with the intraseasonal variation during May 1998 showed the horse shoe shape deep convective cloud area near the center of the MJO, cirrus type cloud area to the west of the

331

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Radiative Influences on Drop Growth Solar Radiative Influences on Drop Growth Harrington, J.Y, Hartman, C., and Verlinde, J., The Pennsylvania State University Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The offsetting effects of solar heating and infrared cooling on the vapor-depositional growth of cloud droplets is investigated. In this study, a marine stratocumulus cloud was simulated by using a large eddy simulation (LES) model and a detailed microphysical bin model. Including infrared cooling as well as solar heating had two effects. The first effect is related to the fact that vapor-depositional growth of drops is radius dependent - solar heating effects dominated at larger drop sizes (> 100 microns) and infrared cooling effects dominated at smaller drop sizes

332

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Indirect Effect: Evidence from the ARM SGP and NSA Sites Aerosol Indirect Effect: Evidence from the ARM SGP and NSA Sites Penner, J.E.(a), Chen, Y.(a), and Dong, X.(b), University of Michigan (a), University of North Dakota (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM SGP site and the NSA site provide a unique opportunity to examine the effects of aerosols on cloud optical properties because the aerosol concnetrations at each site span the range between polluted and clean conditions. Here, we examine whether the effect of aerosols on clouds can adequately explain the observed relationship between the liquid water path observed at each site and the cloud optical depth required to determine the observed surface flux. Aerosol number concentration at the SGP site was determined from the observed CN number concentration as well as the

333

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On the Uncertainty of Inferring Absolute Cloud Fraction from Time Series of On the Uncertainty of Inferring Absolute Cloud Fraction from Time Series of Narrow Field of View Observations Ma, Y.-T.(a) and Ellingson, R. G.(b), University of Maryland at College Park (a), Florida State University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting One way to parameterize longwave 3-D cloud effects is to relate the various cloud properties to a statistical cloud field parameter called the Probability of Clear Line of Sight (PCLS) and then to a simple integral parameter - the effective cloud fraction. In our ongoing study, we are trying to test various PCLS models with ARM cloud observations. Many of the cloud properties must be inferred from time series of zenith observations, whereas spatially averaged quantities are the ones desired. What are the

334

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detection of Thin Cirrus using a Combinaton of 1.38-um Reflectance and Detection of Thin Cirrus using a Combinaton of 1.38-um Reflectance and Window Brightness Temperature Difference Roskovensky, J.K. and Liou, K.N., Department of Atmospheric Sciences University of California, Los Angeles Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new cloud detection scheme has been developed that utilizes 1.38-um reflectance in combination with 8.6-11 um brightness temperature difference to detect cirrus clouds. The 1.38-um channel on board MODIS is useful in detecting thin cirrus due to its high sensitivity to upper tropospheric clouds and a nearly negligible sensitivity to low-level reflectance. Dependent upon neighboring cloud type, water vapor concentration, and the viewing geometry, specific 1.38-um reflectance threshold levels can be

335

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lidar Remote Sensing of Cirrus Clouds at the Southern Great Plains Site: Lidar Remote Sensing of Cirrus Clouds at the Southern Great Plains Site: Comparisons of Extinction and Backscatter Coefficients Derived Using Raman and Backscatter Lidar Technique Comstock, J.M.(a), Fu, Q.(b), Turner, D.D.(c), and Ackerman, T.P.(a), Pacific Northwest National Laboratory (a), Department of Atmospheric Sciences, University of Washington (b), University of Wisconsin/Pacific Northwest National Laboratory(c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Horizontal and vertical inhomogeneity of cirrus clouds is an important issue in radiation modeling and the representation of cirrus clouds in general circulation models (GCMs). Lidar remote sensing is a useful tool for determining the vertical structure of cirrus clouds. Backscatter

336

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inferring Optical Depth of Broken Clouds above Green Vegetation. Part Inferring Optical Depth of Broken Clouds above Green Vegetation. Part I:Methodology for Surface- and Aircraft-based Observations Barker, H.W. (a), Marshak, A. (b), Pavloski C.F. (c), and Clothiaux E.E.(c), Environment Canada (a), UMBC/JCET (b), The Pennsylvania State University (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A method for inferring cloud optical depth is introduced and assessed using simulated radiometric measurements produced by a 3D Monte Carlo algorithm acting on fields of broken, single-layer, boundary layer clouds. These fields contain numerous small cumuli and broken stratiform clouds and represent demanding tests. The method, which resembles the Normalized Difference Cloud Index, utilizes the DISORT radiative transfer model and

337

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Influence of Clouds, Aerosols, and Water Vapor on the Discrepancy The Influence of Clouds, Aerosols, and Water Vapor on the Discrepancy Between Modeled and Observed Atmospheric Absorption Arking, A. Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Daily mean estimates of atmospheric absorption of solar radiation at the ARM/SGP site are obtained for 36 days during the fall season in 1995 and 1997. They are based on broadband observations of surface flux and satellite estimates of TOA albedo. Mean absorption in the vertical column is 0.246 (expressed as a ratio with respect to the incident flux at TOA). For 13 of the days, which are entirely free of clouds, the mean absorption is 0.245. Although clouds have no systematic effect on absorption, they do have an effect---sometimes causing an increase and sometimes a decrease

338

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Vapor Profiling During WVIOP#3 and AFWEX2000 Using Ground-Based Water Vapor Profiling During WVIOP#3 and AFWEX2000 Using Ground-Based Differential Absorption Lidar Boesenberg, J. (a), Linne, H. (a), Jansen, F. (a), Ertel, K. (a), Lammert, A. (a), and Wilkerson, T. (b), Max-Planck-Institut fuer Meteorologie, Hamburg (a), Utah State Univerity (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The differential absorption lidar (DIAL) system of the MPI participated in both the WVIOP#3 and AFWEX2000 experiments. It was operated on 11 days during each experiment for periods up to 12 hours per day. The time slot for these measurements was 12 noon to 2am due to FAA restrictions. The measurements were focussed on the day-night-transition and the following hours during WVIOP#3 and on LASE overflights during AFWEX. The MPI DIAL

339

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Importance and Parameterization of Longwave Radiative Scattering by Mineral Importance and Parameterization of Longwave Radiative Scattering by Mineral Aerosols Gautier, C., Dufresne, J.-L., and Ricchiazzi, P.J., University of California Santa Barbara Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effect of scattering is not always included in longwave models of radiative forcing due to mineral aerosols. In this presentation, we quantify and highlight the importance of scattering in the longwave domain for a wide range of conditions commonly encountered during dust events. We show that the neglect of scattering may lead to an underestimate of longwave aerosol forcing. This underestimate may reach 50% of the forcing at the top of atmosphere and 15% at the surface for aerosol effective radius greater than a few tenths of a micron. In contrast, the heating rate

340

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparisons Between Measured and Modeled Longwave Irradiances During Arctic Comparisons Between Measured and Modeled Longwave Irradiances During Arctic Winter: Results from the Second International Pyrgeometer and Absolute Sky-Scanning Radiometer Comparison (IPARSC-II) Marty, Ch.(a), Storvold, R.(a), Philipona, R.(b), Delamere, J.(c), Dutton, E.(d), Michalsky, J.(e), Stamnes, K.(f), Eide, H.(f), and Stoffel, T.(g), Geophysical Institute, University of Alaska Fairbanks (a), World Radiation Center, Davos, Switzerland (b), Atmospheric and Environmental Research, Boston (c), Climate Monitoring and Diagnostics Laboratory NOAA, Boulder (d), State University of New York at Albany (e), Stevens Institute of Technology, Hoboken, New Jersey (f), National Renewable Energy Laboratory, Golden (g) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Property Retrieval Using Combined Ground-Based Remote Sensors Cloud Property Retrieval Using Combined Ground-Based Remote Sensors Wang, Z. and Sassen, K., University of Utah Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurements Program (ARM) is making measurements with diverse ground-based remote sensors. To provide more complete and accurate cloud information, it is necessary to combine diverse measurements because of the different capabilities of various sensors. In this study, a remote sensing cloud detection algorithm has been developed that can differentiate between various atmospheric targets such as ice and water clouds, virga, precipitation, and aerosol layers. Cloud type and macrophysical properties are identified by combining ground-based polarization lidar, millimeter wave radar, infrared radiometer, and dual

342

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Radiative Properties of Uniform and Broken Stratus: An Observational The Radiative Properties of Uniform and Broken Stratus: An Observational and Modelling Study Utilizing the Independent Column Approximation for Solar Radiative Transfer Clothiaux, E.E., The Pennsylvania State University; Barker, H.W., Atmospheric Environment Service of Canada; Kato, S., Hampton University; Dong, X., Analytical Service and Materials, Inc. Ackerman, T.P., The Pennsylvania State University; Liljegren, J.C., Ames Laboratory Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Millimeter-Wave Cloud Radar (MMCR) has operated continuously at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) site since November 11, 1996. As yet, much of the early data has not been calibrated correctly and insect contamination in the boundary layer is

343

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Overview of ARM Satellite Cloud and Radiation Budget Datasets An Overview of ARM Satellite Cloud and Radiation Budget Datasets Minnis, P.(a), Nguyen, L.(a), Smith Jr., W.L.(a), Doelling, D.R.(b), Heck, P.W.(c), Khaiyer, M.M.(b), Palikonda, R.(b), Young, D.F.(a), Spangenberg, D.A.(b), Chakrapani, V.(b), Walter, B.J.(b), and Nowicki, G.D.(b), NASA Langley Research Center (a), Analytical Services and Materials, Inc. (b), CIMSS/University of Wisconsin-Madison (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The derivation of cloud properties from satellite data has been greatly enhanced by the availability of new multispectral satellite imagers, the validation power of ARM instruments and IOPs, and increases in computer processing speeds. Likewise, the recent availability of broadband radiation

344

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AERI-Lidar Retrievals of Ice Cloud Physical Properties, Including the First AERI-Lidar Retrievals of Ice Cloud Physical Properties, Including the First Estimates of Photon Tunneling Contributions to Absorption Mitchell, D.L.(a) and DeSlover, D.H.(b), Desert Research Institute (a), Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Emitted Radiance Interferometer (AERI) and the High Spectral Resolution Lidar (HSRL) have been used to determine the spectral dependence of alpha in the window region (8.5-12.5 micron wavelength), where alpha is the ratio of optical depth at a visible wavelength to infrared absorption optical depth for a cirrus cloud. Using alpha and cloud emissivity measurements, it is generally possible to retrieve effective

345

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Latitude Cloud Microphysical Properties from FTIR Data High Latitude Cloud Microphysical Properties from FTIR Data Lubin, D., Scripps Institution of Oceanography Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM AERI instruments record downwelling radiance spectra with sufficient radiometric calibration to enable the retrieval of important cloud microphysical properties. This poster will describe how radiative transfer simulations that include cloud thermodynamic phase (liquid water, ice, mixed phase) can be utilized with Fourier Transform Infrared (FTIR) spectroradiometer data. The presence of the ice phase in cloud alters the slope of the brightness temperature spectrum between 800 - 1200 inverse centimeters, such that ice can often be detected. The AERI near infrared channel also may have potential for cloud phase as discrimination.

346

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Topography of Cloud Tops The Topography of Cloud Tops Pincus, R., Gunshor, M., Space Science and Engineering Center, University of Wisconsin-Madison; Marshak, A., and Wiscombe, W., National Aeronautics and Space Administration-Goddard Space Flight Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The geometric shape of cloud top affects the amount and distribution of radiation reflected by the cloud. The angular redistribution is more relevant to remote sensing applications, while changes in the total amount of energy reflected affect cloud albedo. The difference between reflection by "bumpy" and plane-parallel clouds is greatest when both clouds and bumps are optically thick and solar zenith angle low. Quantitative assessment of these effects requires a description of topography of a cloud top. We

347

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links Between Mesoscale Dynamics and Cloud Water in High-Resolution March Links Between Mesoscale Dynamics and Cloud Water in High-Resolution March 2000 RAMS Simulations Weaver, C.P.(a), Gordon, N.D.(b), Norris, J.R.(b), and Klein, S.A.(d), Rutgers University (a), Scripps Institution of Oceanography (b), NOAA/GFDL (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Regional Atmospheric Modeling System (RAMS) is applied as a tool for improving our understanding of sub-GCM-grid-scale cloudiness. Specifically, we use high-resolution simulations of March 2000 IOP days to identify the important mesoscale dynamic and thermodynamic controls on cloud water distributions. The resolution dependence of the simulated results is also investigated as a way to identify potential deficiencies in coarser-resolution models, such as GCMs. The main finding from the

348

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Compact Millimeter-Wave Radar for UAV Applications A Compact Millimeter-Wave Radar for UAV Applications Bambha, R., Carswell, J., and Swift, C., University of Massachusetts Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Assembly of the Compact Millimeter-wave Radar (CMR) has been completed at the University of Massachusetts, and ground-based cloud measurements have been acquired. The CMR is a 95-GHz solid-state radar intended for airborne cloud measurements. Funding for the project was provided by the Atmospheric Radiation Measurement-Unmanned Aerospace Vehicle (ARM-UAV) program with the eventual goal of developing a radar capable of operating on the Altus UAV. Simultaneous measurements made by CMR and the Cloud Profiling Radar System (CPRS) have been made to evaluate CMR's performance. CPRS is a larger

349

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Height Statistics Derived from ARM Millimeter Cloud Radar Cloud Height Statistics Derived from ARM Millimeter Cloud Radar Kato, S. (a), Clothiaux, E.E. (b), and Xu, K.-M. (c), Hampton University (a), Pennsylvania State University (b), NASA Langley Research Center(c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The probability of occurrence of the cloud top height for a given altitude and relation to the geometrical cloud thickness are derived from radar reflectivity factor taken by a millimeter cloud radar operated at ARM Oklahoma site. Statistics derived using July 1997 data show that the cloud top is likely to occur at 12 km and clouds extend to the lower troposphere. Statistics derived using January 1998 data show that single layer boundary layer clouds are dominant. There is another cloud top peak, although less

350

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Upper Tropospheric Water Vapor in the NCAR Community Climate Evaluation of Upper Tropospheric Water Vapor in the NCAR Community Climate Model, CCM3, Using Modeled and Observed HIRS Radiances Iacono, M.J., Delamere, J.S., Mlawer, E.J., and Clough, S.A., Atmospheric and Environmental Research, Inc. Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Upper tropospheric water vapor (UTWV) simulated by the National Center for Atmospheric Research Community Climate Model, CCM3, is evaluated by comparing modeled, clear sky, brightness temperatures to those observed from space by the High-resolution Infrared Radiation Sounder (HIRS). The climate model was modified to utilize a highly accurate longwave radiation model, RRTM, and a separate radiance module, both developed for the Atmospheric Radiation Measurement (ARM) Program. The radiance module

351

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ERBE OLR and Cloud Type by Split Window ERBE OLR and Cloud Type by Split Window Inoue, T.(a) and Ackerman, S.A.(b), Meteorological Research Institute (a), University of Wisconsin (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Using collocated ERBE and split window/AVHRR on board NOAA-9, we studied the relationship between cloud type and OLR. NOAA operational OLR estimation is based on flux equivalent temperature defined by the narrow band TBB. We found the relationship between ERBE OLR and brightness temperature (TBB) was different depending on cloud type classified by the split window. The brightness temperature difference between the split window (BTD) is a good indicator of water vapor amount and cloud optical properties. Therefore, we use the TBB and BTD to determine the regression

352

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Implementing Flexible Cloud Vertical Structure in GFDL's AM-2 Large-Scale Implementing Flexible Cloud Vertical Structure in GFDL's AM-2 Large-Scale Model Using Stochastic Clouds Pincus, R.(a), Klein, S.A.(b), and Hemmler, R.(b), NOAA-CIRES Climate DiagnosticsCenter (a), Geophysical Fluid Dynamics Laboratory (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud vertical structure has a significant impact on radiation and precipitation fluxes, which can then feed back to the general circulation. In large-scale models with partial cloudiness in each grid cell, this structure is usually imposed in the form of "overlap assumptions," which are typically implemented separately in the radiation and precipitation codes. To date, GFDL's global atmospheric model AM-2 has used the random overlap assumption, which is easy to implement but known to be unrealistic

353

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol-Cloud-Radiation Interaction: A Comparison of GCM Results versus Aerosol-Cloud-Radiation Interaction: A Comparison of GCM Results versus Surface Observations Liepert, B.G., Lamont-Doherty Earth Observatory of Columbia University; Lohmann, U., Dalhousie University, Halifax, Canada Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The change in cloud properties due to increased anthropogenic emissions of aerosols and their precursor gases is referred to as "indirect aerosol effect." Estimates with general circulation models (GCMs) assumed that an increase in aerosol concentration would lead to a cooling effect of about -1Wm2. To evaluate the anthropogenic indirect aerosol effect, we compared two ECHAM GCM experiments with long-term surface observations covering the United States and Germany. The model prognosticates the number of cloud

354

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Terra MODIS Aerosol and Water Vapor Measurements Using ARM Evaluation of Terra MODIS Aerosol and Water Vapor Measurements Using ARM SGP Data Ferrare, R.A. (a), Brasseur, L.H. (b), Turner, D.D. (c,d), Tooman, T.P. (e), Remer, L. (f), and Gao, B-C. (g), NASA Langley Research Center (a), Science Applications International Corporation/NASA/LaRC (b), Pacific Northwest National Laboratory (c), University of Wisconsin-Madison (d), Sandia National Laboratories (e), NASA Goddard Space Flight Center (f), Naval Research Laboratory (g) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting NASA's Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor on the Earth Observing System (EOS) Terra satellite platform has been measuring aerosol and water vapor parameters since February 2000. The MODIS aerosol

355

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D Delta-Diffusion and IR Monte-Carlo Methods for Radiative Transfer 3D Delta-Diffusion and IR Monte-Carlo Methods for Radiative Transfer Applied to Inhomogeneous Cirrus over the ARM-SGP Site Chen, Y.(a), Liou, K.N.(a), Gu, Y.(a), Ou, S.C.(a), and Mace, G.G.(b), University of California, Los Angeles (a), University of Utah (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An efficient method based on a full multigrid approach has been developed to solve the 3D delta-diffusion radiative transfer equation, which utilizes four-term spherical harmonics expansion for the phase function and intensity. This method first solves the inhomogeneous partial differential equation on a number of coarse grids and subsequently performs interpolation to predivided fine grids to speed up the convergence of the solution, particularly useful for cloud radiation parameterization in

356

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anomalous Radiative Absorption and Unbounded Cascade Models of Cloud Anomalous Radiative Absorption and Unbounded Cascade Models of Cloud Fields Schertzer, D., and Larchevêque, M., Université P.&M. Curie, Paris, France; Lovejoy, S., McGill University; Naud, C., Blackett Laboratory, Imperial College, London Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting One of the most achieving results of Atmospheric Radiation Measurement (ARM) Program could well have been the empirical finding of the anomalous radiative absorption of the atmosphere. We demonstrate that unbounded cascade models of cloud fields, rather than bounded cascade models, could give a theoretical and quantitative understanding of this phenomenon. Indeed, the former models keep contact with the physics and coherence of the turbulent cascades (velocity, temperature and liquid water content) and

357

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of the Aerosol-Cloud Interactions from Aircraft, Surface Analysis of the Aerosol-Cloud Interactions from Aircraft, Surface Measurements, and Cloud Parcel Model During the March 2000 IOP at the ARM SGP Site Delene, D.J.(a), Dong, X.(a), Chen, Y.(b), Poellot, M.(a), and Penner, J.E.(b), University of North Dakota (a), University of Michigan (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting One of the largest uncertainties in estimating anthropogenic forcing of climate change and in predicting future climates is the relationship between atmospheric aerosols and cloud properties. Aerosols affect cloud optical properties, cloud water content and cloud lifetime. A higher aerosol number concentration generally results in the nucleation of more smaller cloud droplets, which increases cloud albedo and results in a

358

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terminal Velocities of Droplets and Crystals: Power Laws with Continuous Terminal Velocities of Droplets and Crystals: Power Laws with Continuous Parameters Over the Size Spectrum Khvorostyanov, V.I. and Curry, J.A., University of Colorado Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This paper presents a unified treatment of cloud particle fall velocities Vt for both liquid and crystalline cloud particles over the entire size range observed in the atmosphere. The fall velocity representation is formulated in terms of the Best (or Davies) number X and the Reynolds number Re. For the power law representations used in many applications, and with D being the particle diameter (or maximum length), the coefficients aRe, bRe, av, bRe are found as the continuous analytical functions of X or D over the entire hydrometeors size range. Analytical asymptotic solutions

359

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LASE Characterization of Water Vapor, Aerosol, and Cloud Distributions Over LASE Characterization of Water Vapor, Aerosol, and Cloud Distributions Over the ARM Southern Great Plains Central Facility During AFWEX Ismail, S. (a), Ferrare, R.A. (a), Browell, E.V. (a), Kooi, S.A. (b), Brasseur L.H. (b), Clayton, M.B. (b), Brackett, V. (b), Goldsmith, J.E.M. (c), Whiteman, D.N. (d), and Barrick, J. (a), NASA Langley Research Center (a), SAIC Inc., Hampton, Virginia (b), Sandia National Laboratories (c), NASA Goddard Space Flight Center (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting NASA's Lidar Atmospheric Sensing Experiment (LASE) system was operated during the ARM/FIRE Water Vapor Experiment (AFWEX) to characterize the upper tropospheric water vapor field over the ARM Center Facility (CF) as part of the third Water Vapor Intensive Observation Period (WVIOP3). LASE

360

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Boundary Layer Cloud Properties using Surface and GOES Comparison of Boundary Layer Cloud Properties using Surface and GOES Measurements at the ARM SGP Site Dong, X. (a), Minnis, P. (b), Smith, W.L., Jr. (b), and Mace, G.G. (a), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Boundary layer cloud microphysical and radiative properties derived from GOES data during March 2000 cloud IOP at ARM SGP site are compared with simultaneous surface-based observations. The cloud-droplet effective radius, optical depth, and top-of-atmoshpere (TOA) albedo are retrieved from a 2-stream radiative transfer model in conjunction with ground-based measurements of cloud radar, laser ceilometer, microwave and solar radiometers. The satellite results are retrieved from GOES visible and

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Analytic Solution of Two-Stream Stochastic Radiative Transfer in An Analytic Solution of Two-Stream Stochastic Radiative Transfer in Spatially Correlated Media Hu, Y.X.(a) and Davis, A.B.(b), NASA Langley Research Center (a), Los Alamos National Laboratory (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In situ cloud microphysics measurements show spatial auto-correlations of extinction cross sections over a wide range of scales. At some of those scales, homogeneity and independent-column assumptions fail and a three-dimensional treatment of the radiative transfer is required to capture the effect of the correlations. A simple differential form of transport equation is developed for correlated media in order to account for the first-order impact of the spatial auto-correlations. Two-stream

362

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical and Microphysical Characteristics of the Smoke Aerosol in the Optical and Microphysical Characteristics of the Smoke Aerosol in the Moscow Region During the Summer-Autumn of 2002 Gorchakov, G.I.(a), Golitsyn, G.S.(a), Anikin, P.P.(a), Emilenko, A.S.(a), Isakov, A.A. (a), Kopeikin, V.M.(a), Rublev, A.N.(b), Sviridenkov, M.A.(a), and Shukurov, K.A.(a), A.M.Obukhov Institute of Atmospheric Physics, RAS (a), Russian Research Center "Kurchatov Institute" (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Observational results will be presented for the optical and microphysical characteristics of the smoke aerosol produced by wild fires at peatbogs in the Moscow region during the July-September of 2002. Characteristics in the visual range and mass concentration of the submicron aerosol had been

363

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Absorption, Optical Depth and Vertical Extent Estimates Using Aerosol Absorption, Optical Depth and Vertical Extent Estimates Using UV/blue Satellite Measurements Cairns, B., and Alexandrov, M.D., Columbia University; Carlson, B.E., and Lacis, A.A., NASA Goddard Institute for Space Studies Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The radiative balance of the atmosphere and the climatological response of the atmospheric circulation to changes in aerosol loading is principally determined by the vertical extent and single-scatter albedo of the aerosols. Although UV radiance measurements made by the Total Ozone Mapping Experiment Spectrometer (TOMS) instrument have been used to detect UV absorbing aerosols and estimate their properties, the unknown verticalextent of the aerosol affects the sensitivity of the radiances to

364

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inferring Cloud Optical Depth Using Spectrally Varying Surface Albedo: Inferring Cloud Optical Depth Using Spectrally Varying Surface Albedo: Frozen Turbulence vs. Time Evolution Barker, H.W.(a), Pavloski, C.F.(b), Ovtchinnikov, M.(c), Kassianov, E.(c), Clothiaux, E.E.(b), and Marshak, A.(d), Meteorological Service of Canada (a), The Pennsylvania State University (b), Pacific Northwest National Laboratory (c), UMBC/NASA-GSFC (d) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Barker and Marshak (2001) proposed a method for inferring cloud optical depth from measurements of surface spectral radiance and irradiance made close to, but on either side of, wavelength 700 nm (approximately where absorption by chlorophyll ends). Their method has been tested by applying a Monte Carlo photon transport algorithm to cloud fields simulated by

365

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consistency of ARESE II Cloud Absorption Estimates and Sampling Issues Consistency of ARESE II Cloud Absorption Estimates and Sampling Issues Oreopoulos, L.(a), Marshak, A.(a), and Cahalan, R.F.(b), JCET – University of Maryland Baltimore County (a), NASA-GSFC (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data from three cloudy days (March 3, 21, 29, 2000) of the ARM Enhanced Shortwave Experiment II (ARESE II) were analyzed. Grand averages of broadband absorptance among three sets of instruments were compared. Values of fractional absorptance were ~0.20-0.22 for all three days with the exception of March 3 when two sets of instruments gave values smaller by ~ 0.03-0.04. The robustness of these values was investigated by looking into possible sampling problems mainly with the aid of 500 nm spectral fluxes.

366

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A First Look at the Radiative Impact of Tropical Cirrus Systems Encountered A First Look at the Radiative Impact of Tropical Cirrus Systems Encountered During CRYSTAL-FACE Pilewskie, P. (a), Gore, W. (a), Rabbette, M. (b), Howard, S. (b), and Pommier, J. (b), NASA Ames Research Center (a), Bay Area Environmental Research Institute (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting During the 2002 CRYSTAL-FACE experiment we deployed identical solar spectral and broad-band infrared sensors on the ER-2 and CIRPAS Twin Otter in order to characterize the column radiative energy budget in the tropical atmosphere under varying conditions such as thick anvil cirrus, thin sub-visible cirrus, and cloud free conditions. The data are used to determine cirrus and clear sky heating and cooling rates. The solar spectral reflectance and transmittance data are used to infer cloud

367

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Cloud Radiative Forcing of the Arctic Surface: The Influence of Cloud Properties, Surface Albedo, and Solar Zenith Angle Shupe, M.D. and Intrieri, J.M., NOAA - Environmental Technology Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting An annual cycle of cloud and radiation measurements made as part of the Surface Heat Budget of the Arctic program are utilized to determine which properties of Arctic clouds control the surface radiation balance. Surface cloud radiative forcing (CF), defined as the difference between the all-sky net surface radiative flux and the clear sky net surface flux, was calculated from measurements of broadband fluxes and results from a clear sky model. Longwave cloud forcing (CFLW) is shown to be a function of cloud

368

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inferring Cloud Properties from Narrow-Field-of-View Spectral Radiometers Inferring Cloud Properties from Narrow-Field-of-View Spectral Radiometers Marshak, A.(a), Knyazikhin, Y.(b), Evans, K.(c), and Wiscombe, W.(a), NASA/GSFC (a), Boston University (b), UMBC/JCET (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The most common approach for retrieving cloud optical depth from ground-based observations uses downwelling fluxes measured by pyranometers and Multi-Filter Rotating Shadowband Radiometers (MFRSR). The key element in both retrieval techniques is the one-to-one mapping of the "observed" fluxes into cloud optical depth through plane-parallel radiative transfer. Both methods are expected to work well only for completely overcast clouds giving an effective optical depth for the whole sky. To infer cloud optical

369

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diurnal Cycle of Convection, Clouds, and Water Vapor in the Tropical Diurnal Cycle of Convection, Clouds, and Water Vapor in the Tropical Upper Troposphere Soden, B.J., NOAA/GFDL Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The presence of large diurnal variations in convection over the tropics is well documented. The amplitude of the diurnal cycle is typically largest over land areas, but important variations are also observed over oceans. Precipitation, for example, generally peaks in the early evening over tropical land regions and in the early morning over oceans. Such land/ ocean phase differences have been the topic of considerable research and debate. Many of the most widely studied diurnal variations, such as precipitation, cloud cover, and outgoing longwave radiation, are directly associated with the atmospheric hydrologic cycle. Given its obvious role in

370

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM External Data: Recent Developments and Future Plans ARM External Data: Recent Developments and Future Plans Wagener, R., Gregory, L., Ma, L.L., and Cialella, A., Brookhaven National Laboratory Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting This poster lists new datastreams collected and processed by the ARM External Data Center since the last update in 1999 (MOLTS, TOMS, 30 min OK Mesonet, CSPHOT, TWP AVHRR, ECMWF, RUC, TAO Buoy, IAP). We describe briefly the software tools employed in converting these data to netCDF files, because data-users might find them helpful in dealing with the raw files themselves (GrADS, IDL, Perl). The priorities for future data acquisitions and ingests are set by consensus of the Science Working Groups. The current high priority new collections include: Suominet GPS data, Darwin Radar and

371

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Clouds on the Atmospheric Absorption of SW - Comparing Theory and Impact of Clouds on the Atmospheric Absorption of SW - Comparing Theory and Observation at SGP Rose, F.G. (a), Charlock, T.P. (b), and Rutan, D.A. (a), Analytical Services & Materials Inc. (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting This group, and also Li and Trishchenko, have earlier determined the cloud forcing to the atmospheric absorption of SW by combining surface data at SGP with CERES at TOA. Detailed analysis of our results show a systematic trend in the difference of all-sky and clear-sky atmospheric absorption with cosSZA: All-sky absorbs significantly more than clear-sky as cosSZA increases. From radiative transfer theory, all-sky absorption of SW is expected to be greater (less) than clear sky absoption when clouds are low

372

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Subgrid Representation of Precipitating Marine Boundary Layer Clouds A Subgrid Representation of Precipitating Marine Boundary Layer Clouds Leung, L.R., and Ghan, S.J., Pacific Northwest National Laboratory; Feingold, G., Cooperative Institute for Research in the Atmosphere, Colorado State University Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting A subgrid parameterization is being developed to account for subgrid variations of precipitating marine stratocumulus clouds in general circulation models (GCMs). The method assumes an idealized form for the probability density function (pdf) for the cloud variables and predicts/diagnoses the parameters describing the pdfs. A level 2.5 turbulence closure model is used to calculate turbulence fluxes. Cloud-water-related turbulence fluxes are estimated using a partial

373

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Relationships Among Tropical Cloud Characteristics and Components of the Relationships Among Tropical Cloud Characteristics and Components of the Surface Heat Budget Curry, J.A., and Webster, P.J., University of Colorado; Clayson, C.A., Purdue University Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite data obtained during the TOGA COARE Intensive Observation Period (IOP) has been used to create a high resolution dataset (50 km, 3 hrs) of cloud characteristics (phase, height, precipitation) and components of the surface energy budget (radiation, sensible and latent heat fluxes). The satellite dataset has been evaluated using in situ observations obtained during TOGA COARE. A cloud classification scheme based upon cloud top height, phase, and precipitation is used as a framework to interpret the effect of the different cloud types on the component surface fluxes and

374

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Aerosol Forcing Calculated at the ARM Southern Great Plains Site Direct Aerosol Forcing Calculated at the ARM Southern Great Plains Site Ackerman, T.P., Flynn, D.M., and Long, C.N., Pacific Northwest National Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The continuous measurements of direct and diffuse solar radiation, water vapor column amount, and aerosol optical depth provided at the ARM SGP site permit us to calculate directly the actual magnitude of the direct aerosol forcing. Our methodology employs the clear sky detection algorithm of Long and Ackerman (2000) to identify cloudless periods. We then fit the downward solar flux at the surface during these periods with an empirical function, which provides us with a continuous mathematical representation of the surface flux under aerosol conditions. The flux under completely clear

375

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds: Application to Climate Models Gu, Y. and Liou, K.N., University of California, Los Angeles Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A three-dimensional (3D) radiative transfer model has been developed to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilizes a diffusion approximation approach (four-term expansion in the intensity) for application to inhomogeneous media employing Cartesian coordinates. The extinction coefficient, single-scattering albedo, and asymmetry factor are functions of spatial position and wavelength and are parameterized in terms of the ice water content and mean effective ice crystal size. We employ the

376

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Initial Cloud Properties Derived from GMS Over the Tropical Western Pacific Initial Cloud Properties Derived from GMS Over the Tropical Western Pacific Doelling, D.R., Ho, S.-P., Smith, W.L., Jr., Analytical Services and Materials, Inc.; Minnis, P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Satellite data are needed to provide measurements of the earth-atmosphere shortwave (SW) albedo, outgoing longwave radiation (OLR), and cloud and surface radiative properties for the Atmospheric Radiation Measurement (ARM) Program's Tropical Western Pacific (TWP) domain. Geostationary Meteorological Satellite (GMS) data have been archived since November 1996 and provide the basis for monitoring these essential parameters over the ARM TWP. This paper describes the initial efforts and results of developing

377

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cirrus Cloud Particle Mass and Terminal Velocity Derived from Airborne 2D-C Cirrus Cloud Particle Mass and Terminal Velocity Derived from Airborne 2D-C Probe and Counterflow Virtural Impactor Data for Selected Cases During the Spring 2000 Cloud IOP Benson-Troth, S.(a), Mace, G.G.(a), Twohy, C.(b), and Poellot, M.(c), University of Utah (a), Oregon State University (b), University of North Dakota (c) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting When cirrus cloud particles are sampled by an airborne 2D-C probe, the shadows of the particles on the diode array are preserved. Analysis of the raw 2D-C data provides a size distribution and number concentration of the cloud particles sampled. The airborne counterflow virtural impactor provides the ice water content of the sampled cloud particles. Using the size distribution and the ice water content, we derive the coefficient and

378

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Semianalytic Technique to Speed Up Successive Order of Scattering Model A Semianalytic Technique to Speed Up Successive Order of Scattering Model for Optically Thick Media Duan, M. and Min, Q., Atmospheric Sciences Research Center, State University of New York Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A semianalytic technique has been developed to speed up integration of radiative transfer over optically thick media for the successive order of scattering method. Based on characteristics of internal distribution of scattering intensity, this technique uses piece-wise analytic eigenfunctions to fit internal scattering intensities and integrates them analytically over optical depth. This semianalytic approach greatly reduces the number of sub-grids for accurately solving radiative transfer based on

379

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cirrus Cloud Statistics from a Cloud-Resolving Model Simulation Compared to Cirrus Cloud Statistics from a Cloud-Resolving Model Simulation Compared to Cloud Radar Observations Krueger, S.K. (a), Luo, Y. (a), Mace, G.G. (a), and Xu, K.-M. (b), University of Utah (a), NASA Langley Research Center (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Mace, Clothiaux, and Ackerman (2000; MCA) determined the properties of cirrus clouds derived from one year (December 1996 to November 1997) of MMCR data collected at the SGP ARM site in Oklahoma. They also used additional measurements to retrieve the bulk microphysical properties of thin cirrus cloud layers. We sampled CRM results in a way that allows direct comparison to MCA's observations and retrievals of cirrus cloud properties. This allows evaluation, in a statistical sense, of the CRM's

380

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Influence of Age-Dependent Optical and Thermal Snow Properties on the Influence of Age-Dependent Optical and Thermal Snow Properties on the Modeled Surface Temperature and Albedo in the Arctic Curry, J.A., and Schramm, J.L., University of Colorado Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting A new multi-level snow model has been developed to simulate the time-varying snow thermal and optical characteristics in response to precipitation events and snow aging. The model is forced by observations from the Russian ice islands in the Arctic Ocean, and also using some preliminary data from SHEBA. A comparison of the modeled surface temperature and albedo with the commonly used 0-level snow model is made. The new model shows much better agreement with time-series observations of surface temperature and albedo. When the snow model is used over a sea ice

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physical Retrieval of PWV and CLW with MonoRTM Using ARM MWR Data Physical Retrieval of PWV and CLW with MonoRTM Using ARM MWR Data Clough, S.A.(a), Cady-Pereira, K.(a), Boukabara, S.(a), and Liljegren, J.C.(b), Atmospheric and Environmental Research, Inc. (a), Argonne National Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The newly developed radiative transfer model, MonoRTM, has been utilized as the forward model in a physical retrieval method to obtain Precipitable Water Vapor (PWV) and Cloud Liquid Water (CLW) using ARM MWR data. The dependence of the forward model on water vapor and oxygen has been carefully analyzed in the context of the ARM dataset covering a three-year period from 1996 to 1998. A detailed error analysis for the forward model brightness temperatures at 23.8 GHz and 31.4 GHz has been has been

382

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aircraft Measurements of Spectral and Broadband Shortwave Albedo from the Aircraft Measurements of Spectral and Broadband Shortwave Albedo from the NASA Langley OV-10 Smith, W.L., Jr.(a), Charlock, T.P.(a), Roback, V.E.(a), Rutledge, C.K.(b), and Zhang, T.P.(b), NASA Langley Research Center (a), Analytical Services and Materials, Inc. (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting In order to validate and improve surface radiative fluxes derived as part of the Clouds and the Earth's Radiant Energy System (CERES) program, The CERES Fixed-wing Airborne Radiometer (CFAR) was developed to make measurements of upwelling and downwelling shortwave (spectral and broadband) and longwave (broadband) radiative fluxes. The CFAR consists of an OV-10A Bronco twin-turboprop, originally developed for military applications but chosen by NASA for atmospheric radiation measurements

383

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Correction of Sonde Upper Tropospheric Humidity Through Radiance Correction of Sonde Upper Tropospheric Humidity Through Radiance Assimilation Soden, B.J.(a), Turner, D.D.(b), and Lesht, B.M.(c), NOAA/GFDL (a), Pacific Northwest Natinal Laboratory (b), Argonne National Laboratory (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The difficulty of measuring upper tropospheric water vapor from radiosonde instrumentation is widely recognized. Recent results from several ARM IOPs and the AFWEX field campaign have demonstrated a substantial dry bias in sonde measurements. Existing corrections for these measurements can improve the moisture concentrations at lower levels, but offer little improvement in the upper troposphere. Unfortunately, accurate measurements of upper tropospheric water vapor are necessary to constrain the transfer of

384

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Angular Distribution of Intensity in a Flux of Radiation Scattered by a Angular Distribution of Intensity in a Flux of Radiation Scattered by a Cloud Dvoryashin, S.V., Shukurov, K.A., Shukurov, A.K., and Golitsyn, G.S., A.M.Obukhov Institute of Atmospheric Physics, RAS Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A study of the angular distribution of intensity in a flux of solar radiation scattered by a cloud was carried out in conditions of translucent clouds (the disk of the Sun is visible). Using the digital video camera KODAK DC200, mounted on the sun tracker, the sky images with the angle of view 38 0) have been obtained in cloudy and cloudless conditions. During measurements the disk of the Sun was closed with a blend. Using the specially developed program the photometry of the received images was

385

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Whole-Sky Imager Data Retrieval Whole-Sky Imager Data Retrieval Tooman, T.P., Christensen, G.J., Sandia National Laboratories; Shields, J., and Karr, M., Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego; Moore, S., and Sowle, D., Mission Research Corporation Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Whole-Sky Imager (WSI) is an automated imager used for assessing and documenting cloud fields and cloud field dynamics. Four WSI instruments have been deployed on hard surfaces: one in the Southern Great Plains, two in the Tropical Western Pacific, and one in the North Slope of Alaska. Additionally another instrument has been deployed on an ice breaker in the Polar Ice Cap - Surface Heat Budget of the Arctic (SHEBA). These electronic

386

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On Problems in Simulating Boundary-layer Cumulus Clouds with Third-Order On Problems in Simulating Boundary-layer Cumulus Clouds with Third-Order Turbulence Closure Models Cheng, A.(a) and Xu, K.-M.(b), Atmospheric Sciences, NASA Langley Research Center (a), Center for Atmospheric Sciences, Hampton University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting A hierarchy of third-order turbulence closure models are used to simulate boundary-layer cumulus clouds from the Atmospheric Radiation Measurement in this study. A moist spurious oscillation is found in the Level-3 model, which predicts all third moments. The period of the oscillation is about 1000 s, which is resulted from the interaction of the mean liquid water gradient and the liquid water buoyancy terms in the third-moment equations. A reasonably large diffusion coefficient and a large dissipation at its

387

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On the Detection and Analysis of Multilayered Clouds: Comparison of MODIS On the Detection and Analysis of Multilayered Clouds: Comparison of MODIS Analyses with ARM CART Site Cloud Products Baum, B.A.(a), Nasiri, S.L.(b), and Mace, G.G.(c), NASA Langley Research Center (a), University of Wisconsin-Madison (b), University of Utah (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting We will present new ideas regarding the detection and analysis of multilayered clouds in Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Over the past year, the MODIS cloud property retrieval effort has matured considerably as algorithms have been improved and the instrument performance has been characterized more accurately. Errors caused by noise, striping, and out-of-band response have been reduced. We have developed and tested different approaches for daytime and nighttime

388

Electrical and Electronics Technical Team Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

33This 33This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies -BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). Electrical and Electronics Technical Team Roadmap June 2013 HV Battery 120/220 V AC On-Board Battery Charger Bi-directional DC/DC Converter Electric Motor Inverter DC-DC

389

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spatial Hetergeneity in Mid-Summer Fluxes of Carbon, Water and Energy in Spatial Hetergeneity in Mid-Summer Fluxes of Carbon, Water and Energy in Agriculutural Plots Near the SGP Central Facility Fischer, M.L.(a), Billesbach, D.(b), Berry, J.(c), Riley, W.R.(a), and Torn, M.S.(a), Lawrence Berkeley National Laboratory (a), University of Nebraska (b), Carnegie Institution of Washington (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Patterns of land use and management are likely to dominate the spatial heterogeneity in cycles of energy, carbon, and water in ecosystems of the Southern Great Plains (SGP). We report recent progress on measuring and modeling spatial heterogeneity in land surface-atmosphere exchange for different crops in the footprint of a flux system mounted on the ARM SGP Central Facility 60 m tower. The first phase of our the "Portable Flux

390

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud-Radiation-Aerosol Experiment (1996) at IAPh, Russia Cloud-Radiation-Aerosol Experiment (1996) at IAPh, Russia Golitsyn, G.S., Anikine, P.P., and Sviridenkov, M.A., Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting In 1996, local measurements of the optical properties of the near-surface aerosol were carried out parallel with aureole measurements of the aerosol in the atmospheric column. The spectral radiation was measured by a complex of spectrometers. Global radiation was controlled by standard equipment (pyrheliometer, pyranometer, pyrgeometer). A microwave sounder was used to determine the liquid water path of clouds and water vapor content. Advanced Very High Resolution Radiometer (AVHRR) data from the National Oceanic and

391

TEAM0.5DL.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.5 0.5 Core Status: new users must complete 2 training sessions and pass a sample exchange exam to work independently during Core sessions (regular work hours). Flex Status: core users must complete 5 Core sessions and pass a driving test to work during Flex sessions (evening and weekend hours). All TEAM 0.5 scheduling must be coordinated through Peter Ercius at Percius@lbl.gov. You may be assigned only two sessions per month. CORE LICENSE Safety  Understand emergency shut-down procedure  Demonstrate handling of the column valves  Point out where emergency contact numbers are posted  Know how to contact NCEM staff for support Instrument preparation  Show how to check basic vacuum functionality and target pressure values  (Gun: 1, Liner: 18-20 and Octagon: < 10)

392

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Raman Lidar Characterization of the Vertical Variability of Aerosols and Raman Lidar Characterization of the Vertical Variability of Aerosols and Water Vapor Over the SGP Ferrare, R.A. (a), Turner, D.D. (b,g), Brasseur, L.H. (c), Tooman, T.P. (d), Dubovik, O. (e), Goldsmith, J.E.M. (d), Ogren, J.A. (f), and Feltz, W. (g), NASA Langley Research Center (a), Pacific Northwest National Laboratory (b), Science Applications International Corporation/NASA/LaRC (c), Sandia National Laboratories (d), SSAI/NASA Goddard Space Flight Center (e), NOAA Climate Monitoring and Diagnostics Laboratory (f), University of Wisconsin-Madison (g) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The automated Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar routinely measures profiles of water vapor mixing ratio,

393

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparisons of a Cloud Resolving Model and ARM Data Comparisons of a Cloud Resolving Model and ARM Data Posselt, D., Mecikalski, J., Tanamachi, R., Feltz, W.F., Turner, D.D., Tobin, D., Knuteson, R.O., and Revercomb, H.E., University of Wisconsin - Madison Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting CIMSS/SSEC at the University of Wisconsin is currently running version 3.5 of the PSU/NCAR MM5 once per day at a resolution of 4 km over the ARM CART site domain. Simulations are performed using a sophisticated cloud-resolving microphysics scheme (Reisner 1998) and a radiative parameterization based on RRTM (Mlawer 1997). With selection of appropriate case studies, comparisons of the model output to ARM data can be used to evaluate the model's ability to reproduce boundary-layer thermal and

394

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Satellite-Based Assessment of Upper Tropospheric Water Vapor Measurements A Satellite-Based Assessment of Upper Tropospheric Water Vapor Measurements During AFWEX Soden, B.J.(a), Ferrare, R.A.(b), Goldsmith, J.E.M.(c), Smith, W.L.(d), Tobin, D.(e), Turner, D.D.(f), and Whiteman, D.N.(g), NOAA/GFDL (a), NASA/LaRC (b), Sandia National Laboratories (c), NASA/LaRC (d), UW/SSEC (e), Pacific Northwest National Laboratory (f), NASA/GSFC (g) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate measuremetns of upper tropospheric water vapor are critical both for understanding the flow of radiation and formation of clouds, and for the detection and attribution of climate change. In fall of 2000 ARM conducted the ARM-FIRE Water Vapor Experiment (AFWEX) to evaluate the accuracy of upper tropospheric water vapor measurements. The experiment

395

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparison of Surface Sensible Heat Flux at Atqasuk and Barrow A Comparison of Surface Sensible Heat Flux at Atqasuk and Barrow Shaw, W.J. (a), Doran, J.C. (b), and Hubbe, J.M. (c), Pacific Northwest National Laboratory Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting As part of the effort to discover the feedbacks between low-level arctic stratus and surface fluxes, we have operated an acoustic anemometer near Barrow, Alaska and a dual wavelength scintillometer near Atqasuk, which is 100 km to the south, in order to measure the surface turbulence heat flux. The systems operated unattended during the spring melt period of 2000, and the data were logged via internet or telephone connections. The acoustic anemometer was mounted on a tower attached to a barge grounded on a low island on the northeast side of Elson Lagoon. The anemometer was 8.5 m

396

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Satellite Cloud, Radiation and Precipitation Data Set for Cloud Model A Satellite Cloud, Radiation and Precipitation Data Set for Cloud Model Evaluation Xu, K.-M.(a), Wielicki, B.A.(a), Wong, T.(a), and Randall, D.A.(b), NASA Langley Research Center (a), Colorado State University (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting To systematically evaluate cloud models including large-eddy simulation (LES), cloud-resolving models (CRMs), cloud parameterizations in general circulation models (GCMs), one needs a large set of cloud, radiation and precipitation data that are matched with simultaneous atmospheric state data. We have been using a technique to produce such a data set at the NASA Langley Research Center. Specifically, this technique classifies EOS (Earth Observing System) satellite data into distinct cloud systems or "cloud

397

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NCDX: NetCdr Data eXtraction utility for Examination and Visualization of NCDX: NetCdr Data eXtraction utility for Examination and Visualization of Netcdf Data Flynn, C.J. and Ermold, B., Pacific Northwest National Laboratory Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting NCDX is a command-line utility designed for routine examination and extraction of data from netcdf files. Data can be displayed graphically (line-plot, scatter-plot, overlay, color-intensity, etc.) or extracted as ASCII data. In either case, results can be saved to disk or viewed directly on screen. Date and time can be displayed in a large variety of formats including calendar, julian, HHMMSS, fractional day, and others. It can accept multiple netcdf files as input producing merged results. NCDX can be used in either interactive or batch-processing mode making it suitable for

398

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Absolute Radiance Calibration Techniques for the Whole Sky Imager Absolute Radiance Calibration Techniques for the Whole Sky Imager Shields, J.E. (a), Johnson, R.W. (a), Tooman, T.P. (b), Karr, M.E. (a), Burden, A.R. (a), and Baker, J.G. (a), Scripps Institution of Oceanography (a), Sandia National Laboratories (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Day/Night Whole Sky Imager is designed to provide absolute radiance distributions over the full upper hemisphere, as well as providing an assessment of cloud fraction and cloud spatial properties. In order to provide radiance distributions, the instrument must be calibrated using absolute radiometry techniques adapted for use with an imager. These techniques are particularly demanding due to the large dynamic range required to acquire data from full daylight to starlight. For example, a

399

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activation Control: An Alternate Framework for Explaining Variation of Deep Activation Control: An Alternate Framework for Explaining Variation of Deep Convection Barr-Kumarakulasinghe, S.A., Brookhaven National Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting An alternate conceptual framework with the ability to explain large scale variation in convection, but still have the ability to explain shorter time scale (weekly) variation of convection is presented. In contrast, the current quasi-equilibrium and statistical equilibrium control framework, appears to be only successful in explaining monthly and large scale variations in convection and circulation patterns. Mapes has referred to an alternate concept as activation control, though not actually offering a solution or methodology. This abstract presents an activation control

400

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of the Plane-Parallel Model from MISR Measurements Evaluation of the Plane-Parallel Model from MISR Measurements Horvath, A.(a), Davies, R.(b), and Diner, D.J.(b), University of Arizona (a), Jet Propulsion Laboratory (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Due to its simplicity and computational speed, the 1-D plane-parallel model enjoys widespread popularity in the satellite remote sensing of cloud microphysical properties. Just how well this model describes real clouds is a question rather difficult to answer with traditional single-angle observations. With the advent of near-simultaneous multiangle measurements, it is possible to evaluate the validity of the plane-parallel approach. This study used data from the Multiangle Imaging SpectroRadiometer (MISR) on NASA's TERRA (EOS-AM) platform. Only liquid clouds over oceans were

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of the Annual Cycle of Surface Albedo for SHEBA Simulation of the Annual Cycle of Surface Albedo for SHEBA Schramm, J.L., and Curry, J.A., University of Colorado Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting A single-column ice thickness distribution model is used to simulate the annual cycle of sea ice, snow and surface radiation characteristics over the Surface Heat Budget of the Arctic Ocean (SHEBA). The model is forced using surface flux data obtained at SHEBA. This poster focuses on the simulated surface albedo and the principal factors that determine it (snow and melt ponds). By comparing the model simulations with SHEBA observations, an assessment of our current parameterizations of snow, melt ponds and surface albedo is given. Some improvements to our model parameterizations have already been made based upon the comparison with

402

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Fraction Retrieval Utilizing Whole Sky Imagers Cloud Fraction Retrieval Utilizing Whole Sky Imagers Tooman, T.P., Sandia National Laboratories; Moore, S., and Sowle, D., Mission Research Corporation; Shields, J., Marine Physical Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting Long-term statistics on cloud cover and cloud thickness are desirable for understanding how clouds affect climate. We are attempting to use images collected by the Whole Sky Imager (WSI) to extract this information. For nighttime retrieval, we intend to develop algorithms and software to detect star occultations due to clouds. For daytime retrievals, we intend to develop an appoach based on sky radiance variations. We have implemented software to detect star locations, to map image pixel space to celestial

403

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parameterization of Cloud-Radiation Interactions as Relevant to Climate Parameterization of Cloud-Radiation Interactions as Relevant to Climate Models: A New Dimension Stephens, G.L.(a), Wood, N.B.(a), Barker, H.W.(b), and Gabriel,P.(a), Colorado State University (a), Meteorological Service of Canada (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The parameterization of cloud-radiation interactions involve a number of levels of approximation. The focus of past programs like ICRCCM and I3RC have been directed largely towards assessing methods of solution while other efforts have gone into evaluating the parameterization of cloud optical properties. The parameterization of unresolved cloud variability, however, has received much less attention. A study that attempts to assess a number of the current empirical sub-grid parameterization methods has

404

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Retrieval Of Cloud Liquid Water Path For ARM Microwave Improved Retrieval Of Cloud Liquid Water Path For ARM Microwave Radiometers Liljegren, J.C., Ames Laboratory Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Radiation Measurement (ARM) Program has deployed dual-frequency microwave water radiometers (MWRs) at its Cloud and Radiation Testbed (CART) sites in the U. S. Southern Great Plains (SGP), the Tropical Western Pacific (TWP), and the North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO). Although the integrated water vapor amount provided by these instruments has enjoyed increasing application, the primary purpose of these instruments has been to provide measurements of the integrated liquid water path in clouds. The liquid water path measurements have been widely used by ARM investigators to test cloud life cycle

405

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stratus Microphysical Parameters Using Radar and Visible Stratus Microphysical Parameters Using Radar and Visible Optical Depth Austin, R.T. and Stephens, G.L., Colorado State University, Fort Collins Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A new algorithm for the retrieval of stratus cloud microphysical parameters was introduced last year and applied to measurements of maritime stratus clouds off the coast of California. The retrieval has been refined and applied to data from the Southern Great Plains CART site, as well as to the original California marine measurements. The poster will describe these refined results, discuss error analysis of the algorithm, show how the retrieval compares with analogous radar-only retrievals, and discuss other products and benefits of the algorithm's estimation theory formulation

406

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrievals of Vertical Profiles of Cloud Ice Mass and Particle Retrievals of Vertical Profiles of Cloud Ice Mass and Particle Characteristic Size from MMCR Data Matrosov, S.Y.(a), Heymsfield, A.J.(b), Shupe, M.D.(c), and Korolev, A.V.(d), CIRES, University of Colorado and NOAA ETL (a), NCAR (b), STC (c), Canadian Atmospheric Service (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting A remote sensing method is proposed for the retrievals of vertical profiles of ice cloud microphysical parameters from ground-based measurements of radar reflectivity and Doppler velocity with a vertically pointed cloud radar. This method relates time-averaged Doppler velocities (which are used as a proxy for the reflectivity weighted particle fall velocities) to particle characteristic sizes such as median or mean. With estimated

407

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectral Characterization of the Scattering and Absorption of Solar Spectral Characterization of the Scattering and Absorption of Solar Radiation by Aerosols and Clouds: Results from Several Recent Field Studies Pilewskie, P.(a), Rabbette, M.(b), Bergstrom, R.(b), Pommier, J.(b), and Howard, S.(b), NASA Ames Research Center (a), Bay Area Environmental Research Institute (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Efforts to reduce the uncertainty in climate forcing due to the radiative effects of aerosols and clouds have led to the improvement of radiometric sensors used to measure the spectral distribution of solar radiation in the atmosphere. Because much of our current understanding of the solar radiation budget is derived from broadband (spectrally integrated) observations, newer spectrally resolved observations need to be examined in

408

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photoacoustic Instrument for Measurement of Aerosol or Gaseous Light Photoacoustic Instrument for Measurement of Aerosol or Gaseous Light Absorption Arnott, W.P., Moosmuller, H., and Rogers, C.F., Desert Research Institute Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting A photoacoustic instrument has been developed and evaluated for measurement of aerosol light absorption. This instrument produces a direct measure of absorption by use of a calibrated microphone and determination of laser power, in contrast to filter methods that require empirical calibration and are subject to strong effects of aerosol extinction. The instrument was evaluated during the winter of 1996-97 in Brighton, Colorado, during the North Front Range Air Quality Study (NFRAQS). Results of the instrument intercomparison with other methods during NFRAQS will be given along with

409

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Clear-Sky Diffuse 'Problem' at SGP: RSS Data & Analysis The Clear-Sky Diffuse 'Problem' at SGP: RSS Data & Analysis Harrison, L., Kiedron, P., and Min, Q., State University of new York, Albany Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting We analyze the spectral RSS data from the fall of 1999, when there were an unusual series of clear-sky cloud-free days at SGP. The RSS makes measurements of the spectral diffuse/direct ratio which are independent of calibration. We also extract typical optical depth analyis data from Langley regressions, and we retrieve column NO2 from correlation spectroscopy. We show that column NO2 is often well above clean-climatological background at SGP, and that this interacts with simple forms of aerosol-optical depth retrievals (which do not account for this)

410

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parameterizing the Radiative Properties of Midlatitude Clouds Parameterizing the Radiative Properties of Midlatitude Clouds Sassen, K. (a), Comstock, J.M. (b), and Wang, Z. (a), University of Utah (a), Pacific Northwest National Laboratory (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A major goal of the ARM program is to obtain the requisite information needed to improve the treatment of the radiative effects of clouds in large-scale models that ultimately must be relied on to predict the impact of human-induced activities on global climate change. The clouds of the middle and upper troposphere are especially difficult to treat because of their variable optical properties, which range from optically thin in the visible, and graybody emitters in the infrared, to dense blackbody emitters. Approaches to obtain this information involve the development of

411

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Approach for Obtaining Advection Profiles: Application to the SHEBA A New Approach for Obtaining Advection Profiles: Application to the SHEBA Column Morrison, H.(a) and Pinto, J.O.(b), University of Colorado (a), NCAR/University of Colorado (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Time-averaged vertically-integrated 3-D advections are inferred from heat and moisture budgets obtained from observations at SHEBA for April, May, June and July. Advection was a source of heat and moisture in the column budgets during the time period, balanced mostly by precipitation and radiative cooling. These inferred advections are used to evaluate and correct the 3D temperature and water vapor advection profiles obtained from operational forecasts of the ECMWF model. Advections from the ECMWF model are generally too warm and moist, particularly in July. These biases lead

412

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Use of the ARM WSI to Estimate the Atmospheric Optical Depth at Night The Use of the ARM WSI to Estimate the Atmospheric Optical Depth at Night Musat, I.C. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The shortwave extinction by atmospheric constituents can be studied during the night, with the light of stars as a radiation source, using the ARM Whole Sky Imager (WSI). The digital images obtained with the WSI are processed to infer the star radiance at the TOA and the broadband atmospheric extinction coefficient. Subsequently, the broadband extinction is calculated from an atmosphere model, and the goodness of fit of the model with observations is assessed taking into account the known profiles of temperature, pressure, columnar mixing ratios of the gases, diverse

413

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long-Period Variations of UV-B Radiation From Results of Ozone Long-Period Variations of UV-B Radiation From Results of Ozone Reconstruction from Dendrochronologic Data Zuev, V.V. and Bondarenko, S.L., Institute of Atmospheric Optics Russian Academy of Sciences Tomsk, Russia Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The thickness of stratospheric ozone layer modulates the level of UV-B radiation reaching the surface without cloudiness. The high level of UV-B radiation causes a stress of vegetation including trees. The stress-induced changes in physiologic processes are reflected in tree ring characteristics. The multi-centennial history of ozonosphere behavior is contained in annual tree rings on the basis of response to UV-B radiation effect. The dendrochronologic time series are statistically representative,

414

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluating Stochastic Radiative Transfer Evaluating Stochastic Radiative Transfer Lane, D.E. (a), Somerville, R.C.J. (b), and Iacobellis, S.F. (b), CIRES, University of Colorado, Boulder (a), Scripps Institution of Oceanography, University of California, San Diego (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Stochastic modeling is a promising technique for representing shortwave radiative transfer through scattered, low-level clouds. A distinct advantage of this approach is that a stochastic model can accurately calculate the radiative heating rates through a broken cloud layer without requiring an exact description of the cloud geometry. In this paper a single-column model is employed to quantify the influence of the stochastic approach on model thermodynamics for times when broken cloud fields were

415

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Aerosol Properties Within and Above the Atmospheric Boundary Comparison of Aerosol Properties Within and Above the Atmospheric Boundary Layer at the ARM SGP Site Delle Monache, L.(a), Perry, K.D.(a), and Cederwall, R.T.(b), San Jose State University (a), Lawrence Livermore National Laboratory (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The objective of this work is to determine under what conditions, if any, measurements of aerosol properties made at the surface at the ARM SGP Central Facility are representative of aerosol properties within the column of air above the surface. This is important in assessing the value of data collected at the ARM Aerosol Observation System (AOS) for developing and diagnosing cloud and radiation parameterizations involving aerosol properties within and above the atmospheric boundary layer (ABL). The study

416

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Assessment of Upper Tropospheric Humidity Measurements at the ARM An Assessment of Upper Tropospheric Humidity Measurements at the ARM SGP/CART Site Soden, B.J. (a), Turner, D.D. (b), and Goldsmith, J.E.M. (c), NOAA/GFDL (a), Pacific Northwest National Laboratory (b), Sandia National Laboratories (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Upper tropospheric water vapor plays a key role in regulating the flow of radiation through clear skies and the formation and dissipation of clouds. Unfortunately, due to the difficulty of accurately measuring this quantity, it remains a key uncertainty in GCM predictions of climate change. Much of the uncertainty surrounding upper tropospheric water vapor reflects an incomplete understanding of the processes which regulate its distribution and variations. This, in turn, reflects the lack of suitable observations

417

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sub-Grid-Scale Isentropic Transports on McRAS Evaluations Sub-Grid-Scale Isentropic Transports on McRAS Evaluations Using ARM-CART SCM Datasets Sud, Y.C., Walker, G.K., and Tao, W.-K., Climate and Radiation Branch, Laboratory for Atmospheres, NASA/Goddard Space Flight Center Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Influence of Sub-grid-Scale Isentropic Transports on McRAS: Evaluation using ARM-CART SCM Datasets. Y. C. Sud, G. K. Walker and W.-K. Tao In GCM-physics evaluations with the currently available ARM-CART SCM datasets, McRAS produced very similar character of near surface errors of simulated temperature and humidity containing typically warm and moist biases near the surface and cold and dry biases aloft. We argued it must have a common cause presumably rooted in the model physics. Lack of vertical adjustment

418

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Change of Atmospheric Boundary Layer Thermal Regime Induced by Aerosol as Change of Atmospheric Boundary Layer Thermal Regime Induced by Aerosol as Measured by MTP-5 Koldaev, A.V.(a), Kadygrov, E.N.(a), Khaikine, M.N.(a), Kuznetsova, I.N.(b), and Golitsyn, G.S.(c), Central Aerological Observatory (a), Hydrometeorological Center (b), A.M.Obukhov Institute of Atmospheric Physics Russian Academy of Science (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Change in atmospheric boundary layer (ABL) radiation balance as caused by natural and anthropogenic reasons is an important topic of ARM Project. The influence of aerosol while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region with the transport of combustion products from peat and

419

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimation of Temperature Effect of Fires Near Moscow in Summer-Fall 2002 Estimation of Temperature Effect of Fires Near Moscow in Summer-Fall 2002 Mokhov, I.I. and Gorchakova, I.A., Obukhov Institute of Atmosphere Physics RAS, Russia Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Local effect of cooling ΔT due to peatbog and forest fires near Moscow in summer-fall 2002 is estimated. These estimates are based on coordinated measurements at the Zvenigorod Scientific Station (55°42'N, 36°46'E) of our Institute. Continuous measurements of radiation balance components at the surface together with meteorological and aerological observations and determination of the aerosol optical depth τ were used to calculate the aerosol radiative forcing (ARF) at the surface ARF(0), at the top of the atmosphere ARF(∞), and for the whole atmosphere ARF (∞)- ARF(0).

420

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Crops to Boundary Layer and Back Down Again: the ARM Carbon Project in From Crops to Boundary Layer and Back Down Again: the ARM Carbon Project in the Southern Great Plains Torn, M.S.(a), Berry, J.(b), Riley, W.J.(a), Fischer, M.L.(a), Billesbach, B.(c), Helliker, B.(b), and Giles, L.(b), Lawrence Berkeley National Laboratory (a), Carnegie Institution of Washington (b), University of Nebraska (c) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting One of the challenges in carbon cycle research is the vast range of scale that must be traversed by measurements and models. Our understanding of carbon cycle processes is being built from studies of enzymes, organisms and plot-scale studies of ecosystems, while our ultimate objective is to understand the mass and isotope balance of earth’s atmosphere. Spanning

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Surface Shortwave Radiation Budget in the ECMWF Forecast System The Surface Shortwave Radiation Budget in the ECMWF Forecast System Morcrette, J.-J., European Centre for Medium-Range Weather Forecasts, United Kingdom Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The surface shortwave radiation (SSR) produced by the ECMWF forecast system since 1989 is studied with reference to the various versions of the shortwave radiation scheme. For the latest 6-spectral interval version, model SSR is compared with surface radiation measurements for recent periods, available as part of the Baseline Surface Radiation Network (BSRN), Surface Radiation Network (SURFRAD), and Atmospheric Radiation Measurement (ARM) programs. Comparisons on one-hour basis are emphasized to allow discrepancies to be more easily linked to differences between model

422

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Winter Surface Radiative Energy Exchange at NSA: Cloudy vs. Clear Sky Winter Surface Radiative Energy Exchange at NSA: Cloudy vs. Clear Sky Stramler, K.(a), Del Genio, A.D.(b), and Rossow, W.(b), Columbia University (a), NASA/GISS (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM measurements at Point Barrow, Alaska show that atmospheric emission drives the winter variability of the surface radiative energy exchange, as the incursion of air masses of differing properties alternately warm and cool the snow surface and the snow-ground interface. The magnitude of the surface radiative energy exchange, however, appears to be in part dictated by the more slowly varying sub-surface temperatures. This is most evident when observing the inter-annual variability of clear-sky surface net longwave radiation at NSA; winter cloudy-sky surface net longwave radiation

423

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Stratus Cloud Optical Depths Retrieved from Surface and GOES Comparison of Stratus Cloud Optical Depths Retrieved from Surface and GOES Measurements over the SGP ARM Central Facility Dong, X., and Smith, W.L. Jr., Analytical Services and Materials, Inc.; Minnis, P., NASA Langley Research Center Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting For reliable application of satellite datasets in cloud process and single column models, it is important to have a reasonable estimate of the errors in the observed cloud properties. When properly used, ground-based instruments can provide a cloud truth dataset for estimating errors in the satellite products. Data taken during the spring 1994 ARM Intensive Observation Period (IOP), ARM Enhanced Shortwave Experiment (ARESE), and SUbsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) are

424

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Numerical Tests of the Cloud-Surface Interaction Based Broken-Cloud Field Numerical Tests of the Cloud-Surface Interaction Based Broken-Cloud Field Optical Depth Retrieval: Sensitivity to Surface Albedo, Droplet Phase Function, Aerosol, and Instrument Noise Beaulne, A.(a), Barker, H.W.(b), Blanchet, J.P.(a), Pavloski, C.F.(c), Clothiaux, E.E.(c), and Marshak, A.(d), Universite du Quebec a Montreal (a), Environment Canada (b), The Pennsylvania State University (c), NASA-GSFC (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The algorithm proposed by Barker and Marshak for inferring optical depth of broken clouds using surface radiometric data has been subject to several sensitivity tests. These include the impacts of uncertainties in specification of effective local surface albedo, droplet phase function,

425

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Spectral and Broadband Measurements of Surface Flux with Comparison of Spectral and Broadband Measurements of Surface Flux with Model Calculations on Clear Days at the ARM SGP Site Arking, A. (a), Liu, F. (a), Harrison, L. C. (b), Pilewskie, P. (c), and Chou, M.-D. (d), Johns Hopkins University (a), State University of New York, Albany (b), NASA Ames Research Center (c), NASA Goddard Space Flight Center (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Observations of spectral and broadband solar irradiance at the ARM/SGP site have been compared with line-by-line model calculations. The spectral measurements were made with the SUNY Albany Rotating Shadowband Spectroradiometer (RSS) and the NASA Ames Solar Spectral Flux Radiometer (SSFR). The broadband measurements were made with the Baseline Solar

426

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Water Content at the North Slope of Alaska and the Adjacent Arctic Ocean Takara, E.E. and Ellingson, R.G., University of Maryland Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting It is well known that complete radiative transfer calculations for broken cloud fields are extremely complex and time consuming. Furthermore, the solution for a particular broken cloud field is not particularly useful for evaluating cloud effects. For that reason, is common to parameterize the cloud effects by using an effective cloud fraction. In general circulation models, it is common to use theabsolute cloud amount as the effective cloud fractions. This can be an effective for cloud fields where the cloud

427

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evidence for Aerosol Effects on AERI Clear-Sky Radiance at the SGP Evidence for Aerosol Effects on AERI Clear-Sky Radiance at the SGP Ma, Y., and Ellingson, R.G., University of Maryland Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The Atmospheric Emitted Radiance Interferometer (AERI) Line-by-Line Radiative Transfer Model (LBLRTM) Quality Measurement Experiment (QME) 10-micron window residuals have been examined relative to the Multifilter Rotating Shadowband Radiometer (MFRSR) 0.87-micron optical depth for clear-sky periods during 1997-98. The analysis shows an increasing aerosol influence on the downwelling radiance with aerosol optical depth for columnar water totals below about 3 cm. Above 3 cm, the residuals become negatively correlated with both aerosol optical depth and precipitable water. This change in the characteristics suggests that the current LBLRTM

428

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A New Water Vapor Continuum Model: MT_CKD_1.0 A New Water Vapor Continuum Model: MT_CKD_1.0 Mlawer, E.J.(a), Clough, S.A.(a), and Tobin, D.C.(b), Atmospheric and Environmental Research, Inc. (a) University of Wisconsin - Madison (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting For the first time since its inception, a new formulation for the CKD approach to the water vapor continuum has been generated. This new version is designated MT_CKD_1.0. The original CKD formulation, derived in 1980 based upon laboratory measurements due to Burch and collaborators, applied an empirically derived multiplicative factor (different for the self and foreign continua) to the line wing of the impact line shape. This resulted in a line shape that was super-Lorentzian in the near and intermediate line

429

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preliminary Analysis of Horizontal Inhomogeneity for ARESE II Clouds Preliminary Analysis of Horizontal Inhomogeneity for ARESE II Clouds Marshak, A. (a), Wiscombe, W.J. (b), Davis, A.B. (c), and Pilewskie, P. (d), UMBC/JCET (a), NASA/GSFC (b), LANL (c), NASA/Ames (d) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM Enhanced Shortwave Experiment (ARESE) II was conducted at the SGP site from February 21 through April 15, 2000. The identical set of radiometers simultaneously measured the broadband and narrowband fluxes, as well as spectral fluxes and radiances from the aircraft flying above clouds and on the ground. To escape sampling problems with only one aircraft flying a daisy pattern over the central facility, the whole experiment was focused on optically thick stratocumulus clouds. However, even heavy stratus clouds

430

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Retrieval of Mean Cosine of Aerosol Phase Function from Extinction and Sky Retrieval of Mean Cosine of Aerosol Phase Function from Extinction and Sky Brightness Measurements Zhuravleva, T.B.(a), Sviridenkov, M.A.(b), and Anikin, P.P.(b), Institute of Atmospheric Optics SB RAS, Tomsk, Russia (a), A.M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Asymmetry of the aerosol phase function together with optical thickness drive the magnitude of the aerosol radiative forcing. Two approaches are usually used to obtain the mean cosine of the phase function retrieval of the single scattering phase function from sky brightness measurements or calculations for the given aerosol size distribution and refractive index. We studied the possibility to determine the mean cosine directly from

431

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development and Comparison of Ground- and Satellite-based Retrievals of Development and Comparison of Ground- and Satellite-based Retrievals of Cirrus Cloud Physical Properties d'Entremont, R.P.(a) and Mitchell, D.L.(b), Atmospheric and Environmental Research, Inc. (a), Desert Research Institute (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting This project is designed to (1) develop new ground- and space-based retrieval methods for cirrus cloud ice water path (IWP), effective size (Deff), and visible extinction optical thickness (OT) using thermal infrared wavelength bands from 3.7 to 13 um, and (2) to compare these retrievals with others obtained by ARM investigators during various ARM IOPs. During year 1 of this project research focused primarily on the enhancing of satellite- and ground-based thermal infrared retrievals of

432

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Day-Night Continuity in Retrievals of Cloud Properties from Evaluation of Day-Night Continuity in Retrievals of Cloud Properties from GOES Heck, P.W.(a), Minnis, P.(b), Khaiyer, M.M.(a), Smith, Jr., W.L.(b), Young, D.F.(b), and Nguyen, L.(b), Analytical Services & Materials, Inc. (a), NASA Langley Research Center (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Currently, multi-spectral algorithms are being used to retrieve microphysical and radiative cloud p roperties from Geostationary Operational Environmental Satellite (GOES) imagery in a near-real time over a domain that includes the ARM Southern Great Plains (SGP) site. The Visible-Infrared-Solar i nfrared-Split window Technique (VISST) and Solar infrared- Infrared-Split window Technique (SIST) a re applied to half-hourly GOES data. The VISST is utilized during daylight hours while

433

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GPS Measured Water Vapor Variability at the ARM SGP CF GPS Measured Water Vapor Variability at the ARM SGP CF Braun, J. (a), Rocken, C. (a), and Schmid, B. (b), UCAR (a), BAER (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Ground based Global Positioning System (GPS) stations can measure precipitable water vapor (PWV) and slant water vapor (SWV). SWV is the integrated amount of water vapor along the slant path from the GPS transmitter to the station. The ARM program has sponsored the University Corporation for Atmospheric Research (UCAR) to install and operate a network of single frequency GPS receivers at the Southern Great Plains (SGP) Central Facility (CF). Fourteen stations were installed in 1999, and an additional nine stations in 2000. The entire network covers approximately 40 square kilometers roughly centered around the SGP CF. This

434

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Continuous Baseline Microphysical Retrieval (MICROBASE): Status of SGP A Continuous Baseline Microphysical Retrieval (MICROBASE): Status of SGP Version 1.2 and Prototype TWP Version Miller, M.A.(a), Johnson, K.L.(a), Jensen, M.P.(b), Mace, G.G.(c), Dong, X.(d), and Vogelmann, A.M.(a), Brookhaven National Laboratory (a), Columbia University (b), University of Utah (c), University of North Dakota (d) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The interaction of clouds with incoming and outgoing radiation streams produces discontinuous regions of heating and cooling within the atmospheric column. These regions can influence the atmospheric circulations at multiple scales, as well as modify the existing cloud structures. The Broadband Heating Rate Project (BBHRP) within ARM has the goal of producing instantaneous snapshots of the heating and cooling rate

435

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization and Calibration of the Commercial RSS Slated for Permanent Characterization and Calibration of the Commercial RSS Slated for Permanent Deployment at SGP Kiedron, P., Berndt, J., Yager, E., Harrison, L., and Michalsky, J., Atmospheric Sciences Research Center, SUNY at Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM program purchased a rotating shadowband spectroradiometer (RSS) that was manufactured by Yankee Environmental Systems, Inc. At ASRC the instrument went through initial acceptance tests and after corrections and modifications made by the manufacturer the instrument was characterized. The angular response, linearity, wavelength registration, out-of-band rejection, slit function, absolute spectral response and noise were measured. The purpose of instrument characterization is to provide the

436

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3-D Reconstruction of a Regional-Scale Cloud Field from Satellite Data 3-D Reconstruction of a Regional-Scale Cloud Field from Satellite Data for Use in a Broadband Monte Carlo Radiative Transfer Model Galinsky, V., Ramanathan, V., Boer, E., Podgorny, I., and Vogelmann, A. M., Center for Atmospheric Sciences-Scripps Institution of Oceanography Eighth Atmospheric Radiation Measurement (ARM) Science Team Meeting The absence of realistic 3-D cloud fields and their associated radiative transfer in current general circulation models (GCM) or radiative transfer models may result in large inconsistencies in the Earth's energy budget calculations. We investigate these effects by reconstructing the regional-scale, 3-D cloud field structure from multi-spectral satellite imagery. From this reconstruction, we compute the radiative fluxes using a

437

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Overview of Water Vapor IOP (WVIOP) 2000 and ARM/FIRE Water Vapor An Overview of Water Vapor IOP (WVIOP) 2000 and ARM/FIRE Water Vapor EXperiment (AFWEX) Tobin, D., Revercomb, H., and Turner, D.D., University of Wisconsin-Madison Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting WVIOP 2000 and AFWEX, two field experiments with focus on the accuracy of ARM water vapor measurements, have recently been conducted. WVIOP 2000, the third in a series of WVIOPs which have studied the accuracy of lower tropospheric water vapor measurements, ran from 18 September to 8 October 2000 and consisted of ground based operations primarily out of the SGP central facility. AFWEX was an interagency experiment with the primary goal of assessing the accuracy of upper level (~8-12 km) water vapor measurements. It was conducted from 27 November to 15 December 2000 and

438

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applications of the Aerosonde at NSA Applications of the Aerosonde at NSA Curry, J.A. and Holland, G.J., University of Colorado Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The first ARM Aerosonde flights at Barrow in April 1999 were not successful owing to the aircraft's inability to fly under severe icing conditions. However, we were sufficiently encouraged by these initial flights to pursue further developments to make feasible Aerosonde flights in the Arctic. NSF has funded a major project to establish a long-term Aerosonde facility based in Barrow. Extensive research is underway on the topic of icing mitigation. A limited but successful mission was undertaken in Barrow during August 2000. In the coming year, flights are planned for April, August 2001. We hope to be able to fly the originally proposed

439

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using a MFRSR to Calculate Direct and Diffuse Broadband Measurements from Using a MFRSR to Calculate Direct and Diffuse Broadband Measurements from Global Broadband Measurements Cornwall, C.R. (a,b), Hodges, G.B. (a,b), and DeLuisi, J.D. (b), University of Colorado Cooperative Institute for Research in Environmental Sciences (a), NOAA Air Resources Lab (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Research Objective: To infer values of direct solar irradiance using data from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and a broadband pyranometer measuring global horizontal irradiance. Methodology: The MFRSR measures global and diffuse radiation over six narrow spectral bands as well as one broadband (silicon pyranometer). Values for corresponding direct normal irradiances are automatically calculated as part of the MFRSR

440

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Pyrheliometer Comparisons - 2002 NREL Pyrheliometer Comparisons - 2002 Reda, I. and Stoffel, T.L., National Renewable Energy Laboratory Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting All broadband shortwave radiometers used by the ARM Program are calibrated with absolute cavity radiometers traceable to the World Radiometric Reference (WRR). The WRR was developed and is maintained by the World Radiation Center under the auspices of the World Meteorological Organization. Each fall, the National Renewable Energy Laboratory (NREL) hosts annual comparisons of absolute cavity radiometers at the Solar Radiation Research Laboratory in Golden, Colorado. Since 1995, NREL has maintained the Transfer Standard Group (TSG) consisting of five radiometers belonging to NREL and the ARM Program. Our poster summarizes the results of

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CAGEX Version 3: Tightening Shortwave Fluxes and Measurements of Surface CAGEX Version 3: Tightening Shortwave Fluxes and Measurements of Surface Spectral Characteristics Alberta, T.L., Analytical Services and Materials, Inc.; Charlock, T.P., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Version 3 of the CAGEX (Clouds and Earth's Radiant Energy System [CERES]/Atmospheric Radiation Measurement [ARM]/Global Energy and Water Experiment [GEWEX]) is introduced. As with Version 2 (10/95) and Version 1 (4/94), Version 3 provides input data sufficient for broadband radiative transfer calculations; fluxes computed with those inputs and the Fu-Liou code as modified by Hu, Rose and Kratz; and measurements for validation and diagnostics. Along with the usual ARM data sets (Solar and Infrared

442

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using ARM GOES-8 Cloud and TOA Flux Properties to Estimate Surface Using ARM GOES-8 Cloud and TOA Flux Properties to Estimate Surface Radiation Budget Parameters Stackhouse, P.W., Jr. (a), Gupta, S.K. (b), Cox, S.J. (b), Minnis, P. (a), Smith, W.L., Jr. (b), and Khaiyer, M.M. (b), NASA Langley Research Center (a) Analytical Services and Materials, Inc. (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget Project (SRB) uses top-of-atmosphere (TOA) radiance measurements and cloud property retrievals to estimate surface fluxes on a global basis. Normally, GEWEX SRB algorithms rely on TOA radiances and cloud information derived from International Satellite Cloud Climatology Project (ISCCP) data. Here, we show first results of using SW and LW algorithms featured in

443

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Radiosonde Humidity Measurements and Proposed Corrections ARM Radiosonde Humidity Measurements and Proposed Corrections Based On AWEX Radiosonde Intercomparisons Miloshevich, L.M.(a), Lesht, B.M.(b), and Voemel, H.(c), National Center for Atmospheric Research (a), Argonne National Laboratory (b), NOAA/CMDL (c) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting ARM radiosonde relative humidity (RH) measurements are widely used in numerical modeling, remote sensor validation, and radiative transfer calculations, yet their accuracy as a function of temperature and RH has not been adequately quantified. During the AIRS Water vapor EXperiment (AWEX) at the SGP site in November 2003, 34 launches of multiple radiosondes on the same balloon were conducted, including 12 soundings from the University of Colorado's Cryogenic Frostpoint Hygrometer (CFH). The

444

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Comparison of High Spectral Resolution Infrared Cloud Boundary Algorithms A Comparison of High Spectral Resolution Infrared Cloud Boundary Algorithms using S-HIS and AERI Measurements Holz, R.E.(a), Antonelli, P.(a), Ackerman, S.(a), McGill, M.J.(a), Nagel, F.(a), Feltz, W.F.(a), and Turner, D.D.(b), Univeristy of Wisconsin, Madison (a), Pacific Northwest National Laboratory (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Cloud top pressure is an important parameter in determining the radiative impact of clouds on climate. In addition, atmospheric temperature and moister retrievals of cloudy scenes using high spectral resolution data require the cloud altitude be known. The S-HIS is scheduled to fly on the Proteus during the upcoming M-PACE experiment. In addition to the SHIS a lidar system and an imager will accompany the SHIS during MPACE. This paper

445

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiosonde Intercomparison During the Fall 2000 Water Vapor IOP Radiosonde Intercomparison During the Fall 2000 Water Vapor IOP Lesht, B.M. (a) and Richardson, S.J. (b), Argonne National Laboratory (a), University of Oklahoma (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting We conducted 160 dual-radiosonde soundings during the fall 2000 Water Vapor Intensive Operations Period (WVIOP). The soundings were done every three hours at the SGP/CART site central facility from 1430 on 18 September 2000 through 1130 on 8 October 2000. The dual soundings included Vaisala RH-80H radiosondes from four different calibration lots as well as Vaisala RS-90 radiosondes. The radisondes were distributed during the experiment so as to conduct pairwise comparisons between RS-80s, RS-90s and RS-80s/RS-90s. Prior to the WVIOP we tested the calibration of these types of radiosondes

446

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiance Using Remotely Sensed Cloud Properties From Irradiance Using Remotely Sensed Cloud Properties From ARM's SGP Site Barker, H.W., Atmospheric Environment Service of Canada; Li, Z., Canada Centre for Remote Sensing; Clothiaux, E.E., and Ackerman, T.P., The Pennsylvania State University; Kato, S., National Aeronautics and Space Administration-Langley Research Center Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Time series of profiles of cloud water content and droplet effective radii have been inferred from data obtained by a 35-GHz radar and a Microwave Radiometer (MWR) at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) site. These profiles initialize a Monte Carlo algorithm that predicts time series of broadband surface solar irradiance, which in turn are compared with coeval measurements. Special attention is

447

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluating the NCEP Global Forecast Model Clouds Evaluating the NCEP Global Forecast Model Clouds Lazarus, S.M. (a), Krueger, S.K. (a), Jenkins, M.A. (a), and Pan, H.-L. (b), University of Utah (a), National Centers for Environmental Prediction (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting As part of a collaborative effort with the National Center for Environmental Prediction (NCEP), the University of Utah is now archiving (daily) column data from the NCEP Medium Range Forecast (MRF) model. Data are collected for 8 sites, 4 of which directly coincide with ARM facilities at Manus, Nauru, Barrow, and the Southern Great Plains (SGP) Central Facility (CF). The bevy of observational data at these locations offers a unique opportunity to evaluate model performance. Because cloud feedback

448

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sizes, Fractional Coverage, and Radar Doppler Moments Profiles of Sizes, Fractional Coverage, and Radar Doppler Moments Profiles of Fair-Weather Cumulus Clouds at the TWP ARM Site Kollias, P., Albrecht B.A., and Dow B.J., University of Miami Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Fair-weather cumuli are fundamental in regulating the vertical structure of water vapor and entropy in the lowest 2 km of the Earth's atmosphere over vast areas of the oceans. Using data from the mm-wavelength cloud radar, the micro-pulse lidar and ceilometer at the Nauru (TWP-ARM) site, a statistical description of the field of fair weather cumulus is inferred. Frequency diagrams of cloud thickness, fractional coverage, updraft-downdraft magnitudes and cloud reflectivity are calculated. The relationship of the statistical behavior of the cumulus field to the

449

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Base Height Cloud Base Height Kassianov, E., Long, C., and Christy, J., Pacific Northwest National Laboratory Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting We have suggested a method for estimating Cloud Base Height (CBH) by using paired ground-based Total Sky Imagers (TSI) hemispherical observations (Kassianov and Long, 2003). Our results of the model-output inverse problem showed that, for broken clouds (single layer), moderately accurate CBH retrieval is possible. Both a TSI and a Hemispherical Sky Imager (HSI) were run simultaneously during the ARM Cloudiness Intercomparison IOP (Oklahoma, 2003). We use the data from these two instruments to evaluate the suggested method. We perform the CBH retrieval for a few fields of broken clouds (occurring at different altitudes) by using the suggested method. Then we

450

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Application of a Non-local Turbulence Closure Scheme to a Single Column Application of a Non-local Turbulence Closure Scheme to a Single Column Model Ghan, S.J. (a) and Moeng, C.-H. (b), Pacific Northwest National Laboratory (a), National Center for Atmospheric Research (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting A non-local countergradient transport term is added to a turbulence kinetic energy scheme embedded in a single column model (SCM). The countergradient term is expressed in terms of a planetary boundary layer (PBL) velocity scale, the vertical profile of diffusivity, the depth of the PBL, and the fluxes of heat and moisture at the surface and at the top of the PBL. The fluxes at the top of the PBL are expressed in terms of the cloud top radiative cooling rate, the jump in liquid potential temperature and total

451

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud-Resolving Simulations of Boundary-Layer Cloud Regimes with a Cloud-Resolving Simulations of Boundary-Layer Cloud Regimes with a Third-Order Turbulence Cheng, A.(a,b) and Xu, K.-M.(a), Atmospheric Sciences, NASA Langley Research Center (a), Hampton University (b) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting LES (large eddy simulation) models can explicitly resolve large turbulent eddies, which contain m ost of the turbulent kinetic energy and do most of the transport in the boundary layer. These edd ies have to be parameterized in cloud-resolving models (CRMs), which have much coarser resolution . A sophisticated turbulent parameterization is needed in order to produce adequate simulations o f cloud processes in CRMs. Most CRMs use a one- and a half-order prognostic turbulent kinetic ene rgy closure. Third-order

452

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Properties Over the North Slope of Alaska: A Comparison of Properties Over the North Slope of Alaska: A Comparison of Ground-Based and Space-Based Retrievals Storvold, R.(a), Marty, C.(a), Xiong, X.(b), Stamnes, K.H.(c), and Zak, B.D.(d), University of Alaska Fairbanks (a), QSS group Inc. (b), Stevens Institute of Technology (c), Sandia National Laboratories (d) Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting In the Arctic there is a large seasonal variability in cloud cover, cloud base height, and cloud liquid water content. Cloud properties above the ARM/NSA CART site in Barrow are retrieved using a suite of different instruments and retrieval techniques. Daily and monthly averages of the cloud properties are derived for a full annual cycle using data from LIDAR, Whole Sky Imager, Cloud Radar, Micro Wave Radiometer, and Broadband

453

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Longwave Irradiance Uncertainty Atmospheric Longwave Irradiance Uncertainty Philipona, R. (a), Dutton, E.G. (b), Wood, N. (b), Anderson, G. (b), Stoffel, T. (c), Reda, I. (c), Michalsky, J.J. (d), Wendling, P. (e), Stiffter, A. (e), Clough, S.A. (f), Mlawer, E.J. (f), Revercomb, H. (g), and Shippert, T. (h), World Radiation Center, Davos, Switzerland (a), NOAA, Climate Monitoring and Diagnosic Laboratory (b), National Renewable Energy Laboratory (c), State University of New York at Albany (d), DLR, Oberfaffenhofen, Germany (e), Atmospheric and Environmental Research Inc. (f), University of Wisconsin-Madison (g), Pacific Northwest National Laboratory (h) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The first International Pyrgeometer and Absolute Sky-scanning Radiometer

454

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of an Improved Longwave Radiation Model, RRTM, on the Energy Budget Impact of an Improved Longwave Radiation Model, RRTM, on the Energy Budget and Thermodynamic Properties of the NCAR Climate Model, CCM3 Iacono, M.J., Mlawer, E.J., and Clough, S.A., Atmospheric and Environmental Research, Inc. Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting The effect of introducing a new longwave radiation parameterization, Rapid Radiative Transfer Model (RRTM), on the energy budget and thermodynamic properties of Version 3 of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3) will be presented. RRTM is a rapid and accurate k-distribution radiative transfer model that has been developed for the Atmospheric Radiation Measurement (ARM) Program. Among the important features of the RRTM are its connection to radiation

455

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A High Spectral Resolution Lidar for the Arctic - A Progress Report A High Spectral Resolution Lidar for the Arctic - A Progress Report Eloranta, E.W., Razenkov, I., Kuehn, R., Holz, R., Hedrick, J., and Garcia, J., University of Wisconsin-Madison Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The University of Wisconsin is constructing a High Spectral Resolution Lidar for deployment in the Arctic. It is designed to operate as an internet appliance and require minimal attention from an onsite attendent. It will provide continuous well calibrated profiles of optical depth, cloud phase and backscatter cross sections. Deployment at the Point Barrow ARM facility is proposed. This poster will describe progess to date. Initial testing has demonstrated that the shared transmitter/reciever telescope design functions properly. While this approach eliminates alignment

456

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detection of Thin Cirrus Using MODIS 1.38 Micron Reflection Detection of Thin Cirrus Using MODIS 1.38 Micron Reflection Roskovensky, J.K. and Liou, K.N., University of California, Los Angeles Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting The 1.38 µm channel on board MODIS may have significant advantage in detecting thin cirrus over existing methods due to its high sensitivity to upper tropospheric clouds and a nearly negligible sensitivity to low level reflectance. To investigate this potential, three different cloud schemes are employed. One based on the MODIS Cloud Mask Product (MOD35) which utilizes both visible and 1.38 µm reflectance thresholds. The second is a modified version of the cloud phase detection scheme presented in the paper by Ou et al (1996) that incorporates a series of visible, near and far

457

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterizing Diurnal CO2 Cycles in the Continental Boundary Layer Using Characterizing Diurnal CO2 Cycles in the Continental Boundary Layer Using Precise Concentration Measurements and a Simple Numerical Model Torn, M.S.(a), Riley, W.(a), Rischer, M.L.(a), Biraud, S.(a), and Berry, J.(b), Lawrence Berkeley National Laboratory (a), Carnegie Institution of Washington (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In continental regions, atmospheric CO2 profiles are strongly influenced by atmospheric dynamics as well as ecosystem and anthropogenic fluxes. Relating site level measurements or atmospheric profiles to regional CO2 budgets may require methods to represent or evaluate these influences. At the Southern Great Plains ARM-CART, we are measuring precise CO2 concentrations continuously at 2-60 m and weekly at 300 and 3300 m agl. CO2

458

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Seasonal Variability in Cloud Cover, Cloud Base Height, and Cloud Liquid Water Content at the North Slope of Alaska and the Adjacent Arctic Ocean Storvold, R. (a), Stamnes, K. (b), Marty, C. (a), and Zak, B.D. (c), University of Alaska Fairbanks (a), Stevens Institute of Technology (b), Sandia National Laboratories (c) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting There is great seasonal variability in cloud cover, cloud base height, and cloud liquid water in the Arctic. This seasonal variability in cloud properties has been quantified based on a full year of data from the Atmospheric Radiation Measurement Program Sites in Barrow and Atqasuk during 1999-2000. We compare these results with similar results obtained in the Arctic Ocean during the one-year SHEBA experiment. We also compare the

459

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spectral Diffuse Irradiance in UV, VIS, and NIR During the 2001 Diffuse IOP Spectral Diffuse Irradiance in UV, VIS, and NIR During the 2001 Diffuse IOP Kiedron, P., Michalsky, J., Berndt, J., Min, Q., and Harrison, L., Atmospheric Sciences Research Center, SUNY Albany, New York Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Two rotating shadowband spectroradiometers (RSS) participated in the 2001 Diffuse IOP. The UV-RSS covered the 300-360 nm range and the VIS-NIR RSS covered 360-1050 nm. Both instruments were calibrated with NIST traceable spectral irradiance. The two instruments were able to measure approximately 95% of total diffuse radiation for clear-sky conditions. The missing shortwave infrared beyond 1050 nm is estimated with a model in order to calculate a total shortwave irradiance. The results are compared with

460

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tropical Cloud Radiative Forcing and the Large-Scale Atmospheric Energy Tropical Cloud Radiative Forcing and the Large-Scale Atmospheric Energy Transport Tian, B. (a) and Ramanathan, V. (b), Scripps Institution of Oceanography, UCSD Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Moist static energy is exported within the atmosphere column, from equatorial latitudes to the subtropics by the Hadley circulation and from the western Pacific warm pool to the eastern Pacific cold tongue by the Walker circulation. It is the net energy fluxes into the atmosphere, i.e., the radiative and the turbulent latent and sensible heat fluxes from surface and the radiative flux at the top of the atmosphere, that maintain this energy transport and balance the resulting divergence of energy. We demonstrate here that the dominant term that provides the balance is the

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Cloud-Radiative Properties from Regional Very-High-Resolution Comparison of Cloud-Radiative Properties from Regional Very-High-Resolution Modeling and Satellite Retrievals Wang, D.-H. (a,b) and Minnis, P.(b), Hampton University (a), NASA Langley Research Center (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting Data from a regional very-high-resolution modeling/assimilation and the GOES satellite-derived cloud-radiative properties including cloud fraction, temperature, height, thickness, phase, optical depth, effective particle size and ice or liquid water path; and TOA fluxes and albedos, are used in this study. The preliminary results of the intercomparison show that the cloud fields from model and satellite-derived compare well. The frequencies are computed for the individual cloud system. Comparisons of frequency

462

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Differences in Cloud Characteristics at Barrow and Atqasuk at the NSA/AAO Differences in Cloud Characteristics at Barrow and Atqasuk at the NSA/AAO CART Doran, J.C., Barnard, J.C., Zhong, S., and Jakob, C., Pacific Northwest National Laboratory Pacific Northwest National Laboratory, European Centre for Medium-Range Weather Forecasting Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Data obtained from multifilter rotating shadowband radiometers (MFRSRs) and microwave radiometers (MWRs) have been used to examine the differences in the cloud characteristics at Barrow and Atqasuk during the period June-September of 1999. Because the size of a grid cell in a GCM may be on the order of 100 km or more, it is important to determine to what extent meteorological and radiometric observations made at Barrow or Atqasuk

463

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shortwave and Longwave Flux and Cooling Rate Profiles for the ARM Central Shortwave and Longwave Flux and Cooling Rate Profiles for the ARM Central Facility Clough, S.A. (a), Delamere, J.S. (a), Mlawer, E.J. (a), Cederwall, R.T. (b), Revercomb, H. (c), Tobin, D. (c), Turner, D.D. (c), Knuteson, R.O. (c), Michalsky, J.J. (d), Kiedron, P.W. (d), Ellingson, R.G. (e), Krueger, S.K. (f), Mace, G.G. (f), Shippert, T. (g), and Zhang, M.H.(h), Atmospheric and Environmental Research, Inc. (a), Lawrence Livermore National Laboratory (b), University of Wisconsin-Madison (c), State University of New York, Albany (d), University of Maryland (e), University of Utah (f), Pacific Northwest National Laboratory (g), State University of New York, Stony Brook (h) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Accurate representations of the cooling rate profile, the surface flux and

464

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an Improved Convective Triggering Mechanism in the NCAR CAM2 an Improved Convective Triggering Mechanism in the NCAR CAM2 under the CCPP-ARM Parameterization Testbed (CAPT) Framework Xie, S.C.(a), Cederwall, R.T.(a), Potter, G.L.(a), Boyle, J.S.(a), Yio, J.J.(a), Zhang, M.H.(b), and Lin, W.Y.(b), Lawrence Livermore National Laboratory (a), State University of New York at Stony Brook (b) Fourteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting In this study, we implement an improved convective triggering mechanism, which was developed by Xie and Zhang [2000] based on the ARM observations and Single-Column Model (SCM) tests, in the NCAR Community Atmosphere Model (CAM2) in order to reduce the problem that the model produces excessive warm season daytime precipitation over land. This problem is closely

465

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Particle Size Distributions Estimated During the 2001 Multi-Frequency Radar Particle Size Distributions Estimated During the 2001 Multi-Frequency Radar IOP Williams, C.R.(a) and Sekelsky, S.M.(b), University of Colorado at Boulder (a), University of Massachusetts at Amherst (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The 2001 Multi-Frequency Radar Intensive Operational Period (IOP) was designed to collect a long dataset of W-band (95 GHz), Ka-band (35 GHz), and S-band (2.8 GHz) vertical profiling observations to investigate insect scattering and precipitating particle scattering above the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. The 95 and 2.8 GHz vertically pointing radars were placed next to the permanently installed 35 GHz Millimeter Wave Cloud Radar (MMCR) at the SGP Central Facility from

466

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation of TERRA MODIS Cloud Properties Using Ground-Based Measurements Validation of TERRA MODIS Cloud Properties Using Ground-Based Measurements at the DOE ARM SGP Site Dong, X.(a), Xi, B.(a), Minnis, P.(b), Wielicki, B.(b), Sun-Mack, S.(c), Chen,Y.(c), and Mace, G.G.(d), University of North Dakota (a), NASA/Langley Research Center (b), SAIC, Inc. (c), University of Utah (d) Cloud macrophysical and microphysical/optical properties derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra as part of the Clouds and the Earth's Radiant Energy System (CERES) project during February 2000-December 2001 are compared to simultaneous ground-based observations. The ground-based data taken over the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site are used as cloud truth data set in the validation of the CERES Science Team derived

467

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The ARM Blue/Green Period: 3-Channel Color Composites of GOES-8 Data The ARM Blue/Green Period: 3-Channel Color Composites of GOES-8 Data Wagener, R., and Gregory, L., Brookhaven National Laboratory, ARM External Data Center Konidaris, N., Carnegie Mellon University; Minnett, P.J., University of Miami, Rosenstiel School of Marine and Atmospheric Sciences Ninth Atmospheric Radiation Measurement (ARM) Science Team Meeting Despite the title and the general appearance of the resulting images, this is not an attempt to emulate art nor an expression of anybody's mood. It is simply an attempt to condense as much information as possible about a day's worth of Geostationary Operational Environmental Satellite (GOES) data onto a single web page. A 24-bit red, green, blue (RGB) color composite is derived by assigning the reflectivity in the GOES-8 visible channel to red,

468

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parameterization of Hygroscopic Aerosols in a Climate GCM Parameterization of Hygroscopic Aerosols in a Climate GCM Lacis, A.A., Mishchenko, M.I., and Carlson, B.E., Goddard Institute for Space Studies Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting Real and imaginary refractive indices are needed over the full range of solar and thermal wavelengths in order to compute the radiative forcing due to atmospheric aerosols. Laboratory measurements are available for dry ammonium sulfate [Toon and Pollack, 1976] over the spectral range 0.3 – 40 ?m, and for dry sea salt [Shettle and Fenn, 1979; Nilsson, 1979; both based on Volz, 1972 measurements] over 0.2 – 40 ?m. Partial spectrum measurements from 0.7 to 2.6 ?m of the imaginary refractive index of ammonium sulfate and ammonium nitrate are also available [Gosse et al.,

469

ARM - Publications: Science Team Meeting Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiative Forcing of Arctic Boundary Layers During SHEBA Radiative Forcing of Arctic Boundary Layers During SHEBA Pinto, J.O., Mirocha, J., Reeder, R.A., and Curry, J.A., University of Colorado Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Field measurements obtained during the Surface Heat Budget of the Arctic (SHEBA) experiment are used to ascertain the importance of radiation in the evolution of the Arctic boundary layer. Radiation effects the boundary layer structure through the vertical flux divergence of longwave and shortwave fluxes as well as through radiative heating/cooling of the surface which determines the sensible heat flux. The mean and turbulence structure of the both clear and cloud boundary layers in winter, spring and summer are determined from aircraft data, radiosonde soundings, the ASFG

470

Project team : Daylighting The New York Times Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project team Project team Overview The architectural approach The owner's approach Daylighting field study Daylighting control systems Automated roller shades Procurement specifications Shades and Shade Controls Lighting Controls Visualizing daylight Commissioning/ verification Demand response Mainstream solutions Post-occupancy evaluation Publications Sponsors Project team Project team To contact the following individuals, please call the number listed or enable JavaScript within your browser's preferences. The New York Times Company Angelo Salvatore Executive Director of Building Operations Patrick Whelan Facilities Director Glenn Hughes Director of Construction/ Real Estate David Thurm Chief Information Officer Hussain Ali-Khan Vice President, Real Estate Development

471

Clean Energy Resource Teams (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Resource Teams (Minnesota) Resource Teams (Minnesota) Clean Energy Resource Teams (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Industry Recruitment/Support Clean Energy Resource Teams (CERTs) are community-based groups stemming from a state, university, and nonprofit partnership to encourage community

472

Thrust Areas & Research Teams | HeteroFoaM Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HeteroFoaM Center combines teams of researchers in specific thrust areas to build a bridge between creative design and synthesis and the multiphysics, multiscale modeling of...

473

Deputy Secretary Poneman Announces Team led by Oak Ridge National...  

Office of Environmental Management (EM)

Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab Selected to Receive up to 122 Million for Nuclear Energy Innovation Hub Deputy Secretary Poneman Announces...

474

Energy Department Sends First Energy Saving Team to Federal Government...  

Energy Savers [EERE]

The team, made up of energy savings experts, will assess the facility's energy usage with the goal of not only improving efficiency, but also reducing energy costs....

475

2015 Race to Zero Student Design Competition Team Template  

Broader source: Energy.gov [DOE]

Template for student teams to provide a project summary, strategy, data, and technical specifications for the 2015 Race to Zero Student Design Competition.

476

Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 3  

Broader source: Energy.gov [DOE]

This document details the Solar Technical Assistance Team (STAT) Summer Webinar Series: Webinar 3: Solar Technology Options and Resource Assessment Question & Answer Session on August 15, 2012.

477

TEAM CUMBERLAND MEETING - November 13, 2013 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Center Hill Project Update Wolf Creek Dam Update Customer Funding Project Report Hydroelectric Design Center Introduction More Documents & Publications TEAM CUMBERLAND MEETING -...

478

Lab team makes unique contributions to the first bionic eye  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab team makes unique contributions to the first bionic eye The Argus II will help people blinded by the rare hereditary disease retinitis pigmentosa or seniors suffering from...

479

Lab team makes unique contributions to the first bionic eye  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

eye Lab team makes unique contributions to the first bionic eye The Argus II will help people blinded by the rare hereditary disease retinitis pigmentosa or seniors suffering...

480

Federal Efficiency Program Wins GreenGov Dream Team Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Partnered with the Department of Transportation (DOT), EEREs Federal Energy Management Program (FEMP) won the GreenGov Presidential Green Dream Team Award.

Note: This page contains sample records for the topic "mindi farber-deanda team" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Printing a Car: A Team Effort in Innovation (Text Version) |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

video Printing a Car: A Team Effort in Innovation highlighting the demonstration of 3D printing to create a working electric vehicle, live during the International Manufacturing...

482

Building America Team (CARB) - 2014 BTO Peer Review | Department...  

Broader source: Energy.gov (indexed) [DOE]

CARB) - 2014 BTO Peer Review Building America Team (CARB) - 2014 BTO Peer Review Presenter: Dianne Griffiths, Steven Winter Associates, Inc. Building America research projects...

483

Building America Team (NAHBRC) - 2014 BTO Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NAHBRC) - 2014 BTO Peer Review Building America Team (NAHBRC) - 2014 BTO Peer Review Presenter: Vladimir Kochkin, Home Innovation Research Labs Building America research projects...

484

Building America Team (IBACOS) - 2014 BTO Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

IBACOS) - 2014 BTO Peer Review Building America Team (IBACOS) - 2014 BTO Peer Review Presenter: Duncan Prahl, IBACOS, Inc. Building America research projects develop and...

485

PARS II - Integrated Project Team Meeting | Department of Energy  

Energy Savers [EERE]

Meeting PARS II - Integrated Project Team Meeting More Documents & Publications PARS II 104 Contractor Monthly Upload Proposed Data Elements for PARS II Web Application Slide 1...

486

Measuring Team Collaboration in the Marshall University Summer Enrichment Program.  

E-Print Network [OSTI]

??The present study investigates measures of team collaboration among graduate students participating in the Marshall University Graduate College Summer Enrichment Program. The purpose of the (more)

Pyles, Marian

2012-01-01T23:59:59.000Z

487

REPORT OF THE WASC VISITING TEAM EDUCATIONAL EFFECTIVENESS REVIEW  

E-Print Network [OSTI]

#12;#12;1 REPORT OF THE WASC VISITING TEAM EDUCATIONAL EFFECTIVENESS REVIEW To the University and therefore submits this Report to the Accrediting Commission for Senior Colleges and Universities Review Team visited the campus and issued a report in February of 2004. The Educational Effectiveness

California at Santa Cruz, University of

488

REPORT OF THE WASC VISITING TEAM PREPARATORY REVIEW  

E-Print Network [OSTI]

#12;#12;#12;REPORT OF THE WASC VISITING TEAM PREPARATORY REVIEW UNIVERSITY OF CALIFORNIA, SANTA this Report to the Accrediting Commission for Senior Colleges and Universities of the Western Association REVIEW Team Report SECTION I ­ OVERVIEW AND CONTEXT IA ­ Description of Institution and Visit UC Santa

California at Santa Cruz, University of

489

The Effect of Collision Avoidance for Autonomous Robot Team Formation  

E-Print Network [OSTI]

on robot team formation focuses on theoretical analysis where real-world factors, such as the size advance to the era of cooperative robots, many autonomous robot team algorithms have emerged. Shape formation is a common and critical task in many cooperative robot applications. While theoretical studies

Jay Yang, Shanchieh

490

PI & Project Team Step-By-Step Procedure  

E-Print Network [OSTI]

Proposal Management PI & Project Team Grants.gov Step-By-Step Procedure Last updated: 8/1/2013 1 Management PI & Project Team Grants.gov Step-By-Step Procedure Last updated: 8/1/2013 4 of 21 http of 21 http://eresearch.umich.edu Grants.gov from eRPM This procedure is a supplement to the rest

Shyy, Wei

491

Balancing Search and Target Response in Cooperative UAV Teams  

E-Print Network [OSTI]

Balancing Search and Target Response in Cooperative UAV Teams Yan Jin, Yan Liao, Marios M of Cincinnati Cincinnati, OH 45221-0030 Abstract-- In this paper, we consider a heterogeneous team of UAVs drawn-time by the actions of all UAVs and their consequences (e.g., sensor readings), which makes the task dynamics

Minai, Ali A.

492

Evolving Cooperative Strategies for UAV Teams Marc D. Richards  

E-Print Network [OSTI]

Evolving Cooperative Strategies for UAV Teams Marc D. Richards mdr@cs.colostate.edu Darrell Whitley to evolve co- operative controllers for teams of UAVs. Our focus is a collaborative search mission, genetic program- ming, simulated robotics 1. INTRODUCTION Advancements in unmanned aerial vehicle (UAV

Whitley, Darrell

493

Design Methodology for Unmannded Aerial Vehicle (UAV) Team Coordination  

E-Print Network [OSTI]

1 Design Methodology for Unmannded Aerial Vehicle (UAV) Team Coordination F.B. da Silva S.D. Scott-mail: halab@mit.edu #12;2 Design Methodology for Unmannded Aerial Vehicle (UAV) Team Coordination by F.B. da Silva, S.D. Scott, and M.L. Cummings Executive Summary Unmanned Aerial Vehicle (UAV) systems, despite

Cummings, Mary "Missy"

494

Flight Demonstrations of Cooperative Control for UAV Teams  

E-Print Network [OSTI]

Flight Demonstrations of Cooperative Control for UAV Teams Jonathan How , Ellis King , and Yoshiaki (UAVs) that was designed as a platform for evaluating autonomous coordination and control algorithms. Future UAV teams will have to autonomously demonstrate cooperative behaviors in dynamic and uncertain

How, Jonathan P.

495

Evolving Cooperative Strategies for UAV Teams Marc D. Richards  

E-Print Network [OSTI]

Evolving Cooperative Strategies for UAV Teams Marc D. Richards mdr@cs.colostate.edu Darrell Whitley to evolve co­ operative controllers for teams of UAVs. Our focus is a collaborative search mission Advancements in unmanned aerial vehicle (UAV) technol­ ogy have made it possible to keep human pilots out

Whitley, Darrell

496

Library Service Models Self-Study Team April 18, 2012  

E-Print Network [OSTI]

1 Library Service Models Self-Study Team Overviews April 18, 2012 Access to Collections;2 Library Service Models Self-Study Team - Overviews Below are overviews of the options that the Library Libraries and their collections have long been intertwined, with the size of one a key indicator

California at Berkeley, University of

497

NSLS-II | NEXT Integrated Project Team | Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEXT Integrated Project Team NEXT Integrated Project Team NEXT stands for NSLS-II Experimental Tools, a set of six beamlines being developed for the National Synchrotron Light Source II (NSLS-II), with funding from the U.S. Department of Energy (DOE). DOE uses an integrated project teaming approach for managing the NEXT Project. This Integrated Project Team (IPT) is organized and led by the NSLS-II Federal Project Director. It is an essential element in DOE's acquisition process and is being used during all phases of the project's life cycle. This team consists of professionals representing diverse disciplines with the specific knowledge, skills, and abilities to support the Federal Project Director in successfully executing the project. The IPT for the NEXT Project will consist of members from both DOE and the

498

Solar Decathlon 2013: New Teams! New Location! | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Decathlon 2013: New Teams! New Location! Solar Decathlon 2013: New Teams! New Location! Solar Decathlon 2013: New Teams! New Location! January 26, 2012 - 1:32pm Addthis Orange County Great Park in Irvine, California -- venue for the 2013 U.S. Department of Energy Solar Decathlon. | Image credit: Richard King. Orange County Great Park in Irvine, California -- venue for the 2013 U.S. Department of Energy Solar Decathlon. | Image credit: Richard King. Richard King Director, Solar Decathlon "With each competition, entry into the Solar Decathlon becomes harder... We are so pleased with the caliber of the 20 new teams." Richard King, Director of the Solar Decathlon We have never been more excited to start a U.S. Department of Energy Solar Decathlon. In addition to welcoming 20 new collegiate teams and hundreds of

499

National Security Campus design team wins global award | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Security Campus design team wins global award | National Nuclear Security Campus design team wins global award | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > National Security Campus design team wins global award National Security Campus design team wins global award Posted By Office of Public Affairs The National Security Campus design team has been named a global winner of

500

Corvette Racing, Muscle Milk Teams Crowned Green Racing Champions |  

Broader source: Energy.gov (indexed) [DOE]

Corvette Racing, Muscle Milk Teams Crowned Green Racing Champions Corvette Racing, Muscle Milk Teams Crowned Green Racing Champions Corvette Racing, Muscle Milk Teams Crowned Green Racing Champions November 12, 2013 - 1:00pm Addthis The Honda and Muscle Milk Team, pictured here, are the 2013 Michelin Green X Challenge Prototype champions. | Photo courtesy of Michelin The Honda and Muscle Milk Team, pictured here, are the 2013 Michelin Green X Challenge Prototype champions. | Photo courtesy of Michelin Chevrolet and Corvette Racing, pictured here at the Petit Le Mans race in Georgia, clinched the 2013 Michelin Green X Challenge Grand Touring Championship award. | Photo courtesy of Michelin Chevrolet and Corvette Racing, pictured here at the Petit Le Mans race in Georgia, clinched the 2013 Michelin Green X Challenge Grand Touring