Powered by Deep Web Technologies
Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Glossary Term - Electron Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Electron Previous Term (Electron) Glossary Main Index Next Term (Electron Volt (eV)) Electron Volt (eV) Electron Capture After electron capture, an atom contains one less proton and one more neutron. Electron capture is one process that unstable atoms can use to become more stable. During electron capture, an electron in an atom's inner shell is drawn into the nucleus where it combines with a proton, forming a neutron and a neutrino. The neutrino is ejected from the atom's nucleus. Since an atom loses a proton during electron capture, it changes from one element to another. For example, after undergoing electron capture, an atom of carbon (with 6 protons) becomes an atom of boron (with 5 protons). Although the numbers of protons and neutrons in an atom's nucleus change

2

Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device  

Science Conference Proceedings (OSTI)

A high-speed direct electron detection system is introduced to the field of transmission electron microscopy and applied to strain measurements in semiconductor nanostructures. In particular, a focused electron probe with a diameter of 0.5 nm was scanned over a fourfold quantum layer stack with alternating compressive and tensile strain and diffracted discs have been recorded on a scintillator-free direct electron detector with a frame time of 1 ms. We show that the applied algorithms can accurately detect Bragg beam positions despite a significant point spread each 300 kV electron causes during detection on the scintillator-free camera. For millisecond exposures, we find that strain can be measured with a precision of 1.3 Multiplication-Sign 10{sup -3}, enabling, e.g., strain mapping in a 100 Multiplication-Sign 100 nm{sup 2} region with 0.5 nm resolution in 40 s.

Mueller, Knut; Rosenauer, Andreas [Institut fuer Festkoerperphysik, Universitaet Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Ryll, Henning; Ordavo, Ivan; Ihle, Sebastian; Soltau, Heike [PNSensor GmbH, Roemerstrasse 28, 80803 Muenchen (Germany); Strueder, Lothar [Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 Muenchen (Germany); Volz, Kerstin [Materials Science Center and Faculty of Physics, Philipps Universitaet Marburg, Hans-Meerwein-Strasse, 35032 Marburg (Germany); Zweck, Josef [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, 93040 Regensburg (Germany)

2012-11-19T23:59:59.000Z

3

Nanopores, megatonnes, and milliseconds : exploring engineered peptides as antimicrobial, carbon-capture,and biocatalytic agents  

E-Print Network (OSTI)

This work investigates the roles that peptides play in the fields of antimicrobials, surface functionalization, carbon capture, and biocatalysis. The results demonstrate that peptides, sometimes dismissed for their lack ...

Barbero, Roberto Juan

2012-01-01T23:59:59.000Z

4

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

Stevens, C.G.

1978-08-29T23:59:59.000Z

5

Isotope separation by photoselective dissociative electron capture  

DOE Patents (OSTI)

A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

Stevens, Charles G. (Pleasanton, CA)

1978-01-01T23:59:59.000Z

6

Sudden, "Step" Electron Capture by Conjugated Polymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Sudden, "Step" Electron Capture by Conjugated Polymers Sudden, "Step" Electron Capture by Conjugated Polymers Andrew R. Cook, Paiboon Sreearunothai, Sadayuki Asaoka and John R. Miller J. Phys. Chem. A 115, 11615-11623 (2011). [Find paper at ACS Publications] Abstract: Data showing significant time-resolution-limited "step" capture of electrons following radiolysis by 7 - 10 ps electron pulses in a series of different length and different concentration conjugated polyfluorene polymers in tetrahydrofuran (THF) are presented. At the highest concentration, ~48 mM in repeat units for lengths from 20 to 133 fluorenes, ~30% of the electrons formed during pulse radiolysis were captured in the step, with a constant efficiency per repeat unit. Step capture per repeat unit (q = 6.9 M-1) is 60% of the presolvated electron capture efficiency

7

SLAC National Accelerator Laboratory - X-rays Capture Electron...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-rays Capture Electron 'Dance' By Glenn Roberts Jr. January 30, 2013 The way electrons move within and between molecules, transferring energy as they go, plays an important role...

8

Electron-capture delayed fission properties of 244Es  

Science Conference Proceedings (OSTI)

Electron-capture delayed fission was observed in {sup 244}Es produced via the {sup 237}Np({sup 12}C,5n){sup 244}Es reaction at 81 MeV (on target) with a production cross section of 0.31{+-}0.12 {micro}b. The mass-yield distribution of the fission fragments is highly asymmetric. The average preneutron-emission total kinetic energy of the fragments was measured to be 186{+-}19 MeV. Based on the ratio of the number of fission events to the measured number of {alpha} decays from the electron-capture daughter {sup 244}Cf (100% {alpha} branch), the probability of delayed fission was determined to be (1.2{+-}0.4) x 10{sup -4}. This value for the delayed fission probability fits the experimentally observed trend of increasing delayed fission probability with increasing Q value for electron-capture.

Shaughnessy, Dawn A.; Gregorich, Kenneth E.; Adams, Jeb L.; Lane, Michael R.; Laue, Carola A.; Lee, Diana M.; McGrath, Christopher A.; Ninov, Victor; Patin, Joshua B.; Strellis, Dan A.; Sylwester, Eric R.; Wilk, Philip A.; Hoffman, Darleane C.

2001-03-16T23:59:59.000Z

9

Electron Capture Reactions and Beta Decays in Steller Environments  

SciTech Connect

Electron capture reactions on Ni and Co isotopes are investigated by shell model calculations in steller environments. The capture rates depend sensitively on the distribution of the Gamow-Teller (GT) strength. The capture rates obtained by using GXPF1J Hamiltonian for fp-shell are found to be consistent with the rates obtained from experimental GT strength in {sup 58}Ni and {sup 60}Ni. Capture rates in Co isotopes, where there were large discrepancies among previous calculations, are also investigated. Beta decays of the N = 126 isotones are studied by shell model calculations taking into account both the GT and first-forbidden (FF) transitions. The FF transitions are found to be important to reduce the half-lives by twice to several times of those by the GT contributions only. Implications of the short half-lives of the waiting point nuclei on the r-process nucleosynthesis are discussed for various astrophysical conditions.

Suzuki, T. [Department of Physics and Graduate School of Integrated Basic Sciences, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan and Center for Nuclear Study, University of Tokyo, Hirosawa, Wako-shi, Saitama, 351-0198 (Japan); Mao, H. [Graduate School of Integrated Basic Sciences, Nihon University, Sakurajosui-3-25-40, Setagaya-ku, Tokyo 156-8550, Japan and ENSPS, Pole API-Parc d'Innovation, Boulevard Sebastien Brant, BP 10413, 67412 ILLKIRCH CEDEXL (France); Honma, M. [Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580 (Japan); Yoshida, T. [Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kajino, T. [Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan) and National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Otsuka, T. [Department of Physics and Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan) and RIKEN, Hirosawa, Wako-shi, Saitama 351-0198 (Japan)

2011-10-28T23:59:59.000Z

10

Radiative electron capture by fully stripped channeled light ions  

Science Conference Proceedings (OSTI)

The cross sections for radiative electron capture (REC) into the [ital K] shell of bare and H-like light ions of [sup 12]C, [sup 16]O, [sup 19]F, and [sup 32]S are measured at different energies, under channeling conditions using a Si single crystal as target. These cross section data using different projectiles are shown to fall on a universal curve when plotted against a scaled variable, the adiabaticity parameter [eta][sub [ital K

Tribedi, L.C.; Nanal, V.; Press, M.R.; Kurup, M.B.; Prasad, K.G.; Tandon, P.N. (Tata Institute of Fundamental Research, Bombay 400 005 (India))

1994-01-01T23:59:59.000Z

11

A mobile and asynchronous electronic data capture system for epidemiologic studies  

Science Conference Proceedings (OSTI)

A Central Data Management (CDM) system based on electronic data capture (EDC) software and study specific databases is an essential component for assessment and management of large data volumes in epidemiologic studies. Conventional CDM systems using ... Keywords: Data dictionary, Electronic case report form (eCRF), Electronic data capture (EDC), Mobile asynchronous data capture

Jens Meyer, Daniel Fredrich, Jens Piegsa, Mohamad Habes, Neeltje Van Den Berg, Wolfgang Hoffmann

2013-06-01T23:59:59.000Z

12

CP-violation reach of an electron capture neutrino beam  

E-Print Network (OSTI)

This article extends the work of Bernabeu and Espinoza by examining the CP-violation reach of a $^{150}$Dy electron capture beam through the variation of the two Lorentz boosts, the number of useful electron capture decays, the relative run time of each boost and the number of atmospheric backgrounds. The neutrinos are assumed to be sourced at CERN with an upgraded SPS and are directed towards a 440 kton Water Cerenkov detector located at the Canfranc laboratory. Two large `CP-coverage' choices for the boost pairings are found; a $\\delta$-symmetrical coverage for $(\\gamma_{1}, \\gamma_{2})$ = (280, 160) and an $\\delta$-asymmetric coverage for $(\\gamma_{1}, \\gamma_{2})$ = (440,150). With a nominal useful decay rate of $N_{\\rm ions} = 10^{18}$ per year, the $\\delta$-symmetric setup can rule out CP-conservation down to $\\sin^{2}2\\theta_{13} = 3\\cdot 10^{-4}$. To reach $\\sin^{2}2\\theta_{13} = 1\\cdot 10^{-3}$ for both $\\delta 0$ requires a useful decay rate of $N_{\\rm ions} = 6\\cdot 10^{17}$ per year.

Orme, Christopher

2009-01-01T23:59:59.000Z

13

CP-violation reach of an electron capture neutrino beam  

E-Print Network (OSTI)

This article extends the work of Bernabeu and Espinoza by examining the CP-violation reach of a $^{150}$Dy electron capture beam through the variation of the two Lorentz boosts, the number of useful electron capture decays, the relative run time of each boost and the number of atmospheric backgrounds. The neutrinos are assumed to be sourced at CERN with an upgraded SPS and are directed towards a 440 kton Water Cerenkov detector located at the Canfranc laboratory. Two large `CP-coverage' choices for the boost pairings are found; a $\\delta$-symmetrical coverage for $(\\gamma_{1}, \\gamma_{2})$ = (280, 160) and an $\\delta$-asymmetric coverage for $(\\gamma_{1}, \\gamma_{2})$ = (440,150). With a nominal useful decay rate of $N_{\\rm ions} = 10^{18}$ ions per year, the $\\delta$-symmetric setup can rule out CP-conservation down to $\\sin^{2}2\\theta_{13} = 3\\cdot 10^{-4}$. To reach $\\sin^{2}2\\theta_{13} = 1\\cdot 10^{-3}$ for both $\\delta 0$ requires a useful decay rate of $N_{\\rm ions} = 6\\cdot 10^{17}$ ions per year.

Christopher Orme

2009-12-14T23:59:59.000Z

14

Radiative Electron Capture Studied for Bare, Decelerated Uranium Th. Sthlker1,2  

E-Print Network (OSTI)

Radiative Electron Capture Studied for Bare, Decelerated Uranium Ions Th. St?hlker1,2 , X. Ma1,3 ,T the deceleration technique for bare uranium ions at the ESR storage ring we studied the Radiative Electron Capture in collisions of bare uranium ions with light target atoms at low beam energies. This allows us to extend our

15

Enhanced orbital electron-capture nuclear decay rate in compact medium  

E-Print Network (OSTI)

The eigenstate energies of an atom increase under spatial confinement and this effect should also increase the electron density of the orbital electrons at the nucleus thus increasing the decay rate of an electron-capturing radioactive nucleus. We have observed that the orbital electron capture rates of 109In and 110Sn increased by (1.00+-0.17)% and (0.48+-0.25)% respectively when implanted in the small Au lattice versus large Pb lattice. These results have been understood because of the higher compression experienced by the large radioactive atoms due to the spatial confinement in the smaller Au lattice.

A. Ray; P. Das; S. K. Saha; A. Goswami; A. De

2009-04-02T23:59:59.000Z

16

Millisecond Oxidation of Alkanes  

Science Conference Proceedings (OSTI)

This project was undertaken in response to the Department of Energy's call to research and develop technologies 'that will reduce energy consumption, enhance economic competitiveness, and reduce environmental impacts of the domestic chemical industry.' The current technology at the time for producing 140 billion pounds per year of propylene from naphtha and Liquified Petroleum Gas (LPG) relied on energy- and capital-intensive steam crackers and Fluidized Catalytic Cracking (FCC) units. The propylene is isolated from the product stream in a costly separation step and subsequently converted to acrylic acid and other derivatives in separate production facilities. This project proposed a Short Contact Time Reactor (SCTR)-based catalytic oxydehydrogenation process that could convert propane to propylene and acrylic acid in a cost-effective and energy-efficient fashion. Full implementation of this technology could lead to sizeable energy, economic and environmental benefits for the U. S. chemical industry by providing up to 45 trillion BTUs/year, cost savings of $1.8 billion/year and a combined 35 million pounds/year reduction in environmental pollutants such as COx, NOx, and SOx. Midway through the project term, the program directive changed, which approval from the DOE and its review panel, from direct propane oxidation to acrylic acid at millisecond contact times to a two-step process for making acrylic acid from propane. The first step was the primary focus, namely the conversion of propane to propylene in high yields assisted by the presence of CO2. The product stream from step one was then to be fed directly into a commercially practiced propylene-to-acrylic acid tandem reactor system.

Scott Han

2011-09-30T23:59:59.000Z

17

A partnership approach for Electronic Data Capture in small-scale clinical trials  

Science Conference Proceedings (OSTI)

Amid researchers' growing need for study data management, the CTSA-funded Institute for Translational Health Sciences developed an approach to combine technical and scientific resources with small-scale clinical trials researchers in order to make Electronic ... Keywords: Biomedical informatics, Clinical trials, Electronic Data Capture

Joshua D. Franklin; Alicia Guidry; James F. Brinkley

2011-12-01T23:59:59.000Z

18

Experimental investigations of electron capture from atomic hydrogen and deuterium by alpha particles  

DOE Green Energy (OSTI)

We report progress made during the period 15 September 1991--14 September 1992 on the project Experimental Investigations of Electron Capture from Atomic Hydrogen and Deuterium by Alpha Particles''. In the past year we have developed reliable, narrow energy spread, high-current sources of He[sup ++] based on direct-current magentron and electron-cyclotron resonance discharges. These sources have been proven on our test bench accelerator which has been upgraded to also allow us to test atomic hydrogen effusive targets. We have thus made substantial progress toward our goal of studying single electron capture from atomic hydrogen by doubly-ionized helium. A research plan for the upcoming year is also presented.

Gay, T.J.; Park, J.T.

1992-01-01T23:59:59.000Z

19

Calculations on Electron Capture in Low Energy Ion-Molecule Collisions  

DOE Green Energy (OSTI)

Recent progress on the application of a quantal, molecular-orbital, close-coupling approach to the calculation of electron capture in collisions of multiply charged ions with molecules is discussed. Preliminary results for single electron capture by N{sup 2+} with H{sub 2} are presented. Electron capture by multiply charged ions colliding with H{sub 2} is an important process in laboratory and astrophysical plasmas. It provides a recombination mechanism for multiply charged ions in x-ray ionized astronomical environments which may have sparse electron and atomic hydrogen abundances. In the divertor region of a tokamak fusion device, charge exchange of impurity ions with H{sub 2} plays a role in the ionization balance and the production of radiative energy loss leading to cooling, X-ray and ultraviolet auroral emission from Jupiter is believed to be due to charge exchange of O and S ions with H{sub 2} in the Jovian atmosphere. Solar wind ions interacting with cometary molecules may have produced the x-rays observed from Comet Hyakutake. In order to model and understand the behavior of these environments, it is necessary to obtain total, electronic state-selective (ESS), and vibrational (or rotational) state-selective (VSS) capture cross sections for collision energies as low as 10 meV/amu to as high as 100 keV/amu in some instances. Fortunately, charge transfer with molecular targets has received considerable experimental attention. Numerous measurements have been made with flow tubes, ion traps, and ion beams. Flow tube and ion trap studies generally provide information on rate coefficients for temperatures between 800 K and 20,000 K. In this article, we report on the progress of our group in implementing a quantum-mechanical Molecular Orbital Close Coupling (MOCC) approach to the study of electron capture by multiply charged ions in collisions with molecules. We illustrate this with a preliminary investigation of Single Electron Capture (SEC) by N{sup 2+} with H{sub 2}.

Stancil, P.C. [Oak Ridge National Lab., TN (United States); Zygelman, B. [W.M. Keck Lab. for Computational Physics, Univ. of Nevada, Las Vegas, NV (United States); Kirby, K. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

1997-12-31T23:59:59.000Z

20

Probing the nuclides {sup 102}Pd, {sup 106}Cd, and {sup 144}Sm for resonant neutrinoless double-electron capture  

SciTech Connect

The Q values for double-electron capture in {sup 102}Pd, {sup 106}Cd, and {sup 144}Sm have been measured by Penning-trap mass spectrometry. The results exclude at present all three nuclides from the list of suitable candidates for a search for resonant neutrinoless double-electron capture.

Goncharov, M.; Blaum, K.; Eliseev, S. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Block, M.; Herfurth, F.; Minaya Ramirez, E. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Planckstrasse 1, D-64291 Darmstadt (Germany); Droese, C.; Schweikhard, L. [Institut fuer Physik, Ernst-Moritz-Arndt-Universitaet, D-17487 Greifswald (Germany); Novikov, Yu. N. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Petersburg Nuclear Physics Institute, Gatchina, RU-188300 St. Petersburg (Russian Federation); Department of Physics, St. Petersburg State University, RU-198504 St. Petersburg (Russian Federation); Zuber, K. [Institut fuer Kern- und Teilchenphysik, Technische Universitaet, D-01069 Dresden (Germany)

2011-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Evaluation of electron capture reaction rates in Ni isotopes in stellar environments  

SciTech Connect

Electron capture rates in Ni isotopes are studied in stellar environments, that is, at high densities and high temperatures during the core-collapse and postbounce explosive nucleosynthesis in supernovae. Reaction rates in {sup 58}Ni and {sup 60}Ni, as well as in {sup 56}Ni, {sup 62}Ni, and {sup 64}Ni, are evaluated by shell-model calculations with the use of a new shell-model Hamiltonian in the fp shell, GXPF1J. While the previous shell-model calculations failed to reproduce the measured peaks of Gamow-Teller strength in {sup 58}Ni and {sup 60}Ni, the present new Hamiltonian is found to reproduce them very well, as well as the capture rates obtained from the observed strengths. Strengths and energies of the Gamow-Teller transitions in {sup 56}Ni, {sup 62}Ni, and {sup 64}Ni are also found to be consistent with the observations.

Suzuki, Toshio [Department of Physics and Graduate School of Integrated Basic Sciences, College of Humanities and Sciences, Nihon University Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan); Center for Nuclear Study, University of Tokyo, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Honma, Michio [Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580 (Japan); Mao, Helene [ENSPS, Pole API-Parc d'Innovation, Boulevard Sebastien Brant, BP 10413, F-67412 Illkirch Cedex (France); Otsuka, Takaharu [Department of Physics and Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States); Kajino, Toshitaka [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Deaprtment of Astronomy, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2011-04-15T23:59:59.000Z

22

Fine-grid calculations for stellar electron and positron capture rates on Fe isotopes  

SciTech Connect

The acquisition of precise and reliable nuclear data is a prerequisite to success for stellar evolution and nucleosynthesis studies. Core-collapse simulators find it challenging to generate an explosion from the collapse of the core of massive stars. It is believed that a better understanding of the microphysics of core-collapse can lead to successful results. The weak interaction processes are able to trigger the collapse and control the lepton-to-baryon ratio (Y{sub e}) of the corematerial. It is suggested that the temporal variation of Y{sub e} within the core of a massive star has a pivotal role to play in the stellar evolution and a fine-tuning of this parameter at various stages of presupernova evolution is the key to generate an explosion. During the presupernova evolution of massive stars, isotopes of iron, mainly {sup 54-56}Fe, are considered to be key players in controlling Y{sub e} ratio via electron capture on these nuclides. Recently an improved microscopic calculation of weak-interaction-mediated rates for iron isotopes was introduced using the proton-neutron quasiparticle random-phase-approximation (pn-QRPA) theory. The pn-QRPA theory allows a microscopic state-by-state calculation of stellar capture rates which greatly increases the reliability of calculated rates. The results were suggestive of some fine-tuning of the Y{sub e} ratio during various phases of stellar evolution. Here we present for the first time the fine-grid calculation of the electron and positron capture rates on {sup 54-56}Fe. The sensitivity of the pn-QRPA calculated capture rates to the deformation parameter is also studied in this work. Core-collapse simulators may find this calculation suitable for interpolation purposes and for necessary incorporation in the stellar evolution codes.

Nabi, Jameel-Un, E-mail: jameel@giki.edu.pk [Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Faculty of Engineering Sciences (Pakistan)] [Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Faculty of Engineering Sciences (Pakistan); Tawfik, Abdel Nasser, E-mail: a.tawfik@eng.mti.edu.eg [MTI University, Egyptian Center for Theoretical Physics (ECTP) (Egypt)

2013-03-15T23:59:59.000Z

23

A Partnership Approach for Electronic Data Capture in Small-Scale Clinical Joshua D. Franklin, MLIS1  

E-Print Network (OSTI)

. Franklin, MLIS1 , Paul Oldenkamp2 , Alicia Guidry1 , James F. Brinkley, MD, PhD1 1 University of Washington capture (EDC) systems. AMIA Annu Symp Proc 2008 Nov 6; 960. 2. Oldenkamp P. Guide to low cost electronic

Washington at Seattle, University of

24

Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector  

SciTech Connect

Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

Johnson, J.E.; Bates, T.S. [NOAA, Seattle, WA (United States)

1993-12-01T23:59:59.000Z

25

Search for Oscillation of the Electron-Capture Decay Probability of $^{142}$Pm  

E-Print Network (OSTI)

We have searched for time modulation of the electron capture decay probability of $^{142}$Pm in an attempt to confirm a recent claim from a group at the Gesellschaft f\\"{u}r Schwerionenforschung (GSI). We produced $^{142}$Pm via the $^{124}$Sn($^{23}$Na, 5n)$^{142}$Pm reaction at the Berkeley 88-Inch Cyclotron with a bombardment time short compared to the reported modulation period. Isotope selection by the Berkeley Gas-filled Separator is followed by implantation and a long period of monitoring the $^{142}$Nd K$_{\\alpha}$ x-rays from the daughter. The decay time spectrum of the x-rays is well-described by a simple exponential and the measured half-life of 40.68(53) seconds is consistent with the accepted value. We observed no oscillatory modulation at the proposed frequency at a level 31 times smaller than that reported by Litvinov {\\it et al.} (Phys. Lett. B 664 (2008) 162; arXiv:0801.2079 [nucl-ex]). A literature search for previous experiments that might have been sensitive to the reported modulation uncovered another example in $^{142}$Eu electron-capture decay. A reanalysis of the published data shows no oscillatory behavior.

P. A. Vetter; R. M. Clark; J. Dvorak; S. J. Freedman; K. E. Gregorich; H. B. Jeppesen; D. Mittelberger; M. Wiedeking

2008-07-03T23:59:59.000Z

26

Search for Oscillation of the Electron-Capture Decay Probability of Pm-142  

SciTech Connect

We have searched for time modulation of the electron capture decay probability of 142Pm in an attempt to confirm a recent claim from a group at the Gesellschaft fur Schwerionenforschung (GSI). We produced 142Pm via the 124Sn(23Na, 5n)142Pm reaction at the Berkeley 88-Inch Cyclotron with a bombardment time short compared to the reported modulation period. Isotope selection by the Berkeley Gas-filled Separator is followed by implantation and a long period of monitoring the 142Nd K alpha x-rays from the daughter. The decay time spectrum of the x-rays is well-described by a simple exponential and the measured half-life of 40.68(53) seconds is consistent with the accepted value. We observed no oscillatory modulation at the proposed frequency at a level 31 times smaller than that reported by Litvinov (Phys. Lett. B 664 (2008) 162). A literature search for previous experiments that might have been sensitive to the reported modulation uncovered another example in 142Eu electron-capture decay. A reanalysis of the published data shows no oscillatory behavior.

Vetter, Paul A; Vetter, Paul; Clark, Roderick; Dvorak, Jan; Freedman, Stuart; Gregorich, Kenneth; Jeppesen, Henrik; Mittelberger, Daniel; Wiedeking, Mathis

2008-07-03T23:59:59.000Z

27

Formation of negative hydrogen ion: Polarization electron capture and nonthermal shielding  

Science Conference Proceedings (OSTI)

The influence of the nonthermal shielding on the formation of the negative hydrogen ion (H{sup -}) by the polarization electron capture are investigated in partially ionized generalized Lorentzian plasmas. The Bohr-Lindhard method has been applied to obtain the negative hydrogen formation radius and cross section as functions of the collision energy, de Broglie wave length, Debye length, impact parameter, and spectral index of the plasma. The result shows that the nonthermal character of the plasma enhances the formation radius of the negative hydrogen, especially, for small Debye radii. It is found that the nonthermal effect increases the formation cross section of the negative hydrogen. It is also found that the maximum position of the formation cross section approaches to the collision center with an increase of the spectral index. In addition, it is found that the formation cross section significantly decreases with an increase of the Debye length, especially, for small spectral indices.

Ki, Dae-Han [Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of); Jung, Young-Dae [Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of); Department of Bio-Nano Technology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590 (United States)

2012-09-07T23:59:59.000Z

28

Millisecond Proto-Magnetars & Gamma Ray Bursts  

E-Print Network (OSTI)

In the seconds after core collapse and explosion, a thermal neutrino-driven wind emerges from the cooling, deleptonizing newly-born neutron star. If the neutron star has a large-scale magnetar-strength surface magnetic field and millisecond rotation period, then the wind is driven primarily by magneto-centrifugal slinging, and only secondarily by neutrino interactions. The strong magnetic field forces the wind to corotate with the stellar surface and the neutron star's rotational energy is efficiently extracted. As the neutron star cools, and the wind becomes increasingly magnetically-dominated, the outflow becomes relativistic. Here I review the millisecond magnetar model for long-duration gamma ray bursts and explore some of the basic physics of neutrino-magnetocentrifugal winds. I further speculate on some issues of collimation and geometry in the millisecond magnetar model.

Todd A. Thompson

2005-04-27T23:59:59.000Z

29

Electron-capture delayed fission properties of neutron-deficient einsteinium nuclei  

Science Conference Proceedings (OSTI)

Electron-capture delayed fission (ECDF) properties of neutron-deficient einsteinium isotopes were investigated using a combination of chemical separations and on-line radiation detection methods. {sup 242}Es was produced via the {sup 233}U({sup 14}N,5n){sup 242}Es reaction at a beam energy of 87 MeV (on target) in the lab system, and was found to decay with a half-life of 11 {+-} 3 seconds. The ECDF of {sup 242}Es showed a highly asymmetric mass distribution with an average pre-neutron emission total kinetic energy (TKE) of 183 {+-} 18 MeV. The probability of delayed fission (P{sub DF}) was measured to be 0.006 {+-} 0.002. In conjunction with this experiment, the excitation functions of the {sup 233}U({sup 14}N,xn){sup 247{minus}x}Es and {sup 233}U({sup 15}N,xn){sup 248{minus}x}Es reactions were measured for {sup 243}Es, {sup 244}Es and {sup 245}Es at projectile energies between 80 MeV and 100 MeV.

Shaughnessy, Dawn A.

2000-01-05T23:59:59.000Z

30

Single- and double-electron capture processes in low-energy collisions of N{sup 3+} with He  

SciTech Connect

Single-electron capture (SEC) and double-electron capture (DEC) processes in collisions of ground state N{sup 3+} (2s{sup 2} {sup 1}S) ions with He are investigated by using the quantum-mechanical molecular-orbital close-coupling (QMOCC) method. The ab initio adiabatic potentials, radial and rotational coupling matrices utilized in QMOCC calculations, are obtained from the multireference single- and double-excitation configuration interaction approach. Total and state-selective SEC and DEC cross sections are presented in the low-energy range from 0.1 eV to 15 keV (i.e., 0.007 eV/u -1.07 keV/u) and rate coefficients in the temperature range from 10{sup 4} to 10{sup 7} K. Our results indicate that the SEC dominates the charge-transfer process in the considered energy region of this collision system and the SEC cross sections are nearly constant in the relatively high-collision energy region, while the DEC cross sections are about 2 orders of magnitude smaller. It is found that, for the SEC processes, in the dominant mechanisms, electrons are captured to exoergic channels N{sup 2+} (2s2p{sup 2} {sup 2}D,{sup 2}S), and for the DEC processes, they are captured to N{sup +} (2s{sup 2}2p{sup 2} {sup 1}D,{sup 1}S). Our calculations also reveal that rotational couplings become important at E > 10 eV/u for SEC and E > 200 eV/u for DEC processes.

Liu, X. J. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Wang, J. G. [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Qu, Y. Z. [College of Material Sciences and Optoelectronic Technology, Graduate University of the Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Buenker, R. J. [Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universitaet Wuppertal, D-42097 Wuppertal (Germany)

2011-10-15T23:59:59.000Z

31

State-selective electron capture in {sup 3}He{sup 2+} + He collisions at intermediate impact energies  

SciTech Connect

In this work we have measured single-electron capture in collisions of {sup 3}He{sup 2+} projectiles incident on a helium target for energies of 13.3-100 keV/amu with the cold-target recoil-ion momentum spectroscopy setup implemented at the Centro Atomico Bariloche. State-selective single-capture cross sections were measured as a function of the impact energy. They were found to agree with previous existing data from the Frankfurt group, starting at the impact energy of 60 keV/amu; as well as with recent data, at 7.5 keV/amu, from the Lanzhou group. The present experimental results are also contrasted to the classical trajectory Monte Carlo method with dynamical screening.

Alessi, M. [Instituto Balseiro, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Otranto, S. [CONICET and Departamento de Fisica Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Focke, P. [Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)

2011-01-15T23:59:59.000Z

32

MICROWAVE QUASI-PERIODIC PULSATION WITH MILLISECOND BURSTS IN A SOLAR FLARE ON 2011 AUGUST 9  

SciTech Connect

A peculiar microwave quasi-periodic pulsation (QPP) accompanying a hard X-ray (HXR) QPP of about 20 s duration occurred just before the maximum of an X6.9 solar flare on 2011 August 9. The most interesting aspect is that the microwave QPP consists of millisecond timescale superfine structures. Each microwave QPP pulse is made up of clusters of millisecond spike bursts or narrowband type III bursts. There are three different frequency drift rates: the global frequency drift rate of the microwave QPP pulse group, the frequency drift rate of the microwave QPP pulse, and the frequency drift rate of individual millisecond spikes or type III bursts. The physical analysis indicates that the energetic electrons accelerating from a large-scale highly dynamic magnetic reconnecting current sheet above the flaring loop propagate downward, impact the flaring plasma loop, and produce HXR bursts. The tearing-mode (TM) oscillations in the current sheet modulate HXR emission and generate HXR QPP; the energetic electrons propagating downward produce Langmuir turbulence and plasma waves, resulting in plasma emission. The modulation of TM oscillation on the plasma emission in the current-carrying plasma loop may generate microwave QPP. The TM instability produces magnetic islands in the loop. Each X-point will be a small reconnection site and will accelerate the ambient electrons. These accelerated electrons impact the ambient plasma and trigger the millisecond spike clusters or the group of type III bursts. Possibly, each millisecond spike burst or type III burst is one of the elementary bursts (EBs). A large number of such EB clusters form an intense flaring microwave burst.

Tan Baolin; Tan Chengming, E-mail: bltan@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories of the Chinese Academy of Sciences, Datun Road A20, Chaoyang District, Beijing 100012 (China)

2012-04-10T23:59:59.000Z

33

Experimental investigations of electron capture from atomic hydrogen and deuterium by alpha particles  

DOE Green Energy (OSTI)

We have undertaken a program at the University of Missouri-Rolla to experimentally determine cross sections for ion-atom collisions of interest in fusion reactor development. During the last grant period, we have made measurements of total and singly-differential cross sections for the alpha double-capture reaction. He{sup ++} + He(ls{sup 2}) {yields} He({Sigma}n,{ell}) + He{sup ++}. Collisions of this type have been discussed as a basis for diagnostics in which alphas are neutralized in a single collisions either by a HeI beam or by the ablative cloud from mechanically introduced impurity pellets. We are now finishing measurements of cross sections for the alpha single capture reaction He{sup ++} + He(1s{sup 2}) {yields} He{sup +}(n) + He{sup +}(1s), and propose to study He{sup ++} + H(1s) {yields} He{sup +}(n) + H{sup +} during next year. Accurate knowledge of these cross sections is fundamental for modeling of neutral-hydrogen beam penetration in fusion plasmas as well as for spectroscopic diagnostics of alpha densities and velocity distributions, especially for the case of capture into the n = 4 state of the projectile He{sup +}. Our measurements are made using a unique collision spectrometer discussed in this paper.

Not Available

1990-01-01T23:59:59.000Z

34

A bright millisecond radio burst of extragalactic origin  

E-Print Network (OSTI)

Pulsar surveys offer one of the few opportunities to monitor even a small fraction (~0.00001) of the radio sky for impulsive burst-like events with millisecond durations. In analysis of archival survey data, we have discovered a 30-Jy dispersed burst of duration <5 ms located three degrees from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the Universe imply a distance to the burst of <1 Gpc No further bursts are seen in 90-hr of additional observations, implying that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and act as insightful cosmological probes.

D. R. Lorimer; M. Bailes; M. A. McLaughlin; D. J. Narkevic; F. Crawford

2007-09-27T23:59:59.000Z

35

Angular scattering in electron capture and loss D/sup -/ beam formation processes  

Science Conference Proceedings (OSTI)

The development of high energy (> 150 keV) neutral beams for heating and fueling magnetic fusion devices depends on the ability to produce well-collimated negative ion beams. The double capture charge-exchange technique is a known, scalable method. In order to maximize the overall efficiency of the process and to achieve the desired beam characteristics, it is necessary to examine the optical qualities of the beams as well as the total efficiency of beam production. A combined modeling and experimental study of the angular scattering effects in negative ion formation and loss processes has therefore been undertaken.

Coggiola, M.J.; Hodges, R.V.; Huestis, D.L.; Peterson, J.R.

1980-01-01T23:59:59.000Z

36

Experimental investigations of electron capture from atomic hydrogen and deuterium by alpha particles  

DOE Green Energy (OSTI)

We have undertaken a program at the University of Missouri-Rolla to experimentally determine cross sections for ion-atom collisions of interest in fusion reactor development. During the last grant period, we finished measurements of total sections for the alpha single-capture reaction (1) He{sup ++} + He(1s{sup 2}) {yields} He{sup +}(n) + He{sup +}(1s), and we propose to study (2) He{sup ++} + H(1s) {yields} He{sup +}(n) + H{sup +} this year. Accurate knowledge of these cross sections is fundamental for modeling of neutral-hydrogen beam penetration in fusion plasmas as well as for spectroscopic diagnostics of alpha densities and velocity distributions, especially for the case of capture into the n=4 state of the projectile He{sup +}. Our measurements are made using a unique collision spectrometer discussed below. Reaction (1) was studied for alpha energies between 45 and 135 keV, using the technique of ion-energy spectroscopy. This technique has two major advantages over optical measurements. First, cascading corrections are avoided because the fast collision partner is detected, rather than a secondary photon. Second, no knowledge of detector efficiencies is required, because a ratio of the scattered to incident beam counting rates is measured. Two sources of possible systematic error in the determination of final cross sections are thereby eliminated. Moreover, we have studied the angular dependence of cross sections for (1), and can thus be certain that the measured total cross sections are not low due to incomplete angular acceptance of the apparatus, a problem known to exist in some previous total cross section measurements of this type.

Not Available

1991-01-01T23:59:59.000Z

37

Theoretical study of electron capture in ion-ion and ion-atom collisions. Progress report, September 1, 1980-April 30, 1981  

SciTech Connect

The eikonal approximation has been recently shown to be of significant utility in the study of electron capture cross sections for energetic ion-atom collisions. The method generally gives much better agreement with available experimental data than does the simple OBK approximation without substantially increasing the difficulty of computation. In the present work, the total cross section is computed for electron capture into an arbitrary nl subshell of H/sup +/, C/sup +6/, O/sup +8/, and Fe/sup +24/ ions from ground state hydrogen atoms, at energies of 40 to 200 keV/nuclear (30 to 100 keV in the H/sup +/ case). These species were selected because of their importance in fusion studies. Interesting variations with l were obtained. Cross sections for capture into an arbitrary final n-shell, or into all final bound states were also obtained. An analytical closed form expression is derived for electron capture from an arbitrary initial nlm state to an arbitrary final n'l'm' state of a hydrogenic target. Numerical results are presented for all n' = 2,3 final states in hydrogen, which may be subjected to experimental test in the near future. Extension of the eikonal method to multielectron targets was studied. There are ambiguities in the method requiring further analysis. Agreement with experimental data is nevertheless satisfactory, but the high energy results are suspect.

Lieber, M.; Chan, F.T.

1981-04-01T23:59:59.000Z

38

Analytical Method for the Detection of Ozone Depleting Chemicals (ODC) in Commercial Products Using a Gas Chromatograph with an Electron Capture Detector (GC-ECD)  

SciTech Connect

This document describes an analytical procedure that was developed for the trace level detection of residual ozone depleting chemicals (ODC) associated with the manufacture of selected commercial products. To ensure the United States meets it obligation under the Montreal Protocol, Congress enacted legislation in 1989 to impose an excise tax on electronic goods imported into the United States that were produced with banned chemicals. This procedure was developed to technically determine if residual ODC chemicals could be detected on electronic circuit boards. The analytical method utilizes a purge and trap technique followed by gas chromatography with electron capture detection to capture and analyze the volatile chemicals associated with the matrix. The method describes the procedure, the hardware, operating conditions, calibration, and quality control measures in sufficient detail to allow the capability to be replicated. This document corresponds to internal Standard Operating Procedure (SOP) EFL-130A, Rev 4.

Lee, Richard N.; Dockendorff, Brian P.; Wright, Bob W.

2008-08-01T23:59:59.000Z

39

Experimental investigations of electron capture from atomic hydrogen and deuterium by alpha particles. Annual progress report, 15 September 1991--14 September 1992  

DOE Green Energy (OSTI)

We report progress made during the period 15 September 1991--14 September 1992 on the project ``Experimental Investigations of Electron Capture from Atomic Hydrogen and Deuterium by Alpha Particles``. In the past year we have developed reliable, narrow energy spread, high-current sources of He{sup ++} based on direct-current magentron and electron-cyclotron resonance discharges. These sources have been proven on our test bench accelerator which has been upgraded to also allow us to test atomic hydrogen effusive targets. We have thus made substantial progress toward our goal of studying single electron capture from atomic hydrogen by doubly-ionized helium. A research plan for the upcoming year is also presented.

Gay, T.J.; Park, J.T.

1992-11-01T23:59:59.000Z

40

Single-electron-capture cross sections by alpha-particles from ground state K(4s) and Rb(5s): A molecular-state approach  

Science Conference Proceedings (OSTI)

Cross sections for single-electron capture by {alpha}-particles from ground state K and Rb were calculated in the low-to-intermediate energy region by employing the molecular expansion method in the framework of impact parameter formulation. The colliding partners are treated as a pseudo-one-electron system and the technique of the pseudopotential is used to account for their mutual interactions. The molecular wave function of the quasimolecule formed during the collision is expanded in terms of basis sets of atomic orbitals on two centers. The resulting coupled equations are solved semiclassically where a straight-line trajectory describes the relative motion of the two nuclei. The effect of electron translation is also suitably incorporated. The calculated cross sections, both total and partial, are presented and compared with the available experimental measurements.

Kumar, A.; Saha, B.C.; Weatherford, C.A. [Florida A and M Univ., Tallahassee, FL (United States). Dept. of Physics

1998-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Assessing Millisecond Proto-Magnetars as GRB Central Engines  

E-Print Network (OSTI)

Magnetars are a sizable subclass of the neutron star census. Their very high magnetic field strengths are thought to be a consequence of rapid (millisecond) rotation at birth in a successful core-collapse supernova. In their first tens of seconds of existence, magnetars transition from hot, extended ``proto-''magnetars to the cooled and magnetically-dominated objects we identify $\\sim10^4$ years later as Soft Gamma-ray Repeaters (SGRs) and Anamolous X-ray Pulsars (AXPs). Millisecond proto-magnetar winds during this cooling phase likewise transition from non-relativistic and thermally-driven to magneto-centrifugally-driven, and finally to relativistic and Poynting-flux dominated. Here we review the basic considerations associated with that transition. In particular, we discuss the spindown of millisecond proto-magnetars throughout the Kelvin-Helmholtz cooling epoch. Because of their large reservoir of rotational energy, their association with supernovae, and the fact that their winds are expected to become highly relativistic in the seconds after their birth, proto-magnetars have been suggested as the central engine of long-duration gamma ray bursts. We discuss some of the issues and outstanding questions in assessing them as such.

Todd A. Thompson

2006-11-12T23:59:59.000Z

42

The Spectrum of the Millisecond Pulsar J0218+4232 - Theoretical Interpretations  

E-Print Network (OSTI)

We interpret the unique high-energy spectrum of the millisecond pulsar PSR J0218+4232 within polar cap scenarios. We show that the spectral data from BeppoSAX (Mineo et al.2000) and EGRET (Kuiper et al 2000) impose very restrictive limitations on possible radiation mechanisms, energy spectrum of radiating charges as well as viewing geometry. Theoretical spectra are able to reproduce the data, however, this can be achieved provided very special -- unusual within the conventional polar cap picture -- conditions are satisfied. Those include off-beam viewing geometry along with one of the following alternatives: 1) strong acceleration of secondary pairs; 2) broad energy distribution of primary electrons extending down to $10^5$ MeV; 3) high-altitude synchrotron emission.

J. Dyks; B. Rudak

2002-05-15T23:59:59.000Z

43

Green Bank Telescope Studies of Giant Pulses from Millisecond Pulsars  

E-Print Network (OSTI)

We have conducted a search for giant pulses from four millisecond pulsars using the 100m Green Bank Telescope. Coherently dedispersed time-series from PSR J0218+4232 were found to contain giant pulses of very short intrinsic duration whose energies follow power-law statistics. The giant pulses are in phase with the two minima of the radio integrated pulse profile but are phase aligned with the peaks of the X-ray profile. Historically, individual pulses more than 10-20 times the mean pulse energy have been deemed to be ``giant pulses''. As only 4 of the 155 pulses had energies greater than 10 times the mean pulse-energy, we argue the emission mechanism responsible for giant pulses should instead be defined through: (a) intrinsic timescales of microsecond or nanosecond duration; (b) power-law energy statistics; and (c) emission occurring in narrow phase-windows coincident with the phase windows of non-thermal X-ray emission. Four short-duration pulses with giant-pulse characteristics were also observed from PSR B1957+20. As the inferred magnetic fields at the light cylinders of the millisecond pulsars that emit giant pulses are all very high, this parameter has previously been considered to be an indicator of giant pulse emissivity. However, the frequency of giant pulse emission from PSR~B1957+20 is significantly lower than for other millisecond pulsars that have similar magnetic fields at their light cylinders. This suggests that the inferred magnetic field at the light cylinder is a poor indicator of the rate of emission of giant pulses.

H. S. Knight; M. Bailes; R. N. Manchester; S. M. Ord; B. A. Jacoby

2005-12-13T23:59:59.000Z

44

Finding binary millisecond pulsars with the Hough transform  

E-Print Network (OSTI)

The Hough transformation has been used successfully for more than four decades. Originally used for tracking particle traces in bubble chamber images, this work shows a novel approach turning the initial idea into a powerful tool to incoherently detect millisecond pulsars in binary orbits. This poster presents the method used, a discussion on how to treat the time domain data from radio receivers and create the input "image" for the Hough transformation, details about the advantages and disadvantages of this approach, and finally some results from pulsars in 47 Tucanae.

C. Aulbert

2007-01-04T23:59:59.000Z

45

Data Capture Form Data capture form  

E-Print Network (OSTI)

Data Capture Form Data capture form Please make use of the data capture form relevant not on the common lists. The data capture form must be printed and used in the field during the census to capture all the data during the BCW. All data captured onto this form must please be submitted by the team

de Villiers, Marienne

46

Radiative electron capture by bare and H-like Si and Cl ions using the channeling technique and the associated solid-state effect  

SciTech Connect

Fully stripped and hydrogenlike Si and Cl ions, in the energy range 2--5 MeV/amu and channeled through a 0.17 [mu]m thick Si single crystal, were used to study the radiative electron capture (REC) into the [ital K] shell of the ions. The associated effects due to the solid medium of the target were also investigated from the energy and the derived cross section of the REC photons. The [ital K]-shell REC cross sections were found to fall on a universal curve when plotted against the adiabaticity parameter of the collision system. The measured energy shifts in the REC photon energy and the higher yield of REC photons using crystalline targets, as compared to the available gas-target data, are indicative of an ion--solid-state effect'' caused by the electron-wake potential. The magnitude of these effects is shown to increase with [ital Z]/[ital v] of an ion with charge [ital Z] and velocity [ital v], and are in qualitative agreement with recent calculations. The REC cross sections are, however, observed to be slightly smaller than the theoretical estimates after taking into account the effects associated with the solid medium. The widths of the REC peaks are compared with the theoretical models. The results of the present investigation using Si and Cl ions are presented coherently along with our earlier data using lighter ions.

Tribedi, L.C.; Nanal, V.; Kurup, M.B.; Prasad, K.G.; Tandon, P.N. (Tata Institute of Fundamental Research, Bombay 400 005 (India))

1995-02-01T23:59:59.000Z

47

It's Elemental - Isotopes of the Element Yttrium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mode Branching Percentage 76 > 200 nanoseconds Proton Emission No Data Available Electron Capture No Data Available 77 57 milliseconds Electron Capture 100.00% Electron...

48

It's Elemental - Isotopes of the Element Niobium  

NLE Websites -- All DOE Office Websites (Extended Search)

Isotopes Mass Number Half-life Decay Mode Branching Percentage 81 < 200 nanoseconds Electron Capture No Data Available 82 50 milliseconds Electron Capture 100.00% Electron...

49

Electron Capture Strength for {60,62}Ni and {58,60,62,64}Ni(p,n){58,60,62,64}Cu reactions at 134.3 MeV  

E-Print Network (OSTI)

Background: The strength of electron capture for medium mass nuclei has a significant effect on the evolution of supernovae. There is insufficient knowledge of these strengths and very little data for important radioactive nuclei. Purpose: Determine whether it is feasible to obtain EC strength from studies of T_o+1 excitations in (p,n) reactions, and whether this might yield information for radioactive nuclei. Methods: Cross sections for the {58,60,62,64}Ni(p,n){58,60,62,64}Cu reactions were measured over the angular range of 0.3 deg to 11.6 deg at 134.3 MeV using the IUCF neutron time-of-flight facility. esults: The T_o+1 excitations in {60,62}Ni were identified by comparison with inelastic proton scattering spectra, their B(GT) were extracted, and the corresponding electron capture rates in supernovae were calculated. Data from the TRIUMF (n,p) experiments at 198 MeV were reanalyzed; the electron capture rates for the reanalyzed data are in moderately good agreement with the higher resolution (p,n) results, but differ in detail. The possibility of future measurements with radioactive nuclei was considered. Conclusions: It is possible to determine electron capturestrength from (p,n) experiments. This approach may make it possible to obtain electron capture strength for radioactive nuclei by studying (p,n) reactions in inverse kinematics.

N. Anantaraman; Sam M. Austin; B. A. Brown; G. M. Crawley; A. Galonsky; R. G. T. Zegers; B. D. Anderson; A. R. Baldwin; B. S. Flanders; R. Madey; J. W. Watson; C. C. Foster

2008-05-15T23:59:59.000Z

50

Effects of low-energy-electron-capture collisions (H/sub 0/ + c/sup n+/) on the particle and energy balance of tokamak plasmas  

DOE Green Energy (OSTI)

To illustrate the way in which atomic data provides enlightenment in the search for understandable (and thus extrapolable) confinement models, we restrict our scope to electron capture collisions involving H/sub 0/ and multiply-charged ions. Many such foreign (impurity) multiply-charged ion species are found in plasma discharges, as a result of gas recycling and damage to the surrounding surfaces by energetic plasma particles. Typical low-Z ions are carbon and oxygen; the major constituents of the stainless steel wall (Fe, Ni, Cr) are intermediate impurities, while high-Z impurities (Mo, W) enter from limiter plates which constrict the hot plasma zone to reduce direct plasma-wall contact. In this discussion, however, attention will be given only to applications of data involving H/sub 0/ + C/sup n+/ ..-->.. H/sup +/ + C/sup (n-1)+/ reactions with energy 10 eV to 2 keV. This energy range is typical of the plasma edge in present devices.

Hogan, J.T.

1981-01-01T23:59:59.000Z

51

It's Elemental - Isotopes of the Element Lanthanum  

NLE Websites -- All DOE Office Websites (Extended Search)

Decay Mode Branching Percentage 117 23.5 milliseconds Proton Emission 93.90% Electron Capture 6.10% 117m 10 milliseconds Proton Emission 97.40% Electron Capture 2.60% 118...

52

It's Elemental - Isotopes of the Element Lutetium  

NLE Websites -- All DOE Office Websites (Extended Search)

Half-life Decay Mode Branching Percentage 150 45 milliseconds Proton Emission 70.90% Electron Capture 29.10% 151 80.6 milliseconds Proton Emission 63.40% Electron Capture 36.60%...

53

Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li4SiO4 and its capability for CO2 capture  

SciTech Connect

The structural, electronic, lattice dynamical, optical, thermodynamic, and CO{sub 2} capture properties of monoclinic and triclinic phases of Li{sub 4}SiO{sub 4} are investigated by combining density functional theory with phonon lattice dynamics calculations. We found that these two phases have some similarities in their bulk and thermodynamic properties. The calculated bulk modulus and the cohesive energies of these two phases are close to each other. Although both of them are insulators, the monoclinic phase of Li{sub 4}SiO{sub 4} has a direct band gap of 5.24 eV while the triclinic Li{sub 4}SiO{sub 4} phase has an indirect band gap of 4.98 eV. In both phases of Li{sub 4}SiO{sub 4}, the s orbital of O mainly contributes to the lower-energy second valence band (VB{sub 2}) and the p orbitals contribute to the fist valence band (VB{sub 1}) and the conduction bands (CBs). The s orbital of Si mainly contributes to the lower portions of the VB1 and VB{sub 2}, and Si p orbitals mainly contribute to the higher portions of the VB{sub 1} and VB{sub 2}. The s and p orbitals of Li contribute to both VBs and to CBs, and Li p orbitals have a higher contribution than the Li s orbital. There is possibly a phonon soft mode existing in triclinic {gamma}-Li{sub 4}SiO{sub 4}; in the monoclinic Li{sub 4}SiO{sub 4}, there are three phonon soft modes, which correspond to the one type of Li disordered over a few sites. Their LO-TO splitting indicates that both phases of Li{sub 4}SiO{sub 4} are polar anisotropic materials. The calculated infrared absorption spectra for LO and TO modes are different for these two phases of Li{sub 4}SiO{sub 4}. The calculated relationships of the chemical potential versus temperature and CO{sub 2} pressure for reaction of Li{sub 4}SiO{sub 4} with CO{sub 2} shows that Li{sub 4}SiO{sub 4} could be a good candidate for a high-temperature CO{sub 2} sorbent while used for postcombustion capture technology.

Duan, Yuhua; Parlinski, K.

2011-01-01T23:59:59.000Z

54

Gravitational-wave spin-down and stalling lower limits on the electrical resistivity of the accreted mountain in a millisecond pulsar  

E-Print Network (OSTI)

The electrical resistivity of the accreted mountain in a millisecond pulsar is limited by the observed spin-down rate of binary radio millisecond pulsars (BRMSPs) and the spins and X-ray fluxes of accreting millisecond pulsars (AMSPs). We find $\\eta \\ge 10^{-28}\\,\\mathrm{s}\\, (\\tau_\\mathrm{SD}/1\\,\\mathrm{Gyr})^{-0.8}$ (where $\\tau_\\mathrm{SD}$ is the spin-down age) for BRMSPs and $\\eta \\ge 10^{-25}\\,\\mathrm{s}\\,(\\dot{M}_\\mathrm{a}/\\dot{M}_\\mathrm{E})^{0.6}$ (where $\\dot{M}_\\mathrm{a}$ and $\\dot{M}_\\mathrm{E}$ are the actual and Eddington accretion rates) for AMSPs. These limits are inferred assuming that the mountain attains a steady state, where matter diffuses resistively across magnetic flux surfaces but is replenished at an equal rate by infalling material. The mountain then relaxes further resistively after accretion ceases. The BRMSP spin-down limit approaches the theoretical electron-impurity resistivity at temperatures $\\ga 10^5$ K for an impurity concentration of $\\sim 0.1$, while the AMSP stalling limit falls two orders of magnitude below the theoretical electron-phonon resistivity for temperatures above $10^8$ K. Hence BRMSP observations are already challenging theoretical resistivity calculations in a useful way. Next-generation gravitational-wave interferometers will constrain $\\eta$ at a level that will be competitive with electromagnetic observations.

Matthias Vigelius; Andrew Melatos

2010-05-13T23:59:59.000Z

55

It's Elemental - Isotopes of the Element Terbium  

NLE Websites -- All DOE Office Websites (Extended Search)

Percentage 135 0.94 milliseconds Proton Emission 100.00% 136 No Data Available Electron Capture (suspected) No Data Available 137 No Data Available Electron Capture...

56

Millisecond Kinetics of Nanocrystal Cation Exchange Using Microfluidic X-ray Absorption Spectroscopy  

E-Print Network (OSTI)

nanocrystal with DDA, R CdSe was calculated to be 3.4 nm. Rto measure the kinetics of the CdSe-to-Ag 2 Se nanocrystalthe millisecond mixing of CdSe nanocrystal and Ag + reactant

Chan, Emory M.; Marcus, Matthew A.; Fakra, Sirine; Elnaggar, Mariam S.; Mathies, Richard A.; Alivisatos, A. Paul

2007-01-01T23:59:59.000Z

57

Gravitational-wave spin-down and stalling lower limits on the electrical resistivity of the accreted mountain in a millisecond pulsar  

E-Print Network (OSTI)

The electrical resistivity of the accreted mountain in a millisecond pulsar is limited by the observed spin-down rate of binary radio millisecond pulsars (BRMSPs) and the spins and X-ray fluxes of accreting millisecond pulsars (AMSPs). We find $\\eta \\ge 10^{-28}\\,\\mathrm{s}\\, (\\tau_\\mathrm{SD}/1\\,\\mathrm{Gyr})^{-0.8}$ (where $\\tau_\\mathrm{SD}$ is the spin-down age) for BRMSPs and $\\eta \\ge 10^{-25}\\,\\mathrm{s}\\,(\\dot{M}_\\mathrm{a}/\\dot{M}_\\mathrm{E})^{0.6}$ (where $\\dot{M}_\\mathrm{a}$ and $\\dot{M}_\\mathrm{E}$ are the actual and Eddington accretion rates) for AMSPs. These limits are inferred assuming that the mountain attains a steady state, where matter diffuses resistively across magnetic flux surfaces but is replenished at an equal rate by infalling material. The mountain then relaxes further resistively after accretion ceases. The BRMSP spin-down limit approaches the theoretical electron-impurity resistivity at temperatures $\\ga 10^5$ K for an impurity concentration of $\\sim 0.1$, while the AMSP stalling l...

Vigelius, Matthias

2010-01-01T23:59:59.000Z

58

Feasibility of air capture  

E-Print Network (OSTI)

Capturing CO2 from air, referred to as Air Capture, is being proposed as a viable climate change mitigation technology. The two major benefits of air capture, reported in literature, are that it allows us to reduce the ...

Ranjan, Manya

2010-01-01T23:59:59.000Z

59

Carbon Capture & Sequestration  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the Energy Department's work to capture and transport CO2 into underground geologic formations, also known as carbon capture and sequestration.

60

Experimental investigations of electron capture from atomic hydrogen and deuterium by alpha particles. Annual report, 1 October 1984-30 September 1985  

DOE Green Energy (OSTI)

The major effort of this past year has been spent in designing and building the resistor assemblies and controls necessary to modify the UMR ion energy-loss spectrometer for studies of the type described in our original proposal. Specifically, we are interested in the collision He/sup + +/ + H ..-->.. He/sup +/(n) + H/sup +/ and measurement of the total capture cross section as a function of n for He/sup + +/ energies between 25 and 200 keV.

Gay, T.J.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

It's Elemental - Isotopes of the Element Europium  

NLE Websites -- All DOE Office Websites (Extended Search)

milliseconds Proton Emission 100.00% 131 17.8 milliseconds Proton Emission 89.00% Electron Capture 11.00% 132 No Data Available Proton Emission No Data Available Electron...

62

NETL: Carbon Capture FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

How is CO2 captured? How is CO2 captured? Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Carbon dioxide (CO2) capture involves separating CO2 from other gases generated by industrial processes or burning fossil fuels. CO2 capture can remove as much as 95% of the CO2 from these processes. There are two major types of anthropogenic CO2 sources: mobile and stationary. Mobile sources include things like cars, trucks, trains, boats, and aircrafts that burn fossil fuels and generate CO2. Capturing CO2 from mobile sources is currently impractical. Stationary sources include power plants and industrial facilities that burn fossil fuels, as

63

Cryogenic Carbon Capture  

SciTech Connect

IMPACCT Project: SES is developing a process to capture CO2 from the exhaust gas of coal-fired power plants by desublimation - the conversion of a gas to a solid. Capturing CO2 as a solid and delivering it as a liquid avoids the large energy cost of CO2 gas compression. SES capture technology facilitates the prudent use of available energy resources. Coal is our most abundant energy resource and is an excellent fuel for baseline power production. SES capture technology can capture 99% of the CO2 emissions in addition to a wide range of other pollutants more efficiently and at lower costs than existing capture technologies. SES capture technology can be readily added to our existing energy infrastructure.

None

2010-07-15T23:59:59.000Z

64

Temporal variations in space-time and progenitors of gamma ray burst and millisecond pulsars  

E-Print Network (OSTI)

A time varying space-time metric is shown to be a source of electromagnetic radiation. The post-Newtonian approximation is used as a realistic model of the connection between the space-time metric and a time varying gravitational potential. Large temporal variations in the metric from the coalescence of colliding black holes and neutron stars are shown to be possible progenitors of gamma ray burst and millisecond pulsars.

Preston Jones

2006-06-23T23:59:59.000Z

65

Semiclassical description of antiproton capture on atomic helium  

SciTech Connect

A semiclassical, many-body atomic model incorporating a momentum-dependent Heisenberg core to stabilize atomic electrons is used to study antiproton capture on helium. Details of the antiproton collisions leading to eventual capture are presented, including the energy and angular-momentum states of incident antiprotons which result in capture via single- or double-electron ionization, i.e., into He[sup 2+][ital [bar p

Beck, W.A. (Department of Physics, University of Washington, Seattle, Washington 98195 (United States) Quantum Medical Systems, Issaquah, Washington 98027 (United States)); Wilets, L. (Department of Physics, University of Washington, Seattle, Washington 98195 (United States)); Alberg, M.A. (Department of Physics, University of Washington, Seattle, Washington 98195 (United States) Department of Physics, Seattle University, Seattle, Washington 98122 (United States))

1993-10-01T23:59:59.000Z

66

It's Elemental - Isotopes of the Element Thulium  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission > 0.00% 145 3.17 microseconds Proton Emission 100.00% 146 80 milliseconds Electron Capture No Data Available Proton Emission No Data Available 146m 200 milliseconds...

67

A first-principles density functional theory study of the electronic structural and thermodynamic properties of M2ZrO3 and M2CO3 (M=Na, K) and their capabilities for CO2 capture  

SciTech Connect

Alkali metal zirconates could be used as solid sorbents for CO{sub 2} capture. The structural, electronic, and phonon properties of Na{sub 2}ZrO{sub 3}, K{sub 2}ZrO{sub 3}, Na{sub 2}CO{sub 3}, and K{sub 2}CO{sub 3} are investigated by combining the density functional theory with lattice phonon dynamics. The thermodynamics of CO{sub 2} absorption/desorption reactions of these two zirconates are analyzed. The calculated results show that their optimized structures are in a good agreement with experimental measurements. The calculated band gaps are 4.339 eV (indirect), 3.641 eV (direct), 3.935 eV (indirect), and 3.697 eV (direct) for Na{sub 2}ZrO{sub 3}, K{sub 2}ZrO{sub 3}, Na{sub 2}CO{sub 3}, and K{sub 2}CO{sub 3}, respectively.The calculated phonon dispersions and phonon density of states for M{sub 2}ZrO{sub 3} and M{sub 2}CO{sub 3} (M = K, Na, Li) revealed that from K to Na to Li, their frequency peaks are shifted to high frequencies due to the molecular weight decreased from K to Li. From the calculated reaction heats and relationships of free energy change versus temperatures and CO{sub 2} pressures of the M{sub 2}ZrO{sub 3} (M = K, Na, Li) reacting with CO{sub 2}, we found that the performance of Na{sub 2}ZrO{sub 3} capturing CO{sub 2} is similar to that of Li{sub 2}ZrO{sub 3} and is better than that of K{sub 2}ZrO{sub 3}. Therefore, Na{sub 2}ZrO{sub 3} and Li{sub 2}ZrO{sub 3} are good candidates of high temperature CO{sub 2} sorbents and could be used for post combustion CO{sub 2} capture technologies.

Yuhua Duan

2012-01-01T23:59:59.000Z

68

IMPACCT: Carbon Capture Technology  

Science Conference Proceedings (OSTI)

IMPACCT Project: IMPACCTs 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for Innovative Materials and Processes for Advanced Carbon Capture Technologies, the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

69

Capture.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Barriers for Carbon Capture, Storage and Sequestration Barriers for Carbon Capture, Storage and Sequestration Sarah M. Forbes, National Energy Technology Laboratory November, 2002 The success of carbon capture, storage and sequestration as a greenhouse gas mitigation strategy will be, in part, dependent on the regulatory framework used to govern its implementation. Creating a science-based regulatory framework that is designed with enough flexibility to encourage greenhouse gas offset activity, effective means of measuring the costs of taking action to reduce greenhouse gas emissions, and ample protection for human and ecosystem health may prove challenging. For the purposes of this paper we will assume that there is an existing incentive to capture, store and sequester carbon and focus on how to regulate the process. Accounting practices and

70

NETL: Carbon Capture FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

(table below). These include four natural gas processing operations and a synthesis gas (syngas) production facility in which more than 1 million tons of CO2 are captured per...

71

Capturing Undocumented Expert Knowledge  

Science Conference Proceedings (OSTI)

Public Service Electric and Gas Company (PSEG) faces the retirements of skilled, productive experts in the areas of asset management system protection engineering and pipe-type cable design and operations. The project team used the Electric Power Research Institute (EPRI) guidelines and methods, described in the EPRI report Capturing and Using High-Value Undocumented Knowledge in the Nuclear Industry: Guidelines and Methods (1002896) to capture and retain the tacit knowledge held by these key experts. Th...

2005-08-31T23:59:59.000Z

72

Carbon Capture Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

73

Challenge of carbon capture  

SciTech Connect

Finding more-effective, less-expensive ways to capture the CO{sub 2} produced by coal-fired power plants could significantly lower the cost of reducing emissions while preserving coal as a vital energy resource. Several technological approaches have been proposed, but all options currently available would, indeed, impose substantial costs and impact plant efficiencies. Ongoing research promises to provide a suite of improved technologies that will give plant owners viable options to meet their specific needs. The article discusses the options for CO{sub 2} capture by precombustion based on IGCC systems, post combustion, or oxyfuel combustion. EPRI's work to develop a process to capture CO{sub 2} using chilled ammonia (rather than the more usual MEA) as a solvent is described. A 5 MW pilot plant is to be built at the We Energies Pleasant Prairie Power Plant. Other research programs (in Europe and Australia) are also mentioned. Deployment of a new generation of ultrasuperciritcal pulverized coal power plants designed to have greater efficiency and hence lower CO{sub 2} emissions is under development. Efforts to improve precombustion capture are reported in the article. Also noted are two recent studies (one by the IEA Greenhouse Gas R & D Programme and another by CPS Energy) comparing the performance of IGCC and supercritical PC plants incorporating CO{sub 2} capture. 3 figs., 3 photos.

Douglas, J.

2007-04-01T23:59:59.000Z

74

AN ASTEROID BELT INTERPRETATION FOR THE TIMING VARIATIONS OF THE MILLISECOND PULSAR B1937+21  

SciTech Connect

Pulsar timing observations have revealed companions to neutron stars that include other neutron stars, white dwarfs, main-sequence stars, and planets. We demonstrate that the correlated and apparently stochastic residual times of arrival from the millisecond pulsar B1937+21 are consistent with the signature of an asteroid belt having a total mass {approx}< 0.05 M{sub Circled-Plus }. Unlike the solar system's asteroid belt, the best fit pulsar asteroid belt extends over a wide range of radii, consistent with the absence of any shepherding companions. We suggest that any pulsar that has undergone accretion-driven spin-up and subsequently evaporated its companion may harbor orbiting asteroid mass objects. The resulting timing variations may fundamentally limit the timing precision of some of the other millisecond pulsars. Observational tests of the asteroid belt model include identifying periodicities from individual asteroids, which are difficult; testing for statistical stationarity, which becomes possible when observations are conducted over a longer observing span; and searching for reflected radio emission.

Shannon, R. M.; Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States)] [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Metcalfe, T. S. [Space Science Institute, 4750 Walnut Street Suite 205, Boulder, CO 80301 (United States)] [Space Science Institute, 4750 Walnut Street Suite 205, Boulder, CO 80301 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, M/S 138-308, Pasadena, CA 91109 (United States)] [Jet Propulsion Laboratory, California Institute of Technology, M/S 138-308, Pasadena, CA 91109 (United States); Cognard, I.; Desvignes, G.; Theureau, G. [LPC2E/CNRS-Universite d'Orleans, Orleans, F-45071, Cedex 2 (France)] [LPC2E/CNRS-Universite d'Orleans, Orleans, F-45071, Cedex 2 (France); Janssen, G. H.; Purver, M. B.; Stappers, B. W. [University of Manchester and Jodrell Bank Observatory, Manchester, M13 9PL (United Kingdom)] [University of Manchester and Jodrell Bank Observatory, Manchester, M13 9PL (United Kingdom); Jessner, A.; Kramer, M.; Lazaridis, K., E-mail: ryan.shannon@csiro.au, E-mail: cordes@astro.cornell.edu [Max-Planck-Institut fuer Radioastonomie, Bonn, D-53121 (Germany)

2013-03-20T23:59:59.000Z

75

A PARALLAX DISTANCE AND MASS ESTIMATE FOR THE TRANSITIONAL MILLISECOND PULSAR SYSTEM J1023+0038  

Science Conference Proceedings (OSTI)

The recently discovered transitional millisecond pulsar system J1023+0038 exposes a crucial evolutionary phase of recycled neutron stars for multiwavelength study. The system, comprising the neutron star itself, its stellar companion, and the surrounding medium, is visible across the electromagnetic spectrum from the radio to X-ray/gamma-ray regimes and offers insight into the recycling phase of millisecond pulsar evolution. Here, we report on multiple-epoch astrometric observations with the Very Long Baseline Array (VLBA) which give a system parallax of 0.731 {+-} 0.022 milliarcseconds (mas) and a proper motion of 17.98 {+-} 0.05 mas yr{sup -1}. By combining our results with previous optical observations, we are able to use the parallax distance of 1368{sup +42}{sub -{sub 39}} pc to estimate the mass of the pulsar to be 1.71 {+-} 0.16 M{sub Sun }, and we are also able to measure the three-dimensional space velocity of the system to be 126 {+-} 5 km s{sup -1}. Despite the precise nature of the VLBA measurements, the remaining {approx}3% distance uncertainty dominates the 0.16 M{sub Sun} error on our mass estimate.

Deller, A. T. [Netherlands Institute for Radio Astronomy (ASTRON), 7990-AA Dwingeloo (Netherlands); Archibald, A. M.; Kaspi, V. M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Brisken, W. F. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Chatterjee, S. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Janssen, G. H.; Lyne, A. G.; Stappers, B. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Lorimer, D.; McLaughlin, M. A. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada)

2012-09-10T23:59:59.000Z

76

CAPTURE DOCUMENT ORAUTEAM  

Office of Legacy Management (LM)

DATA DATA CAPTURE DOCUMENT ORAUTEAM ---- Dose Reconstruction ~v~:7 DISCOVERY AND REVIEW dA'~ Project for NIOSH The attached document may contain Privacy Act data. This information is protected by the Privacy Act, 5 U.S.C. §552a; disclosure to any third party without written consent of the individual to whom the information pertains is strictly prohibited. Data Capture Team or Other ORAU Team Member Capturing Data: Complete all information that applies to the data/document being submitted lor uploading to the Site Research Database (SRDB), attach this lonm to the lront olthe document, and send to: ORAU Team, Attention: SRDB Uploading, 4850 Smith Rd., Suite 200, Cincinnati, Ohio 45212. I ~ -!-R"e"guestor and Reviewer 1. Data Requestor: RSET Group 2. Reviewer Name (if different from Requestor): Don Morris 3. Target Data: Document Specified by Requestor Any relevant

77

Adiabatic capture and debunching  

Science Conference Proceedings (OSTI)

In the study of beam preparation for the g-2 experiment, adiabatic debunching and adiabatic capture are revisited. The voltage programs for these adiabbatic processes are derived and their properties discussed. Comparison is made with some other form of adiabatic capture program. The muon g-2 experiment at Fermilab calls for intense proton bunches for the creation of muons. A booster batch of 84 bunches is injected into the Recycler Ring, where it is debunched and captured into 4 intense bunches with the 2.5-MHz rf. The experiment requires short bunches with total width less than 100 ns. The transport line from the Recycler to the muon-production target has a low momentum aperture of {approx} {+-}22 MeV. Thus each of the 4 intense proton bunches required to have an emittance less than {approx} 3.46 eVs. The incoming booster bunches have total emittance {approx} 8.4 eVs, or each one with an emittance {approx} 0.1 eVs. However, there is always emittance increase when the 84 booster bunches are debunched. There will be even larger emittance increase during adiabatic capture into the buckets of the 2.5-MHz rf. In addition, the incoming booster bunches may have emittances larger than 0.1 eVs. In this article, we will concentrate on the analysis of the adiabatic capture process with the intention of preserving the beam emittance as much as possible. At this moment, beam preparation experiment is being performed at the Main Injector. Since the Main Injector and the Recycler Ring have roughly the same lattice properties, we are referring to adiabatic capture in the Main Injector instead in our discussions.

Ng, K.Y.; /Fermilab

2012-03-01T23:59:59.000Z

78

The X-ray afterglow flat segment in short GRB 051221A: Energy injection from a millisecond magnetar?  

E-Print Network (OSTI)

The flat segment lasting $\\sim 10^4$ seconds in the X-ray afterglow of GRB051221A represents the first clear case of strong energy injection in the external shock of a short GRB afterglow. In this work, we show that a millisecond pulsar with dipole magnetic field $\\sim 10^{14}$ Gauss could well account for that energy injection. The good quality X-ray flat segment thus suggests that the central engine of this short burst may be a millisecond magnetar.

Yizhong Fan; Dong Xu

2006-05-18T23:59:59.000Z

79

Carbon Capture and Transport  

E-Print Network (OSTI)

of careers in the Energy sector including positions within power generation companies, CO2 capture?Fluid?Dynamics The module introduces Computational Fluid Dynamics techniques for modelling, simulating and analysing satisfies approximately 88% of the global commercial primary energy demand and in spite of the significant

80

The Dance of Atoms in Molecules Captured in Ultrafast Time |...  

Office of Science (SC) Website

vibrating in a molecule have been captured using a technique called laser-induced electron diffraction. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge...

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

New Binary and Millisecond Pulsars from Arecibo Drift-Scan Searches  

E-Print Network (OSTI)

We discuss four recycled pulsars found in Arecibo drift-scan searches. PSR J1944+0907 has a spin period of 5.2 ms and is isolated. The 5.8-ms pulsar J1453+19 may have a low-mass companion. We discuss these pulsars in the context of isolated millisecond pulsar formation and the minimum spin period of neutron stars. The isolated 56-ms pulsar J0609+2130 is possibly the remnant of a disrupted double neutron star binary. The 41-ms pulsar J1829+2456 is in a relativistic orbit. Its companion is most likely another neutron star, making this the eighth known double neutron star binary system.

M. A. McLaughlin; D. R. Lorimer; D. J. Champion; Z. Arzoumanian; D. C. Backer; J. M. Cordes; A. S. Fruchter; A. N. Lommen; K. M. Xilouris

2004-04-08T23:59:59.000Z

82

Production of Millisecond Dips in Sco X-1 Count Rates by Dead Time Effects  

E-Print Network (OSTI)

Chang et al. (2006) reported millisecond duration dips in the X-ray intensity of Sco X-1 and attributed them to occultations of the source by small trans-Neptunian objects (TNOs). We have found multiple lines of evidence that these dips are not astronomical in origin, but rather the result of high-energy charged particle events in the RXTE PCA detectors. Our analysis of the RXTE data indicates that at most 10% of the observed dips in Sco X-1 could be due to occultations by TNOs, and, furthermore, we find no positive or supporting evidence for any of them being due to TNOs. We therefore believe that it is a mistake to conclude that any TNOs have been detected via occultation of Sco X-1.

T. A. Jones; A. M. Levine; E. H. Morgan; S. Rappaport

2007-10-03T23:59:59.000Z

83

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers Capture Supercomputers Capture Turbulence in the Solar Wind News & Publications ESnet in the News ESnet News Media & Press Publications and Presentations Galleries ESnet Awards and Honors Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 | Tags: ESnet News, National Energy Research Scientific Computing Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is

84

Advanced Telemetry Data Capturing  

SciTech Connect

This project developed a new generation or advanced data capturing process specifically designed for use in future telemetry test systems at the Kansas City Plant (KCP). Although similar data capturing processes are performed both commercially and at other DOE weapon facilities, the equipment used is not specifically designed to perform acceptance testing requirements unique to the KCP. Commercially available equipment, despite very high cost (up to $125,000), is deficient in reliability and long-term maintainability necessary in test systems at this facility. There are no commercial sources for some requirements, specifically Terminal Data Analyzer (TDA) data processing. Although other custom processes have been developed to satisfy these test requirements, these designs have become difficult to maintain and upgrade.

Paschke, G.A.

2000-05-16T23:59:59.000Z

85

It's Elemental - Isotopes of the Element Praseodymium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mode Branching Percentage 121 10 milliseconds Proton Emission 100.00% 122 0.5 seconds Electron Capture (suspected) No Data Available 123 0.8 seconds Electron Capture (suspected) No...

86

It's Elemental - Isotopes of the Element Thallium  

NLE Websites -- All DOE Office Websites (Extended Search)

Alpha Decay 73.00% Proton Emission 27.00% 178 254 milliseconds Alpha Decay 53.00% Electron Capture 47.00% 179 0.23 seconds Alpha Decay < 100.00% Electron Capture No Data...

87

It's Elemental - Isotopes of the Element Technetium  

NLE Websites -- All DOE Office Websites (Extended Search)

85 0.5 seconds Proton Emission (suspected) No Data Available 86 54 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 87...

88

It's Elemental - Isotopes of the Element Holmium  

NLE Websites -- All DOE Office Websites (Extended Search)

Proton Emission 100.00% 141 4.1 milliseconds Proton Emission 100.00% 142 0.4 seconds Electron Capture 100.00% Electron Capture with delayed Proton Emission > 0.00% 143 No Data...

89

Capturing the Daylight Dividend  

Science Conference Proceedings (OSTI)

Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

Peter Boyce; Claudia Hunter; Owen Howlett

2006-04-30T23:59:59.000Z

90

Electronic  

NLE Websites -- All DOE Office Websites (Extended Search)

contribution contribution to friction on GaAs: An atomic force microscope study Yabing Qi, 1,2 J. Y. Park, 2 B. L. M. Hendriksen, 2 D. F. Ogletree, 2 and M. Salmeron 2,3 1 Applied Science and Technology Graduate Group, University of California, Berkeley, California 94720, USA 2 Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA 3 Department of Materials Sciences and Engineering, University of California, Berkeley, California 94720, USA ͑Received 23 January 2008; revised manuscript received 11 April 2008; published 7 May 2008͒ The electronic contribution to friction at semiconductor surfaces was investigated by using a Pt-coated tip with 50 nm radius in an atomic force microscope sliding against an n-type GaAs͑100͒ substrate. The GaAs surface was covered by an approximately 1 nm thick oxide layer. Charge accumulation

91

TWO MILLISECOND PULSARS DISCOVERED BY THE PALFA SURVEY AND A SHAPIRO DELAY MEASUREMENT  

SciTech Connect

We present two millisecond pulsar discoveries from the PALFA survey of the Galactic plane with the Arecibo telescope. PSR J1955+2527 is an isolated pulsar with a period of 4.87 ms, and PSR J1949+3106 has a period of 13.14 ms and is in a 1.9 day binary system with a massive companion. Their timing solutions, based on 4 years of timing measurements with the Arecibo, Green Bank, Nancay, and Jodrell Bank telescopes, allow precise determination of spin and astrometric parameters, including precise determinations of their proper motions. For PSR J1949+3106, we can clearly detect the Shapiro delay. From this we measure the pulsar mass to be 1.47{sup +0.43}{sub -0.31} M{sub Sun }, the companion mass to be 0.85{sup +0.14}{sub -0.11} M{sub Sun }, and the orbital inclination to be i = 79.9{sup -1.9}{sub +1.6} deg, where uncertainties correspond to {+-}1{sigma} confidence levels. With continued timing, we expect to also be able to detect the advance of periastron for the J1949+3106 system. This effect, combined with the Shapiro delay, will eventually provide very precise mass measurements for this system and a test of general relativity.

Deneva, J. S.; Camilo, F. [Arecibo Observatory, HC3 Box 53995, Arecibo, PR 00612 (United States); Freire, P. C. C.; Champion, D. J.; Desvignes, G. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Cordes, J. M.; Brazier, A.; Chatterjee, S. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Lyne, A. G. [Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL (United Kingdom); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Cognard, I. [Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, LPC2E, CNRS et Universite d'Orleans, and Station de radioastronomie de Nancay, Observatoire de Paris (France); Nice, D. J. [Department of Physics, Lafayette College, Easton, PA 18042 (United States); Stairs, I. H. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Allen, B. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Bhat, N. D. R. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Crawford, F. [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Hessels, J. W. T. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo (Netherlands); Jenet, F. A. [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Kaspi, V. M. [Department of Physics, McGill University, 3600 rue Universite, Montreal, QC H3A 2T8 (Canada); and others

2012-09-20T23:59:59.000Z

92

Millisecond dips in the RXTE/PCA light curve of Sco X-1 and TNO occultation  

E-Print Network (OSTI)

Millisecond dips in the RXTE/PCA light curve of Sco X-1 were reported recently (Chang et al. 2006), which were interpreted as the occultation of X-rays from Sco X-1 caused by Trans-Neptunian Objects (TNO) of hundred-meter size. Inconclusive signatures of possible instrumental effects in many of these dip events related to high-energy cosmic rays were later found (Jones et al. 2006) and the TNO interpretation became shaky. Here we report more detailed analysis aiming at distinguishing true occultation events from those related to cosmic rays. Based on some indicative criteria derived from housekeeping data and two-channel spectral information, we suggest that about 10% of the dips are probable events of occultation. The total number of TNOs of size from 60 m to 100 m is estiamted to be about 10^{15} accordingly. Limited by the coarser time resolution of standard data modes of RXTE/PCA, however, definite results cannot be obtained. Adequately configured observations with RXTE or other new instruments in the future are very much desired.

Hsiang-Kuang Chang; Jau-Shian Liang; Chih-Yuan Liu; Sun-Kun King

2007-01-30T23:59:59.000Z

93

Robust automated knowledge capture.  

SciTech Connect

This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

2011-10-01T23:59:59.000Z

94

The Luminosity and Energy Dependence of Pulse Phase Lags in the Accretion-Powered Millisecond Pulsar Sax J1808.4-3658  

E-Print Network (OSTI)

Soft phase lags, in which X-ray pulses in lower energy bands arrive later than pulses in higher energy bands, have been observed in nearly all accretion-powered millisecond pulsars, but their origin remains an open question. ...

Hartman, Jacob M.

95

Industrial Carbon Capture Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

96

Resource capture by single leaves  

DOE Green Energy (OSTI)

Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

Long, S.P.

1992-05-01T23:59:59.000Z

97

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers Supercomputers Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December 16, 2013 Linda Vu, +1 510 495 2402, lvu@lbl.gov eddies1.jpg This visualization zooms in on current sheets revealing the "cascade of turbulence" in the solar wind occurring down to electron scales. This is a phenomenon common in fluid dynamics-turbulent energy injected at large eddies is transported to successively smaller scales until it is dissipated as heat. (Image by Burlen Loring, Berkeley Lab) As inhabitants of Earth, our lives are dominated by weather. Not just in the form of rain and snow from atmospheric clouds, but also a sea of charged particles and magnetic fields generated by a star sitting 93

98

A METAL-RICH LOW-GRAVITY COMPANION TO A MASSIVE MILLISECOND PULSAR  

SciTech Connect

Most millisecond pulsars with low-mass companions are in systems with either helium-core white dwarfs or non-degenerate (''black widow'' or ''redback'') stars. A candidate counterpart to PSR J1816+4510 was identified by Kaplan et al. whose properties were suggestive of both types of companions although identical to neither. We have assembled optical spectroscopy of the candidate companion and confirm that it is part of the binary system with a radial velocity amplitude of 343 {+-} 7 km s{sup -1}, implying a high pulsar mass, M{sub psr}sin {sup 3} i = 1.84 {+-} 0.11 M{sub Sun }, and a companion mass M{sub c} sin {sup 3} i = 0.193 {+-} 0.012 M{sub Sun }, where i is the inclination of the orbit. The companion appears similar to proto-white dwarfs/sdB stars, with a gravity log{sub 10}(g) = 4.9 {+-} 0.3, and effective temperature 16, 000 {+-} 500 K. The strongest lines in the spectrum are from hydrogen, but numerous lines from helium, calcium, silicon, and magnesium are present as well, with implied abundances of roughly 10 times solar (relative to hydrogen). As such, while from the spectrum the companion to PSR J1816+4510 is superficially most similar to a low-mass white dwarf, it has much lower gravity, is substantially larger, and shows substantial metals. Furthermore, it is able to produce ionized gas eclipses, which had previously been seen only for low-mass, non-degenerate companions in redback or black widow systems. We discuss the companion in relation to other sources, but find that we understand neither its nature nor its origins. Thus, the system is interesting for understanding unusual stellar products of binary evolution, as well as, independent of its nature, for determining neutron-star masses.

Kaplan, D. L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee WI 53211 (United States); Bhalerao, V. B. [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007 (India); Van Kerkwijk, M. H. [Department of Astronomy and Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Koester, D. [Institut fuer Theoretische Physik und Astrophysik, University of Kiel, D-24098 Kiel (Germany); Kulkarni, S. R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stovall, K., E-mail: kaplan@uwm.edu, E-mail: mhvk@astro.utoronto.ca [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249 (United States)

2013-03-10T23:59:59.000Z

99

A CHANDRA X-RAY OBSERVATION OF THE BINARY MILLISECOND PULSAR PSR J1023+0038  

SciTech Connect

We present a Chandra X-Ray Observatory ACIS-S variability, spectroscopy, and imaging study of the peculiar binary containing the millisecond pulsar J1023+0038. The X-ray emission from the system exhibits highly significant (12.5{sigma}) large-amplitude (factor of two to three) orbital variability over the five consecutive orbits covered by the observation, with a pronounced decline in the flux at all energies at superior conjunction. This can be naturally explained by a partial geometric occultation by the secondary star of an X-ray-emitting intrabinary shock, produced by the interaction of outflows from the two stars. The depth and duration of the eclipse imply that the intrabinary shock is localized near or at the surface of the companion star and close to the inner Lagrangian point. The energetics of the shock favor a magnetically dominated pulsar wind that is focused into the orbital plane, requiring close alignment of the pulsar spin and orbital angular momentum axes. The X-ray spectrum consists of a dominant non-thermal component and at least one thermal component, likely originating from the heated pulsar polar caps, although a portion of this emission may be from an optically thin 'corona'. We find no evidence for extended emission due to a pulsar wind nebula or bow shock down to a limiting luminosity of L{sub X} {approx}< 3.6 Multiplication-Sign 10{sup 29} erg s{sup -1} (0.3-8 keV), {approx}< 7 Multiplication-Sign 10{sup -6} of the pulsar spin-down luminosity, for a distance of 1.3 kpc and an assumed power-law spectrum with photon index {Gamma} = 1.5.

Bogdanov, Slavko; Archibald, Anne M.; Kaspi, Victoria M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Hessels, Jason W. T. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Lorimer, Duncan; McLaughlin, Maura A. [Department of Physics, West Virginia University, 210E Hodges Hall, Morgantown, WV 26506 (United States); Ransom, Scott M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Stairs, Ingrid H. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada)

2011-12-01T23:59:59.000Z

100

Muon capture on Chlorine-35  

E-Print Network (OSTI)

We report measurements of $\\gamma$--ray spectra from muon capture on $^{35}$Cl. For the allowed Gamow--Teller transitions to the $^{35}$S$(2939, 3/2^+)$ state and the $^{35}$S$(3421, 5/2^+)$ state we obtained their capture rates, hyperfine dependences and $\\gamma$--$\

S. Arole; D. S. Armstrong; T. P. Gorringe; M. D. Hasinoff; M. A. Kovash; V. Kuzmin; B. A. Moftah; R. Sedlar; T. J. Stocki; T. Tetereva

2002-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Capturing Carbon Dioxide From Air  

NLE Websites -- All DOE Office Websites (Extended Search)

Capturing Carbon Dioxide From Air Capturing Carbon Dioxide From Air Klaus S. Lackner (kl2010@columbia.edu; 212-854-0304) Columbia University 500 West 120th Street New York, NY 10027 Patrick Grimes (pgrimes@worldnet.att.net; 908-232-1134) Grimes Associates Scotch Plains, NJ 07076 Hans-J. Ziock (ziock@lanl.gov; 505-667-7265) Los Alamos National Laboratory P.O.Box 1663 Los Alamos, NM 87544 Abstract The goal of carbon sequestration is to take CO 2 that would otherwise accumulate in the atmosphere and put it in safe and permanent storage. Most proposed methods would capture CO 2 from concentrated sources like power plants. Indeed, on-site capture is the most sensible approach for large sources and initially offers the most cost-effective avenue to sequestration. For distributed, mobile sources like cars, on-board capture at affordable cost would not be

102

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Capture & Storage Industrial Capture & Storage Technologies Industrial Capture & Storage The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

103

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

104

Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and...

105

SPIN EVOLUTION OF MILLISECOND MAGNETARS WITH HYPERACCRETING FALLBACK DISKS: IMPLICATIONS FOR EARLY AFTERGLOWS OF GAMMA-RAY BURSTS  

Science Conference Proceedings (OSTI)

The shallow decay phase or plateau phase of early afterglows of gamma-ray bursts (GRBs), discovered by Swift, is currently understood as being due to energy injection to a relativistic blast wave. One natural scenario for energy injection invokes a millisecond magnetar as the central engine of GRBs because the conventional model of a pulsar predicts a nearly constant magnetic-dipole-radiation luminosity within the spin-down timescale. However, we note that significant brightening occurs in some early afterglows, which apparently conflicts with the above scenario. Here we propose a new model to explain this significant brightening phenomena by considering a hyperaccreting fallback disk around a newborn millisecond magnetar. We show that for typical values of the model parameters, sufficient angular momentum of the accreted matter is transferred to the magnetar and spins it up. It is this spin-up that leads to a dramatic increase of the magnetic-dipole-radiation luminosity with time and thus significant brightening of an early afterglow. Based on this model, we carry out numerical calculations and fit well early afterglows of 12 GRBs assuming sufficiently strong fallback accretion. If the accretion is very weak, our model turns out to be the conventional energy-injection scenario of a pulsar. Therefore, our model can provide a unified explanation for the shallow decay phase, plateaus, and significant brightening of early afterglows.

Dai, Z. G.; Liu Ruoyu, E-mail: dzg@nju.edu.cn, E-mail: ryliu@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

2012-11-01T23:59:59.000Z

106

BISICLES Captures Details of Retreating Antarctic Ice  

NLE Websites -- All DOE Office Websites (Extended Search)

BISICLES Captures Details of Retreating Antarctic Ice BISICLES Captures Details of Retreating Antarctic Ice March 30, 2013 | Tags: Climate Research, Hopper, Math & Computer Science...

107

Carbon Capture Pilots (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture Pilots (Kentucky) Carbon Capture Pilots (Kentucky) Eligibility Commercial Fed. Government StateProvincial Govt Utility Program Information Kentucky Program Type...

108

Speeding Up Zeolite Evaluation for Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Speeding Up Zeolite Evaluation for Carbon Capture Speeding Up Zeolite Evaluation for Carbon Capture Zeolite.png Schematic of an important class of porous materials known as...

109

Better Buildings Neighborhood Program: Massachusetts Captures...  

NLE Websites -- All DOE Office Websites (Extended Search)

Massachusetts Captures Home Energy Waste to someone by E-mail Share Better Buildings Neighborhood Program: Massachusetts Captures Home Energy Waste on Facebook Tweet about Better...

110

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Supercomputers Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space...

111

A comparison of sensor strategies for capturing percussive gestures  

Science Conference Proceedings (OSTI)

Drum controllers designed by researchers and commercial companies use a variety of techniques for capturing percussive gestures. It is challenging to obtain both quick response times and low-level data (such as position) that contain expressive information. ... Keywords: electronic percussion, percussion controllers, sensors for interface design, timbre-recognition based instruments

Adam R. Tindale; Ajay Kapur; George Tzanetakis; Peter Driessen; Andrew Schloss

2005-05-01T23:59:59.000Z

112

Capturing carbon and saving coal  

SciTech Connect

Electric utilities face a tangle of choices when figuring how to pull CO{sub 2} from coal-fired plants. The article explains the three basic approaches to capturing CO{sub 2} - post-combustion, oxyfuel combustion and pre-combustion. Researchers at US DOE labs and utilities are investigating new solvents that capture CO{sub 2} more efficiently than amines and take less energy. Ammonium carbonate has been identified by EPRI as one suitable solvent. Field research projects on this are underway in the USA. Oxyfuel combustion trials are also being planned. Pre-combustion, or gasification is a completely different way of pulling energy from coal and, for electricity generation, this means IGCC systems. AEP, Southern Cinergy and Xcel are considering IGCC plants but none will capture CO{sub 2}. Rio Tinto and BP are planning a 500 MW facility to gasify coke waste from petroleum refining and collect and sequester CO{sub 2}. However, TECO recently dropped a project to build a 789 MW IGCC coal fired plant even though it was to receive a tax credit to encourage advanced coal technologies. The plant would not have captured CO{sub 2}. The company said that 'with uncertainty of carbon capture and sequestration regulations being discussed at the federal and state levels, the timing was not right'. 4 figs.

Johnson, J.

2007-10-15T23:59:59.000Z

113

Carbon Capture and Storage Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture and Storage Research Carbon Capture and Storage Research Clean Coal Carbon Capture and Storage Capture Storage Utilization MVA Regional Partnerships Oil & Gas Atlas...

114

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Technologies Industrial Capture & Storage Area 1 Large-Scale Industrial CCS Program The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

115

Carbon Capture & Sequestration Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Laboratory Battelle Memorial Institute CARBON CAPTURE & SEQUESTRATION TECHNOLOGIES J. Edmonds, J.J. Dooley, and S.H. Kim Battelle Pacific Northwest National Laboratory Battelle Memorial Institute Pacific Northwest National Laboratory Battelle Memorial Institute THE ROADMAP * Greenhouse gas emissions may not control themselves. * Climate policy may happen.--There are smart and dumb ways to proceed. The smart ways involve getting both the policy and the technology right--the GTSP. * There are no silver bullets--Expanding the set of options to include carbon capture and sequestration can help limit the cost of any ceiling on CO 2 concentrations. * Managing greenhouse emissions means managing carbon. * Carbon can be captured, transported, and sequestered in many ways.

116

Image capture system colors transforms  

Science Conference Proceedings (OSTI)

The goal of this paper is to simulate the colors transforms of the reflected light from an illuminated object that passes trough an image capture system. We are interested to see the colors differences at the output of each component from which the light ... Keywords: CIE standards, human eye response, lenses and filters transmittance, spectral images

Toadere Florin

2010-02-01T23:59:59.000Z

117

Pulsed Gamma-Rays From the Millisecond Pulsar J0030+0451 with the Fermi Large Area Telescope  

SciTech Connect

We report the discovery of gamma-ray pulsations from the nearby isolated millisecond pulsar PSR J0030+0451 with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). This discovery makes PSR J0030+0451 the second millisecond pulsar to be detected in gamma-rays after PSR J0218+4232, observed by the EGRET instrument on the Compton Gamma Ray Observatory. The spin-down power {dot E} = 3.5 x 10{sup 33} ergs s{sup -1} is an order of magnitude lower than the empirical lower bound of previously known gamma-ray pulsars. The emission profile is characterized by two narrow peaks, respectively 0.07 {+-} 0.01 and 0.08 {+-} 0.02 wide, separated by 0.44 {+-} 0.02 in phase. The first gamma-ray peak falls 0.15 {+-} 0.01 after the main radio peak. The pulse shape is similar to that of the 'normal' gamma-ray pulsars. An exponentially cut-off power-law fit of the emission spectrum leads to an integral photon flux above 100 MeV of (6.76 {+-} 1.05 {+-} 1.35) x 10{sup -8} cm{sup -2} s{sup -1} with cut-off energy (1.7 {+-} 0.4 {+-} 0.5) GeV. Based on its parallax distance of (300 {+-} 90) pc, we obtain a gamma-ray efficiency L{sub {gamma}}/{dot E} {approx_equal} 15% for the conversion of spin-down energy rate into gamma-ray radiation, assuming isotropic emission.

Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M. /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, M.; /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

2011-11-17T23:59:59.000Z

118

DISCOVERY OF THE OPTICAL/ULTRAVIOLET/GAMMA-RAY COUNTERPART TO THE ECLIPSING MILLISECOND PULSAR J1816+4510  

SciTech Connect

The energetic, eclipsing millisecond pulsar J1816+4510 was recently discovered in a low-frequency radio survey with the Green Bank Telescope. With an orbital period of 8.7 hr and a minimum companion mass of 0.16 M{sub Sun }, it appears to belong to an increasingly important class of pulsars that are ablating their low-mass companions. We report the discovery of the {gamma}-ray counterpart to this pulsar and present a likely optical/ultraviolet counterpart as well. Using the radio ephemeris, we detect pulsations in the unclassified {gamma}-ray source 2FGL J1816.5+4511, implying an efficiency of {approx}25% in converting the pulsar's spin-down luminosity into {gamma}-rays and adding PSR J1816+4510 to the large number of millisecond pulsars detected by Fermi. The likely optical/UV counterpart was identified through position coincidence (<0.''1) and unusual colors. Assuming that it is the companion, with R = 18.27 {+-} 0.03 mag and effective temperature {approx}> 15,000 K, it would be among the brightest and hottest of low-mass pulsar companions and appears qualitatively different from other eclipsing pulsar systems. In particular, current data suggest that it is a factor of two larger than most white dwarfs of its mass but a factor of four smaller than its Roche lobe. We discuss possible reasons for its high temperature and odd size, and suggest that it recently underwent a violent episode of mass loss. Regardless of origin, its brightness and the relative unimportance of irradiation make it an ideal target for a mass, and hence a neutron star mass, determination.

Kaplan, D. L.; Kotulla, R.; Biwer, C. M.; Day, D. F. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee WI 53211 (United States); Stovall, K.; Dartez, L.; Ford, A. J.; Garcia, A.; Jenet, F. A. [Center for Advanced Radio Astronomy and Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Ransom, S. M. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Roberts, M. S. E. [Eureka Scientific, Inc., 2452 Delmer Street, Suite 100, Oakland, CA 94602-3017 (United States); Archibald, A. M.; Karako, C.; Kaspi, V. M.; Lynch, R. S. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Boyles, J.; Lorimer, D. R.; McLaughlin, M. A. [Department of Physics, West Virginia University, White Hall, 115 Willey Street, Morgantown, WV 26506 (United States); Hessels, J. W. T.; Kondratiev, V. I., E-mail: kaplan@uwm.edu [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); and others

2012-07-10T23:59:59.000Z

119

capture  

E-Print Network (OSTI)

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Workshop On Gasification; Jared Ciferno; Subcritical Pc; Supercritical Pc; F Cop

2007-01-01T23:59:59.000Z

120

It's Elemental - Isotopes of the Element Radon  

NLE Websites -- All DOE Office Websites (Extended Search)

Astatine Astatine Previous Element (Astatine) The Periodic Table of Elements Next Element (Francium) Francium Isotopes of the Element Radon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Radon has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 193 1.15 milliseconds Alpha Decay 100.00% 194 0.78 milliseconds Alpha Decay 100.00% 195 6 milliseconds Alpha Decay 100.00% 195m 5 milliseconds Alpha Decay 100.00% 196 4.4 milliseconds Alpha Decay 99.90% Electron Capture ~ 0.10% 197 53 milliseconds Alpha Decay 100.00% 197m 25 milliseconds Alpha Decay 100.00% 198 65 milliseconds Alpha Decay No Data Available

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options  

E-Print Network (OSTI)

Capture Ready is a design concept enabling fossil fuel plants to be retrofitted more economically with carbon dioxide capture and storage (CCS) technologies, however financing the cost of capture ready can be problematic, especially...

Liang, Xi; Reiner, David; Gibbons, Jon; Li, Jia

122

NETL-Developed Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

2, Issue 26 2, Issue 26 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award page 2 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society page 4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs page 5 the ENERGY lab NATIONAL ENERGY TECHNOLOGY LABORATORY 2 NETL-Developed Carbon Capture Technology Wins 2012 R&D 100 Award _____________________________2 Field-proven Meter Rapidly Determines Carbon Dioxide Levels in Groundwater ____________________________3 NETL Scientists Awarded Prestigious Phase Equilibria Research Prize by the American Ceramic Society _______4 Collaborative Stent Research Helps Create Hundreds of High Paying Jobs ______________________________5 NETL Issued Patent for Novel Catalyst Technology ______6

123

HAWC Observatory captures first image  

NLE Websites -- All DOE Office Websites (Extended Search)

April » April » HAWC Observatory captures first image HAWC Observatory captures first image The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. April 30, 2013 The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. The High-Altitude Water Cherenkov (HAWC) Observatory is under construction. HAWC is under construction inside the Parque Nacional Pico de Orizaba, a Mexican national park. An international team of researchers, including scientists from Los Alamos, has taken the first image of the High-Altitude Water Cherenkov Observatory, or HAWC. The facility is designed to detect cosmic rays and the highest energy gamma rays ever observed from astrophysical sources. HAWC is under

124

Natural materials for carbon capture.  

Science Conference Proceedings (OSTI)

Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

2010-11-01T23:59:59.000Z

125

COMBUSTION-ASSISTED CO2 CAPTURE USING MECC MEMBRANES  

Science Conference Proceedings (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO{sub 2} from power plant flue gas. Here a modified MECC CO{sub 2} capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO{sub 2} driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO{sub 2} in the flue gas may be captured, and a compressed CO{sub 2} product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO{sub 2} capture system, and has the potential to meet U.S. DOE's goal that deployment of a CO{sub 2} capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Brinkman, K.; Gray, J.

2012-03-30T23:59:59.000Z

126

Combustion-Assisted CO2 Capture Using MECC Membranes  

Science Conference Proceedings (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO2 from power plant flue gas. Here a modified MECC CO2 capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO2 driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO2 in the flue gas may be captured, and a compressed CO2 product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO2 capture system, and has the potential to meet U.S. DOE s goal that deployment of a CO2 capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Sherman, Steven R [ORNL; Gray, Dr. Joshua R. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Brinkman, Dr. Kyle S. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Huang, Dr. Kevin [University of South Carolina, Columbia

2012-01-01T23:59:59.000Z

127

NETL: Solvents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvents for CO2 Capture Project No.: R&D 048 The most attractive physical solvents for carbon dioxide (CO2) capture are those having such properties as high thermal stability,...

128

Realistic costs of carbon capture  

Science Conference Proceedings (OSTI)

There is a growing interest in carbon capture and storage (CCS) as a means of reducing carbon dioxide (CO2) emissions. However there are substantial uncertainties about the costs of CCS. Costs for pre-combustion capture with compression (i.e. excluding costs of transport and storage and any revenue from EOR associated with storage) are examined in this discussion paper for First-of-a-Kind (FOAK) plant and for more mature technologies, or Nth-of-a-Kind plant (NOAK). For FOAK plant using solid fuels the levelised cost of electricity on a 2008 basis is approximately 10 cents/kWh higher with capture than for conventional plants (with a range of 8-12 cents/kWh). Costs of abatement are found typically to be approximately US$150/tCO2 avoided (with a range of US$120-180/tCO2 avoided). For NOAK plants the additional cost of electricity with capture is approximately 2-5 cents/kWh, with costs of the range of US$35-70/tCO2 avoided. Costs of abatement with carbon capture for other fuels and technologies are also estimated for NOAK plants. The costs of abatement are calculated with reference to conventional SCPC plant for both emissions and costs of electricity. Estimates for both FOAK and NOAK are mainly based on cost data from 2008, which was at the end of a period of sustained escalation in the costs of power generation plant and other large capital projects. There are now indications of costs falling from these levels. This may reduce the costs of abatement and costs presented here may be 'peak of the market' estimates. If general cost levels return, for example, to those prevailing in 2005 to 2006 (by which time significant cost escalation had already occurred from previous levels), then costs of capture and compression for FOAK plants are expected to be US$110/tCO2 avoided (with a range of US$90-135/tCO2 avoided). For NOAK plants costs are expected to be US$25-50/tCO2. Based on these considerations a likely representative range of costs of abatement from CCS excluding transport and storage costs appears to be US$100-150/tCO2 for first-of-a-kind plants and perhaps US$30-50/tCO2 for nth-of-a-kind plants.The estimates for FOAK and NOAK costs appear to be broadly consistent in the light of estimates of the potential for cost reductions with increased experience. Cost reductions are expected from increasing scale, learning on individual components, and technological innovation including improved plant integration. Innovation and integration can both lower costs and increase net output with a given cost base. These factors are expected to reduce abatement costs by approximately 65% by 2030. The range of estimated costs for NOAK plants is within the range of plausible future carbon prices, implying that mature technology would be competitive with conventional fossil fuel plants at prevailing carbon prices.

Al Juaied, Mohammed (Harvard Univ., Cambridge, MA (US). Belfer Center for Science and International Affiaris); Whitmore, Adam (Hydrogen Energy International Ltd., Weybridge (GB))

2009-07-01T23:59:59.000Z

129

Capturing Carbon Dioxide from Power Plants  

Science Conference Proceedings (OSTI)

The purpose of this report is to review the current state of CO2 capture technologies in order to provide input into the design of a CO2 capture and storage test facility. First, an overview of the three major approaches to CO2 capture is provided, noting that only one of these options, post-combustion capture, is compatible with the design criteria for the test facility. Second, current research efforts for post-combustion capture are reviewed, giving examples of technologies that may be appropriate for...

2004-12-16T23:59:59.000Z

130

Constraining the Bulk Properties of Dense Matter by Measuring Millisecond Pulsar Masses - A White Paper for the Astronomy and Astrophysics Decadal Survey, CFP Panel  

E-Print Network (OSTI)

More than four decades after the discovery of pulsars, the composition of matter at their cores is still a mystery. This white paper summarizes how recent high-precision measurements of millisecond pulsar masses have introduced new experimental constraints on the properties of super-dense matter, and how continued timing of intriguing new objects, coupled with radio telescope surveys to discover more pulsars, might introduce significantly more stringent constraints.

Freire, Paulo C; Lattimer, James; Stairs, Ingrid; Arzoumanian, Zaven; Cordes, James; Deneva, Julia

2009-01-01T23:59:59.000Z

131

Workshop on neutron capture therapy  

SciTech Connect

Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

Fairchild, R.G.; Bond, V.P. (eds.)

1986-01-01T23:59:59.000Z

132

Study of electron-capture delayed fission in Am-232  

Science Conference Proceedings (OSTI)

An automated x-ray-fission coincidence system was designed and constructed by LLNL and Lawrence Berkeley National Laboratory (LBNL) for use inside the Gammasphere high efficiency gamma-ray detector array at LBNL. The x-ray-fission coincidence apparatus detection station consists of two surface barrier detectors (for detection of fission fragments) and two high-purity Ge (HPGe) planar x-ray detectors (for measurement of x-rays and low-energy gamma rays). The detection station is placed inside Gammasphere at the 88-Inch Cyclotron at LBNL and used in conjunction with Gammasphere to measure the x-rays, low-energy gamma-rays and fission fragments resulting from the ECDF process. A series of collaborative experiment between LLNL, LBNL, and LANL utilizing various components of the x-ray-fission coincidence apparatus to measure x-rays and gamma-rays in the decay of a stationary {sup 252}Cf source were performed to test the various components of the x-ray-fission coincidence apparatus. The test experiments have been completed and the data is currently being analyzed by LBNL. Preliminary test results indicate that the system performed better than expected (e.g., the x-ray detectors performed better than expected with no evidence of microphonic noise that would reduce the photon energy resolution).

Kreek, S.A.; Hall, H.L.; Hoffman, D.C. [Lawrence Livermore National Lab., CA (United States); Strellis, D. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Gregorich, K.E. [Lawrence Berkeley National Lab., CA (United States). Nuclear Science Div.

1996-03-18T23:59:59.000Z

133

Electron capture in ion-molecule collisions at intermediate energy  

DOE Green Energy (OSTI)

Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs.

Kumura, M.

1986-01-01T23:59:59.000Z

134

FE Carbon Capture and Storage News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

carbon-capture-storage-news Office of Fossil Energy carbon-capture-storage-news Office of Fossil Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585202-586-6503 en Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution http://energy.gov/articles/energy-department-invests-drive-down-costs-carbon-capture-support-reductions-greenhouse-gas capture-support-reductions-greenhouse-gas" class="title-link">Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution

135

IGCC Design Considerations for CO2 Capture  

Science Conference Proceedings (OSTI)

This report contains technical design, plant performance, cost estimates, and economic analysis of IGCC power plants designed with future retrofit for full CO2 capture in mind. The gasification technologies supplied by General Electric, Shell, and Siemens studied in the report were designed to initially produce power without CO2 capture; but their designs included moderate pre-investment to economically accommodate retrofit of full CO2 capture at a later date. The base plant designs include deep sulfur r...

2009-03-31T23:59:59.000Z

136

New Materials Make Methane Capture Possible  

Science Conference Proceedings (OSTI)

May 8, 2013... SBN, captured enough medium source methane to turn it to high purity methane, which in turn could be used to generate efficient electricity.

137

Capturing Latino Students in the Academic Pipeline  

E-Print Network (OSTI)

The Latino Educational Pipeline Why Latino Students are atSTUDENTS IN THE ACADEMIC PIPELINE CAPTURING LATINO STUDENTSIN THE ACADEMIC PIPELINE Patricia Gcindara, Editor Katherine

Gndara, Patricia; Larson, Katherine; Mehan, Hugh; Rumberger, Russell

1998-01-01T23:59:59.000Z

138

NETL: 2011 - Carbon Capture Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture Peer Review During July 18 - 21, 2011, a total of 16 projects from NETL's Innovations for Existing Plants and Carbon Sequestration Programs were peer reviewed....

139

NETL: 2013 - Carbon Capture Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

3 - Independent Peer Reviews of NETL Technology Programs NETL: 2013 - Carbon Capture Peer Review Carbon Storage Peer Review During October 22 - 26, 2012, a total of 16 projects...

140

More Efficient Carbon Capture Material Developed  

Science Conference Proceedings (OSTI)

Mar 11, 2013 ... The previously underused materialknown as SIFSIX-1-Cuhas been found to offer a highly efficient mechanism for carbon capture.

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Supercomputers Capture Turbulence in the Solar Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

Provide Web Site Feedback: info@es.net Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space...

142

It's Elemental - Isotopes of the Element Americium  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Capture 100.00% Alpha Decay 1.910-4 % 240m 0.94 milliseconds Spontaneous Fission < 100.00% 241 432.6 years Alpha Decay 100.00% Spontaneous Fission 410-10 % 242...

143

It's Elemental - Isotopes of the Element Iodine  

NLE Websites -- All DOE Office Websites (Extended Search)

Available No Data Available No Data Available 108 36 milliseconds Alpha Decay 91.00% Electron Capture 9.00% Proton Emission < 1.00% 109 93.5 microseconds Proton Emission 99.99%...

144

Capture Effect of Randomly Addressed Polling Protocol  

Science Conference Proceedings (OSTI)

The capture effect, discussed in this paper, is generally considered to enhance the systems performance in a wireless network. This paper also considers the Randomly Addressed Polling (RAP) protocol in the presence of a fading mobile radio ... Keywords: capture effect, noiseless, randomly addressed polling protocol

Jiang-Whai Dai

1999-06-01T23:59:59.000Z

145

Neutron capture in the r-process  

Science Conference Proceedings (OSTI)

Recently we have shown that neutron capture rates on nuclei near stability significantly influence the r-process abundance pattern. We discuss the different mechanisms by which the abundance pattern is sensitive to the capture rates and identify key nuclei whose rates are of particular im- portance. Here we consider nuclei in the A = 130 and A = 80 regions.

Surman, Rebecca [Union College; Mclaughlin, Gail C [North Carolina State University; Mumpower, Matthew [North Carolina State University; Hix, William Raphael [ORNL; Jones, K. L. [University of Tennessee, Knoxville (UTK)

2010-01-01T23:59:59.000Z

146

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options  

E-Print Network (OSTI)

Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options Xi Liang, Jia Li, Jon Gibbons and David Reiner December 2007 EPRG 0728 & CWPE 0761 #12;FINANCING CAPTURE READY COAL supercritical pulverized coal power plant in China, using a cash flow model with Monte-Carlo simulations

Aickelin, Uwe

147

Applications and misapplications of the channel-capture formalism of direct neutron capture  

Science Conference Proceedings (OSTI)

We discuss the channel-capture approximation of slow neutron direct-capture theory. We show that this approximation gives a generally good representation of the neutron capture cross sections for several electric dipole transitions in a broad range of nuclides from A = 9 to A = 136; these are mostly near-spherical nuclei. Despite this body of agreement, we examine the accuracy we can expect from the simple channel-capture theory. Comparison with calculations of the potential-capture cross section from physically more realistic optical model calculations show that, in general, the channel-capture cross section can be up to approx. =40% in error. In cases where the expected channel-capture cross section is much smaller than the ''hard-sphere'' capture cross-section estimate, the disagreement with potential capture can be much worse than this. Also, in these cases, compound-nucleus capture can be of comparable or greater magnitude. These effects have been shown to completely undermine recent attempts to determine nuclear interaction radii for targets, such as /sup 12/C and /sup 9/Be, by application of the channel-capture formula to capture cross-section data. 20 refs.

Raman, S.; Lynn, J.E.

1985-01-01T23:59:59.000Z

148

Carbon Capture Technology | Open Energy Information  

Open Energy Info (EERE)

Technology Technology Jump to: navigation, search This information is taken from DOE's information on Carbon Capture Carbon Capture Research Before carbon dioxide (CO2) gas can be sequestered from power plants and other point sources, it must be captured as a relatively pure gas. On a mass basis, CO2 is the 19th largest commodity chemical in the United States, and CO2 is routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H2 production, and limestone calcination. Existing capture technologies, however, are not cost-effective when considered in the context of sequestering CO2 from power plants. Most power plants and other large point sources use air-fired combustors, a process that exhausts CO2 diluted with nitrogen. Flue gas from coal-fired power

149

Sawtooth oscillations in the flux of runaway electrons to the PLT limiter  

SciTech Connect

Increased fluxes of runaway electrons at the PLT limiter are observed in the few milliseconds following internal disruptions. These fluxes have an inverted (outside) sawtooth character. The time for the flux to reach a maximum after the disruption has been studied as a function of the plasma parameters for thousands of PLT discharges. One interpretation is that this delay represents the time for a perturbation to the runaway electron population to travel from the q = 1 region to the plasma boundary. These times are approx. 10/sup -1/ of the electron thermal confinement times and increase with the plasma electron density.

Barnes, C.W.; Strachan, J.D.

1982-03-01T23:59:59.000Z

150

Retrofitting CO{sub 2} capture  

SciTech Connect

Retrofitting existing fossil-fueled plants with the first available carbon dioxide capture technologies could play an important role in paving the way for development of lower-cost, reliable carbon capture and storage systems. EPRI research is helping utilities better understand the engineering challenges and economic consequences. Studies are being conducted on retrofitting five different plants with advanced amine PCC technologies. Other studies include: process optimization studies; valuing operating flexibility; CO{sub 2} capture for CTCC plants; and assessing the impact of climate policy on retrofitting investment.

Weisel, J.

2009-07-01T23:59:59.000Z

151

Benchmarking a surrogate reaction for neutron capture  

Science Conference Proceedings (OSTI)

{sup 171,173}Yb(d,p{gamma}) reactions are measured, with the goal of extracting the neutron capture cross-section ratio as a function of the neutron energy using the external surrogate ratio method. The cross-section ratios obtained are compared to the known neutron capture cross sections. Although the Weisskopf-Ewing limit is demonstrated not to apply for these low neutron energies, a prescription for deducing surrogate cross sections is presented. The surrogate cross-section ratios deduced from the {sup 171,173}Yb(d,p{gamma}) measurements agree with the neutron capture results within 15%.

Hatarik, R.; Cizewski, J. A.; Hatarik, A. M.; O'Malley, P. D. [Rutgers University, New Brunswick, New Jersey 08903 (United States); Bernstein, L. A.; Bleuel, D. L.; Burke, J. T.; Escher, J. E.; Lesher, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gibelin, J.; Phair, L.; Rodriguez-Vieitez, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Goldblum, B. L. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nuclear Engineering Department, University of California, Berkeley, California 94720 (United States); Swan, T. [Rutgers University, New Brunswick, New Jersey 08903 (United States); University of Surrey, Guildford GU2 7XH, Surrey (United Kingdom); Wiedeking, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2010-01-15T23:59:59.000Z

152

Scientific and Technical Posters from the 2010 NETL Carbon Dioxide Capture Technology Meeting  

DOE Data Explorer (OSTI)

NETL hosted the 2010 CO2 Capture Technology Meeting on September 13-17, 2010 in Pittsburgh, PA. The Meeting provided a public forum to present carbon dioxide (CO2) capture technology development status and accomplishments made under NETL's Innovations for Existing Plants, Carbon Sequestration and Demonstration Programs. In addition, ARPA-E Program Director Mark Hartney highlighted the Agency's CO2 capture portfolio. Both ARPA-E and NETL projects were featured in the poster session, and these posters are now available online. ARPA-E posters are:

  • Low-Cost Biocatalyst for Acceleration of Energy Efficient CO2 Capture Solvents, James Lalonde (Codexis Inc.)
  • A Solvent/Membrane Hybrid Post-Combustion CO2 Capture Process for Existing Coal-Fired Power Plants, Kunlei Liu (University of Kentucky, Center for Applied Energy Research)
  • High-Throughput Discovery of Robust Metal-Organic Frameworks for Carbon Dioxide Capture, Jeffrey Long (LBNL)
  • CO2 Capture with Ionic Liquids Involving Phase Change, Joan Brennecke (Univ of Notre Dame)
  • Cryogenic Carbon Capture, Larry Baxter (Sustainable Energy Solutions, BYU)
  • Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage Technology, Edward Swanson and Tushar Patel (Columbia University)
  • CO2 Binding Organic Liquids for Post-Combustion CO2 Capture, Aqil Jamal (RTI International)
  • Development of Stimuli Responsive Metal-Organic Frameworks for Energy-Efficient Post-Combustion CO2 Capture, Hongcai Zhou (Texas A&M)
  • Electrochemically Mediated Separation for Carbon Capture and Mitigation, Fritz Simeon (MIT)
  • Phase Changing Absorbents for CO2 Capture, Teresa Grocela (GE Global Research)
  • Bio-Mimetic Catalysts for Carbon Capture with Optimized System Placement, Joshuah Stolaroff (LLNL)
  • MOF Polymer Composite Membranes for CO2 Capture From Flue Gas, David Sholl (Georgia Tech)
  • Achieving a 10,000 GPU Permenace for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes, Kathyrn A. Berchtold (LANL)
  • A High Efficiency Inertial CO2 Extraction System ICES, Vladmir Balepin (ATK)
  • Carbon Nanotube Membranes for Carbon Sequestration, Aleksandr Noy (Porifera Inc.)
  • CO2 Capture with Enzyme Synthetic Analogue, Harry Cordatos (United Technologies Research Center)
  • Resin Wafer Electrodeionization for Flue Gas Carbon Dioxide Capture, Wayne M. Carson and Jitendra T. Shah (Nalco Co.)
  • Electric Field Swing Adsorption (EFSA) for Carbon Capture Applications, David Moore and Kai Landskron (Lehigh University)
  • Pilot Scale Testing of the Syngas Chemical Looping Process, Fanxing Li (Ohio State University)

Posters featured from NETL are:

  • Lab Scale & Computational Studies of Chemical Looping Combustion (CLC) for Efficient Carbon Capture, Douglas Straub (NETL)
  • Novel Warm Gas Temperature Sorbent Development for CO2 Removal from Synthesis Gas Streams, James Fisher II (URS/NETL)
  • An Investigation into Molecular Electron Density Relationships to Amine CO2 Capture Reaction Energy, Anita Lee (Carnegie Mellon)
  • Using Hydrophobic CO2-philic Polymers to Design CO2-selective Liquid Solvents and High Permeability CO2-selective Crosslinked Membranes, Robert Enrick (University of Pittsburgh)
  • Investigation of Amino Acids for Dry Sorbents, Bingyun Li (West Virginia University)
  • Radiative Heat Transfer in Oxy-Combustion, Clint Bedick and Kent Casleton (NETL)

153

Determination of thermal neutron capture gamma yields.  

E-Print Network (OSTI)

A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma ...

Harper, Thomas Lawrence

1969-01-01T23:59:59.000Z

154

Shock Capturing with Discontinuous Galerkin Method  

E-Print Network (OSTI)

Shock capturing has been a challenge for computational fluid dynamicists over the years. This article deals with discontinuous Galerkin method to solve the hyperbolic equations in which solutions may develop discontinuities ...

Nguyen, Vinh Tan

155

Economic assessment of CO? capture and disposal  

E-Print Network (OSTI)

A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

156

Computer simulation of neutron capture therapy.  

E-Print Network (OSTI)

Analytical methods are developed to simulate on a large digital computer the production and use of reactor neutron beams f or boron capture therapy of brain tumors. The simulation accounts for radiation dose distributions ...

Olson, Arne Peter

1967-01-01T23:59:59.000Z

157

Regulating carbon dioxide capture and storage  

E-Print Network (OSTI)

This essay examines several legal, regulatory and organizational issues that need to be addressed to create an effective regulatory regime for carbon dioxide capture and storage ("CCS"). Legal, regulatory, and organizational ...

De Figueiredo, Mark A.

2007-01-01T23:59:59.000Z

158

Converting Captured CO2 into Useful Materials  

Science Conference Proceedings (OSTI)

Aug 2, 2010... algae production technology that can capture at least 60 percent of flue gas CO2 from an industrial coal-fired source to produce biofuel and...

159

Novel Solvent System for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Solvent System for CO Solvent System for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

160

National Carbon Capture Center: 2010 Report  

Science Conference Proceedings (OSTI)

The Power Systems Development Facility (PSDF), a large-scale test facility located in Wilsonville, Alabama, was established in 1994 to develop coal-based power generation technologies that are reliable, environmentally acceptable, and cost effective. In 2009, the PSDF became the National Carbon Capture Center (NCCC) with the mission of supporting the development of cost-effective, commercially viable CO2 capture technologies for both coal-derived syngas and flue gas. The project continues to be funded pr...

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: 2013 Conference Proceedings - 2013 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 NETL CO2 Capture Technology Meeting 2013 NETL CO2 Capture Technology Meeting July 8-11, 2013 Previous Proceedings 2012: NETL CO2 Capture Technology Meeting 2011: NETL CO2 Capture Technology Meeting 2010: NETL CO2 Capture Technology Meeting 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting Proceedings of the 2013 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, July 8 Opening/Overview Post-Combustion Sorbent-Based Capture Tuesday, July 9 Post-Combustion Solvent-Based Capture CO2 Compression Wednesday, July 10 Post-Combustion Membrane-Based Capture Pre-Combustion Capture Projects Thursday, July 11 ARPA-E Capture Projects System Studies and Modeling Oxy-Combustion and Chemical Looping Posters PRESENTATIONS Monday, July 8, 2013 Opening/Overview Introduction [PDF-MB]

162

Carbon Capture and Storage (CCS) Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage (CCS) Studies Carbon Capture and Storage (CCS) Studies Fossil Energy Studies for the next 6 months,December 2008-June 2009, Carbon Capture and Storage...

163

Noise-optimal capture for high dynamic range photography  

E-Print Network (OSTI)

Taking multiple exposures is a well-established approach both for capturing high dynamic range (HDR) scenes and for noise reduction. But what is the optimal set of photos to capture? The typical approach to HDR capture ...

Hasinoff, Samuel William

164

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network (OSTI)

and HB 90:Carbon capture and sequestration, http://legisweb.conference on carbon capture and sequestration, Pittsburgh,The DOEs Regional Carbon Sequestration Partnerships are

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

165

Secretary Chu Announces $3 Billion Investment for Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Billion Investment for Carbon Capture and Sequestration Secretary Chu Announces 3 Billion Investment for Carbon Capture and Sequestration December 4, 2009 - 12:00am Addthis...

166

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

167

Better Buildings Neighborhood Program: Step 10: Capture Lessons...  

NLE Websites -- All DOE Office Websites (Extended Search)

10: Capture Lessons Learned to someone by E-mail Share Better Buildings Neighborhood Program: Step 10: Capture Lessons Learned on Facebook Tweet about Better Buildings Neighborhood...

168

Ohio State Develops Breakthrough Membranes for Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage...

169

New Recovery Act Funding Boosts Industrial Carbon Capture and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and...

170

Changes related to "Cost and Performance of Carbon Dioxide Capture...  

Open Energy Info (EERE)

icon Changes related to "Cost and Performance of Carbon Dioxide Capture from Power Generation" Cost and Performance of Carbon Dioxide Capture from Power Generation...

171

Post-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Post-Combustion Carbon Capture Research Post-Combustion Carbon Capture Research Fossil fuel fired electric generating plants are the cornerstone of America's central power system....

172

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a...

173

Energy Department Invests to Drive Down Costs of Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in...

174

2013 NETL CO2 Capture Technology Meeting Sheraton Station Square...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Capture Technology Meeting Sheraton Station Square, Pittsburgh, PA July 8 - 11, 2013 ION Novel Solvent System for CO 2 Capture FE0005799 Nathan Brown ION Engineering...

175

Spatially-explicit impacts of carbon capture and sequestration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spatially-explicit impacts of carbon capture and sequestration on water supply and demand Title Spatially-explicit impacts of carbon capture and sequestration on water supply and...

176

CO2 Capture Poject CCP | Open Energy Information  

Open Energy Info (EERE)

companies and government organisations that are undertaking research and development of carbon capture and storage technologies. References CO2 Capture Poject (CCP)1 LinkedIn...

177

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas) ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Carbon Dioxide CaptureSequestration Tax Deduction (Kansas) Eligibility Commercial Industrial Utility Program...

178

Capture, Separation and Triggered Release of CO2 with Metal ...  

Science Conference Proceedings (OSTI)

Presentation Title, Capture, Separation and Triggered Release of CO2 with Metal ... pores can be tailored to act as high capacity sites for carbon dioxide capture.

179

Grangemouth Advanced CO2 Capture Project GRACE | Open Energy...  

Open Energy Info (EERE)

GRACE is a project consortium that aims to develop cost improving technologies for carbon capture and separation. References Grangemouth Advanced CO2 Capture Project...

180

NETL: News Release - Worldwide Carbon Capture and Storage Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2009 Worldwide Carbon Capture and Storage Projects on the Increase International Efforts to Reduce Greenhouse Gas Emissions Through Carbon Capture and Storage Showcased with DOE...

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Membrane Materials for Carbon Capture from Power Processes  

Science Conference Proceedings (OSTI)

Symposium, Materials for CO2 Capture and Conversion. Presentation Title, Membrane Materials for Carbon Capture from Power Processes. Author(s), Tim...

182

Lab captures five Society for Technical Communication awards  

NLE Websites -- All DOE Office Websites (Extended Search)

captures five Society for Technical Communication awards Lab captures five Society for Technical Communication awards Reducing Global Threats through Innovative Science and...

183

Strategies for demonstration and early deployment of carbon capture and storage : a technical and economic assessment of capture percentage  

E-Print Network (OSTI)

Carbon capture and storage (CCS) is a critical technology for reducing greenhouse gas emissions from electricity production by coal-fired power plants. However, full capture (capture of nominally 90% of emissions) has ...

Hildebrand, Ashleigh Nicole

2009-01-01T23:59:59.000Z

184

NETL: Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture Evaluation of Dry Sorbent Technology for Pre-Combustion CO2 Capture Project No.: DE-FE0000465 Scanning Electron Microsopy (SEM) and Transmission Electron Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. Scanning Electron Microsopy (SEM) and Transmission Electron Miscroscopy (TEM) images of a multi-functional sorbent synthesized by a novel method. URS and the University of Illinois at Urbana-Champaign are investigating a dry sorbent process configured to combine the water-gas-shift (WGS) reaction with carbon dioxide (CO2) removal for coal gasification systems. A combination of process simulation modeling and sorbent molecular and thermodynamic analyses will be performed to predict optimal sorbent properties and identify optimal operating temperature and pressure ranges

185

NETL: 2011 Conference Proceedings - 2011 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 NETL CO2 Capture Technology Meeting 2011 NETL CO2 Capture Technology Meeting August 22 - 26, 2011 Previous Proceedings 2009: Annual NETL CO2 Capture Technology for Existing Plants R&D Meeting 2010: 2010 NETL CO2 Capture Technology Meeting Proceedings of the 2011 NETL CO2 Capture Technology Meeting Table of Contents Presentations Monday, August 22 Opening/Overview Post-combustion Sorbent-Based Capture Post-combustion Membrane-Based Capture Tuesday, August 23 Post-combustion Solvent-Based Capture ARPA-E Capture Projects Wednesday, August 24 Oxy-Combustion and Oxygen Production Chemical Looping Process CO2 Compression Thursday, August 25 FutureGen 2.0, CCPI and ICCS Demonstration Projects System Studies and Modeling Pre-Combustion Capture Projects Friday, August 26 Pre-combustion Capture Projects Posters

186

NETL: Industrial Capture & Storage Area 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Technologies Industrial Capture & Storage Area 2 Innovative Concepts for Beneficial CO2 Use The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

187

Speeding Up Zeolite Evaluation for Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Speeding Up Speeding Up Zeolite Evaluation for Carbon Capture Speeding Up Zeolite Evaluation for Carbon Capture Zeolite.png Schematic of an important class of porous materials known as zeolites. The large red structure in the center of this periodic structure is a cavity that might be a good candidate for adsorption of a gas such as carbon dioxide. The seven small red areas at the corners (plus the one hidden by the yellow ball) are not suitable and need to be eliminated from studies that attempt to predict guest-related properties using molecular simulation techniques. A new method developed at NERSC uses software to differentiate between suitable and unsuitable pockets, thereby speeding up discovery of new materials. Why it Matters: Capturing and sequestering waste carbon dioxide (CO2) is a

188

Carbon Capture Corporation | Open Energy Information  

Open Energy Info (EERE)

Carbon Capture Corporation Carbon Capture Corporation Jump to: navigation, search Name Carbon Capture Corporation Address 7825 Fay Avenue Place La Jolla, California Zip 92037 Sector Carbon Product Developing ways to use algae to absorb CO2 emitted from gas- and coal-fired power plants Website http://www.carbcc.com/ Coordinates 32.845391°, -117.275033° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.845391,"lon":-117.275033,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Knowledge extraction from intelligent electronic devices  

Science Conference Proceedings (OSTI)

Most substations today contain a large number of Intelligent Electronic Devices (IEDs), each of which captures and stores locally measured analogue signals, and monitors the operating status of plant items. A key issue for substation data analysis is ...

Ching-Lai Hor; Peter A. Crossley

2005-01-01T23:59:59.000Z

190

Carbon Capture and Sequestration Newsletter, Issue #2  

Science Conference Proceedings (OSTI)

This issue of the Carbon Capture and Sequestration (CC&S) Newsletter consists of updates on ongoing work in the CC&S target. The feature article covers the status of the ongoing economics work. Two parallel efforts proceeded during 2001 in this area: (1) an update of the previous work on Innovative Fossil Cycles Incorporating CO2 Removal, which developed costs associated with new plants; and (2) a study of the costs of capturing carbon dioxide from existing plants. Also covered are two meetings held in C...

2002-01-16T23:59:59.000Z

191

NETL: 2010 Conference Proceedings - 2010 NETL CO2 Capture Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 NETL CO2 Capture Technology Meeting 2010 NETL CO2 Capture Technology Meeting September 13-17, 2010 Table of Contents Presentations Monday, September 13 Opening/Overview Post-combustion Sorbent Based Capture Post-combustion Solvent Based Capture Tuesday, September 14 Post-combustion Membrane Based Capture Pulverized Coal Oxy-combustion ARPA-E Projects Wednesday, September 15 National Carbon Capture Center Chemical Looping Processes Systems Studies and Modeling Efforts CO2 Compression New CO2 Capture Projects Thursday, September 16 New CO2 Capture Projects - Cont'd CCPI and ICCS Demonstration Projects Pre-combustion Capture Projects Friday, September 17 Pre-combustion Capture Projects - Cont'd Posters Advanced Research Projects Agency - Energy (ARPA-E) NETL Office of Research and Development Research Projects

192

Biominetic Membrane for Co2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Membrane for CO Biomimetic Membrane for CO 2 Capture from Flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport, and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post

193

Carbon Capture and Storage at Scale  

Science Conference Proceedings (OSTI)

This report examines different scenarios for how the nascent carbon capture and sequestration (CCS) industry might evolve through an examination of the emergence and growth of three analog industries: liquefied natural gas (LNG), SO2 controls for power plants, and nuclear power.

2010-01-28T23:59:59.000Z

194

Carbon Dioxide Capture from Coal-Fired  

E-Print Network (OSTI)

Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

195

Mobile device protection from loss and capture  

Science Conference Proceedings (OSTI)

Mobile devices play a critical role in assistive environments. How to authenticate and secure communications among them has become more important especially against loss and capture of the devices. In this paper, we present an approach to protect signing ... Keywords: assistive environment, authentication, digital signature, forward security, mobile device

Zhengyi Le; Yi Ouyang; Yurong Xu; Fillia Makedon

2008-07-01T23:59:59.000Z

196

Constraint capture and maintenance in engineering design  

Science Conference Proceedings (OSTI)

The Designers' Workbench is a system developed by the Advanced Knowledge Technologies Consortium to support designers in large organizations, such as Rolls-Royce, to ensure that the design is consistent with the specification for the particular design ... Keywords: Application Conditions, Capture, Constraints, Design, Maintenance, Rationales

Suraj Ajit; Derek Sleeman; David w. Fowler; David Knott

2008-11-01T23:59:59.000Z

197

Direct neutron capture and related mechanisms  

Science Conference Proceedings (OSTI)

We consider the evidence for the role of direct and related mechanisms in neutron capture at low and medium energies. Firstly, we compare the experimental data on the thermal neutron cross sections for El transitions in light nuclei with careful estimates of direct capture. Over the full range of light nuclei with small cross sections direct capture is found to be the predominant mechanism, in some cases being remarkable accurate, but in a few showing evidence for collective effects. When resonance effects become substantial there is evidence for an important contribution from the closely related valence mechanism, but full agreement with the data in such cases appears to require the introduction of a more generalised valence model. The possibility of direct and valence mechanisms playing a role in M1 capture is studied, and it is concluded that in light nuclei at relatively low gamma ray energies, it does indeed play some role. In heavier nuclei it appears that the evidence, especially from the correlations between E1 and M1 transitions to the same final states, favours the hypothesis that the main transition strength is governed by the M1 giant resonance. 31 refs., 2 tabs.

Lynn, J.E. (Los Alamos National Lab., NM (USA)); Raman, S. (Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

198

Capture and Utilisation of Landfill Gas  

E-Print Network (OSTI)

Biomass Capture and Utilisation of Landfill Gas What is the potential for additional utilisation of landfill gas in the USA and around the world? By Nickolas Themelis and Priscilla Ulloa, Columbia University. In his 2003 review of energy recovery from landfill gas, Willumsen1 reported that as of 2001, there were

Columbia University

199

Capturing conflict and confusion in CSP  

Science Conference Proceedings (OSTI)

Traditionally, developers of concurrent systems have adopted two distinct approaches: those with truly concurrent semantics and those with interleaving semantics. In the coarser interleaving interpretation parallelism can be captured in terms of non-determinism ... Keywords: CSP, Petri nets, automatic verification, conflict, confusion, interleaving concurrency, true concurrency

Christie Marrne Bolton

2007-07-01T23:59:59.000Z

200

Synthesis of optimal adsorptive carbon capture processes.  

SciTech Connect

Solid sorbent carbon capture systems have the potential to require significantly lower regeneration energy compared to aqueous monoethanol amine (MEA) systems. To date, the majority of work on solid sorbents has focused on developing the sorbent materials themselves. In order to advance these technologies, it is necessary to design systems that can exploit the full potential and unique characteristics of these materials. The Department of Energy (DOE) recently initiated the Carbon Capture Simulation Initiative (CCSI) to develop computational tools to accelerate the commercialization of carbon capture technology. Solid sorbents is the first Industry Challenge Problem considered under this initiative. An early goal of the initiative is to demonstrate a superstructure-based framework to synthesize an optimal solid sorbent carbon capture process. For a given solid sorbent, there are a number of potential reactors and reactor configurations consisting of various fluidized bed reactors, moving bed reactors, and fixed bed reactors. Detailed process models for these reactors have been modeled using Aspen Custom Modeler; however, such models are computationally intractable for large optimization-based process synthesis. Thus, in order to facilitate the use of these models for process synthesis, we have developed an approach for generating simple algebraic surrogate models that can be used in an optimization formulation. This presentation will describe the superstructure formulation which uses these surrogate models to choose among various process alternatives and will describe the resulting optimal process configuration.

chang, Y.; Cozad, A.; Kim, H.; Lee, A.; Vouzis, P.; Konda, M.; Simon, A.; Sahinidis, N.; Miller, D.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

It's Elemental - Isotopes of the Element Radium  

NLE Websites -- All DOE Office Websites (Extended Search)

Decay 85.00% Electron Capture 15.00% 213 2.73 minutes Alpha Decay 80.00% Electron Capture 20.00% 213m 2.20 milliseconds Isomeric Transition 99.40% Alpha Decay 0.60% 214...

202

Carbon Capture R&D | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capture R&D Capture R&D Carbon Capture R&D DOE's Carbon Capture Program, administered by the Office of Fossil Energy and the National Energy Technology Laboratory, is conducting research and development activities on Second Generation and Transformational carbon capture technologies that have the potential to provide step-change reductions in both cost and energy penalty as compared to currently available First Generation technologies. The Carbon Capture Program consists of two core research Technology Areas: (1) Post-Combustion Capture; and (2) Pre-Combustion Capture. Post-combustion capture is primarily applicable to fossil fuel based systems such as conventional pulverized coal (PC)-fired power plants, where the fuel is burned with air in a boiler to produce steam that drives

203

Carbon Dioxide Capture Process with Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Dioxide Capture Process with Regenerable Sorbents Dioxide Capture Process with Regenerable Sorbents sorbent material. Additionally, the design of the system incorporates a cross- flow moving-bed reactor where the gas flows horizontally through a "panel" of solid sorbent that is slowly moving down-wards under gravity flow. With the expanded use of fossil fuels expected throughout the world, the increase in CO 2 emissions may prove to contribute even more significantly to global climate change. To address this problem, carbon sequestration scientists and engineers have proposed a number of methods to remove CO 2 from gas streams, such as chemical absorption with a solvent, membrane separation, and cryogenic fractionation. However, all of these methods are expensive and possibly cost-prohibitive for a specific application.

204

Polarized photons in radiative muon capture  

E-Print Network (OSTI)

We discuss the measurement of polarized photons arising from radiative muon capture. The spectrum of left circularly polarized photons or equivalently the circular polarization of the photons emitted in radiative muon capture on hydrogen is quite sensitive to the strength of the induced pseudoscalar coupling constant $g_P$. A measurement of either of these quantities, although very difficult, might be sufficient to resolve the present puzzle resulting from the disagreement between the theoretical prediction for $g_P$ and the results of a recent experiment. This sensitivity results from the absence of left-handed radiation from the muon line and from the fact that the leading parts of the radiation from the hadronic lines, as determined from the chiral power counting rules of heavy-baryon chiral perturbation theory, all contain pion poles.

Shung-ichi Ando; Harold W. Fearing; Dong-Pil Min

2001-04-25T23:59:59.000Z

205

Ordinary Muon Capture in Hydrogen Reexamined  

E-Print Network (OSTI)

The rate of muon capture in a muonic hydrogen atom is calculated in heavy-nucleon chiral perturbation theory up to next-to-next-to leading order. To this order, we present the systematic evaluation of all the corrections due to the QED and electroweak radiative corrections and the proton-size effect. Since the low-energy constants involved can be determined from other independent sources of information, the theory has predictive power. For the hyperfine-singlet $\\mu p$ capture rate $\\Gamma_0$, our calculation gives $\\Gamma_0=710 \\,\\pm 5\\,s^{-1}$, which is in excellent agreement with the experimental value obtained in a recent high-precision measurement by the MuCap Collaboration.

U. Raha; F. Myhrer; K. Kubodera

2013-03-25T23:59:59.000Z

206

Carbon Capture and Sequestration Newsletter, Issue #1  

Science Conference Proceedings (OSTI)

This is the inaugural edition of the EPRI Carbon Capture and Sequestration (CC&S) newsletter. The newsletter will provide periodic updates on research conducted through EPRI's CC&S target, and on related issues. Coverage will include: o summaries of, and EPRI perspectives on, significant issues (such as the likelihood of success and the applicability of the various technical concepts under development), perspectives on governmental research and development (R&D) policy, and important research findings; o...

2001-07-19T23:59:59.000Z

207

Readout of Secretary Chu Meetings on Carbon Capture and Sequestration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu Meetings on Carbon Capture and Sequestration and State Grid Readout of Secretary Chu Meetings on Carbon Capture and Sequestration and State Grid July 16, 2009 - 12:00am Addthis...

208

New Funding from DOE Boosts Carbon Capture and Storage Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from DOE Boosts Carbon Capture and Storage Research and Development New Funding from DOE Boosts Carbon Capture and Storage Research and Development September 16, 2009 - 12:00am...

209

Carbon Pollution Being Captured, Stored and Used to Produce More...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil Carbon Pollution Being Captured, Stored and Used to Produce More Domestic Oil May 10, 2013 - 11:38am...

210

CO2 Capture and Storage Project, Education and Training Center...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage. It's the process of capturing and storing or re-using carbon dioxide (CO2) from coal-fired power plants and industrial sources. In Decatur, Illinois, a new carbon capture...

211

Carbon Dioxide Capture/Sequestration Tax Deduction (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Carbon Dioxide Capture/Sequestration Tax Deduction allows a taxpayer a deduction to adjusted gross income with respect to the amortization of the amortizable costs of carbon dioxide capture,...

212

FACT SHEET: CARBON CAPTURE USE AND STORAGE ACTION GROUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CARBON CAPTURE USE AND STORAGE ACTION GROUP CARBON CAPTURE USE AND STORAGE ACTION GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers pledged to establish a Carbon Capture Use and Storage Action Group to be led by the United Kingdom and Australia to facilitate political and business leadership and develop a Global Strategic Implementation Plan to examine how to overcome key barriers to the deployment of Carbon Capture Use and Storage (CCUS).

213

Effect of nuclear deformation on direct capture reactions  

E-Print Network (OSTI)

The direct radiative capture process is well described by the spherical potential model. In order for the model to explain direct captures more accurately, the effect of the nuclear deformation has been added and analyzed in this work, since most nucleuses are not spherical. The results imply that the nuclear deformation largely affects the direct capture and should be taken into account during discussing direct capture reactions.

G. W. Fan; X. L. Cai; M. Fukuda; Zhongzhou Ren; W. Xu

2013-05-01T23:59:59.000Z

214

Post-Combustion CO2 Capture 11 -13 July 2010  

E-Print Network (OSTI)

Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Tufts European Center Talloires, France Institute | | Clean Air Task Force | | Asia Clean Energy Innovation Initiative | #12;Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Talloires, France PROCEEDINGS: Post-Combustion CO2 Capture Workshop

215

Capture-ready power plants : options, technologies and economics  

E-Print Network (OSTI)

A plant can be considered to be capture-ready if, at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The concept of capture-ready is not a specific ...

Bohm, Mark (Mark C.)

2006-01-01T23:59:59.000Z

216

Livermore scientists capture crystallization of materials in...  

NLE Websites -- All DOE Office Websites (Extended Search)

The team used multi-frame, nanosecond-scale imaging in the dynamic transmission electron microscope (DTEM) to create movies of the crystallization of phase change...

217

Optimal Carbon Capture and Storage policies  

E-Print Network (OSTI)

Following the IPCC's report (2005), which recommended the development and the use of carbon capture and sequestration (CCS) technologies in order to achieve the environmental goals, de ned by the Kyoto Protocol, the issue addressed in this paper concerns the optimal strategy regarding the long-term use of CCS technologies. The aim of this paper is to study the optimal carbon capture and sequestration policy. The CCS technologies has motivated a number of empirical studies, via complex integrated assessment models. This literature always considers that the existing technology allows sequestrating a fraction of the carbon emissions and concludes that the early introduction of sequestration can lead to a substantial decrease in the cost of environmental externality. But, the level of complexity of such operational models, aimed at de ning some speci c climate policies. We develop a very simple growth model so as to obtain analytical and tractable results and therefore exhibit the main driving forces that should determine the optimal CSS policy. We show within this stylized framework that, under some conditions on the cost of extractions, CSS may be a long-term solution for the carbon emissions problem. Besides, it is also shown that the social planner will optimally choose to decrease the rate of capture and sequestration. Besides, we also introduce the decentralization of this simple economy, by considering the individual program of the fossil resource-holder and the one of the representative consumer. This helps us to compute analytically the optimal environmental policy, that is the optimal tax scheme, and also the optimal fossil fuel price pro le.

Alain Ayong; Le Kama; Mouez Fodha; Gilles La Orgue

2009-01-01T23:59:59.000Z

218

DYNAMICAL CAPTURE BINARY NEUTRON STAR MERGERS  

SciTech Connect

We study dynamical capture binary neutron star mergers as may arise in dense stellar regions such as globular clusters. Using general-relativistic hydrodynamics, we find that these mergers can result in the prompt collapse to a black hole or in the formation of a hypermassive neutron star, depending not only on the neutron star equation of state but also on impact parameter. We also find that these mergers can produce accretion disks of up to a tenth of a solar mass and unbound ejected material of up to a few percent of a solar mass. We comment on the gravitational radiation and electromagnetic transients that these sources may produce.

East, William E.; Pretorius, Frans [Department of Physics, Princeton University, Princeton, NJ 08544 (United States)

2012-11-20T23:59:59.000Z

219

Simteche Hydrate CO2 Capture Process  

SciTech Connect

As a result of an August 4, 2005 project review meeting held at Los Alamos National Laboratory (LANL) to assess the project's technical progress, Nexant/Simteche/LANL project team was asked to meet four targets related to the existing project efforts. The four targets were to be accomplished by the September 30, 2006. These four targets were: (1) The CO{sub 2} hydrate process needs to show, through engineering and sensitivity analysis, that it can achieve 90% CO{sub 2} capture from the treated syngas stream, operating at 1000 psia. The cost should indicate the potential of achieving the Sequestration Program's cost target of less than 10% increase in the cost of electricity (COE) of the non-CO{sub 2} removal IGCC plant or demonstrate a significant cost reduction from the Selexol process cost developed in the Phase II engineering analysis. (2) The ability to meet the 20% cost share requirement for research level efforts. (3) LANL identifies through equilibrium and bench scale testing a once-through 90% CO{sub 2} capture promoter that supports the potential to achieve the Sequestration Program's cost target. Nexant is to perform an engineering analysis case to verify any economic benefits, as needed; no ETM validation is required, however, for this promoter for FY06. (4) The CO{sub 2} hydrate once-through process is to be validated at 1000 psia with the ETM at a CO{sub 2} capture rate of 60% without H{sub 2}S. The performance of 68% rate of capture is based on a batch, equilibrium data with H{sub 2}S. Validation of the test results is required through multiple runs and engineering calculations. Operational issues will be solved that will specifically effect the validation of the technology. Nexant was given the primary responsibility for Target No.1, while Simteche was mainly responsible for Target No.2; with LANL having the responsibility of Targets No.3 and No.4.

Nexant and Los Alamos National Laboratory

2006-09-30T23:59:59.000Z

220

Neutrino Capture Reactions on $^{40}$Ar  

E-Print Network (OSTI)

Gamow-Teller (GT) strength in $^{40}$Ar is studied by shell-model calculations with monopole-based universal intearction, which has tensor components of $\\pi$\\rho$-meson exchanges. Calculated GT strength is found to be consistent with the experimental data obtained by recent ($p, n$) reactions. Neutrino capture cross sections on $^{40}$Ar for solar neutrinos from $^{8}$B are found to be enhanced compared with previous calculations. The reaction cross sections for multipoles other than $0^{+}$ and $1^{+}$ are obtained by random-phase approximation (RPA). Their contributions become important for neutrino energies larger than 50 MeV.

Toshio Suzuki; Michio Honma

2012-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Capturing CO2 via reactions in nanopores.  

SciTech Connect

This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z [University of Cincinnati; Dong, J. H. [University of Cincinnati

2008-10-01T23:59:59.000Z

222

Energy Department Investments in Innovative Carbon Capture Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Investments in Innovative Carbon Capture Projects Energy Department Investments in Innovative Carbon Capture Projects Energy Department Investments in Innovative Carbon Capture Projects Post-Combustion CO2 Capture Technologies COMPANY CITY & STATE PROJECT TITLE DOE INVESTMENT PROJECT DESCRIPTION SRI International Menlo Park, CA CO2 Capture Using Advanced Carbon Sorbents at a Slipstream Scale Approx. $10.5 million The project team will test a CO2 sorbent capture process and conduct pilot-scale testing of the sorbent under realistic conditions to validate affordability and opportunities for CO2 use in commercial applications such as enhanced oil recovery or chemical operations. SRI International Menlo Park, CA Development of Mixed-Salt Technology for CO2 Capture from Coal Power Plants Approx. $1.7 million Researchers will develop and test a low-cost, solvent-based technology to extract CO2 from existing or new pulverized coal power plants by combining the benefits of two different solvents.

223

Carbon Capture Pilots (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Pilots (Kentucky) Pilots (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name Carbon Capture Pilots (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealth's utilities, the Electric Power Research Institute, the Center for Applied Energy Research (CAER), and the Department for Energy Development and Independence (DEDI),

224

THE QUIESCENT X-RAY PROPERTIES OF THE ACCRETING MILLISECOND X-RAY PULSAR AND ECLIPSING BINARY SWIFT J1749.4-2807  

Science Conference Proceedings (OSTI)

Swift J1749.4-2807 is a transient neutron star low-mass X-ray binary that contains an accreting millisecond X-ray pulsar spinning at 518 Hz. It is the first of its kind that displays X-ray eclipses, which holds significant promise to precisely constrain the mass of the neutron star. We report on a {approx_equal} 105 ks long XMM-Newton observation performed when Swift J1749.4-2807 was in quiescence. We detect the source at a 0.5-10 keV luminosity of {approx_equal}1 Multiplication-Sign 10{sup 33}(D/6.7 kpc){sup 2} erg s{sup -1}. The X-ray light curve displays three eclipses that are consistent in orbital phase and duration with the ephemeris derived during outburst. Unlike most quiescent neutron stars, the X-ray spectrum can be adequately described with a simple power law, while a pure-hydrogen atmosphere model does not fit the data. We place an upper limit on the 0.01-100 keV thermal luminosity of the cooling neutron star of {approx}< 2 Multiplication-Sign 10{sup 33} erg s{sup -1} and constrain its temperature to be {approx}< 0.1 keV (for an observer at infinity). Timing analysis does not reveal evidence for X-ray pulsations near the known spin frequency of the neutron star or its first overtone with a fractional rms of {approx}< 34% and {approx}< 28%, respectively. We discuss the implications of our findings for dynamical mass measurements, the thermal state of the neutron star, and the origin of the quiescent X-ray emission.

Degenaar, N. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Patruno, A.; Wijnands, R., E-mail: degenaar@umich.edu [Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

2012-09-10T23:59:59.000Z

225

Tuning the Physicochemical Properties of Diverse Phenolic Ionic Liquids for Equimolar CO2 Capture by the Substituent on the Anion  

SciTech Connect

Phenolic ionic liquids for the efficient and reversible capture of CO{sub 2} were designed and prepared from phosphonium hydroxide and substituted phenols. The electron-withdrawing or electron-donating ability, position, and number of the substituents on the anion of these ionic liquids were correlated with the physicochemical properties of the ionic liquids. The results show that the stability, viscosity, and CO{sub 2}-capturing ability of these ionic liquids were significantly affected by the substituents. Furthermore, the relationship between the decomposition temperature, the CO{sub 2}-absorption capacity, and the basicity of these ionic liquids was quantitatively correlated and further rationalized by theoretical calculation. Indeed, these ionic liquids showed good stability, high absorption capacity, and low absorption enthalpy for CO{sub 2} capture. This method, which tunes the physicochemical properties by making use of substituent effects in the anion of the ionic liquid, is important for the design of highly efficient and reversible methods for CO{sub 2}-capture. This CO{sub 2} capture process using diverse phenolic ionic liquids is a promising potential method for CO{sub 2} absorption with both high absorption capacity and good reversibility.

Dai, Sheng [ORNL; Luo, Huimin [ORNL; Yu, Bo [ORNL; Li, Haoran [Zhejiang University; Wang, Congmin [ORNL

2012-01-01T23:59:59.000Z

226

National Carbon Capture Center Launches Post-Combustion Test Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 7, 2011 - 1:00pm Addthis Washington, D.C. - The recent successful commissioning of an Alabama-based test facility is another step forward in research that will speed deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants, according to the U.S. Department of Energy (DOE). Technologies tested at the Post-Combustion Carbon Capture Center (or PC4) are an important component of Carbon Capture and Storage, whose commercial deployment is considered by many experts as essential for helping to reduce human-generated CO2 emissions that contribute to potential climate change.

227

DOE Signs Cooperative Agreement for Carbon Capture Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Signs Cooperative Agreement for Carbon Capture Project Signs Cooperative Agreement for Carbon Capture Project DOE Signs Cooperative Agreement for Carbon Capture Project June 18, 2010 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has signed a cooperative agreement with NRG Energy Inc. (NRG) for the Parish Post-Combustion CO2 Capture and Sequestration Project to design, construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide (CO2) per year. The project, which will be managed by the Office of Fossil Energy's National Energy Technology Laboratory, was selected under DOE's Clean Coal Power Initiative, a collaboration between the federal government and private industry working toward low-emission, coal-based power generation technology. The project team aims to demonstrate that post-combustion carbon capture

228

Department of Energy Announces $41 Million Investment for Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Million Investment for Carbon 1 Million Investment for Carbon Capture Development Department of Energy Announces $41 Million Investment for Carbon Capture Development August 25, 2011 - 1:36pm Addthis Washington, D.C. - The U.S. Department of Energy announced today the selection of 16 projects aimed at developing advanced post-combustion technologies for capturing carbon dioxide (CO2) from coal-fired power plants. The projects, valued at $41 million over three years, are focused on reducing the energy and cost penalties associated with applying currently available carbon capture technologies to existing and new power plants. The selections announced today will focus on developing carbon capture technologies that can achieve at least 90 percent CO2 removal and reduce the added costs at power plants with carbon capture systems to no more than

229

DOE Signs Cooperative Agreement for Carbon Capture Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Signs Cooperative Agreement for Carbon Capture Project Signs Cooperative Agreement for Carbon Capture Project DOE Signs Cooperative Agreement for Carbon Capture Project June 18, 2010 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has signed a cooperative agreement with NRG Energy Inc. (NRG) for the Parish Post-Combustion CO2 Capture and Sequestration Project to design, construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide (CO2) per year. The project, which will be managed by the Office of Fossil Energy's National Energy Technology Laboratory, was selected under DOE's Clean Coal Power Initiative, a collaboration between the federal government and private industry working toward low-emission, coal-based power generation technology. The project team aims to demonstrate that post-combustion carbon capture

230

Worldwide Carbon Capture and Storage Projects on the Increase | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Worldwide Carbon Capture and Storage Projects on the Increase Worldwide Carbon Capture and Storage Projects on the Increase Worldwide Carbon Capture and Storage Projects on the Increase November 13, 2009 - 12:00pm Addthis Washington, D.C. -- Worldwide efforts to fund and establish carbon capture and storage (CCS) projects have accelerated, according to a new Department of Energy (DOE) online database, indicating ongoing positive momentum toward achieving the G-8 goal for launching 20 CCS demonstrations by 2010. The database, a project of the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), reveals 192 proposed and active CCS projects worldwide. The projects are located in 20 countries across five continents. The 192 projects globally include 38 capture, 46 storage, and 108 for capture and storage. While most of the projects are still in the

231

Secretary Moniz Tours Kemper Carbon Capture and Storage Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Addthis 1 of 5 A group including U.S. Secretary of Energy Ernest J. Moniz and Mississippi Gov. Phil Bryant tours the Kemper carbon capture and storage facility in Liberty, Mississippi, on Friday, Nov. 8. Kemper is the largest carbon capture and storage facility in the United States. | Photo Copyright 2013 Southern Company. 2 of 5 Southern Company CEO Tom Fanning, far right, and Mississippi Power CEO Ed Holland, second from right, greet U.S. Secretary of Energy Ernest J. Moniz, left, as he arrives to tour the Kemper carbon capture and storage facility in Liberty, Mississippi. | Photo Copyright 2013 Southern Company. 3 of 5 Southern Company CEO Tom Fanning, left, and U.S. Secretary of Energy Ernest

232

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

233

Department of Energy Announces $41 Million Investment for Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$41 Million Investment for Carbon $41 Million Investment for Carbon Capture Development Department of Energy Announces $41 Million Investment for Carbon Capture Development August 25, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today the selection of 16 projects aimed at developing advanced post-combustion technologies for capturing carbon dioxide (CO2) from coal-fired power plants. The projects, valued at $41 million over three years, are focused on reducing the energy and cost penalties associated with applying currently available carbon capture technologies to existing and new power plants. The selections announced today will focus on developing carbon capture technologies that can achieve at least 90 percent CO2 removal and reduce the added costs at power plants with carbon capture systems to no more than

234

AVESTAR® - Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator FutureGen 2.0 is a first-of-its-kind, near-zero emissions coal-fueled power plant using oxy-combustion technology to capture the plant's carbon emissions. To help meet the Nation's ever growing demand for clean energy, the FutureGen Industrial Alliance (Alliance) was formed to test and commercialize advanced coal-based systems fully integrated with carbon capture and geologic storage technologies. In cooperation with the U.S. Department of Energy (DOE), the Alliance and its project partners AirLiquide and Babcock & Wilcox, will upgrade an existing power plant in Meredosia, Illinois with oxy-coal carbon capture (OCCC) technology to capture and permanantly store approximately 1.0 million tonnes of CO2 each year.

235

Carbon Dioxide Capture by Absorption with Potassium Carbonate  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture by Absorption Carbon Dioxide Capture by Absorption with Potassium Carbonate Background Although alkanolamine solvents, such as monoethanolamine (MEA), and solvent blends have been developed as commercially-viable options for the absorption of carbon dioxide (CO 2 ) from waste gases, natural gas, and hydrogen streams, further process improvements are required to cost-effectively capture CO 2 from power plant flue gas. The promotion of potassium carbonate (K

236

The effects of variable speed and drive train component efficiencies on wind turbine energy capture  

SciTech Connect

A wind turbine rotor achieves optimal aerodynamic efficiency at a single tip-speed ratio (TSR). To maintain that optimal TSR and maximize energy capture in the stochastic wind environment, it is necessary to employ variable-speed operation. Conventional constant-speed wind turbines have, in the past, been converted into variable-speed turbines by attaching power electronics to the conventional induction generator and gearbox drive train. Such turbines have shown marginal, if any, improvement in energy capture over their constant-speed counterparts. These discrepancies have been shown to be the result of drive train components that are not optimized for variable-speed operation. Traditional drive trains and power electronic converters are designed to achieve maximum efficiency at full load and speed. However, the main energy producing winds operate the turbine at light load for long periods of time. Because of this, significant losses to efficiency occur. This investigation employs a quasi-static model to demonstrate the dramatic effect that component efficiency curves can have on overall annual energy capture.

Fingersh, L.J.; Robinson, M.C.

1998-05-01T23:59:59.000Z

237

Electron holography  

Science Conference Proceedings (OSTI)

... An electron hologram is a fringe modulated image containing the amplitude and phase information of an electron transparent object. ...

2013-01-08T23:59:59.000Z

238

It's Elemental - Isotopes of the Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

239

It's Elemental - Isotopes of the Element Phosphorus  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur Isotopes of the Element Phosphorus [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 31 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 24 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available 25 < 30 nanoseconds Proton Emission 100.00% 26 43.7 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 27 260 milliseconds Electron Capture 100.00% Electron Capture with

240

Carbon Capture, Utilization & Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Carbon capture, utilization and storage (CCUS), also referred to as carbon

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: CO2 Capture from IGCC Gas Streams  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process Project No.: DE-FE0000896 Batch scale...

242

5th International CO2 Capture Test Network  

NLE Websites -- All DOE Office Websites (Extended Search)

2003 CMU Descriptor - include initials, orgdate Novel CO 2 Capture Technologies For Power Generation Point Sources Scrubbing with Regenerable Sorbents Amine-Enriched Sorbents...

243

Nanoporous Metal-Inorganic Materials for Storage and Capture ...  

Nanoporous Metal-Inorganic Materials for Storage and Capture of Hydrogen, Carbon Dioxide (CO2) and Other Gases Lawrence Berkeley National Laboratory

244

Cost and Performance of Carbon Dioxide Capture from Power Generation...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Cost and Performance of Carbon Dioxide Capture from Power Generation Jump to: navigation, search Name Cost and Performance of Carbon Dioxide...

245

Strategic Analysis of the Global Status of Carbon Capture and...  

Open Energy Info (EERE)

Summary LAUNCH TOOL Name: Strategic Analysis of the Global Status of Carbon Capture and Storage (CCS): Country Studies, United Arab Emirates Focus Area: Clean Fossil Energy...

246

Strategic Analysis of the Global Status of Carbon Capture and...  

Open Energy Info (EERE)

Summary LAUNCH TOOL Name: Strategic Analysis of the Global Status of Carbon Capture and Storage: Country Studies, Brazil Focus Area: Clean Fossil Energy Topics: Policy Impacts...

247

Research Projects to Convert Captured CO2 Emissions to Useful...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 06, 2010 Research Projects to Convert Captured CO2 Emissions to Useful Products Six Projects Selected by DOE Will Further Important Technologies for Helping Reduce CO2...

248

Development of Novel Carbon Sorbents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

May 2009 Planned Activities Phase I: * Determine the relevant physical, mechanical, and thermal properties of the sorbent that are relevant for effective CO 2 capture from...

249

Capturing Carbon from Existing Coal-Fired Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

scrubbing technology (7, 8). The modifi cations are focused primarily on extensive thermal integration of the CO 2 -capture system with the power plant and develop- ment of...

250

Mercury Oxidation and Capture over SCR Catalysts in Simulated ...  

Science Conference Proceedings (OSTI)

The SCR catalysts were tested for oxidation and capture of elemental mercury ... EBSD Analysis of Complex Microstructures of CSP? Processed Low Carbon...

251

Capturing Those In-Between Moments: NIST Solves Timing ...  

Science Conference Proceedings (OSTI)

Capturing Those In-Between Moments: NIST Solves Timing Problem in Molecular ... Colorized simulation of what happens to 1100 carbon atoms in a ...

2012-11-13T23:59:59.000Z

252

Carbon Capture and Storage Poster | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

poster graphically displaying the key components of carbon capture and storage technology. Teachers: If you would like hard copies of this poster sent to you, please...

253

Stakeholders' Perspectives on Carbon Capture and Storage in Indonesia.  

E-Print Network (OSTI)

??Several potential and challenges on the technical and non-technical aspects of carbon capture and storage (CCS) in Indonesia had been investigated by Indonesia CCS Study (more)

Setiawan, A.D.

2010-01-01T23:59:59.000Z

254

Carbon Dioxide Capture and Storage Demonstration in Developing...  

Open Energy Info (EERE)

and Barriers Abstract This report discusses the value of carbon capture and storage (CCS) technologies for developing countries and identifies financial approaches for CCS...

255

EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas EA-1846:...

256

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

257

Reactor Design for CO2 Capture Using Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Design for CO 2 Capture Using Sorbents Background Carbon Sequestration is rapidly becoming accepted as a viable option to reduce the amount of carbon dioxide (CO 2 )...

258

Water Challenges for Geologic Carbon Capture and Sequestration  

E-Print Network (OSTI)

represents natural gas combined cycle, PC Sub and PC Superintegrated gasi?cation combined cycle (IGCC) plants withand natural gas combined cycle (NGCC) with amine capture (

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01T23:59:59.000Z

259

A Collaborative Project to Develop Technology to Capture and...  

NLE Websites -- All DOE Office Websites (Extended Search)

900 E. Benson Boulevard Anchorage, AK 99519 A Collaborative Project to Develop Technology to Capture and Store CO 2 from Large Combustion Sources Abstract A major...

260

Available Technologies: Carbon Dioxide Capture at a Reduced Cost  

Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology ...

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Carbon Dioxide Capture at a Reduced Cost - Energy Innovation ...  

Scientists at Berkeley Lab have developed a method that reduces the expense of capturing carbon dioxide generated by the combustion of fossil fuels. This technology ...

262

Amine Enriched Solid Sorbents for Carbon Dioxide Capture Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,547,854 entitled "Amine Enriched Solid Sorbents for Carbon Dioxide Capture."...

263

Archer Daniels Midland Company: CO2 Capture from Biofuels Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Company: CO 2 Capture from Biofuels Production and Sequestration into the Mt. Simon Sandstone Background Carbon dioxide (CO 2 ) emissions from industrial processes, among other...

264

A New Platform for Hydrogen Storage and Carbon Capture  

Science Conference Proceedings (OSTI)

Presentation Title, Evaluating Chemical Adsorption on Nanodiamonds: A New Platform for Hydrogen Storage and Carbon Capture. Author(s), Lin Lai, Amanda...

265

NETL: Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process Project No.: DE-FE0000646 The Gas Technology Institute is developing a pre-combustion...

266

NETL: News Release -NETL Hosts Carbon Capture and Storage Demonstratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 1, 2011 NETL Hosts Carbon Capture and Storage Demonstration Series for the 2011 International Pittsburgh Coal Conference What's Happening? Top U.S. and international...

267

NETL: News Release - Secretary Chu Announces Carbon Capture and...  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2010 Secretary Chu Announces Carbon Capture and Storage Simulation Initiative Partnership Reflects Administration's Commitment to Develop Cost-Effective CCS Technologies...

268

NETL: News Release - Energy Department Advances Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Advances Carbon Capture and Storage Research on Two Fronts Recovery Act Projects to Provide Student Training, Technology Advancement Washington, D.C. -...

269

The Applicability of Carbon Capture and Sequestration in Primary ...  

Science Conference Proceedings (OSTI)

One of the tools identified to abate CO2 emissions from large sources is carbon capture and sequestration (CCS). Earlier papers have touched on...

270

Technology qualification for IGCC power plant with CO2 Capture.  

E-Print Network (OSTI)

?? Summary:This thesis presents the technology qualification plan for the integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture based on DNV recommendations. (more)

Baig, Yasir

2011-01-01T23:59:59.000Z

271

(Electron transfer mechanisms in reaction centers)  

SciTech Connect

The long term goal is to advance our understanding of the mechanisms involved in long-range electron transfer reactions, including charge-separation and stabilization in proteins. We choose to study the photosynthetic bacterial reaction center protein from {ital Rhodopseudomonas} {ital viridis}, {Chromatium} {ital vinosum} and {ital Rhodobacter} {ital sphaeroides} because they offer several unique experimental opportunities and because the attention recently focused on these proteins has brought us to the brink of understanding why evolution has selected the free energy changes and forward and reverse values for the rates of various electron transfer steps which together define a system of remarkably high quantum and energetic efficiency. The present proposal is focused mainly on the role of nuclear motions of reacting cofactors and/or protein matrix in governing reaction rate and the relationships of the rate to the driving force. The possibility of detecting and measuring the effects of intervening virtual states in a superexchange electron transfer mechanism will be addressed in particular with regard to the primary charge separation key reactions that involve chlorophylls, pheophytins, quinones and hemes associated with the reaction center. The reactions occur in the pico- to the millisecond range. The novel point of the work is that of the measurements will be done on reaction centers in which the free-energy of some of the reactions are altered by as much as 1 eV by combined application of electric fields across monolayer films of reaction centers and the chemical replacement of quinone.

Dutton, P.L.

1989-01-01T23:59:59.000Z

272

Is Carbon Capture and Storage Really Needed?  

SciTech Connect

Two of the greatest contemporary global challenges are anthropogenic greenhouse gas emissions and energy sustainability. A popular proposed solution to the former problem is carbon capture and storage (CCS). Unfortunately, CCS has little benefit for energy sustainability and introduces significant long-term costs and risks. Thus, we propose the adoption of 'virtual CCS' by directing the resources that would have been spent on CCS to alternative energy technologies. (The term 'virtual' is used here because the concept described in this work satisfies the Merriam-Webster Dictionary definition of virtual: 'being such in essence or effect though not formally recognized or admitted.') In this example, we consider wind and nuclear power and use the funds that would have been required by CCS to invest in installation and operation of these technologies. Many other options exist in addition to wind and nuclear power including solar, biomass, geothermal, and others. These additional energy technologies can be considered in future studies. While CCS involves spending resources to concentrate CO{sub 2} in sinks, such as underground reservoirs, low-carbon alternative energy produces power, which will displace fossil fuel use while simultaneously generating revenues. Thus, these alternative energy technologies achieve the same objective as that of CCS, namely, the avoidance of atmospheric CO{sub 2} emissions.

Tsouris, Costas [ORNL; Williams, Kent Alan [ORNL; Aaron, D [Georgia Institute of Technology

2010-01-01T23:59:59.000Z

273

Work at FNAL to achieve long electron drift lifetime in liquid argon  

SciTech Connect

This note records some of the work done between July 2005 and July 2006 to achieve long (many milliseconds) electron drift lifetimes in liquid argon at Fermilab. The work is part of a process to develop some experience at Fermilab with the technology required to construct a large liquid argon TPC. This technology has been largely developed by the ICARUS collaboration in Europe and this process can be seen as technology transfer. The capability to produce liquid argon in which electrons have drift lifetimes of several milliseconds is crucial to a successful device. Liquid argon calorimeters have been successfully operated at Fermilab; their electro-negative contaminants are at the level of 10{sup -7} while the TPC we are considering requires a contamination level at the level of 10{sup -11}, tens of parts per trillion (ppt). As well as demonstrating the ability to produce liquid argon at this level of purity, the work is part of a program to test the effect on the electron drift time of candidate materials for the construction of a TPC in liquid argon.

Finley, D.; Jaskierny, W.; Kendziora, C.; Krider, J.; Pordes, S.; Rapidis, P.A.; Tope, T.; /Fermilab

2006-10-01T23:59:59.000Z

274

Most people are familiar with the effect of a camera, of capturing an instant in time  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrashort Flashes of X-rays and Electrons at SLAC Ultrashort Flashes of X-rays and Electrons at SLAC Fig. 1. (top) Time-resolved diffracted in- tensity for both (111) (top) and (220) (bottom) reflections. Red curves are Gaussian fits to the data, corresponding to 10-90 % fall times of 430 fs and 280 fs respectively. (inset) Fluence dependence of (111) time constant. Since the development of the laser researchers have been using it as a stroboscopic tool to observe how the world works. Research and development efforts leading towards the Linac Coherent Light Source (LCLS) free-electron laser have facilitated the construction of a new accelerator-based femtosecond x-ray source, the Sub- Picosecond Pulse Source (SPPS) which extends our ability to capture transient phenomena at atomic-scale resolution. In order to produce femtosecond x-ray

275

A monitoring and diagnostic expert system for carbon dioxide capture  

Science Conference Proceedings (OSTI)

The research objective is to design and construct a knowledge-based decision support system for monitoring, control and diagnosis of the carbon dioxide capture process, which is a complicated task involving manipulation of sixteen components and their ... Keywords: Carbon dioxide capture, Diagnosis, Knowledge-based decision support system, Monitoring

Q. Zhou; C. W. Chan; P. Tontiwachiwuthikul

2009-03-01T23:59:59.000Z

276

Analysis of data for the carbon dioxide capture domain  

Science Conference Proceedings (OSTI)

To tackle the global concern for adverse impact of greenhouse gas (GHG) emissions, the post combustion carbon dioxide (CO"2) capture technology is commonly adopted for reducing industrial CO"2 emissions, for example, from power generation plants. The ... Keywords: Carbon dioxide capture, Data modeling, Expert validation, Neural networks, Sensitivity analysis

Yuxiang Wu; Christine W. Chan

2011-02-01T23:59:59.000Z

277

Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project  

Science Conference Proceedings (OSTI)

The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

Deanna Gilliland; Matthew Usher

2011-12-31T23:59:59.000Z

278

Measurement of Power System Magnetic Fields by Waveform Capture  

Science Conference Proceedings (OSTI)

An instrumentation and software package has been developed to characterize an extensive range of temporal, spatial, and frequency parameters associated with magnetic fields.The MultiWave (TM) System can capture the actual magnetic field waveform and coexisting power system environmental conditions in residential, nonresidential, and transient capture applications.

1992-03-01T23:59:59.000Z

279

Motion capture system using single-track gray code  

Science Conference Proceedings (OSTI)

In this paper, we describe a high speed optical motion capture method that has a simple mechanism. We use a light shielding filter using a pattern of Single-Track Gray Code (STGC) [1] absolute encoder to take location of IR light marker tags instead ... Keywords: infrared light, motion capture, single-track gray code

Tomoko Fujii; Hideaki Nii; Takuji Tokiwa; Maki Sugimoto; Masahiko Inami

2008-12-01T23:59:59.000Z

280

Neutron capture therapy: Years of experimentation---Years of reflection  

Science Conference Proceedings (OSTI)

This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program.

Farr, L.E.

1991-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

UK CARBON CAPTURE AND STORAGE, WHERE IS IT ? Stuart Haszeldine  

E-Print Network (OSTI)

.haszeldine@ed.ac.uk SUMMARY Carbon capture and storage, to capture CO2 from power plants and big industry, remains much is seen as the ideal compliment to variable wind power, and so is critical to the UK's future electricity electricity charges or impacting significantly on personal budgets. This is important for CCS protagonists

Haszeldine, Stuart

282

Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models  

E-Print Network (OSTI)

carbon capture and storage, 2) a natural gas combined cycle technology with carbon capture and storage 1 power generation technologies are: 1) a natural gas combined cycle technology (advanced gas) without eight of technologies in the electric power sector: conventional fossil fuel, natural gas combined cycle

283

NETL: Gasification - National Carbon Capture Center at the Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Gasification National Carbon Capture Center at the Power Systems Development Facility National Carbon Capture Center Participants The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. The PSDF now houses the National Carbon Capture Center (NCCC) to address the nation's need for cost-effective, commercially viable CO2 capture options for flue gas from pulverized coal power plants and syngas from coal gasification power plants. The NCCC focuses national efforts on reducing greenhouse gas emissions through technological innovation, and serve as a neutral test center for emerging carbon capture technologies. PSDF-NCCC Background

284

Capturing Process Knowledge for Facility Deactivation and Decommissioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capturing Process Knowledge for Facility Deactivation and Capturing Process Knowledge for Facility Deactivation and Decommissioning Capturing Process Knowledge for Facility Deactivation and Decommissioning The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission needs. Capturing Process Knowledge for Facility Deactivation and Decommissioning More Documents & Publications Capturing Process Knowledge for Facility Deactivation and Decommissioning Deactivation & Decommissioning Knowledge Management Information Tool (D&D KM-IT) Above on the left is K-25, at Oak Ridge before and after the 844,000 sq-ft demolition. In addition, on the right: K Cooling Tower at Savannah River Site demolition.

285

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

286

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

287

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Large-Scale Industrial Project Begins Carbon Capture Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization January 25, 2013 - 12:00pm Addthis Washington, DC - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

288

Department of Energy Announces $67 Million Investment for Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Announces $67 Million Investment for Carbon Department of Energy Announces $67 Million Investment for Carbon Capture Development Department of Energy Announces $67 Million Investment for Carbon Capture Development July 7, 2010 - 12:00am Addthis WASHINGTON, D.C. - The US Department of Energy announced today the selection of ten projects aimed at developing advanced technologies for capturing carbon dioxide (CO2) from coal combustion. The projects, valued at up to $67 million over three years, focus on reducing the energy and efficiency penalties associated with applying currently available carbon capture and storage (CCS) technologies to existing and new power plants. The selections announced today will focus on improving efficiency and reducing the added costs to electricity at power plants with carbon capture

289

Biomimetric Membrane for CO2 Capture from Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic memBrane for co Biomimetic memBrane for co 2 capture from flue Gas Background Carbon Capture and Sequestration (CCS) is a three-step process including capture, pipeline transport and geologic storage of which the capture of carbon dioxide (CO 2 ) is the most costly and technically challenging. Current available methods impose significant energy burdens that severely impact their overall effectiveness as a significant deployment option. Of the available capture technologies for post combustion applications - absorption, adsorption, reaction and membranes chemically facilitated absorption promises to be the most cost-effective membrane solution for post combustion application. The Carbozyme technology extracts CO 2 from low concentration, low pressure sources by means of chemical facilitation of a polymer membrane. The chemical

290

Secretary Chu Announces Carbon Capture and Storage Simulation Initiative |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Simulation Carbon Capture and Storage Simulation Initiative Secretary Chu Announces Carbon Capture and Storage Simulation Initiative September 8, 2010 - 12:00am Addthis Washington, DC -U.S. Secretary of Energy Steven Chu announced today the creation of the Carbon Capture and Storage Simulation Initiative with an investment of up to $40 million from the American Recovery and Reinvestment Act. The partnership announced today will bring together national laboratories and regional university alliances to collaborate on advancing the science and research related to carbon capture and storage (CCS). The information gained through the partnership will further the Department's effort to develop lower cost, efficient industrial CCS processes. The collaboration also builds upon the Administration's goal to overcome the

291

Secretary Chu Announces Carbon Capture and Storage Simulation Initiative |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Simulation Carbon Capture and Storage Simulation Initiative Secretary Chu Announces Carbon Capture and Storage Simulation Initiative September 8, 2010 - 1:00pm Addthis Washington, DC - U.S. Secretary of Energy Steven Chu announced today the creation of the Carbon Capture and Storage Simulation Initiative with an investment of up to $40 million from the American Recovery and Reinvestment Act. The partnership announced today will bring together national laboratories and regional university alliances to collaborate on advancing the science and research related to carbon capture and storage (CCS). The information gained through this partnership will further the Department's effort to develop lower cost, efficient industrial CCS processes. The partnership also builds upon the Administration's goal to overcome the

292

Discussion on Carbon Capture and Sequestration Legislation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discussion on Carbon Capture and Sequestration Legislation Discussion on Carbon Capture and Sequestration Legislation Discussion on Carbon Capture and Sequestration Legislation April 20, 2010 - 3:45pm Addthis Statement of Dr. James Markowsky, Assistant Secretary for Fossil Energy before the Senate Committee on Energy and Natural Resources on Carbon Capture and Sequestration Legislation, S. 1856, S. 1134, and other Draft Legislative Text. Thank you Mr. Chairman and members of the Committee. I appreciate this opportunity to meet with you this morning to discuss carbon capture and storage (CCS) legislation before the Committee. While this hearing is focused specifically on S. 1856, a bill to amend the Energy Policy Act of 2005 to clarify policies regarding ownership of pore space, introduced by Sen. John Barrasso (R-WY); S.1134, the Responsible Use

293

Knowledge Capture and Transfer Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance-Based Culture » Performance-Based Culture » Knowledge Capture and Transfer Program Knowledge Capture and Transfer Program The Office of Learning and Workforce Development is working with Heads of Departmental Elements, DOE senior leaders and subject-matter-experts to capture and transfer the knowledge and experiences of its current employees, through the Knowledge Capture and Transfer Program. This program is initiating immediate action to stem the potential loss of critical knowledge and skills possessed by older, retirement eligible employees. Recognizing adverse economic conditions and dwindling budgets, the DOE will utilize cost-effective methods, including leveraging the highly technical and diverse expertise within the Department, to help address its knowledge capture and transfer challenges.

294

National Carbon Capture Center Launches Post-Combustion Test Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture Center Launches Post-Combustion Test Center Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 6, 2011 - 2:32pm Addthis Jenny Hakun What does this mean for me? Commercial deployment of the processes tested here could cut carbon pollution. Innovation is important to finding ways to make energy cleaner. And testing the ideas and processes that researchers come up with is critical to moving ideas from the lab to the marketplace. That's why the Department of Energy recently commissioned an Alabama testing facility that will help move research forward and speed up deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants. The Post-Combustion Carbon Capture Center (or PC4) facility tests new

295

Carbon Capture, Transport and Storage Regulatory Test Exercise: Output  

Open Energy Info (EERE)

Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture, Transport and Storage Regulatory Test Exercise: Output Report Focus Area: Clean Fossil Energy Topics: Market Analysis Website: cdn.globalccsinstitute.com/sites/default/files/publications/7326/carbo Equivalent URI: cleanenergysolutions.org/content/carbon-capture-transport-and-storage- Policies: Regulations Regulations: Emissions Mitigation Scheme The Scottish Government published this report to identify regulatory gaps or overlaps in the nation's framework for regulating carbon capture and storage (CCS). The report aims to streamline and better manage CCS regulation. It focuses on evaluating the risks, barriers, information gaps,

296

Pre-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a feedstock (such as coal) is partially oxidized in steam and oxygen/air under high temperature and pressure to form synthesis gas. This synthesis gas, or syngas, is a mixture of hydrogen, carbon monoxide, CO2, and smaller amounts of other gaseous components, such as methane. The syngas can then undergo the water-gas shift reaction to convert CO and water (H2O) to H2 and CO2, producing a H2 and CO2-rich gas mixture. The concentration of CO2 in this mixture can range from 15-50%. The CO2 can then be captured and separated, transported, and ultimately sequestered, and the H2-rich fuel combusted.

297

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

298

NETL: 2009 Conference Proceedings - Carbon Capture 2020 Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture 2020 Workshop Carbon Capture 2020 Workshop October 5-6, 2009 Table of Contents Disclaimer Presentations PRESENTATIONS Workshop Summary [PDF-1.2MB] Opening Comments and Overview Presentations on Ongoing FE and BES Carbon Capture Research Dr. James J. Markowsky - Assistant Secretary, Office Fossil Energy, U.S. Department of Energy Dr. William F. Brinkman - Director, Office of Science, U.S. Department of Energy FE Program for Carbon Capture [PDF-1.3MB] Jared Ciferno - National Energy Technology Laboratory, U.S. Department of Energy NETL Research Activities [PDF-1.6MB] Geo Richards - National Energy Technology Laboratory, U.S. Department of Energy BES Research on Carbon Capture [PDF-570KB] Mary Galvin - Office of Basic Energy Sciences, U.S. Department of Energy Overview of EFRC [PDF-1.5MB]

299

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage News Carbon Capture and Storage News FE Carbon Capture and Storage News RSS November 7, 2013 Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution 18 Innovative Carbon Capture Projects Will Help Make Fossil Energy Use Cleaner, Safer and More Sustainable as Part of the Obama Administration's Climate Action Plan August 15, 2013 Historically Black Colleges and Universities Receive Funds for Fossil Energy Research Five fossil energy-related projects that will help maintain the nation's energy portfolio while also providing educational and research training opportunities for tomorrow's scientists and engineers have been selected for funding by the U.S. Department of Energy (DOE). August 14, 2013 DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research

300

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage News Carbon Capture and Storage News FE Carbon Capture and Storage News RSS June 9, 2010 Award-Winning DOE Technology Scores Success in Carbon Storage Project The ability to detect and track the movement of carbon dioxide in underground geologic storage reservoirs -- an important component of carbon capture and storage technology -- has been successfully demonstrated at a U.S. Department of Energy New Mexico test site. April 20, 2010 Research Experience in Carbon Sequestration 2010 Now Accepting Applications Students and early career professionals can gain hands-on experience in areas related to carbon capture and storage by participating in the Research Experience in Carbon Sequestration program. March 15, 2010 Illinois CO2 Injection Project Moves Another Step Forward

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Department of Energy Announces $67 Million Investment for Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces $67 Million Investment for Carbon Announces $67 Million Investment for Carbon Capture Development Department of Energy Announces $67 Million Investment for Carbon Capture Development July 7, 2010 - 12:00am Addthis WASHINGTON, D.C. - The US Department of Energy announced today the selection of ten projects aimed at developing advanced technologies for capturing carbon dioxide (CO2) from coal combustion. The projects, valued at up to $67 million over three years, focus on reducing the energy and efficiency penalties associated with applying currently available carbon capture and storage (CCS) technologies to existing and new power plants. The selections announced today will focus on improving efficiency and reducing the added costs to electricity at power plants with carbon capture systems to less than 30 percent for a new pulverized coal plant and 10

302

Discussion on Carbon Capture and Sequestration Legislation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discussion on Carbon Capture and Sequestration Legislation Discussion on Carbon Capture and Sequestration Legislation Discussion on Carbon Capture and Sequestration Legislation April 20, 2010 - 3:45pm Addthis Statement of Dr. James Markowsky, Assistant Secretary for Fossil Energy before the Senate Committee on Energy and Natural Resources on Carbon Capture and Sequestration Legislation, S. 1856, S. 1134, and other Draft Legislative Text. Thank you Mr. Chairman and members of the Committee. I appreciate this opportunity to meet with you this morning to discuss carbon capture and storage (CCS) legislation before the Committee. While this hearing is focused specifically on S. 1856, a bill to amend the Energy Policy Act of 2005 to clarify policies regarding ownership of pore space, introduced by Sen. John Barrasso (R-WY); S.1134, the Responsible Use

303

Carbon Dioxide Capture and Storage Demonstration in Developing Countries:  

Open Energy Info (EERE)

Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Capture and Storage Demonstration in Developing Countries: Analysis of Key Policy Issues and Barriers Focus Area: Clean Fossil Energy Topics: Potentials & Scenarios Website: cdn.globalccsinstitute.com/sites/default/files/publications/15536/carb Equivalent URI: cleanenergysolutions.org/content/carbon-dioxide-capture-and-storage-de Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance This report discusses the value of carbon capture and storage (CCS)

304

Electron Microprobe  

Science Conference Proceedings (OSTI)

Electron Microprobe. ... The JEOL JXA-8600 is a conventional hairpin filament thermal emission electron microprobe that is more than 20 years old. ...

2012-10-01T23:59:59.000Z

305

Airborne Tactical Free-Electron Laser  

Science Conference Proceedings (OSTI)

The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

Roy Whitney; George Neil

2007-02-01T23:59:59.000Z

306

Synthesis of trevorite to capture Tc  

SciTech Connect

Spinel containing technetium can be used to prevent Tc volatilization during vitrification of radioactive waste. Spinel dissolves in glass at elevated temperatures. This study focuses on the synthesis of spinel and the retention of rhenium, a nonradioactive surrogate for Tc in the crystals. To produce trevorite, a nickel-iron spinel (NiFe2O4), Fe and Ni nitrates were mixed with alkali nitrates along with Al(OH)3 and heated to 500 to 800C. The trevorite content in samples (up to 40 mass%) was measured with x-ray diffraction. Viable samples were rerun with KReO4. Scanning electron microscopy-energy dispersive spectroscopy detected that Re became partly immobilized in spinel-forming crystals.

Tsui, Colin

2011-09-02T23:59:59.000Z

307

DOE Science Showcase - Carbon Capture research in DOE Databases | OSTI,  

Office of Scientific and Technical Information (OSTI)

DOE Science Showcase - Carbon Capture research in DOE Databases DOE Science Showcase - Carbon Capture research in DOE Databases Information Bridge : Natural materials for carbon capture. ... Realistic costs of carbon capture ... Technology and international climate policy Energy Citations Database : What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions ... Effects of warming on the structure and function of a boreal black spruce forest ... ScienceCinema : Carbon Smackdown ... Extrapolate the Past or Invent the Future ... Two Billion Cars: What it means for Climate and Energy Policy ... DOE Data Explorer : Big Sky Carbon Atlas... NATCARB Interactive Maps ... Videos of experiments from ORNL's Gas Hydrate Research DOE Green Energy : Thinking Like a Whole Building: A Whole Foods Market New Construction Case

308

New Recovery Act Funding Boosts Industrial Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million from the American Recovery and Reinvestment Act, these R&D projects complement the industrial demonstration projects already being funded through the Recovery Act. Together, these projects represent an unprecedented investment in the development of clean coal technologies. This program supports the President's goal of overcoming the barriers to

309

Carbon Capture and Storage from Industrial Sources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated Recovery Act funds to more than 25 projects that capture and sequester CO2 emissions from industrial sources - such as cement plants, chemical plants, refineries, paper mills, and manufacturing facilities - into underground formations. Large-Scale Projects Three projects are aimed at testing large-scale industrial carbon capture

310

Secretary Chu Announces $3 Billion Investment for Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Billion Investment for Carbon Capture 3 Billion Investment for Carbon Capture and Sequestration Secretary Chu Announces $3 Billion Investment for Carbon Capture and Sequestration December 4, 2009 - 12:00am Addthis Washington, DC - US Energy Secretary Steven Chu announced today the selection of three new projects with a value of $3.18 billion to accelerate the development of advanced coal technologies with carbon capture and storage at commercial-scale. Secretary Chu made today's announcement on a conference call with Governor Joe Manchin, Senator Jay Rockefeller, and President of American Electric Power Company, Inc., Mike Morris. These projects will help to enable commercial deployment to ensure the United States has clean, reliable, and affordable electricity and power. An investment of up to $979 million, including funds from the American

311

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

312

Secretary Chu Announces $3 Billion Investment for Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Billion Investment for Carbon Capture 3 Billion Investment for Carbon Capture and Sequestration Secretary Chu Announces $3 Billion Investment for Carbon Capture and Sequestration December 4, 2009 - 12:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the selection of three new projects with a value of $3.18 billion to accelerate the development of advanced coal technologies with carbon capture and storage at commercial-scale. Secretary Chu made today's announcement on a conference call with West Virginia Governor Joe Manchin, Senator Jay Rockefeller, and President of American Electric Power Company, Inc., Mike Morris. These projects will help to enable commercial deployment to ensure the United States has clean, reliable, and affordable electricity and power. An investment of up to $979 million, including funds from the

313

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

314

Fossil Energy Research Efforts in Carbon Capture and Storage | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage Fossil Energy Research Efforts in Carbon Capture and Storage May 14, 2009 - 1:54pm Addthis Statement of Dr. Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Energy and Natural Resources Committee, United States Senate. Thank you, Mr. Chairman and members of the Committee. I appreciate this opportunity to provide testimony on the United States Department of Energy's (DOE's) research efforts in carbon capture and storage. The Department of Energy has not had an opportunity to fully analyze S. 1013, and therefore, cannot take a position on the bill at this time. Introduction Fossil fuel resources represent a tremendous national asset. An abundance of fossil fuels in North America has contributed to our Nation's economic

315

Energy Department Advances Carbon Capture and Storage Research on Two  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Advances Carbon Capture and Storage Research on Energy Department Advances Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - Forty-three research projects that will advance carbon capture and storage (CCS) technologies while providing graduate and undergraduate student training opportunities at universities across the country will be supported by $12.7 million in U.S. Department of Energy funding announced today. View Project Details Spread over three years, the regional sequestration training projects and funding will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. The projects are funded through the 2009 American Reinvestment and Recovery Act and are aimed at the broad objectives of

316

Breakthrough Industrial Carbon Capture, Utilization and Storage Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Industrial Carbon Capture, Utilization and Storage Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations Breakthrough Industrial Carbon Capture, Utilization and Storage Project Begins Full-Scale Operations May 10, 2013 - 11:36am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The Energy Department's Acting Assistant Secretary for Fossil Energy Christopher Smith today attended a dedication ceremony at the Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas. Supported by a $284 million Energy Department investment, the company has successfully begun capturing carbon dioxide from industrial operations and is now using that carbon for enhanced oil recovery (EOR) and securely storing it underground. This first-of-a-kind, breakthrough project

317

Radiobiology of normal rat lung in Boron Neutron Capture Therapy  

E-Print Network (OSTI)

Boron Neutron Capture Therapy (BNCT) is a binary cancer radiation therapy that utilizes biochemical tumor cell targeting and provides a mixed field of high and low Linear Energy Transfer (LET) radiation with differing ...

Kiger, Jingli Liu

2006-01-01T23:59:59.000Z

318

Marine transportation for Carbon Capture and Sequestration (CCS)  

E-Print Network (OSTI)

The objective of this report is to determine whether opportunities to use liquefied carbon dioxide carriers as part of a carbon capture and storage system will exist over the next twenty years. Factors that encourage or ...

Alexandrakis, Mary-Irene

2010-01-01T23:59:59.000Z

319

DOE Approves Field Test for Promising Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approves Field Test for Promising Carbon Capture Technology Approves Field Test for Promising Carbon Capture Technology DOE Approves Field Test for Promising Carbon Capture Technology November 20, 2012 - 12:00pm Addthis Washington, DC - A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide (CO2) from a pulverized coal plant has been successfully demonstrated and received Department of Energy (DOE) approval to advance to a larger-scale field test. In an $18.75 million project funded by the American Recovery and Reinvestment Act of 2009, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris™ membrane system, which uses a CO2-selective polymeric membrane (micro-porous films which act as semi-permeable barriers to separate two different mediums) material and

320

BERAC Subcommittee Report on Boron Neutron Capture Therapy (BNCT) Clinical  

Office of Science (SC) Website

BERAC Subcommittee Report on Boron Neutron Capture BERAC Subcommittee Report on Boron Neutron Capture Therapy (BNCT) Clinical Trials. Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings Members Charges/Reports Current BERAC Charges Archive of BERAC Reports Charter .pdf file (40KB) BER Committees of Visitors BER Home Charges/Reports BERAC Subcommittee Report on Boron Neutron Capture Therapy (BNCT) Clinical Trials. Print Text Size: A A A RSS Feeds FeedbackShare Page BERAC Subcommittee Report on Boron Neutron Capture Therapy (BNCT) Clinical Trials. In response to the charge letter from Dr. Martha Krebs, Office of Science, dated November 5, 1998. Committee members: Bijay Mukherji, M.D., Chair, University of Connecticut Health Sciences Center, Walter Curran, M.D., Thomas Jefferson University;

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: Gasification - National Carbon Capture Center at the Power Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Optimization Main Area Gasifier Optimization Main Area National Carbon Capture Center at the Power Systems Development Facility Southern Company Services, Inc. Project Number: FE0000749 Project Description The objective of this project is to develop technologies under realistic conditions that will reduce the cost of advanced coal-fueled power plants with CO2 capture. This technology development will include the design, procurement, construction, installation, and operation of a flexible facility for the testing of processes for pre-combustion CO2 capture, post-combustion CO2 capture and oxy-combustion. Components and systems that are appropriate for inclusion in the detailed test plan will be identified in collaboration with NETL. In addition to evaluating DOE sponsored projects; projects from industry, universities, and Electric Power Research Institute (EPRI) will be evaluated to assist in accomplishing the project objectives.

322

Energy Department Advances Carbon Capture and Storage Research on Two  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Research on Carbon Capture and Storage Research on Two Fronts Energy Department Advances Carbon Capture and Storage Research on Two Fronts September 16, 2009 - 1:00pm Addthis Washington, DC - Forty-three research projects that will advance carbon capture and storage (CCS) technologies while providing graduate and undergraduate student training opportunities at universities across the country will be supported by $12.7 million in U.S. Department of Energy funding announced today. View Project Details Spread over three years, the regional sequestration training projects and funding will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. The projects are funded through the 2009 American Reinvestment and Recovery Act and are aimed at the broad objectives of

323

National Energy Technology Laboratory Captures Three Sustainability Awards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Energy Technology Laboratory Captures Three Sustainability National Energy Technology Laboratory Captures Three Sustainability Awards National Energy Technology Laboratory Captures Three Sustainability Awards September 27, 2012 - 1:00pm Addthis Washington, DC - When the U.S. Department of Energy (DOE) called on employees to meet sustainability goals by initiating environmental, energy, and economic improvements, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) answered the call--and captured three Departmental Sustainability Awards for its efforts. The DOE Sustainability Awards program, now in its second year, "recognizes the achievements of DOE employees whose leadership and cost-reducing initiatives have saved taxpayer money by reducing the Department's use of energy, water, and paper while improving the energy efficiency of Federal

324

Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Immobilized Aminosilane Sorbents Immobilized Aminosilane Sorbents for Carbon Dioxide Capture Opportunity Research is currently active on the patent-pending technology titled "Regenerable Immobilized Aminosilane Sorbents for Carbon Dioxide Capture." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview Carbon sequestration entails a multi-step process in which CO 2 is first separated / captured from gas streams followed by permanent storage. Carbon capture represents a critical step in the process and accounts for a considerable portion of the overall cost. Newly developed, high capacity amine-based sorbents offer many advantages over existing technology including increased CO

325

NETL: Low-Pressure Membrane Contactors for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Low-Pressure Membrane Contactors for CO2 Capture Low-Pressure Membrane Contactors for CO2 Capture Project No.: DE-FE0007553 Membrane Technology and Research, Inc. (MTR) is developing a new type of membrane contactor (or mega-module) to separate carbon dioxide (CO2) from power plant flue gas. This module's membrane area is 500 square meters, 20 to 25 times larger than that of current modules used for CO2 capture. A 500-MWe coal power plant requires 0.5 to 1 million square meters of membrane to achieve 90 percent CO2 capture. The new mega-modules can drastically reduce the cost, complexity, and footprint of commercial-scale membrane module integration. Energy savings due to low-pressure drops for gases circulated through the modules, as well as improved countercurrent flow, are additional benefits. The feasibility of using mega-modules in several different hybrid process designs is being evaluated for future development potential.

326

New Recovery Act Funding Boosts Industrial Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funding Boosts Industrial Carbon Capture and Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development September 7, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million from the American Recovery and Reinvestment Act, these R&D projects complement the industrial demonstration projects already being funded through the Recovery Act. Together, these projects represent an unprecedented investment in the development of clean coal technologies. This program supports the President's goal to overcome the barriers to

327

Ownership of Carbon Dioxide Captured by Clean Coal Project (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation stipulates that the Railroad Commission of Texas automatically acquires the title to any carbon dioxide captured by a clean coal project in the state. The Bureau of Economic...

328

Apparatus and method for detecting full-capture radiation events  

DOE Patents (OSTI)

An apparatus and method are disclosed for sampling the output signal of a radiation detector and distinguishing full-capture radiation events from Compton scattering events. The output signal of a radiation detector is continuously sampled. The samples are converted to digital values and input to a discriminator where samples that are representative of events are identified. The discriminator transfers only event samples, that is, samples representing full-capture events and Compton events, to a signal processor where the samples are saved in a three-dimensional count matrix with time (from the time of onset of the pulse) on the first axis, sample pulse current amplitude on the second axis, and number of samples on the third axis. The stored data are analyzed to separate the Compton events from full-capture events, and the energy of the full-capture events is determined without having determined the energies of any of the individual radiation detector events. 4 figs.

Odell, D.M.C.

1994-10-11T23:59:59.000Z

329

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Membrane Process for Power Plant Flue Gas Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D)...

330

Fluid mechanics of bubble capture by the diving bell spider  

E-Print Network (OSTI)

The water spider, a unique member of its species, is used as inspiration for a bubble capture mechanism. Bubble mechanics are studied in the pursuit of a biomimetic solution for transporting air bubbles underwater. Careful ...

Brooks, Alice (Alice P.)

2010-01-01T23:59:59.000Z

331

Computational aspects of treatment planning for neutron capture therapy  

E-Print Network (OSTI)

Boron Neutron Capture Therapy (BNCT) is a biochemically targeted form of binary radiation therapy that has the potential to deliver radiation to cancers with cellular dose selectivity. Accurate and efficient treatment ...

Albritton, James Raymond, 1977-

2010-01-01T23:59:59.000Z

332

Capturing carbon from existing coal-fired power plants  

SciTech Connect

DOE's National Energy Technology Laboratory is spearheading R & D on a variety of post-combustion and oxy-combustion technologies to cost-effectively achieve 90% CO{sub 2} capture.

Ciferno, J.P.; Fout, T.E.; Jones, A.P.; Murphy, J.T. [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2009-04-15T23:59:59.000Z

333

The eFacilitator : a meeting capture application and infrastructure  

E-Print Network (OSTI)

Meeting capture and support is an important research field in ubiquitous computing and human computer interaction. We have a built a note-taking application, which lets meeting facilitators and note takers organize the ...

Fox, Harold, 1979-

2004-01-01T23:59:59.000Z

334

CO? compression for capture-enabled power systems  

E-Print Network (OSTI)

The objective of this thesis is to evaluate a new carbon dioxide compression technology - shock compression - applied specifically to capture-enabled power plants. Global warming has increased public interest in carbon ...

Suri, Rajat

2009-01-01T23:59:59.000Z

335

NETL: News Release - DOE Establishes National Carbon Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes Center Will Provide Flexible Test Bed for Emerging CO2 Capture Technologies for Coal-Fired Power Plants Washington, D.C. -The U.S. Department of Energy has announced the...

336

Perspectives on Carbon Capture and Sequestration in the United States  

E-Print Network (OSTI)

E A and Keith D W 1998 Fossil fuels without CO 2 emissionsCapture and Storage from Fossil Fuel Use, contribution tocontinue using its vast fossil fuel resources and existing

Wong-Parodi, Gabrielle

2011-01-01T23:59:59.000Z

337

Prospective Life-Cycle Modeling of Novel Carbon Capture Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Prospective Life-Cycle Modeling of Novel Carbon Capture Materials Speaker(s): Roger Sathre Date: December 5, 2011 - 3:30pm Location: 90-4133 Seminar HostPoint of Contact: Anita...

338

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4966 jose.figueroa@netl.doe.gov Carbon DioxiDe Capture from flue Gas usinG Dry reGenerable sorbents Background Currently...

339

Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

International 1 is heading a research team to develop an innovative process for CO 2 capture that employs a dry, regenerable sorbent. The process is cyclic in that the sorbent...

340

Mobile radio slotted ALOHA with capture and diversity  

Science Conference Proceedings (OSTI)

In this paper, the slotted ALOHA protocol in a mobile radio environment, in the presence of Ricean fading, two-fold antenna diversity and multiple reception capability, is considered. The capture probabilities and the average throughput are computed, ...

Michele Zorzi

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High-Performance Sorbents for Carbon Dioxide Capture from Air  

NLE Websites -- All DOE Office Websites (Extended Search)

viability of using air capture for generating both sequestration- ready CO 2 and CO 2 for algae-biofuel processes will be considered. GT will characterize the behavior of three...

342

Policy learning : new challenges for smart value capture in Colombia  

E-Print Network (OSTI)

Contribucion por Valorizacion is a form of value capture similar to Special Assessment, used in Colombia to complement Local revenues for major public infrastructure programs. SA's continued use countrywide and its resulting ...

Acosta, Patricia, S.M. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

343

NETL: 2012 Conference Proceedings - 2012 NETL CO2 Capture Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Heat Integrated CO2 Capture System PDF-1.12MB Jim Neathery, University of Kentucky Efficient Use of Waste Heat to Reduce Parasitism of CCS PDF-714KB...

344

Post-Combustion Carbon Capture Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Post-Combustion Carbon Capture Research Post-Combustion Carbon Capture Research Post-Combustion Carbon Capture Research Fossil fuel fired electric generating plants are the cornerstone of America's central power system. Currently, the existing fossil fuel fleet accounts for about two-thirds of all electricity generated domestically, over 40% from coal alone. Electricity demand is expected to increase dramatically over the next 30 years, and adding new generating capacity typically requires long lead time. In the meantime, the United States will continue to rely on existing plants to provide a substantial amount of affordable electric power for years to come. Retrofitting the Existing Fleet of Power Plants There is vast potential for retrofitting carbon capture technologies to the existing fossil fuel fleet. In 2011, coal-fired power plants produced

345

Better Enzymes for Carbon Capture: Low-Cost Biological Catalyst to Enable Efficient Carbon Dioxide Capture  

Science Conference Proceedings (OSTI)

IMPACCT Project: Codexis is developing new and efficient forms of enzymes known as carbonic anhydrases to absorb CO2 more rapidly and under challenging conditions found in the gas exhaust of coal-fired power plants. Carbonic anhydrases are common and are among the fastest enzymes, but they are not robust enough to withstand the harsh environment found in the power plant exhaust steams. In this project, Codexis will be using proprietary technology to improve the enzymes ability to withstand high temperatures and large swings in chemical composition. The project aims to develop a carbon-capture process that uses less energy and less equipment than existing approaches. This would reduce the cost of retrofitting todays coal-fired power plants.

None

2010-07-01T23:59:59.000Z

346

Post-Combustion CO2 Capture Technology Development  

Science Conference Proceedings (OSTI)

This report provides an update on the development trends in post-combustion carbon dioxide (CO2) capture technologies. The Electric Power Research Institute (EPRI) scouted carbon capture technologies worldwide and applied filtering criteria to identify those best suited for EPRI support. Those criteria included a technology developer's interest in working with EPRI, the potential for EPRI investment to provide significant advancement, the technology's suitability for broad application, and its potential ...

2010-12-31T23:59:59.000Z

347

Program on Technology Innovation: National Carbon Capture Center 2013 Report  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) established the National Carbon Capture Center (NCCC) to address the nations need for cost-effective, commercially viable CO2 capture options for coal-based power plants, both combustion and gasification. The NCCC is located at the Power Systems Development Facility (PSDF), an engineering-scale test center located in Wilsonville, Alabama. The Transport Gasifier at the original PSDF site provides syngas for pre-combustion testing; and a new test ...

2013-12-13T23:59:59.000Z

348

CO2 Capture Membrane Process for Power Plant Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Membrane Process for Power Plant Flue Gas Background The U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Program is performing research to develop advanced technologies focusing on carbon dioxide (CO 2 ) emissions control for existing pulverized coal-fired plants. This new focus on post-combustion and oxy-combustion CO 2 emissions control technology, CO 2 compression, and beneficial reuse is in response to the priority for advanced

349

Metal Monolithic Amine-Grafted Zeolites for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Metal Monolithic Amine-Grafted Metal Monolithic Amine-Grafted Zeolites for CO 2 Capture Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio

350

Assessment of Post-Combustion Capture Technology Developments  

Science Conference Proceedings (OSTI)

This report provides an overview of technologies and processes that can be used to capture carbon dioxide from the flue gas of conventional coal and natural-gas-fired power plants. It summarizes the findings from a continuing EPRI investigation into emerging concepts, tests, demonstrations, and field trials of technologies in the areas of absorption, adsorption, membrane separation, cold separation, and biofixation. Each of these capture pathways are described in the report, and examples are provided for...

2007-02-15T23:59:59.000Z

351

Neutron capture therapy: Years of experimentation---Years of reflection  

SciTech Connect

This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven`s Medical Research Center program.

Farr, L.E.

1991-12-16T23:59:59.000Z

352

Technology options for capturing CO{sub 2}  

Science Conference Proceedings (OSTI)

Concerns about global climate change have prompted interest in reducing or eliminating the carbon dioxide emissions of fossil fuel-fired power plants. Here is a guide to the technology and economics of three CO{sub 2} capture methods: postcombustion separation of CO{sub 2} from flue gas, oxygen-fired combustion and precombustion capture (suitable for new coal-fired capacity, including IGCC plants). 5 figs., 1 tab.

Elwell, L.C.; Grant, W.S. [MPR Associates Inc. (United States)

2006-10-15T23:59:59.000Z

353

Program on Technology Innovation: National Carbon Capture Center, 2011 Report  

Science Conference Proceedings (OSTI)

The National Carbon Capture Center (NCCC) was established by the U.S. Department of Energy to address the nation's need for cost-effective, commercially viable carbon dioxide capture options for coal-based power plants, both combustion and gasification. The NCCC is established at the Power Systems Development Facility(PSDF), an engineering-scale test center located in Wilsonville, Alabama. The Transport Gasifier at the original PSDFsite provides syngas for pre-combustion testing, and a new test facility,...

2011-12-23T23:59:59.000Z

354

Economic modeling of CO 2 capture and sequestration  

E-Print Network (OSTI)

As policy makers look for strategies to reduce greenhouse gas emissions, they need to understand what options are available and under what conditions these technologies could be economically competitive. This paper explores the economics of carbon capture and sequestration technologies using the MIT Emissions Prediction and Policy Analysis (EPPA) model. We model two of the most promising carbon capture and sequestration technologies, one based on a natural gas combined cycle (NGCC) capture plant and one based on an integrated coal gasification combined cycle (IGCC) capture plant. The technologies have been fully specified within the EPPA model by production functions and we simulate how they perform under different policy scenarios. The results show how changing input prices and general equilibrium effects can influence technology choice between the coal and gas capture plants and other technologies for electricity production. BACKGROUND AND MOTIVATION The heightened concern about global change has aroused interest in carbon capture and sequestration technologies as a means of decreasing CO2 concentrations in the atmosphere. Projects are already underway to research and implement such technologies in countries like the

Sean Biggs; Howard Herzog; John Reilly; Henry Jacoby

2001-01-01T23:59:59.000Z

355

A Framework for Environmental Assessment of CO2 Capture and Storage Systems  

E-Print Network (OSTI)

cycle assessment of carbon dioxide capture and storage fromSpecial Report on Carbon Dioxide Capture and Storage. 2005.DM, Smit B, Long JR. Carbon dioxide capture: Prospects for

Sathre, Roger

2013-01-01T23:59:59.000Z

356

Microsoft PowerPoint - 130709 DOE-NETL CO2 Capture Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

an amine- based post-combustion capture technology for CO 2 capture from coal-fired power plant flue gas DOE funding award DE-FE0007453 2013 NETL CO 2 Capture Technology Meeting...

357

Economic and energetic analysis of capturing CO[subscript 2] from ambient air  

E-Print Network (OSTI)

Capturing carbon dioxide from the atmosphere (air capture) in an industrial process has been proposed as an option for stabilizing global CO[subscript 2] concentrations. Published analyses suggest these air capture systems ...

House, Kurt Zenz

358

Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

CO 2 Capture Background The mission of the U.S. Department of EnergyNational Energy Technology Laboratory (DOENETL) Existing Plants, Emissions & Capture (EPEC)...

359

Pages that link to "Cost and Performance of Carbon Dioxide Capture...  

Open Energy Info (EERE)

icon Pages that link to "Cost and Performance of Carbon Dioxide Capture from Power Generation" Cost and Performance of Carbon Dioxide Capture from Power Generation...

360

It's Elemental - Isotopes of the Element Copper  

NLE Websites -- All DOE Office Websites (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc Isotopes of the Element Copper [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 63 69.15% STABLE 65 30.85% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 52 No Data Available Proton Emission No Data Available 53 < 300 nanoseconds Electron Capture No Data Available Proton Emission No Data Available 54 < 75 nanoseconds Proton Emission No Data Available 55 27 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 15.0% 56 93 milliseconds Electron Capture 100.00%

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Membrane-based systems for carbon capture and hydrogen purification  

DOE Green Energy (OSTI)

This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services. Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.

Berchtold, Kathryn A [Los Alamos National Laboratory

2010-11-24T23:59:59.000Z

362

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

CM30T TEM CM30T TEM Instrument capabilities: Instrument specifications: Accelerating voltages: 100-300 kV LaB6 emitter Resolution (at 300 kV): ~ 0.25 nm point; ~ 0.14 nm line Minimum probe size: ~ 9 nm Operating modes: CTEM, CBED, SAED, light element XEDS CCD camera: 1 Mp, 14 bits, AVI capture possible at 15 fps Specimen holders: Double Tilt (+/- 60 degrees alpha, +/- 30 degrees beta): with Be cup for XEDS liquid nitrogen cooled (96 K) with Be cup heating (1270 K) Tilt/rotate (+/- 60 degrees alpha, rotation 360 degrees) Single Tilt (+/- 60 degrees alpha) Typical experiments (examples): Quantitative XEDS Morphological and diffraction contrast studies of defects In situ heating & cooling studies Electron crystallography Weak beam studies of defects This page can be downloaded here as an Adobe PDF file.

363

Thermal-neutron capture for A=36-44  

SciTech Connect

The prompt gamma-ray data of thermal- neutron captures fornuclear mass number A=26-35 had been evaluated and published in "ATOMICDATA AND NUCLEAR DATA TABLES, 26, 511 (1981)". Since that time the manyexperimental data of the thermal-neutron captures have been measured andpublished. The update of the evaluated prompt gamma-ray data is verynecessary for use in PGAA of high-resolution analytical prompt gamma-rayspectroscopy. Besides, the evaluation is also very needed in theEvaluated Nuclear Structure Data File, ENSDF, because there are no promptgamma-ray data in ENSDF. The levels, prompt gamma-rays and decay schemesof thermal-neutron captures fornuclides (26Mg, 27Al, 28Si, 29Si, 30Si,31P, 32S, 33S, 34S, and 35Cl) with nuclear mass number A=26-35 have beenevaluated on the basis of all experimental data. The normalizationfactors, from which absolute prompt gamma-ray intensity can be obtained,and necessary comments are given in the text. The ENSDF format has beenadopted in this evaluation. The physical check (intensity balance andenergy balance) of evaluated thermal-neutron capture data has been done.The evaluated data have been put into Evaluated Nuclear Structure DataFile, ENSDF. This evaluation may be considered as an update of the promptgamma-ray from thermal-neutron capture data tables as published in"ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)".

Chunmei, Z.; Firestone, R.B.

2003-01-01T23:59:59.000Z

364

Hypervelocity Capture of Meteoritic Particles in Nonsilica Aerogels  

Science Conference Proceedings (OSTI)

The Stardust mission captured particles from the comet 81P/Wild 2 in gradient density silica aerogel and returned the collected samples to earth in 2006. The analyses of these particles have revealed several new insights into the formation of our solar system. However, since the aerogel used as the capture material was silica, the elemental analyses of the silica-rich particles were made more complicated in certain ways due to the mixing of the silicon of the particles and that of the aerogel. By using a nonsilica aerogel, future elemental analyses of silica-rich particles captured in aerogel could be made more straightforward. Resorcinol/formaldehyde (RF), alumina, and zirconia aerogels were impact tested with meteoritic fragments and the captured fragments were mapped with synchrotron-based X-ray microprobe (XRM) and the particles were analyzed with X-ray fluorescence (XRF). The resorcinol/formaldehyde aerogel proved to be the best capture material, in that it could be keystoned and XRF could be used to locate and analyze particles that were less than 10 {micro}m.

S Jones; G Flynn

2011-12-31T23:59:59.000Z

365

NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE  

DOE Green Energy (OSTI)

A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

Sherman, S

2008-09-22T23:59:59.000Z

366

Multiplexed electronically programmable multimode ionization detector for chromatography  

DOE Patents (OSTI)

Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electronically programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity. 6 figs.

Wise, M.B.; Buchanan, M.V.

1988-05-19T23:59:59.000Z

367

Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Develops Breakthrough Membranes for Carbon Capture, State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage December 20, 2012 - 9:44am Addthis Researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that could efficiently separate carbon dioxide (CO2) from the gas that comes from burning coal at power plants. | Photo courtesy of Office of Fossil Energy. Researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that could efficiently separate carbon dioxide (CO2) from the gas that comes from burning coal at power plants. | Photo courtesy of Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy

368

Carbon Capture and Storage Road Map | Open Energy Information  

Open Energy Info (EERE)

and Storage Road Map and Storage Road Map Jump to: navigation, search Name Carbon Capture and Storage Road Map Agency/Company /Organization Asian Development Bank Sector Energy Focus Area Renewable Energy, Economic Development, Greenhouse Gas, Industry Topics Adaptation, Implementation, Low emission development planning, -LEDS Website http://www.adb.org/news/adb-he Country China Eastern Asia References ADB Helps People's Republic of China Plan Carbon Capture and Storage Road Map[1] Program Overview "The Asian Development Bank (ADB) is assisting the People's Republic of China (PRC) in the development of a road map for carbon capture and storage (CCS) to help achieve the country's carbon dioxide (CO2) emissions reduction goals. ADB will assist the PRC in developing a detailed plan for a staged

369

Fossil Energy Research Benefits Carbon Capture and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Through Office of Fossil Energy (FE) Through Office of Fossil Energy (FE) research and development (R&D), the United States has become a world leader in carbon capture and storage (CCS) science and technology. CCS is a group of technologies for effectively capturing, compressing and transporting, and permanently injecting and storing in geologic formations carbon dioxide (CO 2 ) from industrial or power plants. It is one part of a wider portfolio strategy (including greater use of renewable and nuclear energy, and higher efficiencies) that many scientists and nations favor for achieving significant cuts in atmospheric CO 2 emissions. Fossil Energy Research Benefits Carbon Capture and Storage FE and its research facility, the National Energy Technology

370

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 9, 2012 August 9, 2012 Second Phase of Innovative Technology Project to Capture CO2, Produce Biofuels Launched in Ohio A novel method to capture carbon dioxide from flue gas and produce biofuels has been formally launched in the second phase of a Department of Energy project at a nursery in Ohio. July 26, 2012 Energy Department Announces Awards to Projects Advancing Innovative Clean Coal Technology As part of President Obama's all-of-the-above approach to American energy, the Energy Department announced today the selection of eight projects to advance the development of transformational oxy-combustion technologies capable of high-efficiency, low-cost carbon dioxide capture from coal-fired power plants. July 26, 2012 Energy Department Announces Awards to Projects Advancing Innovative Clean

371

DOE Program Offers Participants Unique Opportunity to Gain Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Offers Participants Unique Opportunity to Gain Carbon Program Offers Participants Unique Opportunity to Gain Carbon Capture and Storage Knowledge DOE Program Offers Participants Unique Opportunity to Gain Carbon Capture and Storage Knowledge February 8, 2011 - 12:00pm Addthis Washington, DC - Future leaders and innovators in the area of carbon capture and storage (CCS) can gain a unique and intensive tutorial on the subject by participating in the U.S. Department of Energy's (DOE) Research Experience in Carbon Sequestration (RECS) program. Supported by the Office of Fossil Energy (FE), the program for graduate students and early career professionals is currently accepting applications for RECS 2011, scheduled for June 5-15, in Birmingham, AL, and the deadline to apply is April 15. An intensive science-based program, RECS 2011 will combine classroom

372

Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ohio State Develops Breakthrough Membranes for Carbon Capture, Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage Ohio State Develops Breakthrough Membranes for Carbon Capture, Utilization and Storage December 20, 2012 - 9:44am Addthis Researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that could efficiently separate carbon dioxide (CO2) from the gas that comes from burning coal at power plants. | Photo courtesy of Office of Fossil Energy. Researchers at The Ohio State University have developed a groundbreaking new hybrid membrane that could efficiently separate carbon dioxide (CO2) from the gas that comes from burning coal at power plants. | Photo courtesy of Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy

373

NETL: Industrial Capture and Storage (ICCS): Area 1  

NLE Websites -- All DOE Office Websites (Extended Search)

ICCS Area 1 ICCS Area 1 Major Demonstrations Industrial Capture and Storage (ICCS): Area 1 The Large-Scale Industrial CCS Projects (Area 1) are managed by NETL under the Major Demonstrations Program. In October 2009, the U.S. Department of Energy announced the selection of 12 Large-Scale projects intended to capture CO2 from industrial sources for storage or beneficial use. Read more! These Phase I projects were cost-shared collaborations between the government and industry to increase investment in clean industrial technologies and sequestration projects. The Phase I duration of each project selected was approximately seven months. On June 10, 2010, DOE selected three projects from Phase I to enter into Phase 2 for design, construction, and operation. Potential additional applications for funding of large-scale industrial carbon capture and storage projects are pending further clarification and review. Collapse Text

374

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be present in only trace proportions in our atmosphere but it has a leading role in the cast of greenhouse gases, with a thermal radiative effect nearly three times as large as the next biggest contributor. Energy related processes are the biggest sources of atmospheric CO2, especially the burning of fossil fuels and the production of hydrogen from methane. Since both human-caused CO2 concentrations and global average temperatures have been increasing steadily since the mid-20th century it could very well be that our energy future depends on our ability to effectively remove CO2

375

A Demonstration System for Capturing Geothermal Energy from Mine Waters  

Open Energy Info (EERE)

System for Capturing Geothermal Energy from Mine Waters System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by now-inactive water-filled mines. In Butte's case, over 10,000 miles of underground workings have been documented, but as in many other mining communities these waters are regarded as more of a liability than asset. Mine waters offer several advantages:

376

NETL: Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic  

NLE Websites -- All DOE Office Websites (Extended Search)

Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process Project No.: DE-FE0000646 The Gas Technology Institute is developing a pre-combustion carbon dioxide (CO2) separation technology based on a solvent scrubbing process using a novel gas/liquid membrane contactor concept. The primary goal of the project is to develop a practical and cost-effective technology for CO2 separation and capture from the pre-combustion syngas in coal gasification plants. The specific objective of the project is to (1) develop a membrane contactor module containing a superhydrophobic--extremely difficult to wet--hollow fiber membrane with optimal pore size and surface chemistry, and (2) design the CO2 separation process and conduct an economic evaluation.

377

Breakthrough Large-Scale Industrial Project Begins Carbon Capture and  

NLE Websites -- All DOE Office Websites (Extended Search)

28, 2013 28, 2013 Breakthrough Large-Scale Industrial Project Begins Carbon Capture and Utilization DOE-Supported Project in Texas Demonstrates Viability of CCUS Technology Washington, D.C. - A breakthrough carbon capture, utilization, and storage (CCUS) project in Texas has begun capturing carbon dioxide (CO2) and piping it to an oilfield for use in enhanced oil recovery (EOR). MORE INFO Read the project factsheet The project at Air Products and Chemicals hydrogen production facility in Port Arthur, Texas, is significant for demonstrating both the effectiveness and commercial viability of CCUS technology as an option in helping mitigate atmospheric CO2 emissions. Funded in part through the American Recovery and Reinvestment Act (ARRA), the project is managed by the U.S.

378

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 16, 2010 September 16, 2010 Secretary Chu Announces Simulation-Based Engineering User Center U.S Department of Energy Secretary Steven Chu today announced the creation of the Simulation-Based Engineering User Center that will facilitate collaborative computational research for energy applications. September 8, 2010 Secretary Chu Announces Carbon Capture and Storage Simulation Initiative U.S. Secretary of Energy Steven Chu announced today the creation of the Carbon Capture and Storage Simulation Initiative with an investment of up to $40 million from the American Recovery and Reinvestment Act. September 7, 2010 New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development U.S. Energy Secretary Steven Chu today announced the selection of 22

379

Making Carbon Capture and Storage Efficient and Cost Competitive |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage Efficient and Cost Competitive Carbon Capture and Storage Efficient and Cost Competitive Making Carbon Capture and Storage Efficient and Cost Competitive July 26, 2012 - 6:32pm Addthis Ohio State University (OSU) Professor Liang-Shih Fan shows Assistant Secretary for Fossil Energy Charles McConnell OSU's coal direct chemical looping reactor. | Photo by Niranjani Deshpande Ohio State University (OSU) Professor Liang-Shih Fan shows Assistant Secretary for Fossil Energy Charles McConnell OSU's coal direct chemical looping reactor. | Photo by Niranjani Deshpande Amanda Scott Amanda Scott Former Managing Editor, Energy.gov What are the key facts? These projects will build on the important progress made by this Administration in promoting innovative technologies that help make coal-fired energy cleaner and more cost-competitive.

380

Prospective Life-Cycle Modeling of Novel Carbon Capture Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Prospective Life-Cycle Modeling of Novel Carbon Capture Materials Prospective Life-Cycle Modeling of Novel Carbon Capture Materials Speaker(s): Roger Sathre Date: December 5, 2011 - 3:30pm Location: 90-4133 Seminar Host/Point of Contact: Anita Estner Barbara Adams In this presentation we describe the prospective life-cycle modeling of metal-organic frameworks (MOF), a novel type of material with the potential for efficiently capturing CO2. Life-cycle modeling of emerging technologies, conducted early in the innovation process, can generate knowledge that can feed back to inform scientific discovery and development. We discuss the challenges of credibly modeling a system that does not yet exist, and describe methodological approaches including parametric system modeling (quantifying relations between system elements), scenario projections (defining plausible pathways for system scale-up),

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Carbon Capture and Storage Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Research Carbon Capture and Storage Research Atlas IV Now Available Carbon storage atlas estimates at least 2,400 billion metric tons of U.S. CO2 storage resource. Read more Industrial CCS Learn how DOE is capturing and storing CO2 from industrial plants. Read more Regional Carbon Sequestration Partnerships A nationwide network of federal, state and private sector partnerships are determining the most suitable carbon storage solutions for their region. Read more Key Programs and Initiatives Regional Carbon Sequestration Partnerships DOE has created a nationwide network of federal, state and private sector partnerships to determine the most suitable technologies, regulations, and infrastructure for future carbon capture, storage and sequestration in different areas of the country.

382

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 24, 2009 June 24, 2009 New Jersey Joins the Energy Department's Carbon Sequestration Regional Partnership Program The State of New Jersey is the newest member of the U.S. Department of Energy's Regional Carbon Sequestration Partnership program--the centerpiece of national efforts to validate and deploy carbon sequestration technologies. June 15, 2009 DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use. June 11, 2009 DOE Selects Projects to Develop Pre-Combustion Carbon Capture Technologies for Coal-Based Gasification Plants The U.S. Department of Energy today announced the selection of nine

383

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 24, 2011 August 24, 2011 Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. July 6, 2011 Confirming CCS Security and Environmental Safety Aim of Newly Selected Field Projects The U.S. Department of Energy's portfolio of field projects aimed at confirming that long-term geologic carbon dioxide storage is safe and environmentally secure has been expanded by three projects selected to collectively receive $34.5 million over four years. June 28, 2011 Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects A wealth of information about worldwide carbon capture and storage technologies and projects is available on the newly launched, updated and

384

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 18, 2011 January 18, 2011 DOE Manual Studies Terrestrial Carbon Sequestration There is considerable opportunity and growing technical sophistication to make terrestrial carbon sequestration both practical and effective, according to the latest carbon capture and storage "best practices" manual issued by the U.S. Department of Energy. January 11, 2011 New Roadmap Updates Status of DOE Carbon Capture and Storage RD&D Efforts An overview of research, development, and demonstration efforts to supply cost-effective, advanced carbon capture and storage technologies for coal-based power systems is the focus of a new roadmap published by the U.S. Department of Energy. January 5, 2011 DOE Best Practices Manual Focuses on Site Selection for CO2 Storage Washington, DC - The most promising methods for assessing potential carbon

385

STAR HOPPERS: PLANET INSTABILITY AND CAPTURE IN EVOLVING BINARY SYSTEMS  

SciTech Connect

Many planets are observed in stellar binary systems, and their frequency may be comparable to that of planetary systems around single stars. Binary stellar evolution in such systems influences the dynamical evolution of the resident planets. Here, we study the evolution of a single planet orbiting one star in an evolving binary system. We find that stellar evolution can trigger dynamical instabilities that drive planets into chaotic orbits. This instability leads to planet-star collisions, exchange of the planet between the binary stars ('star hoppers'), and ejection of the planet from the system. The means by which planets can be recaptured is similar to the pull-down capture mechanism for irregular solar system satellites. Because planets often suffer close encounters with the primary on the asymptotic giant branch, captures during a collision with the stellar envelope are also possible for more massive planets. Such capture could populate the habitable zone around white dwarfs.

Kratter, Kaitlin M.; Perets, Hagai B. [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-07-01T23:59:59.000Z

386

Guidelines for carbon dioxide capture, transport and storage  

Science Conference Proceedings (OSTI)

The goal of this effort was to develop a set of preliminary guidelines and recommendations for the deployment of carbon capture and storage (CCS) technologies in the United States. The CCS Guidelines are written for those who may be involved in decisions on a proposed project: the developers, regulators, financiers, insurers, project operators, and policymakers. Contents are: Part 1: introduction; Part 2: capture; Part 3: transport; Part 4; storage; Part. 5 supplementary information. Within these parts, eight recommended guidelines are given for: CO{sub 2} capture; ancillary environmental impacts from CO{sub 2}; pipeline design and operation; pipeline safety and integrity; siting CO{sub 2} pipelines; pipeline access and tariff regulation; guidelines for (MMV); risk assessment; financial responsibility; property rights and ownership; site selection and characterisation; injection operations; site closure; and post-closure. 18 figs., 9 tabs., 4 apps.

Hanson, S.

2008-07-01T23:59:59.000Z

387

Electrophoretic Capture of a DNA Chain into a Nanopore  

E-Print Network (OSTI)

Based on our formulation of the DNA electrophoresis near a pore [P. Rowghanian and A. Y. Grosberg, Phys. Rev. E 87, 042723 (2013)], we address the electrophoretic DNA capture into a nanopore as a steady-state process of particle absorption to a sink placed on top of an energy barrier. Reproducing the previously observed diffusion-limited and barrier-limited regimes as two different limits of the particle absorption process and matching the data, our model suggests a slower growth of the capture rate with the DNA length for very large DNA molecules than the previous model, motivating more experiments beyond the current range of electric field and DNA length. At moderately weak electric fields, our model predicts a different effect, stating that the DNA length dependence of the capture rate first disappears as the field is reduced and eventually reverses to a decreasing trend with $N$.

Payam Rowghanian; Alexander Y. Grosberg

2013-06-19T23:59:59.000Z

388

Electrophoretic Capture of a DNA Chain into a Nanopore  

E-Print Network (OSTI)

Based on our formulation of the DNA electrophoresis near a pore [P. Rowghanian and A. Y. Grosberg, Phys. Rev. E 87, 042723 (2013)], we address the electrophoretic DNA capture into a nanopore as a steady-state process of particle absorption to a sink placed on top of an energy barrier. Reproducing the previously observed diffusion-limited and barrier-limited regimes as two different limits of the particle absorption process and matching the data, our model suggests a slower growth of the capture rate with the DNA length for very large DNA molecules than the previous model, motivating more experiments beyond the current range of electric field and DNA length. At moderately weak electric fields, our model predicts a different effect, stating that the DNA length dependence of the capture rate first disappears as the field is reduced and eventually reverses to a decreasing trend with $N$.

Rowghanian, Payam

2013-01-01T23:59:59.000Z

389

Thermal Neutron Capture y's (CapGam)  

DOE Data Explorer (OSTI)

The National Nuclear Data Center (NNDC) presents two tables showing energy and photon intensity with uncertainties of gamma rays as seen in thermal-neutron capture. One table is organized in ascending order of gamma energy, and the second is organized by Z, A of the target. In the energy-ordered table the three strongest transitions are indicated in each case. The nuclide given is the target nucleus in the capture reaction. The gamma energies given are in keV. The gamma intensities given are relative to 100 for the strongest transition. %I? (per 100 n-captures) for the strongest transition is given, where known. All data are taken from the Evaluated Nuclear Structure Data File (ENSDF), a computer file of evaluated nuclear structure data and from the eXperimental Unevaluated Nuclear Data List (XUNDL). (Specialized Interface)

390

Supported polyethylenimine adsorbents for CO2 capture from flue gas  

Science Conference Proceedings (OSTI)

Anthropogenic CO2 emissions produced from fossil fuel combustion are believed to contribute to undesired consequences in global climate. Major contributors towards CO2 emissions are fossil fuel-fired power plants for electricity production. For this reason, CO2 capture from flue gas streams together with permanent sequestration in geologic formations is being considered a viable solution towards mitigation of the major greenhouse gas1. Technologies based on chemical absorption with alkanolamines have been assessed for first generation CO2 post-combustion capture primarily due to its advanced stage of development. However, limitations associated with these chemical solvents (i.e., low CO2 loadings, amine degradation by oxygen, equipment corrosion) manifest themselves in high capital and operating costs with reduced thermal efficiencies. Therefore, necessary design and development of alternative, lower cost approaches for CO2 capture from coal-fired combustion streams are warranted.

Fauth, D.J.; Gray, M.L.; Pennline, H.W.

2008-10-01T23:59:59.000Z

391

Capturing Fugitives to Reduce DOE's GHG Emissions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capturing Fugitives to Reduce DOE's GHG Emissions Capturing Fugitives to Reduce DOE's GHG Emissions Capturing Fugitives to Reduce DOE's GHG Emissions November 15, 2011 - 2:04pm Addthis An electrician foreman for the Western Area Power Administration checks a circuit breaker at the Ault Substation in eastern Colorado. The circuit breaker, containing 85 lbs of SF6, protects equipment in the substation against damage from excessive electrical currents | Courtesy of Western Area Power Administration. An electrician foreman for the Western Area Power Administration checks a circuit breaker at the Ault Substation in eastern Colorado. The circuit breaker, containing 85 lbs of SF6, protects equipment in the substation against damage from excessive electrical currents | Courtesy of Western Area Power Administration.

392

NETL: News Release - Secretary Chu Announces Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2010 7, 2010 New Recovery Act Funding Boosts Industrial Carbon Capture and Storage Research and Development $575 Million for Projects in 15 States Will Position U.S. as Leader in Clean Coal Technologies Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the selection of 22 projects that will accelerate carbon capture and storage research and development for industrial sources. Funded with more than $575 million from the American Recovery and Reinvestment Act, these R&D projects complement the industrial demonstration projects already being funded through the Recovery Act. Together, these projects represent an unprecedented investment in the development of clean coal technologies. This program supports the President's goal of cost-effective deployment of carbon capture and storage within 10 years and helps to position the U.S. as a leader in the global clean energy race.

393

Carbon Capture and Storage in Southern Africa | Open Energy Information  

Open Energy Info (EERE)

Southern Africa Southern Africa Jump to: navigation, search Name Carbon Capture and Storage in Southern Africa: An assessment of the rationale, possibilities and capacity needs to enable CO2 capture and storage in Botswana, Mozambique and Namibia Agency/Company /Organization Energy Research Centre of the Netherlands Topics Background analysis, Technology characterizations Resource Type Publications Website http://www.ecn.nl/docs/library Country Mozambique, Namibia, Botswana Eastern Africa, Southern Africa, Southern Africa References CCS in Southern Africa[1] Abstract "In April 2010, a series of workshops on CO2 capture and storage were held in Botswana, Mozambique and Namibia, attended by a total of about 100 participants. The objectives of the workshops were to provide a thorough

394

Novel High Capacity Oligomers for Low Cost CO2 Capture  

SciTech Connect

The novel concept of using a molecule possessing both physi-sorbing and chemi-sorbing properties for post-combustion CO2 capture was explored and mixtures of aminosilicones and hydroxyterminated polyethers had the best performance characteristics of materials examined. The optimal solvent composition was a 60/40 blend of GAP-1/TEG and a continuous bench-top absorption/desorption unit was constructed and operated. Plant and process models were developed for this new system based on an existing coal-fired power plant and data from the laboratory experiments were used to calculate an overall COE for a coal-fired power plant fitted with this capture technology. A reduction in energy penalty, from 30% to 18%, versus an optimized 30% MEA capture system was calculated with a concomitant COE decrease from 73% to 41% for the new aminosilicone solvent system.

Robert Perry; Teresa Grocela-Rocha; Michael O'Brien; Sarah Genovese; Benjamin Wood; Larry Lewis; Hubert Lam; Malgorzata Rubinsztajn; Grigorii Soleveichik; Sergei Kniajanski

2010-09-30T23:59:59.000Z

395

Capture-ready power plants - options, technologies and economics  

SciTech Connect

A plant can be considered to be capture-ready if at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The first part of the thesis outlines the two major designs that are being considered for construction in the near-term - pulverized coal (PC) and integrated gasification/combined cycle (IGCC). It details the steps that are necessary to retrofit each of these plants for CO{sub 2} capture and sequestration and assesses the steps that can be taken to reduce the costs and output de-rating of the plant after a retrofit. The second part of the thesis evaluates the lifetime (40 year) net present value (NPV) costs of plants with differing levels of pre-investment for CO{sub 2} capture. Three scenarios are evaluated - a baseline supercritical PC plant, a baseline IGCC plant and an IGCC plant with pre-investment for capture. The results of this thesis show that a baseline PC plant is the most economical choice under low CO{sub 2} tax rates, and IGCC plants are preferable at higher tax rates. The third part of this thesis evaluates the concept of CO{sub 2} 'lock-in'. CO{sub 2} lock-in occurs when a newly built plant is so prohibitively expensive to retrofit for CO{sub 2} capture that it will never be retrofitted for capture, and offers no economic opportunity to reduce the CO{sub 2} emissions from the plant, besides shutting down or rebuilding. The results show that IGCC plants are expected to have lower lifetime CO{sub 2} emissions than a PC plant, given moderate (10-35 $/ton CO{sub 2}) initial tax rates. Higher 4 (above $40) or lower (below $7) initial tax rates do not result in significant differences in lifetime CO{sub 2} emissions from these plants. Little difference is seen in the lifetime CO{sub 2} emissions between the IGCC plants with and without pre-investment for CO{sub 2} capture. 32 refs., 22 figs., 20 tabs., 1 app.

Bohm, M.C. [Massachusetts Institute of Technology, Cambridge, MA (United States). Engineering Systems Division

2006-06-15T23:59:59.000Z

396

Neutron capture rates and r-process nucleosynthesis  

E-Print Network (OSTI)

Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process are the masses and beta decay rates, individual neutron capture rates can also be of key importance in setting the final r-process abundance pattern. Here we consider the influence of neutron capture rates in forming the A~80 and rare earth peaks.

Surman, R; McLaughlin, G C; Sinclair, R; Hix, W R; Jones, K L

2013-01-01T23:59:59.000Z

397

Method for high temperature mercury capture from gas streams  

DOE Patents (OSTI)

A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

Granite, E.J.; Pennline, H.W.

2006-04-25T23:59:59.000Z

398

Neutron capture rates and r-process nucleosynthesis  

E-Print Network (OSTI)

Simulations of r-process nucleosynthesis require nuclear physics information for thousands of neutron-rich nuclear species from the line of stability to the neutron drip line. While arguably the most important pieces of nuclear data for the r-process are the masses and beta decay rates, individual neutron capture rates can also be of key importance in setting the final r-process abundance pattern. Here we consider the influence of neutron capture rates in forming the A~80 and rare earth peaks.

R. Surman; M. Mumpower; G. C. McLaughlin; R. Sinclair; W. R. Hix; K. L. Jones

2013-08-31T23:59:59.000Z

399

Search for 2K(2?)-capture of Kr-78  

E-Print Network (OSTI)

Results of a search for Kr-78 double K-capture at the second stage of the experiment with high-pressure copper proportional counters are presented. The method is based on comparison of spectra measured with natural and enriched krypton. The total exposure of the low background measurements is for Kr-78 152 g*yr and for Kr-nat 106 g*yr. An excess of events was observed in the analysis of Kr-78 selected data collected during 2008-2010 years. This excess could correspond to a double K-capture of Kr-78 with the half-life of T_{1/2}(2K,2\

Ju. M. Gavriljuk; A. M. Gangapshev; V. V. Kazalov; V. V. Kuzminov; S. I. Panasenko; S. S. Ratkevich; D. A. Zhantudueva; S. P. Yakimenko

2011-12-05T23:59:59.000Z

400

Aerosol Imaging with a Soft X-ray Free Electron Laser  

SciTech Connect

Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10{sub 12} photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

Bogan, Michael J.; /SLAC /LLNL, Livermore; Boutet, Sebastien; /SLAC; Chapman, Henry N.; /DESY /Hamburg U.; Marchesini, Stefano; /LBL, Berkeley; Barty, Anton; Benner, W.Henry /LLNL, Livermore; Rohner, Urs; /LLNL, Livermore /TOFWERK AG; Frank, Matthias; Hau-Riege, Stefan P.; /LLNL, Livermore; Bajt, Sasa; /DESY; Woods, Bruce; /LLNL, Livermore; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; /Uppsala U.; Schulz, Joachim; /DESY

2011-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Carbon capture technology: future fossil fuel use and mitigating climate change  

E-Print Network (OSTI)

Carbon capture technology: future fossil fuel use and mitigating climate change DR N FloRiN aND DR P FeNNell executive summary What is carbon capture and storage? Carbon Capture and Storage (CCS) refers to the set of technologies devel- oped to capture carbon dioxide (CO2) gas from the exhausts

402

Band-trap capture and emission in the generalized kinetic theory of electrons and holes  

E-Print Network (OSTI)

of the applications. These assumptions amount to discard the kinetic equation for phonons, and to replace np The Boltzmann Equation and its Applications (New York: Springer Verlag). [8] Spiga G 1992 On extended kinetic theory with chemical reaction Nonlinear Kinetic Theory and Mathematical Aspects of Hyperbolic Systems ed

Spiga, Giampiero

403

CO2 Capture with Liquid-to-Solid Absorbents: CO2 Capture Process Using Phase-Changing Absorbents  

SciTech Connect

IMPACCT Project: GE and the University of Pittsburgh are developing a unique CO2 capture process in which a liquid absorbent, upon contact with CO2, changes into a solid phase. Once in solid form, the material can be separated and the CO2 can be released for storage by heating. Upon heating, the absorbent returns to its liquid form, where it can be reused to capture more CO2. The approach is more efficient than other solventbased processes because it avoids the heating of extraneous solvents such as water. This ultimately leads to a lower cost of CO2 capture and will lower the additional cost to produce electricity for coal-fired power plants that retrofit their facilities to include this technology.

None

2010-10-01T23:59:59.000Z

404

Composite Membranes for CO2 Capture: High Performance Metal Organic Frameworks/Polymer Composite Membranes for Carbon Dioxide Capture  

Science Conference Proceedings (OSTI)

IMPACCT Project: A team of six faculty members at Georgia Tech are developing an enhanced membrane by fitting metal organic frameworks, compounds that show great promise for improved carbon capture, into hollow fiber membranes. This new material would be highly efficient at removing CO2 from the flue gas produced at coal-fired power plants. The team is analyzing thousands of metal organic frameworks to identify those that are most suitable for carbon capture based both on their ability to allow coal exhaust to pass easily through them and their ability to select CO2 from that exhaust for capture and storage. The most suitable frameworks would be inserted into the walls of the hollow fiber membranes, making the technology readily scalable due to their high surface area. This composite membrane would be highly stable, withstanding the harsh gas environment found in coal exhaust.

None

2010-07-01T23:59:59.000Z

405

Business model and strategy analysis for radiologists to use electronic health records (EHR)  

E-Print Network (OSTI)

Radiology is a medical specialty that employs imaging to diagnose and treat disease. It has long been an advance user of technology to capture, store, share, and use images electronically. In 2009, President Obama signed ...

Perumal, Palani

2012-01-01T23:59:59.000Z

406

It's Elemental - Isotopes of the Element Tungsten  

NLE Websites -- All DOE Office Websites (Extended Search)

Tantalum Tantalum Previous Element (Tantalum) The Periodic Table of Elements Next Element (Rhenium) Rhenium Isotopes of the Element Tungsten [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 180 0.12% >= 6.6×10+17 years 182 26.50% STABLE 183 14.31% > 1.3×10+19 years 184 30.64% STABLE 186 28.43% > 2.3×10+19 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 157 275 milliseconds Electron Capture No Data Available 158 1.25 milliseconds Alpha Decay 100.00% 158m 0.143 milliseconds Isomeric Transition No Data Available Alpha Decay No Data Available 159 7.3 milliseconds Alpha Decay ~ 99.90%

407

It's Elemental - Isotopes of the Element Rhenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium Isotopes of the Element Rhenium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 185 37.40% STABLE 187 62.60% 4.33×10+10 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 159 No Data Available No Data Available No Data Available 160 0.82 milliseconds Proton Emission 91.00% Alpha Decay 9.00% 161 0.44 milliseconds Proton Emission 100.00% Alpha Decay <= 1.40% 161m 14.7 milliseconds Alpha Decay 93.00% Proton Emission 7.00% 162 107 milliseconds Alpha Decay 94.00% Electron Capture 6.00%

408

It's Elemental - Isotopes of the Element Francium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium Isotopes of the Element Francium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Francium has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 199 12 milliseconds Alpha Decay > 0.00% Electron Capture No Data Available 200 49 milliseconds Alpha Decay 100.00% 201 62 milliseconds Alpha Decay 100.00% 201m 19 milliseconds Alpha Decay 100.00% 202 0.30 seconds Alpha Decay 100.00% 202m 0.29 seconds Alpha Decay 100.00% 203 0.55 seconds Alpha Decay <= 100.00% 204 1.8 seconds Alpha Decay 92.00%

409

Electron Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Pierre Kennepohl1,2 and Edward Solomon1* 1Department of Chemistry, Stanford University, Stanford, CA 94305 Electron transfer, or the act of moving an electron from one place to another, is amongst the simplest of chemical processes, yet certainly one of the most critical. The process of efficiently and controllably moving electrons around is one of the primary regulation mechanisms in biology. Without stringent control of electrons in living organisms, life could simply not exist. For example, photosynthesis and nitrogen fixation (to name but two of the most well-known biochemical activities) are driven by electron transfer processes. It is unsurprising, therefore, that much effort has been placed on understanding the fundamental principles that control and define the simple act of adding and/or removing electrons from chemical species.

410

Application: Electronics  

Science Conference Proceedings (OSTI)

Application: Electronics. ... Suppression of Electrical Cable Fires: Development of a Standard PVC Cable Fire Test for ISO 14520-1.. Robin, ML ...

2011-12-22T23:59:59.000Z

411

Vanishing electronics  

Science Conference Proceedings (OSTI)

Engineers are reinventing electronics by building safe devices that dissolve in the body or within the environment. The technology could redefine everything from medicine to computing.

Samuel Greengard

2013-05-01T23:59:59.000Z

412

Phased Construction of IGCC Plants for CO2 Capture - Effect of Pre-Investment  

Science Conference Proceedings (OSTI)

Currently, conceptual plant designs for integrated gasification-combined cycle (IGCC) have taken two approaches regarding the capture of CO2. Baseline plants have placed emphasis on producing power with a minimum cost and maximum efficiency without CO2 capture. The primary rationale for designing these plants without CO2 capture is that there have yet to be regulations promulgated that require the capture and sequestration of CO2. Conversely, grass roots IGCC designs with provisions for CO2 capture and c...

2003-12-31T23:59:59.000Z

413

Nanostructured sorbents for capture of cadmium species in combustion environments  

SciTech Connect

The pathways of cadmium species to form a sub-micrometer-sized aerosol in a combustion system exhaust were established. Cadmium oxide was the predominant species formed in the experiments and resulted in particles of a mean size of 26-63 nm with number concentrations in the range of 2-8 x 10{sup 6} cm{sup -3}. Two different nanostructured sorbents, a solid montmorillonite (MMT) and an in situ generated agglomerated silica, were used for capture of the cadmium species. The MMT sorbent was not stable at 1000{sup o}C, and structural changes resulted. MMT did not suppress nucleation of cadmium species and partially captured it by weak physisorption as established by the leachability tests. In contrast, the in situ generated silica nanostructured agglomerates had a high surface area, suppressed nucleation of cadmium species vapors, and chemisorbed them effectively resulting in a firm binding, as compared to the MMT sorbent. There is an optimal temperature-time relationship at which the capture process is expected to be most effective. The leaching efficiency under these conditions was less than 3.2%. The nanostructured silica agglomerate size can be tuned for effective capture in existing particle control devices. 46 refs., 8 figs., 2 tabs.

Myong-Hwa Lee; Kuk Cho; Apoorva P. Shah; Pratim Biswas [Washington University in St. Louis, St. Louis, MO (United States). Aerosol and Air Quality Research Laboratory, Environmental Engineering Science Program

2005-11-01T23:59:59.000Z

414

NETL: Ion Advanced Solvent CO2 Capture Pilot Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Advanced Solvent CO2 Capture Pilot Project Ion Advanced Solvent CO2 Capture Pilot Project Project No.: DE-FE0013303 ION Engineering is conducting small pilot-scale (~ 0.7 MW) testing of an advanced CO2 capture solvent technology that has previously undergone bench-scale testing. The small pilot-scale testing will involve continuous long-term operation in order to gather the necessary data ultimately required for further scale-up. Activities will include the design and fabrication of the 0.5-0.7 MWe (equivalent) slipstream pilot plant; scale-up of solvent manufacturing; testing, data collection, and analysis of solvent performance; degradation and air emission analysis; modeling and simulation for the detailed preliminary and final techno-economic analyses; and decommissioning of pilot plant equipment upon completion of solvent testing. The advanced solvent is anticipated to have significant operating and capital cost advantages over other solvents currently in development. Advantages include significant reductions in parasitic load and liquid flow rates which directly translate to smaller more efficient CO2 capture processes. Make-up water and amine emissions rates will be examined during this project. There is the potential that additional solvent, system, and integration savings will be identified, which could result in further operating and capital cost reductions.

415

Carbon Capture and Storage (CCS) and Community Engagement | Open Energy  

Open Energy Info (EERE)

Capture and Storage (CCS) and Community Engagement Capture and Storage (CCS) and Community Engagement Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture and Storage (CCS) and Community Engagement Focus Area: Clean Fossil Energy Topics: Best Practices Website: pdf.wri.org/ccs_and_community_engagement.pdf Equivalent URI: cleanenergysolutions.org/content/carbon-capture-and-storage-ccs-and-co Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Voluntary Industry Agreements Regulations: "Emissions Mitigation Scheme,Mandates/Targets" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

416

Capturing Actor-level Dynamics of Longitudinal Networks  

Science Conference Proceedings (OSTI)

Study of the dynamics of longitudinal networks has already attracted enormous research interest. Although dynamics of networks can be captured both at network-level and node / actor-level, the latter has gained less attention in current literature. By ... Keywords: actor-level dynamics, static toopology, dynamic topology, topological analysis, longitudinal networks

Shahadat Uddin; Kon Shing Kenneth Chung; Mahendra Piraveenan

2012-08-01T23:59:59.000Z

417

Laboratory Measurements of Particle Capture by Evaporating Cloud Drops  

Science Conference Proceedings (OSTI)

The capture efficiencies of evaporating cloud drops (5693 ?m radius) for particles of manganese hypophosphite (0.583.2 ?m radius) were obtained experimentally. In each experimental run, a large number of widely spaced uniform size drops fell ...

K. H. Leong; K. V. Beard; Harry T. Ochs III

1982-05-01T23:59:59.000Z

418

Capturing Carbon Will it work to cool the world?  

E-Print Network (OSTI)

Capturing Carbon Will it work to cool the world? Speakers: Dr. Malcolm Wilson Chief Executive in Exploration Geophysics Department of Geoscience, University of Calgary Theme Leader for Secure Carbon Storage, Carbon Management Canada Don Wharton Vice-President, Sustainable Development TransAlta Corporation

Calgary, University of

419

CAPTURE OR CONTRACT?: THE EARLY YEARS OF ELECTRIC UTILITY REGULATION  

E-Print Network (OSTI)

(forthcoming) study the historical origins of governance institutions for natural gas and water, respectivelyCAPTURE OR CONTRACT?: THE EARLY YEARS OF ELECTRIC UTILITY REGULATION Thomas P. Lyon Nathan Wilson prices rose in states that adopted state regulation before 1917, suggesting that regulators were

Lyon, Thomas P.

420

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

Science Conference Proceedings (OSTI)

For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer the potential for significant reductions in carbon dioxide (CO2) emissions. We examine the break-even value for CCS adoptions, that ... Keywords: accounting, cost--benefit analysis, energy, energy policies, environment, government, natural resources, pollution

zge ??legen; Stefan Reichelstein

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Capturing 'in the moment' creativity through data triangulation  

Science Conference Proceedings (OSTI)

We present a first attempt at capturing 'in the moment' creativity (ITMC) through a triangulation self-report techniques, external judges, and physiological measures. In our study, participants were asked to sketch for 30 minutes while wearing GSR and ... Keywords: creativity, eeg, gsr, physiology, self-report

Erin A. Carroll; Celine Latulipe

2011-11-01T23:59:59.000Z

422

Energy Capture with Optimized Photovoltaic Cells under Low Lighting Conditions  

Science Conference Proceedings (OSTI)

The optimization of photovoltaic devices for versatile conditions is necessary to improve the energy capture for indoor applications, such as self sufficient sensors. However, the design rules of standard outdoor solar cells are not applicable for cells ... Keywords: energy harvesting, indoor photovoltaics, low lighting conditions, photovoltaic cells

Karola Ruhle, Leonhard M. Reindl, Martin Kasemann

2012-11-01T23:59:59.000Z

423

Combining Geothermal Energy Capture with CO2 Sequestration  

E-Print Network (OSTI)

Combining Geothermal Energy Capture with CO2 Sequestration Cold CO2 from emitter CO2 compressor geothermal heat hot CO2 permanent CO2 storage Martin O. Saar Dept. of Earth Sciences University of Minnesota saar@umn.edu CO2-Plume Geothermal (CPG) #12;Cold CO2 from emitter CO2 compressor geothermal heat hot CO

Reich, Peter B.

424

Proceedings of the first international symposium on neutron capture therapy  

SciTech Connect

This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

Fairchild, R.G.; Brownell, G.L. (eds.)

1982-01-01T23:59:59.000Z

425

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

426

Combining geothermal energy capture with geologic carbon dioxide sequestration  

E-Print Network (OSTI)

of disposal, it could also be used as a working fluid in geo- thermal energy capture. CO2's high heat facility, and biofuel plants. Geothermal energy could be used for electricity generation, district heating spacing and higher permeability. [12] Fluid mobility density divided by dynamic vis- cosity (i

Saar, Martin O.

427

A simple mechanism for capturing and replaying wireless channels  

Science Conference Proceedings (OSTI)

Physical layer wireless network emulation has the potential to be a powerful experimental tool. An important challenge in physical emulation, and traditional simulation, is to accurately model the wireless channel. In this paper we examine the possibility ... Keywords: channel capture, emulation, wireless

Glenn Judd; Peter Steenkiste

2005-08-01T23:59:59.000Z

428

Complementary Goods: Creating, Capturing, and Competing for Value  

Science Conference Proceedings (OSTI)

This paper studies the strategic interaction between firms producing strictly complementary products. With strict complements, a consumer derives positive utility only when both products are used together. We show that value-capture and value-creation ... Keywords: competition, complementary goods, game theory, product quality, royalty fees

Taylan Yalcin, Elie Ofek, Oded Koenigsberg, Eyal Biyalogorsky

2013-07-01T23:59:59.000Z

429

Guidelines for Capturing Valuable Undocumented Knowledge from Energy Industry Personnel  

Science Conference Proceedings (OSTI)

This report provides guidance for capturing the valuable undocumented knowledge of managers and workers and making it available to other personnel when needed. The guidance, developed through strategic research performed in conjunction with four cooperating energy companies, is designed to help mitigate negative consequences as experienced personnel become unavailable due to retirement or other reasons.

2002-03-22T23:59:59.000Z

430

Biomass energy with carbon capture and storage (BECCS): a review  

E-Print Network (OSTI)

Biomass energy with carbon capture and storage (BECCS): a review Claire Gough, Paul Upham December 2010 Tyndall Centre for Climate Change Research Working Paper 147 #12;Biomass energy with carbon can be reconciled with competing uses of land (and water) are both uncertain. While biomass co

Matthews, Adrian

431

EJECTION AND CAPTURE DYNAMICS IN RESTRICTED THREE-BODY ENCOUNTERS  

SciTech Connect

We study the tidal disruption of binaries by a massive point mass (e.g., the black hole at the Galactic center), and we discuss how the ejection and capture preference between unequal-mass binary members depends on which orbit they approach the massive object. We show that the restricted three-body approximation provides a simple and clear description of the dynamics. The orbit of a binary with mass m around a massive object M should be almost parabolic with an eccentricity of |1 - e| {approx}< (m/M){sup 1/3} << 1 for a member to be captured, while the other is ejected. Indeed, the energy change of the members obtained for a parabolic orbit can be used to describe non-parabolic cases. If a binary has an encounter velocity much larger than (M/m){sup 1/3} times the binary rotation velocity, it would be abruptly disrupted, and the energy change at the encounter can be evaluated in a simple disruption model. We evaluate the probability distributions for the ejection and capture of circular binary members and for the final energies. In principle, for any hyperbolic (elliptic) orbit, the heavier member has more chance to be ejected (captured), because it carries a larger fraction of the orbital energy. However, if the orbital energy is close to zero, the difference between the two members becomes small, and there is practically no ejection and capture preferences. The preference becomes significant when the orbital energy is comparable to the typical energy change at the encounter. We discuss its implications to hypervelocity stars and irregular satellites around giant planets.

Kobayashi, Shiho [Astrophysics Research Institute, Liverpool John Moores University, Birkenhead CH41 1LD (United Kingdom); Hainick, Yanir [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, Re'em [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Rossi, Elena M. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

2012-04-01T23:59:59.000Z

432

Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method  

DOE Patents (OSTI)

A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

Yoon, Woo Y. (Idaho Falls, ID); Jones, James L. (Idaho Falls, ID); Nigg, David W. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

433

Coherence effects in heavy ion-atom collisions. [Total cross sections, F waves, charge capture, ionization, interference, scattering amplitudes  

DOE Green Energy (OSTI)

A new approach to charge capture and ionization by highly stripped projectiles is described and shown to explain cross section systematics through the periodic table. Oscillations in cross section with respect to charge state observed around atomic number 70 are explained as an f-wave resonance in the target electron-projectile scattering. The ratio of H/sub 2/ to H cross sections for both light and heavy projectiles is shown to fit a two center coherent scattering model; independent scattering by the two centers is not a good assumption for velocities below 4 a.u. Similar coherence effects are predicted in stripping by molecular gases even in multi-electron processes where the independent atom model might be thought valid. Recent experiments on the forward peak of electrons ejected from the projectile show interesting structure which can be partly explained without invoking interference effects. 7 references.

Bottcher, C.

1978-01-01T23:59:59.000Z

434

A Novel Theoretical Method to Search Good Candidates of Solid Sorbents for CO2 Capture  

SciTech Connect

The increasing atmospheric CO2 concentration is the most important environmental issue of global warming that the world faces today. During past few decades, many technologies have been developing to separate and capture CO2 from coal gasifier. As high temperature CO2 absorbents, solid materials are potential candidates. Lithium silicate(Li4SiO4) and zirconate(Li2ZrO3) have been studying for CO2 capture by researchers at Toshiba and found that they absorb CO2 at 773K and release CO2 around 973K. Based on these well-known experimental exploring results on these lithium salts, we have been developing a novel theoretical methodology to search better solid materials for CO2 capture: (1) Based on the crystal structures of solids, the density functional calculations are performed to obtain their electronic structural properties and their binding energies. The energy change(?E) for the reaction solid_sorbent+CO2 ? sorbent_CO2+ solid are evaluated. (2) For a vast of data-bank of solid materials, as our first filter if |?E|<|?GLi2SiO4|, where ?G is the free energy change for reaction of Li2SiO4+CO2? Li2CO3 +Li2SiO3, we select this solid as a potential good candidate for CO2 capture. (3) For these possible candidates, we further perform phonon calculations and obtain their vibration frequencies. With them, partition functions of solids(Z) can be calculated out. With Z, the thermal dynamical properties (zero point energy, entropy, enthalpy, free energy, etc.) under different conditions (temperature(T), pressure(P)) can be readily calculated. With them, the chemical potentials(??)(functional of T and P) for the sorption/desorption reaction are evaluated. (4) Using ?? as our second filter, we can reduce the number of our selected good candidates to a small number of better candidates. (5) The last step is to make the fine tune (the 3rd filter) the better candidates to a small set of the best candidates by considering the operating conditions(T, P, etc.), absorbing CO2 weight percentage, stabilities, and the associated costs, etc.

Duan, Yuhua

2008-07-01T23:59:59.000Z

435

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture in  

NLE Websites -- All DOE Office Websites (Extended Search)

Rechargeable Heat Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry, Energy Technologies, Franklin Contact: John Hules, JAHules@lbl.gov, +1 510 486 6008 2011-01-11-Heat-Battery.jpg A molecule of fulvalene diruthenium, seen in diagram, changes its configuration when it absorbs heat, and later releases heat when it snaps back to its original shape. Image: Jeffrey Grossman Broadly speaking, there have been two approaches to capturing the sun's energy: photovoltaics, which turn the sunlight into electricity, or solar-thermal systems, which concentrate the sun's heat and use it to boil water to turn a turbine, or use the heat directly for hot water or home

436

Carbon dioxide capture from a cement manufacturing process  

DOE Patents (OSTI)

A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

Blount, Gerald C. (North Augusta, SC); Falta, Ronald W. (Seneca, SC); Siddall, Alvin A. (Aiken, SC)

2011-07-12T23:59:59.000Z

437

A2BE Carbon Capture LLC | Open Energy Information  

Open Energy Info (EERE)

Logo: A2BE Carbon Capture LLC Name A2BE Carbon Capture LLC Address 2301 Panorama Ave Place Boulder, Colorado Zip 80304 Sector Biofuels Product Developing technology for producing valuable fuel and food from CO2 using algal photosynthesis and bio-harvesting Website http://www.algaeatwork.com/ Coordinates 40.026454°, -105.267559° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.026454,"lon":-105.267559,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Development of Novel Carbon Sorbents for CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sorbents Carbon Sorbents for CO 2 Capture Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research and Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal re- serves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D Program portfolio of post- and oxy-combustion carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for the existing fleet of coal-fired power plants in the event of carbon constraints. Pulverized coal (PC)-fired power plants are large, stationary sources of CO

439

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 22, 2010 July 22, 2010 Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. July 20, 2010 U.S. Partners with Canada to Renew Funding for World's Largest International CO2 Storage Project in Depleted Oil Fields The U.S. Department of Energy and Natural Resources Canada announced today a total of $5.2 million has been committed by the two governments to bring a benchmark carbon dioxide injection project to successful conclusion in 2011. July 9, 2010 Clean Energy Projects Kick Off U.S.-China Collaborative R&D Initiative

440

An Integrated Modeling Framework for Carbon Capture and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Karen L. cohen Karen L. cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Edward s. Rubin Carnegie Mellon University 5000 Forbes Avenue 128A Baker Hall Pittsburgh, PA 15213 412-268-5897 rubin@cmu.edu An IntegrAted ModelIng FrAMework For CArbon CApture And StorAge teChnologIeS Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is developing safe, lower-cost methods of carbon dioxide (CO 2 ) capture and storage (CCS) as a potential option for climate change mitigation. In addition to technology development, there is a need for modeling and assessment tools to evaluate and compare the cost and effectiveness of CCS methods. Analytical

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

442

FE Carbon Capture and Storage News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 19, 2012 December 19, 2012 DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource The United States has at least 2,400 billion metric tons of possible carbon dioxide storage resource in saline formations, oil and gas reservoirs, and unmineable coal seams, according to a new U.S. Department of Energy publication. November 20, 2012 DOE Approves Field Test for Promising Carbon Capture Technology A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide from a pulverized coal plant has been successfully demonstrated and received Department of Energy approval to advance to a larger-scale field test. November 19, 2012 Carbon Storage Partner Completes First Year of CO2 Injection Operations in

443

NETL: News Release - International Clean Coal, Carbon Capture Experts to  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2011 0, 2011 International Clean Coal, Carbon Capture Experts to Gather at 28th Annual Pittsburgh Coal Conference Plants State of Clean Coal Technology, Carbon Capture, Utilization, and Storage on Agenda Washington, DC - The role of fossil fuels in a sustainable energy future will be one of the topics under discussion when experts from around the world meet at the 28th Annual International Pittsburgh Coal Conference, Sept. 12-15, at the David L. Lawrence Convention Center in Pittsburgh, Pa. MORE INFO Learn more about the conference Registration information Hosted by the University of Pittsburgh's Swanson School of Engineering, the conference is attended by industry, government and academia representatives from around the world. It focuses on environmental and

444

Storage of Captured Carbon Dioxide Beneath Federal Lands  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage of Captured Carbon Storage of Captured Carbon Dioxide Beneath Federal Lands May 8, 2009 DOE/NETL-2009/1358 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The

445

Carbon Dioxide Capture and Transportation Options in the Illinois Basin  

DOE Green Energy (OSTI)

This report describes carbon dioxide (CO{sub 2}) capture options from large stationary emission sources in the Illinois Basin, primarily focusing on coal-fired utility power plants. The CO{sub 2} emissions data were collected for utility power plants and industrial facilities over most of Illinois, southwestern Indiana, and western Kentucky. Coal-fired power plants are by far the largest CO{sub 2} emission sources in the Illinois Basin. The data revealed that sources within the Illinois Basin emit about 276 million tonnes of CO2 annually from 122 utility power plants and industrial facilities. Industrial facilities include 48 emission sources and contribute about 10% of total emissions. A process analysis study was conducted to review the suitability of various CO{sub 2} capture technologies for large stationary sources. The advantages and disadvantages of each class of technology were investigated. Based on these analyses, a suitable CO{sub 2} capture technology was assigned to each type of emission source in the Illinois Basin. Techno-economic studies were then conducted to evaluate the energy and economic performances of three coal-based power generation plants with CO{sub 2} capture facilities. The three plants considered were (1) pulverized coal (PC) + post combustion chemical absorption (monoethanolamine, or MEA), (2) integrated gasification combined cycle (IGCC) + pre-combustion physical absorption (Selexol), and (3) oxygen-enriched coal combustion plants. A conventional PC power plant without CO2 capture was also investigated as a baseline plant for comparison. Gross capacities of 266, 533, and 1,054 MW were investigated at each power plant. The economic study considered the burning of both Illinois No. 6 coal and Powder River Basin (PRB) coal. The cost estimation included the cost for compressing the CO{sub 2} stream to pipeline pressure. A process simulation software, CHEMCAD, was employed to perform steady-state simulations of power generation systems and CO{sub 2} capture processes. Financial models were developed to estimate the capital cost, operations and maintenance cost, cost of electricity, and CO{sub 2} avoidance cost. Results showed that, depending on the plant size and the type of coal burned, CO{sub 2} avoidance cost is between $47/t to $67/t for a PC +MEA plant, between $22.03/t to $32.05/t for an oxygen combustion plant, and between $13.58/t to $26.78/t for an IGCC + Selexol plant. A sensitivity analysis was conducted to evaluate the impact on the CO2 avoidance cost of the heat of absorption of solvent in an MEA plant and energy consumption of the ASU in an oxy-coal combustion plant. An economic analysis of CO{sub 2} capture from an ethanol plant was also conducted. The cost of CO{sub 2} capture from an ethanol plant with a production capacity of 100 million gallons/year was estimated to be about $13.92/t.

M. Rostam-Abadi; S. S. Chen; Y. Lu

2004-09-30T23:59:59.000Z

446

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

2004-07-01T23:59:59.000Z

447

NETL: News Release -NETL Hosts Carbon Capture and Storage Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

July 1, 2011 July 1, 2011 NETL Hosts Carbon Capture and Storage Demonstration Series for the 2011 International Pittsburgh Coal Conference What's Happening? Top U.S. and international scientists, technology developers, and business leaders will gather in Pittsburgh this fall to discuss the role of science and business in bringing advanced clean coal technologies to market. In a new series of sessions at the International Pittsburgh Coal Conference (PCC), NETL has assembled a diverse panel of experts in applied energy technology deployment, energy policy, investment and financing, and risk management and insurance. The series, titled Major Carbon Capture and Storage (CCS) Demonstration Projects, will address two sides of large-scale clean coal technology (CCT) projects. In six technical sessions, speakers will review the status of current U.S. and international demonstration projects. In three business sessions, presenters will talk about the financing of CCS and other CCT projects, as well as investment and risk management strategies.

448

Apparatus for separating particles utilizing engineered acoustic contrast capture particles  

DOE Patents (OSTI)

An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

Kaduchak, Gregory (Los Alamos, NM); Ward, Michael D. (Los Alamos, NM)

2011-12-27T23:59:59.000Z

449

Power Electronics  

Energy.gov (U.S. Department of Energy (DOE))

Power electronics (PE) play a critical role in transforming the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while...

450

CO2 Capture by Sub-Ambient Membrane Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

by Sub-Ambient Membrane by Sub-Ambient Membrane Operation Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing

451

CO2 Capture and Storage Newsletter, Issue 4  

Science Conference Proceedings (OSTI)

This issue of EPRI's CO2 Capture and Storage Newsletter includes highlights of these meetings: The DOE meeting for the Regional Carbon Sequestration Partnerships program, held in Pittsburgh, Pennsylvania, in October 2008 The Ninth Annual MIT Carbon Sequestration Forum, held in Cambridge, Massachusetts, in October 2008 Stanford GCEP meeting held in Stanford, California in October 2008 The Ninth Greenhouse Gas Technology (GHGT9) conference held in Washington, DC in November 2008

2008-12-11T23:59:59.000Z

452

CO2 Capture and Storage Newsletter Issue 5  

Science Conference Proceedings (OSTI)

Issue 5 of EPRI's CO2 Capture and Storage Newsletter includes the highlights of these meetings: The 3rd Annual Algae Energy Summit, held in San Diego, California in October 2009 The 10th Annual MIT Carbon Sequestration Forum, held in Cambridge, Massachusetts in October 2009 Stanford's Global Climate and Energy Project (GCEP), 5th Energy Research Symposium, held in Stanford, California in late September early October 2009 The 36th IEA GHG Executive Committee Meeting, held in Zurich, Switzerland in October...

2009-12-03T23:59:59.000Z

453

NETL: Electrochemical Membranes for Carbon Dioxide Capture and Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Electrochemical Membranes for Carbon Dioxide Capture and Power Generation Project No.: DE-FE0007634 FuelCell Energy, Inc. has developed a novel system concept for the separation of carbon dioxide (CO2) from greenhouse gas (GHG) emission sources using an electrochemical membrane. The proposed membrane has its genesis from the company's patented Direct FuelCell® (DFC®) technology. The prominent feature of the DFC membrane is its capability to produce power while capturing CO2 from the flue gas from a pulverized coal (PC) plant. The DFC membrane does not require flue gas compression as it operates on the principles of electrochemistry, resulting in net efficiency gains. The membrane utilizes a fuel (different from the plant flue gas, such as coal-derived syngas, natural gas, or a renewable resource) as the driver for the combined carbon capture and electric power generation. The electrochemical membrane consists of ceramic-based layers filled with carbonate salts, separating CO2 from the flue gas. Because of the electrode's high reaction rates, the membrane does not require a high CO2 concentration in its feed gas. The planar geometry of the membrane offers ease of scalability to large sizes suitable for deployment in PC plants, which is an important attribute in membrane design. The membrane has been tested at the laboratory scale, verifying the feasibility of the technology for CO2 separation from simulated flue gases of PC plants as well as combined cycle power plants and other industrial facilities. Fuel Cell Energy, Inc. is advancing the technology to a maturity level suitable for adaption by industry for pilot-scale demonstration and subsequent commercial deployment.

454

Solar Abundance of Elements from Neutron-Capture Cross Sections  

E-Print Network (OSTI)

Excess lightweight products of slow neutron capture in the photosphere, over the mass range of 25 to 207 amu, confirm the solar mass separation recorded by excess lightweight isotopes in the solar wind, over the mass range of 3 to 136 amu [Solar Abundance of the Elements, Meteoritics, volume 18, 1983, pages 209 to 222]. Both measurements show that major elements inside the Sun are Fe, O, Ni, Si and S, like those in rocky planets.

O. Manuel; W. A. Myers; Y. Singh; M. Pleess

2004-12-19T23:59:59.000Z

455

2011 Update on Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on three EPRI-funded flue gas desulfurization (FGD) research and development projects. The three projects are focused on understanding and enhancing how mercury is captured by FGD systems; on how it partitions between the FGD liquor, fine solids, and bulk FGD solid byproduct; and/or on factors that may affect beneficial use of FGD gypsum. The first project is collecting data at bench scale to determine the reactions that control the changes oxidized mercury can und...

2011-12-21T23:59:59.000Z

456

Proton Capture on ^{17}O and its astrophysical implications  

E-Print Network (OSTI)

The reaction $^{17}$O$(p,\\gamma)^{18}$F influences hydrogen-burning nucleosynthesis in several stellar sites, such as red giants, asymptotic giant branch (AGB) stars, massive stars and classical novae. In the relevant temperature range for these environments ($T_{9}=0.01-0.4), the main contributions to the rate of this reaction are the direct capture process, two low lying narrow resonances ($E_{r}=65.1$ and 183 keV) and the low-energy tails of two broad resonances ($E_{r}=557$ and 677 keV). Previous measurements and calculations give contradictory results for the direct capture contribution which in turn increases the uncertainty of the reaction rate. In addition, very few published cross section data exist for the high energy region that might affect the interpretation of the direct capture and the contributions of the broad resonances in the lower energy range. This work aims to address these issues. The reaction cross section was measured in a wide proton energy range ($E_{c.m.}=345$ - 1700 keV) and at several angles ($\\theta_{lab}=0^{\\circ},45^{\\circ},90^{\\circ},135^{\\circ}$). The observed primary $\\gamma$-transitions were used as input in an $R$-matrix code in order to obtain the contribution of the direct capture and the two broad resonances to the low-energy region. The extrapolated S-factor from the present data is in good agreement with the existing literature data in the low-energy region. A new reaction rate was calculated from the combined results of this work and literature S-factor determinations. Resonance strengths and branchings are reported for several $^{18}$F states. We were able to extrapolate the astrophysical S-factor of the reaction $^{17}$O$(p,\\gamma)^{18}$F at low energies from cross section data taken at higher energies. No significant changes in the nucleosynthesis are expected from the newly calculated reaction rate.

Antonios Kontos; Joachim Grres; Andreas Best; Manoel Couder; Richard deBoer; Gianluca Imbriani; Qian Li; Daniel Robertson; Daniel Schrmann; Ed Stech; Ethan Uberseder; Michael Wiescher

2012-10-29T23:59:59.000Z

457

Update on Enhanced Mercury Capture by SO2 Controls  

Science Conference Proceedings (OSTI)

This report describes the interim results of two projects that focus on understanding and enhancing mercury capture by wet gas desulfurization (FGD) systems. The first project is collecting data from bench scale experiments to determine the reactions and kinetics governing the fate of oxidized memory absorbed by wet FGD liquors. The second project is a 200-MW-scale demonstration of a low-temperature mercury oxidation catalyst at Lower Colorado River Authority's (LCRA's) Fayette Power Project.

2008-03-13T23:59:59.000Z

458

Amine enriched solid sorbents for carbon dioxide capture  

DOE Patents (OSTI)

A new method for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The new method entails treating a solid substrate with acid or base and simultaneous or subsequent treatment with a substituted amine salt. The method eliminates the need for organic solvents and polymeric materials for the preparation of CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Soong, Yee (Monroeville, PA); Champagne, Kenneth J. (Fredericktown, PA)

2003-04-15T23:59:59.000Z

459

Cosmogenic neutron-capture-produced nuclides in stony meteorites  

SciTech Connect

The distribution of neutrons with energies below 15 MeV in spherical stony meteoroids is calculated using the ANISN neutron-transport code. The source distributions and intensities of neutrons are calculated using cross sections for the production of tritium. The meteoroid's radius and chemical composition strongly influence the total neutron flux and the neutron energy spectrum, while the location within a meteoroid only affects the relative neutron intensities. Meteoroids need to have radii of more than 50 g/cm/sup 2/ before they have appreciable fluxes of neutrons near thermal energies. Meteoroids with high hydrogen or low iron contents can thermalize neutrons better than chondrites. Rates for the production of /sup 60/Co, /sup 59/Ni, and /sup 36/Cl are calculated with evaluated neutron-capture cross sections and neutron fluxes determined for carbonaceous chondrites with high hydrogen contents, L-chondrites, and aubrites. For most meteoroids with radii < 300 g/cm/sup 2/, the production rates of these neutron-capture nuclides increase monotonically with depth. The highest calculated /sup 60/Co production rate in an ordinary chondrite is 375 atoms/(min g-Co) at the center of a meteoroid with a 250 g/cm/sup 2/ radius. The production rates calculated for spallogenic /sup 60/Co and /sup 59/Ni are greater than the neutron-capture rates for radii less than approx.50-75 g/cm/sup 2/. Only for very large meteoroids and chlorine-rich samples is the neutron-capture production of /sup 36/Cl important. The results of these calculations are compared with those of previous calculations and with measured activities in many meteorites. 44 refs., 15 figs., 1 tab.

Spergel, M.S.; Reedy, R.C.; Lazareth, O.W.; Levy, P.W.

1985-01-01T23:59:59.000Z

460

NETL: Alstom's Chemical Looping Combustion Technology with CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Alstom's Chemical Looping Combustion Technology with CO2 Capture for New and Existing Coal-Fired Power Plants Alstom's Chemical Looping Combustion Technology with CO2 Capture for New and Existing Coal-Fired Power Plants Project No.: DE-FE0009484 Alstom is advancing the development of Limestone Chemical Looping Combustion (LCL-C(tm)) technology. Chemical looping has no direct contact between air and fuel. The looping process usually utilizes oxygen from a metal carrier, but in this case, limestone is used. Economic evaluations will be made of four LCL-C plant configurations. The base configuration plant has already been completed and will be updated from previous reports. A second case will compare the effects of designing the reducer reactor using CFB sizing standards. A third case will investigate the effects of using a pressurized reducer reactor. Pressurizing the reducer reduces the reactor size and reduces the amount of compression required for the CO2 outlet gas stream. A fourth case will investigate the use of an advanced ultra-supercritical (USC) steam cycle. The advanced USC steam cycle should increase overall plant efficiency and lower the cost of electricity. Mass and energy balances will be done for each case. The four LCL-CTM cases will be compared against a supercritical pulverized coal-fired plant without CO2 capture.

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Active Space Debris Removal using Capture and Ejection  

E-Print Network (OSTI)

Low Earth Orbit is over-cluttered with rogue objects that threaten existing technological assets and interfere with allocating new ones. Traditional satellite missions are not efficient enough to collect an appreciable amount of debris due to the high cost of orbit transfers. Many alternate proposals are politically controversial, costly, or dependent on undeveloped technology. This dissertation attempts to solve the problem by introducing a new mission architecture, Space Sweeper, and bespoke hardware, Sling-Sat, that sequentially captures and ejects debris plastically. Resulting momentum exchanges are exploited to aid in subsequent orbit transfers, thus saving fuel. Sling-Sat is a spinning satellite that captures debris at the ends of adjustable-length arms. Arm length controls the angular rate to achieve a desired tangential ejection speed. Timing the release exacts the ejection angle. This process redirects debris to burn up in the atmosphere, or reduce its lifetime, by lowering its perigee. This dissertation establishes feasibility of principles fundamental to the proposed concept. Hardware is conceptualized to accommodate Space Sweeper s specialized needs. Mathematical models are built for the purpose of analysis and simulation. A kinematic analysis investigates system demands and long-term behavior resulting from repeated debris interaction. A successful approach to enforce debris capture is established through optimal control techniques. A study of orbital parameters and their response to debris interactions builds an intuition for missions of this nature. Finally, a J2-compliant technique for path optimization is demonstrated. The results strongly support feasibility of the proposed mission.

Missel, Jonathan William

2013-05-01T23:59:59.000Z

462

Instrument Series: Microscopy Environmental Transmission Electron Microscope  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Transmission Environmental Transmission Electron Microscope EMSL's environmental transmission electron microscope (ETEM) provides in situ capabilities that enable atomic-resolution imaging and spectroscopic studies of materials under dynamic operating conditions. In contrast to traditional operation of TEM under high vacuum, EMSL's ETEM uniquely allows imaging within high- temperature and gas environments-with a gas pressure up to 20 Torr. With a spherical aberration corrector for the objective lens, the ETEM captures atomic-level processes as they occur, enabling vital research across a range of scientific fields. Research Applications Chemical science and engineering - providing in situ observation of catalytic processes with atomic-level resolution Materials science and engineering - allowing

463

NETL: CO2 Capture from Flue Gas Using Solid Molecular Basket...  

NLE Websites -- All DOE Office Websites (Extended Search)

molecular basket sorbent for CO2 capture from flue gas. Energy Fuels 2011, 25, 456-458. XX Wang, SQ Zhao, XL Ma, CS Song, CO2 capture from gas streams with low CO2...

464

U.S. and Italy Sign Agreement to Collaborate on Carbon Capture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Italy Sign Agreement to Collaborate on Carbon Capture and Storage Technologies U.S. and Italy Sign Agreement to Collaborate on Carbon Capture and Storage Technologies May 23, 2009...

465

NETL: DOE/NETL Advanced CO2 Capture R&D Program: Technology Update  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Capture R&D Program: Technology Update May 2013 Edition This comprehensive handbook provides an update on DOENETL R&D efforts on advanced CO2 capture technologies for...

466

NETL: CO2 Binding Organic Liquids Gas Capture with Polarity-Swing...  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Project No.: DE-FE0007466 Battelle Pacific northwest Division is developing a new CO2 capture...

467

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project...

468

NETL: IEP ? Post-Combustion CO2 Emissions Control - CO2 Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP Post-Combustion CO2 Emissions Control CO2 Capture for PC-Boiler Using Flue-Gas Recirculation: Evaluation of CO2 CaptureUtilizationDisposal Options Project No.: FWP49539...

469

The lifetime of carbon capture and storage as a climate-change mitigation technology  

E-Print Network (OSTI)

In carbon capture and storage (CCS), CO[subscript 2] is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued ...

Szulczewski, Michael Lawrence

470

Playable universal capture: compression and real-time sequencing of image-based facial animation  

Science Conference Proceedings (OSTI)

This paper describes a facial animation playback scheme based on simultaneous encoding of captured face textures and geometric positions. The high quality facial data is acquired using a more robust variant of the Universal Capture (UCap) technique that ...

George Borshukov; Jefferson Montgomery; Witek Werner

2006-07-01T23:59:59.000Z

471

DOE/NETLs Existing Plants?Emissions and Capture R&D Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

capture Coal + O 2 CO 2 + H 2 O Advanced Compression Ramgen, SwRI *Materials of Construction 5 1. Scale-up * Current Post Combustion capture 200 TPD * 550 MWe power...

472

NETL: News Release - DOE/NETL Carbon Dioxide Capture and Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2011 DOENETL Carbon Dioxide Capture and Storage RD&D Roadmap Provides Overview of RD&D Efforts to Provide Cost-Effective Advanced CO2 Capture and Storage Technologies for...

473

Scaling up carbon dioxide capture and storage: From megatons to gigatons Howard J. Herzog  

E-Print Network (OSTI)

the closure of these capture facilities. However, the North American Chemical Plant in Trona, CA, which uses

474

A Plant-Level Simulation Model for Evaluating CO2 Capture Options  

E-Print Network (OSTI)

C-, SC-, USC-PC) Dry feed gasifier and sulfur capture system (Shell) Added gas turbine option for IGCC

475

Summary of FY-11 Krypton Capture Activities at the Idaho National Laboratory  

SciTech Connect

This report contains a description of FY-11 Krypton capture activities utilizing physisorption techniques performed at the INL.

Mitchell R. Greenhalgh; Troy G. Garn; Kristi M. Christensen; Veronica J. Rutledge; Jack D. Law

2011-08-01T23:59:59.000Z

476

Electron tube  

DOE Patents (OSTI)

An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

Suyama, Motohiro (Hamamatsu, JP); Fukasawa, Atsuhito (Hamamatsu, JP); Arisaka, Katsushi (Los Angeles, CA); Wang, Hanguo (North Hills, CA)

2011-12-20T23:59:59.000Z

477

It's Elemental - Isotopes of the Element Chlorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon Isotopes of the Element Chlorine [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 35 75.76% STABLE 37 24.24% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 28 No Data Available Proton Emission (suspected) No Data Available 29 < 20 nanoseconds Proton Emission No Data Available 30 < 30 nanoseconds Proton Emission No Data Available 31 150 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.70% 32 298 milliseconds Electron Capture 100.00%

478

It's Elemental - Isotopes of the Element Potassium  

NLE Websites -- All DOE Office Websites (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium Isotopes of the Element Potassium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 39 93.2581% STABLE 40 0.0117% 1.248×10+9 years 41 6.7302% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 32 No Data Available Proton Emission (suspected) No Data Available 33 < 25 nanoseconds Proton Emission No Data Available 34 < 25 nanoseconds Proton Emission No Data Available 35 178 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.37% 36 342 milliseconds Electron Capture 100.00%

479

Glossary Item - Electron  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron An Electron Electrons are negatively charged particles that surround the atom's nucleus. Electrons were discovered by J. J. Thomson in 1897. Particle Data Symbol Mass...

480

Quantitative interpretation of pulsed neutron capture logs: Part 1 --Fast numerical simulation  

E-Print Network (OSTI)

NEUTRON CAPTURE LOGS IN THINLY-BEDDED FORMATIONS Jordan G. Mimoun and Carlos Torres-Verdín, The University to capture neutrons. The lower the neutron energy, the more likely capture phenomena will take place; hence neutrons at thermal energies are the most likely to be absorbed. Consequently, monitoring the population

Torres-Verdín, Carlos

Note: This page contains sample records for the topic "milliseconds electron capture" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A data analysis decision support system for the carbon dioxide capture process  

Science Conference Proceedings (OSTI)

This paper presents the development process of an expert decision support system for pre-filtering and analysis of data from the carbon dioxide (CO"2) capture process. Chemical absorption has become one of the dominant CO"2 capture technologies because ... Keywords: Carbon dioxide capture process, Data filtering, Expert decision support system

Yuxiang Wu; Christine W. Chan

2009-08-01T23:59:59.000Z

482

An intelligent system for monitoring and diagnosis of the CO2 capture process  

Science Conference Proceedings (OSTI)

Amine-based carbon dioxide capture has been widely considered as a feasible ideal technology for reducing large-scale CO"2 emissions and mitigating global warming. The operation of amine-based CO"2 capture is a complicated task, which involves monitoring ... Keywords: CO2 capture, DeltaV Simulate, Intelligent system

Qing Zhou; Christine W. Chan; Paitoon Tontiwachwuthikul

2011-07-01T23:59:59.000Z

483

CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE  

E-Print Network (OSTI)

CONTROL ISSUES IN THE DESIGN OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Query Sheet Q1: AU: short title OF A GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland, Dagfinn Snarheim, and Bjarne A. Foss Department-closed / gas turbine cycle for capture. Some control strategies and their interaction with the process design

Foss, Bjarne A.

484

MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE  

E-Print Network (OSTI)

MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

Foss, Bjarne A.

485

Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows  

Science Conference Proceedings (OSTI)

In the present work, errors generated in computations of compressible multi-material flows using shock-capturing schemes are examined, specifically pressure oscillations (when the specific heats ratio is variable), but also temperature spikes and species ... Keywords: High-order accurate schemes, Interface capturing, Material discontinuities, Multi-material flows, Multifluid algorithms, Shock capturing, WENO

Eric Johnsen; Frank Ham

2012-07-01T23:59:59.000Z

486

Design and optimization of 6li neutron-capture pulse mode ion chamber  

E-Print Network (OSTI)

The purpose of this research is to design and optimize the performance of a unique, inexpensive 6Li neutron-capture pulse-mode ion chamber (LiPMIC) for neutron detection that overcomes the fill-gas contamination stemming from outgas of detector components. This research also provides a demonstration of performance of LiPMICs. Simulations performed with GARFIELD, a drift-chamber simulation package for ion transport in an electrostatic field, have shown that argon-methane mixtures of fill-gas allow maintenance of electron drift velocity through a surprisingly wide range of fill-gas content. During the design stage of LiPMIC development, the thicknesses of lithium metallization layer, the neutron energy conversion site of the detector, and the thickness of neutron moderator, the high-density polyethylene body, are optimized through analytical and MCNPX calculations. Also, a methodology of obtaining the suitable combination of electric field strength, electron drift velocity, and fill-gas mixtures has been tested and simulated using argon-methane gas mixtures. The LiPMIC is shown to have comparable efficiency to 3He proportional counters at a fraction of cost. Six-month long baseline measurements of overall detector performance shows there is a 3% reduction in total counts for 252Cf sources, which provides a good indicator for the longevity of the detector.

Chung, Kiwhan

2008-08-01T23:59:59.000Z