National Library of Energy BETA

Sample records for millivolt napl non-aqueous

  1. Pore-scale analysis of solubilization and mobilization of trapped NAPL blobs in porous media 

    E-Print Network [OSTI]

    Yoon, Sun Hee

    2009-06-02

    NAPL (non-aqueous phase liquid) blob mobilization and solubilization models were developed to predict residual NAPL fate and describe flow dynamics of various displacing phases (water and surfactant foam). The models were ...

  2. Smouldering Combustion of Organic Liquids in Porous Media for Remediating NAPL-contaminated Soils 

    E-Print Network [OSTI]

    Pironi, Paolo

    2010-01-01

    This research investigated the potential of smouldering combustion to be employed as a remediation approach for soil contaminated by non-aqueous phase liquids (NAPLs). Small-scale (~15 cm), proof-of-concept experiments ...

  3. Numerical simulations of radon as an in situ partitioning tracer for quantifying NAPL

    E-Print Network [OSTI]

    Semprini, Lewis

    Numerical simulations of radon as an in situ partitioning tracer for quantifying NAPL contamination­pull partitioning tracer tests using radon-222 to quantify non- aqueous phase liquid contamination. J. Contam. Hydrol. 58, 129­146] of push­pull tests using radon as a naturally occurring partitioning tracer

  4. Non-aqueous electrolyte for lithium-ion battery

    DOE Patents [OSTI]

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-12-22

    An electrolyte including an alkali metal salt; a polar aprotic solvent; and a triazinane trione; wherein the electrolyte is substantially non-aqueous.

  5. Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes

    DOE Patents [OSTI]

    Lee, Hung Sui (East Setauket, NY); Yang, Xiao-Qing (Port Jefferson Station, NY); McBreen, James (Bellport, NY); Sun, Xuehui (Middle Island, NY)

    2002-01-01

    Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.

  6. Non-aqueous electrolytes for lithium ion batteries

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  7. Shear thickening in electrically stabilized non-aqueous colloidal suspensions

    E-Print Network [OSTI]

    Joachim Kaldasch; Bernhard Senge; Jozua Laven

    2012-07-11

    The authors previously introduced an activation model for the onset of shear thickening in electrically stabilized colloidal suspensions. It predicts that shear thickening occurs, when particles arranged along the compression axis in a sheared suspension do overcome the electrostatic repulsion at a critical shear stress, and are captured in the primary minimum of the DLVO interaction potential. A comparison with an experimental investigation on non-aqueous silica suspensions, carried out by Maranzano and Wagner, is performed. For particle systems that fall into the applicability range of the theory, a good coincidence between the experimental data and the model predictions can be found.

  8. NAPL Calculator - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL Calculator

  9. Artists, Patrons, and Trust in Seventeenth-Century Naples: The Case of the Certosa di San Martino

    E-Print Network [OSTI]

    Napoli, J. Nicholas

    2012-01-01

    in Naples? ” In Good Government in Spanish Naples, edited byNaples? ,” in Good Government in Spanish Naples, edited bySpanish rule in Naples, and the opportunity for a changed government

  10. Ionic conductivity and exchange current density of non-aqueous lithium polysulfide electrolyte

    E-Print Network [OSTI]

    Pan, Menghsuan Sam

    2015-01-01

    Lithium-polysulfide flow batteries, which utilize the high solubility of lithium polysulfide in non-aqueous electrolytes to enable flowable electrodes, have high theoretical energy density and low raw materials cost. To ...

  11. Phase Stability of Multicomponent NAPLs Containing PAHs

    E-Print Network [OSTI]

    Peters, Catherine A.

    of a contaminant is dependent on its phase state. For solid phase contaminants in contact with water, the maximum aromatic hydrocarbons (PAHs), most of which are solids in pure form at ambient temperatures. Because any of contaminants such as coal tars. NAPL/aqueous phase equilibrium studies were conducted to demonstrate

  12. From Propaganda to Science: Looking at the World of Academies in Early Seventeenth-century Naples

    E-Print Network [OSTI]

    Gianfrancesco, Lorenza

    2012-01-01

    Reale per Costantino Vitale, 1599. Imperiale, Giovanni.Elegia (Naples: Carlino & Vitale, 1608). For Sarrocchi’sdate in luce (Naples: Vitale, 1599). See Rimas De Lupercio I

  13. A Comparative Study of Solid and Liquid Non-Aqueous Phases for the Biodegradation of

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    : gas treatment; hexane; liquid solvents; mass transfer limitations; solid polymers; two Groenestijn and Hesselink, 1993). Biological gas treatment methods are based on the natural abilityARTICLE A Comparative Study of Solid and Liquid Non-Aqueous Phases for the Biodegradation of Hexane

  14. Secondary imbibition in NAPL-invaded mixed-wet sediments

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Secondary imbibition in NAPL-invaded mixed-wet sediments Ahmed Al-Futaisia,b , Tad W. Patzekb to study the spontaneous and forced secondary imbibition of a NAPL-invaded sediment, as in the displacement-wet sediment, i.e., the receding contact angles are very small. However, depending on the surface mineralogy

  15. Naples, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: Energy Resources Jump to:

  16. Method and device for removing a non-aqueous phase liquid from a groundwater system

    DOE Patents [OSTI]

    Looney, Brian B. (Aiken, SC); Rossabi, Joseph (Aiken, SC); Riha, Brian D. (Augusta, GA)

    2002-01-01

    A device for removing a non-aqueous phase liquid from a groundwater system includes a generally cylindrical push-rod defining an internal recess therein. The push-rod includes first and second end portions and an external liquid collection surface. A liquid collection member is detachably connected to the push-rod at one of the first and second end portions thereof. The method of the present invention for removing a non-aqueous phase liquid from a contaminated groundwater system includes providing a lance including an external hydrophobic liquid collection surface, an internal recess, and a collection chamber at the bottom end thereof. The lance is extended into the groundwater system such that the top end thereof remains above the ground surface. The liquid is then allowed to collect on the liquid collection surface, and flow downwardly by gravity into the collection chamber to be pumped upwardly through the internal recess in the lance.

  17. Ribbon NAPL sampler. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    None

    2000-04-01

    The FLUTE Hydrophobic Flexible Membrane is a sampling device that provides detailed delineation of Dense Nonaqueous Phase Liquids (DNAPL) in a borehole. It is deployed via a reusable nylon liner, with a hydrophobic ribbon impregnated with dye, that when converted into a borehole creates a tight contact with the walls of the borehole. When deployed, the ribbon will absorb the DNAPL that is in contact with the membrane causing a color change in the dye. Upon removal, the membrane is turned inside out and the ribbon is retrieved into the membrane. The ribbon is then removed and examined. The presence of DNAPL is indicated by brilliant red marks on the hydrophobic ribbon. Sections of ribbon can also be sent for laboratory analysis to identify the specific NAPL compounds that are present.

  18. A Non-Aqueous Reduction Process for Purifying 153Gd Produced in Natural Europium Targets

    SciTech Connect (OSTI)

    Johnsen, Amanda M.; Soderquist, Chuck Z.; McNamara, Bruce K.; Fisher, Darrell R.

    2013-08-01

    Gadolinium-153 is a low-energy gamma-emitter used in nuclear medicine imaging quality assurance. Produced in nuclear reactors using natural Eu2O3 targets, 153Gd is radiochemically separated from europium isotopes by europium reduction. However, conventional aqueous europium reduction produces hydrogen gas, a flammability hazard in radiological hot cells. We altered the traditional reduction method, using methanol as the process solvent to nearly eliminate hydrogen gas production. This new, non-aqueous reduction process demonstrates greater than 98% europium removal and gadolinium yields of 90%.

  19. Electric field induced birefringence in non-aqueous dispersions of mineral nanorods

    E-Print Network [OSTI]

    Alexis de la Cotte; Pascal Merzeau; Jong Wook Kim; Khalid Lahlil; Jean-Pierre Boilot; Thierry Gacoin; Eric Grelet

    2015-07-07

    Lanthanum phosphate (LaPO4) nanorods dispersed in the non-aqueous solvent of ethylene glycol form a system exhibiting large intrinsic birefringence, high colloidal stability and the ability to self-organize into liquid crystalline phases. In order to probe the electro-optical response of these rod dispersions we study here the electric-field-induced birefringence, also called Kerr effect, for a concentrated isotropic liquid state with an in-plane a.c. sinusoidal electric field, in conditions of directly applied (electrodes in contact with the sample) or externally applied (electrodes outside the sample cell) fields. Performing an analysis of the electric polarizability of our rod-like particles in the framework of Maxwell-Wagner-OKonski theory, we account quantitatively for the coupling between the induced steady-state birefringence and the electric field as a function of the voltage frequency for both sample geometries. The switching time of this non-aqueous transparent system has been measured, and combined with its high Kerr coefficients and its features of optically isotropic offstate and athermal phase behavior, this represents a promising proof-of-concept for the integration of anisotropic nanoparticle suspensions into a new generation of electro-optical devices.

  20. The non-aqueous chemistry of uranium has been an active area of exploration in recent decades1,2

    E-Print Network [OSTI]

    Cai, Long

    The non-aqueous chemistry of uranium has been an active area of exploration in recent decades1 of the art of synthetic uranium chemistry should provide form to its future in catalysis, drawn from for uranium will be created in part by the quest of researchers to understand the properties and potential

  1. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Middleton, Richard S.; Carey, James William; Currier, Robert P.; Hyman, Jeffrey De'Haven; Kang, Qinjun; Karra, Satish; Jiménez-Martínez, Joaquín; Porter, Mark L.; Viswanathan, Hari S.

    2015-06-01

    Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO? as a working fluid for shale gas production. We theorize and outline potential advantages of CO? including enhanced fracturing and fracture propagation, reductionmore »of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO?. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO? proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.« less

  2. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    SciTech Connect (OSTI)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  3. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO?

    SciTech Connect (OSTI)

    Middleton, Richard S.; Carey, James William; Currier, Robert P.; Hyman, Jeffrey De'Haven; Kang, Qinjun; Karra, Satish; Jiménez-Martínez, Joaquín; Porter, Mark L.; Viswanathan, Hari S.

    2015-06-01

    Hydraulic fracturing of shale formations in the United States has led to a domestic energy boom. Currently, water is the only fracturing fluid regularly used in commercial shale oil and gas production. Industry and researchers are interested in non-aqueous working fluids due to their potential to increase production, reduce water requirements, and to minimize environmental impacts. Using a combination of new experimental and modeling data at multiple scales, we analyze the benefits and drawbacks of using CO? as a working fluid for shale gas production. We theorize and outline potential advantages of CO? including enhanced fracturing and fracture propagation, reduction of flow-blocking mechanisms, increased desorption of methane adsorbed in organic-rich parts of the shale, and a reduction or elimination of the deep re-injection of flow-back water that has been linked to induced seismicity and other environmental concerns. We also examine likely disadvantages including costs and safety issues associated with handling large volumes of supercritical CO?. The advantages could have a significant impact over time leading to substantially increased gas production. In addition, if CO? proves to be an effective fracturing fluid, then shale gas formations could become a major utilization option for carbon sequestration.

  4. Cross borehole induced polarization to detect subsurface NAPL at the Savannah River Site, South Carolina

    E-Print Network [OSTI]

    Lambert, Michael B. (Michael Brian), 1980-

    2003-01-01

    Spectral induced polarization measurements were acquired in six cross-borehole panels within four boreholes at the Savannah River Site. The investigation was performed to delineate the presence of dense non-aqueous phase ...

  5. A Bayesian approach to integrate temporal data into probabilistic risk analysis of monitored NAPL remediation

    E-Print Network [OSTI]

    Bolster, Diogo

    A Bayesian approach to integrate temporal data into probabilistic risk analysis of monitored NAPL quantifying risks associated with the failure of such efforts. We conduct a probabilistic risk analysis (PRA

  6. Natural geological responses to anthropogenic alterations of the naples bay estuarine system 

    E-Print Network [OSTI]

    Fielder, Bryan Robert

    2009-05-15

    .1 Regional Geologic Setting....................................................................... 4 2.2 Environmental Setting ............................................................................. 5 2.3 Historical Anthropogenic Alterations... ............................................................... 19 4.2.2 Southern Naples Bay ............................................................... 20 4.2.3 Dollar Bay ............................................................................... 22 5. DISCUSSION...

  7. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-12-02

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore »the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  8. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Dong [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Yang, Xiao-Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Zhang, Xuran [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Li, Chao [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; McKinnon, Meaghan E. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Sadok, Rachel G. [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry; Qu, Deyu [Wuhan Univ. of Technology, Hubei (China); Dept. of Chemistry; Yu, Xiqian [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Lee, Hung-Sui [Brookhaven National Laboratory (BNL), Upton, NY (United States). Chemistry Dept.; Qu, Deyang [Univ. of Massachusetts, Boston, MA (United States). Dept. of Chemistry

    2014-11-01

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

  9. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    SciTech Connect (OSTI)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; Li, Chao; McKinnon, Meaghan E.; Sadok, Rachel G.; Qu, Deyu; Yu, Xiqian; Lee, Hung-Sui; Qu, Deyang

    2014-12-02

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility of the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.

  10. Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries

    E-Print Network [OSTI]

    Thygesen, Kristian

    -O2 batteries V. Viswanathan, K. S. Thygesen, J. S. Hummelshøj, J. K. Nørskov, G. Girishkumar et al limitations in non-aqueous Li-O2 batteries V. Viswanathan,1 K. S. Thygesen,2 J. S. Hummelshøj,3 J. K. Nørskov energy density battery couple. Such cells, however, show sudden death at capacities far below

  11. Refinement of the Kansas City Plant site conceptual model with respect to dense non-aqueous phase liquids (DNAPL)

    SciTech Connect (OSTI)

    Korte, N.E.; Hall, S.C.; Baker, J.L.

    1995-10-01

    This document presents a refinement of the site conceptual model with respect to dense non-aqueous phase liquid (DNAPL) at the US Department of Energy Kansas City Plant (KCP). This refinement was prompted by a review of the literature and the results of a limited study that was conducted to evaluate whether pools of DNAPL were present in contaminated locations at the KCP. The field study relied on the micropurge method of sample collection. This method has been demonstrated as a successful approach for obtaining discrete samples within a limited aquifer zone. Samples were collected at five locations across 5-ft well screens located at the base of the alluvial aquifer at the KCP. The hypothesis was that if pools of DNAPL were present, the dissolved concentration would increase with depth. Four wells with highly contaminated groundwater were selected for the test. Three of the wells were located in areas where DNAPL was suspected, and one where no DNAPL was believed to be present. The results demonstrated no discernible pattern with depth for the four wells tested. A review of the data in light of the available technical literature suggests that the fine-grained nature of the aquifer materials precludes the formation of pools. Instead, DNAPL is trapped as discontinuous ganglia that are probably widespread throughout the aquifer. The discontinuous nature of the DNAPL distribution prevents the collection of groundwater samples with concentrations approaching saturation. Furthermore, the results indicate that attempts to remediate the aquifer with conventional approaches will not result in restoration to pristine conditions because the tortuous groundwater flow paths will inhibit the efficiency of fluid-flow-based treatments.

  12. A Review of "Becoming Neapolitan. Citizen Culture in Baroque Naples" by John A. Marino 

    E-Print Network [OSTI]

    Litchfield, R. Burr

    2011-01-01

    the procession. Gradually the ?popular? elements were muted and the vitality of the feast of S. Giovanni dimmed. The lesson for ?becoming Neapolitan? from this interesting book is that Neapolitan society, as seen through its festivities, was becom- ing more... participa- tion.? This, with the final enfranchisement of the middle classes in the nineteenth century, was the lasting legacy of Baroque Naples: its plebeians were excluded. Catherine Gimelli Martin. Milton Among the Puritans: The Case for Historical...

  13. EFFECT OF IMMISCIBLE LIQUID CONTAMINANTS ON P-WAVE TRANSMISSION THROUGH NATURAL AQUIFER SAMPLES

    E-Print Network [OSTI]

    Ajo-Franklin, Jonathan

    EFFECT OF IMMISCIBLE LIQUID CONTAMINANTS ON P-WAVE TRANSMISSION THROUGH NATURAL AQUIFER SAMPLES Jil the effect of non-aqueous phase liquid (NAPL) contaminants on P-wave velocity and attenuation attenuation, which may be due to lithology and/or contaminants (NAPL or gas phase). Intact core was obtained

  14. Non-aqueous electrolyte for lithium-ion battery

    DOE Patents [OSTI]

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2014-04-15

    The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.

  15. Non-aqueous liquid compositions comprising ion exchange polymers

    DOE Patents [OSTI]

    Kim, Yu Seung; Lee, Kwan-Soo; Rockward, Tommy Q. T.

    2013-03-12

    Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.

  16. Non-aqueous liquid compositions comprising ion exchange polymers

    DOE Patents [OSTI]

    Kim, Yu Seung (Los Alamos, NM); Lee, Kwan-Soo (Blacksburg, VA); Rockward, Tommy Q. T. (Rio Rancho, NM)

    2011-07-19

    Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.

  17. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    DOE Patents [OSTI]

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  18. Fluorinated Arylboron Oxalate for Non-Aqueous Battery Electrolytes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    when used together with electrolytes, produce a battery with improved conductivity, lithium ion transference, and SEI formation over those using BBARs alone. Applications and...

  19. Acoustic detection of Immiscible Liquids in Sand

    SciTech Connect (OSTI)

    Geller, Jil T.; Kowalsky, Michael B.; Seifert, Patricia K.; Nihei, Kurt T.

    1999-03-01

    Laboratory cross-well P-wave transmission at 90 kHz was measured in a 61 cm diameter by 76 cm tall water-saturated sand pack, before and after introducing a non-aqueous phase organic liquid (NAPL) (n-dodecane). In one experiment NAPL was introduced to form a lens trapped by a low permeability layer; a second experiment considered NAPL residual trapped behind the front of flowing NAPL. The NAPL caused significant changes in the travel time and amplitude of first arrivals, as well as the generation of diffracted waves arriving after the direct wave. The spatial variations in NAPL saturation obtained from excavation at the end of the experiment correlated well with the observed variations in the P-wave amplitudes and travel times. NAPL residual saturation changes from NAPL flow channels of 3 to 4% were detectable and the 40 to 80% NAPL saturation in the NAPL lens was clearly visible at acoustic frequencies. The results of these experiments demonstrate that small NAPL saturations may be more easily detected with amplitude rather than travel time data, but that the relationships between the amplitude changes and NAPL saturation maybe more complex than those for velocity.

  20. Methods Note/ NAPL Source Zone Depletion Model

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    industry. Among the petroleum hydrocarbon mixtures considered, the cleanup time of diesel fuel was much of Geomechanics, Sandia National Laboratories, P.O. Box 5800, MS 0735, Albuquerque, NM 87185-0735; (505) 284

  1. Revised Arrangements for the Management of Solid and Non-Aqueous Radioactive Waste - 12452

    SciTech Connect (OSTI)

    Fullbrook, Michael; Walker, Johann; Macnab, Alec

    2012-07-01

    In 2010, Atomic Weapons Establishment (AWE) identified a requirement to implement revised management arrangements for the generation, storage and disposal of radioactive waste. A thorough review of the current arrangements/processes was undertaken which included both legal compliance requirements and the identification of business improvement opportunities. On completion of this review a suitable project team was established and in 2011 an integrated Radioactive Waste Management process was implemented throughout the business. Initial results have shown measurable improvements within Radioactive Waste management compliance, operator understanding and increased business efficiency. Through the development and implementation of the revised working arrangements AWE has been able to continue to demonstrate both legal compliance to its regulators along with business efficiency and effectiveness improvements. Simple to follow process maps have improved employees understanding of Radioactive Waste management requirements, provided them with easily accessible information and ensured the business operates in a single coherent manner. The implementation of a modern electronic data management system has ensured all waste related information is easily retrievable and appropriately maintained. The additional functions that have been built into the system have reduced the potential for human error and increased the overall efficiency of the Waste Management department through the use of the automated report generation functionality. (authors)

  2. Non-aqueous liquid compositions comprising ion exchange polymers reference to related application

    DOE Patents [OSTI]

    Kim; Yu Seung (Los Alamos, NM), Lee; Kwan-Soo (Los Alamos, NM), Rockward; Tommy Q. T. (Rio Rancho, NM)

    2012-08-07

    Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.

  3. Charting the known chemical space for non-aqueous Lithium-air battery electrolyte solvents

    E-Print Network [OSTI]

    Husch, Tamara

    2015-01-01

    The Li-Air battery is a very promising candidate for powering future mobility, but finding a suitable electrolyte solvent for this technology turned out to be a major problem. We present a systematic computational investigation of the known chemical space for possible Li-Air electrolyte solvents. It is shown that the problem of finding better Li-Air electrolyte solvents is not only - as previously suggested - about maximizing Li+ and O2- solubilities, but about finding the optimal balance of these solubilities with the viscosity of the solvent. As our results also show that trial-and-error experiments on known chemicals are unlikely to succeed, full chemical sub-spaces for the most promising compound classes are investigated, and suggestions are made for further experiments. The proposed screening approach is transferable and robust and can readily be applied to optimize electrolytes for other electrochemical devices. It goes beyond the current state-of-the-art both in width (considering the number of compoun...

  4. Microscopic Insights into the Electrochemical Behavior of Non-aqueous Electrolytes in Supercapacitors

    SciTech Connect (OSTI)

    Jiang, Deen; Wu, Jianzhong

    2013-01-01

    Electric double-layer capacitors (EDLC) are electrical devices that store energy by adsorption of ionic species at the inner surface of porous electrodes. Compared with aqueous electrolytes, ionic liquid and organic electrolytes have the advantage of larger potential windows, making them attractive for the next generation of EDLC with superior energy and power densities. The performance of both ionic liquid and organic electrolyte EDLC hinges on the judicious selection of the electrode pore size and the electrolyte composition that requires a comprehension of the charging behavior from a microscopic view. In this perspective, we discuss predictions from the classical density functional theory (CDFT) on the dependence of the capacitance on the pore size for ionic-liquid and organic-electrolyte EDLC. CDFT is applicable to electrodes with the pore size ranging from that below the ionic dimensionality to mesoscopic scales, thus unique for investigating the electrochemical behavior of the confined electrolytes for EDLC applications.

  5. Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report April through June 2003

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and

  6. Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report October through December 2002

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN 13.5.1-1 Pinellas

  7. Northeast Site Non-Aqueous Phase Liquids Interim Measures Progress Report-January through March 2003

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700 GJO-2003-411-TAC GJO-PIN 13.5.1-1

  8. [info:lanl-repo/lareport/LA-UR-14-29299] Shale gas and non-aqueous

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scale Friction Sensitivityv b W r88fracturing fluids:

  9. Final Report Northeast Site Area B NAPL Remediation Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadisonAMOCOELIkNATION ;.7,

  10. Microsoft Word - N0075800-NAPL April to June 04.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony5-TAC U.S. Department

  11. Northeast Site Area A NAPL Remediation Final Report.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr.EvaluationJune~ofOF.+,-a-r&82-TAC

  12. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li-air batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang [Univ. of Massachusetts at Boston, Boston, MA (United States); Yang, Xiao -Qing [Brookhaven National Laboratory (BNL), Upton, NY (United States); Zheng, Doug [Univ. of Massachusetts at Boston, Boston, MA (United States); McKinnon, Meaghan E. [Univ. of Massachusetts at Boston, Boston, MA (United States); Qu, Deyang [Univ. of Massachusetts at Boston, Boston, MA (United States)

    2015-01-01

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. The reactions are found to be first order and the rate constants are 0.033 s-1 M-1, 0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.

  13. Literature search for the non-aqueous separation of zinc from fuel rod cladding. [After dissolution in liquid metal

    SciTech Connect (OSTI)

    Sandvig, R. L.; Dyer, S. J.; Lambert, G. A.; Baldwin, C. E.

    1980-06-21

    This report reviews the literature of processes for the nonaqueous separation of zinc from dissolved fuel assembly cladding. The processes considered were distillation, pyrochemical processing, and electrorefining. The last two techniques were only qualitatively surveyed while the first, distillation, was surveyed in detail. A survey of available literature from 1908 through 1978 on the distillation of zinc was performed. The literature search indicated that a zinc recovery rate in excess of 95% is possible; however, technical problems exist because of the high temperatures required and the corrosive nature of liquid zinc. The report includes a bibliography of the surveyed literature and a computer simulation of vapor pressures in binary systems. 129 references.

  14. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li-air batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Yang, Xiao -Qing; Zheng, Doug; McKinnon, Meaghan E.; Qu, Deyang

    2014-10-28

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. The reactions are found to be first order and the rate constants are 0.033 s-1 M-1, 0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.

  15. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li-air batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Yang, Xiao -Qing; Zheng, Doug; McKinnon, Meaghan E.; Qu, Deyang

    2014-10-28

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. The reactions are found to be first order and the rate constants are 0.033 s-1 M-1,more »0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.« less

  16. Non-aqueous, capillary electrophoretic separations of enantiomers with a charged cyclodextrin highly-soluble in organic solvents 

    E-Print Network [OSTI]

    Sanchez Vindas, Silvia Elena

    2005-11-01

    not be easily removed. Another limitation of this step is the technique used to determine the purity of heptakis (2, 3-O-diacetyl)-?-cyclodextrin, HDA-?CD. The fluoride present in the reaction mixture is not compatible with reversed-phase HPLC columns, so... percentage on HBMSi-?CD re-crystallizations found from the chromatograms for the mother liquors. Peak labels and chromatographic conditions as described in Figure II-2.............................. 25 II-5 Effect of the amount of solvent mixture to mass...

  17. Compatibility of Lithium Salts with Solvent of the Non-Aqueous Electrolyte in Li–O2 Batteries

    SciTech Connect (OSTI)

    Du, Peng; Lu, Jun; Lau, Kah Chun; Luo, Xiangyi; Bareno, Javier; Zhang, Xiaoyi; Ren, Yang; Zhang, Zhengcheng; Curtiss, Larry A.; Sun, Yang-Kook; Amine, Khalil

    2013-02-20

    The stability of lithium salts, especially in the presence of reduced oxygen species, O2 and H2O (even in a small amount), plays an important role in the cyclability and capacity of Li–O2 cells. This combined experimental and computational study provides evidence that the stability of the electrolyte used in Li–O2 cells strongly depends on the compatibility of lithium salts with solvent. In the case of the LiPF6–1NM3 electrolyte, the decomposition of LiPF6 occurs in the cell as evidenced by in situ XRD, FT-IR and XPS analysis, which triggers the decomposition of 1NM3 solvent due to formation of HF from the decomposition of LiPF6. These reactions lead to degradation of the electrolyte and cause poor cyclability of the cell. The same reactions are not observed when LiTFSI and LiCF3SO3 are used as the lithium salts in 1NM3 solvent, or LiPF6 is used in TEGDME solvent.

  18. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li–air batteries

    SciTech Connect (OSTI)

    Wang, Qiang; Zheng, Dong; McKinnon, Meaghan E.; Yang, Xiao -Qing; Qu, Deyang

    2014-10-28

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. As a result, the reactions are found to be first order and the rate constants are 0.033 s-1 M-1, 0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.

  19. Kinetic investigation of catalytic disproportionation of superoxide ions in the non-aqueous electrolyte used in Li–air batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Qiang; Zheng, Dong; McKinnon, Meaghan E.; Yang, Xiao -Qing; Qu, Deyang

    2014-10-28

    Superoxide reacts with carbonate solvents in Li–air batteries. Tris(pentafluorophenyl)borane is found to catalyze a more rapid superoxide (O2-) disproportionation reaction than the reaction between superoxide and propylene carbonate (PC). With this catalysis, the negative impact of the reaction between the electrolyte and O2-produced by the O2 reduction can be minimized. A simple kinetic study using ESR spectroscopy was reported to determine reaction orders and rate constants for the reaction between PC and superoxide, and the disproportionation of superoxide catalyzed by Tris(pentafluorophenyl)borane and Li ions. As a result, the reactions are found to be first order and the rate constants aremore »0.033 s-1 M-1, 0.020 s-1 M-1and 0.67 s-1M-1 for reactions with PC, Li ion and Tris(pentafluorophenyl)borane, respectively.« less

  20. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect (OSTI)

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  1. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  2. Giambattista Della Porta's Histrionic Science

    E-Print Network [OSTI]

    Kodera, Sergius

    2012-01-01

    libri XX. Naples: Carlino Vitale, [1589] 1611. _____. Magialibri XX (Naples: Carlino Vitale, [1589] 1611), 388: “Noi

  3. CO2 Capture and Regeneration at Low Temperatures: Novel Non-Aqueous CO2 Solvents and Capture Process with Substantially Reduced Energy Penalties

    SciTech Connect (OSTI)

    None

    2010-07-01

    IMPACCT Project: RTI is developing a solvent and process that could significantly reduce the temperature associated with regenerating solvent and CO2 captured from the exhaust gas of coal-fired power plants. Traditional CO2 removal processes using water-based solvents require significant amount of steam from power plants in order to regenerate the solvent so it can be reused after each reaction. RTI’s solvents can be better at absorbing CO2 than many water-based solvents, and are regenerated at lower temperatures using less steam. Thus, industrial heat that is normally too cool to re-use can be deployed for regeneration, rather than using high-value steam. This saves the power plant money, which results in increased cost savings for consumers.

  4. Pore-scale analysis of thermal remediation of NAPL-contaminated subsurface environments 

    E-Print Network [OSTI]

    Ahn, Min

    2009-05-15

    to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Yavuz Corapcioglu Committee Members, Hamn-Ching Chen Hongbin Zhan Eyad... but also enhanced my insight of what water resources engineering is and what role we play as water resources engineers. I am very honored to be his student. I am also especially grateful to my committee members: Dr. Hongbin Zhan, Dr. Hamn-Ching Chen...

  5. Imaging the Angevin Patron Saint: Mary Magdalen in the Pipino Chapel in Naples

    E-Print Network [OSTI]

    Wilkins, Sarah S.

    2012-01-01

    by Cordelia Warr and Janis Elliot, 152-175. Malden: Wiley-by Cordelia Warr and Janis Elliot, 38-61. Malden: Wiley-Warr, Cordelia, and Janis Elliot, eds. Art and Architecture

  6. From Propaganda to Science: Looking at the World of Academies in Early Seventeenth-century Naples

    E-Print Network [OSTI]

    Gianfrancesco, Lorenza

    2012-01-01

    academica dell’incendio e terremoto di Somma fatta nell’academica dell’incendio e terremoto di Somma fatta nell’

  7. An experimental study of horizontal barrier formation and containment of NAPLs by gelling liquids 

    E-Print Network [OSTI]

    Durmusoglu, Ertan

    1997-01-01

    reductions will be carried out in the one-dimensional columns. After an impervious layer is produced, durability of the grouted porous media in the presence of typical contaminants will be investigated. The proposed research aims at the testing of techniques...

  8. Imaging the Angevin Patron Saint: Mary Magdalen in the Pipino Chapel in Naples

    E-Print Network [OSTI]

    Wilkins, Sarah S.

    2012-01-01

    Storico Italiano per il Medio Evo, l’U.M.R. Telemme et l’Storico Italiano per il Medio Evo, l’U.M.R. Telemme et l’

  9. 2014 FLORIDA TOMATO INSTITUTE PROGRAM The Ritz-Carlton Golf Resort, Naples, Florida

    E-Print Network [OSTI]

    Florida, University of

    climatic, hydrologic, and agronomic factors to phosphorous transport from plastic mulch beds - Sanjay

  10. Imaging the Angevin Patron Saint: Mary Magdalen in the Pipino Chapel in Naples

    E-Print Network [OSTI]

    Wilkins, Sarah S.

    2012-01-01

    39.1-4). The scope of the dedication is unclear, as it wasadopted the Magdalen dedication. This is generally supportedis skeptical of a general dedication to the Magdalen and is

  11. Microsoft Word - DOE_RM_DM-#100069-v1-NAPL_Quarterly_Oct-Dec_2004.DOC

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony V.How DisposalInterim1 U.S.

  12. Microsoft Word - DOE_RM_DM-#341474-v1-NAPL_Quarterly_April_-_June_2005.DOC

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony V.How DisposalInterim166 2005

  13. Microsoft Word - DOE_RM_DM-#345139-v1-NAPL_Quarterly_Oct-Dec_2005.DOC

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony V.How DisposalInterim1661 20055

  14. Microsoft Word - DOE_RM_DM-#350832-v1-NAPL_Quarterly_April-June_2006.DOC

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony V.HowJanuary through

  15. Microsoft Word - N0071600-NAPL-Oct to Dec.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony5-TAC U.S. Department of

  16. Microsoft Word - N0074600-NAPL-Jan to March.doc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony5-TAC U.S. Department ofJanuary

  17. Successful Field-Scale In Situ Thermal NAPL Remediation at the Young -

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority for anStudy: Algae CouldSubstanceRainey STAR

  18. Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget | DepartmentLogisticalProject Management

  19. Artists, Patrons, and Trust in Seventeenth-Century Naples: The Case of the Certosa di San Martino

    E-Print Network [OSTI]

    Napoli, J. Nicholas

    2012-01-01

    Emerging Unharmed from the Furnace. It is mentioned byEmerging Unharmed from the Furnace (Fig. 4), painted for theEmerging Unharmed from the Furnace (1647, a commission given

  20. Artists, Patrons, and Trust in Seventeenth-Century Naples: The Case of the Certosa di San Martino

    E-Print Network [OSTI]

    Napoli, J. Nicholas

    2012-01-01

    B. Jordan. Ex. cat. , Kimbell Art Museum, Fort Worth, 1982.B. Jordan, ex. cat. , Kimbell Art Museum, Fort Worth, 1982 (

  1. Public Happiness as the Wealth of Nations: The Rise of Political Economy in Naples in a Comparative Perspective

    E-Print Network [OSTI]

    Sabetti, Filippo

    2012-01-01

    Inediti. Milan: Giuffre’. Vitale, Marco 2001. “Startingsciences (Pecchio quoted in Vitale 2001: 131, and also in

  2. Artists, Patrons, and Trust in Seventeenth-Century Naples: The Case of the Certosa di San Martino

    E-Print Network [OSTI]

    Napoli, J. Nicholas

    2012-01-01

    of the local painter Filippo Vitale and sister of Pacecco delaw to the painter Filippo Vitale and brother-in-law to the

  3. Microsoft Word - DOE_RM_DM-#102768-v1-NAPL_Quarterly_Report_Jan-March_2005.ƒ

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony V.How DisposalInterim16 U.S.

  4. Microsoft Word - DOE_RM_DM-#344133-v1-Final_NAPL_Quarterly_July-Sept_2005.Dƒ

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony V.How DisposalInterim1661 2005

  5. Microsoft Word - DOE_RM_DM-#99768-v1-NAPL_Quarterly_Report_for_July-Sept_20ƒ

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and MyersHr. Anthony V.HowJanuary2004 - - GJ749July

  6. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 13, NO. 3, SEPTEMBER 2005 263 Wireless Multichannel Biopotential Recording Using

    E-Print Network [OSTI]

    Wang, Xiaoqin

    263 Wireless Multichannel Biopotential Recording Using an Integrated FM Telemetry Circuit Pedram, and wireless frequency-modulation transmission of microvolt- and millivolt-range input biopotentials

  7. Mass transfer and biodegradation of PAH compounds from coal tar. Quarterly technical report, January--March 1993

    SciTech Connect (OSTI)

    Ramaswami, A.; Ghoshal, S.; Luthy, R.G.

    1994-09-01

    This study examines the role of physico-chemical mass transfer processes on the rate of biotransformation of polycyclic aromatic hydrocarbon (PAH) compounds released from non-aqueous phase liquid (NAPL) coal tar present at residual saturation within a microporous medium. A simplified coupled dissolution-degradation model is developed that describes the concurrent mass transfer and biokinetic processes occurring in the system. Model results indicate that a dimensionless Damkohler number can be utilized to distinguish between systems that are mass transfer limited, and those that are limited by biological phenomena. The Damkohler number is estimated from independent laboratory experiments that measure the rates of aqueous phase dissolution and biodegradation of naphthalene from coal tar. Experimental data for Stroudsburg coal tar imbibed within 236 {mu}m diameter silica particles yield Damkohler numbers smaller than unity, indicating, for the particular system under study, that the overall rate of biotransformation of naphthalene is not limited by the mass transfer of naphthalene from coal tar to the bulk aqueous phase. There is a need for investigation of mass transfer for larger particles and/or other PAH compounds, and study of microbial rate-limiting phenomena including toxicity, inhibition and competitive substrate utilization.

  8. From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe

    E-Print Network [OSTI]

    Holliday, Vance T.

    Paleolithic transition in Eastern Europe John F. Hoffecker a,*, Vance T. Holliday b , M.V. Anikovich c , A Paleolithic transition Early Upper Paleolithic Eastern Europe Kostenki-Borshchevo Geochronology Climate across Southeastern and Eastern Europe. At the Kostenki-Borshchevo open-air sites on the Middle Don River

  9. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH Part A--Toxic/Hazardous Substances & Environmental Engineering

    E-Print Network [OSTI]

    Rockne, Karl J.

    be promising for in situ bioremediation following NAPL extraction. Key Words: Reductive dechlorination; Bioremediation; Ethyl lactate; Perchloroethene; Tetrachloroethene; Chloroethene; Green chemistry; Solvent- water aquifers and may exist as dense nonaqueous phase liquids (NAPLs) due to their higher density

  10. Policy Analysis Risk Assessment for Polycyclic

    E-Print Network [OSTI]

    Peters, Catherine A.

    Policy Analysis Risk Assessment for Polycyclic Aromatic Hydrocarbon NAPLs Using Component Fractions not capture the variation in NAPL composition over time and as such do not consider changes in risk over time analysis of a lumped parameter approach. The fractions and priority pollutants are modeled as NAPL

  11. ZnS/Zn(O,OH)S-based buffer layer deposition for solar cells

    DOE Patents [OSTI]

    Bhattacharya, Raghu N. (Littleton, CO)

    2009-11-03

    The invention provides CBD ZnS/Zn(O,OH)S and spray deposited ZnS/Zn(O,OH)S buffer layers prepared from a solution of zinc salt, thiourea and ammonium hydroxide dissolved in a non-aqueous/aqueous solvent mixture or in 100% non-aqueous solvent. Non-aqueous solvents useful in the invention include methanol, isopropanol and triethyl-amine. One-step deposition procedures are described for CIS, CIGS and other solar cell devices.

  12. Boron compounds as anion binding agents for nonaqueous battery electrolytes

    DOE Patents [OSTI]

    Lee, Hung Sui (East Setauket, NY); Yang, Xia-Oing (Port Jefferson Station, NY); McBreen, James (Bellport, NY); Xiang, Caili (Upton, NY)

    2000-02-08

    Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

  13. The determination of sulfur-containing surfactants with a high pressure liquid chromatography-inductively coupled plasma emission spectrometry system 

    E-Print Network [OSTI]

    Hobill, Jonathan Edward

    1987-01-01

    and standard millivolt intensities 81 20 Detection limits for nickel calculated by using the blank and standard millivolt intensities 82 Detection limits of sulfur in methanol/water (411 v/v) matrix. . . . . . . . . . . . . . 85 22 Detection limits of sulfur... data from the PDP 11/03 to the PDP 11/44 and Z-8 computers). 100 DZM M(48) ID(48) IF(5) 105 REM DZM MZLLZVOLT ZNTES1TIES (M), INSTRUMENT PARAMETERS (D) AND 106 REM PZLE NAME FOR DATA STORAGE (F) 220 SENDS (5) 222 REM SEND TO ll/44 230 PRINT "RUN...

  14. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    -Qing ; Lee, Hung -Sui ; Qu, Deyang The solvation of Li with eleven non-aqueous solvents commonly used as the electrolytes for Li batteries were studied. The solvation...

  15. 2578 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y 1999 American Meteorological Society

    E-Print Network [OSTI]

    Cencini, Massimo

    Meteorologia e Oceanografia, Istituto Universitario Navale, Naples, Italy (Manuscript received 8 January 1998 address: Dr. Enrico Zambianchi, Istituto di Meteorologia e Oceanografia, Istituto Universitario Navale

  16. [1] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed., John Wiley, 2000. [2] E.R. Berlekamp, Block coding for the binary symmetric channel with noiseless, de-

    E-Print Network [OSTI]

    Spencer, Joel

    and Sons (1984), (original pub- lication: Napl´o az inform´aci´oelm´eletr¨ol, Gondolat, Budapest, 1976). [8

  17. The Rise of Unconventional Political Participation in Italy: Measurement equivalence and trend over time, 1976-2009

    E-Print Network [OSTI]

    Quaranta, Mario

    2012-01-01

    the large scale protests at the G8 summit in Naples indisorders during the Genoa G8 summit in 2001, demonstrations

  18. A Programmable 210 V Offset Rail-to-Rail GMC Filter

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    milli-Volts glitch at the input of a high- speed high-resolution comparator, for instance, may1 A Programmable 210 µV Offset Rail-to-Rail GM­C Filter H. Pooya Forghani-zadeh1 , Student Member. Programmability is also a feature of growing significance because high performance state-of-the-art systems must

  19. Zoology 112 (2009) 442450 Electric organ morphology and function in the lesser electric ray,

    E-Print Network [OSTI]

    Kajiura, Stephen

    2009-01-01

    foraging or feeding on live prey. r 2009 Elsevier GmbH. All rights reserved. Keywords: Torpediniformes (tens of millivolts; Bennett, 1971). These weak EODs are used in intraspecific communication (Bratton.elsevier.de/zool 0944-2006/$ - see front matter r 2009 Elsevier GmbH. All rights reserved. doi:10.1016/j.zool.2009

  20. Z .Journal of Power Sources 90 2000 5963 www.elsevier.comrlocaterjpowsour

    E-Print Network [OSTI]

    Park, Byungwoo

    Z .Journal of Power Sources 90 2000 59­63 www.elsevier.comrlocaterjpowsour Electrochemical have a voltage penalty of a few hundred millivolts, which reduce the cell voltage and power density, extensive studies have been carried out on Mg­Ni alloys for hydro- w xgen storage materials 6­11 . To study

  1. Smart Sensing Strategies: Insights from a Biological Active Sensing System

    E-Print Network [OSTI]

    Nelson, Mark E.

    of smart sensing systems in diverse engineering applications. Certain freshwater fish from South America and Africa, known as weakly electric fish, use self-generated electrical energy to actively probe their environment. The fish emit millivolt-level electrical discharges and detect microvolt-level voltage

  2. Apparatus for hydrocarbon extraction

    DOE Patents [OSTI]

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  3. Removing sulphur oxides from a fluid stream

    DOE Patents [OSTI]

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  4. I tnR(I J UCI t~ G f~ SK, A S IMP LE nw~~ LED GEABLE SYSTE1'1 Bozena H. Thompson

    E-Print Network [OSTI]

    port of each ship. ship Ubu Maru Kittyhawk Alamo North Star destination New York Tokyo Oslo Naples Boston London London New York London home port Naples Tokyo Boston London New York Nimitz London Norfolk London New York Norfolk >Are there ships that do not have a cargo? yes >What is the number of New York

  5. 2006 European Association of Geoscientists & Engineers 253 Fresnel reflection coefficients for GPR-AVA analysis and

    E-Print Network [OSTI]

    Santos, Juan

    is the con- tamination of the subsoil with hydrocarbons. Contaminants may exist in the gas phase for GPR-AVA analysis and detection of seawater and NAPL contaminants José M. Carcione1* , Davide Gei1 for different interfaces in the subsoil: air/fresh-water, air/seawater, fresh-water/seawater, air/NAPL (non

  6. Experimental and theoretical modeling of DNAPL transport in vertical fractured media

    E-Print Network [OSTI]

    Levy, Laurent Claude, 1973-

    2003-01-01

    In recent years, groundwater contamination by dense, non-aqueous phase liquids (DNAPLs) such as chlorinated solvents and polychlorinated biphenyls (PCBs) has become an important environmental concern in many industrialized ...

  7. A multi-component partitioning model to predict organic leaching from stabilized/solidified oily wastes 

    E-Print Network [OSTI]

    O'Cleirigh, Declan Ronan

    1997-01-01

    multi-component approach be taken to describe the partitioning between the aqueous and non-aqueous phases. The heterogeneous nature of these wastes precludes analysis of partitioning of all chemical species. Thus a pseudo-component model has been...

  8. Towards High-Performance Nonaqueous Redox Flow Electrolyte through Ionic Modification of Active Species

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Cosimbescu, Lelia; Xu, Wu; Hu, Jian Z.; Vijayakumar, M.; Feng, Ju; Hu, Mary Y.; Deng, Xuchu; Xiao, Jie; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-01-01

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a modified ferrocene catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  9. CX-012256: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench-Scale Development of a Non-Aqueous Solvent Carbon Dioxide Capture Process CX(s) Applied: B3.6 Date: 09/11/2014 Location(s): Norway Offices(s): National Energy Technology Laboratory

  10. CX-003172: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    RTI International - Novel Non-Aqueous Carbon Dioxide-Solvents and Capture ProcessCX(s) Applied: B3.6Date: 06/02/2010Location(s): North CarolinaOffice(s): Advanced Research Projects Agency - Energy

  11. TEMPO-based Catholyte for High Energy Density Nonaqueous Redox Flow Batteries

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xu, Wu; Vijayakumar, M.; Cosimbescu, Lelia; Liu, Tianbiao L.; Sprenkle, Vincent L.; Wang, Wei

    2014-12-03

    We will present a novel design lithium-organic non-aqueous redox flow battery based on a TEMPO catholyte. This RFB produced desired electrochemical performance exceeding most of the currently reported nonaqueous RFB systems.

  12. This report discusses how we developed and implemented an interactive upper division/graduate

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    services to two fictitious manufacturing companies accused of responsibility for the contamination: landfill leachate, gasoline and oil, pesticides, acids and bases, and dense non-aqueous solvents, and how

  13. Electrodeposited Ag-Stabilization Layer for High Temperature Superconducting Coated Conductors: Preprint

    SciTech Connect (OSTI)

    Bhattacharya, R. N.; Mann, J.; Qiao, Y.; Zhang, Y.; Selvamanickam, V.

    2010-11-01

    We developed a non-aqueous based electrodepostion process of Ag-stabilization layer on YBCO superconductor tapes. The non-aqueous electroplating solution is non-reactive to the HTS layer thus does not detoriate the critical current capability of the superconductor layer when plated directly on the HTS tape. The superconducting current capabilities of these tapes were measured by non-contact magnetic measurements.

  14. Solvated electron lithium electrode for high energy density battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1987-05-26

    A rechargeable high energy density lithium-based cell is described comprising: a solvated electron lithium negative electrode comprising a solution of lithium dissolved in liquid ammonia; a lithium ion conducting solid electrolyte contacting the negative electrode; a liquid non-aqueous lithium ion conducting electrolyte comprising a lithium ion conducting supporting electrolyte dissolved in a non-aqueous solvent. The liquid electrolyte contacting the lithium ion conducting solid electrolyte; and a solid lithium intercalation positive electrode contacting the liquid electrolyte.

  15. Advertise on NYTimes.com SIGN IN TO E-MAIL OR

    E-Print Network [OSTI]

    Columbia University

    Advertise on NYTimes.com SIGN IN TO E-MAIL OR SAVE THIS PRINT SHARE Related A Whiff of Naples. Advertise on NYTimes.com Go to Complete List » More Articles in Opinion » MOST POPULAR Michelle Obama Looks

  16. Proceedings of the TOUGH Symposium 2009

    E-Print Network [OSTI]

    Moridis, George J.

    2010-01-01

    for the gas saturation throughout the reservoir. The dry-NAPL phase saturations matched the reservoir exploration3. Gas saturation (S g ) in the reservoir as a function of

  17. Transformer current sensor for superconducting magnetic coils

    DOE Patents [OSTI]

    Shen, S.S.; Wilson, C.T.

    1985-04-16

    The present invention is a current transformer for operating currents larger than 2kA (two kiloamps) that is capable of detecting a millivolt level resistive voltage in the presence of a large inductive voltage. Specifically, the present invention includes substantially cylindrical primary turns arranged to carry a primary current and substantially cylindrical secondary turns arranged coaxially with and only partially within the primary turns, the secondary turns including an active winding and a dummy winding, the active and dummy windings being coaxial, longitudinally separated and arranged to mutually cancel voltages excited by commonly experienced magnetic fields, the active winding but not the dummy winding being arranged within the primary turns.

  18. Lithium-titanium-oxide anodes for lithium batteries

    DOE Patents [OSTI]

    Vaughey, John T. (Elmhurst, IL); Thackeray, Michael M. (Naperville, IL); Kahaian, Arthur J. (Chicago, IL); Jansen, Andrew N. (Bolingbrook, IL); Chen, Chun-hua (Westmont, IL)

    2001-01-01

    A spinel-type structure with the general formula Li[Ti.sub.1.67 Li.sub.0.33-y M.sub.y ]O.sub.4, for 0non-aqueous electrochemical cell and in a non-aqueous battery comprising an plurality of cells, electrically connected, each cell comprising a negative electrode, an electrolyte and a positive electrode, the negative electrode consisting of the spinel-type structure disclosed.

  19. Negative electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Vaughey, John T.; Fransson, Linda M.; Thackeray, Michael M.

    2005-02-15

    A negative electrode is disclosed for a non-aqueous electrochemical cell. The electrode has an intermetallic compound as its basic structural unit with the formula M.sub.2 M' in which M and M' are selected from two or more metal elements including Si, and the M.sub.2 M' structure is a Cu.sub.2 Sb-type structure. Preferably M is Cu, Mn and/or Li, and M' is Sb. Also disclosed is a non-aqueous electrochemical cell having a negative electrode of the type described, an electrolyte and a positive electrode. A plurality of cells may be arranged to form a battery.

  20. Thin film superconductors and process for making same

    DOE Patents [OSTI]

    Nigrey, P.J.

    1988-01-21

    A process for the preparation of oxide superconductors from high-viscosity non-aqueous solution is described. Solutions of lanthanide nitrates, alkaline earth nitrates and copper nitrates in a 1:2:3 stoichiometric ratio, when added to ethylene glycol containing citric acid solutions, have been used to prepare highly viscous non-aqueous solutions of metal mixed nitrates-citrates. Thin films of these compositions are produced when a layer of the viscous solution is formed on a substrate and subjected to thermal decomposition.

  1. motion of crystalline domains in an otherwise rigid solid-state Received 7 January; accepted 10 June 2002; doi:10.1038/nature00901.

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    is a contribution from the Delft Institute for Sustainable Energy (DISE). Competing interests statement The authors non- aqueous cells. J. Power Sources 14, 153­166 (1985). 3. Ohzuku, T. & Hirai, T. An electrochromic declare that they have no competing financial interests. Correspondence and requests for materials should

  2. Genotoxicity of complex chemical mixtures 

    E-Print Network [OSTI]

    Phillips, Tracie Denise

    2009-05-15

    non-aqueous phase liquid from a wood treatment plant was separated into acid (AF), base (BF) and neutral fractions (NF). The NF was further enriched using column chromatography to produce a polychlorinated dinbenzo-p-dioxin (PCDD) and a polycyclic...

  3. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  4. Study of cobalt-doped lithiumnickel oxides as cathodes for MCFC Prabhu Ganesan, Hector Colon, Bala Haran, Ralph White, Branko N. Popov*

    E-Print Network [OSTI]

    Popov, Branko N.

    for molten carbonate fuel cell (MCFC). LiNi0.8Co0.2O2 cathodes were prepared using non-aqueous tape casting Science B.V. Keywords: Cobalt substituted nickel oxide; Molten carbonate; Fuel cell; Dissolution 1. Introduction Molten carbonate fuel cell (MCFC) technology is expected to be one of the most promising power

  5. NATURE CHEMISTRY | VOL 4 | NOVEMBER 2012 | www.nature.com/naturechemistry 867 research highlights

    E-Print Network [OSTI]

    Vertes, Akos

    NATURE CHEMISTRY | VOL 4 | NOVEMBER 2012 | www.nature.com/naturechemistry 867 research highlights an approach such as non-aqueous extraction. Now, Akos Vertes and co-workers at The George Washington products: the cis isomer produces ethane-1,2-dione and OH, whereas the trans isomer reacts to give formic

  6. CX-010115: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Non-Aqueous Titration of Next Generation Solvent in the Modular Caustic Side Solvent Extraction Unit CX(s) Applied: B3.6 Date: 03/28/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  7. Development of Chemical Model to Predict the Interactions between Supercritical CO2and Fluid, and Rocks in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    This project will develop a chemical model, based on existing models and databases, that is capable of simulating chemical reactions between supercritical (SC) CO2 and Enhanced Geothermal System (EGS) reservoir rocks of various compositions in aqueous, non-aqueous and 2-phase environments.

  8. Condensation dynamics of L-proline and L-hydroxyproline in solution

    E-Print Network [OSTI]

    Epstein, Irving R.

    general, occurring in chiral derivatives of acetic, propionic, and butyric acids with a chiral center behavior of L-Pro, L-Hyp, and L-Pro­L-Hyp in 70% aqueous methanol. The individual amino acid solutions show in an oscillatory fashion in low molecular weight carboxylic acids dissolved in aqueous and non-aqueous abiotic

  9. Electrode compositions

    DOE Patents [OSTI]

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  10. Electrode compositions

    DOE Patents [OSTI]

    Block, Jacob (Rockville, MD); Fan, Xiyun (Orange, TX)

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  11. A novel, single-isomer, sulfated cyclodextrin for use as a chiral resolving agent in capillary electrophoresis: the sodium salt of octakis(2,3-di-O-methyl-6-O-sulfo)-?-cyclodextrin 

    E-Print Network [OSTI]

    Busby, Michael Brent

    2002-01-01

    A novel, single-isomer, sulfated cyclodextrin, the sodium salt of octakis(2,3-di-O-methyl-6-O-sulfo)cyclomaltooctaose (ODMS) was used as a chiral resolving agent in both aqueous and non-aqueous chiral mediated electrophoretic ...

  12. WATER RESOURCES RESEARCH, VOL. , NO. , PAGES 110, The Impact of Wettability Alteration on Two-Phase Flow

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    WATER RESOURCES RESEARCH, VOL. , NO. , PAGES 1­10, The Impact of Wettability Alteration on Two (NAPLs) and gases that co-exist with water in soils and rocks, is of fundamental interest to subsurface water management. Any prediction of temporal and spatial distributions of these fluids is sensitive

  13. LA-UR 97-3289 TITLE: Thermal Evolution of the Phlegraean Magmatic

    E-Print Network [OSTI]

    1 , Lucia Civetta 2 , and Giovanni Orsi 2 PUBLISHED IN: Journal of Volcanology and Geothermal Energy, Naples, Italy 80138 #12;Z .Journal of Volcanology and Geothermal Research 91 1999 381­414 www in boreholes at Licola, San Vito, and Mofete reported by AGIP in 1987. The initial and boundary conditions

  14. Patterns of Arm Muscle Activation Involved in Octopus Reaching Movements

    E-Print Network [OSTI]

    Hochner, Binyamin

    Patterns of Arm Muscle Activation Involved in Octopus Reaching Movements Yoram Gutfreund,1 Tamar, Stazione Zoologica "A. Dohrn," Naples 80121, Italy The extreme flexibility of the octopus arm allows a basic invariant motor structure: a bend traveling from the base of the arm toward the tip (Gutfreund et

  15. College of Liberal Arts -The University of Texas at Arlington Festival of Ideas Global Research Institute

    E-Print Network [OSTI]

    Huang, Haiying

    . Event No. 1: Artist Lecture Alfredo Jaar October 5, 2010 - 6 p.m. Architecture Room 204 Alfredo Jaar.m. Architecture Room 204 Dr. Leoni studied at the Istituto Universitario Orientale (Naples) and the School, Africa and southeastern Europe. During his diplomatic career, Maresca served as the United States

  16. NiNicciviv zemzemttesenesen 11. 3. 2011 v11. 3. 2011 v JaponskuJaponsku;;

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    high tsunami warning level at OT+8min, #12;Systémy rychlého varování z blízkých stanic Píklad z Itálie;#12;Performance Test of Earthquake Early Warning System in Southern Italy Zollo A (1), Iannaccone G (2), Cantore L) AMRA S.C.A.R.L, Naples #12;The Irpinia Seismic Network (ISNet) future Earthquake Early Warning System

  17. Alessandro Bellofiore, PhD Curriculum Vit Department of Biomedical EngineeringContact

    E-Print Network [OSTI]

    Chesler, Naomi C.

    of Liquid Jets Injected in High Density Air Crossflow Advisors: Professor A. Cavaliere, Dr R. Ragucci Prevaporised gas turbines. - Multiphase flow systems. Crossflow fuel atomization. Electrohydrody- namic Federico II, Naples, Italy Project: Characterization of Spray Placement and Flow field in Air Cross- flow

  18. Earthquake early warning: Concepts, methods and physical grounds Claudio Satriano a,c,n

    E-Print Network [OSTI]

    Wu, Yih-Min

    Earthquake early warning: Concepts, methods and physical grounds Claudio Satriano a,c,n , Yih of Geosciences, National Taiwan University, Taipei 10617, Taiwan c Department of Physics, University of Naples July 2010 a b s t r a c t Modern technology allows real-time seismic monitoring facilities to evolve

  19. NATURAL HAZARDS ON ALLUVIAL FANS: THE VENEZUELA DEBRIS FLOW AND FLASH FLOOD DISASTER

    E-Print Network [OSTI]

    Eaton, L. Scott

    NATURAL HAZARDS ON ALLUVIAL FANS: THE VENEZUELA DEBRIS FLOW AND FLASH FLOOD DISASTER In December Venezuela. Rainfall on December 2-3 totaled 200 millimeters (8 inches) and was followed by a major storm, Denver, Colorado, Naples, Italy, and Vargas, Venezuela. In time scales spanning thousands of years

  20. Copyright 2009 The Author(s) Journal compilation 2009 National Ground Water Association.

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    and transport of higher ethanol content fuel blends. Likely release scenarios include E85 (85% ethanol; 15 Following a Release of Neat Ethanol onto Pre-existing NAPL by Brent P. Stafford, Natalie L. Cápiro, Pedro J.J. Alvarez, and William G. Rixey Abstract Neat ethanol (75.7 L) was released into the upper capillary zone

  1. Hybrid energy storage systems utilizing redox active organic compounds

    DOE Patents [OSTI]

    Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo

    2015-09-08

    Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.

  2. CONTRIBUTING TO THE DISCUSSIONS ON THE FUNDAMENTAL ASPECTS AND COMPLEXITIES OF TALSPEAK CHEMISTRY

    SciTech Connect (OSTI)

    Peter R. Zalupski; Leigh R. Martin

    2011-10-01

    When liquid-liquid distribution of lanthanides was monitored at Talspeak-related conditions a characteristic drop in the extraction efficiency was observed at high lactate concentrations. The lactate dependency trend also appears to be directly affected by the increasing complexity of the non-aqueous environment. Some considerations of the non-ideal solution behavior in aqueous and organic environment are presented here in an attempt to explain the observed metal partitioning trends. While the mechanism of metal ion phase transfer appears to adhere to the conventional thermodynamic struggle between HDEHP and DTPA, the diminished metal distribution and suppressed slopes for the extractant dependencies suggest further build-up in the complexity of the non-aqueous environment in Talspeak systems.

  3. Ceramic porous material and method of making same

    DOE Patents [OSTI]

    Liu, Jun (Richland, WA); Kim, Anthony Y. (Kennewick, WA); Virden, Jud W. (Richland, WA)

    1997-01-01

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.

  4. Ceramic porous material and method of making same

    DOE Patents [OSTI]

    Liu, J.; Kim, A.Y.; Virden, J.W.

    1997-07-08

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors. 21 figs.

  5. Method of remediation of contaminants in porous media through minimization of bouyancy effects

    DOE Patents [OSTI]

    Shook, G. Michael (Rigby, ID); Pope, Gary A. (Austin, TX)

    1999-01-01

    A method for controlling vertical migration of contaminants in an aquifer includes introduction of a solubilizing solution having a surfactant and an alcohol or other light co-solvent. The surfactant is selected to solubilize the contaminant. The alcohol or other solvent is selected to provide the microemulsion with a substantially neutral buoyancy with respect to groundwater. The neutral buoyancy of the microemulsion prevents the normal downward movement which is typical of the solubilized dense non-aqueous phase liquid in surfactant-enhanced aquifer remediation. Thus, the risk that any significant amount of the solubilized dense non-aqueous contaminants will migrate vertically can be controlled. The relative tendency for vertical migration may also be reduced by increasing the injection rate or injected fluid viscosity (by adding polymer), or by reducing the well spacing.

  6. Aza crown ether compounds as anion receptors

    DOE Patents [OSTI]

    Lee, H.S.; Yang, X.O.; McBreen, J.

    1998-08-04

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.

  7. Microbial production of epoxides

    DOE Patents [OSTI]

    Clark, Thomas R.; Roberto, Francisco F.

    2003-06-10

    A method for microbial production of epoxides and other oxygenated products is disclosed. The method uses a biocatalyst of methanotrophic bacteria cultured in a biphasic medium containing a major amount of a non-aqueous polar solvent. Regeneration of reducing equivalents is carried out by using endogenous hydrogenase activity together with supplied hydrogen gas. This method is especially effective with gaseous substrates and cofactors that result in liquid products.

  8. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    SciTech Connect (OSTI)

    Graves, Christopher R; Kiplinger, Jaqueline L

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  9. Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation

    E-Print Network [OSTI]

    Hasan, Tawfique; Sun, Zhipei; Tan, PingHeng; Popa, Daniel; Flahaut, Emmanuel; Kelleher, Edmund J. R.; Bonaccorso, Francesco; Wang, Fengqiu; Jiang, Zhe; Torrisi, Felice; Privitera, Giulia; Nicolosi, Valeria; Ferrari, Andrea C.

    2014-04-15

    and SDBS as the surfactant to obtain higher concentration of isolated nano- tubes or small bundles 98 than possible with non- aqueous solvents. 99?101 PVA is used for its solvent compatibility. Slow evaporation of water at room temperature produces a... . 71 This is in addition to the effect of solvent properties (e.g., pH) and stabilization by dispersant (e.g., surfactants). In low viscosity dispersions, aggregation between nanotubes can therefore in- crease significantly with increased nanotube con...

  10. A Review of "Milton Among the Puritans: The Case for Historical Revisionism" by Catherine Gimelli Martin 

    E-Print Network [OSTI]

    Mulryan, John

    2011-01-01

    and dominated the procession. Gradually the ?popular? elements were muted and the vitality of the feast of S. Giovanni dimmed. The lesson for ?becoming Neapolitan? from this interesting book is that Neapolitan society, as seen through its festivities... of any authentic popular participa- tion.? This, with the final enfranchisement of the middle classes in the nineteenth century, was the lasting legacy of Baroque Naples: its plebeians were excluded. Catherine Gimelli Martin. Milton Among the Puritans...

  11. Surface and Interfacial Properties of Nonaqueous-Phase Liquid Mixtures Released to the Subsurface at the Hanford Site

    SciTech Connect (OSTI)

    Nellis, Scott; Yoon, Hongkyu; Werth, Charlie; Oostrom, Martinus; Valocchi, Albert J.

    2009-05-01

    Surface and interfacial tensions that arise at the interface between different phases are key parameters affecting Nonaqueous Phase Liquid (NAPL) movement and redistribution in the vadose zone after spill events. In this study, the impact of major additive components on surface and interfacial tensions for organic mixtures and wastewater was investigated. Organic mixture and wastewater compositions are based upon carbon tetrachloride (CT) mixtures released at the Hanford site, where CT was discharged simultaneously with dibutyl butyl phosphonate (DBBP), tributyl phosphate (TBP), dibutyl phosphate (DBP), and a machining lard oil (LO). A considerable amount of wastewater consisting primarily of nitrates and metal salts was also discharged. The tension values measured in this study revealed that the addition of these additive components caused a significant lowering of the interfacial tension with water or wastewater and the surface tension of the wastewater phase in equilibrium with the organic mixtures, compared to pure CT, but had minimal effect on the surface tension of the NAPL itself. These results lead to large differences in spreading coefficients for several mixtures, where the additives caused both a higher (more spreading) initial spreading coefficient and a lower (less spreading) equilibrium spreading coefficient. This indicates that if these mixtures migrate into uncontaminated areas, they will tend to spread quickly, but form a higher residual NAPL saturation after equilibrium, as compared to pure CT. Over time, CT likely volatilizes more rapidly than other components in the originally disposed mixtures and the lard oil and phosphates would become more concentrated in the remaining NAPL, resulting in a lower interfacial tension for the mixture. Spreading coefficients are expected to increase and perhaps change the equilibrated organic mixtures from nonspreading to spreading in water-wetting porous media. These results show that the behavior of organic chemical mixtures should be accounted for in numerical flow and transport models.

  12. Naranja, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: Energy Resources

  13. Nash County, North Carolina: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: Energy

  14. Nassau County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:

  15. National Bio Energy Co Ltd formerly Guoneng Biomass Power Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New

  16. National Conference of State Historic Preservation Officers website | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,

  17. National Energy Audit (NEAT) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development and Reform

  18. National Energy Modeling System (NEMS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development and

  19. National Interest Security Company NISC Formerly Technology Management

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development

  20. National Park Service Hydropower Assistance webpage | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,DevelopmentLease Financing

  1. National Renewables Cooperative Organization NRCO | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,DevelopmentLease

  2. National Science and Technology Development Agency | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,DevelopmentLeaseProject |

  3. National Solar Radiation Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,DevelopmentLeaseProject

  4. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Rohan, James F. (Cork City, IE); Foo, Conrad C. (Dedham, MA); Pasquariello, David M. (Pawtucket, RI)

    1999-01-01

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn.sub.2 O.sub.4 positive electrode (cathode).

  5. Chemical overcharge protection of lithium and lithium-ion secondary batteries

    DOE Patents [OSTI]

    Abraham, K.M.; Rohan, J.F.; Foo, C.C.; Pasquariello, D.M.

    1999-01-12

    This invention features the use of redox reagents, dissolved in non-aqueous electrolytes, to provide overcharge protection for cells having lithium metal or lithium-ion negative electrodes (anodes). In particular, the invention features the use of a class of compounds consisting of thianthrene and its derivatives as redox shuttle reagents to provide overcharge protection. Specific examples of this invention are thianthrene and 2,7-diacetyl thianthrene. One example of a rechargeable battery in which 2,7-diacetyl thianthrene is used has carbon negative electrode (anode) and spinet LiMn{sub 2}O{sub 4} positive electrode (cathode). 8 figs.

  6. Preparation and characterization of Pd{sub 2}Sn nanoparticles

    SciTech Connect (OSTI)

    Page, Katharine [Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States); Schade, Christina S. [Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States); Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet Mainz, Duesbergweg 10-14, Mainz D55099 (Germany); Zhang, Jinping [Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States); Chupas, Peter J.; Chapman, Karena W. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Proffen, Thomas [Los Alamos National Laboratory, Lujan Neutron Scattering Center LANSCE-12, MS H805, Los Alamos, NM 87545 (United States); Cheetham, Anthony K. [Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States); Seshadri, Ram [Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106 (United States)], E-mail: seshadri@mrl.ucsb.edu

    2007-12-04

    We report a non-aqueous solution preparation of Pd{sub 2}Sn nanoparticles with sizes near 20 nm. The intermetallic compound with the Co{sub 2}Si structure has been characterized using transmission electron microscopy, Rietveld refinement of synchrotron X-ray and neutron powder diffraction, and real-space pair distribution function analysis of high-energy synchrotron X-ray scattering. We also present a description of the electronic structure of this covalent intermetallic using density functional calculations of the electronic structure.

  7. Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

    1994-07-01

    Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

  8. Preferential solvation of lithium cations and impacts on oxygen reduction in lithium–air batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Qu, Deyu; Yang, Xiao -Qing; Lee, Hung -Sui; Qu, Deyang

    2015-09-16

    The solvation of Li? with eleven non-aqueous solvents commonly used as the electrolytes for Li batteries were studied. The solvation preferences of different solvents were compared by means of electrospray mass spectrometry and collision-induced dissociation. The relative strength of the solvent for the solvation of Li? was determined. The Lewis acidity of the solvated Li? cations was determined by the preferential solvation of the solvent in the solvation shell. The kinetics of the catalytic disproportionation of the O?? depends on the relative Lewis acidity of the solvated Li? ion. The impact of the solvated Li? cation on the O? redoxmore »reaction was also investigated.« less

  9. Method for digesting a nitro-bearing explosive compound

    DOE Patents [OSTI]

    Shah, Manish M. (Richland, WA)

    2000-01-01

    The present invention is a process wherein superoxide radicals from superoxide salt are used to break down the explosive compounds. The process has an excellent reaction rate for degrading explosives, and operates at ambient temperature and atmospheric pressure in aqueous or non-aqueous conditions. Because the superoxide molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The superoxide salt generates reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro-bearing compound.

  10. Anodes for rechargeable lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

    2003-01-01

    A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

  11. Long life lithium batteries with stabilized electrodes

    DOE Patents [OSTI]

    Amine, Khalil (Downers Grove, IL); Liu, Jun (Naperville, IL); Vissers, Donald R. (Naperville, IL); Lu, Wenquan (Darien, IL)

    2009-03-24

    The present invention relates to non-aqueous electrolytes having electrode stabilizing additives, stabilized electrodes, and electrochemical devices containing the same. Thus the present invention provides electrolytes containing an alkali metal salt, a polar aprotic solvent, and an electrode stabilizing additive. In some embodiments the additives include a substituted or unsubstituted cyclic or spirocyclic hydrocarbon containing at least one oxygen atom and at least one alkenyl or alkynyl group. When used in electrochemical devices with, e.g., lithium manganese oxide spinel electrodes or olivine or carbon-coated olivine electrodes, the new electrolytes provide batteries with improved calendar and cycle life.

  12. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

  13. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  14. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Xu, Wu (Tempe, AZ)

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  15. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  16. Engineered Natural Geosorbents for In Situ Immobilization of DNAPLs and Heavy Metals

    SciTech Connect (OSTI)

    Walter J. Weber; Gordon M. Fair; Earnest Boyce

    2006-12-01

    Extensive subsurface contamination by dense non-aqueous phase liquid (DNAPL) organic solvents and heavy metals is common place at many DOE facilities. Poor performances and excessive costs have made traditional technologies and approaches less than satisfactory for remediation of such sites. It is increasingly apparent that marginal improvements in conventional methods and approaches will not suffice for clean up of many contaminated DOE sites. Innovative approaches using new and/or existing technologies in more efficient and cost-effective ways are thus urgently required.

  17. Transport, Targeting, and Applications of Metallic Functional Nanoparticles for Degradation of DNAPL Chlorinated Organic Solvents

    SciTech Connect (OSTI)

    Gregory V. Lowry; Sara Majetich; Krzysztof Matyjaszewski; David Sholl; Robert Tilton

    2006-12-27

    Dense Non-Aqueous Phase Liquid (DNAPL) such as trichloroethylene act as long term sources of groundwater contaminants and are difficult and expensive to remediate. DNAPL-contaminated sites are a significant financial liability for the Department of Energy and the private sector. The objective of this study was to engineer reactive Fe-based nanoparticles with specialized polymeric coatings to make them mobile in the subsurface and to provide them with an affinity for the DNAPL/water interface. The synthesis, characterization, and reactivity/mobility of the engineered particles, and a molecular dynamic model that predicts their behavior at the DNPAL/water interface are described in this report.

  18. Influence of Controlled Viscous Dissipation on the Propagation of Strongly Nonlinear Waves in Stainless Steel Based Phononic Crystals

    E-Print Network [OSTI]

    E. B. Herbold; V. F. Nesterenko; C. Daraio

    2005-12-22

    Strongly nonlinear phononic crystals were assembled from stainless steel spheres. Single solitary waves and splitting of an initial pulse into a train of solitary waves were investigated in different viscous media using motor oil and non-aqueous glycerol to introduce a controlled viscous dissipation. Experimental results indicate that the presence of a viscous fluid dramatically altered the splitting of the initial pulse into a train of solitary waves. Numerical simulations qualitatively describe the observed phenomena only when a dissipative term based on the relative velocity between particles is introduced.

  19. Naps Systems Oy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: Energy Resources Jump

  20. Narberth, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: Energy ResourcesNarberth,

  1. Nashotah, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: EnergyNashotah, Wisconsin:

  2. Nashua, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: EnergyNashotah,

  3. Nashua, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: EnergyNashotah,

  4. Nashville Electric Service NES | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: EnergyNashotah,Service NES

  5. Nassau Bay, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine: EnergyNashotah,Service

  6. Nassau County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York: Energy Resources

  7. Nat-Soo-Pah Hot Springs Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York: Energy

  8. Natchez Trace Elec Power Assn | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York: EnergyNatchez Trace

  9. Natchez, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York: EnergyNatchez

  10. Natchez, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York: EnergyNatchezJump

  11. Natchitoches Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York:

  12. Natec Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York:Natec Energy Jump

  13. Nathaniel Group Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York:Natec Energy

  14. National Assessment Of Us Geothermal Resources- A Perspective | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York:Natec

  15. National Association of Tribal Historic Preservation Officers website |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York:NatecOpen Energy

  16. National Association of the Remodeling Industry (NARI) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York:NatecOpen

  17. National Bald Eagle Management Guidelines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:New York:NatecOpenNational

  18. National Center for Appropriate Technology | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:NewAppropriate Technology

  19. National City, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:NewAppropriate

  20. National Clean Fuels Inc National Wind Solutions Inc | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples, Maine:NewAppropriateInformation

  1. National Development and Reform Commission | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development and Reform Commission

  2. National Energy Commission (China) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development and ReformCommission

  3. National Energy Resource Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development andResource Corporation

  4. National Energy Technology Laboratory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development andResource

  5. National Environmental Policy Act: Little Information Exists on NEPA

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development andResourceAnalyses |

  6. National Ethanol Vehicle Coalition NEVC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development andResourceAnalyses

  7. National Grid Generation, LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,Development andResourceAnalysesGrid

  8. National Lease Financing Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,DevelopmentLease Financing Services

  9. National Policy Memorandum NPM-TRUS-29: Guidance for the Approval of Tribal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,DevelopmentLease FinancingLeasing

  10. National Rural Electric Cooperative Association Smart Grid Demonstration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,DevelopmentLeaseProject | Open

  11. National Solar Radiation Database 1991Â…2010 Update: User's Manual

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,DevelopmentLeaseProject |Efficiency

  12. National Technology Enterprises Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation,Naples,DevelopmentLeaseProjectTechnology

  13. NASA @ APS | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL CalculatorNASA @

  14. NASA is operating two Lockheed ER-2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL CalculatorNASAis

  15. NASCAR Green Gets First Place in Daytona 500 | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL

  16. NATIONAL TRAFFIC SAFETY SUMMIT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1 NASEO 2010

  17. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1 NASEO 2010NETL

  18. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Sorbent Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1 NASEO

  19. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel Platinum/Chromium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1 NASEONovel

  20. NATIONAL HARBOR, Md.,May 21, 2013-Los Alamos National Laboratory Director

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1

  1. NA_-_Letter_%5B1211140672%5D_-_1.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1- NEVADALLC

  2. NC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1- NEVADALLCNC

  3. NCCC at the PSDF Draft EA 5-21-2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1-

  4. NCEP:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1-surface net

  5. NCIPO Ex A (Rev. 2.1, 4/9/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1-surface net1,

  6. NCIPO Ex A (Rev. 2.2, 6/14/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1-surface

  7. NCIPO Ex A (Rev. 2.3, 8/20/13) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1-surface3,

  8. NCIPO Ex A (Rev. 2.4, 8/20/14) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1-surface3,4,

  9. NCIPO Ex A (Rev. 2.5, 9/26/14) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10 1-surface3,4,5,

  10. NCIPO Ex A (Rev. 2.6, 3/6/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL10

  11. NCIPO Ex A (Rev. 2.7, 3/26/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL107, 3/26/15)

  12. NCIPO Ex A (Rev. 2.8, 11/9/15) Exhibit A General Conditions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL107, 3/26/15)8,

  13. NDA FAQ's | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL107, 3/26/15)8,NDA

  14. NDLGS: Technology to enhance surveillance | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL107,

  15. NDRPProtocolTechBasisCompiled020705.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMoveMuncrief Ames019NAPL107,Basis Document

  16. Zinc/air battery R and D research and development of bifunctional oxygen electrode: Tasks I and II, Final report

    SciTech Connect (OSTI)

    Klein, M.; Viswanathan, S.

    1986-12-01

    Studies were conducted of the bifunctional oxygen electrode. The development of a rechargeable metal-oxygen (air) cell has been hampered to a great extent by the lack of a stable and cost effective oxygen electrode capable of use during both charge and discharge. The first type of bifunctional electrode consists of two distinct catalytifc layers. The oxygen reduction catalyst layer containing a supported gold catalyst is in contact with a hydrophilic nickel layer in which evolution of oxygen takes place. Loadings of gold from 0.5 to 1.0 mg/cm/sup 2/ were investigated; carbon, graphite, metal, and spinel oxides were evaluated as substrates. The second part of the research effort was centered on developing a reversible oxygen electrode containing only one catalytic layer for both reduction and evolution of oxygen. The work was directed specifically to the study of perovskite type of oxides with the composition AA/sup 1/BO/sub 3/ where A is an element of the lanthanide series, A/sup 1/ is an alkaline earth metal and B, a first row transition element. Initial polarization data obtained in unscrubbed air gave a value of approximately 200 millivolts vs Hg/HgO reference electrode at a current density of 50 ma/cm/sup 2/. Electrodes were made both by roll-bonding and by pelletizing techniques and tested for polarization and cycle life. This study also indicates the optimum process conditions for the manufacture of oxides and fabrication of electrodes.

  17. Fundamental measure theory for the electric double layer: implications for blue-energy harvesting and water desalination

    E-Print Network [OSTI]

    Andreas Härtel; Mathijs Janssen; Sela Samin; René van Roij

    2015-03-06

    Capacitive mixing (CAPMIX) and capacitive deionization (CDI) are promising candidates for harvesting clean, renewable energy and for the energy efficient production of potable water, respectively. Both CAPMIX and CDI involve water-immersed porous carbon (supercapacitors) electrodes at voltages of the order of hundreds of millivolts, such that counter-ionic packing is important for the electric double layer (EDL) which forms near the surface of these porous materials. Thus, we propose a density functional theory (DFT) to model the EDL, where the White-Bear mark II fundamental measure theory functional is combined with a mean-field Coulombic and a mean spherical approximation-type correction to describe the interplay between dense packing and electrostatics, in good agreement with molecular dynamics simulations. We discuss the concentration-dependent potential rise due to changes in the chemical potential in capacitors in the context of an over-ideal theoretical description and its impact on energy harvesting and water desalination. Compared to less elaborate mean-field models our DFT calculations reveal a higher work output for blue-energy cycles and a higher energy demand for desalination cycles.

  18. Novel air electrode for metal-air battery with new carbon material and method of making same

    DOE Patents [OSTI]

    Ross, Jr., Philip N. (Kensington, CA)

    1990-01-01

    A novel carbonaceous electrode support material is disclosed characterized by a corrosion rate of 0.03 wt. %/hour or less when measured a5 550 millivolts vs. a Hg/HgO electrode in a 30 wt. % KOH electrolyte a5 30.degree. C. The electrode support material comprises a preselected carbon black material which has been heat-treated by heating the material to a temperature of from about 2500.degree. to about 3000.degree. C. over a period of from about 1 to about 5 hours in an inert atmosphere and then maintaining the preselected carbon black material at this temperature for a period of at least about 1 hour, and preferably about 2 hours, in the inert atmosphere. A carbonaceous electrode suitable for use as an air electrode in a metal-air cell may be made from the electrode support material by shaping and forming it into a catalyst support and then impregnating it with a catalytically active material capable of catalyzing the reaction with oxygen at the air electrode of metal-air cell.

  19. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    SciTech Connect (OSTI)

    M.F. Simpson; K.-R. Kim

    2010-12-01

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  20. Magnetoreological Fluid Template for Basic Studies of Mechanical-Chemical Effects During Polishing

    SciTech Connect (OSTI)

    Miao, C.; Bristol, K. M.; Marino, A.E.; Shafrir, S.N.; DeGroote, J.E.; Jacobs, S.D.

    2008-01-07

    We developed a new magnetorheological (MR) fluid for studying the relative contributions of mechanics and chemistry in polishing hard materials. The base carrier fluid is a mixture of two non-aqueous liquids. At conventional carbonyl iron (CI) magnetic particle concentrations, removal rates with this formulation were unacceptably low for the polycrystalline optical ceramic aluminum oxynitride (ALON). We overcame this problem by creating a high magnetic solids concentration suspension consisting of blend of large and small CI particles. Our test bed for experiments was a magnetorheological finishing (MRF) spot-taking machine (STM) that can only polish spots into a non-rotating part. We demonstrated that, using this new MR fluid formation, we could substantially increase peak removal rates on ALON with small additions of nonmagnetic, nanodiamond abrasives. Material removal with this fluid was assumed to be predominately driven by mechanics. With the addition of small amounts of DI water to the base fluid containing nanodiamonds, the peak removal rate showed an additional increase, presumably due to the altered fluid rheology and possibly chemical interactions. In this paper we describe the difficult fluid viscosity issues that were addressed in creating a viable, high removal rate, non-aqueous MR fluid template that could be pumped in the STM for several days of experiments.

  1. Preparation of hydrophobic organic aeorgels

    DOE Patents [OSTI]

    Baumann, Theodore F. (Tracy, CA); Satcher, Jr., Joe H. (Patterson, CA); Gash, Alexander E. (Livermore, CA)

    2007-11-06

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  2. Preparation of hydrophobic organic aeorgels

    DOE Patents [OSTI]

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2004-10-19

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  3. Leaching of BTEX from Aged Crude Oil Contaminated Model Soils: Experimental and Modeling Results

    SciTech Connect (OSTI)

    Huesemann, Michael H.; Hausmann, Tom S.; Fortman, Timothy J.

    2005-01-01

    It is generally assumed that soil properties such as organic matter content, porosity, and mineral surface area have a significant effect on the bioavailability and leachability of aged petroleum hydrocarbons. In order to test this hypothesis, nine model soils or sorbents (i.e., fine and coarse quartz sand, montmorillonite and kaolinite clay, peat, 60? and 150? silica gel, a loam soil, and non-porous glass beads) were spiked with a crude oil, aged for 27 months in the laboratory, and transferred to glass columns for the performance of continuous flow leaching experiments. The column effluents were periodically sampled for 43 days and analyzed for BTEX. A one-dimensional flow model for predicting the dissolution and dispersion of individual hydrocarbons from a multi-component NAPL such as crude oil was used to fit the leaching data (i.e., the BTEX concentration versus time curves) by adjusting the equilibrium oil-leachate partitioning coefficient (Kol) for each respective hydrocarbon. The Peclet number, which is a measure of dispersion and a required modeling parameter, was measured in separate chloride tracer experiments for each soil column. Results demonstrate that soil properties did not significantly affect the leaching kinetics of BTEX from the columns. Instead, BTEX leaching curves could be successfully fitted with the one-dimensional NAPL dissolution flow model for all sorbents with the exception of montmorillonite clay. The fitting parameter Kol for each hydrocarbon was found to be similar to the Kol values that were independently measured for the same crude oil by Rixey et al. (Journal of Hazardous Materials B, 65: 137-156, 1999). In addition, the fitted Kol values were very similar for BTEX leaching from aged compared to freshly spiked loam soil. These findings indicate that leaching of BTEX in the aged soils that are contaminated with crude oil at the high concentrations commonly found in the environment (i.e., >20,000 mg/kg) was not affected by soil properties or aging but rather was governed by the equilibrium dissolution of these hydrocarbons from the crude oil NAPL that is coating the soil particles.

  4. New capabilities and applications for electrophoretically deposited coatings

    SciTech Connect (OSTI)

    Sharp, D.J.

    1991-01-01

    Our primary purpose in this test is to provide a brief general description of a few applications of various electrophoretic systems which have been investigated and have found use in various coating applications at Sandia National Laboratories. Both organic and inorganic suspensions in aqueous and non-aqueous media have been considered in these studies. Applications include high voltage insulating dielectrics, thermally conductive/electrically insulating films, adherent lubricating films, uniform photoresist films, glass coatings, and fissile uranium oxide/carbon composite films for studies of nuclear powered lasers. More recently, we have become interested in the beneficial environmental aspects of being able to provide protective polymer coatings which reduce or minimize the use of organic solvents required by traditional spray coat processes. Important practical factors which relate to film uniformity, adhesion, and composition are related to unique coating or plating capabilities and applications. 6 refs., 2 figs., 1 tab.

  5. ELECTRONIC SOLUTION SPECTRA FOR URANIUM AND NEPTUNIUM IN OXIDATION STATES (III) TO (VI) IN ANHYDROUS HYDROGEN FLUORIDE

    SciTech Connect (OSTI)

    Baluka, M.; Edelstein, N.; O'Donnell, T. A.

    1980-10-01

    Spectra have been recorded for solutions in anhydrous hydrogen fluoride (AHF) of uranium and neptunium in oxidation states (III) to (VI). The spectra for U(III), Np(III) and Np(IV) in AHF are very similar to those in acidified aqueous solution, but that for U(IV) suggests that the cationic species is UF{sub 2}{sup 2+}. The AHF spectra for the elements in oxidation states (V) and (VI) are not comparable with those of the formally analogous aqueous solutions, where the elements exist as well-defined dioxo-cations. However, the AHF spectra can be related to spectra in the gas phase, in the solid state or in non-aqueous solvents for each element in its appropriate oxidation state.

  6. Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; J. C. Wass; G. M. Teske

    2011-08-01

    As part of the Department of Energy’s Fuel Cycle Research and Development Program an electrochemical technology employing molten salts is being developed for recycle of metallic fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. This technology has been deployed for treatment of used fuel from the Experimental Breeder Reactor II (EBR-II) in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory. This process is based on dry (non-aqueous) technologies that have been developed and demonstrated since the 1960s. These technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including preparation of associated high-level waste forms.

  7. Metal intercalation characteristics of n-HfS/sub 2/ photoelectrodes in nonaqueous electrolytes. Technical report No. 1, October 1986-May 1987

    SciTech Connect (OSTI)

    Semkow, K.W.; Pujare, N.U.; Sammells, A.F.

    1987-07-01

    The photoelectrochemical (PEC) performance of single-crystal n-hafnium disulfide was correlated with capacitance and impedance measurements obtained with the photoanode van der Waals layers oriented either parallel or perpendicular to acetonitrile-based nonaqueous electrolytes, with and without copper chloride introduced as an intercalating redox species. For van der Waals layers, perpendicular to the electrolyte (i.e., available for copper intercalation) space-charge capacitance values of respectively .01 and 1 microfarad/sq. cm were obtained for the non-intercalated and copper-intercalated photoelectrodes. The implications of these experimental observations were discussed in relation to the application of these intercalating photoelectrodes in both liquid non-aqueous and solid-polymer-electrolyte PEC storage devices.

  8. Method for synthesizing pollucite from chabazite and cesium chloride

    DOE Patents [OSTI]

    Pereira, Candido (Naperville, IL)

    1999-01-01

    A method for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700.degree. C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite.

  9. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    SciTech Connect (OSTI)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.

  10. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, K.O.

    1998-06-30

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  11. Electrohydrodynamic atomization (EHDA) assisted wet chemical synthesis of nickel nanoparticles

    SciTech Connect (OSTI)

    Barzegar Vishlaghi, M. [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)] [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Farzalipour Tabriz, M., E-mail: meisam.fa@gmail.com [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammad Moradi, O. [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)] [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-07-15

    Highlights: ? Electrohydrodynamic atomization (EHDA) assisted chemical synthesis of nickel nanoparticles is reported. ? Substituting water with non-aqueous media prevents the formation of nickel hydroxide. ? Size of particles decreased from 10 to 20 nm down to 2–4 nm by using multi-jet mode. ? Synthesized nanoparticles have diffraction patterns similar to amorphous materials. -- Abstract: In this study nickel nanoparticles were prepared via chemical reduction of nickel acetate using sodium borohydride using electrohydrodynamic atomization (EHDA) technique. This technique was used to spray a finely dispersed aerosol of nickel precursor solution into the reductive bath. Obtained particles were characterized by means of X-ray diffraction (XRD), UV–Visible spectroscopy, and transmission electron microscopy (TEM). Results confirmed the formation of nickel nanoparticles and showed that applying EHDA technique to chemical reduction method results in producing smaller particles with narrower size distribution in comparison with conventional reductive precipitation method.

  12. Lithium ion batteries based on nanoporous silicon

    DOE Patents [OSTI]

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  13. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong; Zhang, Xuran; Qu, Deyu; Yang, Xiao -Qing; Lee, Hung -Sui; Qu, Deyang

    2015-04-21

    Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O2/O2•- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O2 reduction reaction is from mass diffusion. Li2O2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O22- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings reveal an opportunity for recharging Li-air batteries efficiently andmore »a new strategy of developing the catalyst for oxygen evolution reaction.« less

  14. Anion-tunable properties and electrochemical performance of functionalized ferrocene compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cosimbescu, Lelia; Wei, Xiaoliang; Vijayakumar, M.; Xu, Wu; Helm, Monte L.; Burton, Sarah D.; Sorensen, Christina M.; Liu, Jun; Sprenkle, Vincent; Wang, Wei

    2015-09-16

    We report a series of ionically modified ferrocene compounds for hybrid lithium-organic non-aqueous redox flow batteries, based on the ferrocene/ferrocenium redox couple as the active catholyte material. Tetraalkylammonium ionic moieties were incorporated into the ferrocene structure, in order to enhance the solubility of the otherwise relatively insoluble ferrocene. The effect of various counter anions of the tetraalkylammonium ionized species appended to the ferrocene, such as bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, perchlorate, tetrafluoroborate, and dicyanamide on the solubility of the ferrocene was investigated. The solution chemistry of the ferrocene species was studied, in order to understand the mechanism of solubility enhancement. Finally, the electrochemicalmore »performance of these ionized ferrocene species was evaluated and shown to have excellent cell efficiency and superior cycling stability.« less

  15. Silver manganese oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  16. Lithium metal oxide electrodes for lithium cells and batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

  17. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  18. Method for synthesizing pollucite from chabazite and cesium chloride

    DOE Patents [OSTI]

    Pereira, C.

    1999-02-23

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs.

  19. Synthesis and Coordination Chemistry of Azulene- and Ferrocene-Based Isocyanide Ligands

    E-Print Network [OSTI]

    McGinnis, David Michael

    2011-08-31

    hexafluorophosphate (0.1 M solution in CH2Cl2) was used as the supporting electrolyte. CV data were obtained using a three component system consisting of a platinum working electrode, platinum wire auxillary electrode, and a glass encased non-aqueous silver... at 10-2 Torr to afford an 89% yield of 1.1 (2.23 g, 9.78 mmol) as a red-orange powder. 1H NMR (400MHz, CDCl3, 25°C): ? 2.40 (s, 3H, CH3), 4.22 (s, 5H, C5H5), 4.51 (s, 2H, C5H4), 4.78 (s, 2H, C5H4) ppm. I.3.3 Synthesis of 1-chlorovinylformylferrocene...

  20. Electrode for a lithium cell

    SciTech Connect (OSTI)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2008-10-14

    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  1. Manganese oxide composite electrodes for lithium batteries

    DOE Patents [OSTI]

    Johnson, Christopher S. (Naperville, IL); Kang, Sun-Ho (Naperville, IL); Thackeray, Michael M. (Naperville, IL)

    2009-12-22

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5

  2. Investigation of the electrocatalytic oxygen reduction and evolution reactions in lithium–oxygen batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Dong [Univ. of Wisconsin, Milwaukee, WI (United States). Collece of Engineering and Applied Science; Zhang, Xuran [Wuhan Univ. of Technology, Wuhan (China). School of Science; Qu, Deyu [Wuhan Univ. of Technology, Wuhan (China). School of Science; Yang, Xiao-Qing [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Lee, Hung-Sui [Brookhaven National Lab. (BNL), Upton, NY (United States). Chemistry Dept.; Qu, Deyang [Univ. of Wisconsin, Milwaukee, WI (United States). Collece of Engineering and Applied Science

    2015-08-01

    Oxygen reduction and oxygen evolution reactions were studied on graphite electrodes with different crystal orientations. The kinetics for the redox couple O2/O2•- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O2 reduction reaction is from mass diffusion. Li2O2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O22- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings reveal an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.

  3. In situ RF/microwave remediation of soil experiment overview

    SciTech Connect (OSTI)

    Regan, A.H.; Palomares, M.E.; Polston, C.; Rees, D.E.; Roybal, W.T. [Los Alamos National Lab., NM (United States); Ross, T.J. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-09-01

    Contaminant plumes are significant waste problems that require remediation in both the government and private sectors. The authors are developing an in situ process that uses RF/microwave stimulation to remove pollutants from contaminated soils. This process is more efficient than existing technologies, creates less secondary pollution, and is applicable to situations that are not amenable to treatment by existing technologies. Currently, the most commonly used process is soil vapor extraction. However, even when it is successful, this technology is energy inefficient. The authors objective is to combine RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove the soil contaminants, specifically demonstrating the viability of RF/microwave induced, in situ, soil remediation of light and dense non-aqueous phase liquids (LNAPL, DNAPL) contaminants.

  4. Redox shuttles for overcharge protection of lithium batteries

    DOE Patents [OSTI]

    Amine, Khalil (Downers Grove, IL); Chen, Zonghai (Downers Grove, IL); Wang, Qingzheng (San Jose, CA)

    2010-12-14

    The present invention is generally related to electrolytes containing novel redox shuttles for overcharge protection of lithium-ion batteries. The redox shuttles are capable of thousands hours of overcharge tolerance and have a redox potential at about 3-5.5 V vs. Li and particularly about 4.4-4.8 V vs. Li. Accordingly, in one aspect the invention provides electrolytes comprising an alkali metal salt; a polar aprotic solvent; and a redox shuttle additive that is an aromatic compound having at least one aromatic ring with four or more electronegative substituents, two or more oxygen atoms bonded to the aromatic ring, and no hydrogen atoms bonded to the aromatic ring; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  5. Manganese oxide composite electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Li, Naichao (Croton on Hudson, NY)

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0

  6. Protective coating on positive lithium-metal-oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Johnson, Christopher S.; Thackeray, Michael M.; Kahaian, Arthur J.

    2006-05-23

    A positive electrode for a non-aqueous lithium cell comprising a LiMn2-xMxO4 spinel structure in which M is one or more metal cations with an atomic number less than 52, such that the average oxidation state of the manganese ions is equal to or greater than 3.5, and in which 0.ltoreq.x.ltoreq.0.15, having one or more lithium spine oxide LiM'2O4 or lithiated spinel oxide Li1+yM'2O4 compounds on the surface thereof in which M' are cobalt cations and in which 0.ltoreq.y.ltoreq.1.

  7. Lithium-ion batteries with intrinsic pulse overcharge protection

    DOE Patents [OSTI]

    Chen, Zonghai; Amine, Khalil

    2013-02-05

    The present invention relates in general to the field of lithium rechargeable batteries, and more particularly relates to the positive electrode design of lithium-ion batteries with improved high-rate pulse overcharge protection. Thus the present invention provides electrochemical devices containing a cathode comprising at least one primary positive material and at least one secondary positive material; an anode; and a non-aqueous electrolyte comprising a redox shuttle additive; wherein the redox potential of the redox shuttle additive is greater than the redox potential of the primary positive material; the redox potential of the redox shuttle additive is lower than the redox potential of the secondary positive material; and the redox shuttle additive is stable at least up to the redox potential of the secondary positive material.

  8. Impact of flow regime on slurry bubble column mixing

    SciTech Connect (OSTI)

    Chang, M.; Hsu, E.C.; Coulaloglou, C.A. [Exxon Research and Engineering Company, Florham Park, NJ (United States)

    1993-12-31

    In slurry bubble column reactors, gas and slurry backmixing play an important role in the performance of the reactor. The majority of backmixing correlations in the literature were based on data obtained in small scale units operating at ambient conditions with air/water and in the churn turbulent flow regime. These data show that slurry dispersion coefficients increase at least linearly with vessel diameter. Mixing data obtained at process conditions and in large mockup units with non-aqueous systems operating in the small bubble flow regime showed that slurry mixing is lower than predicted by literature correlations. Furthermore, the effect of vessel diameter on slurry mixing is significantly smaller than literature predictions based on the churn turbulent regime. These results are in line with recently reported literature data obtained in bubbly flow regime. This paper will review available data pertinent to this subject.

  9. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  10. Solvent for urethane adhesives and coatings and method of use

    DOE Patents [OSTI]

    Simandl, Ronald F. (Knoxville, TN); Brown, John D. (Harriman, TN); Holt, Jerrid S. (Knoxville, TN)

    2010-08-03

    A solvent for urethane adhesives and coatings, the solvent having a carbaldehyde and a cyclic amide as constituents. In some embodiments the solvent consists only of miscible constituents. In some embodiments the carbaldehyde is benzaldehyde and in some embodiments the cyclic amide is N-methylpyrrolidone (M-pyrole). An extender may be added to the solvent. In some embodiments the extender is miscible with the other ingredients, and in some embodiments the extender is non-aqueous. For example, the extender may include isopropanol, ethanol, tetrahydro furfuryl alcohol, benzyl alcohol, Gamma-butyrolactone or a caprolactone. In some embodiments a carbaldehyde and a cyclic amide are heated and used to separate a urethane bonded to a component.

  11. Process to produce lithium-polymer batteries

    DOE Patents [OSTI]

    MacFadden, Kenneth Orville (Highland, MD)

    1998-01-01

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  12. Low-temperature lithium diffusion in simulated high-level boroaluminosilicate nuclear waste glasses

    SciTech Connect (OSTI)

    Neeway, James J.; Kerisit, Sebastien N.; Gin, Stephane; Wang, Zhaoying; Zhu, Zihua; Ryan, Joseph V.

    2014-12-01

    Ion exchange is recognized as an integral, if underrepresented, mechanism influencing glass corrosion. However, due to the formation of various alteration layers in the presence of water, it is difficult to conclusively deconvolute the mechanisms of ion exchange from other processes occurring simultaneously during corrosion. In this work, an operationally inert non-aqueous solution was used as an alkali source material to isolate ion exchange and study the solid-state diffusion of lithium. Specifically, the experiments involved contacting glass coupons relevant to the immobilization of high-level nuclear waste, SON68 and CJ-6, which contained Li in natural isotope abundance, with a non-aqueous solution of 6LiCl dissolved in dimethyl sulfoxide at 90 °C for various time periods. The depth profiles of major elements in the glass coupons were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lithium interdiffusion coefficients, DLi, were then calculated based on the measured depth profiles. The results indicate that the penetration of 6Li is rapid in both glasses with the simplified CJ-6 glass (D6Li ? 4.0-8.0 × 10-21 m2/s) exhibiting faster exchange than the more complex SON68 glass (DLi ? 2.0-4.0 × 10-21 m2/s). Additionally, sodium ions present in the glass were observed to participate in ion exchange reactions; however, different diffusion coefficients were necessary to fit the diffusion profiles of the two alkali ions. Implications of the diffusion coefficients obtained in the absence of alteration layers to the long-term performance of nuclear waste glasses in a geological repository system are also discussed.

  13. Hydrophobic ionic liquids

    DOE Patents [OSTI]

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  14. Hydrophobic ionic liquids

    DOE Patents [OSTI]

    Koch, Victor R. (Lincoln, MA); Nanjundiah, Chenniah (Lynn, MA); Carlin, Richard T. (Nashua, NH)

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  15. Dry Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  16. PCLC flake-based apparatus and method

    DOE Patents [OSTI]

    Cox, Gerald P; Fromen, Cathy A; Marshall, Kenneth L; Jacobs, Stephen D

    2012-10-23

    A PCLC flake/fluid host suspension that enables dual-frequency, reverse drive reorientation and relaxation of the PCLC flakes is composed of a fluid host that is a mixture of: 94 to 99.5 wt % of a non-aqueous fluid medium having a dielectric constant value .di-elect cons., where 1<.di-elect cons.<7, a conductivity value .sigma., where 10.sup.-9>.sigma.>10.sup.-7 Siemens per meter (S/m), and a resistivity r, where 10.sup.7>r>10.sup.10 ohm-meters (.OMEGA.-m), and which is optically transparent in a selected wavelength range .DELTA..lamda.; 0.0025 to 0.25 wt % of an inorganic chloride salt; 0.0475 to 4.75 wt % water; and 0.25 to 2 wt % of an anionic surfactant; and 1 to 5 wt % of PCLC flakes suspended in the fluid host mixture. Various encapsulation forms and methods are disclosed including a Basic test cell, a Microwell, a Microcube, Direct encapsulation (I), Direct encapsulation (II), and Coacervation encapsulation. Applications to display devices are disclosed.

  17. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    SciTech Connect (OSTI)

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. )

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  18. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOE Patents [OSTI]

    Smith, Douglas D. (Knoxville, TN); Hiller, John M. (Oak Ridge, TN)

    1998-01-01

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

  19. Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond

    SciTech Connect (OSTI)

    Xu Xiangyang . E-mail: xiangyang.xu@sohu.com; Yu Zhiming; Zhu Yongwei; Wang Baichun

    2005-03-15

    In order to improve the dispersion of detonation nanodiamonds (ND) in aqueous and non-aqueous media, a series of thermal treatments have been conducted in air ambient to modify ND surface. Small angle X-ray scattering (SAXS) technique and high resolution transmission electron microscopy (HRTEM) were introduced to observe the primary size of ND. Differential thermal analysis (DTA), X-ray diffraction (XRD) methodology, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were adopted to analyze the structure, bonds at surfaces of the treated ND. Malvern instrument Zetasizer3000HS was used for measuring the surface electric potential and the size distribution of ND. As thermal treatments can cause graphitization and oxidization of functional groups at the surface, ND treated at high temperature is correspondingly more negatively charged in an aqueous medium, and the increased absolute value of zeta potential ensures the electrostatic stability of ND particles. Specially, after being treated at a temperature more than 850K, ND can be well dispersed in various media.

  20. Non-Ideal Behavior in Solvent Extraction

    SciTech Connect (OSTI)

    Peter Zalupski

    2011-09-01

    This report presents a summary of the work performed to meet FCR&D level 3 milestone M31SW050801, 'Complete the year-end report summarizing FY11 experimental and modeling activities.' This work was carried out under the auspices of the Non-Ideality in Solvent Extraction Systems FCR&D work package. The report summarizes our initial considerations of potential influences that non-ideal chemistry may impose on computational prediction of outcomes in solvent extraction systems. The report is packaged into three separate test cases where a robustness of the prediction by SXFIT program is under scrutiny. The computational exercises presented here emphasize the importance of accurate representation of both an aqueous and organic mixtures when modeling liquid-liquid distribution systems. Case No.1 demonstrates that non-ideal behavior of HDEHP in aliphatic diluents, such as n-dodecane, interferes with the computation. Cases No.2 and No.3 focus on the chemical complexity of aqueous electrolyte mixtures. Both exercises stress the need for an improved thermodynamic model of an aqueous environment present in the europium distribution experiments. Our efforts for year 2 of this project will focus on the improvements of aqueous and non-aqueous solution models using fundamental physical properties of mixtures acquired experimentally in our laboratories.

  1. Long-term proliferation and safeguards issues in future technologies

    SciTech Connect (OSTI)

    Keisch, B.; Auerbach, C.; Fainberg, A.; Fiarman, S.; Fishbone, L.G.; Higinbotham, W.A.; Lemley, J.R.; O'Brien, J.

    1986-02-01

    The purpose of the task was to assess the effect of potential new technologies, nuclear and non-nuclear, on safeguards needs and non-proliferation policies, and to explore possible solutions to some of the problems envisaged. Eight subdivisions were considered: New Enrichment Technologies; Non-Aqueous Reprocessing Technologies; Fusion; Accelerator-Driven Reactor Systems; New Reactor Types; Heavy Water and Deuterium; Long-Term Storage of Spent Fuel; and Other Future Technologies (Non-Nuclear). For each of these subdivisions, a careful review of the current world-wide effort in the field provided a means of subjectively estimating the viability and qualitative probability of fruition of promising technologies. Technologies for which safeguards and non-proliferation requirements have been thoroughly considered by others were not restudied here (e.g., the Fast Breeder Reactor). The time scale considered was 5 to 40 years for possible initial demonstration although, in some cases, a somewhat optimistic viewpoint was embraced. Conventional nuclear-material safeguards are only part of the overall non-proliferation regime. Other aspects are international agreements, export controls on sensitive technologies, classification of information, intelligence gathering, and diplomatic initiatives. The focus here is on safeguards, export controls, and classification.

  2. Incorporation of Hydrogen Bonding Functionalities into the Second Coordination Sphere of Iron-Based Water Oxidation Catalysts

    SciTech Connect (OSTI)

    Hoffert, Wesley A.; Mock, Michael T.; Appel, Aaron M.; Yang, Jenny Y.

    2013-08-06

    Energy storage and conversion schemes based on environmentally benign chemical fuels will require the discovery of faster, cheaper, and more robust catalysts for the oxygen evolution reaction (OER). Although pendant bases have led to enhanced turnover frequencies with non-aqueous substrates, their effect on the catalytic behavior of molecular water oxidation catalysts has received little attention. Herein, the syntheses, structures, and catalytic activities of new iron complexes with pendant bases are reported. Of these, the complex [Fe(mepydz)4(CH3CN)2](OTf)2 (mepydz = N,N?-dimethyl-N,N?-bis(pyridazin-3-ylmethyl)ethane-1,2-diamine, OTf = trifluoromethanesulonate) (8(CH3CN)22+) is the most active catalyst. Initial turnover frequencies of 141 h?1 and 24 h?1 were measured using ceric ammonium nitrate at pH 0.7 and sodium periodate at pH 4.7, respectively. At pH 4.7, 8(CH3CN)22+ the initial turnover frequency is 70% faster than the structurally analogous complex without ancillary proton relays. These results demonstrate that the incorporation of pendant bases into molecular water oxidation catalysts is a synthetic principle that should be considered in the development of new OER catalysts. This work was supported by Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US Department of Energy.

  3. Compacted carbon for electrochemical cells

    DOE Patents [OSTI]

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  4. Delivery of Vegetable Oil Suspensions in a Shear Thinning Fluid for Enhanced Bioremediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Truex, Michael J.; Kananizadeh, Negin; Li, Yusong; Lea, Alan S.; Yan, Xiulan

    2015-04-01

    In situ anaerobic biological processes are widely applied for dechlorination of chlorinated solvents in groundwater. A wide range of organic substrates have been tested and applied to support the dechlorination processes. Vegetable oils are a promising substrate and have been shown to induce effective dechlorination, have limited geochemical impacts, and good longevity. Distribution of vegetable oil in the subsurface, because it is a non-aqueous phase material, has typically been addressed by creating emulsified oil solutions. In this study, inexpensive waste vegetable oils were suspended in a xanthan gum solution, a shear-thinning fluid, as an alternative oil delivery mechanism. The stability, oil droplet size and distribution, and rheological behavior of the oil suspensions that are created in the xanthan solutions were studied in batch experiments. The injectability of the suspensions and oil distribution in porous medium were evaluated in column tests. Numerical modeling of the oil droplet transport and distribution in porous media was conducted to help interpret the column-test data. Batch studies showed that simple mixing of vegetable oil and xanthan solution produced stable suspensions of the oil as micron-size droplets. The mixture rheology retains shear-thinning properties that facilitate improved uniformity of substrate distribution in heterogeneous aquifers. Column tests demonstrated successful injection of the vegetable oil suspension into porous medium. This study provided evidence that vegetable oil suspensions in xanthan are a potential substrate to support in situ anaerobic bioremediation with favorable injection properties.

  5. TALSPEAK CURVE: AN ILLUSTRATION OF A SEE-SAW EFFECT IN SEPARATIONS

    SciTech Connect (OSTI)

    Peter Zalupski; Leigh Martin

    2010-11-01

    A superbly balanced thermodynamic struggle for metal ion coordination by aqueous aminopolycarboxylate reagent, DTPA, and non-aqueous organophosphorous phase transfer reagent, HDEHP, affords the separation of trivalent actinides from trivalent lanthanides under the umbrella of the Talspeak liquid-liquid distribution process. This thermodynamic relationship has been linked to an analogous “see-saw” behavior, where the balance is distorted when either of the key complexing players is subject to adverse conditions that interfere with their optimal operation. The thermodynamic balance is tipped in favour of HDEHP whenever increased acidity of the aqueous solution out-competes the metal ion complexation by aqueous complexing agent. Also enhanced steric crowding may switch-off efficient coordination of the metal ion. When HDEHP is depolymerised due to the presence of aliphatic alcohol in the organic phase its phase transferring power is diminished. Such complication paves way for DTPA to establish its dominance on the distribution of trivalent metal ions in the 2-phase system. The illustrated sensitivity of the thermodynamic balance between DTPA and HDEHP in Talspeak-type systems may serve as informative tool when studying less-predictable realms of Talspeak chemistry.

  6. In-situ Spectroscopic and Structural Studies of Electrode Materials for Advanced Battery Applications

    SciTech Connect (OSTI)

    Daniel A Scherson

    2013-03-14

    Techniques have been developed and implemented to gain insight into fundamental factors that affect the performance of electrodes in Li and Li-ion batteries and other energy storage devices. These include experimental strategies for monitoring the Raman scattering spectra of single microparticles of carbon and transition metal oxides as a function of their state of charge. Measurements were performed in electrolytes of direct relevance to Li and Li-Ion batteries both in the static and dynamic modes. In addition, novel strategies were devised for performing conventional experiments in ultrahigh vacuum environments under conditions which eliminate effects associated with presence of impurities, using ultrapure electrolytes, both of the polymeric and ionic liquid type that display no measurable vapor pressure. Also examined was the reactivity of conventional non aqueous solvent toward ultrapure Li films as monitored in ultrahigh vacuum with external reflection Fourier transform infrared spectroscopy. Also pursued were efforts toward developing applying Raman-scattering for monitoring the flow of charge of a real Li ion battery. Such time-resolved, spatially-resolved measurements are key to validating the results of theoretical simulations involving real electrode structures.

  7. Method of digesting an explosive nitro compound

    DOE Patents [OSTI]

    Shah, Manish M. (Richland, WA)

    2000-01-01

    The present invention is a process wherein bleaching oxidants are used to digest explosive nitro compounds. The process has an excellent reaction rate for digesting explosives and operates under multivariate conditions. Reaction solutions may be aqueous, non-aqueous or a combination thereof, and can also be any pH, but preferably have a pH between 2 and 9. The temperature may be ambient as well as any temperature above which freezing of the solution would occur and below which any degradation of the bleaching oxidant would occur or below which any explosive reaction would be initiated. The pressure may be any pressure, but is preferably ambient or atmospheric, or a pressure above a vapor pressure of the aqueous solution to avoid boiling of the solution. Because the bleaching oxidant molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The bleaching oxidants generate reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro compound.

  8. Contaminant plumes containment and remediation focus area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  9. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  10. Electrochemical process for the preparation of nitrogen fertilizers

    DOE Patents [OSTI]

    Aulich, Ted R. (Grand Forks, ND); Olson, Edwin S. (Grand Forks, ND); Jiang, Junhua (Grand Forks, ND)

    2012-04-10

    The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia, at low temperature and pressure, preferably at ambient temperature and pressure, utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen or hydrogen equivalent. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source or a hydrogen equivalent such as carbon monoxide or a mixture of carbon monoxide and hydrogen at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be aqueous, non-aqueous, or solid.

  11. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    DOE Patents [OSTI]

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  12. Solution Synthesis and Processing of PZT Materials for Neutron Generator Applications

    SciTech Connect (OSTI)

    Anderson, M.A.; Ewsuk, K.G.; Montoya, T.V.; Moore, R.H.; Sipola, D.L.; Tuttle, B.A.; Voigt, J.A.

    1998-12-01

    A new solution synthesis route has been developed for the preparation of lead-based ferroelectric materials (patent filed). The process produces controlled stoichiometry precursor powders by non-aqueous precipitation. For a given ferroelectric material to be prepared, a metal acetate/alkoxide solution containing constituent metal species in the appropriate ratio is mixed with an oxalic acid/n-propanol precipitant solution. An oxalate coprecipitate is instantly fonned upon mixing that quantitatively removes the metals from solution. Most of the process development was focused on the synthesis and processing of niobium-substituted lead zirconate titanate with a Zr-to-Ti ratio of 95:5 (PNZT 95/5) that has an application in neutron generator power supplies. The process was scaled to produce 1.6 kg of the PNZT 95/5 powder using either a sen-ii-batch or a continuous precipitation scheme. Several of the PNZT 95/5 powder lots were processed into ceramic slug form. The slugs in turn were processed into components and characterized. The physical properties and electrical performance (including explosive functional testing of the components met the requirements set for the neutron generator application. Also, it has been demonstrated that the process is highly reproducible with respect to the properties of the powders it produces and the properties of the ceramics prepared from its powders. The work described in this report was funded by Sandia's Laboratory Directed Research and Development Program.

  13. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-06-11

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volumemore »of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multielectron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.« less

  14. BF3-promoted electrochemical properties of quinoxaline in propylene carbonate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carino, Emily V.; Diesendruck, Charles E.; Moore, Jeffrey S.; Curtiss, Larry A.; Assary, Rajeev S.; Brushett, Fikile R.

    2015-02-04

    Electrochemical and density functional studies demonstrate that coordination of electrolyte constituents to quinoxalines modulates their electrochemical properties. Quinoxalines are shown to be electrochemically inactive in most electrolytes in propylene carbonate, yet the predicted reduction potential is shown to match computational estimates in acetonitrile. We find that in the presence of LiBF4 and trace water, an adduct is formed between quinoxaline and the Lewis acid BF3, which then displays electrochemical activity at 1–1.5 V higher than prior observations of quinoxaline electrochemistry in non-aqueous media. Direct synthesis and testing of a bis-BF3 quinoxaline complex further validates the assignment of the electrochemically activemore »species, presenting up to a ~26-fold improvement in charging capacity, demonstrating the advantages of this adduct over unmodified quinoxaline in LiBF4-based electrolyte. The use of Lewis acids to effectively “turn on” the electrochemical activity of organic molecules may lead to the development of new active material classes for energy storage applications.« less

  15. Electric current-producing device having sulfone-based electrolyte

    DOE Patents [OSTI]

    Angell, Charles Austen (Mesa, AZ); Sun, Xiao-Guang (Tempe, AZ)

    2010-11-16

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  16. Lithium metal oxide electrodes for lithium batteries

    DOE Patents [OSTI]

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0

  17. In situ RF/microwave remediation of soil experiment overview

    SciTech Connect (OSTI)

    Regan, A.H.; Roybal, W.T.; Ortega, R.; Palomares, M.; Rees, D.E.; Tischler, D.

    1996-06-01

    Contaminant plumes are significant waste problems that require remediation in both the government and private sectors. The authors have developed an in situ process that uses RF/microwave stimulation to remove pollutants from contaminated soils. This process is more efficient than existing technologies, creates less secondary pollution, and is applicable to situations that are not amenable to treatment by existing technologies. Currently the most commonly used process is soil vapor extraction. However, even when it is successful, this technology is energy inefficient. The objective is to combine RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove the soil contaminants, specifically demonstrating the viability of RF/microwave induced, in situ, soil remediation of light and dense non-aqueous phase liquids (LNAPL, DNAPL) contaminants. The authors have conducted a number of benchtop experiments involving RF/microwave energy deposition and vapor extraction on controlled contaminated soil samples with successful removal of the contaminants. This paper will describe the experimental hardware utilized, the experiments performed, the chemical analysis performed pre- and post-energy application, and results. In the experiments, two different halogenated liquids were used to contaminate the soil: carbon tetrachloride and 1,1,1-trichloroethane.

  18. Yeast cell surface display for lipase whole cell catalyst and its applications

    SciTech Connect (OSTI)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  19. Electrolyte materials - Issues and challenges

    SciTech Connect (OSTI)

    Balbuena, Perla B. [Department of Chemical Engineering, and Department of Materials Science and Engineering, Texas A and M University, College Station, Texas, 77843 (United States)

    2014-06-16

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes.

  20. Resolving the Impact of Biological Processes on DNAPL Transport in Unsaturated Porous Media through Nuclear Magnetic Resonance Relaxation Time Measurements

    SciTech Connect (OSTI)

    Hertzog, Russel; Geesey, Gill G.; White, Timothy A.; Ho, Clifford K.; Straley, Christian; Bryar, Traci R.; Seymour, Joseph; Codd, Sarah L.; Oram, Libbie

    2003-06-01

    This research leads to a better understanding of how physical and biological properties of porous media influence water and dense non-aqueous phase liquid (DNAPL) distribution under saturated and unsaturated conditions. Knowing how environmental properties affect DNAPL solvent flow in the subsurface is essential for developing models of flow and transport that are needed for designing remediation and long-term stewardship strategies. This project investigates the capability and limitations of low-field nuclear magnetic resonance (NMR) relaxation decay-rate measurements for determining environmental properties affecting DNAPL solvent flow in the subsurface. For in-situ subsurface environmental applications, lowfield proton NMR measurements are preferred to the conventional high-field techniques commonly used to obtain chemical shift data, because the low field measurements are much less degraded by the magnetic susceptibility variations between the rock grains and the pore fluid s that significantly interfere with the high-field NMR measurements. Our research scope includes determining whether DNAPLs exist in water-wet or solvent-wet environments, the pore-size distribution of the soils containing DNAPLs, and the impact of biological processes on their transport mechanisms in porous media. Knowledge of the in situ flow properties and pore distributions of organic contaminants are critical to understanding where and when these fluids will enter subsurface aquifers.

  1. Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin; Fifield, Leonard S.

    2009-12-31

    Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fiber quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.

  2. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOE Patents [OSTI]

    Smith, D.D.; Hiller, J.M.

    1998-02-24

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  3. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    DOE Patents [OSTI]

    Angell, C. Austen (Mesa, AZ); Xu, Wu (Broadview Heights, OH); Belieres, Jean-Philippe (Chandler, AZ); Yoshizawa, Masahiro (Tokyo, JP)

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  4. Particle Physics at the University of Pittsburgh Summary Report for Proposal Period FY'09-11

    SciTech Connect (OSTI)

    Boudreau, Joe; Dytman, Steven; Mueller, James; Naples, Donna; Paolone, Vittorio; Savinov, Vladimir

    2012-10-01

    Presented is the final summary report for grant DOE-FG02-91ER40646. The HEP group at the University consists of three tasks: B,D and L. Task B supports Pitt's CDF group at the energy frontier which includes Joe Boudreau and Paul Shepard. Work of the group includes Hao Song's thesis on the measurement of the B_c lifetime using exclusive J/psi+pion decays, and an update of the previous B_c semi-leptonic analyses under the supervision of Paul Shepard. Task D supports Pitt's neutrino group at the intensity frontier which includes PIs Dytman, Naples and Paolone. The group also includes postdoctoral research associate Danko, and thesis students Isvan (MINOS), Eberly (Minerva ), Ren (Minerva )and Hansen (T2K). This report summarizes their progress on ongoing experiments which are designed to make significant contributions to a detailed understanding of the neutrino mixing matrix. Task L supports Pitt's ATLAS group at the energy frontier and includes investigators Vladimir Savinov, James Mueller and Joe Boudreau. This group contributed both to hardware (calorimeter electronics, Savinov) and to software (Simulation, Detector Description, and Visualization: Boudreau and Mueller; MC generators: Savinov) and a summary of their progress is presented.

  5. Aluminum Shear Panels for Seismic Protection of Framed Structures: Review of Recent Experimental Studies

    SciTech Connect (OSTI)

    De Matteis, G.; Brando, G. [Dept. of Design, Rehabilitation and Control of Architectural Structures, University of Chieti-Pescara 'G. D'Annunzio', V.le Pindaro, 42--65127 Pescara (Italy); Panico, S.; Mazzolani, F. M. [Dept. of Structural Engineering, University of Naples 'Federico II', P.le Tecchio, 80--80125 Naples (Italy)

    2008-07-08

    An important experimental campaign on pure aluminum shear panels, to develop new devices for the seismic passive protection of buildings, has been recently carried out at the University of Naples 'Federico II' in cooperation with the University 'G. d'Annunzio' of Chieti/Pescara. In particular, several pure aluminum shear panels, suitably reinforced by ribs in order to delay shear buckling in the plastic deformation field, have been tested under cyclic loads. The choice pure aluminium, which is really innovative in the field of civil engineering, is justified by both the nominal low yield strength and the high ductility of such a material, which have been further improved through a proper heat treatment. Two different testing layouts have been adopted. In the former, six 'full bay' pure aluminum shear panels, having in-plane dimensions 1500x1000 mm and thickness of 5 mm, have been taken in consideration. In the latter, four 5 mm thick stiffened bracing type pure aluminum shear panels (BTPASPs) with a square shape of 500 mm side length have been cyclically tested under diagonal load. In the whole several plate slenderness ratios have been considered, allowing the evaluation of the most influential factors on the cyclic performance of system. In the current paper a review of the most important results of these recent experimental activities is provided and discussed.

  6. Sorption of colloids, organics, and metals onto gas-water interfaces: Transport mechanisms and potential remediation technology. 1998 annual progress report

    SciTech Connect (OSTI)

    Wan, J.; Tokunaga, T.K.

    1998-06-01

    'Although contaminant sorption at mineral surfaces has received much recognition as a major mechanism controlling contaminant behavior in subsurface environments, virtually no attention has been given to the possibility of contaminant sorption at gas-water interfaces. Moreover, no effort has yet been advanced to optimize such interactions for the purpose of facilitating in-situ remediation. Gas-water interfaces, unlike water-solid interfaces, are mobile. Therefore, associations of contaminants with gas-water interfaces can be very important not only in subsurface contaminant distributions, but also in contaminant transport, and potentially in remediation. The first objective of this research is to develop a quantitative understanding of interactions between contaminants and gas-water interfaces. The anticipated results will provide insights into the poorly understood phenomenon of contaminant interactions with the gas-water interface, and improve the current conceptual models of contaminant behavior in subsurface environments. The second purpose of this research is to explore the possibility of using surfactant stabilized microbubbles for in-situ remediation. Both pump-and-treat, and air sparging remediation methods are ineffective at displacing contaminants in zones which are advectively inaccessible. Stable microbubbles can migrate beyond preferential flow pathways and enter lower permeability zones by buoyant rise. The microbubbles can deliver oxygen and nutrients for promoting aerobic degradation of organic contaminants, and also deliver surfactants for emulsifying NAPLs.'

  7. Electrochemical hydrogen Storage Systems

    SciTech Connect (OSTI)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the previous literature for electrochemical reduction of spent fuels, have been attempted. A quantitative analytical method for measuring the concentration of sodium borohydride in alkaline aqueous solution has been developed as part of this work and is described herein. Finally, findings from stability tests for sodium borohydride in aqueous solutions of several different compositions are reported. For aminoborane, other research institutes have developed regeneration schemes involving tributyltin hydride. In this report, electrochemical reduction experiments attempting to regenerate tributyltin hydride from tributyltin chloride (a representative by-product of the regeneration scheme) are described. These experiments were performed in the non-aqueous solvents acetonitrile and 1,2-dimethoxyethane. A non-aqueous reference electrode for electrolysis experiments in acetonitrile was developed and is described. One class of boron hydrides, called polyhedral boranes, became of interest to the DOE due to their ability to contain a sufficient amount of hydrogen to meet program goals and because of their physical and chemical safety attributes. Unfortunately, the research performed here has shown that polyhedral boranes do not react in such a way as to allow enough hydrogen to be released, nor do they appear to undergo hydrogenation from the spent fuel form back to the original hydride. After the polyhedral boranes were investigated, the project goals remained the same but the hydrogen storage material was switched by the DOE to ammonia borane. Ammonia borane was found to undergo an irreversible hydrogen release process, so a direct hydrogenation was not able to occur. To achieve the hydrogenation of the spent ammonia borane fuel, an indirect hydrogenation reaction is possible by using compounds called organotin hydrides. In this process, the organotin hydrides will hydrogenate the spent ammonia borane fuel at the cost of their own oxidation, which forms organotin halides. To enable a closed-loop cycle, our task was then to be able to hydrogenate the organotin halides back to th

  8. Use of Conducting Polymers for Electronic Communication with Redox Active Nanoparticles

    SciTech Connect (OSTI)

    Bazito, Fernanda; O'Brien, Robert; Buttry, Daniel A.

    2004-08-08

    Nanoscale materials provide unique properties that will enable new technologies and enhance older ones. One area of intense activity in which nanoscale materials are being used is in the development of new functional materials for battery applications.1-4 This effort promises superior materials with properties that circumvent many of the problems associated with traditional battery materials. Previously we have worked on several approaches for using nanoscale materials for application as cathode materials in rechargeable Li batteries.5-11 Our recent work has focused on synthesizing MnO2 nanoparticles and using conducting polymers to electronically address these particles in nanoparticle assemblies. This presentation will focus on those efforts. MnO2 nanoparticles that are encapsulated with poly(3,4-ethylenedioxythiophene) (PEDOT) are prepared using 3,4-ethylenedioxythiophene (EDOT) as a chemical reductant for permanganate anion. This non-aqueous preparation is based on a recent report of a similar method for preparation of PEDOT-encapsulated Au nanoparticles.12 We also describe the synthesis of MnO2 colloidal nanoparticles prepared using an aqueous route involving reduction of permanganate anion with butanol using a previously described route.13 We report the synthesis and characterization of the PEDOT material, and the aqueous colloidal material. We show that the aqueous colloidal nanoparticles can be trapped in thin films using a layer-by-layer deposition approach, and that these films are both redox active and exhibit kinetically facile electrochemical responses. This is illustrated in Figure 1 below, which shows cyclic voltammetry of MnO2 colloidal nanoparticles entrapped in a thin film at an ITO electrode surface using poly(diallyldimethylammonium chloride (PDDA). Finally, we report on the use of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) to characterize the oxidation state and coordination environment around Mn in these materials.

  9. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  10. Electrochromism in sol-gel deposited TiO(sub 2) films

    SciTech Connect (OSTI)

    Bell, J.M.; Barczynska, J.; Evans, L.A.; MacDonald, K.A.; Wang, J.; Green, D.C.; Smith, G.B.

    1994-12-31

    Electrochromism in sol-gel deposited TiO{sub 2} films and films containing TiO{sub 2} and WO{sub 3} has been observed. The films are deposited by dip-coating from a precursor containing titanium isopropoxide in ethanol or titanium propoxide in ethanol, and after deposition the films are heat treated to between 250 C and 300 C. The films do not show any signs of crystallinity. However substantial coloration is observed using Li{sup +} ions in a non-aqueous electrolyte, both in pure TiO{sub 2} films and in mixed metal oxide films (WO{sub 3}:TiO{sub 2}), although the voltage required to produce coloration is different in the two cases. Results will be presented detailing the optical switching and charge transport properties of the films during cyclic voltammetry. These results will be used to compare the performance of the TiO{sub 2} films with other electrochromics. The TiO{sub 2} and mixed metal films all color cathodically, and the colored state is a neutral greyish color for TiO{sub 2}, while the bleached state is transparent and colorless. Results on coloration efficiency and the stability under repeated electrochemical cycling will also be presented. The neutral color of the TiO{sub 2} films and mixed-metal films means that electrochromic windows based on TiO{sub 2} may have significant advantages over WO{sub 3}-based windows. A detailed analysis of the optical properties of the colored state of the films will be presented. The dynamics of coloration for these films is also under investigation, and preliminary results will be presented.

  11. DEVELOPMENT OF ANALYTICAL METHODS FOR DETERMINING SUPPRESSOR CONCENTRATION IN THE MCU NEXT GENERATION SOLVENT (NGS)

    SciTech Connect (OSTI)

    Taylor-Pashow, K.; Fondeur, F.; White, T.; Diprete, D.; Milliken, C.

    2013-07-31

    Savannah River National Laboratory (SRNL) was tasked with identifying and developing at least one, but preferably two methods for quantifying the suppressor in the Next Generation Solvent (NGS) system. The suppressor is a guanidine derivative, N,N',N"-tris(3,7-dimethyloctyl)guanidine (TiDG). A list of 10 possible methods was generated, and screening experiments were performed for 8 of the 10 methods. After completion of the screening experiments, the non-aqueous acid-base titration was determined to be the most promising, and was selected for further development as the primary method. {sup 1}H NMR also showed promising results from the screening experiments, and this method was selected for further development as the secondary method. Other methods, including {sup 36}Cl radiocounting and ion chromatography, also showed promise; however, due to the similarity to the primary method (titration) and the inability to differentiate between TiDG and TOA (tri-n-ocytlamine) in the blended solvent, {sup 1}H NMR was selected over these methods. Analysis of radioactive samples obtained from real waste ESS (extraction, scrub, strip) testing using the titration method showed good results. Based on these results, the titration method was selected as the method of choice for TiDG measurement. {sup 1}H NMR has been selected as the secondary (back-up) method, and additional work is planned to further develop this method and to verify the method using radioactive samples. Procedures for analyzing radioactive samples of both pure NGS and blended solvent were developed and issued for the both methods.

  12. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    SciTech Connect (OSTI)

    Dr. Brian Dixon

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovationâ??s family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  13. Colloquium: Majorana Fermions in nuclear, particle and solid-state physics

    E-Print Network [OSTI]

    S. R. Elliott; M. Franz

    2014-12-01

    Ettore Majorana (1906-1938) disappeared while traveling by ship from Palermo to Naples in 1938. His fate has never been fully resolved and several articles have been written that explore the mystery itself. His demise intrigues us still today because of his seminal work, published the previous year, that established symmetric solutions to the Dirac equation that describe a fermionic particle that is its own anti-particle. This work has long had a significant impact in neutrino physics, where this fundamental question regarding the particle remains unanswered. But the formalism he developed has found many uses as there are now a number of candidate spin-1/2 neutral particles that may be truly neutral with no quantum number to distinguish them from their anti-particles. If such particles exist, they will influence many areas of nuclear and particle physics. Most notably the process of neutrinoless double beta decay can only exist if neutrinos are massive Majorana particles. Hence, many efforts to search for this process are underway. Majorana's influence doesn't stop with particle physics, however, even though that was his original consideration. The equations he derived also arise in solid state physics where they describe electronic states in materials with superconducting order. Of special interest here is the class of solutions of the Majorana equation in one and two spatial dimensions at exactly zero energy. These Majorana zero modes are endowed with some remarkable physical properties that may lead to advances in quantum computing and, in fact, there is evidence that they have been experimentally observed. This review first summarizes the basics of Majorana's theory and its implications. It then provides an overview of the rich experimental programs trying to find a fermion that is its own anti-particle in nuclear, particle, and solid state physics.

  14. Synthesis and application of new polymer bound catalysts

    SciTech Connect (OSTI)

    Fetterly, Brandon Michael

    2005-08-01

    Nitric acid has been shown to be a weak acid in acetonitrile. It is conceivable that a nitrate salt of a weakly Lewis acidic cation could furnish a ''naked'' nitrate anion as a basic catalyst in a variety of reactions in non-aqueous solvents. Such a nitrate salt could also be bound to a polymeric support via the cation, thereby allowing for reclamation and recycling of the nitrate ion. This subject is dealt with in Chapter 2, wherein my contributions consisted of performing all the reactions with the polymer supported catalyst and carrying out the experiments necessary to shed light on the reaction mechanisms. Chapter 3 contains a description of the structure and catalytic properties of an azidoproazaphosphatrane. This compound is an air-stable versatile catalyst that has proven useful not only homogeneously, but also when bound to a solid support. The synthesis of a polymer bound proazaphosphatrane containing a trivalent phosphorus is presented in Chapter 4. Such a compound has been sought after by our group for a number of years. Not only does the synthesis I have accomplished for it allow for easier separation of proazaphosphatrane catalysts from reaction mixtures, but recycling of the base is made much simpler. Proazaphosphatranes are useful homogeneous catalysts that activate atoms in other reagents, thus enhancing their reactivity. The next chapters deal with two such reactions with aldehydes and ketones, namely silylcyanations with trialkylsilylcyanides (Chapters 5 and 6) and reductions with poly(methylhydrosiloxane), in Chapter 7. In Chapter 5, Zhigang Wang performed the initial optimization and scoping of the reaction, while repetitions of the scoping experiments for reproducibility, determination of diastereomeric ratios, and experiments aimed at elucidating aspects of the mechanism were performed by me. The proazaphosphatrane coordinates to the silicon atom in both cases, thereby allowing the aforementioned reactions to proceed under much milder conditions. Proazaphosphatranes are also effective Broensted-Lowry bases. This is illustrated in Chapter 8 wherein a wide variety of conjugate addition reactions are catalyzed by proazaphosphatranes. In that chapter, repetitions of the nitroalkane addition reactions for reproducibility, improved spectral data for the products and comparisons of literature yields of all reactions were performed by the author.

  15. High Density Nano-Electrode Array for Radiation Detection

    SciTech Connect (OSTI)

    Mano Misra

    2010-05-07

    Bulk single crystals of Cd1-xZnxTe (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd1-xZnxTe with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd1-xZnxTe in an electrochemical route. In this investigation, Cd1-xZnxTe ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 ºC. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd0.9Zn0.1Te nanowires were 4.29x1013 cm-3, 1.56 eV and 2.76x1011?-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 ?Ci), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The preliminary results indicate that the CZT nanowire arrays can be used as a potential X-ray and low energy gamma ray detector material at room temperature with a much low bias potential (0.7 – 4V) as against 300 – 500 V applied in the commercial bulk detector materials.

  16. DOE-EMSP Final Report: Characterization of Changes in Colloid and DNAPL Affecting Surface Chemistry and Remediation

    SciTech Connect (OSTI)

    Susan E. Powers; Stefan J. Grimberg; Miles Denham

    2007-02-07

    The waste disposal to the M-area basin and A-14 outfall at the Savannah River Department of Energy facility in Aiken SC (USA) included a wide variety of inorganic aqueous flows and organic solvents in the form of dense non-aqueous phase liquids (DNAPL). The DNAPL has migrated through the subsurface resulting in widespread groundwater contamination. The goal of this research was to identify and quantify processes that could have affected the migration and remediation of the DNAPL in the subsurface. It was hypothesized that the variety of waste disposed at this site could have altered the mineral, microbial and DNAPL properties at this site relative to other DNAPL sites. The DNAPL was determined to have a very low interfacial tension and is suspected to be distributed in fine grained media, thereby reducing the effectiveness of soil vapor extraction remediation efforts. Although the DNAPL is primarily comprised of tetrachloroethene and trichloroethane, it also contains organic acids and several heavy metals. Experimental results suggest that iron from the aqueous and DNAPL phases undergoes precipitation and dechlorination reactions at the DNAPL-water interface, contributing to the low interfacial tension and acidity of the DNAPL. Biological activity in the contaminated region can also contribute to the low interfacial tension. PCE degrading bacteria produce biosurfactants and adhere to the DNAPL-water interface when stressed by high tetrachloroethene or low dissolved oxygen concentrations. The presence of iron can reduce the interfacial tension by nearly an order of magnitude, while the PCE degraders reduced the interfacial tension by nearly 50%. Abiotic changes in the mineral characteristics were not found to be substantially different between contaminated and background samples. The research completed here begins to shed some insight into the complexities of DNAPL fate and migration at sites where co-disposal of many different waste products occurred. Quantifying the low interfacial tension of the SRS DNAPL helps to formulate a new conceptual picture of the subsurface DNAPL migration and provides an explanation of the limited effectiveness of remediation efforts. Alternative designs for remediation that are more effective for sites with DNAPL in fine grained media are required.

  17. Single event-driven export of polycyclic aromatic hydrocarbons and suspended matter from coal tar-contaminated soil

    SciTech Connect (OSTI)

    Totsche, K.U.; Jann, S.; Kogel-Knabner, I. [University of Jena, Jena (Germany)

    2007-05-15

    Mobile colloidal and suspended matter is likely to affect the mobility of polycyclic aromatic hydrocarbons (PAHs) in the unsaturated soil zone at contaminated sites. We studied the release of mobile particles and dissolved organic matter as a function of variable climatic boundary conditions, and their effect on the export of PAHs at a coal tar-contaminated site using zero-tension lysimeters. Seepage water samples were analyzed for dissolved organic carbon (DOC), pH, electrical conductivity, turbidity, and particles larger than 0.7 {mu}m. The 16 Environmental Protection Agency PAHs were analyzed in the filtrate < 0.7 m and in the particle fraction. Our results show that extended no-flow periods that are followed by high-intensity rain events, such as thunderstorms, promote the mobilization of particles in the size 0.7 to 200 m. Mobilization is enforced by extended drying during summer. High particle concentrations are also associated with freezing and thawing cycles followed by either rain or snowmelt events. The export of PAHs is strongly connected to the release of particles in the 0.7- to 200-{mu}m size fraction. During the 2-yr monitoring period, up to 0.418 {mu}g kg{sup -1} PAHs were mobilized in the. ltrate (< 0.7 m) while the eightfold mass, 3.36 {mu}g kg{sup -1}, was exported with the retentate (0.7-200 {mu}m). Equilibrium dissolution of PAHs and transport in the dissolved phase seem to be of minor importance for the materials studied. Extreme singular-release events occurred in January 2003 and January 2004, when up to 55 {mu}g L{sup -1} PAHs per one single seepage event were observed within the retentate. Freezing and thawing cycles affect the PAH source materials, that is, the remnants of the nonaqueous phase liquid (NAPL). High mechanical strain during freezing results in the formation of particles. At the onset of the thawing and following rain or snowmelt events, PAHs associated with these particles are then exported from the lysimeter.

  18. Hydrous pyrolysis/oxidation: in-ground thermal destruction of organic contaminants

    SciTech Connect (OSTI)

    Knauss, K. G.; Aines, R.D.; Dibley, M.J.; Leif, R.N.; Mew, D.A.

    1997-03-11

    Experimental work with organic solvents at Lawrence Livermore National Laboratory has suggested that in situ thermal oxidation of these compounds via hydrous pyrolysis forms the basis for a whole new remediation method, called hydrous pyrolysis oxidation. Preliminary results of hydrothermal oxidation using both dissolved 0{sub 2} gas and mineral oxidants present naturally in soils (e.g., MnO{sub 2}) demonstrate that TCE, TCA, and even PCE can be rapidly and completely degraded to benign products at moderate conditions, easily achieved in thermal remediation. Polycyclic aromatic hydrocarbons (PAHS) have an even larger thermodynamic driving force favoring oxidation, and they are also amenable to in situ destruction. Today, the principal treatment methods for chlorinated solvent- and PAH-contaminated soil are to remove it to landfills, or incinerate it on site. The most effective method for treating ground water, Dynamic Underground Stripping (Newmark et al., 1995), still involves removing the contaminant for destruction elsewhere. Hydrous pyrolysis/oxidation would eliminate the need for long-term use of expensive treatment facilities by converting all remaining contaminant to benign products (e.g., carbon dioxide, water, and chloride ion). The technique is expected to be applicable to dense non-aqueous phase liquids (DNAPLS) and dissolved organic components. Soil and ground water would be polished without bringing them to the surface. This would dramatically decrease the cost of final site closure efforts. Large-scale cleanup using hydrous pyrolysis/oxidation may cost less than $10/yd. The end product of hydrous pyrolysis/oxidation is expected to be a clean site. The delivery concept for hydrous pyrolysis/oxidation utilizes the established experience in heating large volumes of ground developed in the Dynamic Underground Stripping Demonstration (Newmark et al., 1995). Steam and possibly oxygen are injected together, building a heated, oxygenated zone in the subsurface. When injection is halted, the steam condenses and contaminated groundwater returns to the heated zone. It mixes with the condensate and oxygen, destroying any dissolved contaminants. This avoids many of the mixing problems encountered in other in situ oxidation schemes. In other oxidation schemes, an oxidizing reagent is injected into the subsurface resulting in the displacement of the contaminant. Without a return process such as the steam condensation, the contaminant and oxidant never mix. Using hydrous pyrolysis/oxidation, DNAPLs and dissolved contaminants may be destroyed in place, without surface treatment. This will improve the rate and efficiency of remediation by rendering the hazardous materials into benign ones via a completely in situ process. Because the subsurface is heated during this process, hydrous pyrolysis/oxidation also takes advantage of the large increase in mass transfer rates which make contaminant more available for destruction, such as increased diffusion out of silty sediments. Many remediation processes are limited by the access of the reactants to the contaminant, making mass-transfer limitations the bane of remediation efforts in low-permeability media. In preparation for testing this method at Lawrence Livermore National Laboratory (TCE in groundwater) and at a Southern California pole treating site (fire product with PAH and pentachlorophenol), we are developing a concept for the implementation of hydrous pyrolysis/oxidation through co-injection of steam and possibly small amounts of oxygen, as well as evaluating the rate at which hydrous pyrolysis/oxidation occurs due to the natural presence of mineral oxidants such as manganese oxides when the water temperature is raised. We are also determining the thermodynamic properties (e.g., solubility, Henry`s Law constants, etc.) of these hazardous compounds, as a function of T and P, in order to be able to predict effectiveness and required time for design purposes and to optimize clean-up through the use of process-oriented hydrologic transport and geochemistry models. In spite of

  19. SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION

    SciTech Connect (OSTI)

    Timothy L. Ward

    2002-07-01

    Mixed-conducting ceramics have the ability to conduct oxygen with perfect selectivity at elevated temperatures, making them extremely attractive as membrane materials for oxygen separation and membrane reactor applications. While the conductivity of these materials can be quite high at elevated temperatures (typically 800-1000 C), much higher oxygen fluxes, or, alternatively, equivalent fluxes at lower temperatures, could be provided by supported thin or thick film membrane layers. Based on that motivation, the objective of this project was to explore the use of ultrafine aerosol-derived powder of a mixed-conducting ceramic material for fabrication of supported thick-film dense membranes. The project focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} (SCFO) because of the desirable permeability and stability of that material, as reported in the literature. Appropriate conditions to produce the submicron SrCo{sub 0.5}FeO{sub x} powder using aerosol pyrolysis were determined. Porous supports of the same composition were produced by partial sintering of a commercially obtained powder that possessed significantly larger particle size than the aerosol-derived powder. The effects of sintering conditions (temperature, atmosphere) on the porosity and microstructure of the porous discs were studied, and a standard support fabrication procedure was adopted. Subsequently, a variety of paste and slurry formulations were explored utilizing the aerosol-derived SCFO powder. These formulations were applied to the porous SCFO support by a doctor blade or spin coating procedure. Sintering of the supported membrane layer was then conducted, and additional layers were deposited and sintered in some cases. The primary characterization methods were X-ray diffraction and scanning electron microscopy, and room-temperature nitrogen permeation was used to assess defect status of the membranes.We found that non-aqueous paste/slurry formulations incorporating dispersant, plasticizer and binder provided superior cracking resistance compared to simple water, alcohol, or polyethylene glycol (PEG) based formulations. With a formulation employing castor oil as dispersant, isopropyl alcohol/mineral spirits as solvent, polyvinyl butyral as binder, and dibutyl phthalate/PEG as plasticizer, sintered SCFO membrane layers approximately 5 {micro}m thick with no apparent cracks were prepared using spin coating with several coats and sintering cycles. A similar but more viscous formulation applied by doctor blade gave a {approx} 10 {micro}m thick membrane layer in one coat, but with some apparent cracking. We demonstrated that the membrane layer could be densified while retaining porosity in the chemically identical support. This was accomplished by pre-sintering the support in air (1050 C), which coarsened the grain size and provided a relatively stable plate-shaped granular microstructure, followed by membrane layer fabrication with the highly-sinterable aerosol powder. Final densification was conducted by sintering in nitrogen ({approx}1100 C), which provided accelerated sintering rates and led to the desired layered perovskite phase content. In spite of these successes, low-temperature pressure-driven permeation testing with N2 showed that even the best membranes were not sufficiently defect free for high-temperature oxygen permeation testing. The source of these defects were not readily apparent from scanning electron microscopy, though incomplete or nonuniform membrane layer coverage from edge to edge of the support was probably one important factor.

  20. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect (OSTI)

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient measurements. The results provide a platform for further development of microkinetic models of FTS on Fe and a basis for more precise modeling of FTS activity of Fe catalysts. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on various realistic models of industrial, Fe-based FTS catalysts. Close-packed, most stable Fe(110) facet was analyzed and subsequently carbide formation was found to be facile leading to the choice of the FeC(110) model representing a Fe facet with a sub-surface C atom. The Pt adatom (Fe{sup Pt}(110)) was found to be the most stable model for our studies into Pt promotion and finally the role of steps was elucidated by recourse to the defected Fe(211) facet. Binding Energies(BEs), preferred adsorption sites and geometries for all FTS relevant stable species and intermediates were evaluated on each model catalyst facet. A mechanistic model (comprising of 32 elementary steps involving 19 species) was constructed and each elementary step therein was fully characterized with respect to its thermochemistry and kinetics. Kinetic calculations involved evaluation of the Minimum Energy Pathways (MEPs) and activation energies (barriers) for each step. Vibrational frequencies were evaluated for the preferred adsorption configuration of each species with the aim of evaluating entropy-changes, pre exponential factors and serving as a useful connection with experimental surface science techniques. Comparative analysis among these four facets revealed important trends in their relative behavior and roles in FTS catalysis. Overall the First Principles Calculations afforded us a new insight into FTS catalysis on Fe and modified-Fe catalysts.

  1. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    SciTech Connect (OSTI)

    Ding, Dong; Liu, Mingfei; Lai, Samson; Blinn, Kevin; Liu, Meilin

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details and stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.

  2. Study of safeguards system on dry reprocessing for fast breeder reactor

    SciTech Connect (OSTI)

    Li, T. K. (Tien K.); Burr, Tom; Menlove, Howard O.; Thomas, K. E. (Kenneth E.); Fukushima, M.; Hori, M.

    2002-01-01

    A 'Feasibility Study on the Commercialized Fast Breeder Reactor (FBR) Cycle System' is underway at Japan Nuclear Cycle Development Institute (JNC). Concepts to commercialize the FBR fuel cycle are being created together with their necessary research and development (R&D) tasks. 'Dry,' non-aqueous, processes are candidates for FBR fuel reprocessing. Dry reprocessing technology takes advantage of proliferation barriers, due to the lower decontamination factors achievable by the simple pyrochemical processes proposed. The concentration o f highly radioactive impurities and non-fissile materials in products from a dry reprocess is generally significantly larger than the normal aqueous (Purex) process. However, the safeguards of dry reprocesses have not been widely analyzed. In 2000, JNC and Los Alamos National Laboratoiy (LANL) initiated a joint research program to study the safeguards aspects of dry reprocessing. In this study, the safeguardability of the three options: metal electrorefining, oxide electrowinning, and fluoride volatility processes, are assessed. FBR spent fuels are decladded and powdered into mixed oxides (MOX) at the Head-End process either by oxidation-reduction reactions (metal electrorefining and fluoride volatility) or mechanically (oxide electrowinning). At the oxide electrowinning process, the spent MOX he1 powder is transferred to chloride in molten salt and nuclear materials are extracted onto cathode as oxides. For metal electrorefining process, on the other hand, the MOX fuel is converted to chloride in molten salt, and nuclear materials are extracted onto cathode as a metal fomi. At lhe fluoride volatility process, the MOX fuel powder is converted to U&/PuF6 (gaseous form) in a fluidized bed; plutonium and uranium fluorides are separated by volatilization properties and then are converted to oxides. Since the conceptual design of a dry reprocessing plant is incomplete, the operational mode, vessel capacities, residence times, and campaigns are not fully defined. Preliminary estimates of the longest acccptable campaign length while still meets loss detection goals were made using typical measurement errors and annual throughputs of plutonium within the facility. For all reprocessing facilities, both in-process inventory and the input/output materials measurements must be determined for closing the materials balance. Usually, operations are to be shut down periodically and plants are to be completely cleaned out to recover all materials in measurable forms during inventories. If there is no cleanout between campaigns, fluctuations of in-process inventory have to be monitored. We conclude that the three dry reprocessing methods will have adequate safeguardability, if limited to small-scale campaigns or to low annual throughputs. For a large scale, e.g,. 50 t(HM)/y FBR fuel reprocessing plant, there remain challenges to be addressed through process development in JNC and safeguards R&D study with LANL.

  3. Alternative (Potentially Green) Separations Media: Aqueous Biphasic and Related Systems � Extending the Frontier Final Report For Period September 1, 2002 � January 31, 2007

    SciTech Connect (OSTI)

    Robin D. Rogers

    2007-06-25

    Through the current DoE-BES funding, we have extended our fundamental understanding of the critical phase separation of aqueous polymer solutions at the molecular level, and have developed a similar understanding of their application as novel solvent systems. Our principal aims included mode of delivery of the aqueous biphasic system (ABS) solvent system and the application of this system to problems of reactive extraction. In the former case we have developed novel solid phase analogues, in the form of cross-linked polyethylene glycol hydrogels, and in the latter case we have examined the role that ABS might play in reaction engineering, with a view to greener, simpler, and safer processes. We have also developed a new salt/salt ABS and have extended our understanding of this system as well. The major outcomes are as follows: (1) Through the use of variable temperature phase diagrams, coupled with differential scanning calorimetry (DSC) measurements of the phases, a better understanding of the thermodynamics of phase formation was obtained. Evidence to the existence and role of an upper critical solution temperature (UCST) or lower critical solution temperature (LCST) (or both) in these systems was gained. With variable temperature solute partitioning, thermodynamic parameters were calculated, and inter-system comparisons were made. Through the use of Abraham's linear solvation energy regression (LSER) the solvent-solute properties of liquid/liquid ABS were examined. We have shown that ABS are indeed very tunable and LSERs have been used as a tool to compare these systems to traditional organic/water and other liquid/liquid systems. (2) We have successfully shown the development of novel reaction media for chemical synthesis and reaction; Aqueous Biphasic Reactive Extraction (ABRE). As a proof of concept, we have shown the synthesis of adipic acid from cyclohexene in an ABS, which represents an important development in the exploitation of this technology. Previous oxidations of this type have relied on the use of phase transfer catalysts, which are expensive to produce and difficult to recover. In this reaction the polyethylene glycol (PEG) phase seems to function simultaneously as the phase transfer catalyst, the reaction solvent, and to provide the reaction driving force. (3) PEG hydrogels may be used as probes for their macroscopic analogues by which the molecular events underlying the phase behavior of polymer-salt systems can be investigated. The properties of covalently cross-linked PEG hydrogels have been studied. It was demonstrated that these hydrogels could be thought of as analogous to polymer/salt ABS without phase separation. The salts examined cause collapse of the hydrogel, and there is a physical limit to the degree of collapse that can be achieved. In addition, salts bringing about significant collapse are only prevented from reaching this limit by the limits of their own solubility. This lead to our discovery that PEG will phase separate with KSCN at high enough concentration of polymer and salt. We have also successfully shown the development of an IL-PEG hydrogel as well as a Si-modified PEG hydrogel. We have also demonstrated for the first time that this cross-linked PEG matrix has been used to gel non-aqueous solvents. (4) The use of hydrophilic ionic liquids (ILs) in separation schemes has been accomplished via a 'salting out' technique using inorganic, kosmotropic salts that is applicable to many classes of these materials. We have begun to obtain a deeper knowledge about the role that each component plays in the process, including that of the ionic liquid cation and anion, the kosmotropic salt cation and anions, as well as the distribution of water in the system. This is allowing us to design separation systems with desired properties. In addition, temperature studies on these aqueous biphasic systems are revealing thermodynamic data for the first time, so that we can quantitate the importance of entropic and enthalpic contributions to the biphase-forming process.