Powered by Deep Web Technologies
Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the  

E-Print Network [OSTI]

Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the atmosphere. o Accounts for 20% of methane emissions from human sources. Globally cattle produce about 80 million metric tons of methane annually. o Accounts for 28% of global methane emissions

Toohey, Darin W.

2

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons,  

E-Print Network [OSTI]

%; and copper smelters and refiners, 5%. Copper in all old and new, refined or remelted scrap contributed about48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons

3

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons  

E-Print Network [OSTI]

%; and copper smelters and refiners, 5%. Copper in all old and new, refined or remelted scrap contributed about48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons

4

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons,  

E-Print Network [OSTI]

manufacturers, foundries, and chemical plants, 11%; ingot makers,10%; and copper smelters and refiners, 548 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons

5

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million  

E-Print Network [OSTI]

plants, 14%; ingot makers, 11%; and copper smelters and refiners, 5%. Copper in all old and new, refined48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million tons

6

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2002 declined to 1.13 million metric tons and was  

E-Print Network [OSTI]

- and nickel-base scrap), brass mills recovered 70%; copper smelters and refiners, 8%; ingot makers, 1156 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, accounted for 99% of domestic production; copper was also recovered at mines in three other States. Although

7

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2000 declined to 1.45 million metric tons and was  

E-Print Network [OSTI]

scrap, brass mills recovered 67%; copper smelters and refiners,18%; ingot makers, 11%; and miscellaneous52 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, and Montana, accounted for 99% of domestic production; copper was also recovered at mines in three other

8

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2001 declined to 1.34 million metric tons and was  

E-Print Network [OSTI]

scrap (including aluminum- and nickel-base scrap), brass mills recovered 65%; copper smelters54 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, accounted for 99% of domestic production; copper was also recovered at mines in three other States. Although

9

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1999 declined to 1.66 million metric tons and was  

E-Print Network [OSTI]

mills. Of the total copper recovered from scrap, brass mills recovered 67%; copper smelters and refiners56 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

10

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1998 declined to 1.85 million metric tons and was  

E-Print Network [OSTI]

, copper smelters and refiners recovered 23%; ingot makers, 10%; brass mills, 63%; and miscellaneous56 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

11

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2009 declined by about 9% to 1.2 million tons and its  

E-Print Network [OSTI]

makers, 11%; and copper smelters and refiners, 6%. Copper in all old and new, refined or remelted scrap48 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also

12

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2008 increased by about 12% to 1.3 million tons and  

E-Print Network [OSTI]

plants, 14%; ingot makers, 9%; and copper smelters and refiners, 5%. Copper in all old and new, refined50 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also

13

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2004 rose to 1.16 million tons and was valued at  

E-Print Network [OSTI]

scrap (including aluminum- and nickel-base scrap), brass mills recovered 71%; copper smelters54 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in four other States. Although copper was recovered

14

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2007 declined nominally to 1.19 million tons, but its  

E-Print Network [OSTI]

plants, 11%; ingot makers, 9%; and copper smelters and refiners, 5%. Copper in all old and new, refined54 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic--Arizona, Utah, New Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also

15

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2006 rose to more than 1.2 million tons and was  

E-Print Network [OSTI]

manufacturers, foundries, and chemical plants, 12%; ingot makers, 10%; and copper smelters and refiners, 452 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also recovered at mines

16

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2003 declined to 1.12 million tons and was valued at  

E-Print Network [OSTI]

- and nickel-base scrap), brass mills recovered 70%; copper smelters and refiners, 6%; ingot makers, 1254 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in three other States. Although copper

17

(Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2005 fell nominally to 1.15 million tons and was  

E-Print Network [OSTI]

(including aluminum- and nickel-base scrap), brass mills recovered 73%; copper smelters and refiners, 556 COPPER (Data in thousand metric tons of copper content unless otherwise noted) Domestic Mexico, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines

18

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1997 was essentially unchanged at 1.9 million metric  

E-Print Network [OSTI]

52 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Mexico, Nevada, and Montana, accounted for 98% of domestic production; copper was also recovered at mines in six other States. While copper was recovered at about 35 mines operating in the United States, 15

19

9,248,559 Metric Tons of CO2 Injected as of January 16, 2015  

Broader source: Energy.gov [DOE]

This carbon dioxide (CO2) has been injected in the United States as part of DOE’s Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

20

9,981,117 Metric Tons of CO2 Injected as of April 2, 2015 | Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

9,449,421 Metric Tons of CO2 Injected as of February 12, 2015...  

Office of Environmental Management (EM)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

22

9,805,742 Metric Tons of CO2 Injected as of February 27, 2015...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

23

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production.S. refiners of commercial-grade silver, with an estimated total output of 6,500 tons from domestic and foreign to minimize odor, electroplating, hardening bearings, inks, mirrors, solar cells, water purification, and wood

24

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production.S. refiners of commercial-grade silver, with an estimated total output of 6,500 tons from domestic and foreign, hardening bearings, inks, mirrors, solar cells, water purification, and wood treatment to resist mold

25

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production, with an estimated total output of 2,500 tons from domestic and foreign ores and concentrates, and from old and new, mirrors, solar cells, water purification, and wood treatment. Silver was used for miniature antennas

26

(Data in metric tons1 of gold content, unless noted)  

E-Print Network [OSTI]

combined production accounted for nearly 80% of the U.S. total. The trend for recent U.S. gold exploration68 GOLD (Data in metric tons1 of gold content, unless noted) Domestic Production and Use: Gold was recovered as a byproduct of processing base metals, chiefly copper. Twenty-five lode mines yielded

27

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds  

Broader source: Energy.gov [DOE]

The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

28

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

of hafnium metal was insignificant. Import Sources (1997-2000): Zirconium ores and concentrates: South Africa%; Germany, 7%; United Kingdom, 2%; and other, 9%. Tariff: Item Number Normal Trade Relations 12 Stockpile, the U.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also

29

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

. Import Sources (1995-98): Zirconium ores and concentrates: South Africa, 53%; Australia, 45%; and other Kingdom, 4%. Tariff: Item Number Normal Trade Relations 12/31/99 Zirconium ores and concentrates 2615.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also maintained a supply

30

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

of hafnium metal was insignificant. Import Sources (1998-2001): Zirconium ores and concentrates: South Africa%; Germany, 8%; United Kingdom, 3%; and other, 9%. Tariff: Item Number Normal Trade Relations 12,838 short tons) of zirconium ore (baddeleyite) during fiscal year 2002. The U.S. Department of Energy (DOE

31

ZIRCONIUM AND HAFNIUM (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

was insignificant. Import Sources (1996-99): Zirconium ores and concentrates: South Africa, 56%; Australia, 41, 4%; and other, 9%. Tariff: Item Number Normal Trade Relations 12/31/00 Zirconium ores.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also maintained a stockpile

32

2 million tons per year: A performing biofuels supply chain for  

E-Print Network [OSTI]

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

33

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

metal recycled by the titanium industry totaled about 18,000 tons in 2001. Estimated use of titanium as scrap and in the form of ferrotitanium made from scrap by the steel industry was about 6,000 tons; by the superalloy industry, 900 tons; and, in other industries, 700 tons. Old scrap reclaimed totaled about 500 tons

34

TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)  

E-Print Network [OSTI]

and pigment industries. Global production of titanium mineral concentrates was expected to increase during half of 2015. In Western Australia, the heavy-mineral resource, data for at the Keysbrook project were172 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise

35

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

E E E E E Recycling: New scrap metal recycled by the titanium industry was about 25,000 tons in 1996 industry was 4,700 tons; by the superalloy industry, 730 tons; and in other industries, 510 tons. Old scrap nation (MFN) Non-MFN3 12/31/96 12/31/96 Waste and scrap metal 8108.10.1000 Free Free. Unwrought metal

36

E-Print Network 3.0 - air quality metrics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(annually) 2. Particulate matter (PM10) a. Health hazard b. Visibility air quality 3. Dioxins... . Greenhouse gas b. Heating agent c. 40 million metric tons of carbon emissions...

37

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)  

E-Print Network [OSTI]

Stockpile Center continued to solicit offers for the sale of titanium sponge held in the Government-grade sponge. For fiscal year 2001, 4,540 tons of titanium sponge is being offered for sale. Stockpile Status for disposal FY 2000 FY 2000 Titanium sponge 19,100 3,390 19,100 4,540 4,240 Ev

38

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

consumption E E E E E Recycling: New scrap metal recycled by the titanium industry totaled about 29,000 tons and automotive industries led to an increase in global production of TiO2 pigment compared with that in 2009

39

Energy Department Project Captures and Stores One Million Metric Tons of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartmentand Reduce Energy Costs |HelpCarbon

40

RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless noted)  

E-Print Network [OSTI]

rare earths consumed in the United States was more than $500 million. Principal uses were in petroleum and Foreign). Government Stockpile: Stockpile Status--9-30-95 Uncommitted Committed Authorized Disposals was reported in the first half of the year. China remained a major source of separated rare-earth compounds

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine operation in Nevada. The mine's production capacity was expanded in 2012, and a new lithium hydroxide plant opened in North

42

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

100 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

43

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

98 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

44

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

96 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

45

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from

46

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies  

E-Print Network [OSTI]

44 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

47

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies  

E-Print Network [OSTI]

46 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

48

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China,  

E-Print Network [OSTI]

, but growing through the recycling of lithium batteries. Import Sources (1994-97): Chile, 96%; and other, 4 lithium salts from battery recycling and lithium hydroxide monohydrate from former Department of Energy102 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production

49

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: Limited shipments of tungsten concentrates were made from a California mine in  

E-Print Network [OSTI]

178 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and primary products, wrought and unwrought tungsten, and waste and scrap: China, 43%; Germany, 11%; Canada,630 1,450 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

50

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2012. Approximately eight  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,200 3,630 1,610 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

51

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2010. Approximately  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2006­09): Tungsten contained in ores and concentrates, intermediate and primary products, Trends, and Issues: World tungsten supply is dominated by Chinese production and exports. China

52

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A mine in California produced tungsten concentrates in 2009. Approximately eight  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2005-08): Tungsten contained in ores and concentrates, intermediate and primary products, and Issues: World tungsten supply was dominated by Chinese production and exports. China's Government limited

53

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2013. Approximately eight  

E-Print Network [OSTI]

174 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,100 2,300 2,240 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

54

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2011. Approximately  

E-Print Network [OSTI]

176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production (2007­10): Tungsten contained in ores and concentrates, intermediate and primary products, wrought: World tungsten supply is dominated by Chinese production and exports. China's Government regulates its

55

(Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production, which had remained unchanged in 1995, resumed the  

E-Print Network [OSTI]

recovered from scrap, copper smelters and refiners recovered 26%; ingot makers, 10%; brass mills, 5752 COPPER (Data in thousand metric tons of copper content, unless otherwise noted) Domestic% of domestic production; copper was also recovered at mines in six other States. While copper was recovered

56

(Data in thousand metric tons of copper content, unless noted) Domestic Production and Use: Domestic mine production in 1995 continued its upward trend, begun in 1984, rising  

E-Print Network [OSTI]

in new scrap was consumed at brass mills. Of the total copper recovered from scrap, copper smelters50 COPPER (Data in thousand metric tons of copper content, unless noted) Domestic Production, Arizona, Utah, New Mexico, Montana, and Michigan, accounted for 97% of domestic production; copper

57

ZIRCONIUM AND HAFNIUM (Data in metric tons of zirconium oxide (ZrO ) equivalent, unless otherwise noted)2  

E-Print Network [OSTI]

and concentrates: Australia, 51%; South Africa, 48%; and other, 1%. Zirconium, wrought, unwrought, waste and scrap: France, 69%; Australia, 21%; Germany, 8%; and United Kingdom, 2%. Tariff: Item Number Normal Trade, the U.S. Department of Energy (DOE) held over 500 tons of zirconium in various forms. DOE also

58

RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)  

E-Print Network [OSTI]

in 2001 by end use was as follows: glass polishing and ceramics, 34%; petroleum refining catalysts, 16-earth products. Domestic ore production was valued at an estimated $28 million. The estimated value of refined, alloy 953 1,780 2,470 1,420 1,520 Cerium compounds 4,940 3,990 4,310 3,850 2,660 Mixed REO's 2,530 5

59

RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)  

E-Print Network [OSTI]

%; permanent magnets, 16%; petroleum refining catalysts, 12%; metallurgical additives and alloys, 9%; rare-earth products. Domestic ore production was valued at an estimated $28 million. The estimated value of refined, alloy 529 953 1,780 2,470 1,670 Cerium compounds 1,810 4,940 3,990 4,310 4,940 Mixed REOs 974 2,530 5

60

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in  

E-Print Network [OSTI]

94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from domestic or South

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

(Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 92% of the primary tin consumed

62

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 90% of the primary tin consumed domestically in 2012. The major uses were as follows

63

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

174 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 80% of the primary tin consumed

64

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S.  

E-Print Network [OSTI]

180 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

65

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only  

E-Print Network [OSTI]

178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

66

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2006. The major uses were as follows

67

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 86% of the primary tin consumed domestically in 2008. The major uses were as follows

68

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only  

E-Print Network [OSTI]

176 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 97% of the primary tin. The major uses

69

(Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.  

E-Print Network [OSTI]

174 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 77% of the primary tin consumed

70

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2005. The major uses were as follows

71

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2009. The major uses were as follows

72

(Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S.  

E-Print Network [OSTI]

178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

73

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

168 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms accounted for about 90% of the primary tin consumed domestically in 2013. The major uses for tin

74

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 91% of the primary tin consumed domestically in 2010. The major uses were as follows

75

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2007. The major uses were as follows

76

Energy Department Project Captures and Stores more than One Million Metric  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. StevenSolarResearchCleanManufacturingTons of

77

(Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and  

E-Print Network [OSTI]

,000 tons of the material from the Department of Energy's stockpile, while the remaining 10,000 tons,700 1,800 150,000 160,000e Bolivia -- -- -- 5,400,00 Brazil 32 32 910 NA Canada 660 660 180,000 360

78

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were  

E-Print Network [OSTI]

and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were closed temporarily, and Issues: In February 2013, the owner of the 270,000-ton-per-year Hannibal, OH, smelter filed for chapter in October. In June, the Sebree, KY, smelter was sold as part of a corporate restructuring. Expansion

79

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii,  

E-Print Network [OSTI]

, and 32% other uses; bentonite--26% foundry sand bond, 23% pet waste absorbent, 20% drilling mud, 16% iron,710 Total3 43,000 43,100 41,800 41,600 42,200 Imports for consumption 35 45 64 86 97 Exports 4,680 4,830 5,080 5,230 4,700 Consumption, apparent 38,500 38,300 36,800 36,500 37,600 Price, average, dollars per ton

80

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho,  

E-Print Network [OSTI]

% foundry sand bond, 23% drilling mud, 17% pet waste absorbent, 15% iron ore pelletizing, and 9% other uses,100 43,100 42,000 43,0003 Imports for consumption 36 35 45 64 75 Exports 4,620 4,680 4,830 5,080 5,100 Consumption, apparent 37,600 38,500 38,300 37,000 38,000 Price, average, dollars per ton: Ball clay 43 46 44

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2003, clay and shale production was reported in all States except Alaska,  

E-Print Network [OSTI]

; bentonite-- 25% pet waste absorbent, 21% drilling mud, 21% foundry sand bond, 15% iron ore pelletizing,300 Imports for consumption: Artificially activated clay and earth 17 18 21 27 20 Kaolin 57 63 114 158 275,980 Consumption, apparent 37,500 35,600 34,800 34,600 34,600 Price, average, dollars per ton: Ball clay 40 42 42

82

Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site  

Broader source: Energy.gov [DOE]

AIKEN, S.C. – Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

83

(Data in metric tons of tin content, unless noted) Domestic Production and Use: In 1995, there was no domestic tin mine production. Production of tin at the only  

E-Print Network [OSTI]

,600 2,560 2,000 Shipments from Government stockpile excesses 6,195 6,310 6,022 5,620 5,000 Consumption and containers, 32%; electrical, 23%; construction, 9%; transportation, 11%; and other, 25%. The estimated value of primary metal consumption in 1995, based on the New York composite price, was $300 million. Salient

84

(Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2007. Indium-containing  

E-Print Network [OSTI]

of solar power. Research was underway to develop a low-cost manufacturing process for flexible CIGS solar collection of scrap to fabrication of secondary indium products. A recycler may have millions of dollars%. Mainstream LCD devices were also trending toward larger panel sizes, which require more indium per unit

85

Energy Secretary Chu Announces $108 Million in Recovery Act Funding...  

Broader source: Energy.gov (indexed) [DOE]

cleanup efforts in the state: Moab (108 million) - Accelerate removal of uranium mill tailings away from the Colorado River and dispose of an additional two million tons of...

86

(Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: In 2001, no tin was mined domestically. Production of tin at the only U.S. tin smelter,  

E-Print Network [OSTI]

,770 6,640 6,800 Shipments from Government stockpile excesses 11,700 12,200 765 12,000 12,000 Consumption: cans and containers, 30%; electrical, 20%; construction, 10%; transportation, 10%; and other, 30: primary metal consumed, $278 million; imports for consumption, refined tin, $326 million; and secondary

87

(Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: In 2000, no tin was mined domestically. Production of tin at the only U.S. tin  

E-Print Network [OSTI]

,020 6,770 7,000 Shipments from Government stockpile excesses 11,800 11,700 12,200 765 12,000 Consumption: cans and containers, 30%; electrical, 20%; construction, 10%; transportation, 10%; and other, 30: primary metal consumed, $318 million; imports for consumption, refined tin, $391 million; and secondary

88

(Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,  

E-Print Network [OSTI]

,410 9,800 3,170 5,630 6,200 Shipments from Government stockpile excesses 4,540 60 -- -- -- Consumption: electrical, 29%; cans and containers, 18%; construction, 13%; transportation, 12%; and other, 28 as follows: primary metal consumed, $980 million; imports for consumption, refined tin, $1.36 billion

89

DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin  

Broader source: Energy.gov [DOE]

Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

90

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Broader source: Energy.gov (indexed) [DOE]

River. ERDF receives contaminated soil, demolition debris, and solid waste from cleanup operations across the 586-square-mile Hanford Site in southeast Washington state. On...

91

Disposal Facility Reaches 15-Million-Ton Milestone | Department...  

Office of Environmental Management (EM)

and hundreds of support structures. McCormick and Washington Closure President Carol Johnson praised a large group of Hanford workers. "We have an exceptional workforce committed...

92

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThis road mapF ReactorJohn

93

Energy Department Employee Recognized for Eliminating One Million Tons of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department ofto Cellulosic Bioenergy |EnergyDevelopment |Irene

94

Defining a Standard Metric for Electricity Savings  

SciTech Connect (OSTI)

The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

2009-03-01T23:59:59.000Z

95

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

%; South Africa, 37%; China, 3%; Canada, 1%; and other, 2%. Zirconium, unwrought, including powder: France coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy Kingdom, 5%; and other, 9%. Tariff: Item Number Normal Trade Relations 12-31-08 Zirconium ores

96

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

Sources (2002-05): Zirconium ores and concentrates: Australia, 57%; South Africa, 35%; China, 4%; Canada consumers of zirconium and hafnium metal are the nuclear energy and chemical process industries. Salient%; Japan, 4%; and other, 2%. Tariff: Item Number Normal Trade Relations 12-31-06 Zirconium ores

97

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

concentrates: South Africa, 52%; Australia, 43%; and other, 5%. Zirconium, unwrought, including powder: Japan. The leading consumers of zirconium metal and hafnium metal are the nuclear energy and chemical process, 58%; Australia, 24%; Germany, 11%; other, 7%. Tariff: Item Number Normal Trade Relations 12

98

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

%; South Africa, 46%; China, 3%; Russia, 1%; and other, 1%. Zirconium, unwrought, including powder: France coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy, 21%; Canada, 8%; United Kingdom, 6%; and other, 5%. Tariff: Item Number Normal Trade Relations 12

99

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

was insignificant. Import Sources (2008­11): Zirconium mineral concentrates: Australia, 52%; South Africa, 42. The leading consumers of zirconium metal and hafnium metal are the nuclear energy and chemical process: Item Number Normal Trade Relations 12­31­12 Zirconium ores and concentrates 2615.10.0000 Free

100

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

concentrates: Australia, 49%; South Africa, 44%; and other, 7%. Zirconium, unwrought, including powder: Germany. The leading consumers of zirconium metal and hafnium metal are the nuclear energy and chemical process, 17%; United Kingdom, 5%; and other, 9%. Tariff: Item Number Normal Trade Relations 12-31-11 Zirconium

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

%; South Africa, 32%; China, 4%; Canada, 2%; and other, 1%. Zirconium, unwrought, including powder: France coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy, 2%; Austria, 1%; and other, 1%. Tariff: Item Number Normal Trade Relations 12-31-07 Zirconium ores

102

(Data in metric tons of silver content unless otherwise noted)  

E-Print Network [OSTI]

odor, electronics and circuit boards, electroplating, hardening bearings, inks, mirrors, solar cells,250 1,250 1,280 Refinery: Primary 2,210 791 779 796 800 Secondary (new and old scrap) 1,110 1,220 1

103

Energy Department Sponsored Project Captures One Millionth Metric Ton of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecondCareer Awards | U.S. DOE Office ofCO2 |

104

Earth: 15 Million Years Ago  

E-Print Network [OSTI]

In Einstein's general relativity theory the metric component gxx in the direction of motion (x-direction) of the sun deviates from unity due to a tensor potential caused by the black hole existing around the center of the galaxy. Because the solar system is orbiting around the galactic center at 200 km/s, the theory shows that the Newtonian gravitational potential due to the sun is not quite radial. At the present time, the ecliptic plane is almost perpendicular to the galactic plane, consistent with this modification of the Newtonian gravitational force. The ecliptic plane is assumed to maintain this orientation in the galactic space as it orbits around the galactic center, but the rotational angular momentum of the earth around its own axis can be assumed to be conserved. The earth is between the sun and the galactic center at the summer solstice all the time. As a consequence, the rotational axis of the earth would be parallel to the axis of the orbital rotation of the earth 15 million years ago, if the solar system has been orbiting around the galactic center at 200 km/s. The present theory concludes that the earth did not have seasons 15 million years ago. Therefore, the water on the earth was accumulated near the poles as ice and the sea level was very low. Geological evidence exists that confirms this effect. The resulting global ice-melting started 15 million years ago and is ending now.

Masataka Mizushima

2008-10-13T23:59:59.000Z

105

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Televisions in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

106

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

" Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry" "Fuels Used and End Uses",,"Cold",,"Hot-Dry","Hot-Humid...

107

" Million Housing Units, Preliminary"  

U.S. Energy Information Administration (EIA) Indexed Site

Computers and Other Electronics in U.S. Homes, By Number of Household Members, 2009" " Million Housing Units, Preliminary" ,,"Number of Household Members" ,"Total U.S.1 (millions)"...

108

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Computers and Other Electronics in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before...

109

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Computers and Other Electronics in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South"...

110

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Computers and Other Electronics in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty...

111

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

4 Air Conditioning in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

112

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air Conditioning in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Air...

113

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Air Conditioning in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

114

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Air Conditioning in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less...

115

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950...

116

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Televisions in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950...

117

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Demographics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

118

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Water Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than...

119

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Water Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

120

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Water Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Water Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Water...

122

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

4 Water Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

123

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect (OSTI)

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

124

U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...  

Energy Savers [EERE]

WASHINGTON - Underscoring the Obama Administration's efforts to double energy productivity by 2030 and help businesses save money and energy, the Energy Department today...

125

DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclear Plants | DepartmentIf you

126

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, EERE Small

127

DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYGStrategicSiteThree SitesCO2 |

128

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJared TemansonEnergySAR.docEnergyThroughAccomplishes

129

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014 Chief Freedom ofDepartmenttoRulemakings -of

130

Moab Marks 6-Million-Ton Cleanup Milestone | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 MasterAcquisitiTechnologyPotomacRidge |

131

U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office of CivilEnergy

132

Energy Department Project Captures and Stores One Million Metric...  

Office of Environmental Management (EM)

formation. The project is part of the development phase of the Department's Regional Carbon Sequestration Partnerships initiative, which is helping develop and deploy carbon...

133

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Fuels Used and End Uses in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

134

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Computers and Other Electronics in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census...

135

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Computers and Other Electronics in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census...

136

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Computers and Other Electronics in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

137

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

8 Computers and Other Electronics in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

138

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Air Conditioning in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific Census...

139

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

8 Air Conditioning in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle...

140

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Air Conditioning in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Air Conditioning in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

142

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

143

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

144

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

145

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

146

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings...

147

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Computers and Other Electronics in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in...

148

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Televisions" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Televisions" "Number of...

149

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Fuels Used and End Uses",,"Own","Rent","Own","Rent",...

150

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

151

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Air Conditioning in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

152

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD, WV",,,,"AL, KY, MS",,,"AR, LA, OK" "Appliances",,,,"VA","GA","FL",,"NC, SC",,"TN",,,"TX" "Total...

153

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD, WV",,,,"AL, KY, MS",,,"AR, LA, OK" "Televisions",,,,"VA","GA","FL",,"NC, SC",,"TN",,,"TX" "Total...

154

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD, WV",,,,"AL, KY, MS",,,"AR, LA, OK" "Fuels Used and End Uses",,,,"VA","GA","FL",,"NC,...

155

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD, WV",,,,"AL, KY, MS",,,"AR, LA, OK" "Household Demographics",,,,"VA","GA","FL",,"NC,...

156

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

157

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

158

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than 20,000","20,000 to 39,999","40,000 to 59,999","60,000 to...

159

Metrics for enterprise transformation  

E-Print Network [OSTI]

The objective of this thesis is to depict the role of metrics in the evolving journey of enterprise transformation. To this end, three propositions are explored: (i) metrics and measurement systems drive transformation, ...

Blackburn, Craig D. (Craig David), S. M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

160

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...  

National Nuclear Security Administration (NNSA)

plutonium to meet the non-proliferation goals agreed to by the United States and Russia in September 2000. Eliminating immobilization from the disposition pathway saves...

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy and NTI Announce Key Nonproliferation Project with Kazakhstan U.S.-Russia Twenty-Year Partnership Completes Final Milestone in Converting 20,000 Russian Nuclear...

162

9,355,469 Metric Tons of CO2 Injected as of January 29, 2015...  

Energy Savers [EERE]

Unit of the Anadarko Basin. Learn more about the DOE's RCSP Program. Major Demonstrations Air Products.jpg Air Products and Chemicals, Inc.: Air Products and Chemicals, Inc., is...

163

9,030,305 Metric Tons of CO2 Injected as of January 6, 2015 ...  

Office of Environmental Management (EM)

210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

164

(Data in metric tons1 of silver content unless otherwise noted)  

E-Print Network [OSTI]

, electronics, electroplating, medical and wound care, mirrors, solar energy, and water purification. Salient base8 2004 2005e United States 1,250 1,300 25,000 80,000 Australia 2,240 2,250 31,000 37,000 Canada 1

165

(Data in metric tons1 of silver content, unless otherwise noted)  

E-Print Network [OSTI]

,250 2,000 Shipments from Government stockpile excesses 220 232 109 -- -- Consumption, apparent NA NA 4 and technical uses. Industrial and technical uses include photographic materials, electrical products, catalysts,360 1,700 1,700 Imports for consumption2 3,250 3,010 2,540 3,330 2,800 Exports2 2,890 2,950 3,080 2

166

9,959,066 Metric Tons of CO2 Injected as of March 26, 2015 |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

167

9,932,381 Metric Tons of CO2 Injected as of March 18, 2015 |...  

Office of Environmental Management (EM)

210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

168

9,894,105 Metric Tons of CO2 Injected as of March 12, 2015 |...  

Broader source: Energy.gov (indexed) [DOE]

210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

169

(Data in metric tons1 of silver content unless otherwise noted)  

E-Print Network [OSTI]

odor, electronics and circuit boards, electroplating, hardening bearings, inks, mirrors, solar cells,230 1,230 Refinery: Primary 2,530 2,210 791 779 1,600 Secondary (new and old scrap) 981 1,110 1,220 1

170

(Data in metric tons1 of silver content unless otherwise noted)  

E-Print Network [OSTI]

boards, electroplating, hardening bearings, mirrors, solar cells, wood treatment to resist mold,140 1,220 Refinery: Primary 2,580 1,140 2,530 3,150 2,500 Secondary (old scrap) 1,010 1,920 980 1,500 1

171

(Data in metric tons1 of silver content unless otherwise noted)  

E-Print Network [OSTI]

odor, electronics and circuit boards, electroplating, hardening bearings, inks, mirrors, solar cells,260 1,120 Refinery: Primary 1,140 2,530 3,150 4,110 2,500 Secondary (old scrap) 1,920 980 1,500 1,540 1

172

(Data in metric tons1 of silver content unless otherwise noted)  

E-Print Network [OSTI]

, hardening bearings, mirrors, solar cells, wood treatment to resist mold, and water purification. Silver,580 2,580 1,140 2,530 1,000 Secondary 1,030 1,010 1,920 980 1,050 Imports for consumption2 4,300 4,510 4

173

(Data in metric tons1 of gold content, unless otherwise noted)  

E-Print Network [OSTI]

) and the U.S. Department of Defense administers a Government-wide secondary precious metals recovery program 1999 2000 2001e Production: Mine 362 366 341 353 350 Refinery: Primary 270 277 265 197 220 Secondary

174

(Data in metric tons1 of gold content unless otherwise noted)  

E-Print Network [OSTI]

), and the U.S. Department of Defense administers a Governmentwide secondary precious-metals recovery program 2008e Production: Mine 258 256 252 238 230 Refinery: Primary 222 195 181 176 170 Secondary (new and old

175

(Data in metric tons1 of gold content, unless otherwise noted)  

E-Print Network [OSTI]

1997 1998 1999e Production: Mine 317 326 362 366 340 Refinery: Primary (2 ) (2 ) 270 277 260 Secondary above) and the U.S. Department of Defense administers a Government-wide secondary precious metals recovery program. Prepared by Earle B. Amey [(703) 648-4969, eamey@usgs.gov, fax: (703) 648-7757] #12

176

(Data in metric tons1 of gold content unless otherwise noted)  

E-Print Network [OSTI]

2006e Production: Mine 298 277 258 256 260 Refinery: Primary 196 194 222 163 180 Secondary (new and old above), and the U.S. Department of Defense administers a Government wide secondary precious-metals recovery program. Events, Trends, and Issues: Domestic gold mine production in 2006 was estimated to be 2

177

(Data in metric tons1 of gold content, unless otherwise noted)  

E-Print Network [OSTI]

) and the U.S. Department of Defense administers a Government-wide secondary precious metals recovery program Secondary (new and old scrap) 163 143 82 83 85 Imports2 278 221 223 193 125 Exports2 522 523 547 489 165

178

(Data in metric tons1 of gold content unless otherwise noted)  

E-Print Network [OSTI]

2007e Production: Mine 277 258 256 252 240 Refinery: Primary 194 222 195 181 190 Secondary (new and old above), and the U.S. Department of Defense administers a Governmentwide secondary precious-metals recovery program. Events, Trends, and Issues: Domestic gold mine production in 2007 was estimated to be 6

179

(Data in metric tons1 of gold content, unless otherwise noted)  

E-Print Network [OSTI]

above) and the U.S. Department of Defense administers a secondary precious metals recovery program Secondary (new and old scrap) 143 82 83 89 95 Imports2 221 223 194 217 220 Exports2 523 547 489 257 320

180

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless noted)  

E-Print Network [OSTI]

, and lacquers, 47%; paper, 24%; plastics, 18%; and other, 11%. Other uses of TiO2 included catalysts, ceramics level in 1995 and demand decreased slightly. A shift in the global supply demand scenario pushed demand

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

import reliance 2 as a percentage of apparent consumption E E E E E Recycling: New scrap metal recycled in 2011. Increased consumption and production of TiO2 pigment was led by China. To meet rising domestic

182

TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)  

E-Print Network [OSTI]

as a percentage of apparent consumption E E E E E Recycling: New scrap metal recycled by the titanium industry. Consumption and production of TiO2 pigment was led by China, and several TiO2 pigment producers in China

183

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofTheEnergyWeapons Stockpile | Department of

184

8,993,963 Metric Tons of CO2 Injected as of December 17, 2014...  

Energy Savers [EERE]

210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

185

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransition Documents - 2008 DOEDOEDOE

186

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office ofNuclear Weapons StrategyU.S.Department

187

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network [OSTI]

objectives for this summer research were to: 1.) determine how much heavy metal pollution has accumulatedTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

188

Department of Energy Releases New 'Billion-Ton' Study Highlighting...  

Energy Savers [EERE]

The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock...

189

Surveillance metrics sensitivity study.  

SciTech Connect (OSTI)

In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

Hamada, Michael S. (Los Alamos National Laboratory); Bierbaum, Rene Lynn; Robertson, Alix A. (Lawrence Livermore Laboratory)

2011-09-01T23:59:59.000Z

190

Surveillance Metrics Sensitivity Study  

SciTech Connect (OSTI)

In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

Bierbaum, R; Hamada, M; Robertson, A

2011-11-01T23:59:59.000Z

191

Generalized utility metrics for supercomputers  

E-Print Network [OSTI]

2007:1–12 Generalized utility metrics for supercomputers 12.ISSUE PAPER Generalized utility metrics for supercomputersproblem of ranking the utility of supercom- puter systems

Strohmaier, Erich

2009-01-01T23:59:59.000Z

192

Quotients of Metric Spaces  

E-Print Network [OSTI]

the properties of quotient spaces of metric spaces. We will use "iff" as an abbreviation for "if and only if". If f is a function from X onto Y, we will write f: X --->> Y....

Herman, Robert A.

1968-01-01T23:59:59.000Z

193

Cyber threat metrics.  

SciTech Connect (OSTI)

Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.

Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott

2012-03-01T23:59:59.000Z

194

THERMAL MODELING ANALYSIS OF SRS 70 TON CASK  

SciTech Connect (OSTI)

The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

Lee, S.; Jordan, J.; Hensel, S.

2011-03-08T23:59:59.000Z

195

Performance Metrics for Commercial Buildings  

SciTech Connect (OSTI)

Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

2010-09-30T23:59:59.000Z

196

Farm Buildings Pocketbook in Metric   

E-Print Network [OSTI]

Some useful advice giving standards, dimensions and data in metric for those interested in the design of farm buildings

Anonymous

1971-01-01T23:59:59.000Z

197

1,153-ton Waste Vault Removed from 300 Area - Vault held waste...  

Energy Savers [EERE]

1,153-ton Waste Vault Removed from 300 Area - Vault held waste tanks with contamination from Hanford's former laboratory facilities 1,153-ton Waste Vault Removed from 300 Area -...

198

Metrics for Energy Resilience  

SciTech Connect (OSTI)

Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today?s energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system?s energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth.

Paul E. Roege; Zachary A. Collier; James Mancillas; John A. McDonagh; Igor Linkov

2014-09-01T23:59:59.000Z

199

All conformally flat pure radiation metrics  

E-Print Network [OSTI]

The complete class of conformally flat, pure radiation metrics is given, generalising the metric recently given by Wils.

S. Brian Edgar; Garry Ludwig

1996-12-20T23:59:59.000Z

200

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to...

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2...

202

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family...

203

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

0 Home Appliances Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to...

204

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to...

205

Chinese Rural Vehicles: An Explanatory Analysis of Technology, Economics, Industrial Organization, Energy Use, Emissions, and Policy  

E-Print Network [OSTI]

diesel fuel consumption in 2000 was 69.5 million metric tons (MMT) 79 (see Table 9-1) or 2.96 quadrillion BTU.

Sperling, Dan; Lin, Zhenhong; Hamilton, Peter

2004-01-01T23:59:59.000Z

206

Energy Department Announces Next Phase of L Prize® Competition...  

Office of Environmental Management (EM)

11 terawatt-hours of electricity per year - approximately equivalent to the annual electricity consumption of Washington, D.C. - and avoid 7 million metric tons of carbon...

207

Manufacturing Energy and Carbon Footprint - Sector: Transportation...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

208

Manufacturing Energy and Carbon Footprint - Sector: Computer...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 0 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

209

KCP relocates 18-ton machine | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApply for Our Jobs / HowSecurityrelocates 18-ton

210

Degenerate Metric Phase Boundaries  

E-Print Network [OSTI]

The structure of boundaries between degenerate and nondegenerate solutions of Ashtekar's canonical reformulation of Einstein's equations is studied. Several examples are given of such "phase boundaries" in which the metric is degenerate on one side of a null hypersurface and non-degenerate on the other side. These include portions of flat space, Schwarzschild, and plane wave solutions joined to degenerate regions. In the last case, the wave collides with a planar phase boundary and continues on with the same curvature but degenerate triad, while the phase boundary continues in the opposite direction. We conjecture that degenerate phase boundaries are always null.

Ingemar Bengtsson; Ted Jacobson

1999-01-23T23:59:59.000Z

211

ARM - 2007 Performance Metrics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under7 Performance Metrics Science

212

ARM - 2009 Performance Metrics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRing Under79 Performance Metrics Science

213

Materials management in an internationally safeguarded fuels reprocessing plant. [1500 and 210 metric tons heavy metal per year  

SciTech Connect (OSTI)

The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium.

Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

1980-04-01T23:59:59.000Z

214

RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)  

E-Print Network [OSTI]

. The approximate distribution in 2002 by end use was as follows: petroleum refining catalysts, 27%; glass polishing. The estimated value of refined rare earths consumed in the United States was more than $1 billion-earth metals, alloy 1,780 2,470 1,420 1,450 1,130 Cerium compounds 3,990 4,310 3,850 2,540 2,630 Mixed REOs 5

215

RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted  

E-Print Network [OSTI]

, was as follows: chemical catalysts, 22%; metallurgical applications and alloys, 21%; petroleum refining catalysts, and importer of rare-earth products in 2010. The estimated value of refined rare earths imported by the United) -- -- -- -- -- Rare-earth metals, alloy 867 784 564 188 250 Cerium compounds 2,590 2,680 2,080 1,500 1,400 Mixed REOs

216

RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)  

E-Print Network [OSTI]

, televisions, computer monitors, radar, and X-ray intensifying film, 10%; petroleum refining catalysts, 8 continued to be a major exporter and consumer of rare-earth products in 2006. The estimated value of refined-earth metals, alloy 1,450 1,130 804 880 947 Cerium compounds 2,540 2,630 1,880 2,170 2,530 Mixed REOs 1,040 2

217

RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)  

E-Print Network [OSTI]

%; glass polishing and ceramics, 14%; metallurgical additives and alloys, 13%; petroleum refining catalysts continued to be a major exporter and consumer of rare-earth products in 2004. The estimated value of refined,980 Mixed REOs 2,190 2,040 1,040 2,150 1,540 Rare-earth chlorides 1,330 2,590 1,800 1,890 1,520 Rare

218

RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)  

E-Print Network [OSTI]

, televisions, and x-ray-intensifying film, 14%; chemicals and petroleum refining catalysts, 11%; ceramics, 3, and importer of rare-earth products in 2008. The estimated value of refined rare earths imported by the United,880 2,170 2,590 2,680 2,180 Mixed REOs 1,660 640 1,570 2,570 2,750 Rare-earth chlorides 1,310 2,670 2

219

RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)  

E-Print Network [OSTI]

of rare earths by end use was as follows: automotive catalytic converters, 25%; petroleum refining, and consumer of rare-earth products in 2007. The estimated value of refined rare earths consumed in the United -- Rare-earth metals, alloy 1,130 804 880 867 831 Cerium compounds 2,630 1,880 2,170 2,590 3,090 Mixed

220

RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted  

E-Print Network [OSTI]

catalytic converters, 9%; glass polishing and ceramics, 6%; permanent magnets, 5%; petroleum refining, and importer of rare-earth products in 2009. The estimated value of refined rare earths imported by the United) -- -- -- -- 20 Rare-earth metals, alloy 880 867 784 679 210 Cerium compounds 2,170 2,590 2,680 2,080 1,190 Mixed

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)  

E-Print Network [OSTI]

mine tailings at Green Cove Springs, FL, ceased. At the Stony Creek mining operation, development to have decreased significantly. While mining continued at Starke, FL, and Stony Creek, VA, reprocessing operations in Sorel, Quebec, Canada. In response to uncertain market conditions, mining and TiO2 slag

222

TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)  

E-Print Network [OSTI]

as a percentage of estimated consumption 76 78 68 65 68 Recycling: None. Import Sources (2007­10): South Africa of titanium minerals was led by China. Although world mine production increased in 2011, a shortage

223

10,045,885 Metric Tons of CO2 Injected as of April 16, 2015 | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome toFarmRenewableGschneidner,Energy

224

9,997,638 Metric Tons of CO2 Injected as of April 9, 2015 | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015 Information

225

Contraction semigroups on metric graphs  

E-Print Network [OSTI]

The main objective of the present work is to study contraction semigroups generated by Laplace operators on metric graphs, which are not necessarily self-adjoint. We prove criteria for such semigroups to be continuity and positivity preserving. Also we provide a characterization of generators of Feller semigroups on metric graphs.

Vadim Kostrykin; Jurgen Potthoff; Robert Schrader

2008-02-26T23:59:59.000Z

226

August 2003 IT SECURITY METRICS  

E-Print Network [OSTI]

, efficiency, effectiveness, and the impact of the security controls. The process steps need not be sequen tial metrics program and provides examples of metrics based on the criti cal elements and security controls and techniques contained in NIST SP 800-26, Security Self-Assessment Guide for Information Technology Systems

227

Variable metric conjugate gradient methods  

SciTech Connect (OSTI)

1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

Barth, T.; Manteuffel, T.

1994-07-01T23:59:59.000Z

228

Daylight metrics and energy savings  

SciTech Connect (OSTI)

The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

2009-12-31T23:59:59.000Z

229

Normalization of Process Safety Metrics  

E-Print Network [OSTI]

and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...

Wang, Mengtian

2012-10-19T23:59:59.000Z

230

Segmental alternations and metrical theory  

E-Print Network [OSTI]

This dissertation focuses on phonological alternations that are influenced or constrained by word-internal prosody, i.e. prominence and foot structure, and what these alternations can tell us about metrical theory. Detailed ...

Vaysman, Olga

2009-01-01T23:59:59.000Z

231

Characterization of Arsenic Contamination on Rust from Ton Containers  

SciTech Connect (OSTI)

The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5 oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.

Gary S. Groenewold; Recep Avci; Robert V. Fox; Muhammedin Deliorman; Jayson Suo; Laura Kellerman

2013-01-01T23:59:59.000Z

232

A relevance of documentation metric  

E-Print Network [OSTI]

A RELEVANCE OF DOCUMENTATION METRIC A Thesis by JUSTIN WILLIAM PATTERSON Submitted to the Oflice of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1996 Major... Subject: Computer Science A RELEVANCE OF DOCUMENTATION METRIC A Thesis by JUSTIN WILLIAM PATTERSON Submitted to Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by...

Patterson, Justin William

1996-01-01T23:59:59.000Z

233

DAYLIGHTING METRICS FOR RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

It is now widely accepted that the standard method for daylighting evaluation- the daylight factor- is due for replacement with metrics founded on absolute values for luminous quantities predicted over the course of a full year using sun and sky conditions derived from standardised climate files. The move to more realistic measures of daylighting introduces significant levels of additional complexity in both the simulation of the luminous quantities and the reduction of the simulation data to readily intelligible metrics. The simulation component, at least for buildings with standard glazing materials, is reasonably well understood. There is no consensus however on the composition of the metrics, and their formulation is an ongoing area of active research. Additionally, non-domestic and residential buildings present very different evaluation scenarios and it is not yet clear if a single metric would be applicable to both. This study uses a domestic dwelling as the setting to investigate and explore the applicability of daylighting metrics for residential buildings. In addition to daylighting provision for task and disclosing the potential for reducing electric lighting usage, we also investigate the formulation of metrics for non-visual effects such as entrainment of the circadian system.

unknown authors

234

Supply Chain Network Sustainability Under Competition and Frequencies of Activities from  

E-Print Network [OSTI]

to approximately 350 million metric tons of carbon dioxide emissions ­ 5% of the total US greenhouse gas emissions emissions. The company's CO2-equivalent emissions per million SEK ($148, 500) of sales were 3.16 metric tons by 32%; Improving energy efficiency in its stores; and offsetting using Gold Standard-verified carbon

Nagurney, Anna

235

Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders  

SciTech Connect (OSTI)

Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

1996-10-01T23:59:59.000Z

236

COSMOS{sup SM} based composite metrics  

SciTech Connect (OSTI)

Process improvement is one of the goals of many organizations. Metrics for measuring process improvement are key to consistent, focused improvement. This paper introduces an approach for developing robust metrics suitable for measuring the improvement in complex processes. The approach uses the Cosmos framework to guide the user in where to collect metrics and it uses the composite metric to guide the user in how to collect metrics.

Culross, M.J.; Leslie, M.D.; Toland, J.A. [Raytheon E-Systems, Dallas, TX (United States)

1996-12-31T23:59:59.000Z

237

Energy Department Announces $66 Million for Transformational...  

Office of Environmental Management (EM)

(REMOTE), provides 34 million to find advanced biocatalyst technologies that can convert natural gas to liquid fuel for transportation. Deputy Director Martin made the project...

238

Million U.S. Housing Units Total...............................  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy...

239

Moniz: Tesla Repayment Shows the Strength of Energy Department...  

Broader source: Energy.gov (indexed) [DOE]

19 new clean energy power plants that are adding enough solar, wind and geothermal capacity to power a million homes and displace 7 million metric tons of carbon dioxide every...

240

Horizon thermodynamics and composite metrics  

E-Print Network [OSTI]

We examine the conditions under which the thermodynamic behaviour of gravity can be explained within an emergent gravity scenario, where the metric is defined as a composite operator. We show that due to the availability of a boundary of a boundary principle for the quantum effective action, Clausius-like relations can always be constructed. Hence, any true explanation of the thermodynamic nature of the metric tensor has to be referred to an equilibration process, associated to the presence of an H-theorem, possibly driven by decoherence induced by the pregeometric degrees of freedom, and their entanglement with the geometric ones.

Lorenzo Sindoni

2012-11-12T23:59:59.000Z

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Million Species EXTINCTION RISK FROM CLIMATE CHANGE  

E-Print Network [OSTI]

Saving Million Species EXTINCTION RISK FROM CLIMATE CHANGE Edited by Lee Hannah ISLANDPRESS-in-Publication Data Saving a million species : extinction risk from climate change / edited by LeeHannah. p. cm. ISBN, extinction, extinction risk, biodiversity,freshwater, marine, biology, coral bleaching, species area

Poff, N. LeRoy

242

Why is the metric invertible?  

E-Print Network [OSTI]

We raise, and provide an (unsatisfactory) answer to, the title's question: why, unlike all other fields, does the gravitational "metric" variable not have zero vacuum? After formulating, without begging it, we exhibit additions to the conventional action that express existence of the inverse through a field equation.

S. Deser

2006-03-30T23:59:59.000Z

243

Lorentzian Metrics from Characteristic Surfaces  

E-Print Network [OSTI]

The following issue is raised and discussed; when do families of foliations by hypersurfaces on a given four dimensional manifold become the null surfaces of some unknown, but to be determined, metric $g_{ab}(x)$? It follows from these results that one can use these surfaces as fundamental variables for GR.

Simonetta Frittelli; Carlos Kozameh; Ted Newman

1995-02-11T23:59:59.000Z

244

METRIC CHARACTERIZATIONS OF SPHERICAL AND EUCLIDEAN BUILDINGS  

E-Print Network [OSTI]

BUILDINGS Ruth Charney and Alexander Lytchak 0 of spaces satisfying CAT-inequalities are spherical and Euclidean buildings which come equipped with a natural piecewise spherical or Euclidean metric. Buildings also satisfy other nice metric properties

Charney, Ruth

245

Daylight metrics and energy savings J. Mardaljevic  

E-Print Network [OSTI]

LBNL-4585E Daylight metrics and energy savings Authors: J. Mardaljevic Institute of Energy 2009; 0: 1­23 ! Daylight metrics and energy savings J. Mardaljevic a , L. Heschong b , E.S. Lee c comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor

246

Multi-Metric Sustainability Analysis  

SciTech Connect (OSTI)

A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.

Cowlin, S.; Heimiller, D.; Macknick, J.; Mann, M.; Pless, J.; Munoz, D.

2014-12-01T23:59:59.000Z

247

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ,,"Climate Zone1" ,,"Less than 2,000 CDD and --",,,,"2,000 CDD or More and Less than 4,000...

248

" Million U.S. Housing Units" ,,"2005...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1"...

249

Design and Development of Performance Metrics for Elite Runners  

E-Print Network [OSTI]

metric with distance for Jimmy for both feet Figure 5.29:metric vs. Distance for Jimmy Figure 5.32: Over-strideCDEL metric vs. Distance for Jimmy Figure 5.35: CDEL metric

Mittal, Nikhil R.

2012-01-01T23:59:59.000Z

250

Metrics and Benchmarks for Energy Efficiency in Laboratories  

E-Print Network [OSTI]

gsf, ton/m 2 ), boiler efficiency (%), pumping efficiency (to evaluate the efficiency of chiller and boiler systems in

Mathew, Paul; Rumsey Engineers

2008-01-01T23:59:59.000Z

251

Comparing Resource Adequacy Metrics: Preprint  

SciTech Connect (OSTI)

As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.

Ibanez, E.; Milligan, M.

2014-09-01T23:59:59.000Z

252

Metric Construction | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarlandSurveyREDD Projects | OpenMetric

253

BNL | CFN Strategic Plan | Metrics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program CumulusA t iBudget2/4/13 Page 1 of 2BNLBusinessMetrics

254

Statoil outlines MTBE development program  

SciTech Connect (OSTI)

This paper reports that Norway's state oil company Den Norkse state Oljeselskap AS has outlined plans to become one of the major European producers of methyl tertiary butyl ether in the 1990s. Statoil predicts European demand for MTBE will jump to 4.5 million metric tons/year by 2000 from 2.5 million tons in 1990. Europe currently is a net importer of MTBE, with a productive capacity of 2.2 million tons/year.

Not Available

1991-11-25T23:59:59.000Z

255

Department of Energy Awards $9 Million in Grants for Science...  

Office of Environmental Management (EM)

9 Million in Grants for Science and Technical Research to Historically Black Colleges and Universities in South Carolina and Georgia Department of Energy Awards 9 Million in...

256

Energy Department Announces $13 Million to Strengthen Local Solar...  

Office of Environmental Management (EM)

13 Million to Strengthen Local Solar Markets and Spur Solar Deployment Across the United States Energy Department Announces 13 Million to Strengthen Local Solar Markets and Spur...

257

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to...

258

Secretary Chu Announces Nearly $50 Million of Recovery Act Funding...  

Office of Environmental Management (EM)

50 Million of Recovery Act Funding to Accelerate Deployment of Geothermal Heat Pumps Secretary Chu Announces Nearly 50 Million of Recovery Act Funding to Accelerate Deployment of...

259

Energy Secretary Chu Announces $138 Million in Recovery Act Funding...  

Energy Savers [EERE]

38 Million in Recovery Act Funding for Environmental Cleanup in Ohio Energy Secretary Chu Announces 138 Million in Recovery Act Funding for Environmental Cleanup in Ohio March 31,...

260

Energy Secretary Chu Announces $148 million in Recovery Act Funding...  

Energy Savers [EERE]

48 million in Recovery Act Funding for Environmental Cleanup in New York Energy Secretary Chu Announces 148 million in Recovery Act Funding for Environmental Cleanup in New York...

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Secretary Chu Announces $384 Million in Recovery Act Funding...  

Energy Savers [EERE]

384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces 384 Million in Recovery Act Funding for Environmental Cleanup in New...

262

Energy Department Announces $11 Million to Advance Renewable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Million to Advance Renewable Carbon Fiber Production from Biomass Energy Department Announces 11 Million to Advance Renewable Carbon Fiber Production from Biomass July 30, 2014...

263

Department of Energy Finalizes Partial Guarantee for $852 Million...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partial Guarantee for 852 Million Loan to Support California Concentrating Solar Power Plant Department of Energy Finalizes Partial Guarantee for 852 Million Loan to Support...

264

Department of Energy Announces $15 Million to Promote Innovative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15 Million to Promote Innovative Geothermal Heat Recovery Methods and Technologies Department of Energy Announces 15 Million to Promote Innovative Geothermal Heat Recovery...

265

Combined Heat and Power System Achieves Millions in Cost Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Achieves Millions in Cost Savings at Large University - Case Study, 2013 Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study, 2013...

266

Obama-Biden Administration Announces Nearly $197 Million in Weatheriza...  

Office of Environmental Management (EM)

Administration Announces Nearly 197 Million in Weatherization Funding and Energy Efficiency Grants for Wisconsin Obama-Biden Administration Announces Nearly 197 Million in...

267

Energy Department Announces $5 Million for Residential Building...  

Office of Environmental Management (EM)

Announces 5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships Energy Department Announces 5 Million for Residential Building Energy...

268

Department of Energy Awards $71 Million to Accelerate Innovative...  

Broader source: Energy.gov (indexed) [DOE]

Awards 71 Million to Accelerate Innovative Carbon Capture Project Department of Energy Awards 71 Million to Accelerate Innovative Carbon Capture Project September 15, 2009 -...

269

Energy Department Finalizes $646 Million Loan Guarantee to Support...  

Energy Savers [EERE]

Energy Department Finalizes 646 Million Loan Guarantee to Support Innovative Solar Power Plant Energy Department Finalizes 646 Million Loan Guarantee to Support Innovative Solar...

270

Department of Energy to Invest $60 Million to Develop Innovative...  

Office of Environmental Management (EM)

60 Million to Develop Innovative Concentrating Solar Power Technologies Department of Energy to Invest 60 Million to Develop Innovative Concentrating Solar Power Technologies...

271

DOE and USCAR Announce $70 Million Project to Accelerate Development...  

Energy Savers [EERE]

Announce 70 Million Project to Accelerate Development of Lightweight, High-Strength Materials DOE and USCAR Announce 70 Million Project to Accelerate Development of Lightweight,...

272

Department of Energy Offers $102 Million Conditional Commitment...  

Energy Savers [EERE]

of Energy Offers 102 Million Conditional Commitment for Loan Guarantee to U.S. Geothermal Inc. Department of Energy Offers 102 Million Conditional Commitment for Loan...

273

Department of Energy Awards More Than $11 Million to Advance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Million to Advance Innovative Geothermal Energy Technologies Department of Energy Awards More Than 11 Million to Advance Innovative Geothermal Energy Technologies June 23, 2011...

274

Department of Energy Awards More Than $11 Million to Advance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Awards More Than 11 Million to Advance Innovative Geothermal Energy Technologies Department of Energy Awards More Than 11 Million to Advance Innovative Geothermal Energy...

275

DOE Awards $3 Million Contract to Oak Ridge Associated Universities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Million Contract to Oak Ridge Associated Universities for Expert Review of Yucca Mountain Work DOE Awards 3 Million Contract to Oak Ridge Associated Universities for Expert...

276

Energy Department Announces $3 Million to Support Clean Energy...  

Energy Savers [EERE]

Energy Department Announces 3 Million to Support Clean Energy Businesses and Entrepreneurs Energy Department Announces 3 Million to Support Clean Energy Businesses and...

277

Energy Department Invests $6 Million to Increase Building Energy...  

Energy Savers [EERE]

Energy Department Invests 6 Million to Increase Building Energy Code Compliance Rates Energy Department Invests 6 Million to Increase Building Energy Code Compliance Rates August...

278

Obama Administration Awards More than $96 Million for State Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

96 Million for State Energy Programs in Ohio, Oregon, Virginia and West Virginia Obama Administration Awards More than 96 Million for State Energy Programs in Ohio, Oregon,...

279

Department of Energy Awards $15 Million for Nuclear Fuel Cycle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

280

Department Of Energy Offers $60 Million to Spur Industry Engagement...  

Office of Environmental Management (EM)

Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear Energy Partnership Department Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear...

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Secretary Chu Announces $30 Million for Research Competition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Million for Research Competition to Develop Next Generation Energy Storage Technologies Secretary Chu Announces 30 Million for Research Competition to Develop Next Generation...

282

Obama Administration Announces $12 Million i6 Green Investment...  

Office of Environmental Management (EM)

Obama Administration Announces 12 Million i6 Green Investment to Promote Clean Energy Innovation and Job Creation Obama Administration Announces 12 Million i6 Green Investment to...

283

Energy Department to Award $6 Million to State Partnerships to...  

Energy Savers [EERE]

to Award 6 Million to State Partnerships to Increase Energy Efficiency Energy Department to Award 6 Million to State Partnerships to Increase Energy Efficiency September 19, 2006...

284

Energy Department Invests $60 Million to Train Next Generation...  

Office of Environmental Management (EM)

60 Million to Train Next Generation Nuclear Energy Leaders, Pioneer Advanced Nuclear Technology Energy Department Invests 60 Million to Train Next Generation Nuclear Energy...

285

Energy Department Awards $5 Million to Spur Local Clean Energy...  

Broader source: Energy.gov (indexed) [DOE]

5 Million to Spur Local Clean Energy Development, Energy Savings Energy Department Awards 5 Million to Spur Local Clean Energy Development, Energy Savings October 14, 2014 -...

286

Energy Department Announces $2 Million to Develop Supply Chain...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Million to Develop Supply Chain, Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cell Technologies Energy Department Announces 2 Million to Develop Supply Chain,...

287

President Obama Announces Over $467 Million in Recovery Act Funding...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar...

288

DOE Announces Nearly $170 Million in Available Funding to Advance...  

Broader source: Energy.gov (indexed) [DOE]

70 Million in Available Funding to Advance Solar Energy Technologies DOE Announces Nearly 170 Million in Available Funding to Advance Solar Energy Technologies April 8, 2011 -...

289

President Obama Announces Over $467 Million in Recovery Act Funding...  

Energy Savers [EERE]

Announces Over 467 Million in Recovery Act Funding for Geothermal and Solar Energy Projects President Obama Announces Over 467 Million in Recovery Act Funding for Geothermal and...

290

Energy Department Finalizes $737 Million Loan Guarantee to Tonopah...  

Office of Environmental Management (EM)

Finalizes 737 Million Loan Guarantee to Tonopah Solar Energy for Nevada Project Energy Department Finalizes 737 Million Loan Guarantee to Tonopah Solar Energy for Nevada Project...

291

Energy Department Announces $15 Million to Integrate Affordable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

5 Million to Integrate Affordable Solar Energy into Nation's Electrical Grid Energy Department Announces 15 Million to Integrate Affordable Solar Energy into Nation's Electrical...

292

Secretary Chu Announces More than $57 Million in Recovery Act...  

Broader source: Energy.gov (indexed) [DOE]

57 Million in Recovery Act Funding to Advance Smart Grid Development Secretary Chu Announces More than 57 Million in Recovery Act Funding to Advance Smart Grid Development July...

293

Secretary Chu Announces Nearly $80 Million Investment for Advanced...  

Broader source: Energy.gov (indexed) [DOE]

80 Million Investment for Advanced Biofuels Research and Fueling Infrastructure Secretary Chu Announces Nearly 80 Million Investment for Advanced Biofuels Research and Fueling...

294

Energy Department Announces $4 Million for University Consortium...  

Energy Savers [EERE]

4 Million for University Consortium to Advance America's Water Power Industry Energy Department Announces 4 Million for University Consortium to Advance America's Water Power...

295

Energy Secretary Chu Announces $79 Million in Recovery Act Funding...  

Broader source: Energy.gov (indexed) [DOE]

79 Million in Recovery Act Funding for Environmental Cleanup in Kentucky Energy Secretary Chu Announces 79 Million in Recovery Act Funding for Environmental Cleanup in Kentucky...

296

Secretary of Energy Announces Nearly $24 Million in Grants for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nearly 24 Million in Grants for Carbon Sequestration Research Secretary of Energy Announces Nearly 24 Million in Grants for Carbon Sequestration Research October 23, 2006 -...

297

DOE Announces Over $30 Million to Help Universities Train the...  

Office of Environmental Management (EM)

30 Million to Help Universities Train the Next Generation of Industrial Energy Efficiency Experts DOE Announces Over 30 Million to Help Universities Train the Next Generation of...

298

Department of Energy Awards Nearly $7 Million to Advance Fuel...  

Energy Savers [EERE]

Million to Advance Fuel Cell and Hydrogen Storage Systems Research Department of Energy Awards Nearly 7 Million to Advance Fuel Cell and Hydrogen Storage Systems Research August...

299

Energy Secretary Bodman Announces $119 Million in Funding and...  

Energy Savers [EERE]

119 Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles Energy Secretary Bodman Announces 119 Million in Funding and Roadmap to Advance Hydrogen Fuel Cell...

300

Energy Department Invests Over $7 Million to Commercialize Cost...  

Energy Savers [EERE]

Energy Department Invests Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over 7 Million to Commercialize...

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Kentucky Natural Gas Processed (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear JanDecadeYear Jan Feb(Million Cubic Feet)

302

Radiation-dominated area metric cosmology  

E-Print Network [OSTI]

We provide further crucial support for a refined, area metric structure of spacetime. Based on the solution of conceptual issues, such as the consistent coupling of fermions and the covariant identification of radiation fields on area metric backgrounds, we show that the radiation-dominated epoch of area metric cosmology is equivalent to that epoch in standard Einstein cosmology. This ensures, in particular, successful nucleosynthesis. This surprising result complements the previously derived prediction of a small late-time acceleration of an area metric universe.

Frederic P. Schuller; Mattias N. R. Wohlfarth

2007-06-12T23:59:59.000Z

303

Defining a Standard Metric for Electricity Savings  

E-Print Network [OSTI]

1991. The Potential for Electricity Efficiency Improvementswww.eia.doe.gov/cneaf/electricity/page/eia860.html>. FigureA STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*,

Koomey, Jonathan

2009-01-01T23:59:59.000Z

304

Implicit Multifunction Theorems in complete metric spaces  

E-Print Network [OSTI]

Implicit Multifunction Theorems in complete metric spaces. Huynh Van Ngai ? Nguyen Huu Tron† and. Michel Théra ‡. Abstract. In this paper, we establish some ...

2010-06-10T23:59:59.000Z

305

Planning for the 400,000 tons/year AISI ironmaking demonstration plant  

SciTech Connect (OSTI)

The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

Aukrust, E. (LTV Steel Corp., Cleveland, OH (United States). AISI Direct Steelmaking Program)

1993-01-01T23:59:59.000Z

306

Fertilizer and Nitrogen 1 billion tons of artificial nitrogen fertilizer used annually.  

E-Print Network [OSTI]

Fertilizer and Nitrogen 1 billion tons of artificial nitrogen fertilizer used annually. Emissions. (fertilizers that use nitric acid or ammonium bicarbonate result in emissions of nitrogen oxides, nitrous oxide, ammonia and carbon dioxide into the atmosphere.) ~Indirect: Phosphorus in excess causes eutrophication

Toohey, Darin W.

307

Local, Regional, and Global Implications of Elemental Mercury in Metal (Copper, Silver, Gold, and Zinc) Ores  

E-Print Network [OSTI]

metric tons of "stamp sand" tailings, whereas copper smelters refined five million metric tons of copperLocal, Regional, and Global Implications of Elemental Mercury in Metal (Copper, Silver, Gold, Michigan 48138 ABSTRACT. Anthropogenic inventories for copper (229 ± 89 ug/cm2, N = 30), and mercury (470

308

Update on the Million Solar Roofs Initiative  

SciTech Connect (OSTI)

The Million Solar Roofs Initiative, announced by the President in June of 1997, spans a period of twelve years and intends to increase domestic deployment of solar technologies. This paper presents an overview of the development of the initiative and significant activities to date.

Herig, C.

1999-05-09T23:59:59.000Z

309

EXTREMAL METRIC FOR THE FIRST EIGENVALUE ON A KLEIN BOTTLE  

E-Print Network [OSTI]

EXTREMAL METRIC FOR THE FIRST EIGENVALUE ON A KLEIN BOTTLE DMITRY JAKOBSON, NIKOLAI NADIRASHVILI extremal metrics. The only known extremal metrics are a round sphere, a standard projective plane, a Clifford torus and an equilateral torus. We construct an extremal metric on a Klein bottle. It is a metric

Leclercq, Remi

310

EXTREMAL METRIC FOR THE FIRST EIGENVALUE ON A KLEIN BOTTLE  

E-Print Network [OSTI]

EXTREMAL METRIC FOR THE FIRST EIGENVALUE ON A KLEIN BOTTLE DMITRY JAKOBSON, NIKOLAI NADIRASHVILI extremal metrics. The only known extremal metrics are a round sphere, a standard projective plane, a Cli#11;ord torus and an equilateral torus. We construct an extremal metric on a Klein bottle. It is a metric

Jakobson, Dmitry

311

Reparametrization invariance of the classical metric  

E-Print Network [OSTI]

There is a statement on the parametrization dependence of the classical metric in the recent paper of N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, gr-qc/0610096. I completely disagree with this statement. Here I show reparametrization invariance of the classical metric.

G. G. Kirilin

2006-11-16T23:59:59.000Z

312

Topology on locally finite metric spaces  

E-Print Network [OSTI]

The necessity of a theory of General Topology and, most of all, of Algebraic Topology on locally finite metric spaces comes from many areas of research in both Applied and Pure Mathematics: Molecular Biology, Mathematical Chemistry, Computer Science, Topological Graph Theory and Metric Geometry. In this paper we propose the basic notions of such a theory and some applications: we replace the classical notions of continuous function, homeomorphism and homotopic equivalence with the notions of NPP-function, NPP-local-isomorphism and NPP-homotopy (NPP stands for Nearest Point Preserving); we also introduce the notion of NPP-isomorphism. We construct three invariants under NPP-isomorphisms and, in particular, we define the fundamental group of a locally finite metric space. As first applications, we propose the following: motivated by the longstanding question whether there is a purely metric condition which extends the notion of amenability of a group to any metric space, we propose the property SN (Small Neighb...

Capraro, Valerio

2011-01-01T23:59:59.000Z

313

Smart Grid Status and Metrics Report Appendices  

SciTech Connect (OSTI)

A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

2014-07-01T23:59:59.000Z

314

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3

315

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30 Georgia -

316

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30 Georgia

317

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30

318

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300 Maine -

319

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300 Maine

320

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3002 New

322

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3002

323

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30020 Rhode

324

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30020

325

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300200 Utah -

326

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300200 Utah

327

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300200

328

adaptive metric knn: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We also prove that the set of points where a path with values in a metric space Maleva, Olga 97 SOBOLEV METRICS ON THE MANIFOLD OF ALL RIEMANNIAN METRICS Mathematics Websites...

329

SAPHIRE 8 Quality Assurance Software Metrics Report  

SciTech Connect (OSTI)

The purpose of this review of software metrics is to examine the quality of the metrics gathered in the 2010 IV&V and to set an outline for results of updated metrics runs to be performed. We find from the review that the maintenance of accepted quality standards presented in the SAPHIRE 8 initial Independent Verification and Validation (IV&V) of April, 2010 is most easily achieved by continuing to utilize the tools used in that effort while adding a metric of bug tracking and resolution. Recommendations from the final IV&V were to continue periodic measurable metrics such as McCabe's complexity measure to ensure quality is maintained. The four software tools used to measure quality in the IV&V were CodeHealer, Coverage Validator, Memory Validator, Performance Validator, and Thread Validator. These are evaluated based on their capabilities. We attempted to run their latest revisions with the newer Delphi 2010 based SAPHIRE 8 code that has been developed and was successful with all of the Validator series of tools on small tests. Another recommendation from the IV&V was to incorporate a bug tracking and resolution metric. To improve our capability of producing this metric, we integrated our current web reporting system with the SpiraTest test management software purchased earlier this year to track requirements traceability.

Kurt G. Vedros

2011-08-01T23:59:59.000Z

330

(Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: In 1998, little if any tungsten concentrate was produced from U.S. mines.  

E-Print Network [OSTI]

as cutting and wear-resistant materials primarily in the metalworking, oil and gas drilling, mining plan Disposals Material inventory inventory for disposal FY 1998 FY 1998 Carbide powder 871

331

(Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded production of tungsten concentrates in the United States was in  

E-Print Network [OSTI]

and wear- resistant materials primarily in the metalworking, oil and gas drilling, mining, and construction--9-30-006 Uncommitted Committed Authorized Disposal plan Disposals Material inventory inventory

332

(Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded production of tungsten concentrates in the United States was in  

E-Print Network [OSTI]

parts to be used as cutting and wear-resistant materials primarily in the metalworking, oil and gas plan Disposals Material inventory inventory for disposal FY 1999 FY 1999 Carbide powder 760 111 760 454

333

(Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A mine in California restarted operations and made its first shipment of tungsten  

E-Print Network [OSTI]

in the metalworking, mining, oil- and gas-drilling, and construction industries. The remaining tungsten was consumed inventory inventory for disposal FY 2007 FY 2007 Ferrotungsten 6 136 Metal powder 268 268 136 34 Ores

334

(Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: In 1997, little if any tungsten concentrate was produced from U.S. mines.  

E-Print Network [OSTI]

as cutting and wear-resistant materials primarily in the metalworking, oil and gas drilling, mining inventory inventory for disposal FY 1997 FY 1997 Carbide powder 871 -- -- -- -- Ferrotungsten 385

335

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2000. Domestically  

E-Print Network [OSTI]

Statistics--United States: 1996 1997 1998 1999 2000e Production, refinery -- -- -- -- -- Imports fluctuations. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves2 Reserve

336

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2002. Domestically  

E-Print Network [OSTI]

Statistics--United States: 1998 1999 2000 2001 2002e Production, refinery -- -- -- -- -- Imports. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves3 Reserve base3 2001

337

(Data in metric tons, unless noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1995. Domestic indium  

E-Print Network [OSTI]

, refinery NA NA NA NA -- Imports for consumption 36.3 36.3 73.4 70.2 73.0 Exports NA NA NA NA NA marketed through a U.S. company. World Refinery Production, Reserves, and Reserve Base: Refinery

338

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2001. Domestically  

E-Print Network [OSTI]

--United States: 1997 1998 1999 2000 2001e Production, refinery -- -- -- -- -- Imports for consumption 85.5 75 77 fluctuations caused by economic uncertainties. World Refinery Production, Reserves, and Reserve Base: Refinery

339

(Data in metric tons, unless otherwise noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1997. Domestically  

E-Print Network [OSTI]

--United States: 1993 1994 1995 1996 1997e Production, refinery -- -- -- -- -- Imports for consumption 73.4 70 for the indium market remains promising. World Refinery Production, Reserves, and Reserve Base: Refinery

340

(Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2002, the United States consumed about 14% of world chromite ore production in  

E-Print Network [OSTI]

-2001): Chromium contained in chromite ore and chromium ferroalloys and metal: South Africa, 50%; Kazakhstan, 20, Kazakhstan, and South Africa) accounted for about 76% of world production. South Africa alone accounts States -- -- -- 7,000 India 1,680 1,900 18,000 39,000 Kazakhstan 2,050 2,300 410,000 410,000 South Africa

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

, vehicles with an internal combustion engine and a battery-powered electric motor. Most commercially that was prone to dangerous overheating. Interest continued in lithium batteries for hybrid electric vehicles lithium batteries were being used increasingly in portable electronic devices and electrical tools

342

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and  

E-Print Network [OSTI]

companies were pursuing the development of lithium batteries for hybrid electric vehicles--vehicles with an internal combustion engine and a battery-powered electric motor. Most commercially available hybrid rechargeable lithium batteries were being used increasingly in portable electronic devices and electrical tools

343

(Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

for electric vehicles (EVs) continued; acceptance, however, of battery-powered EVs was not expanding significantly. Hybrid electric vehicles, vehicles with an internal combustion engine and a battery- powered electric motor, have been more popular than pure EVs. Commercially available hybrid vehicles do not use

344

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

batteries for hybrid electric vehicles, vehicles with an internal combustion engine and a battery-powered electric motor, continued. Commercially available hybrid vehicles do not use lithium batteries, although

345

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

vehicles, vehicles with an internal combustion engine and a battery-powered electric motor. Most increasingly in portable electronic devices and electrical tools. Salient Statistics--United States: 2003 2004 two major automobile companies were pursuing the development of lithium batteries for hybrid electric

346

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,  

E-Print Network [OSTI]

combustion engine and a battery-powered electric motor, continued. Commercially available hybrid vehicles do, and cordless tools. Interest in lithium batteries for hybrid electric vehicles, vehicles with an internal batteries were growing in popularity for powering video cameras, portable computers and telephones

347

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2002, clay and shale production was reported in all States except Alaska,  

E-Print Network [OSTI]

to be as follows: ball clay--35% floor and wall tile, 22% sanitaryware, and 43% other uses; bentonite--28% pet for consumption: Artificially activated clay and earth 19 17 18 21 20 Kaolin 53 57 63 114 155 Other 14 16 16 13 49, not elsewhere classified 432 329 357 344 464 Total3 5,230 4,800 5,260 4,970 4,990 Consumption, apparent 36

348

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clay and shale production was reported in all States except Alaska,  

E-Print Network [OSTI]

% floor and wall tile, 22% sanitaryware, and 43% other uses; bentonite--26% pet waste absorbent, 25,280 9,450 9,160 8,800 9,030 Total3 41,800 41,600 42,200 40,800 40,600 Imports for consumption classified 390 432 329 357 363 Total3 5,080 5,230 4,800 5,260 5,130 Consumption, apparent 36,800 36,500 37

349

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2004, clay and shale production was reported in 41 States. About 240  

E-Print Network [OSTI]

--31% floor and wall tile, 20% sanitaryware, and 49% other uses; bentonite--25% pet waste absorbent, 20,800 8,110 8,010 7,680 8,780 Total3 40,800 39,600 39,300 40,000 48,900 Imports for consumption, not elsewhere classified 357 344 449 420 516 Total3 5,260 4,970 4,960 4,980 5,580 Consumption, apparent 35

350

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode  

E-Print Network [OSTI]

% pet waste absorbent, and 17% drilling mud; common clay--50% brick, 27% cement, and 15% lightweight,100 43,9003 Imports for consumption 39 36 35 45 53 Exports 4,150 4,620 4,680 4,830 4,970 Consumption,900 4,900e Mill 9,000 9,000 9,000 9,000 9,000 Net import reliance as a percent of5 apparent consumption

351

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho,  

E-Print Network [OSTI]

% sanitaryware, 10% pottery, and 37% other uses; bentonite--24% foundry sand bond, 22% pet waste absorbent, 18,530 Kaolin 9,180 9,280 9,450 9,160 8,870 Total3 43,100 41,800 41,600 42,200 40,700 Imports for consumption 45 64 86 90 97 Exports 4,830 5,080 5,230 4,800 5,060 Consumption, apparent 38,300 36,800 36,500 37

352

(Data in metric tons of tungsten, unless otherwise noted) Domestic Production and Use: In 1996, one mine in California produced tungsten concentrate. The mine operated at  

E-Print Network [OSTI]

38 63 44 10 32 Government stockpile shipments, concentrate -- -- -- -- -- Consumption: Reported and equipment, 80%; electrical and electronic machinery and equipment and transportation, 9%; lamps and lighting shipments W W W W W Imports for consumption, concentrate 2,500 1,700 3,000 4,200 3,100 Exports, concentrate

353

(Data in metric tons of tungsten content, unless noted) Domestic Production and Use: In 1995, one mine in California produced tungsten concentrate. The mine operated  

E-Print Network [OSTI]

, concentrate 21 38 63 44 -- Government stockpile shipments, concentrate -- -- -- -- -- Consumption: Reported and equipment, 77%; electrical and electronic machinery and equipment and transportation, 10%; lamps, mine shipments W W W W W Imports for consumption, concentrate 7,800 2,500 1,700 3,000 5,500 Exports

354

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and  

E-Print Network [OSTI]

and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and the United the recycling of lithium batteries. Import Sources (2005-08): Chile, 63%; Argentina, 35%; China, 1%; and other in 2009. Many claims in Nevada, as well as in Argentina, Australia, Bolivia, and Canada, have been leased

355

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters  

E-Print Network [OSTI]

547 550 542 554 Norway 1,320 1,350 1,320 1,380 Russia 3,590 3,650 3,640 3,760 South Africa 863 830 850%. Tariff: Item Number Normal Trade Relations 12-31-05 Unwrought (in coils) 7601.10.3000 2.6% ad val aluminum production decreased slightly owing to cutbacks attributed to increased energy and alumina costs

356

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were  

E-Print Network [OSTI]

,800 South Africa 851 890 860 900 United Arab Emirates, Dubai 75%. Tariff: Item Number Normal Trade Relations 12-31-06 Unwrought (in coils) 7601.10.3000 2.6% ad val aluminum production decreased slightly owing to cutbacks attributed to increased energy and alumina costs

357

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon metal and alloys (excluding semiconductor-grade silicon)  

E-Print Network [OSTI]

%; China, 16%; South Africa, 13%; Canada, 12%; and other, 39%. Tariff: Item Number Normal Trade Relations metal: Brazil, 37%; South Africa, 25%; Canada, 14%; Norway, 6%; and other, 18%. Total: Brazil, 20 energy costs. Demand for silicon metal comes primarily from the aluminum and chemical industries

358

(Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters  

E-Print Network [OSTI]

and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters were temporarily idled. The 11 smelters east of the Mississippi River accounted for 75% of the production; whereas the remaining 11 smelters, which included the 9 Pacific Northwest smelters, accounted for only 25%. Based upon

359

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2009, 6 companies operated 13 primary aluminum smelters; 4 smelters were  

E-Print Network [OSTI]

and Use: In 2009, 6 companies operated 13 primary aluminum smelters; 4 smelters were closed the entire year, and demolition of 1 smelter that had been idle since 2000 was completed in 2009. Of the operating smelters, three were temporarily idled and parts of four others were temporarily closed in 2009. Based

360

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2008, 6 companies operated 14 primary aluminum smelters; 4 smelters were  

E-Print Network [OSTI]

and Use: In 2008, 6 companies operated 14 primary aluminum smelters; 4 smelters were temporarily idled primary aluminum production increased substantially owing to smelter restarts after new power contracts, production was curtailed at two smelters owing to high electricity prices, power supply issues, and a sharp

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2000, based on contained zinc recoverable from  

E-Print Network [OSTI]

three-fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined 92 Employment: Mine and mill, numbere 2,700 2,500 2,400 2,500 2,600 Smelter primary, numbere 1,000 1 production of zinc concentrate by about 3% in 2000. U.S. mine production greatly exceeded smelter capacity

362

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2012, 5 companies operated 10 primary aluminum smelters; 4 smelters were  

E-Print Network [OSTI]

and Use: In 2012, 5 companies operated 10 primary aluminum smelters; 4 smelters were closed temporarily quarter of 2012, the leading U.S. aluminum producer announced that its smelter in Alcoa, TN, which had potlines at its Rockdale, TX, smelter also would be permanently closed. Failure to obtain favorable power

363

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1999, based on contained zinc recoverable from  

E-Print Network [OSTI]

%. Three primary and eight secondary smelters refined zinc metal of commercial grade in 1999. Of zinc metal,500 Smelter primary, numbere 1,000 1,000 1,000 1,000 1,000 Net import reliance3 as a percent of apparent. The planned tripling of refinery capacity at the Clarksville, TN, smelter was suspended by Pasminco Ltd

364

(Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2000, 12 companies operated 23 primary aluminum reduction plants. Montana,  

E-Print Network [OSTI]

, and Issues: Domestic primary aluminum production decreased owing in large part to the smelter production cutbacks caused by increased energy costs, particularly in the Pacific Northwest. Domestic smelters aluminum smelter in Hawesville, KY. The acquisition was subject to the completion of a labor agreement

365

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters  

E-Print Network [OSTI]

and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed the entire year. Demolition of two smelters that had been idle for several years was started in 2010. Based: During the first half of 2010, production from domestic primary aluminum smelters had stabilized after

366

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2007, 6 companies operated 14 primary aluminum smelters; 5 smelters were  

E-Print Network [OSTI]

and Use: In 2007, 6 companies operated 14 primary aluminum smelters; 5 smelters were temporarily idled primary aluminum production increased substantially owing to smelter restarts after new power contracts were obtained by producers. Domestic smelters operated at about 69% of rated or engineered capacity

367

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2011, 5 companies operated 10 primary aluminum smelters; 5 smelters were  

E-Print Network [OSTI]

and Use: In 2011, 5 companies operated 10 primary aluminum smelters; 5 smelters were closed the entire year. One smelter that was closed in 2009 was reopened during the first quarter of 2011. Five potlines that were closed in late 2008 and early 2009 at four other smelters were also restarted in early 2011. Based

368

(Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2001, based on contained zinc recoverable from  

E-Print Network [OSTI]

-fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined zinc metal of commercial,500 2,600 2,400 Smelter primary, numbere 1,000 1,000 1,000 1,000 900 Net import reliance3 greatly exceeded smelter capacity, necessitating exports of concentrate. More than one-third of all

369

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2012, clay and shale production was reported in 40 States. About 180 companies  

E-Print Network [OSTI]

,200 4,300 Net import reliance 5 as a percentage of apparent consumption E E E E E Recycling and pet litter were expected to decline. Fuller's earth could see slight gains as sales increase

370

(Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2013, clay and shale production was reported in 40 States. About 180 companies  

E-Print Network [OSTI]

,350 Net import reliance 5 as a percentage of apparent consumption E E E E E Recycling: Insignificant. Bentonite sales declined slightly because sales to most markets, except pet litter, appeared to have declined. Fuller's earth saw slight gains, mainly because of sales increases for pet litters and fluid

371

(Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2005, based on contained zinc recoverable from  

E-Print Network [OSTI]

accounted for 86% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters Production: Mine, zinc in ore1 842 780 768 739 760 Primary slab zinc 203 182 187 189 250 Secondary slab zinc a major price recovery that started in the third quarter of 2004 and picked up renewed momentum

372

(Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 14% of world chromite ore production in various  

E-Print Network [OSTI]

1998 1999e Production: Mine -- -- -- -- -- Secondary 112 98 120 105 103 Imports for consumption 416 362 (excludes secondary) 298 277 345 e 280 196 Apparent3 (includes secondary) 565 467 488 531 522 Price enhancements that improve recovery and reduce cost, such as agglomeration and preheating of furnace feed

373

(Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2008. Indium-containing  

E-Print Network [OSTI]

: Data on the quantity of secondary indium recovered from scrap were not available. Indium is most loop--from collection of scrap to production of secondary materials--now takes less than 30 days. ITO to dissolve the ITO, from which the indium is recovered. Indium recovery from tailings was thought to have

374

(Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2000, the United States consumed about 13% of world chromite ore production in  

E-Print Network [OSTI]

--United States:1 1996 1997 1998 1999 2000e Production: Mine -- -- -- -- -- Secondary 98 120 104 118 110 Imports Consumption: Reported2 (excludes secondary) 275 333 277 298 280 Apparent3 (includes secondary) 467 490 531 558 was then expanded through the addition of furnaces and plant enhancements that improved recovery and reduced cost

375

By Joseph Gambogi Titanium comprises about 0.62% of the Earth's crust and At yearend, only 267 metric tons of rutile were left in the NDS  

E-Print Network [OSTI]

, and plastics. Other minor uses of titanium minerals include ceramics, chemicals, welding rod coatings, heavy slightly. and Shieldalloy Metallurgical Corp., Newfield, NJ. The two Owing to increased demand

376

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor-and solar-  

E-Print Network [OSTI]

Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor- and solar- grade and aluminum alloys and the chemical industry. The semiconductor and solar industries, which manufacture chips China, 49%; Russia, 20

377

(Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2009. Indium-containing  

E-Print Network [OSTI]

global indium consumption. ITO thin-film coatings were primarily used for electrically conductive ITO is deposited as a thin-film coating onto a substrate, is highly inefficient; approximately 30 and the weaker won. In December 2008, China began a 4-year, 13% subsidy program in certain agricultural regions

378

(Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and  

E-Print Network [OSTI]

States is extremely difficult because of the large number of compounds used in a wide variety of end uses are estimated as follows: ceramics and glass, 31%; batteries, 23%; lubricating greases, 9%; air treatment, 6 conditions improved for lithium-based products in 2010. Sales volumes for the major lithium producers were

379

(Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2003. Two companies,  

E-Print Network [OSTI]

with the curtailment of primary refining capacity have added an extra incentive to the recovery of secondary indium be compared with Japan where the decline in domestic zinc refining has stimulated an aggressive recycling in the world economy. The report of reduced production from mines that produce byproduct indium had a negative

380

(Data in metric tons of contained lithium, unless noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and  

E-Print Network [OSTI]

by Joyce A. Ober, (703) 648-7717. #12;97 LITHIUM Events, Trends, and Issues: The Department of Energy (DOE,000 Bolivia -- -- -- 5,400,000 Brazil 32 32 910 NA Canada 630 650 180,000 360,000 Chile 2,000 2,100 1

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EAC Presentation: Metrics and Benefits Analysis for the ARRA...  

Broader source: Energy.gov (indexed) [DOE]

Metrics and Benefits Analysis for the ARRA Smart Grid Programs - March 10, 2011 EAC Presentation: Metrics and Benefits Analysis for the ARRA Smart Grid Programs - March 10, 2011...

382

Integration of the EM Corporate QA Performance Metrics With Performanc...  

Office of Environmental Management (EM)

Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process...

383

Invariant torsion and G_2-metrics  

E-Print Network [OSTI]

We introduce and study a notion of invariant intrinsic torsion geometry which appears, for instance, in connection with the Bryant-Salamon metric on the spinor bundle over S^3. This space is foliated by six-dimensional hypersurfaces, each of which carries a particular type of SO(3)-structure; the intrinsic torsion is invariant under SO(3). The last condition is sufficient to imply local homogeneity of such geometries, and this allows us to give a classification. We close the circle by showing that the Bryant-Salamon metric is the unique complete metric with holonomy G_2 that arises from SO(3)-structures with invariant intrinsic torsion.

Diego Conti; Thomas Bruun Madsen

2014-10-22T23:59:59.000Z

384

Gravitational lensing in metric theories of gravity  

E-Print Network [OSTI]

Gravitational lensing in metric theories of gravity is discussed. I introduce a generalized approximate metric element, inclusive of both post-post-Newtonian (ppN) contributions and gravito-magnetic field. Following Fermat's principle and standard hyphoteses, I derive the time delay function and deflection angle caused by an isolated mass distribution. Several astrophysical systems are considered. In most of the cases, the gravito-magnetic correction offers the best perspectives for an observational detection. Actual measurements distinguish only marginally different metric theories one from another.

M. Sereno

2003-01-15T23:59:59.000Z

385

Clean Cities Annual Metrics Report 2009 (Revised)  

SciTech Connect (OSTI)

Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

Johnson, C.

2011-08-01T23:59:59.000Z

386

Contributions to Metric Number Technical Report  

E-Print Network [OSTI]

Contributions to Metric Number Theory Paul Rowe Technical Report RHUL­MA­2002­2 5 December 2002, Professor Glyn Harman, for sug- gestions of problems to attempt, helpful advice on methods and help

Dent, Alexander W.

387

New Description of Self-Dual Metrics  

E-Print Network [OSTI]

We show that Pleba\\'nski's equation for self-dual metrics is equivalent to a pair of equations describing canonical transformations in 2-dimensional phase spaces. Examples of linearizations of these equations are given.

J. Tafel

2006-02-09T23:59:59.000Z

388

Microsoft Word - QER Resilience Metrics - Technical Workshp ...  

Energy Savers [EERE]

on developing a long-term roadmap on resilience metrics for electric power, gas, and oil infrastructure and their proposed uses. Location The session will be held on be held...

389

Technical Workshop: Resilience Metrics for Energy Transmission...  

Office of Environmental Management (EM)

NGOs to discuss the state of play of and need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures. Issues important to...

390

Geodesic completeness of diagonal $G_2$ metrics  

E-Print Network [OSTI]

In this talk a sufficient condition for a diagonal orthogonally transitive cylindrical $G_2$ metric to be geodesically complete is given. The condition is weak enough to comprise all known diagonal perfect fluid cosmological models that are non-singular.

L. Fernández-Jambrina

2009-04-10T23:59:59.000Z

391

Nevada Natural Gas Repressuring (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan Feb MarYearYear (Million2009Decade

392

Ohio Natural Gas Processed (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (Million Cubic Feet)

393

Ohio Natural Gas Repressuring (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (Million Cubic Feet)Decade

394

Ohio Natural Gas Repressuring (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (Million Cubic Feet)DecadeRepressuring

395

Oklahoma Natural Gas Repressuring (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year JanRepressuring (Million

396

Oregon Natural Gas Repressuring (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 (Million CubicSep-14

397

Oregon Natural Gas Repressuring (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1 Year-2 (Million CubicSep-14Year Jan

398

Wyoming Natural Gas Processed (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-DissolvedDecadeBarrels)(Million

399

Tennessee Natural Gas Repressuring (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. (MillionDecade

400

Tennessee Natural Gas Repressuring (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. (MillionDecadeRepressuring

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Texas Natural Gas Repressuring (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (MillionSep-14 Oct-14

402

Texas Natural Gas Repressuring (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (MillionSep-14 Oct-14Year Jan

403

Mississippi Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million2008 2009Decade

404

Mississippi Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million2008 2009DecadeYear

405

Tennessee Natural Gas Processed (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousandProcessed (Million Cubic Feet) Tennessee Natural

406

Alabama Natural Gas Processed (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan Feb Mar Apr MayProcessed (Million

407

Arkansas Natural Gas Processed (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVentedYear Jan(Million Cubic Feet)

408

Arkansas Natural Gas Repressuring (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVentedYear Jan(Million CubicDecade

409

Arkansas Natural Gas Repressuring (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVentedYear Jan(Million

410

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 U.S.0

411

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 U.S.02

412

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 U.S.026

413

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 U.S.0268

414

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 U.S.02680

415

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 U.S.026802

416

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 U.S.0268024

417

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3 U.S.02680246

418

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30 Georgia -4

419

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30 Georgia -46

420

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30 Georgia0

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30 Georgia02

422

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30 Georgia024

423

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30 Georgia0246

424

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300 Maine -2

425

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300 Maine -24

426

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300 Maine -246

427

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300 Maine0

428

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300 Maine02

429

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300 Maine024

430

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300 Maine0246

431

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300 Maine02468

432

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3002 New4 New

433

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3002 New4 New6

434

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3002 New4

435

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3002 New450

436

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3002 New4502

437

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3002 New45024

438

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December3002 New450246

439

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30020 Rhode2

440

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30020 Rhode24

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December30020 Rhode246

442

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300200 Utah -2

443

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300200 Utah6

444

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300200 Utah68

445

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300200 Utah680

446

Colorado Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic2009 2010 2011Decade

447

Colorado Natural Gas Repressuring (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic2009 2010

448

Utah Natural Gas Repressuring (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 (Million Cubic2008Decade

449

Utah Natural Gas Repressuring (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 (Million Cubic2008DecadeYear

450

Michigan Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith,Foot) DecadeBarrels)(Million

451

Mississippi Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 Kentucky -Provedoff)CubicElements)(Million

452

Colorado Natural Gas Processed (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010Barrels) Reserves Based(Million Cubic

453

Kansas Natural Gas Processed (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear Jan FebFoot)Barrels)

454

Louisiana Natural Gas Processed (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear(Billion CubicDecade

455

Nebraska Natural Gas Processed (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2.FuelFuelProcessed (Million Cubic

456

Nebraska Natural Gas Repressuring (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2.FuelFuelProcessed (Million

457

Energy Department Invests Over $10 Million to Improve Grid Reliability...  

Broader source: Energy.gov (indexed) [DOE]

Over 10 Million to Improve Grid Reliability and Resiliency Energy Department Invests Over 10 Million to Improve Grid Reliability and Resiliency June 11, 2014 - 6:20pm Addthis...

458

Department of Energy Announces more than $18 Million to Strengthen...  

Office of Environmental Management (EM)

more than 18 Million to Strengthen Nuclear Education at U.S. Universities and Colleges Department of Energy Announces more than 18 Million to Strengthen Nuclear Education at U.S....

459

VOLUME & VALUE OF CATCH BY REGIONS 1970 Million Pounds  

E-Print Network [OSTI]

.7 million; in 1969, $580.8 million. There were record packs of tuna, shrimp, and animal (pet) food. Recorded, and retail. In 1970, demand for fiShery products was strong. Both consumption and prices rose. On the average

460

Oak Ridge: Approaching 4 Million Safe Work Hours | Department...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge: Approaching 4 Million Safe Work Hours Oak Ridge: Approaching 4 Million Safe Work Hours March 11, 2013 - 12:03pm Addthis Safety inspections are a key element in a nuclear...

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Department Announces $35 Million to Advance Fuel Cell...  

Energy Savers [EERE]

5 Million to Advance Fuel Cell and Hydrogen Technologies Energy Department Announces 35 Million to Advance Fuel Cell and Hydrogen Technologies March 3, 2015 - 11:30am Addthis The...

462

Energy Department Announces $150 Million in Tax Credits to Invest...  

Energy Savers [EERE]

Energy Department Announces 150 Million in Tax Credits to Invest in U.S. Clean Energy Manufacturing Energy Department Announces 150 Million in Tax Credits to Invest in U.S. Clean...

463

Energy Department Announces Up to $7 Million to Expand Clean...  

Energy Savers [EERE]

Energy Department Announces Up to 7 Million to Expand Clean Energy and Energy Efficiency on Tribal Lands Energy Department Announces Up to 7 Million to Expand Clean Energy and...

464

Energy Department Announces $7 Million to Reduce Non-Hardware...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

7 Million to Reduce Non-Hardware Costs of Solar Energy Systems Energy Department Announces 7 Million to Reduce Non-Hardware Costs of Solar Energy Systems November 15, 2011 -...

465

Energy Department Announces More Than $59 Million Investment...  

Energy Savers [EERE]

Energy Department Announces More Than 59 Million Investment in Solar Energy Department Announces More Than 59 Million Investment in Solar January 30, 2015 - 4:07pm Addthis Energy...

466

Secretary Chu Announces Two Million Smart Grid Meters Installed...  

Energy Savers [EERE]

Two Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am Addthis Columbus, OH - At an...

467

Secretary Bodman Announces Sale of 11 Million Barrels of Crude...  

Energy Savers [EERE]

Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic...

468

DOE's Office of Science Awards 18 Million Hours of Supercomputing...  

Office of Environmental Management (EM)

16,000 hours for a pilot study of Parkinson's disease to 5 million hours to study protein folding. Six of the projects received awards of 1 million or more processor-hours. DOE's...

469

Department of Energy to Invest Nearly $18 Million for Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nearly 18 Million for Advanced Biofuels User Facility Department of Energy to Invest Nearly 18 Million for Advanced Biofuels User Facility March 31, 2010 - 12:00am Addthis...

470

Secretary Chu Announces more than $200 Million for Solar and...  

Energy Savers [EERE]

more than 200 Million for Solar and Water Power Technologies Secretary Chu Announces more than 200 Million for Solar and Water Power Technologies April 22, 2010 - 12:00am Addthis...

471

Leaching and standing water characteristics of bottom ash and composted manure blends  

E-Print Network [OSTI]

Coal burning electrical generating facilities produce roughly 91 million metric tons of ash byproducts annually. Typically, this ash is retained at the power plant sites, adding to the cost of managing wastes at the plants. Another waste material...

Mathis, James Gregory

2001-01-01T23:59:59.000Z

472

Alturas LLC- FE Dkt. No. 14-55-NG (FTA)  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy gives notice of receipt of an application filed on April 18, 2014, by Alturas LLC requesting long-term authority to export up to a total of 1.5 million metric tons ...

473

EIA - AEO2013 Early Release Energy-Related Carbon Dioxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

CO2 Emissions Total U.S. energy-related CO2 emissions do not return to their 2005 level (5,997 million metric tons) by the end of the AEO2013 projection period.6 Growth in...

474

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network [OSTI]

of Municipal Sewage Sludge to Produce Synthetic Fuels,5.4 million dry metric tons of sludge annually or 47pounds of sewage sludge (dry weight basis) for every

Hu, Sangran

2012-01-01T23:59:59.000Z

475

Department of Energy Wind Vision: An Industry Preview (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

energy source, wind has already helped the nation reduce its greenhouse gas, water, and air pollution footprint from the power sector. The 96 million metric tons of avoided CO2...

476

Slide 1  

Broader source: Energy.gov (indexed) [DOE]

transuranic waste - 1.3 million cubic meters of low-level waste - 700,000 metric tons of depleted uranium The EM Program is the world's largest cleanup program EM Activities...

477

Figure 3. Energy-Related Carbon Dioxide Emissions  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy-Related Carbon Dioxide Emissions" " (million metric tons)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,...

478

Report: An Updated Annual Energy Outlook 2009 Reference Case...  

U.S. Energy Information Administration (EIA) Indexed Site

8. Carbon Dioxide Emissions by Sector and Source" " (million metric tons carbon dioxide equivalent, unless otherwise noted)" ,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016...

479

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

E-Print Network [OSTI]

$/MBtu) Electric Heat Rate (Btu/kWh) kWh = kilowatthour; TWh= terawatthour; MBtu = Million Btu; MtC = Metric tons ofon heavy load. Idle Rate (Btu/h) Table 6-9. Energy Star

Sanchez, Marla

2010-01-01T23:59:59.000Z

480

A Specification Logic for Termination Reasoning Ton-Chanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin  

E-Print Network [OSTI]

A Specification Logic for Termination Reasoning Ton-Chanh Le, Cristian Gherghina, Aquinas Hobor a logical framework for specifying and proving asser- tions about program termination. Although termination. Here we propose to integrate termination requirements directly into our specification logic

Hobor, Aquinas

Note: This page contains sample records for the topic "million metric tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Scale of the Energy Challenge 22,000 gallons of fuel oil 150 tons of coal  

E-Print Network [OSTI]

and rooftops in the United States. The total land area required by nuclear power plants is small! Ã? 20 15The Scale of the Energy Challenge Biomass Wind Nuclear Solar 22,000 gallons of fuel oil 150 tons

Hochberg, Michael

482

Product Concept Metrics: a Preliminary Study Working Paper  

E-Print Network [OSTI]

Metrics for product concept evaluation and screening is a relatively unstudied topic of product development.

Takala, Roope

483

Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)  

SciTech Connect (OSTI)

This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

2013-10-01T23:59:59.000Z

484

Cleanroom Energy Efficiency: Metrics and Benchmarks  

SciTech Connect (OSTI)

Cleanrooms are among the most energy-intensive types of facilities. This is primarily due to the cleanliness requirements that result in high airflow rates and system static pressures, as well as process requirements that result in high cooling loads. Various studies have shown that there is a wide range of cleanroom energy efficiencies and that facility managers may not be aware of how energy efficient their cleanroom facility can be relative to other cleanroom facilities with the same cleanliness requirements. Metrics and benchmarks are an effective way to compare one facility to another and to track the performance of a given facility over time. This article presents the key metrics and benchmarks that facility managers can use to assess, track, and manage their cleanroom energy efficiency or to set energy efficiency targets for new construction. These include system-level metrics such as air change rates, air handling W/cfm, and filter pressure drops. Operational data are presented from over 20 different cleanrooms that were benchmarked with these metrics and that are part of the cleanroom benchmark dataset maintained by Lawrence Berkeley National Laboratory (LBNL). Overall production efficiency metrics for cleanrooms in 28 semiconductor manufacturing facilities in the United States and recorded in the Fabs21 database are also presented.

International SEMATECH Manufacturing Initiative; Mathew, Paul A.; Tschudi, William; Sartor, Dale; Beasley, James

2010-07-07T23:59:59.000Z

485

Implementing the Data Center Energy Productivity Metric  

SciTech Connect (OSTI)

As data centers proliferate in both size and number, their energy efficiency is becoming increasingly important. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented, high performance computing data center. We found that DCeP was successful in clearly distinguishing between different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve (or even maximize) energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and among data centers.

Sego, Landon H.; Marquez, Andres; Rawson, Andrew; Cader, Tahir; Fox, Kevin M.; Gustafson, William I.; Mundy, Christopher J.

2012-10-01T23:59:59.000Z

486

Enhanced Accident Tolerant LWR Fuels: Metrics Development  

SciTech Connect (OSTI)

The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

2013-09-01T23:59:59.000Z

487

Flowing Liquid Crystal Simulating the Schwarzschild Metric  

E-Print Network [OSTI]

We show how to simulate the equatorial section of the Schwarzschild metric through a flowing liquid crystal in its nematic phase. Inside a liquid crystal in the nematic phase, a traveling light ray feels an effective metric, whose properties are linked to perpendicular and parallel refractive indexes, $n_o$ e $n_e$ respectively, of the rod-like molecule of the liquid crystal. As these indexes depend on the scalar order parameter of the liquid crystal, the Beris-Edwards hydrodynamic theory is used to connect the order parameter with the velocity of a liquid crystal flow at each point. This way we calculate a radial velocity profile that simulates the equatorial section of the Schwarzschild metric, in the region outside of Schwarzschild's radius, in the nematic phase of the liquid crystal. In our model, the higher flow velocity can be of the order of some meters per second.

Erms R. Pereira; Fernando Moraes

2010-11-21T23:59:59.000Z

488

A theory of metrics with maximal acceleration  

E-Print Network [OSTI]

We present a geometric theory for spacetimes whose world lines associated with physical particles have an upper bound for the proper acceleration. After some fundamental remarks on the requirements that classical dynamics for point particles must hold good, the notion of generalized metric and a theory of maximal acceleration are introduced. A perturbative approach to metrics of maximal acceleration is discussed. Then several of their physical and kinematical properties are investigated. These include a discussion of the fundamental causal theory concepts and the introduction of the associated notions of Euclidean length and celerity function. Finally, we discuss the corresponding modification of the Einstein's mass-energy relation.

Ricardo Gallego Torromé

2014-03-06T23:59:59.000Z

489

FY 2015 METRIC SUMMARY | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5 METRIC SUMMARY FY 2015 METRIC

490

Clean Cities 2010 Annual Metrics Report  

SciTech Connect (OSTI)

This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

Johnson, C.

2012-10-01T23:59:59.000Z

491

Clean Cities 2011 Annual Metrics Report  

SciTech Connect (OSTI)

This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

Johnson, C.

2012-12-01T23:59:59.000Z

492

Performance Metrics Research Project - Final Report  

SciTech Connect (OSTI)

NREL began work for DOE on this project to standardize the measurement and characterization of building energy performance. NREL's primary research objectives were to determine which performance metrics have greatest value for determining energy performance and to develop standard definitions and methods of measuring and reporting that performance.

Deru, M.; Torcellini, P.

2005-10-01T23:59:59.000Z

493

Metrics for a Sustainable Produced By  

E-Print Network [OSTI]

Metrics for a Sustainable EcoVillage #12;2 Produced By: Nam Nguyen Master of Urban and Regional Project Manager Project for Pride in Living (PPL) Jeffrey Skrenes Housing Director Hawthorne Neighborhood Council Photo source: Unless otherwise noted, photos are provided by People for Pride in Living

Levinson, David M.

494

The Geothermal Technologies Office Invests $18 Million for Innovative...  

Broader source: Energy.gov (indexed) [DOE]

of Energy today announced up to 18 million for 32 projects that will advance geothermal energy development in the United States. The selected projects target research and...

495

,"Sherwood, ND Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

496

,"Warroad, MN Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

497

,"Grand Island, NY Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

498

,"Calais, ME Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

499

,"Massena, NY Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

500

,"Waddington, NY Natural Gas Pipeline Exports to Canada (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Exports to Canada (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...