National Library of Energy BETA

Sample records for milner butte landfill

  1. Michael Milner

    Broader source: Energy.gov [DOE]

    Michael S. Milner became the Assistant Inspector General for Investigation in July 2012. Prior to this he was Director of the Computer Crime Investigative Unit with the U.S. Army Criminal...

  2. Milner Dam Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Milner Dam Wind Park Jump to: navigation, search Name Milner Dam Wind Park Facility Milner Dam Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Ryan Milner | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ryan Milner HPC Network Administrator Specialist Ryan Milner Argonne National Laboratory 9700 South Cass Avenue Building 240 - Rm. 2121 Argonne, IL 60439 630-252-6084 rmilner...

  4. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information...

  5. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Butte Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  6. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Butte, Montana: Energy Resources (Redirected from Butte, MT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.003917, -112.534446 Show Map Loading map......

  7. Coffin Butte Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleCoffinButteBiomassFacility&oldid397332" Feedback Contact needs updating Image needs updating...

  8. Butte County, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    6 Climate Zone Subtype B. Places in Butte County, Idaho Arco, Idaho Butte City, Idaho Moore, Idaho Retrieved from "http:en.openei.orgwindex.php?titleButteCounty,Idaho&oldi...

  9. Sigurd Red Butte No2 | Open Energy Information

    Open Energy Info (EERE)

    Sigurd Red Butte No2 Jump to: navigation, search NEPA Document Collection for: Sigurd Red Butte No2 EIS for NA Sigurd to Red Butte No. 2 345kV Transmission Project General NEPA...

  10. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Glass Buttes Radio Station, Lake County, Oregon EA-1996: Glass Buttes Radio Station, Lake County, Oregon SUMMARY The Bureau of Land Management (BLM), with DOE's Bonneville Power...

  11. Development Wells At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Glass Buttes Area (DOE GTP) Exploration Activity...

  12. Multispectral Imaging At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Glass Buttes Area (DOE GTP) Exploration...

  13. Aeromagnetic Survey At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Glass Buttes Area (DOE GTP) Exploration...

  14. Cuttings Analysis At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Glass Buttes Area (DOE GTP) Exploration Activity...

  15. Butte County, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Companies in Butte County, California FAFCO Inc Sierra Nevada Brewing Company Springboard Biodiesel LLC Energy Generation Facilities in Butte County, California Oroville Biomass...

  16. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Butte is a city in Silver Bow County, Montana. It falls under Montana's At-large congressional district.12 Registered Energy...

  17. CX-001900: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) Renewable Energy Enterprise Zone (REEZ) Milner Butte Landfill Gas ProjectCX(s) Applied: B5.1Date: 03/02/2010Location(s): Burley, IdahoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  18. Westchester Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  19. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  20. Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Technologies Maui Hawii & Glass Buttes, Oregon presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon moui_glass_buttes_ormat_peer2013.pdf More Documents & Publications Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt & Subtle Volcanic Systems, Hawaii & Maui Merging high

  1. Static Temperature Survey At Glass Buttes Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass...

  2. Pressure Temperature Log At Glass Buttes Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass...

  3. Dr. Calvin O. Butts, III | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calvin O. Butts, III About Us Dr. Calvin O. Butts, III - President, State University of New York (SUNY) College at Old Westbury Dr. Calvin O. Butts, III Dr. Calvin O. Butts, III, is President of State University of New York, College at Old Westbury and Pastor of the renowned Abyssinian Baptist Church in New York City. Regularly sought by leaders in politics, business, and the media for his insight and opinions, he has had a pervasive impact across his career on such wide-ranging issues as

  4. Butts County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Butts County, Georgia Flovilla, Georgia Jackson, Georgia Jenkinsburg, Georgia Retrieved from "http:en.openei.orgw...

  5. Box Butte County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Box Butte County, Nebraska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1911471, -103.0817903 Show Map Loading map......

  6. Ground Gravity Survey At Glass Buttes Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Ground Gravity Survey At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Glass Buttes Area...

  7. FMI Log At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: FMI Log At Glass Buttes Area (DOE GTP) Exploration Activity Details...

  8. LiDAR At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: LiDAR At Glass Buttes Area (DOE GTP) Exploration Activity Details...

  9. Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Glass Buttes Area (DOE GTP) Exploration Activity...

  10. Field Mapping At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Glass Buttes Area (DOE GTP) Exploration Activity...

  11. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Glass Buttes Area (DOE GTP) (Redirected from Water-Gas Samples At Glass Buttes Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  12. Gas Sampling At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Gas Sampling At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Glass Buttes Area (DOE GTP)...

  13. Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area...

  14. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  15. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  16. Landfill Gas | Open Energy Information

    Open Energy Info (EERE)

    Gas Jump to: navigation, search TODO: Add description List of Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173...

  17. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    2010-01-01

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  18. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  19. Butte Falls, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Butte Falls is a town in Jackson County, Oregon. It falls under Oregon's 2nd congressional district.12 References...

  20. Red Butte, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red Butte is a census-designated place in Natrona County, Wyoming. It falls under Wyoming's...

  1. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  2. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas...

  3. Energy potential of modern landfills

    SciTech Connect (OSTI)

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  4. Phytoremediation of landfill leachate

    SciTech Connect (OSTI)

    Jones, D.L. . E-mail: d.jones@bangor.ac.uk; Williamson, K.L.; Owen, A.G.

    2006-07-01

    Leachate emissions from landfill sites are of concern, primarily due to their toxic impact when released unchecked into the environment, and the potential for landfill sites to generate leachate for many hundreds of years following closure. Consequently, economically and environmentally sustainable disposal options are a priority in waste management. One potential option is the use of soil-plant based remediation schemes. In many cases, using either trees (including short rotation coppice) or grassland, phytoremediation of leachate has been successful. However, there are a significant number of examples where phytoremediation has failed. Typically, this failure can be ascribed to excessive leachate application and poor management due to a fundamental lack of understanding of the plant-soil system. On balance, with careful management, phytoremediation can be viewed as a sustainable, cost effective and environmentally sound option which is capable of treating 250 m{sup 3} ha{sup -1} yr{sup -1}. However, these schemes have a requirement for large land areas and must be capable of responding to changes in leachate quality and quantity, problems of scheme establishment and maintenance, continual environmental monitoring and seasonal patterns of plant growth. Although the fundamental underpinning science is well understood, further work is required to create long-term predictive remediation models, full environmental impact assessments, a complete life-cycle analysis and economic analyses for a wide range of landfill scenarios.

  5. WC Landfill Energy | Open Energy Information

    Open Energy Info (EERE)

    WC Landfill Energy Place: New Jersey Product: Joint venture between DCO Energy and Marina Energy to develop landfill gas-to-energy plants in New Jersey. References: WC Landfill...

  6. Landfill Energy Systems LES | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems LES Jump to: navigation, search Name: Landfill Energy Systems (LES) Place: Michigan Zip: 48393 Product: Landfill gas to energy systems project developer, gas...

  7. EIS-0077-S: Bonneville Power Administration Crow Butte Slough Crossing

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration developed this SEIS to evaluate potential impacts resulting from construction of a 4,700-foot segment of the Ashe-Slatt transmission line at Crow Butte Slough, overhead on towers on the existing right-of-way. This SEIS is a supplement to DOE/EIS-0077, Ashe-Slatt (Pebble Springs) 500-kilovolt Transmission Line, originally filed as FES 75-79.

  8. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  9. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. Methane oxidation in the waste itself and in soil covers. Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (Umweltbundesamt), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 1824 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  10. 7.4 Landfill Methane Utilization

    Broader source: Energy.gov [DOE]

    A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

  11. Sour landfill gas problem solved

    SciTech Connect (OSTI)

    Nagl, G.; Cantrall, R.

    1996-05-01

    In Broward County, Fla., near Pompano Beach, Waste Management of North America (WMNA, a subsidiary of WMX Technologies, Oak Brook, IL) operates the Central Sanitary Landfill and Recycling Center, which includes the country`s largest landfill gas-to-energy plant. The landfill consists of three collection sites: one site is closed, one is currently receiving garbage, and one will open in the future. Approximately 9 million standard cubic feet (scf) per day of landfill gas is collected from approximately 300 wells spread over the 250-acre landfill. With a dramatic increase of sulfur-containing waste coming to a South Florida landfill following Hurricane Andrew, odors related to hydrogen sulfide became a serious problem. However, in a matter of weeks, an innovative desulfurization unit helped calm the landfill operator`s fears. These very high H{sub 2}S concentrations caused severe odor problems in the surrounding residential area, corrosion problems in the compressors, and sulfur dioxide (SO{sub 2}) emission problems in the exhaust gas from the turbine generators.

  12. Landfilling ash/sludge mixtures

    SciTech Connect (OSTI)

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  13. Preliminary geologic map of the Sleeping Butte volcanic centers

    SciTech Connect (OSTI)

    Crowe, B.M.; Perry, F.V.

    1991-07-01

    The Sleeping Butte volcanic centers comprise two, spatially separate, small-volume (<0.1 km{sup 3}) basaltic centers. The centers were formed by mildly explosive Strombolian eruptions. The Little Black Peak cone consists of a main scoria cone, two small satellitic scoria mounds, and associated lobate lava flows that vented from sites at the base of the scoria cone. The Hidden Cone center consists of a main scoria cone that developed on the north-facing slope of Sleeping Butte. The center formed during two episodes. The first included the formation of the main scoria cone, and venting of aa lava flows from radial dikes at the northeast base of the cone. The second included eruption of scoria-fall deposits from the summit crater. The ages of the Little Black Peak and the Hidden Cone are estimated to be between 200 to 400 ka based on the whole-rock K-Ar age determinations with large analytical undertainty. This age assignment is consistent with qualitative observations of the degree of soil development and geomorphic degradation of volcanic landforms. The younger episode of the Hidden Cone is inferred to be significantly younger and probably of Late Pleistocene or Holocene age. This is based on the absence of cone slope rilling, the absence of cone-slope apron deposits, and erosional unconformity between the two episodes, the poor horizon- development of soils, and the presence of fall deposits on modern alluvial surfaces. Paleomagnetic data show that the centers record similar but not identical directions of remanent magnetization. Paleomagnetic data have not been obtained for the youngest deposits of the Hidden Cone center. Further geochronology, soils, geomorphic, and petrology studies are planned of the Sleeping Butte volcanic centers 20 refs., 3 figs.

  14. Ultrasonic inspection of polyethylene butt-fussion joints

    SciTech Connect (OSTI)

    House, L.J.; Day, R.A.

    1982-01-01

    Researchers investigated nondestructive pulse-echo, pitch-catch, and spectroscopic ultrasonic methods for determining voids and inclusions, lack of bond, and inadequate fusion in heat-fused polyethylene butt joints in 4-in. gas distribution pipe. The pulse-echo method, using a 2.25-MHz, cylindrically focused transducer, provided the best sensitivity to the joint defects, detecting flaws as small as 0.014 in. in diameter. No correlation was established between the ultrasonic spectroscopy results and the cohesive strength of incompletely fused joints in the 1.2-3.2 MHz frequency range.

  15. Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Byxbee Park Sanitary Landfill Biomass Facility Jump to: navigation, search Name Byxbee Park Sanitary Landfill Biomass Facility Facility Byxbee Park Sanitary Landfill Sector Biomass...

  16. Blackburn Landfill Co-Generation Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation...

  17. Hartford Landfill Gas Utilization Proj Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization...

  18. Albany Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization...

  19. Balefill Landfill Gas Utilization Proj Biomass Facility | Open...

    Open Energy Info (EERE)

    Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas...

  20. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  1. Lopez Landfill Gas Utilization Project Biomass Facility | Open...

    Open Energy Info (EERE)

    Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas...

  2. Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant...

  3. Powering Microturbines With Landfill Gas, October 2002 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants 7.4 Landfill Methane Utilization CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market ...

  4. Spadra Landfill Gas to Energy Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass...

  5. Miramar Landfill Metro Biosolids Center Biomass Facility | Open...

    Open Energy Info (EERE)

    Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro...

  6. EA-1997: Construction Landfill Expansion, Pantex Plant, Amarillo...

    Office of Environmental Management (EM)

    7: Construction Landfill Expansion, Pantex Plant, Amarillo, Texas EA-1997: Construction Landfill Expansion, Pantex Plant, Amarillo, Texas SUMMARY Construction Landfill Expansion,...

  7. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and...

  8. Prima Desheha Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type...

  9. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  10. Sanitary landfill groundwater monitoring data

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-05-01

    This report for first quarter 1992 contains sanitary landfill groundwater monitoring data for the Savannah River Plant. The data tables presented in this report are copies of draft analytical results and therefore do contain errors. These errors will be corrected when the finalized data is received from the laboratory.

  11. Case studies in alternative landfill design

    SciTech Connect (OSTI)

    Barbagallo, J.C.; Druback, G.W.

    1995-12-31

    In the past, landfills or {open_quotes}dumps{close_quotes} were not highly regulated and typically did not require a detailed engineering design. However, landfills are no longer just holes in the ground, and landfill closures entail more than just spreading some dirt on top of piles of garbage. Today landfill design is a highly regulated, complex design effort that integrates soils and geosynthetics into systems aimed at providing long-term protection for the environment and surrounding communities. Integrating these complex design systems into the available landscape and exising landfill configuration often requires the designer go beyond the {open_quotes}typical{close_quotes} landfill and landfill closure design to satisfy regulations and provide cost-effective solutions.

  12. Landfill reduction experience in The Netherlands

    SciTech Connect (OSTI)

    Scharff, Heijo

    2014-11-15

    Highlights: • ‘Zero waste’ initiatives never consider risks, side effects or experience of achieved low levels of landfill. • This paper provides insight into what works and what not. • Where strong gradients in regulations and tax occur between countries, waste will find its way to landfills across borders. • Strong landfill reduction can create a fierce competition over the remaining waste to be landfilled resulting in losses. • At some point a public organisation should take responsibility for the operation of a ‘safety net’ in waste management. - Abstract: Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a ‘safety net’ in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.

  13. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  14. I 95 Landfill Phase II Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    I 95 Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type...

  15. Milliken Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleMillikenLandfillBiomassFacility&oldid397777" Feedback Contact needs updating Image needs updating...

  16. Acme Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAcmeLandfillBiomassFacility&oldid397115" Feedback Contact needs updating Image needs updating...

  17. Colton Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleColtonLandfillBiomassFacility&oldid397336" Feedback Contact needs updating Image needs updating...

  18. Girvin Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleGirvinLandfillBiomassFacility&oldid397500" Feedback Contact needs updating Image needs updating...

  19. Penrose Landfill Gas Conversion LLC | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Penrose Landfill Gas Conversion LLC Jump to: navigation, search Name: Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner...

  20. Microsoft Word - Final TTR Landfill Extension EA--December 2006...

    National Nuclear Security Administration (NNSA)

    ... Once the landfill reaches capacity, sources of air pollution associated with the landfill would no longer be present. Waste transport vehicles would cause minor increases in car- ...

  1. Briefing: DOE EM Landfill Workshop & Path Forward | Department...

    Broader source: Energy.gov (indexed) [DOE]

    and Recommendations of EM Landfill Workshop Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned Environmental Management Waste Management Facility (EMWMF) at Oak Ridge

  2. US EPA Landfill Methane Outreach Program | Open Energy Information

    Open Energy Info (EERE)

    EPA Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program AgencyCompany Organization United States Environmental Protection...

  3. CHP and Bioenergy for Landfills and Wastewater Treatment Plants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores ...

  4. CHP and Bioenergy Systems for Landfills and Wastewater Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting ...

  5. Tapping Landfill Gas to Provide Significant Energy Savings and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and ...

  6. DOE - Office of Legacy Management -- West Lake Landfill - MO...

    Office of Legacy Management (LM)

    Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

  7. Dormaier and Chester Butte 2007 Follow-up Habitat Evaluation Procedures Report.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    2008-01-01

    Follow-up habitat evaluation procedures (HEP) analyses were conducted on the Dormaier and Chester Butte wildlife mitigation sites in April 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance, and maintain the project sites as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The Dormaier follow-up HEP survey generated 482.92 habitat units (HU) or 1.51 HUs per acre for an increase of 34.92 HUs over baseline credits. Likewise, 2,949.06 HUs (1.45 HUs/acre) were generated from the Chester Butte follow-up HEP analysis for an increase of 1,511.29 habitat units above baseline survey results. Combined, BPA will be credited with an additional 1,546.21 follow-up habitat units from the Dormaier and Chester Butte parcels.

  8. Venice Park landfill: Working with the community

    SciTech Connect (OSTI)

    McAdams, C.L.

    1993-09-01

    Venice Park landfill was one of the first sites to be permitted under Michigan's proposed Public Act 641. PA 641 essentially changed the rules and regulations for landfills from the simple design of digging a hole and filling it. It also upgraded standards to those that are more sophisticated, including liners, leachate collection systems, and gas extraction systems. In 1992, methane gas from the landfill was collected into wells drilled into the trash varying in depth from 30-50 feet in depth. A vacuum pulls the gas from the trash into the wells, then through a piping system. The landfill uses about 80-100 kilowatts in-house. The remainder of the gas is sold to Consumers Power Co. which uses landfill gas to supply power to homes.

  9. Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on

  10. Instrumentation of dredge spoil for landfill construction

    SciTech Connect (OSTI)

    Byle, M.J.; McCullough, M.L.; Alexander, R.; Vasuki, N.C.; Langer, J.A.

    1999-07-01

    The Delaware Solid Waste Authority's Northern Solid Waste Management Center is located outside of Wilmington Delaware at Cherry Island, a former dredge disposal site. Dredge spoils, of very low permeability, range in depths up to 30 m (100 feet) which form a natural liner and the foundation for the 140 ha (350-acre) municipal solid waste landfill. The soils beneath the landfill have been extensively instrumented to measure pore pressure, settlement and deflections, using inclinometer casings, standpipe piezometers, vibrating wire piezometers, pneumatic piezometers, settlement plates, liquid settlement gages, total pressure cells and thermistors. The nature of the existing waste and anticipated settlements (up to 6 m (19 feet)) have required some unique installation details. The instrumentation data has been integral in planning the landfilling sequence to maintain perimeter slope stability and has provided key geotechnical parameters needed for operation and construction of the landfill. The performance of the instrumentation and monitoring results are discussed.

  11. Landfill aeration worldwide: Concepts, indications and findings

    SciTech Connect (OSTI)

    Ritzkowski, M.; Stegmann, R.

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Different landfill aeration concepts and accordant application areas are described. Black-Right-Pointing-Pointer Examples of full scale projects are provided for Europe, North-America and Asia. Black-Right-Pointing-Pointer Major project findings are summarised, including prospects and limitations. Black-Right-Pointing-Pointer Inconsistencies between laboratory and full scale results have been elaborated. Black-Right-Pointing-Pointer An explanatory approach in connection with the inconsistencies is provided. - Abstract: The creation of sustainable landfills is a fundamental goal in waste management worldwide. In this connection landfill aeration contributes towards an accelerated, controlled and sustainable conversion of conventional anaerobic landfills into a biological stabilized state associated with a minimised emission potential. The technology has been successfully applied to landfills in Europe, North America and Asia, following different strategies depending on the geographical region, the specific legislation and the available financial resources. Furthermore, methodologies for the incorporation of landfill aeration into the carbon trade mechanisms have been developed in recent years. This manuscript gives an overview on existing concepts for landfill aeration; their application ranges and specifications. For all of the described concepts examples from different countries worldwide are provided, including details regarding their potentials and limitations. Some of the most important findings from these aeration projects are summarised and future research needs have been identified. It becomes apparent that there is a great demand for a systematisation of the available results and implications in order to further develop and optimise this very promising technology. The IWWG (International Waste Working Group) Task Group 'Landfill Aeration' contributes towards the achievement of this goal.

  12. Agencies plan continued DOE landfill remediation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision

  13. Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search

  14. Photovoltaics on Landfills in Puerto Rico

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.

  15. Using landfill gas for energy: Projects that pay

    SciTech Connect (OSTI)

    1995-02-01

    Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

  16. One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August ...

  17. Landfill Cover Revegetation at the Rocky Flats Environmental Technology

    Energy Savers [EERE]

    Site | Department of Energy Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site PDF icon Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site More Documents & Publications Revegetation of the Rocky Flats Site Smooth Brome Monitoring at Rocky Flats-2005 Results EIS-0285-SA-134: Supplement

  18. CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities | Department of Energy for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores opportunities for alternative CHP fuels. PDF icon CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities (November 2007) More Documents & Publications CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants Barriers to CHP with

  19. DOE - Office of Legacy Management -- Pfohl Brothers Landfill...

    Office of Legacy Management (LM)

    Landfill (NY.66 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials...

  20. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From

  1. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Reductions - Case Study, 2013 | Department of Energy Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 BroadRock Renewables LLC, in collaboration with DCO Energy, operates combined cycle electric generating plants at the Central Landfill in Johnston, Rhode Island, and Olinda Alpha Landfill in Brea, California. The Rhode

  2. Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned |

    Energy Savers [EERE]

    Department of Energy ITR Landfill Assessment Project Lessons Learned Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned By: Craig H. Benson, PhD, PE Where: EM SSAB Teleconference: 1 Briefing provides lessons learned from the DOE EM ITR Landfill Assessment Project. PDF icon EM SSAB ITR Landfill Assessment Project Lessons Learned Presentation - July 2009 More Documents & Publications Disposal Practices at the Nevada Test Site 2008 Proposed On-Site Disposal Facility (OSDF) at

  3. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  4. Landfill stabilization focus area: Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  5. Methane Gas Utilization Project from Landfill at Ellery (NY)

    SciTech Connect (OSTI)

    Pantelis K. Panteli

    2012-01-10

    Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

  6. Quasi-Rayleigh waves in butt-welded thick steel plate

    SciTech Connect (OSTI)

    Kamas, Tuncay E-mail: victorg@sc.edu Giurgiutiu, Victor E-mail: victorg@sc.edu Lin, Bin E-mail: victorg@sc.edu

    2015-03-31

    This paper discusses theoretical and experimental analyses of weld guided surface acoustic waves (SAW) through the guided wave propagation (GWP) analyses. The GWP analyses have been carried out by utilizing piezoelectric wafer active sensors (PWAS) for in situ structural inspection of a thick steel plate with butt weld as the weld bead is ground flush. Ultrasonic techniques are commonly used for validation of welded structures in many in-situ monitoring applications, e.g. in off-shore structures, in nuclear and pressure vessel industries and in a range of naval applications. PWAS is recently employed in such ultrasonic applications as a resonator as well as a transducer. Quasi-Rayleigh waves a.k.a. SAW can be generated in relatively thick isotropic elastic plate having the same phase velocity as Rayleigh waves whereas Rayleigh waves are a high frequency approximation of the first symmetric (S0) and anti-symmetric (A0) Lamb wave modes. As the frequency becomes very high the S0 and the A0 wave speeds coalesce, and both have the same value. This value is exactly the Rayleigh wave speed and becomes constant along the frequency i.e. Rayleigh waves are non-dispersive guided surface acoustic waves. The study is followed with weld-GWP tests through the pitch-catch method along the butt weld line. The tuning curves of quasi-Rayleigh wave are determined to show the tuning and trapping effect of the weld bead that has higher thickness than the adjacent plates on producing a dominant quasi-Rayleigh wave mode. The significant usage of the weld tuned and guided quasi-Rayleigh wave mode is essentially discussed for the applications in the in-situ inspection of relatively thick structures with butt weld such as naval offshore structures. The paper ends with summary, conclusions and suggestions for future work.

  7. Request for Qualifications for Sacramento Landfill

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

  8. Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon

    SciTech Connect (OSTI)

    1981-01-01

    In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

  9. CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting a CHP technology, such as size, emissions, location of maintenance personnel, and efficiency. This document summarizes the following CHP technologies: Reciprocating Engine, Microturbine, Combustion Turbines, Stirling Engine, and Fuel Cell. PDF icon CHP and Bioenergy Systems for Landfills and

  10. UNFCCC-Consolidated baseline and monitoring methodology for landfill...

    Open Energy Info (EERE)

    Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and...

  11. Landfill Methane Project Development Handbook | Open Energy Informatio...

    Open Energy Info (EERE)

    Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook AgencyCompany Organization: United...

  12. DOE EM Landfill Workshop and Path Forward - July 2009

    Office of Environmental Management (EM)

    by CRESP DOE EM Landfill Workshop 2 Objective: - Discuss findings & recommendations from ITR visits to DOE facilities - Identify technology gaps and needs to advance EM disposal...

  13. http://ndep.nv.gov/bwm/landfill.htm

    National Nuclear Security Administration (NNSA)

    ... Republic Services, Inc Operating - Class I Permitted Laughlin Nevada Clark County Apex Regional Landfill Republic Services, Inc Operating - Class I Permitted Las Vegas Valley ...

  14. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    SciTech Connect (OSTI)

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  15. EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates Ormat Nevada, Inc.’s (Ormat’s) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on private land located adjacent to the federal geothermal leases west of Glass Butte (Private Lands). DOE funding would be associated with three of the sixteen proposed wells. BLM is the lead agency and DOE is participating as a cooperating agency.

  16. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at glass buttes, Oregon

    SciTech Connect (OSTI)

    Walsh, Patrick; Fercho, Steven; Perkin, Doug; Martini, Brigette; Boshmann, Darrick

    2015-06-01

    The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project’s inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations at the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165° C/km (10° F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90°C (194 °F) at 603 m (1981 ft) with a 164 °C/km (10°F/100ft) temperature gradient at bottom hole and the GB-18 well with 71°C (160 °F) at 396 m (1300 ft) with a 182°C/km (11°F/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is observed in each data set as follows. Field observations include fault plane orientations, complicated fault intersections, and hydrothermal alteration apparently pre-dating basalt flows. Geophysical anomalies include large, linear gradients in gravity and aeromagnetic data with magnetic lows possibly associated with alteration. Resistivity low anomalies also appear to have offsets associated with faulting. Hyperspectral and XRF identified alteration and individual volcanic flow units, respectively. When incorporated into a 3D geologic model, the fault intersections near the highest proven temperature and geophysical anomalies provide the first priority targets at Midnight Point. Ormat geologists selected the Midnight Point 52-33 drilling target based on a combination of pre-existing drilling data, geologic field work, geophysical interpretation, and geochemical analysis. Deep temperatures of well 52-33 was lower than anticipated. Temperature gradients in the well mirrored those found in historical drilling, but they decreased below 1500 ft and were isothermal below 2000 ft.

  17. Illinois Turning Landfill Trash into Future Cash

    Broader source: Energy.gov [DOE]

    Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the electricity could reach $1 million annually.

  18. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  19. Industrial Waste Landfill IV upgrade package

    SciTech Connect (OSTI)

    Not Available

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  20. A case study: Environmental benefit plan for Blydenburgh Landfill

    SciTech Connect (OSTI)

    Hansen, J.M.; Druback, G.W.

    1995-12-31

    The Town of Islip, New York, encompasses 285 square kilometers (110 square miles) along the southern shore of Suffolk County, Long Island. The Town relied upon Blydenburgh Landfill for the disposal of its estimated 290 kilotonnes per year (320,000 tons per year) of municipal solid waste (MSW) without having to contract for off-Long Island hauling and disposal. In 1983, the Long Island Landfill Law was enacted and effectively banned landfilling of raw garbage on most of Long Island after December 18, 1990. The act precluded the economic development of new landfill capacity for the Town. Blydenburgh Landfill was projected to reach capacity in early 1987 and close. To conserve landfill capacity for residential use, the Town prohibited commercial haulers from the landfill in the fall of 1986. In response, the Mobro barge departed Long Island City on March 22, 1987 loaded with commercial MSW that was no longer accepted at the Blydenburgh site. Negative publicity surrounded the Mobro barge and the continuing need to provide for waste disposal. In response, the New York State Department of Environmental Conservation (NYSDEC) and the Town`s Resource Recovery Agency entered into an Order on Consent on May 12, 1987. This allowed for continued operations and a vertical MSW {open_quotes}piggyback{close_quotes} expansion on top of a closed and capped portion of the existing 181,000 square meter (44.8 acre) landfill mound. In addition, the Order on Consent permitted construction of a separate 12,000 square meter (3.0 acre) ash residue vertical piggyback expansion adjacent to the MSW piggyback expansion. Both expansions were designed for and constructed on top of existing landfilled MSW.

  1. Landfill mining: A critical review of two decades of research

    SciTech Connect (OSTI)

    Krook, Joakim; Svensson, Niclas; Eklund, Mats

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We analyze two decades of landfill mining research regarding trends and topics. Black-Right-Pointing-Pointer So far landfill mining has mainly been used to solve waste management issues. Black-Right-Pointing-Pointer A new perspective on landfills as resource reservoirs is emerging. Black-Right-Pointing-Pointer The potential of resource extraction from landfills is significant. Black-Right-Pointing-Pointer We outline several key challenges for realization of resource extraction from landfills. - Abstract: Landfills have historically been seen as the ultimate solution for storing waste at minimum cost. It is now a well-known fact that such deposits have related implications such as long-term methane emissions, local pollution concerns, settling issues and limitations on urban development. Landfill mining has been suggested as a strategy to address such problems, and in principle means the excavation, processing, treatment and/or recycling of deposited materials. This study involves a literature review on landfill mining covering a meta-analysis of the main trends, objectives, topics and findings in 39 research papers published during the period 1988-2008. The results show that, so far, landfill mining has primarily been seen as a way to solve traditional management issues related to landfills such as lack of landfill space and local pollution concerns. Although most initiatives have involved some recovery of deposited resources, mainly cover soil and in some cases waste fuel, recycling efforts have often been largely secondary. Typically, simple soil excavation and screening equipment have therefore been applied, often demonstrating moderate performance in obtaining marketable recyclables. Several worldwide changes and recent research findings indicate the emergence of a new perspective on landfills as reservoirs for resource extraction. Although the potential of this approach appears significant, it is argued that facilitating implementation involves a number of research challenges in terms of technology innovation, clarifying the conditions for realization and developing standardized frameworks for evaluating economic and environmental performance from a systems perspective. In order to address these challenges, a combination of applied and theoretical research is required.

  2. Manhattan Project truck unearthed at landfill cleanup site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manhattan project truck Manhattan Project truck unearthed at landfill cleanup site A LANL excavation crew working on a Recovery Act cleanup project has uncovered the remnants of a 1940s military truck buried in a Manhattan Project-era landfill. April 8, 2011 image description Excavator operator Kevin Miller looks at the remnants of a 1940s military truck buried in a Manhattan Project-era landfill. Contact Fred deSousa Communications Office (505) 665-3430 Email Remnants of a 1940s military truck

  3. DOE - Office of Legacy Management -- Shpack Landfill - MA 06

    Office of Legacy Management (LM)

    Shpack Landfill - MA 06 FUSRAP Considered Sites Shpack Landfill, NY Alternate Name(s): Attleboro, MA Metals and Controls Site Norton Landfill area MA.06-2 MA.06-3 Location: 68 Union Road, Norton, Massachusetts MA.06-2 Historical Operations: No AEC activities were conducted on site. Contamination was suspected from disposal of materials containing uranium and zirconium ash. MA.06-2 MA.06-3 Eligibility Determination: Eligible MA.06-1 Radiological Survey(s): Assessment Surveys MA.06-4 MA.06-5

  4. Cohesive zone finite element analysis of crack initiation from a butt joint’s interface corner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reedy, E. D.

    2014-09-06

    The Cohesive zone (CZ) fracture analysis techniques are used to predict the initiation of crack growth from the interface corner of an adhesively bonded butt joint. In this plane strain analysis, a thin linear elastic adhesive layer is sandwiched between rigid adherends. There is no preexisting crack in the problem analyzed, and the focus is on how the shape of the traction–separation (T–U) relationship affects the predicted joint strength. Unlike the case of a preexisting interfacial crack, the calculated results clearly indicate that the predicted joint strength depends on the shape of the T–U relationship. Most of the calculations usedmore » a rectangular T–U relationship whose shape (aspect ratio) is defined by two parameters: the interfacial strength σ* and the work of separation/unit area Γ. The principal finding of this study is that for a specified adhesive layer thickness, there is any number of σ*, Γ combinations that generate the same predicted joint strength. For each combination there is a corresponding CZ length. We developed an approximate CZ-like elasticity solution to show how such combinations arise and their connection with the CZ length.« less

  5. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect (OSTI)

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  6. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 1. Project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  7. INVESTIGATION OF HOLOCENE FAULTING PROPOSED C-746-U LANDFILL EXPANSION

    SciTech Connect (OSTI)

    Lettis, William

    2006-07-01

    This report presents the findings of a fault hazard investigation for the C-746-U landfill's proposed expansion located at the Department of Energy's (DOE) Paducah Gaseous Diffusion Plant (PGDP), in Paducah, Kentucky. The planned expansion is located directly north of the present-day C-746-U landfill. Previous geophysical studies within the PGDP site vicinity interpret possible northeast-striking faults beneath the proposed landfill expansion, although prior to this investigation the existence, locations, and ages of these inferred faults have not been confirmed through independent subsurface exploration. The purpose of this investigation is to assess whether or not Holocene-active fault displacement is present beneath the footprint of the proposed landfill expansion.

  8. Briefing: Summary and Recommendations of EM Landfill Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The briefing is an independent technical review report from the summary and recommendations of the EM Landfill Workshop help in October 2008. By: Craig H. Bendson, PhD, PE; William ...

  9. Renewable Energy Holdings Landfill Gas Wales Ltd REH Wales |...

    Open Energy Info (EERE)

    Gas Wales Ltd REH Wales Jump to: navigation, search Name: Renewable Energy Holdings Landfill Gas (Wales) Ltd (REH Wales) Place: United Kingdom Product: A joint venture to own and...

  10. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    SciTech Connect (OSTI)

    Storey, John Morse; Theiss, Timothy J; Kass, Michael D; FINNEY, Charles E A; Lewis, Samuel; Kaul, Brian C; Besmann, Theodore M; Thomas, John F; Rogers, Hiram; Sepaniak, Michael

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  11. Sandia National Laboratories: No More Green Waste in the Landfill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2)...

  12. Sandia National Laboratories: No More Green Waste in the Landfill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by

  13. Computer Modeling of Saltstone Landfills by Intera Environmental Consultants

    SciTech Connect (OSTI)

    Albenesius, E.L.

    2001-08-09

    This report summaries the computer modeling studies and how the results of these studies were used to estimate contaminant releases to the groundwater. These modeling studies were used to improve saltstone landfill designs and are the basis for the current reference design. With the reference landfill design, EPA Drinking Water Standards can be met for all chemicals and radionuclides contained in Savannah River Plant waste salts.

  14. Appendix B Landfill Inspection Forms and Survey Data

    Office of Legacy Management (LM)

    B Landfill Inspection Forms and Survey Data This page intentionally left blank This page intentionally left blank Original Landfill January 2012 Monthly Inspection-Attachment 1 The monthly inspection of the OLF was completed on January 30. The Rocky Flats Site only received .15 inches of precipitation during the month of January. The cover was dry at the time of the inspection. The slump in the East Perimeter Channel (EPC) remained unchanged. Berm locations that were re-graded during the OLF

  15. A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah

    SciTech Connect (OSTI)

    Olea, Ricardo A.; Cook, Troy A.; Coleman, James L.

    2010-12-15

    The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes. A second approach illustrates the application of multiple-point simulation to assess a hypothetical frontier area for which there is no production information but which is regarded as being similar to Greater Natural Buttes.

  16. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  17. Estimation of landfill emission lifespan using process oriented modeling

    SciTech Connect (OSTI)

    Ustohalova, Veronika . E-mail: veronika.ustohalova@uni-essen.de; Ricken, Tim; Widmann, Renatus

    2006-07-01

    Depending on the particular pollutants emitted, landfills may require service activities lasting from hundreds to thousands of years. Flexible tools allowing long-term predictions of emissions are of key importance to determine the nature and expected duration of maintenance and post-closure activities. A highly capable option represents predictions based on models and verified by experiments that are fast, flexible and allow for the comparison of various possible operation scenarios in order to find the most appropriate one. The intention of the presented work was to develop a experimentally verified multi-dimensional predictive model capable of quantifying and estimating processes taking place in landfill sites where coupled process description allows precise time and space resolution. This constitutive 2-dimensional model is based on the macromechanical theory of porous media (TPM) for a saturated thermo-elastic porous body. The model was used to simulate simultaneously occurring processes: organic phase transition, gas emissions, heat transport, and settlement behavior on a long time scale for municipal solid waste deposited in a landfill. The relationships between the properties (composition, pore structure) of a landfill and the conversion and multi-phase transport phenomena inside it were experimentally determined. In this paper, we present both the theoretical background of the model and the results of the simulations at one single point as well as in a vertical landfill cross section.

  18. Risk mitigation methodology for solid waste landfills. Doctoral thesis

    SciTech Connect (OSTI)

    Nixon, W.B.

    1995-05-01

    Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

  19. Risk assessment of landfill disposal sites - State of the art

    SciTech Connect (OSTI)

    Butt, Talib E. Lockley, Elaine; Oduyemi, Kehinde O.K.

    2008-07-01

    A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

  20. Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Bechtel Nevada

    1998-08-31

    This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

  1. Sanitary landfill groundwater monitoring report. Third quarter 1995

    SciTech Connect (OSTI)

    1995-11-01

    This report contains analytical data for samples taken during third quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the U.S. Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  2. Delineation of landfill migration boundaries using chemical surrogates

    SciTech Connect (OSTI)

    Thielen, D.R.; Foreman, P.S.; Davis, A.; Wyeth, R.

    1987-02-01

    A purge/trap procedures for the determination of monochlorobenzene and monochlorotoluene at the 10 ng/g level in soil is described. The advantages of a heated and stirred vessel for sample preparation are demonstrated. This method was applied to samples from the Hyde Park landfill site in Niagara Falls, NY, and the results were used to define chemical migration is illustrated with both two- and three-dimensional plotting techniques. This study is a first phase in the development of a remedial plan for the Hyde Park landfill.

  3. Sanitary Landfill Groundwater Monitoring Report. Second Quarter 1995

    SciTech Connect (OSTI)

    Chase, J.A.

    1995-08-01

    This report contains analytical data for samples taken during second quarter 1995 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site (SRS). The data are submitted in reference to the Sanitary landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency (Appendix A), the South Carolina final Primary Drinking Water Standard for lead (Appendix A), or the SRS flagging criteria (Appendix B).

  4. Implementation of ASME Code, Section XI, Code Case N-770, on Alternative Examination Requirements for Class 1 Butt Welds Fabricated with Alloy 82/182

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2012-09-17

    In May 2010, the NRC issued a proposed notice of rulemaking that includes a provision to add a new section to its rules to require licensees to implement ASME Code Case N-770, Alternative Examination Requirements and Acceptance Standards for Class 1 PWR Piping and Vessel Nozzle Butt Welds Fabricated with UNS N06082 or UNS W86182 Weld Filler Material With or Without the Application of Listed Mitigation Activities, Section XI, Division 1, with 15 conditions. Code Case N-770 contains baseline and inservice inspection (ISI) requirements for unmitigated butt welds fabricated with Alloy 82/182 material and preservice and ISI requirements for mitigated butt welds. The NRC stated that application of ASME Code Case N-770 is necessary because the inspections currently required by the ASME Code, Section XI, were not written to address stress corrosion cracking Alloy 82/182 butt welds, and the safety consequences of inadequate inspections can be significant. The NRC expects to issue the final rule incorporating this code case into its regulations in the spring 2011 time frame. This paper discusses the new examination requirements, the conditions that NRC is imposing , and the major concerns with implementation of the new Code Case.

  5. Organic carbon cycling in landfills: Model for a continuum approach

    SciTech Connect (OSTI)

    Bogner, J.; Lagerkvist, A.

    1997-09-01

    Organic carbon cycling in landfills can be addressed through a continuum model where the end-points are conventional anaerobic digestion of organic waste (short-term analogue) and geologic burial of organic material (long-term analogue). Major variables influencing status include moisture state, temperature, organic carbon loading, nutrient status, and isolation from the surrounding environment. Bioreactor landfills which are engineered for rapid decomposition approach (but cannot fully attain) the anaerobic digester end-point and incur higher unit costs because of their high degree of environmental isolation and control. At the other extreme, uncontrolled land disposal of organic waste materials is similar to geologic burial where organic carbon may be aerobically recycled to atmospheric CO{sub 2}, anaerobically converted to CH{sub 4} and CO{sub 2} during early diagenesis, or maintained as intermediate or recalcitrant forms into geologic time (> 1,000 years) for transformations via kerogen pathways. A family of improved landfill models are needed at several scales (molecular to landscape) which realistically address landfill processes and can be validated with field data.

  6. Story Road Landfill Solar Site Evaluation: San Jose

    Broader source: Energy.gov [DOE]

    This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

  7. Sanitary landfill groundwater monitoring data. First quarter 1992

    SciTech Connect (OSTI)

    Thompson, C.Y.

    1992-05-01

    This report for first quarter 1992 contains sanitary landfill groundwater monitoring data for the Savannah River Plant. The data tables presented in this report are copies of draft analytical results and therefore do contain errors. These errors will be corrected when the finalized data is received from the laboratory.

  8. Comparison of slope stability in two Brazilian municipal landfills

    SciTech Connect (OSTI)

    Gharabaghi, B. Singh, M.K.; Inkratas, C. Fleming, I.R. McBean, E.

    2008-07-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use 'generic' published shear strength envelopes for municipal waste. Application of the slope stability analysis method is presented in a case study of two Brazilian landfill sites; the Cruz das Almas Landfill in Maceio and the Muribeca Landfill in Recife. The Muribeca site has never recorded a slope failure and is much larger and better-maintained when compared to the Maceio site at which numerous minor slumps and slides have been observed. Conventional limit-equilibrium analysis was used to calculate factors of safety for stability of the landfill side slopes. Results indicate that the Muribeca site is more stable with computed factors of safety values in the range 1.6-2.4 compared with computed values ranging from 0.9 to 1.4 for the Maceio site at which slope failures have been known to occur. The results suggest that this approach may be useful as a screening-level tool when considering the feasibility of implementing LFGTE projects.

  9. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    SciTech Connect (OSTI)

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

  10. Greenhouse gas emissions from landfill leachate treatment plants: A comparison of young and aged landfill

    SciTech Connect (OSTI)

    Wang, Xiaojun; Jia, Mingsheng; Chen, Xiaohai; Xu, Ying; Lin, Xiangyu; Kao, Chih Ming; Chen, Shaohua

    2014-07-15

    Highlights: • Young and aged leachate works accounted for 89.1% and 10.9% of 33.35 Gg CO{sub 2} yr{sup −1}. • Fresh leachate owned extremely low ORP and high organic matter content. • Strong CH{sub 4} emissions occurred in the fresh leachate ponds, but small in the aged. • N{sub 2}O emissions became dominant in the treatment units of both systems. • 8.45–11.9% of nitrogen was removed as the form of N{sub 2}O under steady-state. - Abstract: With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH{sub 4} emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m{sup −2} h{sup −1}) extremely higher than those of N{sub 2}O (0.028–0.41 mg N m{sup −2} h{sup −1}). In contrast, the emission values for both CH{sub 4} and N{sub 2}O were low for the aged leachate tank. N{sub 2}O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N{sub 2}O emission based on both leachate treatment systems was estimated to be 7.99 g N{sub 2}O–N capita{sup −1} yr{sup −1}. An increase of 80% in N{sub 2}O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO{sub 2}, with a small portion as CH{sub 4} (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO{sub 2} eq yr{sup −1}, respectively, for a total that could be transformed to 9.09 kg CO{sub 2} eq capita{sup −1} yr{sup −1}.

  11. Gravity and magnetic anomalies associated with Tertiary volcanism and a Proterozoic crustal boundary, Hopi Buttes volcanic field, Navajo Nation (Arizona)

    SciTech Connect (OSTI)

    Donovan-Ealy, P.F. . Geology Dept.); Hendricks, J.D. )

    1992-01-01

    The Hopi Buttes volcanic field is located in the Navajo Nation of northeastern Arizona, near the southern margin of the Colorado Plateau. Explosive phreatomagmatic eruptions from late Miocene to mid-Pliocene time produced more than 300 maar-diatremes and deposited limburgite tuffs and tuff breccia and monchiquite dikes, necks and flows within a roughly circular 2,500 km[sup 2] area. The volcanic and volcaniclastic rocks make up the middle member of the Bidahochi Formation, whose lower and upper members are lacustrine and fluvial, respectively. The Bidahochi Formation overlies gently dipping Mesozoic sedimentary rocks exposed in the southwestern portion of the volcanic field. Two significant gravity and magnetic anomalies appear within the Hopi Buttes volcanic field that are unlike the signatures of other Tertiary volcanic fields on the Colorado Plateau. A circular 20 mGal negative gravity anomaly is centered over exposed sedimentary rocks in the southwestern portion of the field. The anomaly may be due to the large volume of low density pyroclastic rocks in the volcanic field and/or extensive brecciation of the underlying strata from the violent maar eruptions. The second significant anomaly is the northeast-trending Holbrook lineament, a 5 km-wide gravity and magnetic lineament that crosses the southeastern part of the volcanic field. The lineament reflects substantial gravity and magnetic decreases of 1.67 mGals/km and 100 gammas/km respectively, to the southeast. Preliminary two-dimensional gravity and magnetic modeling suggests the lineament represents a major Proterozoic crustal boundary and may correlate with one of several Proterozoic faults exposed in the transition zone of central Arizona. Gravity modeling shows a 3--5 km step'' in the Moho near the crustal boundary. The decrease in depth of the Moho to the northwest indicates either movement along the fault or magmatic upwelling beneath the volcanic field.

  12. Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism

    SciTech Connect (OSTI)

    El-Fadel, Mutasem; Abi-Esber, Layale; Salhab, Samer

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

  13. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect (OSTI)

    Chalvatzaki, E.; Kopanakis, I.; Kontaksakis, M.; Glytsos, T.; Kalogerakis, N.; Lazaridis, M.

    2010-11-15

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  14. Landfill Gas and Biogas - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Landfill Gas and Biogas Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  15. Sanitary landfill groundwater monitoring report. First Quarter 1995

    SciTech Connect (OSTI)

    1995-06-01

    This report contains analytical data for samples taken during first quarter 1994 from wells of the LFW series located at the Sanitary Landfill Operating permit (DWP-0874A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standard for lead, or the SRS flagging criteria.

  16. Appendix B Landfill Inspection Forms and Survey Data

    Office of Legacy Management (LM)

    Original Landfill January 2011 Monthly Inspection - Attachment 1 The January inspection of the OLF was completed on January 28. The cover was fairly dry at the time of the inspection as precipitation has been scarce during the entire month. No new cracks were observed during this inspection. The locations where the previously reported cracks had been filled and compacted were also still in good repair. Project Location Updates Berm 1 and 7 continue to look good with no new slumping or cracking

  17. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  18. 488-4D ASH LANDFILL CLOSURE CAP HELP MODELING

    SciTech Connect (OSTI)

    Phifer, M.

    2014-11-17

    At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

  19. Lantana landfill: A history of environmental management 1965--96

    SciTech Connect (OSTI)

    Statom, R.A.

    1997-08-01

    The Lantana Sanitary Landfill (LSL) is located in central Palm Beach County, Florida. The history of this landfill is a case study of the changes in environmental law, demography, solid waste management, hydrogeology, and public opinion in south Florida in the last 30 years. In 1983 Palm Beach County transferred ownership of the LSL to the Palm Beach County Solid Waste Authority (SWA). Environmental regulation enacted by Florida in the mid 1980`s resulted in negotiations to close the LSL. Closure was completed in 1988 utilizing a synthetic top liner, a landfill gas extraction/flare system, and a stormwater management system. In 1990 a groundwater mitigation system was installed to remediate the eastern plume. Closure of the LSL, extension of municipal water to local residents, and extensive public education by the SWA all served to answer most of the complaints of the local residents. In 1996 the LSL fell under a new series of air regulations and was required to apply for a Title V permit.

  20. Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

  1. INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect (OSTI)

    W.C. Adams

    2010-05-24

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

  2. Case Studies from the Climate Technology Partnership: Landfill Gas Projects in South Korea and Lessons Learned

    SciTech Connect (OSTI)

    Larney, C.; Heil, M.; Ha, G. A.

    2006-12-01

    This paper examines landfill gas projects in South Korea. Two case studies provide concrete examples of lessons learned and offer practical guidance for future projects.

  3. INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect (OSTI)

    W.C. Adams

    2010-07-21

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

  4. Determination of landfill gas composition and pollutant emission rates at fresh kills landfill. Volume 2. Appendices to project report. Final report

    SciTech Connect (OSTI)

    1995-12-07

    Air emissions of landfill gas pollutants at Fresh Kills Landfill, located in Staten Island, NY, were estimated based on three weeks of sampling of flow, concentration, and flux at passive vents, gas extraction wells, gas collection plant headers, and the landfill surface conducted by Radian Corporation in 1995. Emission rates were estimated for 202 pollutants, including hydrogen sulfide, mercury vapor, speciated volatile organic compounds, methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane, and carbon dioxide. Results indicate that large amounts of mercury enter the methane recovery plant. Emission factors based on the results are presented.

  5. Improved methodology to assess modification and completion of landfill gas management in the aftercare period

    SciTech Connect (OSTI)

    Morris, Jeremy W.F.; Crest, Marion; Barlaz, Morton A.; Spokas, Kurt A.; Akerman, Anna; Yuan, Lei

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Performance-based evaluation of landfill gas control system. Black-Right-Pointing-Pointer Analytical framework to evaluate transition from active to passive gas control. Black-Right-Pointing-Pointer Focus on cover oxidation as an alternative means of passive gas control. Black-Right-Pointing-Pointer Integrates research on long-term landfill behavior with practical guidance. - Abstract: Municipal solid waste landfills represent the dominant option for waste disposal in many parts of the world. While some countries have greatly reduced their reliance on landfills, there remain thousands of landfills that require aftercare. The development of cost-effective strategies for landfill aftercare is in society's interest to protect human health and the environment and to prevent the emergence of landfills with exhausted aftercare funding. The Evaluation of Post-Closure Care (EPCC) methodology is a performance-based approach in which landfill performance is assessed in four modules including leachate, gas, groundwater, and final cover. In the methodology, the objective is to evaluate landfill performance to determine when aftercare monitoring and maintenance can be reduced or possibly eliminated. This study presents an improved gas module for the methodology. While the original version of the module focused narrowly on regulatory requirements for control of methane migration, the improved gas module also considers best available control technology for landfill gas in terms of greenhouse gas emissions, air quality, and emissions of odoriferous compounds. The improved module emphasizes the reduction or elimination of fugitive methane by considering the methane oxidation capacity of the cover system. The module also allows for the installation of biologically active covers or other features designed to enhance methane oxidation. A methane emissions model, CALMIM, was used to assist with an assessment of the methane oxidation capacity of landfill covers.

  6. Integrating remediation and resource recovery: On the economic conditions of landfill mining

    SciTech Connect (OSTI)

    Frändegård, Per Krook, Joakim; Svensson, Niclas

    2015-08-15

    Highlights: • We compare two remediation scenarios; one with resource recovery and one without. • Economic analysis includes relevant direct costs and revenues for the landfill owner. • High degrees of metal and/or combustible contents are important economic factors. • Landfill tax and the access to a CHP can have a large impact on the result. • Combining landfill mining and remediation may decrease the project cost. - Abstract: This article analyzes the economic potential of integrating material separation and resource recovery into a landfill remediation project, and discusses the result and the largest impact factors. The analysis is done using a direct costs/revenues approach and the stochastic uncertainties are handled using Monte Carlo simulation. Two remediation scenarios are applied to a hypothetical landfill. One scenario includes only remediation, while the second scenario adds resource recovery to the remediation project. Moreover, the second scenario is divided into two cases, case A and B. In case A, the landfill tax needs to be paid for re-deposited material and the landfill holder does not own a combined heat and power plant (CHP), which leads to disposal costs in the form of gate fees. In case B, the landfill tax is waived on the re-deposited material and the landfill holder owns its own CHP. Results show that the remediation project in the first scenario costs about €23/ton. Adding resource recovery as in case A worsens the result to −€36/ton, while for case B the result improves to −€14/ton. This shows the importance of landfill tax and the access to a CHP. Other important factors for the result are the material composition in the landfill, the efficiency of the separation technology used, and the price of the saleable material.

  7. Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

    Broader source: Energy.gov [DOE]

    Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site

  8. Landfill siting in New York: Case studies confirming the importance of site-specific hydrogeologic investigations

    SciTech Connect (OSTI)

    Cloyd, K.C.; Concannon, P.W. )

    1993-03-01

    Landfill siting is one of the most problematic environmental issues facing society today for a variety of both technical and political reasons. New York State has approached many of these issues by requiring both generalized siting studies and detailed hydrogeologic evaluation of any proposed landfill site. Geographic Information Systems (GIS) have emerged as an appropriate tool for accumulating information for preliminary decision making. Recently, Goodman and others have suggested the use of a terrain suitability map (land use map) as a mechanism for simplifying landfill siting. They propose the use of existing geologic and morphologic information to eliminate large areas of New York from consideration as potential landfill locations. The study concludes that the Appalachian Plateau region (the Southern Tier), and the Erie-Ontario Plain are the most suitable areas for landfill development in the state. An evaluation of the geology at existing landfills and the impacts that relate to the facilities has shown that suitable sites do indeed exist in areas deemed unacceptable by Goodman and others. Conversely, a number of landfills located in suitable terranes have proven to be developed on less than suitable sites. While evaluation of existing information plays an obvious role in preliminary siting studies, it is not a substitute for detailed hydrogeologic investigation. It is local hydrogeological conditions that are most important in determining the suitability of a site for landfill development rather than the regional geologic context of the site.

  9. Appendix B Landfill Inspection Forms and Survey Data

    Office of Legacy Management (LM)

    This page intentionally left blank This page intentionally left blank Rocky Flats Site Original Landfill - Settlement Plates Monitoring Quarterly Survey March 26, 2010 Comparison to Previous Survey December 15, 2009 03-26-10 OBSERVATIONS DELTA DELTA DELTA 12-15-09 OBSERVATIONS POINT NUMBER NORTHING EASTING ELEVATION DESCRIPTION NORTHING EASTING ELEVATION POINT NUMBER NORTHING EASTING ELEVATION DESCRIPTION 15053 747913.6883 2082233.082 6005.91 N-RIM-PIPE-AA 0.00 -0.02 -0.02 76527 747913.6913

  10. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect (OSTI)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ? The isotopic signature of ?{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ? Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ? In situ aeration of landfills can be monitored by isotope analysis in leachate. ? The isotopic analysis of leachates can be used for assessing the stability of MSW. ? ?{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of ?{sup 13}C, ?{sup 2}H and ?{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the ?{sup 13}C-value of the dissolved inorganic carbon (?{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of ?{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a ?{sup 13}C-DIC of ?20 to ?25. The production of methane under anaerobic conditions caused an increase in ?{sup 13}C-DIC up to values of +10 and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a ?{sup 13}C-DIC of about ?20. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidationreduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.

  11. Superfund Record of Decision (EPA Region 3): Moyer Landfill Site, Collegeville, Pennsylvania, September 1985. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-30

    The Moyer Landfill is an inactive privately owned landfill located in Lower Providence Township in Montgomery County, Pennsylvania. The site was operated as a municipal landfill from the 1940's until April 1981, during which time it received municipal refuse and sewage sludges. According to local Federal Bureau of Investigation (FBI) officials, the landfill accepted a variety of solid and liquid hazardous wastes, including polychlorinated biphenyls (PCBs), solvents, paints, low-level radioactive wastes, and incinerated materials in bulk form and/or containerized in drums. In 1972, when the Pennsylvania Dept. of Environmental Resources (PADER) rules and regulations became more restrictive, this landfill was cited, and finally in 1981, it was closed and brought into receivership of the U.S. District Court.

  12. TDR calibration for the alternative landfill cover demonstration (ALCD)

    SciTech Connect (OSTI)

    Lopez, J.; Dwyer, S.F.; Swanson, J.N.

    1997-09-01

    The Alternative Landfill Cover Demonstration is a large scale field test that compares the performance of various landfill cover designs in dry environments. An important component of the comparison is the change in the moisture content of the soils throughout the different cover test plots. Time Domain Reflectometry (TDR) is the primary method for the measurement of the volumetric moisture content. Each of the covers is composed of layers of varying types and densities of soils. The probes are therefore calibrated to calculate the volumetric moisture content in each of the different soils in order to gain the optimum performance of the TDR system. The demonstration plots are constructed in two phases; a different probe is used in each phase. The probe that is used in Phase 1 is calibrated for the following soils: compacted native soil, uncompacted native soil, compacted native soil mixed with 6% sodium bentonite by weight, and sand. The probe that is used in Phase 2 is calibrated for the following soils: compacted native soil, uncompacted native soil, and sand. In addition, the probes are calibrated for the varying cable lengths of the TDR probes. The resulting empirically derived equations allow for the calculation of in-situ volumetric moisture content of all of the varying soils throughout the cover test plots in the demonstration.

  13. Estimating water content in an active landfill with the aid of GPR

    SciTech Connect (OSTI)

    Yochim, April, E-mail: ayochim@regionofwaterloo.ca [Region of Waterloo Waste Management Division, 925 Erb Street West, Waterloo, ON N2J 3Z4 (Canada); Zytner, Richard G., E-mail: rzytner@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); McBean, Edward A., E-mail: emcbean@uoguelph.ca [School of Engineering, University of Guelph, Guelph, ON N1G 2W1 (Canada); Endres, Anthony L., E-mail: alendres@sciborg.uwaterloo.ca [Dept. of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2013-10-15

    Highlights: Limited information in the literature on the use of GPR to measure in situ water content in a landfill. Developed GPR method allows measurement of in situ water content in a landfill. Developed GPR method is appealing to waste management professionals operating landfills. - Abstract: Landfill gas (LFG) receives a great deal of attention due to both negative and positive environmental impacts, global warming and a green energy source, respectively. However, predicting the quantity of LFG generated at a given landfill, whether active or closed is difficult due to the heterogeneities present in waste, and the lack of accurate in situ waste parameters like water content. Accordingly, ground penetrating radar (GPR) was evaluated as a tool for estimating in situ water content. Due to the large degree of subsurface heterogeneity and the electrically conductive clay cap covering landfills, both of which affect the transmission of the electromagnetic pulses, there is much scepticism concerning the use of GPR to quantify in situ water content within a municipal landfill. Two landfills were studied. The first landfill was used to develop the measurement protocols, while the second landfill provided a means of confirming these protocols. GPR measurements were initially completed using the surface GPR approach, but the lack of success led to the use of borehole (BH) GPR. Both zero offset profiling (ZOP) and multiple offset gathers (MOG) modes were tried, with the results indicating that BH GPR using the ZOP mode is the most simple and efficient method to measure in situ water content. The best results were obtained at a separation distance of 2 m, where higher the water content, smaller the effective separation distance. However, an increase in water content did appear to increase the accuracy of the GPR measurements. For the effective separation distance of 2 m at both landfills, the difference between GPR and lab measured water contents were reasonable at 33.9% for the drier landfill and 18.1% for the wetter landfill. Infiltration experiments also showed the potential to measure small increases in water content.

  14. Certification report for final closure of Y-12 Centralized Sanitary Landfill II, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1995-12-31

    This report represents the Geotek Engineering Company, Inc., (Geotek) record of activities to support certification of final closure Of the subject Y-12 Centralized Sanitary Landfill II. Ex as noted herein, final closure of the landfill was completed in accordance with the Y-12 Centralized Sanitary Landfill 11 Closure/Post Closure Plan, Revision 2, submitted by the US Department of Energy (DOE) to the Tennessee Department of Environment and Conservation (TDEC) on April 14, 1992, and approved by TDEC on May 27, 1994 (the ``Closure Plan``). minor modification to the Closure Plan allowing partial closure of the Y-12 Centralized Sanitary Landfill II (Phase 1) was approved by TDEC on August 3, 1994. The Phase I portion of the closure for the subject landfill was completed on March 25, 1995. A closure certification report entitled Certification Report for Partial Closure of Y-12 Centralized Sanitary Landfill II was submitted to Lockheed Martin Energy Systems, Inc., (LMES) on March 28, 1995. The final closure represents the completion of the closure activities for the entire Y-12 Centralized Sanitary Landfill II Site. The contents of this report and accompanying certification are based on observations by Geotek engineers and geologists during closure activities and on review of reports, records, laboratory test results, and other information furnished to Geotek by LMES.

  15. Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse

    SciTech Connect (OSTI)

    Bogner, J.E.; Rose, C.; Piorkowski, R.

    1989-01-01

    Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

  16. Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models

    SciTech Connect (OSTI)

    Di Bella, Gaetano; Di Trapani, Daniele; Viviani, Gaspare

    2011-08-15

    Methane (CH{sub 4}) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH{sub 4} is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH{sub 4} emissions from landfill sites and the quantification of CH{sub 4} emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH{sub 4} diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH{sub 4} diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH{sub 4} contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH{sub 4} mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.

  17. Limited site investigation of Landfills 1 and 4, Fort Lewis, Washington

    SciTech Connect (OSTI)

    Last, G.V.; Eddy, P.A.; Airhart, S.P.; Olsen, K.R.; Raymond, J.R.; Dahl, D.R.

    1990-08-01

    The information presented in this report was collected during limited site investigation activities conducted in the vicinity of Landfills 1 and 4 at Fort Lewis. The purpose of this work was to provide a means of detecting and evaluating the impacts of these inactive landfills on ground-water quality and adjacent lands. This effort included the design and construction of ground-water monitoring systems for compliance with applicable federal and state regulations governing Resource Conservation and Recovery Act (RCRA)-type landfills. Ground-water samples were collected from both existing (1981 and 1984) wells and the newly installed (1988) wells. The analytical results from the water samples indicate that the ground water in and around Landfill 1 contains limited contamination. Contaminants may include volatile organic compounds and nitrate. The primary concern in the area around Landfill 1 was the determination that ground water from two wells may contain cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. Nitrate levels in the downgradient wells were greater than those in upgradient wells and exceeded drinking water standards in some of the less-representative samples. Analyses of ground-water samples from wells in and around Landfill 4 indicate several contaminants may be present. These include volatile organic compounds (principally cis-1,2-dichloroethylene and 1,1,1-trichloroethylene), coliform, oil and grease, and perhaps some metals (iron and magnesium). The primary concern in the area around Landfill 4 was the determination that ground water from five wells contained cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. The source of contaminants beneath either landfill cannot yet be identified. Insufficient data exist to disprove or confirm either landfill as possible contributors. 19 refs., 32 figs., 17 tabs.

  18. Comparison of emissions from landfills, municipal waste combustors, and fossil fuel-fired utilities

    SciTech Connect (OSTI)

    1996-11-01

    Landfilling is the most popular disposal method for managing municipal solid waste (MSW). However, air emissions from MSW landfills have generally been unregulated until recently. Instead, EPA has focused on emissions from municipal waste combustors (MWCs), even though they only manage 15% of MSW generated in the United States. In the past, little data have been available comparing landfill and MWC air emissions. Such information is provided by this paper. It also compares emissions from waste-to-energy MWCs and fossil fuel-fired utilities with equivalent electrical generation capacity. 1 refs., 6 tabs.

  19. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    SciTech Connect (OSTI)

    1997-05-14

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

  20. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  1. Field measurements of frost penetration into a landfill cover that uses a paper sludge barrier

    SciTech Connect (OSTI)

    Moo-Young, H.K.; LaPlante, C.; Zimmie, T.F.; Quiroz, J.

    1999-07-01

    Frost penetration is a major environmental concern in landfill design. Freezing and thawing cycles may deteriorate the permeability of the liner or cap. In this study, the depth of frost penetration into a landfill cover that uses paper sludge as the impermeable barrier (the Hubbardston landfill in Massachusetts) was measured using a frost measurement system. A thermistor probe measured the temperature at various depths. Although temperature measurements are important, soil resistivity measurements are required to accurately predict the freezing level, since soil resistivity increases greatly upon freezing. A conductivity probe measured the half-bridge voltage between conductivity rings and a ground rod. Data were collected in data loggers. The data collected from 1992--1996 showed that the frost level did not penetrate the paper sludge capping layer. Heavy snow cover throughout the winters decreased the depth of frost penetration by insulating the landfill. The high water content in the sludge also contributed to the lack of freezing.

  2. Property:Building/SPPurchasedEngyForPeriodMwhYrDigesterLandfillGas...

    Open Energy Info (EERE)

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  3. Property:Building/SPPurchasedEngyNrmlYrMwhYrDigesterLandfillGas...

    Open Energy Info (EERE)

    YrDigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  4. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    1997-04-01

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

  5. Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant

    Broader source: Energy.gov [DOE]

    Success story about LNG from landfill gas. Presented by Mike McGowan, Linde NA, Inc., at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  6. Support EM LA Airport Landfill Cover Project by providing 40000 tons of soil

    Broader source: Energy.gov [DOE]

    The purpose of this task order (TO) is to support the EM-LA Field Office in replacing the cover at the Los Alamos County Airport Landfill. The new cover design is an evapotranspiration (ET) cover.

  7. Investigation of Integrated Subsurface Processing of Landfill Gas and Carbon Sequestration, Johnson County, Kansas

    SciTech Connect (OSTI)

    K. David Newell; Timothy R. Carr

    2007-03-31

    The Johnson County Landfill in Shawnee, KS is operated by Deffenbaugh Industries and serves much of metropolitan Kansas City. Refuse, which is dumped in large plastic-underlined trash cells covering several acres, is covered over with shale shortly after burial. The landfill waste, once it fills the cell, is then drilled by Kansas City LFG, so that the gas generated by anaerobic decomposition of the refuse can be harvested. Production of raw landfill gas from the Johnson County landfill comes from 150 wells. Daily production is approximately 2.2 to 2.5 mmcf, of which approximately 50% is methane and 50% is carbon dioxide and NMVOCs (non-methane volatile organic compounds). Heating value is approximately 550 BTU/scf. A upgrading plant, utilizing an amine process, rejects the carbon dioxide and NMVOCs, and upgrades the gas to pipeline quality (i.e., nominally a heating value >950 BTU/scf). The gas is sold to a pipeline adjacent to the landfill. With coal-bearing strata underlying the landfill, and carbon dioxide a major effluent gas derived from the upgrading process, the Johnson County Landfill is potentially an ideal setting to study the feasibility of injecting the effluent gas in the coals for both enhanced coalbed methane recovery and carbon sequestration. To these ends, coals below the landfill were cored and then were analyzed for their thickness and sorbed gas content, which ranged up to 79 scf/ton. Assuming 1 1/2 square miles of land (960 acres) at the Johnson County Landfill can be utilized for coalbed and shale gas recovery, the total amount of in-place gas calculates to 946,200 mcf, or 946.2 mmcf, or 0.95 bcf (i.e., 985.6 mcf/acre X 960 acres). Assuming that carbon dioxide can be imbibed by the coals and shales on a 2:1 ratio compared to the gas that was originally present, then 1682 to 1720 days (4.6 to 4.7 years) of landfill carbon dioxide production can be sequestered by the coals and shales immediately under the landfill. Three coal--the Bevier, Fleming, and Mulberry coals--are the major coals of sufficient thickness (nominally >1-foot) that can imbibe carbon dioxide gas with an enhanced coalbed injection. Comparison of the adsorption gas content of coals to the gas desorbed from the coals shows that the degree of saturation decreases with depth for the coals.

  8. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect (OSTI)

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  9. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect (OSTI)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  10. SPECIAL REPORT Allegations Regarding the Sandia National Laboratories Mixed Waste Landfill

    Energy Savers [EERE]

    Regarding the Sandia National Laboratories Mixed Waste Landfill OAI-SR-16-01 February 2016 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 February 18, 2016 MEMORANDUM FOR THE MANAGER, SANDIA FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Special Report on the "Allegations Regarding the Sandia National Laboratories Mixed Waste Landfill"

  11. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills

    SciTech Connect (OSTI)

    Sizirici, Banu; Tansel, Berrin; Kumar, Vivek

    2011-06-15

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

  12. Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills

    SciTech Connect (OSTI)

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  13. Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills

    SciTech Connect (OSTI)

    1992-10-01

    While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

  14. Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2012-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

  15. Cost savings associated with landfilling wastes containing very low levels of uranium

    SciTech Connect (OSTI)

    Boggs, C.J.; Shaddoan, W.T.

    1996-03-01

    The Paducah Gaseous Diffusion Plant (PGDP) has operated captive landfills (both residential and construction/demolition debris) in accordance with the Commonwealth of Kentucky regulations since the early 1980s. Typical waste streams allowed in these landfills include nonhazardous industrial and municipal solid waste (such as paper, plastic, cardboard, cafeteria waste, clothing, wood, asbestos, fly ash, metals, and construction debris). In July 1992, the U.S. Environmental Protection Agency issued new requirements for the disposal of sanitary wastes in a {open_quotes}contained landfill.{close_quotes} These requirements were promulgated in the 401 Kentucky Administrative Record Chapters 47 and 48 that became effective 30 June 1995. The requirements for a new contained landfill include a synthetic liner made of high-density polyethylene in addition to the traditional 1-meter (3-foot) clay liner and a leachate collection system. A new landfill at Paducah would accept waste streams similar to those that have been accepted in the past. The permit for the previously existing landfills did not include radioactivity limits; instead, these levels were administratively controlled. Typically, if radioactivity was detected above background levels, the waste was classified as low-level waste (LLW), which would be sent off-site for disposal.

  16. Trash processing and recycling using the zero landfill solution

    SciTech Connect (OSTI)

    Thompson, W.J.

    1994-12-31

    Each person in the US produces approximately one ton of trash per year. The environmentally friendly municipal trash processing and recycling complex used for illustrative purposes in this paper is designed and sized to handle trash from typical municipalities ranging from 500,000 to 750,000 populations. This translates into a nominal 2,000 ton per day (TPD) facility. A typical component breakdown of municipal solid waste is shown in appendix A. The layout of the complex is shown in appendix B. Today`s municipal trash processing and recycling center should be designed to serve the needs of the municipality for at least the next 20 to 30 years. It should also be designed in such a way as to allow any new technology advancements to be added easily and in a cost effective manner to extend the useful service life of the facility almost indefinitely. 100% of the trash will be recycled. There will be no need for a dump, landfill, or disposal site at all. No curbside separation is required.

  17. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  18. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh�s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

  19. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

  20. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect (OSTI)

    Davoli, E.; Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M.; Rossi, A.N.; Il Grande, M.; Fanelli, R.

    2010-08-15

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  1. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  2. Geophysical exploration and hydrologic impact of the closed Gracelawn landfill in Auburn, ME

    SciTech Connect (OSTI)

    Wisniewski, D. . Geology Dept.)

    1993-03-01

    Several geophysical methods were used over portions of the Gracelawn landfill, in Auburn, Maine to determine the surface boundaries and subsurface structure of this closed landfill, and to determine the landfill's effects on groundwater quality. The landfill was originally a sand and gravel pit excavated in the 1950's and early 1960's, and was used as a landfill from 1964--1977. The site is unlined, has a clay cap, and has been graded and developed as a baseball park. Two seismic refraction lines were performed to obtain a minimum depth to bedrock of 80 m. Seismic velocities of methane gas-saturated trash ranged from 250 to 340 m/s, and sand velocities are approximately 800 m/s. Two electrical resistivity Wenner surveys over the trash yielded the depth to saturated material and thickness of the trash layers. Resistivity values for dry refuse ranged from 1,000-2,000 [Omega]*m. A third electrical resistivity survey yielded the thickness of unsaturated and saturated sands bordering the landfill. Dry sands were found to have a resistivity of 1,000 [Omega]*m, and saturated sands a resistivity of 500 [Omega]*m. Gravity and magnetic survey grids across the site revealed anomalies which were mapped to illustrate the irregular morphology of the buried trash as well as its surface boundaries. Residual magnetic anomalies are on the order of 2,000 nT. Residual gravity anomalies are up to 5 mGal. Groundwater elevations determined by the geophysical survey, combined with a survey of existing water monitoring well logs, indicate that the groundwater flow in the sand and gravel aquifer is to the southeast, away from the public water supply, Lake Auburn, which lies to the north of the site. However, correlations between the bedrock fracture analysis and the geophysical survey illustrate that there is potential for contamination of Lake Auburn via the bedrock aquifer.

  3. Landfill impacts on aquatic plant communities and tissue metal levels at Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Stewart, P.M. [National Biological Service, Porter, IN (United States). Lake Michigan Ecological Station; Scribailo, R.W. [Purdue Univ.North Central, Westville, IN (United States). Section of Biology and Chemistry

    1995-12-31

    One important environmental issue facing Northwest Indiana and park management at Indiana Dunes National Lakeshore (INOU) is the contamination of water, sediment and biota by persistent toxic substances. Aquatic plant communities were used to evaluate the water/organismal quality of the Grand Calumet Lagoons and two dunal ponds (pannes) at Gary, Indiana, which are partially located in the Miller Woods Unit of INDU. The lagoon is divided into several areas, the USX Lagoon is located between sections of a large industrial landfill (steel slag and other material). The Marquette Lagoon is located further away from the landfill and tends to be upgradient from the landfill. The West Panne (WP) is located next to the landfill, while the East Panne (EP) is separated from the landfill and the WP by a high dune ridge. Plant populations shift toward fewer submergent aquatics, with a higher abundance of tolerant taxa in the western section of the USX Lagoon. These differences are supported by cluster analysis. Heavy metals in root tissue of Scirpus americanus and other plant species from the pannes were significantly higher than those found in shoots. Shoot tissue metal levels in plants collected from the lagoons were higher than root tissue metal levels. The WP site has the most elevated tissue metal levels for most metals assayed, while the EP site shows similar contaminant levels. The plant distributions observed and tissue metal concentrations measured suggest that INDU`s aquatic plant community has been affected by the industrial landfill and that there exists a hydrological connection between the ponds.

  4. Systems and methods for measuring a parameter of a landfill including a barrier cap and wireless sensor systems and methods

    DOE Patents [OSTI]

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.

    2007-03-06

    A method of measuring a parameter of a landfill including a cap, without passing wires through the cap, includes burying a sensor apparatus in the landfill prior to closing the landfill with the cap; providing a reader capable of communicating with the sensor apparatus via radio frequency (RF); placing an antenna above the barrier, spaced apart from the sensor apparatus; coupling the antenna to the reader either before or after placing the antenna above the barrier; providing power to the sensor apparatus, via the antenna, by generating a field using the reader; accumulating and storing power in the sensor apparatus; sensing a parameter of the landfill using the sensor apparatus while using power; and transmitting the sensed parameter to the reader via a wireless response signal. A system for measuring a parameter of a landfill is also provided.

  5. Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Hydrogen Fuel | Department of Energy Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel Garbage In, Power Out: South Carolina BMW Plant Demonstrates Landfill Gas to Hydrogen Fuel August 25, 2015 - 2:15pm Addthis The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell forklifts. | Photo courtesy of BMW Manufacturing. The plant BMW plant in Greer, South Carolina is home to the world's largest fleet of fuel cell

  6. Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report

    SciTech Connect (OSTI)

    Brown, W.R.; Cook, W. J.; Siwajek, L.A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

  7. BUNCOMBE COUNTY WASTEWATER PRE-TREATMENT AND LANDFILL GAS TO ENERGY PROJECT

    SciTech Connect (OSTI)

    Jon Creighton

    2012-03-13

    The objective of this project was to construct a landfill gas-to-energy (LFGTE) facility that generates a renewable energy source utilizing landfill gas to power a 1.4MW generator, while at the same time reducing the amount of leachate hauled offsite for treatment. The project included an enhanced gas collection and control system, gas conditioning equipment, and a 1.4 MW generator set. The production of cleaner renewable energy will help offset the carbon footprint of other energy sources that are currently utilized.

  8. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

  9. Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

    2005-03-30

    The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

  10. Impact of different plants on the gas profile of a landfill cover

    SciTech Connect (OSTI)

    Reichenauer, Thomas G.; Watzinger, Andrea; Riesing, Johann; Gerzabek, Martin H.

    2011-05-15

    Research highlights: > Plants influence gas profile and methane oxidation in landfill covers. > Plants regulate water content and increase the availability of oxygen for methane oxidation. > Plant species with deep roots like alfalfa showed more stimulation of methane oxidation than plants with shallow root systems like grasses. - Abstract: Methane is an important greenhouse gas emitted from landfill sites and old waste dumps. Biological methane oxidation in landfill covers can help to reduce methane emissions. To determine the influence of different plant covers on this oxidation in a compost layer, we conducted a lysimeter study. We compared the effect of four different plant covers (grass, alfalfa + grass, miscanthus and black poplar) and of bare soil on the concentration of methane, carbon dioxide and oxygen in lysimeters filled with compost. Plants were essential for a sustainable reduction in methane concentrations, whereas in bare soil, methane oxidation declined already after 6 weeks. Enhanced microbial activity - expected in lysimeters with plants that were exposed to landfill gas - was supported by the increased temperature of the gas in the substrate and the higher methane oxidation potential. At the end of the first experimental year and from mid-April of the second experimental year, the methane concentration was most strongly reduced in the lysimeters containing alfalfa + grass, followed by poplar, miscanthus and grass. The observed differences probably reflect the different root morphology of the investigated plants, which influences oxygen transport to deeper compost layers and regulates the water content.

  11. Water quality evaluation and geochemical assessment of iron, manganese, and arsenic in a landfill site

    SciTech Connect (OSTI)

    Pisigan, R.A. Jr.

    1995-12-31

    Several monitoring wells at a landfill site were sampled for water quality parameters to determine the nature of groundwater contamination. The landfill, located beneath a limestone and dolomitic bedrock, has been used for about 20 years for trash and garbage disposal. The monitoring parameters include major cations and anions, as well as iron, manganese, arsenic, and other parameters measured in the field to characterize the subsurface conditions. Groundwater samples collected near the landfill and downgradient locations had higher levels of iron, manganese, arsenic, alkalinity, hardness than those samples from an upgradient well. The downgradient and on-site samples were also more acidic and turbid, The dissolved oxygen data tend to suggest reducing conditions in the leachate environment. The elevated groundwater concentrations of the three metals, especially iron, were most probably caused by the acidity generated by carbon dioxide and organic acids released from microbial degradation of organic compounds dumped into the landfill. The acidic pH led to the dissolution of iron, manganese, and arsenic bearing mineral phases. The buffering reactions of limestone and dolomite to neutralize the acidic degradation products increased the hardness cations, Ca{sup +2} and Mg{sup +2}. Inorganic speciation modeling indicates that iron, manganese, and arsenic predominantly exist as Fe {sup +2}, Mn{sup +2}, and H{sub 3}AsO{sub 3}. The possible presence of organic complexes of iron was discussed, but could be modeled due to lack of appropriate equilibrium constant data.

  12. Value engineering: An alternative liner system at the La Paz County Regional Landfill

    SciTech Connect (OSTI)

    Shafer, A.L.; Purdy, S.; Tempelis, D.

    1997-11-01

    The La Paz County Regional Landfill is a 65 hectare (160 acre) municipal waste site located near the western border of Arizona between the cities of Parker and Quartzsite. The site is operated under a public/private partnership between the County of La Paz and Browning-Ferris Industries, Inc. (BFI). The County owns the landfill and infrastructure and BFI is responsible for facility improvements, environmental compliance, and daily operations. Following the initial permitting and construction of the first landfill cell, a value engineering review was conducted on the site design and permit requirements. Based on this review, substantial cost saving opportunities were identified. In order to implement the value engineering ideas, the site permit was modified and a new Solid Waste Facilities Plan was Submitted to the Arizona Department of Environmental Quality. This paper discusses the value engineering modifications that were conducted, the revisions to the permits, and the relative cost savings that were realized. The areas addressed include the liner system design, closure design, disposal capacity, and operations plan. Through the use of alternative liners a cost savings of well over 50 percent (as compared to the original permit) will be realized over the life of the landfill.

  13. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect (OSTI)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  14. Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study

    SciTech Connect (OSTI)

    2013-04-30

    BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The two projects received a total of $25 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009. Private-sector cost share for the projects totaled approximately $186 million.

  15. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas...

    Open Energy Info (EERE)

    M2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  16. A water balance study of four landfill cover designs varying in slope for semiarid regions

    SciTech Connect (OSTI)

    Nyhan, J.W.; Schofield, T.G.; Salazar, J.A.

    1997-02-01

    The goal of disposing of radioactive and hazardous waste in shallow landfills is to reduce risk to human health and to the environment by isolating contaminants until they no longer pose a hazard. In order to achieve this, the performance of a landfill cover design without an engineered barrier (Conventional Design) was compared with three designs containing either a hydraulic barrier (EPA Design) or a capillary barrier (Loam and Clay Loam Capillary Barrier Designs). Water balance parameters were measured since 1991 at six-hour intervals for four different landfill cover designs in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Whereas runoff generally accounted for only 2-3% of the precipitation losses on these designs, similar values for evapotranspiration ranged from 86% to 91%, with increased evapotranspiration occurring with increases in slope. Consequently, interflow and seepage usually decreased with increasing slope for each landfill cover design. Seepage consisted of up to 10% of the precipitation on the Conventional Design, whereas the hydraulic barrier in the EPA Design effectively controlled seepage at all slopes, and both of the capillary designs worked effectively to eliminate seepage at the higher slopes.

  17. Sanitary Landfill Groundwater Monitoring Report - Fourth Quarter 1998 and 1998 Summary

    SciTech Connect (OSTI)

    Chase, J.

    1999-04-09

    A maximum of fifty-three wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water permit and as part of the SRS Groundwater Monitoring Program.

  18. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.

  19. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-05-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Construction is complete on the 3.5-acre anaerobic cell and liquid addition has commenced. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and construction of the west-side 6-acre anaerobic cell is nearly complete with only the liquid addition system remaining. The current project status and preliminary monitoring results are summarized in this report.

  20. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    SciTech Connect (OSTI)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.

  1. Stability monitoring system for the Fresh Kills Landfill in New York City

    SciTech Connect (OSTI)

    Thomann, T.G.; Khoury, M.A.; Rosenfarb, J.L.; Napolitano, R.A.

    1999-07-01

    The Fresh Kills Landfill, located in Staten Island, New York, serves as the repository of all municipal solid waste from the five boroughs of New York City. Because of the existence of compressible soils under most of the filling areas and the urban environment surrounding the landfill, considerable importance is being placed on the relationship between filling operations and the stability of the landfill. As a result of this concern and to address Order on Consent requirements, a program of geotechnical site characterizations, stability analyses, and design and implementation of a geotechnical instrumentation program was undertaken. Geotechnical instruments have been installed within the refuse fill and foundation soils to monitor both the magnitude and rate of change of pore pressure, lateral and vertical movements, and temperature. This paper presents an overview of the subsurface conditions, the overall instrumentation plan for assessing the landfill stability, a description of the various instruments, the performance of these instruments to date, an overview of the collected measurements, and a description of how these measurements are used to monitor the stability.

  2. Washington Closure Hanford Report of Settlement Monitoring of the ERDF Landfill

    SciTech Connect (OSTI)

    J. T. Cameron

    2008-07-30

    This report summarizes the results of the ERDF Settlement Monitoring Program conducted between August 9, 2007, and April 29, 2008, on the 35-foot and 70-foot levels of the ERDF landfill. The purpose of this monitoring program was to verify that the materials already placed under the 35-foot and 70-foot levels satisfy the settlement criteria of the conceptual cap design.

  3. LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS

    SciTech Connect (OSTI)

    VANDOR,D.

    1999-03-01

    This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

  4. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  5. Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process

    SciTech Connect (OSTI)

    Sri Shalini, S.; Joseph, Kurian

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.

  6. Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach

    SciTech Connect (OSTI)

    Fellner, Johann

    2010-11-15

    The flow of water through Municipal Solid Waste (MSW) landfills is highly non-uniform and dominated by preferential pathways. Thus, concepts to simulate landfill behavior require that a heterogeneous flow regime is considered. Recent models are based on a 2-domain approach, differentiating between channel domain with high hydraulic conductivity, and matrix domain of slow water movement with high water retention capacity. These models focus on the mathematical description of rapid water flow in channel domain. The present paper highlights the importance of water exchange between the two domains, and expands the 1-dimensional, 2-domain flow model by taking into account water flows in two dimensions. A flow field consisting of a vertical path (channel domain) surrounded by the waste mass (matrix domain) is defined using the software HYDRUS-2D. When the new model is calibrated using data sets from a MSW-landfill site the predicted leachate generation corresponds well with the observed leachate discharge. An overall model efficiency in terms of r{sup 2} of 0.76 was determined for a simulation period of almost 4 years. The results confirm that water in landfills follows a preferential path way characterized by high permeability (K{sub s} = 300 m/d) and zero retention capacity, while the bulk of the landfill (matrix domain) is characterized by low permeability (K{sub s} = 0.1 m/d) and high retention capacity. The most sensitive parameters of the model are the hydraulic conductivities of the channel domain and the matrix domain, and the anisotropy of the matrix domain.

  7. Cap and trade schemes on waste management: A case study of the Landfill Allowance Trading Scheme (LATS) in England

    SciTech Connect (OSTI)

    Calaf-Forn, Maria; Roca, Jordi; Puig-Ventosa, Ignasi

    2014-05-01

    Highlights: LATS has been effective to achieve a reduction of the amount of landfilled waste. LATS has been one of the few environmental instruments for waste management with a cap and trade methodology. LATS has achieved to increase recycling of the biodegradable and other waste fractions. - Abstract: The Landfill Allowance Trading Scheme (LATS) is one of the main instruments used in England to enforce the landfill diversion targets established in the Directive 1999/31/EC of the European Parliament and of the Council of 26 April 1999 on the landfill of waste (Landfill Directive). Through the LATS, biodegradable municipal waste (BMW) allowances for landfilling are allocated to each local authority, otherwise known as waste disposal authorities (WDAs). The quantity of landfill allowances received is expected to decrease continuously from 2005/06 to 2019/20 so as to meet the objectives of the Landfill Directive. To achieve their commitments, WDAs can exchange, buy, sell or transfer allowances among each other, or may re-profile their own allocation through banking and/or borrowing. Despite the goals for the first seven years which included two target years (2005/06 and 2009/10) being widely achieved (the average allocation of allowances per WDA was 22.9% higher than those finally used), market activity among WDAs was high and prices were not very stable. Results in terms of waste reduction and recycling levels have been satisfactory. The reduction of BMW landfilled (in percentage) was higher during the first seven years of the LATS period (2005/062011/12) (around 7% annually) than during the previous period (2001/022004/05) (4.2% annually). Since 2008, the significance of the LATS diminished because of an increase in the rate of the UK Landfill Tax. The LATS was suppressed after the 2012/13 target year, before what it was initially scheduled. The purpose of this paper is to describe the particularities of the LATS, analyse its performance as a waste management policy, make a comparison with the Landfill Tax, discuss its main features as regards efficiency, effectiveness and the application of the polluter pays principle and finally discuss if the effect of the increase in the Landfill Tax is what made the LATS ultimately unnecessary.

  8. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn29.5Al0.5Ti filler metal

    SciTech Connect (OSTI)

    Liu, Fei; Wang, Hongyang; Liu, Liming, E-mail: liulm@dlut.edu.cn

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn29.5Al0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard MgAl intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated AlMgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the MgAl dissimilar joint. - Highlights: Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. The effect of Ti in filler metal is investigated. The formation of MgAl intermetallic compounds is avoided.

  9. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

  10. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  11. Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste

    SciTech Connect (OSTI)

    Forster, G.A.

    1995-01-01

    This report summarized the Lancaster county Solid Waste Management Authorities`s (LCSWMA)landfill reclamation activities, ongoing since 1991. All aspects have been analyzed from the manpower and equipment requirements at the landfill to the operational impacts felt at the LCSWMA Resource Recovery Facility (RRF) where the material is delivered for processing. Characteristics of the reclaimed refuse and soil recovered from trommeling operations are discussed as are results of air monitoring performed at the landfill excavation site and the RRF. The report also discusses the energy value of the reclaimed material and compares this value with those obtained for significantly older reclaimed waste streams. The effects of waste age on the air emissions and ash residue quality at the RRF are also provided. The report concludes by summarizing the project benefits and provides recommendations for other landfill reclamation operations and areas requiring further research.

  12. Annual Performance Assessment and Composite Analysis Review for the ICDF Landfill FY 2008

    SciTech Connect (OSTI)

    Karen Koslow Arthur Rood

    2009-08-31

    This report addresses low-level waste disposal operations at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) landfill from the start of operations in Fiscal Year 2003 through Fiscal Year 2008. The ICDF was authorized in the Operable Unit 3-13 Record of Decision for disposal of waste from the Idaho National Laboratory Site CERCLA environmental restoration activities. The ICDF has been operating since 2003 in compliance with the CERCLA requirements and the waste acceptance criteria developed in the CERCLA process. In developing the Operable Unit 3-13 Record of Decision, U.S. Department of Energy Order (DOE) 435.1, 'Radioactive Waste Management', was identified as a 'to be considered' requirement for the ICDF. The annual review requirement under DOE Order 435.1 was determined to be an administrative requirement and, therefore, annual reviews were not prepared on an annual basis. However, the landfill has been operating for 5 years and, since the waste forms and inventories disposed of have changed from what was originally envisioned for the ICDF landfill, the ICDF project team has decided that this annual review is necessary to document the changes and provide a basis for any updates in analyses that may be necessary to continue to meet the substantive requirements of DOE Order 435.1. For facilities regulated under DOE Order 435.1-1, U.S. DOE Manual 435.1-1, 'Radioactive Waste Management', IV.P.(4)(c) stipulates that annual summaries of low-level waste disposal operations shall be prepared with respect to the conclusions and recommendations of the performance assessment and composite analysis. Important factors considered in this review include facility operations, waste receipts, and results from monitoring and research and development programs. There have been no significant changes in operations at the landfill in respect to the disposal geometry, the verification of waste characteristics, and the tracking of inventories against total limits that would affect the results and conclusions of the performance assessment. Waste receipts to date and projected waste receipts through Fiscal Year 2012 are both greater than the inventory assessed in the performance assessment and composite analysis. The waste forms disposed of to the landfill are different from the waste form (compacted soil) assessed in the performance assessment. The leak detection system and groundwater monitoring results indicate the landfill has not leaked. The results of the performance assessment/composite analysis are valid (i.e., there is still a reasonable expectation of meeting performance objectives) but the new information indicates less conservatism in the results than previously believed.

  13. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    SciTech Connect (OSTI)

    Tansel, Berrin Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  14. Title I conceptual design for Pit 6 landfill closure at Lawrence Livermore National Laboratory Site 300

    SciTech Connect (OSTI)

    MacDonnell, B.A.; Obenauf, K.S.

    1996-08-01

    The objective of this design project is to evaluate and prepare design and construction documents for a closure cover cap for the Pit 6 Landfill located at Lawrence Livermore National Laboratory Site 300. This submittal constitutes the Title I Design (Conceptual Design) for the closure cover of the Pit 6 Landfill. A Title I Design is generally 30 percent of the design effort. Title H Design takes the design to 100 percent complete. Comments and edits to this Title I Design will be addressed in the Title II design submittal. Contents of this report are as follows: project background; design issues and engineering approach; design drawings; calculation packages; construction specifications outline; and construction quality assurance plan outline.

  15. Constructed wetlands for municipal solid waste landfill leachate treatment. Final report

    SciTech Connect (OSTI)

    Peverly, J.; Sanford, W.E.; Steenhuis, T.S.

    1993-11-01

    In 1989, the US Geological Survey and Cornell University, in cooperation with the New York State Energy Research and Development Authority and the Tompkins County Solid Waste Department, began a three-year study at a municipal solid-waste landfill near Ithaca, New York, to test the effectiveness of leachate treatment with constructed wetlands and to examine the associated treatment processes. Specific objectives of the study were to examine: treatment efficiency as function of substrate composition and grain size, degree of plant growth, and seasonal changes in evapotranspiration rates and microbial activity; effects of leachate and plant growth on the hydraulic characteristics of the substrate; and chemical, biological, and physical processes by which nutrients, metals, and organic compounds are removed from leachate as it flows through the substrate. A parallel study at a municipal solid-waste landfill near Fenton, New York was conducted by researchers at Cornell University, Ithaca College, and Hawk Engineering (Trautmann and others, 1989). Results are described.

  16. EM SSAB ITR Landfill Assessment Project Lessons Learned Presentation - July 2009

    Office of Environmental Management (EM)

    Teleconference: 1. DOE EM ITR Landfill Assessment Project: Lessons Learned Craig H. Benson, PhD, PE CRESP July 2009 1 Independent Technical Review Team * Craig H. Benson, PhD, PE - University of Wisconsin-Madison: waste containment systems, civil engineering, geotechnical engineering. * William H. Albright, PhD - Desert Research Institute, Reno, Nevada: waste containment systems, hydrology, regulatory interactions. * David P. Ray, PE - US Army Corps of Engineers, Omaha, NB: waste containment

  17. RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN LANDFILL, INC. -

    Office of Legacy Management (LM)

    A" 917 RADIOLOGICAL SURVEY OF A PORTION OF PROPERTY OWNED BY MODERN LANDFILL, INC. - FORMER LOOW SITE Summary Report Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1981 OAK RIDGE NATIONAL LABORATORY operated by UNION. CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program CONTENTS Page LIST OF FIGURES .. .. . .. . . . . . . . ......... iii LIST OF TABLES

  18. Complete decay of radionuclides: Implications for low-level waste disposal in municipal landfills

    SciTech Connect (OSTI)

    Meck, R.A.

    1996-05-01

    The time required for the complete decay of a radioactive source can be quantified by specifying an acceptable probability and using an original derivation. The physical phenomenon of complete decay may be used as the technical basis to change regulations and permit, with public acceptance, the inexpensive disposal of short half-lived radioactive waste into municipal landfills. Current regulations require isolation of trash form the biosphere for 30 years during the post-closure control period for municipal landfills. Thirty years is sufficient time for complete decay of significant quantities of short-lived radionuclides, and there is a large decay capacity in the nation`s landfills. As the major generators of low-level radioactive waste with relatively short half-lives, the academic, medical, and research communities likely would benefit most from such regulatory relief. Disposal of such waste is prohibited or costly. The waste must be specially packaged, stored, transported, and disposed in designated repositories. Regulatory relief can be initiated by citizens since the Administrative Procedures Act gives citizens the right to petition for regulatory change. 10 refs., 2 tabs.

  19. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect (OSTI)

    Wei Yanjie; Ji Min; Li Ruying; Qin Feifei

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  20. Paleo-channel deposits of natural uranium at a Former Air Force Landfill

    SciTech Connect (OSTI)

    Young, C.; Weismann, PGJ.; Nelson, CHPK. [Cabrera Services, Inc., Baltimore, MD (United States)

    2007-07-01

    The US Air Force has sought to understand the provenance of radionuclides that were detected in monitor wells surrounding a closed solid-waste landfill at the former Lowry Air Force Base in Denver, Colorado. Groundwater concentrations of gross alpha, gross beta, and total uranium were thought to exceed regulatory standards. Down-gradient concentrations of these parameters exceeded up-gradient concentrations, suggesting that the landfill is leaching uranium to groundwater. Alternate hypotheses for the occurrence of the uranium included that either equipment containing refined uranium had been discarded or that uranium ore may have been disposed in the landfill, or that the uranium is naturally-occurring. Our study has concluded that the elevated radionuclide concentrations stem from naturally-occurring uranium in the regional watershed which has been preferentially deposited in paleo-channel sediments beneath the site. This study shows that a simple comparison of up-gradient versus down-gradient groundwater samples can be an inadequate method for determining whether heterogeneous geo-systems have been contaminated. It is important to understand the geologic depositional system, plus local geochemistry and how these factors impact contaminant transport. (authors)

  1. CORRECTIVE ACTION DECISION DOCUMENT FOR THE AREA 3 LANDFILL COMPLEX, TONOPAH TEST RANGE, CAU 424, REVISION 0, MARCH 1998

    SciTech Connect (OSTI)

    DOE /NV

    1998-03-03

    This Corrective Action Decision Document (CADD) has been prepared for the Area 3 Landfill Complex (Corrective Action Unit [CAU] 424) in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Corrective Action Unit 424 is located at the Tonopah Test Range (TTR) and is comprised of the following Corrective Action Sites (CASs), each an individual landfill located around and within the perimeter of the Area 3 Compound (DOE/NV, 1996a): (1) Landfill A3-1 is CAS No. 03-08-001-A301. (2) Landfill A3-2 is CAS No. 03-08-002-A302. (3) Landfill A3-3 is CAS No. 03-08-002-A303. (4) Landfill A3-4 is CAS No. 03-08-002-A304. (5) Landfill A3-5 is CAS No. 03-08-002-A305. (6) Landfill A3-6 is CAS No. 03-08-002-A306. (7) Landfill A3-7 is CAS No. 03-08-002-A307. (8) Landfill A3-8 is CAS No. 03-08-002-A308. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended corrective action alternative for each CAS. The scope of this CADD consists of the following: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (6) Recommend and justify a preferred corrective action alternative for each CAS. In June and July 1997, a corrective action investigation was performed as set forth in the Corrective Action Investigation Plan (CAIP) for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada (DOE/NV, 1997). Details can be found in Appendix A of this document. The results indicated four groupings of site characteristics as shown in Table ES-1. Based on the potential exposure pathways, the following corrective action objectives have been identified for CAU No. 424: (1) Prevent or mitigate human exposure to subsurface soils containing waste. (2) Remediate the site per applicable state and federal regulations (NAC, 1996c). (3) Prevent adverse impacts to groundwater quality. Based on the review of existing data, future land use, and current operations at the TTR, the following alternatives were developed for consideration at the Area 3 Landfill Complex CAU: Alternative 1 - No Action; Alternative 2 - Administrative Closure; Alternative 3 - Partial Excavation, Backfill, and Recontouring The corrective action alternatives were evaluated based on four general corrective action standards and five remedy-selection decision factors. Based on the results of this evaluation, preferred alternatives were selected for each CAS as indicated in Table ES-2. The preferred corrective action alternatives were evaluated on their technical merits, focusing on performance, reliability, feasibility, and safety. The alternatives were judged to meet all requirements for the technical components evaluated. These alternatives meet all applicable state and federal regulations for closure of the site and will reduce potential future exposure pathways to the contents of the landfills. During corrective action implementation, these alternatives will present minimal potential threat to site workers who come in contact with the waste. However, procedures will be developed and implemented to ensure worker health and safety.

  2. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    SciTech Connect (OSTI)

    Yu, L.; Batlle, F.

    2011-12-15

    Highlights: > A quasi-three-dimensional slope stability analysis method was proposed. > The proposed method is a good engineering tool for 3D slope stability analysis. > Factor of safety from 3D analysis is higher than from 2D analysis. > 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also investigated in this paper. These sensitivity analyses serve as the guidelines of construction practices and operating procedures for the MSW landfill under study.

  3. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  4. Gordon Butte | Open Energy Information

    Open Energy Info (EERE)

    W 9,000,000,000 mW 0.009 GW Number of Units 6 Commercial Online Date 2012 Wind Turbine Manufacturer GE Energy References AWEA 2012 Market Report1 Loading map......

  5. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system

    SciTech Connect (OSTI)

    Kheradmand, S.; Karimi-Jashni, A.; Sartaj, M.

    2010-06-15

    The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

  6. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect (OSTI)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  7. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  8. Large-Scale Field Study of Landfill Covers at Sandia National Laboratories

    SciTech Connect (OSTI)

    Dwyer, S.F.

    1998-09-01

    A large-scale field demonstration comparing final landfill cover designs has been constructed and is currently being monitored at Sandia National Laboratories in Albuquerque, New Mexico. Two conventional designs (a RCRA Subtitle `D' Soil Cover and a RCRA Subtitle `C' Compacted Clay Cover) were constructed side-by-side with four alternative cover test plots designed for dry environments. The demonstration is intended to evaluate the various cover designs based on their respective water balance performance, ease and reliability of construction, and cost. This paper presents an overview of the ongoing demonstration.

  9. Groundwater Strategy for the Ou-1 Landfill Area, Miamisburg Closure Project, Ohio

    SciTech Connect (OSTI)

    LOONEY, BRIANB.

    2004-01-01

    The general objective of the study was to assist the Miamisburg Closure Project in their efforts to develop and refine a comprehensive, technically sound strategy for remediation of groundwater contaminated with trichloroethylene and other volatile organic compounds in the vicinity of the landfill in Operable Unit 1. To provide the necessary flexibility to the site, regulators and stakeholders, the resulting evaluation considered a variety of approaches ranging from ''no further action'' to waste removal. The approaches also included continued soil vapor extraction, continued groundwater pump and treat, monitored natural attenuation, biostimulation, partitioning barriers, hydrologic modification, and others.

  10. The Hydrogeologic Character of the Lower Tuff Confining Unit and the Oak Springs Butte Confining Unit in the Tuff Pile Area of Central Yucca Flat

    SciTech Connect (OSTI)

    Drellack, Jr., Sigmund L.; Prothro, Lance B.; Gonzales, Jose L.; Mercadante, Jennifer M.

    2010-07-30

    The lower tuff confining unit (LTCU) in the Yucca Flat Corrective Action Unit (CAU) consists of a monotonous sequence of pervasively zeolitized volcanic tuff (i.e., mostly bedded with lesser nonwelded to poorly welded tuff; not fractured) (Bechtel Nevada, 2006). The LTCU is an important confining unit beneath Yucca Flat because it separates the alluvial and volcanic aquifers, where many underground nuclear tests were conducted, from the regional lower carbonate aquifer. Recent sub-CAU-scale modeling by Los Alamos National Laboratory in the Tuff Pile area of Yucca Flat (Boryta, et al., in review) includes postulated low-porosity, high-permeability zones (i.e., fractured welded-tuff aquifers) within the LTCU. This scenario indicates that such postulated low-porosity, high-permeability zones could provide fast-path lateral conduits to faults, and eventually to the lower carbonate aquifer. A fractured and faulted lower carbonate aquifer is postulated to provide a flow path(s) for underground test-derived contaminants to potential offsite receptors. The ramifications of such a scenario are obvious for groundwater flow and contaminant migration beneath Yucca Flat. This paper describes the reasoning for not including postulated low-porosity, high-permeability zones within the LTCU in the Tuff Pile area or within the LTCU in the Yucca Flat CAU-scale model. Both observational and analytical data clearly indicate that the LTCU in the Tuff Pile area consists of pervasively zeolitic, nonwelded to poorly welded tuffs that are classified as tuff confining units (i.e., high-porosity, low-permeability). The position regarding the LTCU in the Tuff Pile area is summarized as follows: The LTCU in the Tuff Pile area consists of a monotonous sequence of predominantly zeolitic nonwelded to poorly welded tuffs, and thus is accurately characterized hydrogeologically as a tuff confining unit (aquitard) in the Yucca Flat-Climax Mine hydrostratigraphic framework model (Bechtel Nevada, 2006). No welded-tuff (or lava-flow aquifers), referred to as low-porosity, high-permeability zones in Boryta et al. (in review), are present within the LTCU in the Tuff Pile area. Fractures within the LTCU are poorly developed, a characteristic of zeolitic tuffs; and fracture distributions are independent of stratigraphic and lithologic units (Prothro, 2008). Groundwater flow and radionuclide transport will not be affected by laterally extensive zones of significantly higher permeability within the LTCU in the Tuff Pile area. Although not the primary focus of this report, the hydrogeologic character of the Oak Spring Butte confining unit (OSBCU), located directly below the LTCU, is also discussed. The OSBCU is lithologically more diverse, and does include nonwelded to partially welded ash-flow tuffs. However, these older ash-flow tuffs are poorly welded and altered (zeolitic to quartzofeldspathic), and consequently, would tend to have properties similar to a tuff confining unit rather than a welded-tuff aquifer.

  11. Effect of landfill leachate organic acids on trace metal adsorption by kaolinite

    SciTech Connect (OSTI)

    Schroth, B.; Garrison, Sposito

    1997-02-01

    Hexanoic (hex) and fulvic acid (FA), representing early and later stages of landfill leachate evolution, were examined for influence on trace metal adsorption by a poorly crystallized kaolinite (KGa-2). Our experiments represented a model approach to examine possible reaction mechanisms in an environmentally important ternary metal-ligand-mineral surface system. Batch experiments were conducted in 0.01 mol kg(-1) NaClO4 at pH 3-8. Concentrations of metals (Cu, Cd, and Pb) and ligands were representative of those found typically in groundwater immediately downgradient of a landfill. The presence of FA resulted in enhancement of metal adsorption below pH 5, whereas the presence of hex produced no significant net change in metal uptake. Measured surface charge properties of KGa-2 were combined with binary and ternary system data in constructing a quantitative model of the system. The simple combination of binary system results was not effective in predicting the observed ternary system behavior. In both ternary systems, the addition of ternary surface complexes (TSCs) to the models resulted in a satisfactory fit to the data. Our work suggests the strong possibility that TSC involvement in surface reactions of natural adsorbents may be a useful concept.

  12. Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

    1994-05-24

    The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

  13. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  14. Intrinsic in situ anaerobic biodegradation of chlorinated solvents at an industrial landfill

    SciTech Connect (OSTI)

    Lee, M.D.; Mazierski, P.F.; Buchanan, R.J. Jr.; Ellis, D.E.; Sehayek, L.S.

    1995-12-31

    The DuPont Necco Park Landfill in Niagara Falls, New York, is contaminated with numerous chlorinated solvents at concentrations of up to hundreds of mg/L in the groundwater. An extensive monitoring program was conducted to determine if intrinsic anaerobic biodegradation was occurring at the site, to determine what might limit this activity, and to characterize this activity with depth and distance away from the landfill. It was determined that anaerobic microbial activity was occurring in all zones, based upon the presence of intermediate products of the breakdown of the chlorinated solvents and the presence of final metabolic end products such as ethene and ethane. Aerobic, iron-reducing, manganese-reducing, sulfate-reducing, and methanogenic redox conditions were identified at the site. High levels of nitrogen and biodegradable organic compounds were present in most areas to support cometabolic anaerobic microbial activity against the chlorinated solvents. Intrinsic biodegradation is clearly evident and is effective in reducing the concentrations of chlorinated organic in the groundwater at the site. Groundwater modeling efforts during development of a site conceptual model indicated that microbial degradation was necessary to account for the downgradient reduction of chlorinated volatile organic compounds as compared to chloride, a conservative indicator parameter.

  15. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    SciTech Connect (OSTI)

    Chase, J.

    2000-03-13

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

  16. Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province, western Iran

    SciTech Connect (OSTI)

    Sharifi, Mozafar Hadidi, Mosslem Vessali, Elahe Mosstafakhani, Parasto Taheri, Kamal Shahoie, Saber Khodamoradpour, Mehran

    2009-10-15

    The evaluation of a hazardous waste disposal site is a complicated process because it requires data from diverse social and environmental fields. These data often involve processing of a significant amount of spatial information which can be used by GIS as an important tool for land use suitability analysis. This paper presents a multi-criteria decision analysis alongside with a geospatial analysis for the selection of hazardous waste landfill sites in Kurdistan Province, western Iran. The study employs a two-stage analysis to provide a spatial decision support system for hazardous waste management in a typically under developed region. The purpose of GIS was to perform an initial screening process to eliminate unsuitable land followed by utilization of a multi-criteria decision analysis (MCDA) to identify the most suitable sites using the information provided by the regional experts with reference to new chosen criteria. Using 21 exclusionary criteria, as input layers, masked maps were prepared. Creating various intermediate or analysis map layers a final overlay map was obtained representing areas for hazardous waste landfill sites. In order to evaluate different landfill sites produced by the overlaying a landfill suitability index system was developed representing cumulative effects of relative importance (weights) and suitability values of 14 non-exclusionary criteria including several criteria resulting from field observation. Using this suitability index 15 different sites were visited and based on the numerical evaluation provided by MCDA most suitable sites were determined.

  17. Leachate treatment system using constructed wetlands, Town of Fenton sanitary landfill, Broome County, New York. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    Municipal sanitary landfills generate leachate that New York State regulations require to be collected and treated to avoid contaminating surface water and groundwater. One option for treating leachate is to haul it to municipal wastewater treatment facility. This option may be expensive, may require excessive energy for transportation, and may require pretreatment to protect the receiving facility`s processes. An alternative is on-site treatment and discharge. Personnel from the Town of Fenton, New York; Hawk Engineering, P.C.; Cornell University; and Ithaca College designed, built, and operated a pilot constructed wetland for treating leachate at the Town of Fenton`s municipal landfill. The system, consisting of two overland flow beds and two subsurface flow beds has been effective for 18 months in reducing levels of ammonia (averaging 85% removal by volatilization and denitrification) and total iron (averaging 95% removal by precipitation and sedimentation), two key constituents of the Fenton landfill`s leachate. The system effects these reductions with zero chemical and energy inputs and minimal maintenance. A third key constituent of the leachate, manganese, apparently passes through the beds with minimal removal. Details and wetland considerations are described.

  18. Philip Milner | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum & Other Liquids Glossary › FAQS › Overview Data Summary Prices Crude reserves and production Refining and processing Imports/exports & movements Stocks Consumption/sales All petroleum & other liquids data reports Analysis & Projections Major Topics Most popular Consumption & sales Crude reserves & production Imports/exports & movements Prices Projections Recurring Refining & processing Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud

  19. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    SciTech Connect (OSTI)

    Friedrich, Elena; Trois, Cristina

    2013-04-15

    Highlights: ? An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ? A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ? These factors are compared internationally and their implications for South Africa and developing countries are discussed . ? Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemisphere and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from ?145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto agreement. Other low cost avenues need to be investigated to suit local conditions, in particular landfill covers which enhance methane oxidation.

  20. A Water Balance Study of Four Landfill Cover Designs at Material Disposal Area B in Los Alamos, New Mexico

    SciTech Connect (OSTI)

    David D. Breshears; Fairley J. Barnes; John W. Nyhan; Johnny A. Salazar

    1998-09-01

    The goal of disposing of low-level radioactive and hazardous waste in shallow landfills is to reduce risk to human health and the environment by isolating contaminants until they no longer pose an unacceptable hazard. In order to achieve this, the Department of Energy Environmental Restoration Program is comparing the performance of several different surface covers at Material Disposal Area (MDA) B in Los Alamos. Two conventional landfill were compared with an improved cover designed to minimize plant and animal intrusion and to minimize water infiltration into the underlying wastes. The conventional covers varied in depth and both conventional and improved designs had different combinations of vegetation (grass verses shrub) and gravel mulch (no mulch verses mulch). These treatments were applied to each of 12 plots and water balance parameters were measured from March1987 through June 1995. Adding a gravel mulch significantly influenced the plant covered field plots receiving no gravel mulch averaged 21.2% shrub cover, while plots with gravel had a 20% larger percent cover of shrubs. However, the influence of gravel mulch on the grass cover was even larger than the influence on shrub cover, average grass cover on the plots with no gravel was 16.3%, compared with a 42% increase in grass cover due to gravel mulch. These cover relationships are important to reduce runoff on the landfill cover, as shown by a regression model that predicts that as ground cover is increased from 30 to 90%,annual runoff is reduced from 8.8 to 0.98 cm-a nine-fold increase. We also found that decreasing the slope of the landfill cover from 6 to 2% reduced runoff from the landfill cover by 2.7-fold. To minimize the risk of hazardous waste from landfills to humans, runoff and seepage need to be minimized and evapotranspiration maximized on the landfill cover. This has to be accomplished for dry and wet years at MDA B. Seepage consisted of 1.9% and 6.2% of the precipitation in the average and once in ten year events, respectively, whereas corresponding values for runoff were 13% and 16%; these changes were accompanied by corresponding decreases in evapotranspiration, which accounted for 86% and only 78% of the precipitation occurring on the average and once in ten year even~ respectively.

  1. Measuring seasonal variations of moisture in a landfill with the partitioning gas tracer test

    SciTech Connect (OSTI)

    Han, Byunghyun; Jafarpour, Behnam; Gallagher, Victoria N.; Imhoff, Paul T. . E-mail: imhoff@udel.edu; Chiu, Pei C.; Fluman, Daniel A.

    2006-07-01

    Seven pilot-scale partitioning gas tracer tests (PGTTs) were conducted to assess the accuracy and reproducibility of this method for measuring water in municipal solid waste landfills. Tests were conducted in the same location over a 12-month period, and measured moisture conditions ranged from possible dry waste to refuse with a moisture content of 24.7%. The final moisture content of 24.7% was in reasonable agreement with gravimetric measurements of excavated refuse, where the moisture content was 26.5 {+-} 6.0CI%. Laboratory tests were used to assess the utility of the PGTT for measuring water in small pores, water sorbed to solid surfaces, and the influence of dry waste on PGTTs. These experiments indicated that when refuse surfaces are not completely solvated with water, PGTTs may produce misleading results (negative estimates) of water saturation and moisture content.

  2. Geotechnical properties of paper mill sludges for use in landfill covers

    SciTech Connect (OSTI)

    Moo-Young, H.K.; Zimmie, T.F.

    1996-09-01

    This study investigates the geotechnical properties of seven paper mill sludges. Paper mill sludges have a high water content and a high degree of compressibility and behave like a highly organic soil. Consolidation tests reveal a large reduction in void ratio and high strain values that are expected due to the high compressibility. Triaxial shear-strength tests conducted on remolded and undisturbed samples showed variations in the strength parameters resulting from the differences in sludge composition (i.e., water content and organic content). Laboratory permeability tests conducted on in-situ specimens either met the regulatory requirement for the permeability of a landfill cover or were very close. With time, consolidation and dewatering of the paper sludge improved the permeability of cover. Freezing and thawing cycles increased the sludge permeability about one to two orders of magnitude. Maximum permeability changes occurred within 10 freeze and thaw cycles.

  3. Siting landfills and incinerators in areas of historic unpopularity: Surveying the views of the next generation

    SciTech Connect (OSTI)

    De Feo, Giovanni; Williams, Ian D.

    2013-12-15

    Highlights: Opinions and knowledge of young people in Italy about waste were studied. Historic opposition to construction of waste facilities is difficult to overcome. Awareness of waste management develops with knowledge of environmental issues. Many stakeholders views are needed when siting a new waste management facility. Respondents opinions were influenced by their level of environmental knowledge. - Abstract: The Campania Region in Southern Italy has suffered many problems with municipal solid waste management since the mid-1990s, leading to significant public disturbances and subsequent media coverage. This paper reports on the current views and knowledge of young people (university students) in this region about waste management operations and facilities, specifically the siting of landfills and incinerators. By means of a structured questionnaire, opinion and knowledge were systematically examined by degree type and course year. The study took place in 2011 at the University of Salerno campus. A sample of 900 students, comprising 100 students for each of the nine considered faculties, and 20 students for every academic course year, was randomly selected. Only about a quarter of respondents were not opposed to the siting of a landfill or an incinerator in their city. This clearly highlights that historic opposition to the construction of waste facilities is difficult to overcome and that distrust for previous poor management or indiscretions is long-lived and transcends generations. Students from technical faculties expressed the most reasonable opinion; opinion and knowledge were statistically related (Chi-square test, p < 0.05) to the attended faculty, and the knowledge grew linearly with progression through the university. This suggests that awareness of waste management practices develops with experience and understanding of environmental issues. There is general acceptance that many stakeholders technicians, politicians and citizens all have to be part of the decision process when siting a new waste management facility. The opinions of the young respondents were significantly influenced by their level of environmental knowledge.

  4. Solid waste landfills under the Resource Conservation and Recovery Act Subtitle D

    SciTech Connect (OSTI)

    1995-11-01

    This document provides guidance for meeting: (1) Guidelines for the Land Disposal of Solid Waste (40 CFR 241); (2) Criteria for Classification of Solid Waste Disposal Facilities and Practices (40 CFR 257); and (3) Criteria for Municipal Solid Waste Landfills (MSWLFs) (40 CFR Part 258). Revisions to 40 CFR 257 and a new Part 258 were published in the Federal Register (56 FR 50978, 10/9/91). The Guidelines for the Land Disposal of Solid Waste set requirements and recommended procedures to ensure that the design, construction, and operation of land disposal sites is done in a manner that will protect human health and the environment. These regulations are applicable to MSWLFs and non-MSWLFs (e.g., landfills used only for the disposal of demolition debris, commercial waste, and/or industrial waste). These guidelines are not applicable to the, land disposal of hazardous, agricultural, and/or mining wastes. These criteria are to be used under the Resource Conservation and Recovery Act (RCRA) in determining which solid waste disposal facilities pose a reasonable possibility of adversely affecting human health or the environment. Facilities failing to satisfy these criteria will be considered to be open dumps which are prohibited under Section 4005 of RCRA. The Criteria for MSWLFs are applicable only to MSWLFs, including those MSWLFs in which sewage sludge is co-disposed with household waste. Based on specific criteria, certain MSWLFs are exempt from some, or all, of the regulations of 40 CFR 258. MSWLFs that fail to satisfy the criteria specified in 40 CFR 258 are also considered open dumps for the purposes of Section 4005 of RCRA. Through the use of a series of interrelated flow diagrams, this guidance document directs the reader to each design, operation, maintenance, and closure activity that must be performed for MSWLFs and non-MSWLFs.

  5. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    SciTech Connect (OSTI)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-15

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  6. Paleo-channel deposition of natural uranium at a US Air Force landfill

    SciTech Connect (OSTI)

    Young, Carl; Weismann, Joseph; Caputo, Daniel [Cabrera Services, Inc., East Hartford, Connecticut (United States)

    2007-07-01

    Available in abstract form only. Full text of publication follows: The US Air Force sought to identify the source of radionuclides that were detected in groundwater surrounding a closed solid waste landfill at the former Lowry Air Force Base in Denver, Colorado, USA. Gross alpha, gross beta, and uranium levels in groundwater were thought to exceed US drinking water standards and down-gradient concentrations exceeded up-gradient concentrations. Our study has concluded that the elevated radionuclide concentrations are due to naturally-occurring uranium in the regional watershed and that the uranium is being released from paleo-channel sediments beneath the site. Groundwater samples were collected from monitor wells, surface water and sediments over four consecutive quarters. A list of 23 radionuclides was developed for analysis based on historical landfill records. Concentrations of major ions and metals and standard geochemical parameters were analyzed. The only radionuclide found to be above regulatory standards was uranium. A search of regional records shows that uranium is abundant in the upstream drainage basin. Analysis of uranium isotopic ratios shows that the uranium has not been processed for enrichment nor is it depleted uranium. There is however slight enrichment in the U-234:U- 238 activity ratio, which is consistent with uranium that has undergone aqueous transport. Comparison of up-gradient versus down-gradient uranium concentrations in groundwater confirms that higher uranium concentrations are found in the down-gradient wells. The US drinking water standard of 30 {mu}g/L for uranium was exceeded in some of the up-gradient wells and in most of the down-gradient wells. Several lines of evidence indicate that natural uranium occurring in streams has been preferentially deposited in paleo-channel sediments beneath the site, and that the paleo-channel deposits are causing the increased uranium concentrations in down-gradient groundwater compared to up-gradient groundwater. (authors)

  7. Health assessment for Hooker Chemical (102nd Street Landfill), Niagara Falls, New York, Region 2. CERCLIS No. NYD980506810. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    The 102nd Street Landfill is two sites that comprise 22 acres. Occidental Chemical Corporation (OCC) and its predecessor, the Oldbury Electrochemical Company, deposited approximately 23,500 tons of mixed organic solvents, organic and inorganic phosphates, and related chemicals. Included in the site are approximately 300 tons of hexachlorocyclohexane process cake, including lindane. In addition, brine sludge, fly ash, electrochemical cell parts and related equipment in unknown quantities were dumped at the site. On-site contamination of the 102nd Street Landfill includes soils contaminated with non-aqueous phase liquids on both portions of the Landfill. Off-site contamination, based on current studies, results from contaminated ground-water leaching into the Niagara River which causes contamination of the river water, sediments, and aquatic organisms, including fish. The 102nd Street Landfill continues to represent a potential public health threat.

  8. Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000

    SciTech Connect (OSTI)

    Brown, W. R.; Cook, W. J.; Siwajek, L. A.

    2000-10-20

    This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

  9. Public health assessment for J and L landfill, Avon Township, Oakland County, Michigan, Region 5. CERCLIS No. MID980609440. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-19

    The U.S. Environmental Protection Agency (U.S. EPA) placed the J L Landfill site on the National Priorities List (NPL) on March 31, 1989. Beginning in 1951, steel-making firms, including Jones Laughlin, used the site as a landfill for slag, dust from air cleaners at their plants, and general rubbish. By 1980, the landfill had been filled to capacity, and Jones Laughlin closed and coverd the site. The cover on the landfill is inadequate by current standards. Surface soils contain concentrations of metals that are of health concern. The groundwater contains metals and organic chemicals at concentrations of health concern, some of which may be attributable to other sites in the area. The site poses no apparent public health hazard under present conditions, however, several potential exposure pathways may pose hazards should they be completed in the future.

  10. Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada, Calendar Year 2000

    SciTech Connect (OSTI)

    K. B. Campbell

    2001-06-01

    Corrective Action Unit (CAU) 424, the Area 3 Landfill Complex at Tonopah Test Range, consists of eight landfill sites, Corrective Action Sites (CASS), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the locations of the landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan contained, in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range. Nevada, report number DOE/NV--283. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. Post-closure monitoring consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000, and November 20, 2000. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist and photographs, and recommendations and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

  11. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect (OSTI)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  12. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    SciTech Connect (OSTI)

    Kollikkathara, Naushad; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.

  13. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    SciTech Connect (OSTI)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  14. Superfund record of decision amendment (EPA Region 2): Hooker (102nd Street Landfill), Niagara Falls, NY, June 9, 1995

    SciTech Connect (OSTI)

    1995-08-01

    This decision document presents the selected modification to the original remedial action (PB91-921417) for the 102nd Street Landfill Site (the `Site`), located in Niagara Falls, New York. The modification to the selected remedy addresses the river sediments within the shallow embayment of the Niagara River adjacent to the Site. The major components of the modification to the selected remedy include: dredging the Niagara River sediments to the `clean line` with respect to Site-related contamination. These sediments, after dewatering, will NOT be incinerated, but will be consolidated on the landfill. Any NAPL found within these sediments will be extracted, and will be incinerated at an off-site facility.

  15. Closure Report (CR) for Corrective Action Unit (CAU) 41: Area 27 Landfills with Errata Sheet, Revision 0

    SciTech Connect (OSTI)

    Navarro Nevada Environmental Services

    2010-08-10

    The closure report for CAU 41 is just a one page summary listing the coordinates of the landfill which were given at the time (1996) in Nevada State Plan Coordinates - North American Datum of 1983. The drawing of the use restricted site also listed the coordinates in Nevada State Plan Coordinates - North American Datum of 1983. In the ensuing years the reporting of coordinates has been standardized so that all coordinates are reported in the same manner, which is: NAD 27 UTM Zone 11 N, meters. This Errata Sheet updates the coordinate reporting to the currently accepted method and includes an aerial photo showing the landfill with the coordinates listed showing the use restricted area.

  16. Coal combustion waste management at landfills and surface impoundments 1994-2004.

    SciTech Connect (OSTI)

    Elcock, D.; Ranek, N. L.; Environmental Science Division

    2006-09-08

    On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

  17. Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility

    SciTech Connect (OSTI)

    Banerjee, K.; O`Toole, T.J.

    1995-12-01

    A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

  18. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion

    SciTech Connect (OSTI)

    Hrad, Marlies; Gamperling, Oliver; Huber-Humer, Marion

    2013-10-15

    Highlights: ? Current data on in situ aeration effects from the first Austrian full-scale case study. ? Data on lasting waste stabilisation after aeration completion. ? Information on the transferability of results from lab- to full-scale aeration. - Abstract: Sustainable landfilling has become a fundamental objective in many modern waste management concepts. In this context, the in situ aeration of landfills has been recognised for its potential to convert conventional anaerobic landfills into biological stabilised state, whereby both current and potential (long-term) emissions of the landfilled waste are mitigated. In recent years, different in situ aeration concepts have been successfully applied in Europe, North America and Asia, all pursuing different objectives and strategies. In Austria, the first full-scale application of in situ landfill aeration by means of low pressure air injection and simultaneous off-gas collection and treatment was implemented on an old, small municipal solid waste (MSW) landfill (2.6 ha) in autumn 2007. Complementary laboratory investigations were conducted with waste samples taken from the landfill site in order to provide more information on the transferability of the results from lab- to full-scale aeration measures. In addition, long-term emission development of the stabilised waste after aeration completion was assessed in an ongoing laboratory experiment. Although the initial waste material was described as mostly stable in terms of the biological parameters gas generation potential over 21 days (GP{sub 21}) and respiration activity over 4 days (RA{sub 4}), the lab-scale experiments indicated that aeration, which led to a significant improvement of leachate quality, was accompanied by further measurable changes in the solid waste material under optimised conditions. Even 75 weeks after aeration completion the leachate, as well as gaseous emissions from the stabilised waste material, remained low and stayed below the authorised Austrian discharge limits. However, the application of in situ aeration at the investigated landfill is a factor 10 behind the lab-based predictions after 3 years of operation, mainly due to technical limitations in the full-scale operation (e.g. high air flow resistivity due to high water content of waste and temporarily high water levels within the landfill; limited efficiency of the aeration wells). In addition, material preparation (e.g. sieving, sorting and homogenisation) prior to the emplacement in Landfill Simulation Reactors (LSRs) must be considered when transferring results from lab- to full-scale application.

  19. Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complexes Tonopah Test Range, Nevada Calendar Year 2001

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-02-01

    Corrective Action Unit (CAU) 424, the Area 3 Landfill Complexes at Tonopah Test Range, consists of eight Corrective Action Sites (CASs), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the general location of the landfill cells. Figure 2 shows in more detail the location of the eight landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan, contained in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complexes, Tonopah Test Range, Nevada, report number DOE/NV--283, July 1999. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 424 consists of the following: (1) Site inspections conducted twice a year to evaluate the condition of the unit. (2) Verification that landfill markers and warning signs are in-place, intact, and readable. (3) Notice of any subsidence, erosion, unauthorized use, or deficiencies that may compromise the integrity of the landfill covers. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 16, 2001, and November 6, 2001. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

  20. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  1. Water balance relationships in four alternative cover designs for radioactive and mixed waste landfills

    SciTech Connect (OSTI)

    Warren, R.W.; Hakonson, T.E. [Colorado State Univ., Ft. Collins, CO (United States); Trujillo, G. [Los Alamos National Lab., NM (United States)

    1994-08-01

    Preliminary results are presented from a field study to evaluate the relative hydrologic performance of various landfill capping technologies installed by the Los Alamos National Laboratory at Hill Air Force Base, Utah. Four cover designs (two Los Alamos capillary barrier designs, one modified EPA RCRA design, and one conventional design) were installed in large lysimeters instrumented to monitor the fate of natural precipitation between 01 January 1990 and 20 September 1993. After 45 months of study, results showed that the cover designs containing barrier layers were effective in reducing deep percolation as compared to a simple soil cap design. The RCRA cover, incorporating a clay hydraulic barrier, was the most effective of all cover designs in controlling percolation but was not 100% effective. Over 90% of all percolation and barrier lateral flow occurred during the months of February through May of each year, primarily as a result of snow melt, early spring rains and low evapotranspiration. Gravel mulch surface treatments (70--80% coverage) were effective in reducing runoff and erosion. The two plots receiving gravel mulch treatments exhibited equal but enhanced amounts of evapotranspiration despite the fact that one plot was planted with additional shrubs.

  2. Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant

    SciTech Connect (OSTI)

    Maranon, E. . E-mail: emara@uniovi.es; Castrillon, L.; Fernandez, Y.; Fernandez, E.

    2006-07-01

    The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1 cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.

  3. The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill

    SciTech Connect (OSTI)

    KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

    1999-11-23

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during the excavation of the CWL. As part of the excavation process, soil is being separated from the buried debris using a 2-inch mechanical screen. After separation from the soil, debris items are further-segregated by matrix into the following categories: wood, scrap metal, concrete/aggregates, resins, compatible debris, intact chemical containers, radioactive and mixed waste, and high hazard items. One of the greatest sources of hazards throughout the excavation process is the removal of numerous intact chemical containers with unknown contents. A large portion of the excavated soil is contaminated with metals and/or solvents, Polychlorinated biphenyls (PCBs) are also known to be present. Most of the contaminated soils being excavated will be taken to the nearby Corrective Action Management Unit (CAMU) for treatment and management while a majority of the containers will be taken to the Hazardous Waste Management Facility or the Radioactive and Mixed Waste Management Facility for proper treatment and/or disposal at permitted offsite facilities.

  4. Health assessment for Hyde Park Landfill National Priorities List (NPL) site, Niagara Falls, New York, Region 2. CERCLIS No. NYD000831644. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-02-07

    The Hyde Park Landfill National Priorities List Site was used by Hooker Chemical and Plastic Corporation, now Occidental Chemical Corporation, to dispose of approximately 80,000 tons of waste from 1953 to 1975. Significant amounts of 2,3,7,8-tetrachlorodibenzo-p-dioxin is believed to be in the landfill. Site-related contaminants have been detected in the overburden and bedrock aquifers. Analyses of samples taken from ground water seeps at the Niagara Gorge Face also show site-related contaminants. Leachate from the landfill appears to have entered Bloody Run Creek. Sediment sample analyses from the creek show site-related contaminants. The 1985 U.S. Environmental Protection Agency Enforcement Decision Document outlines remedial activities to be conducted at the site. The site without remediation is of potential public health concern because of the risk to human health resulting from possible exposure to hazardous substances at concentrations that may result in adverse health effects.

  5. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect (OSTI)

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  6. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    SciTech Connect (OSTI)

    Harborth, Peter; Fu, Roland; Mnnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-15

    Highlights: ? First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ? High N{sub 2}O emissions from recently deposited material. ? N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ? Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20200 g CO{sub 2} eq. m{sup ?2} h{sup ?1} magnitude (up to 428 mg N m{sup ?2} h{sup ?1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 3040 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup ?2} h{sup ?1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  7. Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    Boerner, A. J.; Maldonado, D. G.

    2012-06-01

    This report contains the technical basis in support of the DOE?s derivation of Authorized Limits (ALs) for the DOE Paducah C-746-U Landfill. A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines. The ORISE-derived soil guidelines are specifically applicable to the Landfill at the end of its operational life. A suggested 'upper bound' multiple of the derived soil guidelines for individual shipments is provided.

  8. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect (OSTI)

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

  9. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

  10. Improved energy recovery from municipal solid wastes in sanitary landfills by two-phase digestion of biomass

    SciTech Connect (OSTI)

    Onu, Chukwu.

    1990-01-01

    The concept under investigaton was the separation of the acidogenic and the methanogenic phases of anaerobic fermentation, converting the sanitary landfill into an acid reactor and using a separate upflow fixed-film anaerobic reactor for methanogenesis. Acidic leachate from the landfill simulator was used as the influent substrate to the anaerobic reactor. The goal of the study was to improve both methane yield and concentration through nutrient addition and two-phase digestion of MSW. Sewage sludge was utilized to provide moisture, buffering capacity, nutrients, and an adequate microbial population. Single-phase systems with other enhancement techniques were also compared to the two-phase with sludge addition. Data from this study indicated that gas produced in the anaerobic reactor had methane concentration as high as 80 Mole % at the fixed-bed reactor (FBR) hydraulic retention time (HRT) of 7 days. The system reached a cumulative methane production rate of 78.6 {ell}/kg dry waste at an estimated cumulative production rate of approximately 270 {ell}/kg/yr. This performance was better than that reported in the literature for a similar type of feed. This study has also indicated that sewage sludge addition appears to be a successful enhancement technique for methane gas production from municipal solid waste. The addition of mineral nutrients and buffer solutions appears to have influenced the development of a dominant population of methanogenic bacteria in the FBR as indicated by the COD removal efficiency of 90% and 100% conversion of all influent organic acids. In terms of the overall system performance, the two-phase system was superior to the one-phase technique currently in use for methane generation.

  11. Comparison of Candidate Sites for installation of Landfill facility at Ignalina NPP Site Using Fuzzy Logic Approach

    SciTech Connect (OSTI)

    Poskas, P.; Kilda, R.; Poskas, G.

    2008-07-01

    There is only one nuclear power plant in Lithuania - Ignalina NPP (Nuclear Power Plant). Two similar units with installed capacity of 1500 MW (each) were commissioned in 1983 and 1987 respectively. But the first Unit of Ignalina NPP was finally shutdown December 31, 2004, and second Unit is planned to be shutdown before 2010. Operational radioactive waste of different activities is generated at Ignalina NPP. After closure of INPP a waste from decommissioning should be managed also. According to Lithuanian regulatory requirements (1) the waste depending on the activity must be managed in different ways. In compliance with this Regulation very low-level radioactive waste (VLLW) could be disposed of in a Landfill facility. In such case very simple engineered barriers are required. A cap on the top of the repository is necessary from long-term safety point of view. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components: the site, the disposal facility and the waste form. The basic objective of the siting process is to select a suitable site for disposal and demonstrate that this site has characteristics which provide adequate isolation of radionuclides from the biosphere for desired periods of time. The methodology and results on evaluation and comparison of two candidate sites intended for construction of Landfill facility at Ignalina NPP site are presented in the paper. Criteria for comparison are based on the IAEA (International Atomic Energy Agency) recommendations (2). Modeling of the radionuclide releases has been performed using ISAM (Improving of Safety Assessment Methodologies for Near Surface Disposal facilities) methodology (3). For generalization of the information and elaboration of the recommendations Fuzzy Logic approach was used (4). (authors)

  12. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    SciTech Connect (OSTI)

    Liu, ZhiPing; Wu, WenHui; Shi, Ping; Guo, JinSong; Cheng, Jin

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  13. Innovative Exploration Technologies Maui Hawaii & Glass Buttes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Delays have also resulted from preparation of Cultural Inventory Assessment (CIA) for inclusion into EIS. Maui- Project 2011-2013 activity: Permitting Process 6 | US DOE ...

  14. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Oregon Exploration Region: Cascades GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS...

  15. Glass Buttes Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  16. Mitchell Butte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    120C393.15 K 248 F 707.67 R 1 USGS Estimated Reservoir Volume: 2 km 1 USGS Mean Capacity: 10 MW 1 Click "Edit With Form" above to add content History and...

  17. Remediation of Highland Drive Landfill: Technical Challenges of Segregating Co-Mingled LLRW and Municipal Solid Waste in an Urbanized Area - 13319

    SciTech Connect (OSTI)

    Daniel, Jeff; Lawrence, Dave; Case, Glenn; Fergusson Jones, Andrea

    2013-07-01

    Highland Drive Landfill is an inactive Municipal Solid Waste (MSW) Landfill which received waste from the 1940's until its closure in 1991. During a portion of its active life, the Landfill received low-level radioactive waste (LLRW) which currently exists both in a defined layer and co-mingled with MSW. Remediation of this site to remove the LLRW to meet established cleanup criteria, forms part of the Port Hope Project being undertaken by Atomic Energy Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). The total volume of LLRW and co-mingled LLRW/MSW estimated to require removal from the Highland Drive Landfill is approximately 51,900 cubic metres (m{sup 3}). The segregation and removal of LLRW at the Highland Drive Landfill presents a number of unique technical challenges due to the co-mingled waste and location of the Landfill in an urbanized area. Key challenges addressed as part of the design process included: delineation of the extent of LLRW, development of cut lines, and estimation of the quantity of co-mingled LLRW in a heterogeneous matrix; protection of adjacent receptors in a manner which would not impact the use of adjacent facilities which include residences, a recreational facility, and a school; coordination and phasing of the work to allow management of six separate material streams including clean soil, MSW, co-mingled LLRW/MSW, LLRW, un-impacted water, and impacted water/leachate within a confined environment; and development of a multi-tiered and adaptive program of monitoring and control measures for odour, dust, and water including assessment of risk of exceedance of monitoring criteria. In addition to ensuring public safety and protection of the environment during remedy implementation, significant effort in the design process was paid to balancing the advantages of increased certainty, including higher production rates, against the costs of attaining increased certainty. Many of these lessons may be applicable to other projects. (authors)

  18. Experimental and life cycle assessment analysis of gas emission from mechanicallybiologically pretreated waste in a landfill with energy recovery

    SciTech Connect (OSTI)

    Di Maria, Francesco Sordi, Alessio; Micale, Caterina

    2013-11-15

    Highlights: Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup ?1}) was evaluated. k ranged from 0.436 to 0.308 year{sup ?1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.

  19. Superfund Record of Decision (EPA Region 2): Hooker-102nd Street Landfill, Niagara Falls, NY. (First remedial action), September 1990. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-09-26

    The 22-acre Hooker-102nd Street site is a former industrial landfill in the city of Niagara Falls, Niagara County, New York. The site is adjacent to, and partially within the Niagara River's 100-year floodplain. These studies and the Remedial Investigation (RI) initiated in 1984, identified contamination in ground water, onsite and offsite soil, rivershore sediment, and within a storm sewer. Additionally, the presence of a leachate plume of non-aqueous phase liquids (NAPLs) was discovered emanating from the landfill area. The Record of Decision (ROD) is the final remedy which addresses all of the contaminated media. The primary contaminants of concern affecting the soil, sediment, and ground water are VOCs including benzene, TCE, and toluene; other organics including PCBs and phenols; and metals including arsenic.

  20. SEAMIST{trademark} in-situ instrumentation and vapor sampling system applications in the Sandia Mixed Waste Landfill Integrated Demonstration program: Final report

    SciTech Connect (OSTI)

    Williams, C.; Lowry, W.; Cremer, D.; Dunn, S.D.

    1995-09-01

    The Mixed Waste Landfill Integrated Demonstration was tasked with demonstrating innovative technologies for the cleanup of chemical and mixed waste landfills that are representive of sites occurring throughout the DOE complex and the nation. The SEAMIST{trademark} inverting membrane deployment system has been used successfully at the Mixed Waste Landfill Integrated Demonstration (MWLID) for multipoint vapor sampling, pressure measurement, permeability measurement, sensor integration demonstrations, and borehole lining. Several instruments were deployed inside the SEAMIST{trademark}-lined boreholes to detect metals, radionuclides, moisture, and geologic variations. The liner protected the instruments from contamination, maintained support of the uncased borehole wall, and sealed the total borehole from air circulation. Recent activities included the installation of three multipoint vapor sampling systems and sensor integration systems in 100-foot-deep vertical boreholes. A long term pressure monitoring program has recorded barometric pressure effects at depth with relatively high spatial resolution. The SEAMIST{trademark} system has been integrated with a variety of hydrologic and chemical sensors for in-situ measurements, demonstrating its versatility as an instrument deployment system that allows easy emplacement and removal. Standard SEAMIST{trademark} vapor sampling systems were also integrated with state-of-the-art volatile organic compound analysis technologies. The results and status of these demonstration tests are presented.

  1. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    SciTech Connect (OSTI)

    IT Corporation, Las Vegas, NV

    2002-05-28

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will concentrate on geophysical surveys to confirm the presence or absence of disposed waste within a CAS and verify the boundaries of disposal areas; penetrate disposal feature covers via excavation and/or drilling; perform geodetic surveys; and be used to collect both soil and environmental samples for laboratory analyses. Phase II will deal only with those CASs where a contaminant of concern has been identified. This phase will involve the collection of additional soil and/or environmental samples for laboratory analyses. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  2. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect (OSTI)

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  3. Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Peace, Gerald L.; Goering, Timothy James; McVey, Michael David (GRAM, Inc., Albuquerque, NM); Borns, David James

    2003-06-01

    An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated soil cover. The alternative cover meets the intent of RCRA Subtitle C regulations in that: (a) water migration through the cover is minimized; (b) maintenance is minimized by using a monolithic soil layer; (c) cover erosion is minimized by using erosion control measures; (d) subsidence is accommodated by using a ''soft'' design; and (e) the permeability of the cover is less than or equal to that of natural subsurface soil present. Performance of the proposed cover is integrated with natural site conditions, producing a ''system performance'' that will ensure that the cover is protective of human health and the environment. Natural site conditions that will produce a system performance include: (a) extremely low precipitation and high potential evapotranspiration; (b) negligible recharge to groundwater; (c) an extensive vadose zone; (d) groundwater approximately 500 ft below the surface; and (e) a versatile, native flora that will persist indefinitely as a climax ecological community with little or no maintenance.

  4. POSTCLOSURE GROUNDWATER REMEDIATION AND MONITORING AT THE SANITARY LANDFILL, SAVANNAH RIVER SITE TRANSITIONING TO MONITORED NATURAL ATTENUATION

    SciTech Connect (OSTI)

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T; D Noffsinger, D; Karen M Adams, K

    2006-11-17

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring and determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.

  5. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site

    SciTech Connect (OSTI)

    Chiriac, R.; De Araujos Morais, J.; Carre, J.; Bayard, R.; Chovelon, J.M.; Gourdon, R.

    2011-11-15

    Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed. Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.

  6. Corrective Action Decision Document for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada: Revision No. 0 (with Record of Technical Change No. 1)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-10-24

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action (CAU) 5: Landfills, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 6, 12, 20, and 23 of the NTS, CAU 5 is comprised of eight corrective action sites (CASs). The corrective action investigation (CAI) of CAU 5 was conducted from October 7, 2002 through January 30, 2003, with geophysical surveys completed from March 6 through May 8, 2002, and topographic surveys conducted from March 11 through April 29, 2003. Contaminants of concern (COCs) were identified only at CAS 12-15-01. Those COCs included total petroleum hydrocarbons and volatile organic compounds. Based on the evaluation of analytical data from the CAI, review of future and current operations in Areas 5, 6, 12, 20, and 23 of the Nevada Test Site, and the detailed and comparative analysis of the potential CAAs, the following single alternative was developed for consideration. Close in Place with Administrative Controls is the recommended alternative for all of the CASs in CAU 5. This alternative was judged to meet all requirements for the technical components evaluated. Additionally, the alternative meets all applicable state and federal regulations for closure of the sites and will eliminate inadvertent intrusion into landfills at CAU 5.

  7. Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and surface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill

    SciTech Connect (OSTI)

    Peel, M.C.; Wyndham, R.C.

    1999-04-01

    The frequency of isolation of three nonhomologous chlorobenzoate catabolic genotypes (clc, cba, and fbc) was determined for 464 isolates from freshwater sediments and groundwater in the vicinity of the Hyde Park industrial landfill site in the Niagara watershed. Samples were collected from both contaminated and noncontaminated sites during spring, summer, and fall and enriched at 4, 22, or 32 C with micromolar to millimolar concentrations of chlorobenzoates and 3-chlorobiphenyl. Hybridization at moderate stringency to restriction-digested genomic DNA with DNA probes revealed the chlorocatechol 1,2-dioxygenase operon (clcABD), the 3-chlorobenzoate 3,4-(4,5)-dioxygenase operon (cbaABC), and the 4-chlorobenzoate dehalogenase (fcbB) gene in isolates enriched from all contaminated sites in the vicinity of the industrial landfill. Nevertheless, the known genes were found in less than 10% of the isolates from the contaminated sites, indicating a high level of genetic diversity in the microbial community. The known genotypes were not enriched from the noncontaminated control sites nearby. The clc, cba, and fcb isolates were distributed across five phenotypically distinct groups based on Biolog carbon source utilization, with the breadth of the host range decreasing in the order clc > cba > fcb. Restriction fragment length polymorphism (RFLP) patterns showed that the cba genes were conserved in all isolates whereas the clc and fcb genes exhibited variation in RFLP patterns.

  8. Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2000

    SciTech Connect (OSTI)

    K. B. Campbell

    2001-06-01

    Post-closure monitoring requirements for the Area 9 Unexploded Ordnance Landfill (Corrective Action Unit [CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV--284. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5,1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. Post-closure monitoring at CAU 453 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000 and November 21, 2000. Both site inspections were conducted after NDEP approval of the CR, and in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C.

  9. Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2001

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-01-01

    Post-closure monitoring requirements for the Area 9 Unexploded Ordinance Landfill (Corrective Action Unit [CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV--284, August 1999. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5 , 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 453 consists of the following: (1) Visual site inspections are conducted twice a year to evaluate the condition of the cover. (2) Verification that the site is secure and the condition of the fence and posted warning signs. (3) Notice of any subsidence, erosion, unauthorized excavation, etc., deficiencies that may compromise the integrity of the unit. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 15, 2001 and November 6, 2001. Both site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C.

  10. Health assessment for S-Area Landfill/Hooker, Niagara Falls, New York, Region 2. CERCLIS No. NYD000000001. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    The S-Area Landfill is a National Priorities List site located in Niagara Falls, New York, that was operated from 1947 to 1975 by the Occidental Chemical Corporation (OCC). From 1947 to 1975, OCC is reported to have disposed of an estimated 19,000 tons of chlorobenzenes and approximately 17,000 tons of hexachlorocyclopentadiene. Other wastes disposed of at the site include organic phosphates, hexachlorobutadiene, trichlorophenols, and chlorinated toluenes. Environmental contamination from the S-Area exists on-site and off-site in soils and ground water. Further off-site contamination potentially exists in the Niagara River. The S-Area presents a potential public health threat to the consumers of the City of Niagara Falls drinking water and an incremental increase in contamination to fish in the Niagara River.

  11. Determination of the origin of elevated uranium at a Former Air Force Landfill using non-parametric statistics analysis and uranium isotope ratio analysis

    SciTech Connect (OSTI)

    Weismann, J.; Young, C.; Masciulli, S.; Caputo, D.

    2007-07-01

    Lowry Air Force Base (Lowry) was closed in September 1994 as part of the Base Realignment and Closure (BRAC) program and the base was transferred to the Lowry Redevelopment Authority in 1995. As part of the due diligence activities conducted by the Air Force, a series of remedial investigations were conducted across the base. A closed waste landfill, designated Operable Unit 2 (OU 2), was initially assessed in a 1990 Remedial Investigation (RI; [1]). A Supplemental Remedial Investigation was conducted in 1995 [2] and additional studies were conducted in a 1998 Focused Feasibility Study. [3] The three studies indicated that gross alpha, gross beta, and uranium concentrations were consistently above regulatory standards and that there were detections of low concentrations other radionuclides. Results from previous investigations at OU 2 have shown elevated gross alpha, gross beta, and uranium concentrations in groundwater, surface water, and sediments. The US Air Force has sought to understand the provenance of these radionuclides in order to determine if they could be due to leachates from buried radioactive materials within the landfill or whether they are naturally-occurring. The Air Force and regulators agreed to use a one-year monitoring and sampling program to seek to explain the origins of the radionuclides. Over the course of the one-year program, dissolved uranium levels greater than the 30 {mu}g/L Maximum Contaminant Level (MCL) were consistently found in both up-gradient and down-gradient wells at OU 2. Elevated Gross Alpha and Gross Beta measurements that were observed during prior investigations and confirmed during the LTM were found to correlate with high dissolved uranium content in groundwater. If Gross Alpha values are corrected to exclude uranium and radon contributions in accordance with US EPA guidance, then the 15 pCi/L gross alpha level is not exceeded. The large dataset also allowed development of gross alpha to total uranium correlation factors so that gross alpha action levels can be applied to future long-term landfill monitoring to track radiological conditions at lower cost. Ratios of isotopic uranium results were calculated to test whether the elevated uranium displayed signatures indicative of military use. Results of all ratio testing strongly supports the conclusion that the uranium found in groundwater, surface water, and sediment at OU 2 is naturally-occurring and has not undergone anthropogenic enrichment or processing. U-234:U-238 ratios also show that a disequilibrium state, i.e., ratio greater than 1, exists throughout OU 2 which is indicative of long-term aqueous transport in aged aquifers. These results all support the conclusion that the elevated uranium observed at OU 2 is due to the high concentrations in the regional watershed. Based on the results of this monitoring program, we concluded that the elevated uranium concentrations measured in OU 2 groundwater, surface water, and sediment are due to the naturally-occurring uranium content of the regional watershed and are not the result of waste burials in the former landfill. Several lines of evidence indicate that natural uranium has been naturally concentrated beneath OU 2 in the geologic past and the higher of uranium concentrations in down-gradient wells is the result of geochemical processes and not the result of a uranium ore disposal. These results therefore provide the data necessary to support radiological closure of OU 2. (authors)

  12. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  13. EA-1996: Glass Buttes Radio Station, Lake County, Oregon

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management (BLM), with DOE’s Bonneville Power Administration (BPA) as a cooperating agency, is preparing an EA that will evaluate the potential environmental impacts of a proposal to construct two telecommunications facilities, one of which would provide BPA telecommunications services, on BLM land. Additional information is available at http://www.blm.gov/or/districts/prineville/plans/glassbuttes/.

  14. Geology And A Working Conceptual Model Of The Obsidian Butte...

    Open Energy Info (EERE)

    with a wealth of subsurface information made available for the first time from the databases of present and prior field operators. The Unit 6 sector of the system is hosted by...

  15. LANDFILL GAS CONVERSION TO LNG AND LCO{sub 2}. PHASE 1, FINAL REPORT FOR THE PERIOD MARCH 1998-FEBRUARY 1999

    SciTech Connect (OSTI)

    COOK,W.J.; NEYMAN,M.; SIWAJEK,L.A.; BROWN,W.R.; VAN HAUWAERT,P.M.; CURREN,E.D.

    1998-02-25

    Process designs and economics were developed to produce LNG and liquid carbon dioxide (CO{sub 2}) from landfill gas (LFG) using the Acrion CO{sub 2} wash process. The patented Acrion CO{sub 2} wash process uses liquid CO{sub 2} to absorb contaminants from the LFG. The process steps are compression, drying, CO{sub 2} wash contaminant removal and CO{sub 2} recovery, residual CO{sub 2} removal and methane liquefaction. Three flowsheets were developed using different residual CO{sub 2} removal schemes. These included physical solvent absorption (methanol), membranes and molecular sieves. The capital and operating costs of the flowsheets were very similar. The LNG production cost was around ten cents per gallon. In parallel with process flowsheet development, the business aspects of an eventual commercial project have been explored. The process was found to have significant potential commercial application. The business plan effort investigated the economics of LNG transportation, fueling, vehicle conversion, and markets. The commercial value of liquid CO{sub 2} was also investigated. This Phase 1 work, March 1998 through February 1999, was funded under Brookhaven National laboratory contract 725089 under the research program entitled ``Liquefied Natural Gas as a Heavy Vehicle Fuel.'' The Phase 2 effort will develop flowsheets for the following: (1) CO{sub 2} and pipeline gas production, with the pipeline methane being liquefied at a peak shaving site, (2) sewage digester gas as an alternate feedstock to LFG and (3) the use of mixed refrigerants for process cooling. Phase 2 will also study the modification of Acrion's process demonstration unit for the production of LNG and a market site for LNG production.

  16. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    SciTech Connect (OSTI)

    Widory, D.; Proust, E.; Bellenfant, G.; Bour, O.

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  17. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Vincent Mullins Landfill in Tucson, Arizona. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Vincent Mullins Landfill in Tucson, Arizona, for a feasibility study of renewable energy production. Under the RE-Powering America's Land initiative, the EPA provided funding to the National Renewable Energy Laboratory (NREL) to support the study. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this report is to assess the site for a possible PV installation and estimate the cost and performance of different PV configurations, as well as to recommend financing options that could assist in the implementation of a PV system. In addition to the Vincent Mullins site, four similar landfills in Tucson are included as part of this study.

  18. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Snohomish County Cathcart Landfill Site in Snohomish County, Washington. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Olis, D.; Salasovich, J.; Mosey, G.; Healey, V.

    2013-04-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Snohomish County Cathcart Landfill Site in Snohomish County, Washington, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  19. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Sky Park Landfill Site in Eau Claire, Wisconsin. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Simon, J.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Sky Park Landfill site in Eau Claire, Wisconsin, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  20. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Price Landfill Site in Pleasantville, New Jersey. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-05-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Price Landfill site in Pleasantville, New Jersey, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  1. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Kolthoff Landfill in Cleveland, Ohio. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), Region 5, in accordance with the RE-Powering America's Land initiative, selected the Kolthoff Landfill site in Cleveland, Ohio, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  2. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Crazy Horse Landfill Site in Salinas, California. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Stoltenberg, B.; Konz, C.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Crazy Horse Landfill site in Salinas, California, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) was contacted to provide technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, operation and maintenance requirements, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  3. Short Mountain Landfill gas recovery project

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA's latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers' demand for electrical power.

  4. BKK Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBKKLandfillBiomassFacility&oldid397166" Feedback Contact needs updating Image needs updating...

  5. Dane County Landfill | Open Energy Information

    Open Energy Info (EERE)

    2.22.2 MW 2,200 kW 2,200,000 W 2,200,000,000 mW 0.0022 GW Commercial Online Date 1997 Heat Rate (BTUkWh) 12596.1 References EPA Web Site1 Loading map......

  6. EM Landfill Workshop Report - November 21, 2008

    Office of Environmental Management (EM)

    ... and dosages is one of the most critical aspects of cost-effective disposal operations. ... Mr. Redus is member of the EMWMF WAC Attainment Team. He developed WACFACS - the Waste ...

  7. 17 CX Los Alamos Landfill.pdf

    National Nuclear Security Administration (NNSA)

  8. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review - 2010. The primary objective of this project is to combine a suite of high resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships.

  9. A Demonstration Project for Capturing Geothermal Energy from Mine Waters beneath Butte, MT

    Broader source: Energy.gov [DOE]

    Project objectives. Demonstrate performance of heat pumps in a large HVAC system in a heating-dominated climate.

  10. Alternative Landfill Cover and Monitoring Systems for Landfills in Arid Environments

    SciTech Connect (OSTI)

    S. E. Rawlinson

    2002-09-01

    In December 2000, a performance monitoring facility was constructed adjacent to the mixed waste disposal unit U-3ax/bl at the Area 3 Radioactive Waste Management Site at the Nevada Test Site. This facility consists of eight drainage lysimeters measuring 10 feet in diameter, 8 feet deep, and backfilled with native soil. The lysimeters have three different surface treatments: two were left bare, two were revegetated with native species, and two were allowed to revegetate with invader species (two are reserved for future studies). The lysimeters are instrumented with an array of soil water content and soil water potential sensors and have sealed bottoms so that any drainage can be measured. All sensors are working properly and indicate that the bare lysimeters are the wettest, as expected. The vegetated lysimeters, both seeded and those allowed to revegetate with invader species, are significantly drier than the bare cover treatments. No drainage has occurred in any of the lysimeters. The Accelerated Site Technology Deployment program under the U.S. Department of Energy's Office of Science and Technology provided the funding for this project with the objective of reducing the uncertainty associated with the performance of monolayer-evapotranspiration waste covers in arid regions such as the one deployed at U-3ax/bl.

  11. Ward Co. Dunn Co. McLean Co. McHenry Co. Mountrail Co. McKenzie...

    U.S. Energy Information Administration (EIA) Indexed Site

    RATTLESNAKE POINT ELLSWORTH CHURCH BORDER HANSON GROVER HULSE COULEE SAKAKAWEA AURELIA ROUND TOP BUTTE GORHAM BUTTE W MARMON MANITOU SHEALEY CLAYTON SERGIS N SADDLE BUTTE HAYLAND ...

  12. Printing and Mail Managers Exchange Forum Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 21, 2013 Mail Managers discussion Joe Whitford opened the meeting by introducing Tony Nellums to talk about mail related items. 1) Mr. Nellums introduced Derek Milner, Policy Advisor from the GSA Office of Government-wide policy. a. Mr. Milner stated that he is being replaced as primary policy contact by Linda Willoughby (Linda.Willoughby@gsa.gov) or (202) 219-1083. b. Initiatives discussed by Mr. Milner included: Upcoming mail reports. The SMART system is online and available now.

  13. Volcanic episodes near Yucca Mountain as determined by paleomagnetic studies as Lathrop Wells, Crater Flat, and Sleeping Butte, Nevada

    SciTech Connect (OSTI)

    Champion, D.E.

    1991-12-31

    It has been suggested that mafic volcanism in the vicinity of Yucca Mountain, Nevada, is both recent (20 ka) and a product of complex {open_quotes}polycyclic{close_quotes} eruptions. This pattern of volcanism, as interpreted by some workers at the Lathrop Wells volcanic complex, comprises a sequence of numerous small-volume eruptions that become more tephra-producing over time. Such sequences are thought to occur over timespans as long as 100,000 years. However, paleomagnetic studies of the tephra and lava flows from mafic volcanoes near Yucca Mountain fail to find evidence of repeated eruptive activity over timespans of 10{sup 3} to 10{sup 5} years, even though samples have been taken that represent approximately 95% of the products of these volcanoes. Instead, the eruptions seem to have occurred as discrete episodes at each center and thus can be considered to be {open_quotes}monogenetic.{close_quotes} Dates of these episodes have been obtained by the proven radiometric-geochronometer methods of K-Ar or {sup 40}Ar/{sup 39}Ar dating.

  14. Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal

    SciTech Connect (OSTI)

    Liu Fei; Zhang Zhaodong; Liu Liming, E-mail: liulm@dlut.edu.cn

    2012-07-15

    Based on the idea of alloying welding seam, Gas tungsten arc welding method with pure Zn filler metal was chosen to join Mg alloy and Al alloy. The microstructures, phases, element distribution and fracture morphology of welding seams were examined. The results indicate that there was a transitional zone in the width of 80-100 {mu}m between the Mg alloy substrate and fusion zone. The fusion zone was mainly composed of MgZn{sub 2}, Zn-based solid solution and Al-based solid solution. The welding seam presented distinct morphology in different location owning to the quite high cooling rate of the molten pool. The addition of Zn metal could prevent the formation of Mg-Al intermetallics and form the alloyed welding seam during welding. Therefore, the tensile strengths of joints have been significantly improved compared with those of gas tungsten arc welded joints without Zn metal added. Highlights: Black-Right-Pointing-Pointer Mg alloy AZ31B and Al alloy 6061 are welded successfully. Black-Right-Pointing-Pointer Zinc wire is employed as a filler metal to form the alloyed welding seam. Black-Right-Pointing-Pointer An alloyed welding seam is benefit for improving of the joint tensile strength.

  15. Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014

    SciTech Connect (OSTI)

    Alan Giesbrecht

    2014-05-01

    The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

  16. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    SciTech Connect (OSTI)

    Bridger Morrison

    2014-09-01

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

  17. Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana

    SciTech Connect (OSTI)

    Not Available

    1988-09-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

  18. BPA-2013-00108-Consult Request

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 2013 MEMORANDUM TO: Christina J. Munro Freedom of Information Act Officer Bonneville Power Administration FROM: Michael S. Milner 'TJJ Assistant Inspector General for...

  19. Short Mountain Landfill Gas Recovery Project : Stage 1 Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-05-01

    The Bonneville Power Administration (BPA), a Federal power marketing agency, has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. BPA`s latest load/resource balance forecast, projects the capability of existing resources to satisfy projected Federal system loads. The forecast indicates a potential resource deficit. The underlying need for action is to satisfy BPA customers` demand for electrical power.

  20. DOE EM Landfill Workshop and Path Forward - July 2009

    Office of Environmental Management (EM)

    Challenges | Department of Energy Over a Billion Supercomputing Hours to Address Scientific Challenges DOE Awards Over a Billion Supercomputing Hours to Address Scientific Challenges January 26, 2010 - 12:00am Addthis Washington, DC. - The U.S. Department of Energy announced today that approximately 1.6 billion supercomputing processor hours have been awarded to 69 cutting-edge research projects through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program.

  1. Renewable LNG: Update on the World's Largest Landfill Gas to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented by Mike McGowan, Linde NA, Inc., at the NRELDOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. PDF icon june2012biogasworkshopmcgowan.pdf ...

  2. Rodefeld Landfill Ga Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    3,800,000 W 3,800,000,000 mW 0.0038 GW Commercial Online Date 2005 Heat Rate (BTUkWh) 13648.0 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"google...

  3. Des Plaines Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    mW 0.0038 GW Commercial Online Date 2004 Heat Rate (BTUkWh) 12916.67 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN...

  4. RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    mW 1.0e-3 GW Commercial Online Date 2001 Heat Rate (BTUkWh) 12916.67 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN...

  5. Cuyahoga Regional Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    3,600,000 W 3,600,000,000 mW 0.0036 GW Commercial Online Date 1999 Heat Rate (BTUkWh) 10374.2 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlem...

  6. I 95 Municipal Landfill Phase I Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    3,200,000 W 3,200,000,000 mW 0.0032 GW Commercial Online Date 1992 Heat Rate (BTUkWh) 11031.4 References EPA Web Site1 Loading map... "minzoom":false,"mappingservice":"googlema...

  7. ITP Industrial Distributed Energy: CHP and Bioenergy for Landfills...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Plants November 7, 2007 Example ADG Installations - Wastewater Treatment Plants z Metro Wastewater Reclamation District in Denver, Colorado - 7 MW of electricity produced from ...

  8. Climate Change Adaptation Technical Fact Sheet: Landfills and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of potential climate change vulnerabilities and (2) presenting possible adaptation measures that may be considered to increase a remedy's resilience to climate change impacts. ...

  9. Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...

    Broader source: Energy.gov (indexed) [DOE]

    from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from cleanup operations across the...

  10. Distributed Generation Study/Modern Landfill | Open Energy Information

    Open Energy Info (EERE)

    R Lowest Combustion Intake Air Temperature (F) 1.7F256.317 K -16.833 C 461.37 R NOx Emissions Data Available No CO Emissions Data Available No 12-Month Run Hours 169388...

  11. EM SSAB ITR Landfill Assessment Project Lessons Learned Presentation...

    Office of Environmental Management (EM)

    ... Develop strategies to limit use of nuclear densometer for compaction testing. * Revisit conservative ... process. DOE should document history of their engineered on-site ...

  12. Mid Valley Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2.542.54 MW 2,540 kW 2,540,000 W 2,540,000,000 mW 0.00254 GW Commercial Online Date 2003 Heat Rate (BTUkWh) 12168.0 References EPA Web Site1 Loading map......

  13. Four Hills Nashua Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    (MW) 0.910.91 MW 910 kW 910,000 W 910,000,000 mW 9.1e-4 GW Commercial Online Date 1996 Heat Rate (BTUkWh) 13151.8 References EPA Web Site1 Loading map......

  14. Winnebago County Landfill Gas Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    2.72.7 MW 2,700 kW 2,700,000 W 2,700,000,000 mW 0.0027 GW Commercial Online Date 2000 Heat Rate (BTUkWh) 9350.0 References EPA Web Site1 Loading map... "minzoom":false,"map...

  15. HMDC Kingsland Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2.72.7 MW 2,700 kW 2,700,000 W 2,700,000,000 mW 0.0027 GW Commercial Online Date 1999 Heat Rate (BTUkWh) 13405.9 References EPA Web Site1 Loading map......

  16. DOE - Office of Legacy Management -- Woburn Landfill - MA 07

    Office of Legacy Management (LM)

    Operations: The National Lead Company, Inc. disposed of approximately fifty 55-gallon drums of low grade uranium ore in at this site in 1960. MA.07-2 MA.07-4 Site Disposition:...

  17. Greenhouse gas emissions from landfill leachate treatment plants...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 54 ENVIRONMENTAL SCIENCES; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; AGING; CARBON DIOXIDE; GREENHOUSE GASES; LEACHATES; ...

  18. List of Landfill Gas Incentives | Open Energy Information

    Open Energy Info (EERE)

    Waste Photovoltaics Solar Thermal Electric Coal with CCS Energy Storage Nuclear Wind Natural Gas Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio...

  19. Savannah River Site - Sanitary Landfill | Department of Energy

    Office of Environmental Management (EM)

    Energy - P-Area Groundwater Operable Unit Savannah River Site - P-Area Groundwater Operable Unit January 1, 2013 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Savannah River Site, SC Responsible DOE Office: Savannah River Site Plume Name: P-Area Groundwater Operable Unit Remediation Contractor: Savannah River Nuclear Solutions, LLC PBS Number: 30 Report Last Updated: 2013 Contaminants Halogenated VOCs/SVOCs Present?: Yes VOC

  20. Tapping Landfill Gas to Provide Significant Energy Savings and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The Olinda project won the award because of its creative fnancing, including the ARRA ... "candidate landflls" that have the potential to utilize landfll gas for energy production. ...

  1. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    landfill Page: 1 2 3 4 5

  2. Customized atomic force microscopy probe by focused-ion-beam...

    Office of Scientific and Technical Information (OSTI)

    Authors: Wang, Andrew ; Butte, Manish J., E-mail: manish.butte@stanford.edu 1 + Show Author Affiliations Department of Pediatrics, Division of Immunology, Allergy and ...

  3. MyRecipe | Open Energy Information

    Open Energy Info (EERE)

    here) Ingredient Alternative Mustard Pork Butt Sugar warmed to room temp Molasses or honey. none Instructions Prepare rub. Coat butt. Refrigerate overnite. BBQ indirect heat,...

  4. Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon...

    U.S. Energy Information Administration (EIA) Indexed Site

    BICENTENNIAL MEDICINE POLE HILLS BIG STICK ROOSEVELT ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS ...

  5. Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon...

    U.S. Energy Information Administration (EIA) Indexed Site

    MEDICINE POLE HILLS BICENTENNIAL ROOSEVELT BIG STICK ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS ...

  6. Assessment of Weld Overlays for Mitigating Primary Water Stress Corrosion Cracking at Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edward J.; Anderson, Michael T.

    2012-08-01

    This TLR provides an assessment of weld overlays as a mitigation strategy for PWSCC, and includes an assessment of the WOL-related inspection requirements of Code Case N-770-1, as conditioned in §50.55a.

  7. Assessment of the Mechanical Stress Improvement Process for Mitigating Primary Water Stress Corrosion Cracking in Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    SciTech Connect (OSTI)

    Sullivan, Edmund J.; Anderson, Michael T.

    2013-01-01

    This report provides an assessment of the use of Mechanical Stress Improvement Process to reduce, or decrease, stress-driven degradation, i.e., primary water stress corrosion cracking.

  8. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    SciTech Connect (OSTI)

    1997-12-31

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  9. EA-1707: Revised Draft Environmental Assessment

    Broader source: Energy.gov [DOE]

    Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

  10. Building America Research-to-Market Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... New York: Apress, December 2013. Milner, J., C. Shrubsole, P. Das, B. Jones, I. Ridley, I., A. Chalabi, I. Hamilton, B. Armstrong, M. Davies, and P. Wilkinson. "Home energy ...

  11. Process for the gasification of fuels (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Authors: Milner, G. ; Ashworth, R. A. ; Butler, M. F. Publication Date: 1985-02-12 OSTI Identifier: 5501176 Report Number(s): US 4498909 Resource Type: Patent Resource Relation: ...

  12. Property:NEPA EA EIS Report Url | Open Energy Information

    Open Energy Info (EERE)

    + http:www.blm.govnmstenprogmorelandsrealtysanjuanbasinenergy.html + Sigurd Red Butte No2 + http:www.blm.govutstenfocedarcityplanningsigurdtoredbutte...

  13. Hanford Landfill Reaches 15 Million Tons Disposed- Waste Disposal Mark Shows Success Cleaning Up River Corridor

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996.

  14. A comparison of portable and permanent landfill liner leak detection systems

    SciTech Connect (OSTI)

    Taylor, S.B.; White, C.C.; Barker, R.D.

    1999-07-01

    Monitoring of the integrity of electrically non-conductive geomembrane liners installed at waste sites using electrical geophysical techniques has been carried out for a number of years using above-liner leak location surveys and, more recently, below-liner monitoring systems. The authors compare the theoretical response of both types of survey to a hole in a liner and then compare with measurements made in the field. The theoretical leak response indicates that above-liner surveys are sensitive to leaks over a greater area, though both responses result in comparable leak detectability. However, field data suggest that in practice, measurements made on a sparse grid below the liner have the greater sensitivity to certain leaks. This may be due to the differing leak geometries and background conditions present above and below the liner. The results indicate that a sparse below-liner monitoring grid, with its long-term monitoring capabilities, combined with above-liner surveys to pinpoint leaks accurately offer a successful approach to ensuring liner integrity throughout the lifetime of a lined waste site.

  15. Numerical evaluation of monofil and subtle-layered evapotranspiration (ET) landfill caps

    SciTech Connect (OSTI)

    Wilson, G.V.; Henley, M.; Valceschini, R.

    1998-01-01

    The US Department of Energy/Nevada Operations Office (DOE/NV) has identified the need to design a low-level waste (LLW) closure cap for the arid conditions at the Nevada Test Site (NTS). As a result of concerns for subsidence impacting the cover, DOE/NV redesigned the LLW cover from one containing a `hard` infiltration barrier that would likely fail, to a `soft` (ET) cover that is sufficiently deep to accommodate the hydrologic problems of subsidence. An ET cover is one that does not contain hydrologic barrier layers but relies on soil-water retention and sufficient thickness to store water until evapotranspiration (ET) can remove the moisture. Subtle layering within an ET cap using the native soil could be environmentally beneficial and cost effective.

  16. One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel

    Broader source: Energy.gov [DOE]

    Supported by the U.S. Department of Energys Office of Energy Efficiency and Renewable Energy (EERE), the BMW manufacturing plant in Greer, South Carolina demonstrated the use of unique source to...

  17. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    DOE Patents [OSTI]

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  18. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    DOE Patents [OSTI]

    Besmann, Theodore M

    2015-01-06

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  19. Probabilistic Modeling of Landfill Subsidence Introduced by Buried Structure Collapse - 13229

    SciTech Connect (OSTI)

    Foye, Kevin; Soong, Te-Yang

    2013-07-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass and buried structure placement. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the waste mass and sub-grade properties, especially discontinuous inclusions, which control differential settlement. An alternative is to use a probabilistic model to capture the non-uniform collapse of cover soils and buried structures and the subsequent effect of that collapse on the final cover system. Both techniques are applied to the problem of two side-by-side waste trenches with collapsible voids. The results show how this analytical technique can be used to connect a metric of final cover performance (inundation area) to the susceptibility of the sub-grade to collapse and the effective thickness of the cover soils. This approach allows designers to specify cover thickness, reinforcement, and slope to meet the demands imposed by the settlement of the underlying waste trenches. (authors)

  20. Results of Remediation and Verification Sampling for the 600-270 Horseshoe Landfill

    SciTech Connect (OSTI)

    W. S. Thompson

    2005-12-14

    This report presents the results of the 2005 remedial action and verification soil sampling conducted at the 600-270 waste site after removal of soil containing residual concentrations of dichlorodiphenyl trichloroethane and its breakdown products dichlorodiphenyl dichloroethylene and dichlorodiphenyl dichloroethane. The remediation was performed in response to post-closure surface soil sampling performed between 1998 and 2003 that indicated the presence of residual DDT contamination exceeding the Record of Decision for the 1100 Area National Priorities List site cleanup criteria of 1 mg/kg that was established for the original 1994 cleanup activities.

  1. Coupled Environmental Processes and Long-term Performance of Landfill Covers in the northern Mojave Desert

    SciTech Connect (OSTI)

    David Shafer; Michael Young; Stephen Zitzer; Eric McDonald; Todd Caldwell

    2004-05-12

    Evapotransiration (ET) covers have gained widespread acceptance as a closure feature for waste disposal sites, particularly in the arid and semi-arid regions of the southwestern U.S. But as landforms, ET covers are subject to change over time because of processes such as pedogenesis, hydrologic processes, vegetation establishment and change, and biological processes. To better understand the effects of coupled process changes to ET covers, a series of four primary analog sites in Yucca Flat on the Nevada Test Site, along with measurements and observations from other locations in the Mojave Desert, were selected to evaluate changes in ET covers over time. The analog sites, of varying ages, were selected to address changes in the early post-institutional control period, the 1,000-year compliance period for disposal of low-level and mixed low-level waste, and the 10,000-year compliance period for transuranic waste sites.

  2. Climate Change Adaptation Technical Fact Sheet: Landfills and Containment as an Element of Site Remediation

    Broader source: Energy.gov [DOE]

    This fact sheet addresses contaminated site remedies involving source containment systems. It is intended to serve as an adaptation planning tool by (1) providing an overview of potential climate...

  3. Improvement of the management of residual waste in areas without...

    Office of Scientific and Technical Information (OSTI)

    GREENHOUSE EFFECT; HEAT TREATMENTS; ITALY; LANDFILL GAS; LIFE CYCLE ASSESSMENT; RECYCLING; RESOURCE DEPLETION; SANITARY LANDFILLS; SENSITIVITY ANALYSIS; SOLID WASTES Word ...

  4. Ward Co. Dunn Co. McLean Co. McHenry Co. Mountrail Co. McKenzie Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    WHISKEY JOE WHITE ASH SPRING COULEE DES LACS MAGPIE HARTLAND BEICEGEL CREEK RANCH COULEE WINNER CRAZY MAN CREEK GROS VENTRE BANK W BULLSNAKE UPLAND COULEE REFUGE LARSON GARNET ALKALI CREEK PLUMER RATTLESNAKE POINT ELLSWORTH CHURCH BORDER HANSON GROVER HULSE COULEE SAKAKAWEA AURELIA ROUND TOP BUTTE GORHAM BUTTE W MARMON MANITOU SHEALEY CLAYTON SERGIS N SADDLE BUTTE HAYLAND CEDAR COULEE BOWLINE LITTLE BUTTE LONG CREEK RHOADES HEDBERG FILLMORE EIDSVOLD FAIRFIELD WOLF BAY TOBACCO GARDEN N SPRING

  5. ch_4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 Affected Environment visual range of the Fort Hall Indian Reservation. The Bitterroot, Lemhi, and Lost River mountain ranges are visible to the north and west of INEEL. East Butte and Middle Butte can be seen near the southern boundary, while Circular and Antelope Buttes are visible to the northeast. Smaller volcanic buttes dot the natural landscape of INEEL, providing a striking contrast to the relatively flat ground surface. The viewscape in general consists of terrain dominated by sage-

  6. Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    PENNEL BUFFALO LITTLE KNIFE FRYBURG MONDAK PLEVNA LOOKOUT BUTTE E ELKHORN RANCH DICKINSON CADY CREEK MEDICINE POLE HILLS BICENTENNIAL ROOSEVELT BIG STICK ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS CREEK WINDY RIDGE POKER JIM PLEVNA S KNUTSON STATE LINE BELL BEAR CREEK ELKHORN RANCH N PIERRE CREEK LONE BUTTE ZENITH MANNING SQUAW GAP AMOR STADIUM HEART S HILINE ASH MARY GAYLORD BULL CREEK HALEY SHORT PINE HILLS W

  7. Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    BUFFALO PENNEL LITTLE KNIFE FRYBURG MONDAK PLEVNA LOOKOUT BUTTE E ELKHORN RANCH DICKINSON CADY CREEK BICENTENNIAL MEDICINE POLE HILLS BIG STICK ROOSEVELT ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS CREEK WINDY RIDGE POKER JIM PLEVNA S KNUTSON BELL STATE LINE BEAR CREEK ELKHORN RANCH N PIERRE CREEK LONE BUTTE ZENITH MANNING SQUAW GAP AMOR HEART S STADIUM HILINE ASH MARY LAKE ILO GAYLORD BULL CREEK HALEY BULLY SHORT

  8. Carter Co. Harding Co. Perkins Co. Dunn Co. Dawson Co. Fallon Co.

    U.S. Energy Information Administration (EIA) Indexed Site

    PENNEL BUFFALO LITTLE KNIFE FRYBURG MONDAK PLEVNA LOOKOUT BUTTE E ELKHORN RANCH DICKINSON CADY CREEK MEDICINE POLE HILLS BICENTENNIAL ROOSEVELT BIG STICK ROUGH RIDER MONARCH TREE TOP LOOKOUT BUTTE BUCKHORN MEDORA FLAT TOP BUTTE ELAND DEMORES ASH COULEE WHISKEY JOE GAS CITY DAVIS CREEK WINDY RIDGE POKER JIM PLEVNA S KNUTSON STATE LINE BELL BEAR CREEK ELKHORN RANCH N PIERRE CREEK LONE BUTTE ZENITH MANNING SQUAW GAP AMOR STADIUM HEART S HILINE ASH MARY GAYLORD BULL CREEK HALEY SHORT PINE HILLS W

  9. Health assessment for Cedartown Municipal Landfill NPL Site, Cedartown, Polk County, Georgia, Region 4. CERCLIS No. GAD980495402. Preliminary report

    SciTech Connect (OSTI)

    Not Available

    1990-08-08

    In compliance with the Comprehensive Environmental Response, Compensation, and Liability Act and the Resource Conservation and Recovery Act, as amended, the Agency for Toxic Substances and Disease Registry (ATSDR) has prepared Health Assessment reports for sites currently on, or proposed for, the National Priorities List. In the report, the presence and nature of health hazards at this site are assessed, and the public health implications specific to this site are evaluated. The Health Assessment is based on such factors as the nature, concentration, toxicity, and extent of contamination at the site; the existence of potential pathways for the human exposure; the size and nature of the community likely to be exposed; and any other information available.

  10. Acrion Technologies | Open Energy Information

    Open Energy Info (EERE)

    focuses on landfill gas clean up and clean landfill gas use. The company developed the CO2 Wash Techology that cleans landfill gas. Coordinates: 41.504365, -81.690459 Show...

  11. CX-002678: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Units 4 & 5 and Landfill Gas Pipeline Construction CX(s) Applied: B5.1 Date: ... 2) construction of a landfill gas (LFG) pipeline from the adjacent South Dade Landfill ...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation filter Lighting ControlsSensors (10) Apply Lighting ControlsSensors filter Windows (10) Apply Windows filter Landfill Gas (9) Apply Landfill Gas filter Combined Heat...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas (10) Apply Landfill Gas filter Wind (Small) (10) Apply Wind (Small) filter Windows (10) Apply Windows filter Lighting ControlsSensors (9) Apply Lighting Controls...

  14. Integrated Combined Heat and Power/Advanced Reciprocating Internal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

  15. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Assessment for Closing Hanford's Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill The U.S. Department of Energy (DOE) is issuing a National...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    effect (1) heat treatments (1) italy (1) landfill gas (1) life cycle assessment (1) recycling (1) resource depletion (1) sanitary landfills (1) sensitivity analysis (1) solid ...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... effect (1) heat treatments (1) italy (1) landfill gas (1) life cycle assessment (1) recycling (1) resource depletion (1) sanitary landfills (1) sensitivity analysis (1) solid ...

  18. Barriers to CHP with Renewable Portfolio Standards, Draft White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy Systems for Landfills and Wastewater Treatment ...

  19. Assumption to the Annual Energy Outlook 2014 - Renewable Fuels...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind 1. Some renewables, such as landfill gas...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    filter Landfill Gas (59) Apply Landfill Gas filter Solar Space Heat (59) Apply Solar Space Heat filter Food Service Equipment (56) Apply Food Service Equipment filter...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    filter Hydroelectric (200) Apply Hydroelectric filter Solar Space Heat (199) Apply Solar Space Heat filter Landfill Gas (198) Apply Landfill Gas filter Food Service Equipment...

  2. Managing Category I and II ACM During Decontamination and Demolition...

    Office of Environmental Management (EM)

    Onsite Landfills (Y-12 Sanitary LandfillEMWMF) - Asbestos Inspector - Asbestos Project ... Shortened schedules Increased productivity Cost savings ConclusionQuestions

  3. CX-012790: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Haystack Butte Radio Site Land Acquisition CX(s) Applied: B1.24Date: 41939 Location(s): WashingtonOffices(s): Bonneville Power Administration

  4. CX-008884: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rattlesnake Butte Property Funding CX(s) Applied: B1.25 Date: 08/13/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  5. Domestic Uranium Production Report - Quarterly - Energy Information...

    Gasoline and Diesel Fuel Update (EIA)

    Crow Butte Operation (Nebraska) Lost Creek Project (Wyoming) Nichols Ranch ISR Project (Wyoming) Smith Ranch-Highland Operation (Wyoming) Strata Energy's Ross central processing ...

  6. Assiniboine and Sioux Tribes of the Fort Peck Indian Reservation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oklahoma * Certified in Socket & Butt Fusion IGSHPA Training Installer Team IGSHPA ... Enterprise GSHP Dirt Work GSHP Pipe Fusion * Takes place in the crawl space or ...

  7. Boyd County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Boyd County, Nebraska Anoka, Nebraska Bristow, Nebraska Butte, Nebraska Gross, Nebraska Lynch, Nebraska Monowi, Nebraska Naper, Nebraska Spencer, Nebraska Retrieved from "http:...

  8. MHK Projects/Whiskey Bay | Open Energy Information

    Open Energy Info (EERE)

    ","visitedicon":"" Project Profile Project Start Date 112009 Project City Butte la Rose, LA Project StateProvince Louisiana Project Country United States Project Resource...

  9. MHK Projects/Tensas | Open Energy Information

    Open Energy Info (EERE)

    ","visitedicon":"" Project Profile Project Start Date 112009 Project City Butte la Rose, LA Project StateProvince Louisiana Project Country United States Project Resource...

  10. Directory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BOISE STATE UNIVERSITY Darryl Butt Distinguished Professor and Associate Director for CAES Materials... (Properties) 52414 11:16 AM 52414 11:16 AM Send Document Link BOISE...

  11. CAES Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calendar Microscopy and Characterization Suite (MaCS) MaCS Contacts Dr. Darryl Butt CAES Co-Associate Director Chair, Department of Materials Science and Engineering, Boise...

  12. Property:Geothermal/FundingSource | Open Energy Information

    Open Energy Info (EERE)

    + American Recovery and Reinvestment Act of 2009 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + American...

  13. Property:Geothermal/FundingOpportunityAnnouncemt | Open Energy...

    Open Energy Info (EERE)

    Co., NV Geothermal Project + DE-FOA-0000109 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + DE-FOA-0000116 +...

  14. Property:Geothermal/TargetsMilestones | Open Energy Information

    Open Energy Info (EERE)

    reservoir models and define drilling targets. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Mine waters will...

  15. Property:Geothermal/Impacts | Open Energy Information

    Open Energy Info (EERE)

    fluid pathways in fracture-dominated systems. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Successful...

  16. Property:Geothermal/AwardeeWebsite | Open Energy Information

    Open Energy Info (EERE)

    + http:www.magmaenergycorp.comsHome.asp + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + http:...

  17. CX-009210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Silver Butte Fiber Burial Project CX(s) Applied: B.47 Date: 08/28/2012 Location(s): Montana, Montana Offices(s): Bonneville Power Administration

  18. Search for: All records | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    ; Schuler, Daniel ; Butt, Ryan H. ; Dibble, Robert W. Full Text Available March 2016, Elsevier Experimental and numerical investigation of ion signals in boosted HCCI combustion...

  19. Geothermal Technologies Program Annual Peer Review Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass Buttes, OR (DOE) Geothermal Technologies Program Annual Peer Review May 7, 2012 Doug Hollett, Program Manager Geothermal Technologies Program Office of Energy Efficiency and ...

  20. Natrona County, Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming Meadow Acres, Wyoming Midwest, Wyoming Mills, Wyoming Powder River, Wyoming Red Butte, Wyoming Vista West, Wyoming Retrieved from "http:en.openei.orgw...

  1. CX-012813: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Redmond-Pilot Butte #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41893 Location(s): OregonOffices(s): Bonneville Power Administration

  2. Jackson County, Oregon: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oregon Ashland, Oregon Butte Falls, Oregon Central Point, Oregon Eagle Point, Oregon Gold Hill, Oregon Jacksonville, Oregon Medford, Oregon Phoenix, Oregon Rogue River, Oregon...

  3. U.S. Virgin Islands- Renewables Portfolio Targets

    Broader source: Energy.gov [DOE]

    Photovoltaic Energy, wind energy, hydroelectric energy, landfill gas, biomass, ocean and microturbine systems.

  4. EA-0767: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant

  5. EA-1737: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Financial Assistance to Pennsylvania for Frey Farm Landfill Wind Energy Project, Manor Township, Lancaster County, Pennsylvania

  6. EA-1737: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Financial Assistance To Pennsylvania for Frey Farm Landfill Wind Energy Project, Manor Township, Lancaster County, Pennsylvania

  7. EA-1729: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Removal Actions At The Technical Area III Classified Waste Landfill, Sandia National Laboratories, New Mexico

  8. EA-1707: Draft Environmental Assessment | Department of Energy

    Office of Environmental Management (EM)

    07: Draft Environmental Assessment EA-1707: Draft Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington This environmental assessment provides information and analyses of proposed Department of Energy (DOE) activities associated with closure of the DOE Hanford Site's Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. PDF icon Environmental Assessment for the Closure of Nonradioactive Dangerous

  9. The Future Through the Past: The Use of Analog Sites for Design Criteria and Long Term Performance Assessment of Evapotranspiration Landfill Covers

    SciTech Connect (OSTI)

    Shafer, D. S.; Miller, J. J.; Young, M. H.; Edwards, S. C.; Rawlinson, S. E.

    2002-02-26

    There is growing support for using evapotranspiration (ET) covers for closure of low-level waste (LLW) and other types of waste disposal sites, particularly in the lower latitude arid regions of the western United States. At the Nevada Test Site (NTS), monolayer ET covers are the baseline technology for closure of LLW and mixed LLW cells. To better predict the long-term performance of monolayer ET covers, as well as to identify design criteria that will potentially improve their performance, the properties of, and processes occurring on, analog sites for ET covers on the NTS are being studied. The project is funded through the Subsurface Contaminants Focus Area of the U.S. Department of Energy. Four analog sites on the NTS have been selected to predict performance of ET covers over a 1,000-year compliance period. Two sites are relatively recently disturbed (within the last 50 years) and have been selected to evaluate processes and changes on ET covers for the early period after active cover maintenance is discontinued. Two other sites, late to mid-Holocene in age, are intended as analogs for the end of the compliance period (1,000 years or more); both surfaces are abandoned alluvial/colluvial deposits. The history of the early post-institutional control analog sites are being evaluated by an archaeologist to help determine when the sites were last disturbed or modified, and the mode of disturbance to help set baseline conditions. Similar to other ''landforms,'' ET covers will evolve over time because of pedogenic, biotic, and climatic processes. Properties of analog sites that could affect ET water balance performance will be evaluated to help understand ET cover performance over time.

  10. Minutes from the November 01, 2012 Printing and Mail Teleconference

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1, 2012 Mail discussion Al Majors opened the meeting by introducing Derrick Milner, Program Manager from the General Services Administration, Office of Government-wide Policy. Mr. Majors and Mr. Miliner discussed the pending Official Mail Management Report for the FY-2012. The question on where to put data relating to certified and registered mail was addressed. It should be placed under the others section or under first class, standard delivery. Mr. Majors also discussed the pending

  11. CX-001879: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    WM Renewable Energy, LLC - Milam Landfill Gas to Energy Plant IICX(s) Applied: B5.1Date: 04/21/2010Location(s): Milam Landfill, IllinoisOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  12. Perdido LF-Gase to Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Background Perdido LF Gas-to-Energy Project (1997-2008) Direct Use by Paper Mill (IP) LFG piped from Perdido Landfill to IP Direct Use of LFG Landfill Gas ...

  13. WM Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Los Angeles, California Product: Owns and operates a landfill gas plant located at Bradley Landfill. References: WM Solutions Inc1 This article is a stub. You can help OpenEI...

  14. Lara Energia | Open Energy Information

    Open Energy Info (EERE)

    Lara Energia Jump to: navigation, search Name: Lara Energia Place: Sao Paulo, Brazil Zip: CEP n. 09370-840 Product: A developer and owner of a landfill and landfill gas flaring...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small),...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Landfill Gas, Tidal, Wave, Anaerobic Digestion, Microturbines Consumers Energy- Experimental Advanced Renewable Program The Experimental Advanced Renewable Energy Program...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial, Industrial, Residential Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Wind (Small),...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gas, hydropower, fu... Eligibility: Commercial, Industrial, Residential Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Eligibility: Commercial Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Landfill Gas, Tidal,...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooperative Utilities Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Wind (Small),...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Heat recovery, Anaerobic Digestion, Fuel Cells using Renewable Fuels, Microturbines Alternative Energy Portfolio Standard Eligible technologies...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Heat recovery, Anaerobic Digestion, Fuel Cells using Renewable Fuels, Microturbines Alternative Energy and Energy Conservation Patent Exemption...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat & Power, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other Distributed Generation Technologies,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other Distributed Generation Technologies...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other Distributed Generation Technologies New...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other Distributed Generation Technologies Net...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small),...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Landfill Gas, Tidal, Wave, Yes; specific...

  12. Transparent Cost Database | Open Energy Information

    Open Energy Info (EERE)

    Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Landfill Gas, Fuels & Efficiency, Geothermal, Ground Source Heat Pumps, Hydrogen, Solar, - Concentrating Solar...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Hydrogen, Municipal Solid Waste, Landfill Gas, Wind (Small), Anaerobic Digestion Renewable...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nonprofit, Residential, Schools Savings Category: Solar Water Heat, Solar Photovoltaics, Wind (All), Biomass, Geothermal Heat Pumps, Landfill Gas, Building Insulation,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Government, Tribal Government, Agricultural, Institutional Savings Category: Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Hydrogen, Landfill Gas, Tidal, Wave, Wind...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agricultural, Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Landfill Gas, Wind...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Supplier Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal,...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydrogen, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Hydroelectric...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Electric, Solar Photovoltaics, Wind (All), Biomass, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small) Golden Valley Electric Association- Sustainable...

  20. EA-1742: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Rhode Island LFG Genco LLC, Combined Cycle Electricity Generation Plant Fueled By Landfill Gas Johnston, Rhode Island

  1. Task 2 Letter Report R2_20140411_ab20140424_update[1]

    Energy Savers [EERE]

    Gas Reductions - Case Study, 2013 | Department of Energy Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions - Case Study, 2013 BroadRock Renewables LLC, in collaboration with DCO Energy, operates combined cycle electric generating plants at the Central Landfill in Johnston, Rhode Island, and Olinda Alpha Landfill in Brea, California. The Rhode

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Government, Agricultural, Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Landfill...

  3. EA-1742: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Rhode Island LFG Genco, LLC Combined Cycle Electricity Generation Plant Fueled by Landfill Gas, Johnston, Rhode Island

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Landfill Gas, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels, Microturbines Energy Conversion and Thermal Efficiency Sales Tax Exemption...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    include wind, solar, biomass, landfill gas, anaerobic digestion, hydroelectricity, and geothermal energy. Facilities must use renewable energy to produce electricity......

  6. Lackawanna County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Archbald Power Station Biomass Facility Keystone Landfill Biomass Facility Taylor Energy Partners LP Biomass Facility Places in Lackawanna County, Pennsylvania...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Yes; specific...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Wind (Small), Hydroelectric (Small), Fuel...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Hydrogen, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Yes; specific technologies not identified, Wind (Small),...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Hydrogen, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Hydrogen, Geothermal Heat Pumps, Combined Heat & Power, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Hydroelectric...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Sales Tax Exemption Eligible renewable resources include wind, solar, biomass, landfill gas, anaerobic digestion, hydroelectricity, and geothermal energy....

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Wind (Small), Anaerobic Digestion, Fuel...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Landfill Gas, Tidal, Wave,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Hydrogen, Municipal Solid Waste, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Hydroelectric...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Wind (Small) Renewable Energy Systems Tax Credit (Personal) Residential Systems:... Eligibility: Commercial,...

  17. EA-1515: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Proposed Closure of the Airport Landfills Within Technical Area 73 at Los Alamos National Laboratory, Los Alamos, New Mexico

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    or biobased products in... Eligibility: Commercial, Industrial Savings Category: Biomass, Hydrogen, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Anaerobic...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Landfill Gas, Tidal, Wave, Ocean Thermal, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Societal Benefits...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Interconnection...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies, Microturbines Net...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Connecticut Clean...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies, Microturbines...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Net Metering...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Interconnection...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies, Microturbines...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other Distributed Generation Technologies New Jersey Renewable Energy Incentive Program (Sustainable...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Alternative Energy...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Efficiency Maine...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Energy Conversion...

  12. Slide 1

    Office of Legacy Management (LM)

    water and groundwater monitoring * Physical controls Signage Restricted ... wells except for monitoring Protection of landfill covers and engineered ...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Yes; specific technologies not identified, Wind (Small), Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Renewable...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Virgin Islands- Renewables Portfolio Targets Photovoltaic Energy, wind energy, hydroelectric energy, landfill gas, biomass, ocean and microturbine systems. Eligibility:...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Municipal Solid Waste, Landfill Gas, Anaerobic Digestion Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Geothermal Heat Pumps, Landfill Gas, Comprehensive...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential, Institutional Savings Category: Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel Cells using Non-Renewable Fuels, Landfill Gas,...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Other Distributed Generation...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels, Microturbines Net...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels...