National Library of Energy BETA

Sample records for million btu ash

  1. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:00:20 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  2. Btu)","per Building

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  3. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value

  4. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and

  5. Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 – – 1950 .21 1.41 .06 .43 .43 2.95 [R] .26 1.74 -3.6 1951 .21 1.35 .06 .40 .44 2.78 .26 1.65 -5.4 1952 .21 1.31 [R] .07 .45 .44 2.73 .26 1.63 -1.0 1953 .21 1.29 .08 .50 .46 2.86 .27 1.69 3.3 1954 .19 1.18 .09 .55 .48 2.94 .28 1.70 .7 1955

  6. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  7. Table 3.3 Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars 1 per Million Btu) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 9,10,14 Coal Natural Gas 3 Petroleum Nuclear Fuel Biomass 8 Total 9,10 Distillate Fuel Oil Jet Fuel 4 LPG 5 Motor Gasoline 6 Residual Fuel Oil Other 7 Total 1970 0.38 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1971 .42 .63 1.22 .77 1.46 2.90 .58 1.45 1.78 .18 1.31 1.15 .38 5.30 1.76 1972 .45 .68 1.22

  8. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  9. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 1.06 1.54 6.51 2.10 0.75 0.90 [R] 6.09 1.97 0.45 0.38 0.98 1.59 2.99 0.84 2.31 2.31 1971 1.12 1.59 6.80 2.24 .80 1.02 6.44 2.15 .50 .41 1.05

  10. First BTU | Open Energy Information

    Open Energy Info (EERE)

    that is consumed by the United States.3 References First BTU First BTU Green Energy About First BTU Retrieved from "http:en.openei.orgwindex.php?titleFirstBT...

  11. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  12. ,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per ...

  13. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    1862 Product: US-based manufacturer of thermal processing equipment, semiconductor packaging, and surface mount assembly. References: BTU International Inc1 This article is a...

  14. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for system-wide...

  15. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12...

  16. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.001 1.720 2.433 2.463 2.231 2.376 2000's 4.304 4.105 3.441 5.497 6.417 9.186 7.399 7.359 9.014 4.428 2010's 4.471 4.090 2.926 3.775 4.236 2.684

  17. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836

  18. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.113 01/21 2.159 01/28 2.233 1994-Feb 02/04 2.303 02/11 2.230 02/18 2.223 02/25 2.197 1994-Mar 03/04 2.144 03/11 2.150 03/18 2.148 03/25 2.095 1994-Apr 04/01 2.076 04/08 2.101 04/15 2.137 04/22 2.171 04/29 2.133 1994-May 05/06 2.056 05/13 2.017 05/20 1.987 05/27 1.938 1994-Jun 06/03 2.023 06/10 2.122 06/17 2.173 06/24 2.118 1994-Jul 07/01 2.182 07/08 2.119

  19. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.039 1.739 2.350 2.418 2.290 2.406 2000's 4.217 4.069 3.499 5.466 6.522 9.307 7.852 7.601 9.141 4.669 2010's 4.564 4.160 3.020 3.822 4.227 2.739

  20. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977

  1. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/21 2.055 01/28 2.133 1994-Feb 02/04 2.189 02/11 2.159 02/18 2.174 02/25 2.163 1994-Mar 03/04 2.127 03/11 2.136 03/18 2.141 03/25 2.103 1994-Apr 04/01 2.085 04/08 2.105 04/15 2.131 04/22 2.175 04/29 2.149 1994-May 05/06 2.076 05/13 2.045 05/20 2.034 05/27 1.994 1994-Jun 06/03 2.078 06/10 2.149 06/17 2.172 06/24 2.142 1994-Jul 07/01 2.187 07/08 2.143 07/15 2.079

  2. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.906 2.054 1.746 2.270 2.363 2.332 2.418 2000's 4.045 4.103 3.539 5.401 6.534 9.185 8.238 7.811 9.254 4.882 2010's 4.658 4.227 3.109 3.854 4.218 2.792

  3. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1993 1.906 1994 2.012 2.140 2.120 2.150 2.081 2.189 2.186 2.168 2.079 1.991 1.843 1.672 1995 1.519 1.541 1.672 1.752 1.810 1.763 1.727 1.826 1.886 1.827 1.770 1.844 1996 1.877 1.985 2.040 2.245 2.275 2.561 2.503 2.293 2.296 2.436 2.317 2.419 1997 2.227 1.999 1.987 2.084 2.249 2.194 2.274 2.689 2.997 2.873 2.532 2.204 1998 2.124 2.324 2.333 2.533 2.289 2.291 2.428 2.419 2.537 2.453 2.294 1.940 1999 1.880 1.850 1.886 2.214 2.331 2.429 2.539

  4. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187

  5. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177...

  6. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.934 1.692 2.502 2.475 2.156 2.319 2000's 4.311 4.053 3.366 5.493 6.178 9.014 6.976 7.114 8.899 4.159 2010's 4.382 4.026 2.827 3.731 4.262 2.627

  7. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.231 01/21 2.297 01/28 2.404 1994-Feb 02/04 2.506 02/11 2.369 02/18 2.330 02/25 2.267 1994-Mar 03/04 2.178 03/11 2.146 03/18 2.108 03/25 2.058 1994-Apr 04/01 2.065 04/08 2.092 04/15 2.127 04/22 2.126 04/29 2.097 1994-May 05/06 2.025 05/13 1.959 05/20 1.933 05/27 1.855 1994-Jun 06/03 1.938 06/10 2.052 06/17 2.128 06/24 2.065 1994-Jul 07/01 2.183 07/08 2.087

  8. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18

  9. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25

  10. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to

  11. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050

  12. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Daily","3212016" ,"Release Date:","3232016" ,"Next Release Date:","3302016" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  13. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","22016" ,"Release Date:","3232016" ,"Next Release Date:","3302016" ,"Excel File Name:","rngwhhdm.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  14. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to ...

  15. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 0110 3.79 0117 4.19 0124 2.98 0131 2.91 ...

  16. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.49 2.09 2.27 2000's 4.31 3.96 3.38 5.47 5.89 8.69 6.73 6.97 8.86 3.94 2010's 4.37 4.00 2.75 ...

  17. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 ...

  18. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494...

  19. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect (OSTI)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  20. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  1. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  2. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  3. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalAnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  4. Microfabricated BTU monitoring device for system-wide natural gas

    Office of Scientific and Technical Information (OSTI)

    monitoring. (Technical Report) | SciTech Connect Technical Report: Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for system-wide natural gas monitoring. The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will

  5. DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Information Resources » Energy Analysis » DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) About the Energy Data Use this diagram to explore (zoom, pan, select) and compare energy flows across U.S. manufacturing and key subsectors. Line widths indicate the volume of energy flow in trillions of British thermal units (TBtu). The 15 manufacturing subsectors together consume 95% of all

  6. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  7. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"3/16/2016 12:55:36 PM"

  8. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"3/16/2016

  9. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12.91 15.20 8.99 2010's 11.83 15.12 10.98 9.94 9.56 4.97

  10. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2009 7.31 6.90 6.70 6.94 7.72 9.35 8.36 9.51 9.67 10.52 11.76 12.45 2010 13.46 13.23 11.89 11.62 11.29 10.93 10.18 10.48 11.02 12.15 12.71 13.07 2011 13.03 13.65 14.38 15.45 15.62 15.23 15.80 15.24 15.88 15.71 15.70 15.31 2012 13.82 12.47 13.13 12.72 10.83 8.70 9.66 10.18 10.04 10.35 10.16 9.73 2013 9.84 9.91 9.57 9.64 9.48 9.06 9.56 10.21 10.26 10.41 10.42 10.76 2014 11.61 11.94 10.03 10.26 10.02 10.17 9.94 9.69 9.86 8.75 7.84 5.63 2015 5.08

  11. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  12. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, David R. (New Castle, DE); Velenyi, Louis J. (Lyndhurst, OH); Pepera, Marc A. (Northfield, OH); Dolhyj, Serge R. (Parma, OH)

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  13. Activation of fly ash

    DOE Patents [OSTI]

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  14. Fly ash carbon passivation

    DOE Patents [OSTI]

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  15. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  16. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  17. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  18. Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin

    Office of Environmental Management (EM)

    Site (SRS) recently cleaned up a 17- acre basin containing coal ash residues from Cold War operations. The American Recovery and Reinvestment Act project was safely completed at a cost of $8.9 million, $2.9 million under budget. The manmade earthen basin received ash from the former R Area Pow- erhouse operations, which ended in 1964. The first of five reactors con- structed at SRS, the R Reactor produced nuclear materials for national defense. Recovery Act funding allowed SRS to accelerate

  19. Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin |

    Office of Environmental Management (EM)

    Department of Energy Accomplish Cleanup of Second Cold War Coal Ash Basin Recovery Act Workers Accomplish Cleanup of Second Cold War Coal Ash Basin American Recovery and Reinvestment Act workers recently cleaned up a second basin containing coal ash residues from Cold War operations at the Savannah River Site (SRS). About $24 million from the Recovery Act funded the environmental restoration project, allowing SRS to complete the project at least five years ahead of schedule. The work is part

  20. Comparison between MSW ash and RDF ash from incineration process

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Comparison between MSW ash and RDF ash from incineration process Citation Details In-Document Search Title: Comparison between MSW ash and RDF ash from incineration process Resource recovery plants with waste sorting process prior to incineration have not been successfully developed in many developing countries. The reuse potential of incineration ash in light of toxicity and compressive strength remains unclear due to the inhomogeneous composition and higher

  1. Idaho Nuclear Technology and Engineering Center (INTEC) (formerly ICPP) ash reutilization study

    SciTech Connect (OSTI)

    Langenwalter, T.; Pettet, M.; Ochoa, R.; Jensen, S.

    1998-05-01

    Since 1984, the coal-fired plant at the Idaho Nuclear Technology and Engineering Center (INTEC, formerly Idaho Chemical Processing Plant) has been generating fly ash at a rate of approximately 1,000 tons per year. This ash is hydrated and placed in an ash bury pit near the coal-fired plant. The existing ash bury pit will be full in less than 1 year at its present rate of use. A conceptual design to build a new ash bury pit was completed, and the new pit is estimated to cost $1.7 million. This report evaluates ash reutilization alternatives that propose to eliminate this waste stream and save the $1.7 million required to build a new pit. The alternatives include using ash for landfill day cover, concrete admixture, flowable fill, soil stabilization, waste remediation, and carbon recovery technology. Both physical and chemical testing, under the guidance of the American Society for Testing and Materials, have been performed on ash from the existing pit and from different steps within the facility`s processes. The test results have been evaluated, compared to commercial ash, and are discussed as they relate to reutilization alternatives. This study recommends that the ash be used in flowable fill concrete for Deactivation and Demolition work at the Idaho National Engineering and Environmental Laboratory.

  2. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 947 959 990 1,005 1,011 965 989 996 996 997 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  3. Comparison between MSW ash and RDF ash from incineration process

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Comparison between MSW ash and RDF ash from incineration process Citation Details In-Document Search Title: Comparison between MSW ash and RDF ash from incineration process × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Water Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing ... (millions)" ,,,,,,"5 or More Members" "Water Heating",,"1 Member","2 Members","3 ...

  5. Engineering Model for Ash Formation

    Energy Science and Technology Software Center (OSTI)

    1994-12-02

    Ash deposition is controlled by the impaction and sticking of individual ash particles to heat transfer surfaces. Prediction of deposition therefore requires that the important factors in this process be predictable from coal and operational parameters. Coal combustion, boiler heat transfer, ash formation, ash particle aerodynamic, and ash particle sticking models are all essential steps in this process. The model described herein addresses the prediction of ash particle size and composition distributions based upon combustionmore » conditions and coal parameters. Key features of the model include a mineral redistribution routine to invert CCSEM mineralogical data, and a mineral interaction routine that simulates the conversion of mineral matter into ash during coal burning and yields ash particle size and composition distributions.« less

  6. C3DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) NEW...

  7. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,014 1,015 1,016 1,015 1,014 1,015 1,016 1,019 1,017 1,016 1,017 1,017 2014 1,018 1,018 1,018 1,018 1,021 1,022 1,023 1,023 1,027 1,026 1,026 1,025 2015 1,025 1,026 1,025 1,026 1,028 1,031 1,030 1,028 1,029 1,028 1,026 1,027 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 1,065 1,062 1,063 1,063 1,064 2015 1,061 1,061 1,062 1,051 1,055 1,055 1,044 1,044 1,043 1,051 1,051 1,049 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,032 1,030 1,033 1,040 1,051 1,056 1,057 1,058 1,037 1,032 1,033 2014 1,030 1,036 1,038 1,041 1,051 1,050 1,048 1,048 1,050 1,055 1,042 1,051 2015 1,046 1,044 1,051 1,059 1,059 1,070 1,073 1,069 1,076 1,069 1,060 1,051 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,016 1,015 1,016 1,015 1,016 1,015 1,016 1,016 1,017 1,017 1,018 1,018 2014 1,018 1,018 1,018 1,019 1,019 1,019 1,022 1,023 1,024 1,023 1,024 1,025 2015 1,024 1,025 1,024 1,024 1,026 1,026 1,026 1,024 1,024 1,023 1,023 1,023 - = No Data Reported; -- = Not Applicable; NA = Not

  11. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,018 1,025 1,011 1,022 1,028 1,024 1,032 1,028 1,030 1,030 1,026 1,024 2014 1,015 1,015 1,016 1,019 1,020 1,022 1,022 1,023 1,021 1,020 1,018 1,017 2015 1,017 1,026 1,029 1,026 1,049 1,027 1,027 1,026 1,026 1,028 1,027 1,026 - = No Data Reported; -- = Not Applicable;

  12. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 1,047 1,044 1,046 1,044 1,045 2015 1,045 1,047 1,047 1,051 1,054 1,060 1,059 1,059 1,058 1,058 1,057 1,056 - = No Data Reported; -- = Not Applicable; NA = Not

  13. U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU

    U.S. Energy Information Administration (EIA) Indexed Site

    per Cubic Foot) Other Sectors Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,025 1,028 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016

  14. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages:

  15. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 1,029 1,031 1,034 1,037 1,038 2015 1,030 1,031 1,029 1,029 1,028 1,027 1,028 1,024 1,023 1,023 1,022 1,023 - = No Data Reported; -- = Not Applicable;

  16. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025 1,025 1,027 1,025 1,028 1,025 2015 1,033 1,034 1,035 1,036 1,044 1,039 1,040 1,042 1,039 1,037 1,035 1,031 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 1,036 1,038 1,022 1,017 1,019 2015 1,023 1,018 1,015 1,016 1,023 1,021 1,024 1,015 1,020 1,024 1,021 1,024 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 1,019 1,046 1,039 2015 1,047 1,037 1,030 1,023 1,000 1,010 1,034 1,028 1,024 1,033 1,035 1,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,015 1,015 1,014 1,015 1,015 1,016 1,017 1,019 1,018 2014 1,020 1,020 1,020 1,020 1,020 1,020 1,022 1,020 1,021 1,021 1,023 1,024 2015 1,027 1,030 1,029 1,028 1,029 1,027 1,027 1,027 1,028 1,028 1,030 1,030 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,012 1,013 1,015 1,019 1,020 1,019 1,021 1,020 1,018 1,015 1,014 2014 1,016 1,017 1,019 1,019 1,023 1,023 1,025 1,030 1,028 1,027 1,025 1,029 2015 1,028 1,029 1,031 1,039 1,037 1,043 1,043 1,044 1,041 1,039 1,034 1,033 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,020 1,021 1,020 1,021 1,026 1,030 1,028 1,029 1,028 1,029 1,029 1,027 2014 1,031 1,027 1,033 1,034 1,038 1,042 1,042 1,051 1,046 1,040 1,038 1,040 2015 1,041 1,034 1,033 1,037 1,044 1,047 1,043 1,041 1,039 1,041 1,045 1,041 - = No Data Reported; -- = Not Applicable;

  2. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,014 1,015 1,018 1,018 1,021 1,022 1,025 1,020 1,020 2014 1,019 1,014 1,019 1,026 1,030 1,034 1,035 1,036 1,035 1,033 1,035 1,034 2015 1,036 1,033 1,031 1,037 1,032 1,030 1,030 1,029 1,031 1,028 1,029 1,030 - = No Data Reported; -- = Not Applicable;

  3. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,014 1,013 1,014 1,013 1,017 1,015 1,016 1,019 1,013 1,014 2014 1,013 1,013 1,014 1,014 1,011 1,016 1,016 1,018 1,017 1,018 1,017 1,017 2015 1,017 1,020 1,025 1,026 1,024 1,026 1,026 1,026 1,026 1,025 1,024 1,023 - = No Data Reported; -- = Not Applicable; NA = Not

  4. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,044 1,040 1,032 1,034 1,034 1,044 1,048 1,043 1,047 1,041 1,032 1,031 2014 1,034 1,030 1,030 1,027 1,032 1,030 1,038 1,036 1,040 1,031 1,026 1,030 2015 1,028 1,029 1,028 1,021 1,019 1,030 1,031 1,033 1,032 1,032 1,034 1,034 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031 1,039 1,023 1,016 1,025 1,027 2015 1,033 1,035 1,030 1,025 1,022 1,020 1,020 1,018 1,019 1,026 1,025 1,027 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,041 1,037 1,032 1,027 1,037 1,042 1,060 1,056 1,062 1,059 1,061 1,059 2014 1,053 1,048 1,045 1,049 1,047 1,052 1,051 1,051 1,049 1,052 1,057 1,057 2015 1,059 1,061 1,058 1,051 1,058 1,057 1,055 1,049 1,050 1,053 1,049 1,050 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,033 1,032 1,033 1,035 1,032 1,033 1,034 1,036 1,038 1,033 1,030 2014 1,035 1,032 1,031 1,030 1,030 1,031 1,030 1,029 1,029 1,028 1,029 1,028 2015 1,035 1,035 1,030 1,029 1,027 1,027 1,029 1,028 1,027 1,028 1,029 1,030 - = No Data Reported; -- = Not

  8. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,021 1,022 1,026 1,020 1,022 1,024 1,021 1,019 1,019 1,017 1,019 2014 1,019 1,021 1,021 1,017 1,020 1,019 1,015 1,028 1,022 1,023 1,026 1,029 2015 1,027 1,026 1,030 1,035 1,028 1,033 1,034 1,035 1,036 1,034 1,041 1,040 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels ADVANCED MANUFACTURING OFFICE Enabling Clean Combustion of Low-Btu and Reactive Fuels in Gas Turbines By enabling ultralow-emission, lean premixed combustion of a wide range of gaseous opportunity fuels, this unique, fuel- fexible catalytic combustor for gas turbines can reduce natural gas consumption in industry. Introduction Gas turbines are commonly used in industry for onsite power and heating needs because of their high

  10. Modeling volcanic ash dispersal

    ScienceCinema (OSTI)

    None

    2011-10-06

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Water ...

  12. Incineration and incinerator ash processing

    SciTech Connect (OSTI)

    Blum, T.W.

    1991-01-01

    Parallel small-scale studies on the dissolution and anion exchange recovery of plutonium from Rocky Flats Plant incinerator ash were conducted at the Los Alamos National Laboratory and at the Rocky Flats Plant. Results from these two studies are discussed in context with incinerator design considerations that might help to mitigate ash processing related problems. 11 refs., 1 fig., 1 tab.

  13. Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu )

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products 20 0 41 1 1 3 30 11 -0 107 313 Textile Mills 32 0 65 (s) (s) 2 66 12 -0 178 314 Textile Product Mills 3 0 46 (s) 1 Q 20 (s) -0 72 315 Apparel 0 0 7 (s) (s)

  14. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  15. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  16. Released: Dec 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per Square Foot (thousand Btu)","per Worker (million Btu)" "All Buildings* ...",4645...

  17. Landfilling ash/sludge mixtures

    SciTech Connect (OSTI)

    Benoit, J.; Eighmy, T.T.; Crannell, B.S.

    1999-10-01

    The geotechnical properties of a mixture of municipal solid waste incinerator bottom ash and municipal wastewater treatment plant sludge was investigated for a proposed ash/sludge secure landfill. The components as well as mixtures ranging from 10:1 to 5:1 (ash:sludge, by volume) were evaluated, where appropriate, for a number of geotechnical index and mechanical properties including particle size, water content, specific gravity, density-moisture relationships, shear strength, and compressibility. The results from a compactibility study and stability analysis of the proposed landfill were used to help approve a landfill codisposal concept; a full-scale facility was constructed and is currently operating successfully.

  18. ITER helium ash accumulation

    SciTech Connect (OSTI)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  19. Long duration ash probe

    DOE Patents [OSTI]

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  20. Long duration ash probe

    DOE Patents [OSTI]

    Hurley, John P. (Grand Forks, ND); McCollor, Don P. (Grand Forks, ND); Selle, Stanley J. (Grand Forks, MN)

    1994-01-01

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during sootblowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon.

  1. Combined compressed air storage-low BTU coal gasification power plant

    DOE Patents [OSTI]

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  2. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, ...","Own","Rent","Own","Rent","Own","Rent" "Water Heating" "Total Homes",113.6,76.5,37.1,63....

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million ... MD, WV",,,,"AL, KY, MS",,,"AR, LA, OK" "Water Heating",,,,"VA","GA","FL",,"NC, ...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million ... WY",,,,"Total Pacific",,"AK, HI, OR, WA" "Water Heating",,,,,"CO",,,"AZ","NM, NV",,"CA" ...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million ... Northeast",,,"CT, ME, NH, RI, VT" "Water Heating",,,,"MA",,,"NY","PA","NJ" "Total ...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Water Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ... Cold","Mixed- Humid","Mixed-Dry" "Water Heating",,"Cold",,"Hot-Dry","Hot-Humid","M...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Water Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ... to 119,999","120,000 or More" "Water Heating" "Total Homes",113.6,23.7,27.5,21....

  8. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Water Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, ... to 1989","1990 to 1999","2000 to 2009" "Water Heating" "Total Homes",113.6,14.4,5.2,13.5...

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million ... Midwest",,,..."IA, MN, ND, SD" "Water Heating",,,,"IL","MI","WI","IN, ...

  10. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ... Units","5 or More Units","Mobile Homes" "Water Heating" "Total Homes",113.6,71.8,6.7,9,19...

  11. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Total U.S.1 (millions)",,,..."Below Poverty Line2" ,,"Less than 20,000","20,000 to ... the number of households below the poverty line, the annual household income and ...

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Total U.S.1 (millions)",,,..."Below Poverty Line2" ,,"Less than 20,000","20,000 to ... the number of households below the poverty line, the annual household income and ...

  13. Fly ash chemical classification based on lime

    SciTech Connect (OSTI)

    Fox, J.

    2007-07-01

    Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

  14. Gasification of high ash, high ash fusion temperature bituminous coals

    DOE Patents [OSTI]

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  15. Rising from the ashes: Coal ash in recycling and construction

    SciTech Connect (OSTI)

    Naquin, D.

    1998-02-01

    Beneficial Ash Management (BAM, Clearfield, Pa.) has won an environmental award for its use of ash and other waste to fight acid mine drainage. The company`s workers take various waste materials, mainly fly ash from coal-burning plants, to make a cement-like material or grouting, says Ernest Roselli, BAM president. The grouting covers the soil, which helps prevent water from contacting materials. This, in turn, helps control chemical reactions, reducing or eliminating formation of acid mine drainage. The company is restoring the 1,400-acre Bark Camp coal mine site near Penfield in Clearfield County, Pa. Under a no-cost contract with the state of Pennsylvania, BAM is using boiler slag, causticizing byproducts (lime) and nonreclaimable clarifier sludge from International Paper Co. (Erie, Pa.). The mine reclamation techniques developed and monitored at the site include using man-made wetlands to treat acid mine drainage and testing anhydrous ammonia as a similar treatment agent. BAM researches and tests fly ash mixed with lime-based activators as fill material for land reclamation, and develops and uses artificial soil material from paper mill and tannery biosolids.

  16. Publication sites productive uses of combustion ash

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public Affairs Golden, Colo., Jan. 23, 1997 -- A new technology brief published by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) describes how ash use can reduce the cost of waste management and not harm the environment. Communities in the United States typically dump municipal solid waste combustion ash in landfills. The new technology brief describes recent studies where ash

  17. Industrial properties of lignitic and lignocellulosic fly ashes from Turkish sources

    SciTech Connect (OSTI)

    Demirbas, A.; Cetin, S.

    2006-01-21

    Fly ash is an inorganic matter from combustion of the carbonaceous solid fuels. More than half the electricity in Turkey is produced from lignite-fired power plants. This energy production has resulted in the formation of more than 13 million tons of fly ash waste annually. The presence of carbon in fly ash inducing common faults include adding unwanted black color and adsorbing process or product materials such as water and chemicals. One of the reasons for not using fly ash directly is its carbon content. For some uses carbon must be lower than 3%. Fly ash has been used for partial replacement of cement, aggregate, or both for nearly 70 years, and it is still used on a very limited scale in Turkey. The heavy metal content of industrial wastewaters is an important source of environmental pollution. Each of the three major oxides (SiO{sub 2} + Al{sub 2}O{sub 3} + Fe{sub 2}O{sub 3}) in fly ash can be ideal as a metal adsorbent.

  18. A comparison between sludge ash and fly ash on the improvement in soft soil

    SciTech Connect (OSTI)

    Deng-Fong Lin; Kae-Long Lin; Huan-Lin Luo

    2007-01-15

    In this study, the strength of soft cohesive subgrade soil was improved by applying sewage sludge ash as a soil stabilizer. Test results obtained were compared with earlier tests conducted on soil samples treated with fly ash. Five different proportions of sludge ash and fly ash were mixed with soft cohesive soil, and tests such as pH value, compaction, California bearing ratio, unconfined compressive strength (UCS), and triaxial compression were performed to understand soil strength improvement because of the addition of both ashes. Results indicate that pH values increase with extending curing age for soil with sludge ash added. The UCS of sludge ash/soil were 1.4 2 times better than untreated soil. However, compressive strength of sludge ash/soil was 20 30 kPa less than fly ash/soil. The bearing capacities for both fly ash/soil and sludge ash/soil were five to six times and four times, respectively, higher than the original capacity. Moreover, the cohesive parameter of shear strength rose with increased amounts of either ash added. Friction angle, however, decreased with increased amounts of either ash. Consequently, results show that sewage sludge ash can potentially replace fly ash in the improvement of the soft cohesive soil. 9 refs., 5 figs., 2 tabs.

  19. Petrographic characterization of economizer fly ash

    SciTech Connect (OSTI)

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A.

    2009-11-15

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  20. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  1. ACAA fly ash basics: quick reference card

    SciTech Connect (OSTI)

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  2. Combustion with reduced carbon in the ash

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2005-12-27

    Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

  3. Characterization of ash cenospheres in fly ash from Australian power stations

    SciTech Connect (OSTI)

    Ling-ngee Ngu; Hongwei Wu; Dong-ke Zhang

    2007-12-15

    Ash cenospheres in fly ashes from five Australian power stations have been characterized. The experimental data show that ash cenosphere yield varies across the power stations. Ash partitioning occurred in the process of ash cenosphere formation during combustion. Contradictory to conclusions from the literature, iron does not seem to be essential to ash cenosphere formation in the cases examined in the present work. Further investigation was also undertaken on a series of size-fractioned ash cenosphere samples from Tarong power station. It is found that about 70 wt% of ash cenospheres in the bulk sample have sizes between 45 and 150 {mu}m. There are two different ash cenosphere structures, that is, single-ring structure and network structure. The percentage of ash cenospheres of a network structure increases with increasing ash cenosphere size. Small ash cenospheres (in the size fractions {lt}150 {mu}m) have a high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and the majority of the ash cenospheres are spherical and of a single-ring structure. Large ash cenosphere particles (in the size fractions of 150-250 {mu}m and {gt}250 {mu}m) have a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and a high proportion of the ash cenospheres are nonspherical and of a network structure. A novel quantitative technique has been developed to measure the diameter and wall thickness of ash cenospheres on a particle-to-particle basis. A monolayer of size-fractioned ash cenospheres was dispersed on a pellet, which was then polished carefully before being examined using a scanning electron microscope and image analysis. The ash cenosphere wall thickness broadly increases with increasing ash cenosphere size. The ratios between wall thickness and diameter of ash cenospheres are limited between an upper bound of about 10.5% and a lower bound of about 2.5%, irrespective of the ash cenosphere size. 52 refs., 9 figs., 4 tabs.

  4. Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 1,255 2,202 1,508 511 [3] 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965 1983 1,242 1,935 1,646 480 [3]

  5. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett (Park City, UT)

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  6. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  7. Recovery Act Workers Complete Environmental Cleanup of Coal Ash...

    Office of Environmental Management (EM)

    Complete Environmental Cleanup of Coal Ash Basin Recovery Act Workers Complete Environmental Cleanup of Coal Ash Basin The Savannah River Site (SRS) recently cleaned up a 17-acre ...

  8. Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hunt's Ash Springs Pool & Spa Low Temperature Geothermal Facility Facility Hunt's...

  9. Development of an Accelerated Ash-Loading Protocol for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Development of an Accelerated Ash-Loading Protocol for Diesel Particulate Filters Poster presentation at the 2007...

  10. Uncovering Fundamental Ash-Formation Mechanisms and Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results illustrate ash particle growth and formation pathways, and influence of lubricant chemistry and exhaust conditions on fundamental ash properties PDF icon deer12kamp.pdf ...

  11. Detailed Characterization of Lubricant-Derived Ash-Related Species...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Correlations Between Metallic Lubricant Additive Species in the Ring Pack and Ash Emissions and Their ...

  12. Settlement of footing on compacted ash bed

    SciTech Connect (OSTI)

    Ramasamy, G.; Pusadkar, S.S.

    2007-11-15

    Compacted coal ash fills exhibit capillary stress due to contact moisture and preconsolidation stress due to the compaction process. As such, the conventional methods of estimating settlement of footing on cohesionless soils based on penetration tests become inapplicable in the case of footings on coal ash fills, although coal ash is also a cohesionless material. Therefore, a method of estimating load-settlement behavior of footings resting on coal ash fills accounting for the effect of capillary and preconsolidation stresses is presented here. The proposed method has been validated by conducting plate load tests on laboratory prepared compacted ash beds and comparing the observed and predicted load-settlement behavior. Overestimation of settlement greater than 100% occurs when capillary and preconsolidation stresses are not accounted for, as is the case in conventional methods.

  13. Geotechnical characterization of some Indian fly ashes

    SciTech Connect (OSTI)

    Das, S.K.; Yudhbir

    2005-10-01

    This paper reports the findings of experimental studies with regard to some common engineering properties (e.g., grain size, specific gravity, compaction characteristics, and unconfined compression strength) of both low and high calcium fly ashes, to evaluate their suitability as embankment materials and reclamation fills. In addition, morphology, chemistry, and mineralogy of fly ashes are studied using scanning electron microscope, electron dispersive x-ray analyzer, x-ray diffractometer, and infrared absorption spectroscopy. In high calcium fly ash, mineralogical and chemical differences are observed for particles, {gt}75 {mu} m and the particles of {lt} 45 {mu} m size. The mode and duration of curing significantly affect the strength and stress-strain behavior of fly ashes. The geotechnical properties of fly ash are governed by factors like lime content (CaO), iron content (Fe{sub 2}O{sub 3}) and loss on ignition. The distinct difference between self-hardening and pozzolanic reactivity has been emphasized.

  14. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect (OSTI)

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  15. c25.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All...

  16. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett (Park City, UT); Akash, Akash (Salt lake City, UT); Zhao, Qiang (Natick, MA)

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  17. Treatment of fly ash for use in concrete

    DOE Patents [OSTI]

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  18. Rocky Flats ash test procedure (sludge stabilization)

    SciTech Connect (OSTI)

    Winstead, M.L.

    1995-09-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. This test will also gain information on the effects of the glovebox atmosphere (moisture) on the stabilized material. This document provides instructions for testing Rocky Flats Ash in the HC-21C muffle furnace process.

  19. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  20. Ashe County- Wind Energy System Ordinance

    Broader source: Energy.gov [DOE]

    In 2007 Ashe County adopted a wind ordinance to regulate the use of wind-energy systems in unincorporated areas of the county and to describe the conditions by which a permit for installing such a...

  1. Fly ash system technology improves opacity

    SciTech Connect (OSTI)

    2007-06-15

    Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

  2. Rocky Flats Ash test procedure (sludge stabilization)

    SciTech Connect (OSTI)

    Funston, G.A.

    1995-06-14

    Rocky Flats Ash items have been identified as the next set of materials to be stabilized. This test is being run to determine charge sizes and soak times to completely stabilize the Rocky Flats Ash items. The information gathered will be used to generate the heating rampup cycle for stabilization. The test will provide information to determine charge sizes, soak times and mesh screen sizes (if available at time of test) for stabilization of Rocky Flats Ash items to be processed in the HC-21C Muffle Furnace Process. Once the charge size and soak times have been established, a program for the temperature controller of the HC-21C Muffle Furnace process will be generated for processing Rocky Flats Ash.

  3. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    SciTech Connect (OSTI)

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  4. Fluidized bed gasification ash reduction and removal process

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  5. Fluidized bed gasification ash reduction and removal system

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  6. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  7. Comparative study on the characteristics of fly ash and bottom ash geopolymers

    SciTech Connect (OSTI)

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-15

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na{sub 2}SiO{sub 3}) solutions were used as activators. A mass ratio of 1.5 Na{sub 2}SiO{sub 3}/NaOH and three concentrations of NaOH (5, 10, and 15 M) were used; the geopolymers were cured at 65 deg. C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  8. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect (OSTI)

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  9. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Lighting Usage Indicators by UrbanRural Location, 2005" " Million U.S. Housing Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Lighting Usage ...

  10. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating Characteristics by UrbanRural Location, 2005" " Million U.S. Housing Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Water Heating ...

  11. Hydrothermal reaction of fly ash. Final report

    SciTech Connect (OSTI)

    Brown, P.W.

    1994-12-31

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  12. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  13. Extraction of trace metals from fly ash

    DOE Patents [OSTI]

    Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  14. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes*

    SciTech Connect (OSTI)

    Hsieh, Peter

    2015-07-02

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  15. Fish Health Studies Associated with the Kingston Fly Ash Spill, Spring 2009 - Fall 2010

    SciTech Connect (OSTI)

    Adams, Marshall; Fortner, Allison M

    2012-05-01

    On December 22, 2008, over 4 million cubic meters of fly ash slurry was released into the Emory River when a dike surrounding a solid waste containment area at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant ruptured. One component of TVA's response to the spill is a biological monitoring program to assess short- and long-term ecological responses to the ash and associated chemicals, including studies on fish health and contaminant bioaccumulation. These studies were initiated in early Spring 2009 for the purposes of: (1) documenting the levels of fly ash-associated metals in various tissues of representative sentinel fish species in the area of the fly ash spill, (2) determining if exposure to fly ash-associated metals causes short, intermediate, or long-term health effects on these sentinel fish species, (3) assessing if there are causal relationships between exposure to metals and health effects on fish, (4) evaluating, along with information from other ecological and physicochemical studies, the nature and route of contaminant transfer though food chains into higher level consumers, (5) providing important information for the Ecological Risk Assessment (ERA) for the Kingston fly ash project, and (6) serving as an important technology information transfer or model study focused on how to best evaluate the environmental effects of fly ash (and related environmental stressors), not only at the Kingston site, but also at sites on other aquatic systems where coal-fired generating stations are located. This report presents the results of the first two years of the fish health study. To date, fish health and bioaccumulation studies have been conducted from Spring 2009 though Fall 2011 and includes 6 seasonal studies: Spring 2009, Fall 2009, Spring 2010, Fall 2010, Spring 2011, and Fall 2011. Both the Spring and Fall studies have focused on 3-4 sentinel fish species that represent different feeding habits, behaviors, and home ranges. In addition to fish health and bioaccumulation, the Spring investigations also included reproductive integrity studies on the same fish used for bioaccumulation and fish health. In this report, results of the fish health studies from Spring 2009 through Fall 2010 are presented while an associated report will present the fish reproductive studies conducted during Spring 2009 and Spring 2010. A report on fish bioaccumulation was submitted to TVA in June 2011. The fish health study conducted in conjunction with the bioaccumulation and reproductive study is critical for assessing and evaluating possible causal relationships between contaminant exposure (bioaccumulation) and the response of fish to exposure as reflected by the various measurements of fish health.

  16. Coal Ash Contaminants in Wetlands | SREL Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing the Ecological Health of the D-Area Ash Plume Wetland David Scott, Brian Metts, Tracey Tuberville, and Bill Hopkins The ash plume wetland (APW). The APW received coal combustion wastes from a breach in a receiving basin in the 1970s. Several trace metals are elevated in sediments of the APW area, including arsenic, selenium, strontium and copper. Coal-fired facilities have been in operation on the SRS since the early 1950s. After combustion, coal combustion waste (CCW, sometimes also

  17. Using fly ash to mitigate explosions

    SciTech Connect (OSTI)

    Taulbee, D.

    2008-07-01

    In 2005 the University of Kentucky's Center for Applied Energy Research was given funding to evaluate the use of coal combustion by-products (CCBs) to reduce the explosive potential of ammonium nitrate (AN) fertilizers. Fly ash C (FAC), fly ash F (FAF) and flue gas desulfurization by-product (FGD) were evaluated. It was found that applying a CCB coating to the AN particles at concentrations of 5 wt% or greater prevented the AN explosion from propagating. The article reports on results so far and outlines further work to be done. 6 figs.

  18. Fly Ash Characteristics and Carbon Sequestration Potential

    SciTech Connect (OSTI)

    Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

    2007-07-20

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on reclaimed mine lands, leaching studies of fly ash and carbon sorption studies of fly ash.

  19. Market assessment and technical feasibility study of PFBC ash use

    SciTech Connect (OSTI)

    Smith, V.E.; Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Wheeldon, J.

    1994-10-01

    The overall objectives of this study are to determine the market potential and the technical feasibility of using PFBC ash in high volume ash use applications. The information will be of direct use to the utility industry in assessing the economics of PFBC power generation in light of ash disposal avoidance through ash marketing. In addition, the research is expected to result in the generation of generic data on the use of PFBC ash that could lead to novel processing options and procedures. The specific objectives of the proposed research and demonstration effort are: Define resent and future market potential of PFBC ash for a range of applications (Phase I); assess the technical feasibility of PFBC ash use in construction, civil engineering and agricultural applications (Phase II); and demonstrate the most promising of the market and ash use options in full-scale field demonstrations (Phase III).

  20. High carbon fly ash finds uses in highway construction

    SciTech Connect (OSTI)

    Wen, H.; Patton, R.

    2008-07-01

    The beneficial use of high carbon fly ash in a highway construction project is discussed. The fly ash also had a relatively high content of mercury and some other heavy metals. 1 fig., 4 photos.

  1. Eco-friendly fly ash utilization: potential for land application

    SciTech Connect (OSTI)

    Malik, A.; Thapliyal, A.

    2009-07-01

    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

  2. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  3. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  4. Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

  5. Table 2.4 Household Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    Household 1 Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted) Census Region 2 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 United States Total (does not include wood) 10.56 9.74 9.32 9.29 8.58 9.04 9.13 9.22 10.01 10.25 9.86 10.55 10.18 Natural Gas 5.58 5.31 4.97 5.27 4.74 4.98 4.83 4.86 5.27 5.28 4.84 4.79 4.69 Electricity 3 2.47 2.42 2.48 2.42 2.35 2.48 2.76 3.03 3.28 3.54 3.89 4.35 4.39 Distillate Fuel Oil and Kerosene 2.19

  6. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect (OSTI)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  7. Uncovering Fundamental Ash-Formation Mechanisms and Potential Means to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control the Impact on DPF Performance and Engine Efficiency | Department of Energy Uncovering Fundamental Ash-Formation Mechanisms and Potential Means to Control the Impact on DPF Performance and Engine Efficiency Uncovering Fundamental Ash-Formation Mechanisms and Potential Means to Control the Impact on DPF Performance and Engine Efficiency Results illustrate ash particle growth and formation pathways, and influence of lubricant chemistry and exhaust conditions on fundamental ash

  8. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  9. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  10. Utilization of CFB fly ash for construction applications

    SciTech Connect (OSTI)

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  11. Screening technology reduces ash in spiral circuits

    SciTech Connect (OSTI)

    Brodzik, P.

    2007-05-15

    In 2006, the James River Coal Co. selected the Stack Sizer to remove the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits at the McCoy-Elkhorn Bevins Branch prep plant and at the Blue Diamond Leatherwood prep plant in Kentucky. The Stack Sizer is a multi-deck, high-frequency vibrating screen capable of separations as fine as 75 microns when fitted with Derrick Corp.'s patented high open area urethane screen panels. Full-scale lab tests and more than 10 months of continuous production have confirmed that the Stack Sizer fitted with Derrick 100 micron urethane screen panels consistently produces a clean coal fraction that ranges from 8 to 10% ash. Currently, each five-deck Stack Sizer operating at the Bevins Branch and Leatherwood prep plants is producing approximately 33 tons per hour of clean coal containing about 9% ash. This represents a clean coal yield of about 75% and an ash reduction of about 11% from the feed slurry. 3 figs. 2 tabs.

  12. Office Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Type of Office Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per Million Btu All Office Buildings 1,089 1,475 90.5 16.32...

  13. c26.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu) per Square Foot (thousand Btu) per Worker (million Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings...

  14. Stabilizing soft fine-grained soils with fly ash

    SciTech Connect (OSTI)

    Edil, T.B.; Acosta, H.A.; Benson, C.H.

    2006-03-15

    The objective of this study was to evaluate the effectiveness of self-cementing fly ashes derived from combustion of subbituminous coal at electric power plants for stabilization of soft fine-grained soils. California bearing ratio (CBR) and resilient modulus (M{sub r}) tests were conducted on mixtures prepared with seven soft fine-grained soils (six inorganic soils and one organic soil) and four fly ashes. The soils were selected to represent a relatively broad range of plasticity, with plasticity indices ranging between 15 and 38. Two of the fly ashes are high quality Class C ashes (per ASTM C 618) that are normally used in Portland cement concrete. The other ashes are off-specification ashes, meaning they do not meet the Class C or Class F criteria in ASTM C 618. Tests were conducted on soils and soil-fly ash mixtures prepared at optimum water content (a standardized condition), 7% wet of optimum water content (representative of the typical in situ condition in Wisconsin), and 9-18% wet of optimum water content (representative of a very wet in situ condition). Addition of fly ash resulted in appreciable increases in the CBR and M{sub r} of the inorganic soils. For water contents 7% wet of optimum, CBRs of the soils alone ranged between 1 and 5. Addition of 10% fly ash resulted in CBRs ranging between 8 and 17, and 18% fly ash resulted in CBRs between 15 and 31. Similarly, M{sub r} of the soil alone ranged between 3 and 15 MPa at 7% wet of optimum, whereas addition of 10% fly ash resulted in M{sub r} between 12 and 60 MPa and 18% fly ash resulted in M{sub r} between 51 and 106 MPa. In contrast, except for one fly ash, addition of fly ash generally had little effect on CBR or M{sub r} of the organic soil.

  15. Texas Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Texas Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 7,018,237...

  16. Fly ash and concrete: a study determines whether biomass, or coal co-firing fly ash, can be used in concrete

    SciTech Connect (OSTI)

    Wang, Shuangzhen; Baxter, Larry

    2006-08-01

    Current US national standards for using fly ash in concrete (ASTM C618) state that fly ash must come from coal combustion, thus precluding biomass-coal co-firing fly ash. The co-fired ash comes from a large and increasing fraction of US power plants due to rapid increases in co-firing opportunity fuels with coal. The fly ashes include coal fly ash, wood fly ash from pure wood combustion, biomass and coal co-fired fly ash SW1 and SW2. Also wood fly ash is blended with Class C or Class F to produce Wood C and Wood E. Concrete samples were prepared with fly ash replacing cement by 25%. All fly ash mixes except wood have a lower water demand than the pure cement mix. Fly ashes, either from coal or non coal combustion, increase the required air entraining agent (AEA) to meet the design specification of the mixes. If AEA is added arbitrarily without considering the amount or existence of fly ash results could lead to air content in concrete that is either too low or too high. Biomass fly ash does not impact concrete setting behaviour disproportionately. Switch grass-coal co-fired fly ash and blended wood fly ash generally lie within the range of pure coal fly ash strength. The 56 day flexure strength of all the fly ash mixes is comparable to that of the pure cement mix. The flexure strength from the coal-biomass co-fired fly ash does not differ much from pure coal fly ash. All fly ash concrete mixes exhibit lower chloride permeability than the pure cement mixes. In conclusion biomass coal co-fired fly ash perform similarly to coal fly ash in fresh and hardened concrete. As a result, there is no reason to exclude biomass-coal co-fired fly ash in concrete.

  17. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book [EERE]

    4 Average Annual Carbon Dioxide Emissions for Various Functions Stock Refrigerator (1) kWh - Electricity Stock Electric Water Heater kWh - Electricity Stock Gas Water Heater million Btu - Natural Gas Stock Oil Water Heater million Btu - Fuel Oil Single-Family Home million Btu Mobile Home million Btu Multi-Family Unit in Large Building million Btu Multi-Family Unit in Small Building million Btu School Building million Btu Office Building million Btu Hospital, In-Patient million Btu Stock Vehicles

  18. Helium transport and ash control studies

    SciTech Connect (OSTI)

    Miley, G.H.

    1992-01-01

    The Primary goal of this research is to develop a helium (ash) transport scaling law based on experimental data from devices such as TFTR and JET. To illustrate the importance of this, we have studied ash accumulation effects on ignition requirements using a O-D transport model. Ash accumulation is characterized in the model by the ratio of the helium particle confinement time to the energy confinement time t{sub {alpha}}/t{sub E}. Results show that the ignition window'' shrinks rapidly as t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E}. A best'' value for t{sub {alpha}}/t{sub E} will ultimately be determined from our scaling law studies. A helium transport scaling law is being sought that expresses the transport coefficients (D{sub {alpha}}, V{sub {alpha}}) as a function of the local plasma parameters. This is necessary for use in transport code calculations, e.g. for BALDUR. Based on experimental data from L-mode plasma operation in TFTR, a scaling law to a power law expression has been obtained using a least-square fit method. It is found that the transport coefficients are strongly affected by the local magnetic field and safety factor q. A preliminary conclusion from this work is that active control of ash buildup must be developed. To study control, we have developed a O-D plasma model which employs a simple pole-placement control model. Some preliminary calculations with this model are presented.

  19. Manufacture of ceramic tiles from fly ash

    DOE Patents [OSTI]

    Hnat, J.G.; Mathur, A.; Simpson, J.C.

    1999-08-10

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants. 6 figs.

  20. Manufacture of ceramic tiles from fly ash

    DOE Patents [OSTI]

    Hnat, James G. (Collegeville, PA); Mathur, Akshay (Tampa, FL); Simpson, James C. (Perkiomenville, PA)

    1999-01-01

    The present invention relates to a process for forming glass-ceramic tiles. Fly ash containing organic material, metal contaminants, and glass forming materials is oxidized under conditions effective to combust the organic material and partially oxidize the metallic contaminants and the glass forming materials. The oxidized glass forming materials are vitrified to form a glass melt. This glass melt is then formed into tiles containing metallic contaminants.

  1. Eirich technology for the preparation of ashes

    SciTech Connect (OSTI)

    Eirich, G.

    1994-12-31

    The paper describes a mixer manufactured by Maschinenfabrik Gustav Eirich that can be used in the agglomeration of power plant ashes and residues. No matter whether the power plant burns coal, fuel oil, wood, peat, or garbage or whether the power plant plans to dispose or utilize the residue, most flowsheets will contain an agglomeration step. The paper describes some of the uses to which this mixer can be put.

  2. Water quality investigation of Kingston Fossil Plant dry ash stacking

    SciTech Connect (OSTI)

    Bohac, C.E.

    1990-04-01

    Changing to a dry ash disposal systems at Kingston Fossil Plant (KFP) raises several water quality issues. The first is that removing the fly ash from the ash pond could alter the characteristics of the ash pond discharge to the river. The second concerns proper disposal of the runoff and possibly leachate from the dry ash stack. The third is that dry ash stacking might change the potential for groundwater contamination at the KFP. This report addresses each of these issues. The effects on the ash pond and its discharge are described first. The report is intended to provide reference material to TVA staff in preparation of environmental review documents for new ash disposal areas at Kingston. Although the investigation was directed toward analysis of dry stacking, considerations for other disposal options are also discussed. This report was reviewed in draft form under the title Assessment of Kingston Fossil Plant Dry Ash Stacking on the Ash Pond and Groundwater Quality.'' 11 refs., 3 figs., 18 tabs.

  3. Application of solid ash based catalysts in heterogeneous catalysis

    SciTech Connect (OSTI)

    Shaobin Wang

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe{sub 2}O{sub 3} could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H{sub 2} production, deSOx, deNOx, hydrocarbon oxidation, and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. 107 refs., 4 figs., 2 tabs.

  4. The leaching characteristics of selenium from coal fly ashes

    SciTech Connect (OSTI)

    Wang, T.; Wang, J.; Burken, J.G.; Ban, H.; Ladwig, K.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results for different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.

  5. Utilization of ash from municipal solid waste combustion

    SciTech Connect (OSTI)

    Jones, C.; Hahn, J.; Magee, B.; Yuen, N.; Sandefur, K.; Tom, J.; Yap, C.

    1999-09-01

    This ash study investigated the beneficial use of municipal waste combustion combined ash from the H-POWER facility in Oahu. These uses were grouped into intermediate cover for final closure of the Waipahu landfill, daily cover at the Waimanalo Gulch Landfill, and partial replacement for aggregate in asphalt for road paving. All proposed uses examine combined fly and bottom ash from a modern waste-to-energy facility that meets requirements of the Clean Air Act Amendments for Maximum Achievable Control Technology.

  6. Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions: | Department of Energy Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: Lubricant Formulation and Consumption Effects on Diesel Exhaust Ash Emissions: 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_plumley.pdf More Documents & Publications Detailed Characterization of Lubricant-Derived Ash-Related Species in Diesel Exhaust and Aftertreatment Systems Unraveling DPF Degradation using Chemical

  7. Recovery of aluminum and other metal values from fly ash

    DOE Patents [OSTI]

    McDowell, William J. (Oak Ridge, TN); Seeley, Forest G. (Oak Ridge, TN)

    1981-01-01

    The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  8. Development of Artificial Ash Accelerated Accumulation Test | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Artificial Ash Accelerated Accumulation Test Development of Artificial Ash Accelerated Accumulation Test Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-04_fujii.pdf More Documents & Publications Impact of Honeycomb Ceramics Geometrical Cell Design on Urea SCR System Controlled Experiments on the Effects of Lubricant/Additive (Low-Ash, Ashless) Characteristics on DPF Degradation

  9. Data Summary Report for Hanford Site Coal Ash Characterization

    SciTech Connect (OSTI)

    Sulloway, H. M.

    2012-03-06

    The purpose of this report is to present data and findings from sampling and analysis of five distinct areas of coal ash within the Hanford Site River Corridor

  10. Ash Fork, Arizona: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ash Fork, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2250114, -112.4840675 Show Map Loading map... "minzoom":false,"mappingser...

  11. Using fly ash and natural pozzolans in long life structures

    SciTech Connect (OSTI)

    Ramme, B.; Jacobsmeyer, J.

    2008-07-01

    The use of fly ash and natural pozzolans in various structures (roads, temples, bridges, buildings etc.) in the USA and Canada is discussed. 22 refs., 4 photos.

  12. Retention of elemental mercury in fly ashes in different atmospheres

    SciTech Connect (OSTI)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. In this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.

  13. Ashe County, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Ashe County, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.4339674, -81.4718387 Show Map Loading map......

  14. Reducing Lubricant Ash Impact on Exhaust Aftertreatment with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The strong base filter reduced lubricant acidity by absorbing acidic contaminants in the lubricant PDF icon deer09watson.pdf More Documents & Publications Minimizing Lubricant-Ash ...

  15. Relationship between selenium body burdens and tissue concentrations in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site

    SciTech Connect (OSTI)

    Mathews, Teresa J; Fortner, Allison M; Jett, Robert T; Peterson, Mark J; Carriker, Neil; Morris, Jesse G; Gable, Jennifer

    2014-01-01

    In December 2008, 4.1 million m3 of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority (TVA) Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary, rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4-9 g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 g/g. In the present study we examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. While Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the five year period since the spill. Our results are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, our results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Connecticut - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S7. Summary statistics for natural gas - Connecticut, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Maryland - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S22. Summary statistics for natural gas - Maryland, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7 8 9 7 7 Production (million cubic feet) Gross Withdrawals From Gas Wells 43 34 44 32 20 From Oil

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Minnesota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S25. Summary statistics for natural gas - Minnesota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S31. Summary statistics for natural gas - New Hampshire, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 North Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S35. Summary statistics for natural gas - North Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 South Carolina - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S42. Summary statistics for natural gas - South Carolina, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Washington - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S49. Summary statistics for natural gas - Washington, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    80 Wisconsin - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S51. Summary statistics for natural gas - Wisconsin, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  10. One Million Electric Vehicles By 2015

    SciTech Connect (OSTI)

    none,

    2011-02-01

    February 2011 status report on the steps needed to achieve President Obama's goal of putting one million electric vehicles on the road by 2015.

  11. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing ... Members","5 or More Members" "Lighting Usage Indicators" "Total U.S. Housing ...

  12. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ... in Buildings With--" "Lighting Usage Indicators",,"Detached","Attached"...

  13. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from...

  14. ,"Texas Natural Gas Processed (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Processed (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","930...

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Number of Household Members, 2005" " Million U.S. ... Members","4 Members","5 or More Members" "Water Heating Characteristics" ...

  16. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Year of Construction, 2005" " Million U.S. Housing ... to 1989","1990 to 1999","2000 to 2005" "Water Heating Characteristics" ...

  17. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Type of Housing Unit, 2005" " Million U.S. Housing ... Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,"Detached","Atta...

  18. " Million U.S. Housing Units,...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Total U.S.1 (millions)",,,..."Below Poverty Line2" "Structural and Geographic ... the number of households below the poverty line, the annual household income and ...

  19. $26.6 Million for Hydropower

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy and the Department of Interior announced $26.6 million of available funding for companies and entrepreneurs looking to advance hydropower.

  20. Hot-Gas Filter Ash Characterization Project

    SciTech Connect (OSTI)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  1. Fly ash and coal mineral matter surface transformations during heating

    SciTech Connect (OSTI)

    Baer, D R; Smith, R D

    1982-05-01

    A study is reported of surface segregation phenomena for fly ash and aluminosilicates representative of coal mineral matter during heating. The materials studied included a 20-..mu..m average diameter fly ash powder, a glass prepared from the fly ash, and Ca- and K-rich aluminosilicate minerals. The samples were heated both in air and under vacuum for extended periods at temperatures up to 1100/sup 0/C. XPS, Auger and SIMS methods were used to obtain relative surface elemental concentrations for major and minor components and depth profiles for some of the samples. Major differences were noted between samples heated in air (oxidizing) and those heated in vacuum (reducing) environments. For the fly ash glass heated in air Fe, Ti and Mg become enriched on the surfaces while heating in vacuum leads to Si surface segregation. Different trends upon heating were also observed for the Ca- and K-rich aluminosilicates. The results indicate two levels of surface enrichment upon the fly ash glass; a thin (< 500 A) layer and a thicker (1- to 2-..mu..m) layer most evident for heating in air where an Fe-rich layer is formed. The present results indicate that the rates of surface segregation may not be sufficiently fast on the time scale of fly ash formation to result in equilibrium surface segregation. It is concluded that condensation processes during fly ash formation probably play a major role in the observed fly ash surface enrichments.

  2. The recycling of the coal fly ash in glass production

    SciTech Connect (OSTI)

    Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A.

    2006-09-15

    The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

  3. Optimizing the use of fly ash in concrete

    SciTech Connect (OSTI)

    Thomas, M.

    2007-07-01

    The optimum amount of fly ash varies not only with the application, but also with composition and proportions of all the materials in the concrete mixture (especially the fly ash), the conditions during placing (especially temperature), construction practices (for example, finishing and curing) and the exposure conditions. This document discusses issues related to using low to very high levels of fly ash in concrete and provides guidance for the use of fly ash without compromising the construction process or the quality of the finished product. The nature of fly ashes including their physical, mineralogical and chemical properties is covered in detail, as well as fly ash variability due to coal composition and plant operating conditions. A discussion on the effects of fly ash characteristics on fresh and hardened concrete properties includes; workability, bleeding, air entrainment, setting time, heat of hydration, compressive strength development, creep, drying shrinkage, abrasion resistance, permeability, resistance to chlorides, alkali-silica reaction (ASR), sulfate resistance, carbonation, and resistance to freezing and thawing and deicer salt scaling. Case studies were selected as examples of some of the more demanding applications of fly ash concrete for ASR mitigation, chloride resistance, and green building.

  4. Process for the recovery of alumina from fly ash

    DOE Patents [OSTI]

    Murtha, Marlyn J. (Ames, IA)

    1983-08-09

    An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

  5. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect (OSTI)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2002-09-10

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    2013 Coal Petroleum Natural Gas Period Average Btu per Pound Average Sulfur Percent by Weight Average Ash Percent by Weight Average Btu per Gallon Average Sulfur Percent by...

  7. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect (OSTI)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

  8. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  9. Fluidization characteristics of power-plant fly ashes and fly ash-charcoal mixtures. [MS Thesis; 40 references

    SciTech Connect (OSTI)

    Nguyen, C.T.

    1980-03-01

    As a part of the continuing research on aluminum recovery from fly ash by HiChlor process, a plexiglass fluidization column system was constructed for measurement of fluidization parameters for power-plant fly ashes and fly ash-charcoal mixtures. Several bituminous and subbituminous coal fly ashes were tested and large differences in fluidization characteristics were observed. Fly ashes which were mechanically collected fluidized uniformly at low gas flow rates. Most fly ashes which were electrostatically precipitated exhibited channeling tendency and did not fluidize uniformly. Fluidization characteristics of electrostatically collected ashes improve when the finely divided charcoal powder is added to the mixture. The fluidization of the mixture was aided initially by a mechanical stirrer. Once the fluidization had succeeded, the beds were ready to fluidize without the assistance of a mechanical action. Smooth fluidization and large bed expansion were usually observed. The effects of charcoal size and aspect ratio on fluidization characteristics of the mixtures were also investigated. Fluidization characteristics of a fly ash-coal mixture were tested. The mixture fluidized only after being oven-dried for a few days.

  10. Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor

    SciTech Connect (OSTI)

    Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W.

    2007-06-15

    The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

  11. Table 1.13 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    3 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 (Trillion Btu) Resource and Fiscal Years Agriculture Defense Energy GSA 1 HHS 2 Interior Justice NASA 3 Postal Service Trans- portation Veterans Affairs Other 4 Total Coal 2003 (s) 15.4 2.0 0.0 (s) (s) 0.0 0.0 0.0 0.0 0.2 0.0 17.7 2010 (s) 15.5 4.5 .0 0.0 0.0 .0 .0 (s) .0 .1 .0 20.1 2011 P 0.0 14.3 4.2 .0 .0 .0 .0 .0 (s) .0 .1 .0 18.6 Natural Gas 5 2003 1.4 76.6 7.0 7.6 3.7 1.3 8.6 2.9 10.4 .7 15.6 4.2

  12. Mutagenicity and genotoxicity of coal fly ash water leachate

    SciTech Connect (OSTI)

    Chakraborty, R.; Mukherjee, A.

    2009-03-15

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals - sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significantconcentration-dependent increases in DNA damage in whole blood cells, lymphocytes, and in Nicotiana plants. The comet parameters show increases in tail DNA percentage (%), tail length (mu m), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  13. Water holding capacities of fly ashes: Effect of size fractionation

    SciTech Connect (OSTI)

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by the one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.

  14. Characterization and possible uses of ashes from wastewater treatment plants

    SciTech Connect (OSTI)

    Merino, Ignacio; Arevalo, Luis F. . E-mail: fromero@ehu.es

    2005-07-01

    This work, on the ashes from the wastewater treatment plant of Galindo (Vizcaya, Spain), has been outlined with the purpose of finding their physico-chemical properties and suggesting possible applications. Ashes contain important quantities of iron, calcium, silica, alumina and phosphates. X-Ray diffraction data make it possible to estimate the mineralogical compositions of the original ashes and also, after thermal treatment at 1200 and 1300 deg. C, the main reactions occurring in thermal treatment. Particle size analysis makes it possible to classify ashes as a very fine powdered material. The thermal treatment leads to a densification of the material and provokes losses of weight mainly due to the elimination of water, carbon dioxide and sulphur trioxide. Application tests show that ashes are not suitable for landfill and similar applications, because of their plastic properties. Testing for pozzolanic character, after the ashes had been heated at 1200 deg. C, did not lead to a strong material probably due to low contents in silica and alumina or to requiring a higher heating temperature. Thermal treatment leads to densification of the material with a considerable increase of compressive strength of the probes. The use of additives (clays and powdered glass) to improve ceramic properties of ashes will be the aim of a future work.

  15. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  16. Distribution of arsenic and mercury in lime spray dryer ash

    SciTech Connect (OSTI)

    Panuwat Taerakul; Ping Sun; Danold W. Golightly; Harold W. Walker; Linda K. Weavers

    2006-08-15

    The partitioning of As and Hg in various components of lime spray dryer (LSD) ash samples from a coal-fired boiler was characterized to better understand the form and fate of these elements in flue gas desulfurization byproducts. LSD ash samples, collected from the McCracken Power Plant on the Ohio State University campus, were separated by a 140-mesh (106 {mu}m) sieve into two fractions: a fly-ash-/unburned-carbon-enriched fraction (> 106 {mu}m) and a calcium-enriched fraction (< 106 {mu}m). Unburned carbon and fly ash in the material > 106 {mu}m were subsequently separated by density using a lithium heteropolytungstate solution. The concentrations of As and Hg were significant in all fractions. The level of As was consistently greater in the calcium-enriched fraction, while Hg was evenly distributed in all components of LSD ash. Specific surface area was an important factor controlling the distribution of Hg in the different components of LSD ash, but not for As. Comparing the LSD ash data to samples collected from the economizer suggests that As was effectively captured by fly ash at 600{sup o}C, while Hg was not. Leaching tests demonstrated that As and Hg were more stable in the calcium-enriched fraction than in the fly-ash- or carbon-enriched fractions, potentially because of the greater pH of the leachate and subsequently greater stability of small amounts of calcium solids containing trace elements in these fractions. 37 refs., 8 figs., 2 tabs.

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  8. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  9. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  10. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  11. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  12. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  13. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  14. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 New Jersey - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S32. Summary statistics for natural gas - New Jersey, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil

  15. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  16. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  17. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  18. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  19. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  20. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  1. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Rhode Island - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S41. Summary statistics for natural gas - Rhode Island, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From

  2. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  3. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  4. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  5. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    2 Vermont - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S47. Summary statistics for natural gas - Vermont, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  6. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  7. Million Cu. Feet Percent of National Total

    Gasoline and Diesel Fuel Update (EIA)

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  8. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect (OSTI)

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  9. Recovery of iron oxide from coal fly ash

    DOE Patents [OSTI]

    Dobbins, Michael S. (Ames, IA); Murtha, Marlyn J. (Ames, IA)

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  10. Novel microorganism for selective separation of coal from pyrite and ash. Final report

    SciTech Connect (OSTI)

    Misra, M.; Smith, R.W.

    1995-09-01

    The separation of fine coal from ash and pyrite was evaluated using a microorganism Mycobacterium phlei.

  11. President Obama Announces $400 Million Conditional Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Abound Solar Manufacturing, LLC to manufacture state-of-the-art thin-film solar panels. ... Department of Energy Closes 400 Million Loan Guarantee for State of the Art Solar ...

  12. " Million U.S. Housing Units" ,,"2005...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ... to 79,999","80,000 or More" "Lighting Usage Indicators" "Total U.S. Housing ...

  13. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Climate Zone, 2005" " Million U.S. Housing Units" ... to 5,499 HDD","Less than 4,000 HDD" "Lighting Usage Indicators" "Total",111.1,10.9,26....

  14. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Lighting Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ... to 1989","1990 to 1999","2000 to 2005" "Lighting Usage Indicators" "Total U.S. Housing ...

  15. " Million U.S. Housing Units"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Water Heating Characteristics by Climate Zone, 2005" " Million U.S. Housing Units" ... to 5,499 HDD","Less than 4,000 HDD" "Water Heating Characteristics" ...

  16. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Appliances in U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,"Total U.S.1 (millions)",,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes"

  17. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Home Appliances in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Home

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Household Demographics of Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" ,,"Total Northeast",,,"CT, ME, NH, RI, VT" "Household

  19. Lab contractor awards LANL Foundation $3 million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contractor awards LANL Foundation $3 million Lab contractor awards LANL Foundation $3 million To provide educational enrichment and educational outreach funding for a wide variety of education programs in the seven Northern New Mexico counties. October 29, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  20. Indiana Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Indiana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 191 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed

  1. Million U.S. Housing Units Total............................................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of

  2. Recoverable immobilization of transuranic elements in sulfate ash

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O. (Richland, WA)

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  3. The Development of a Small Engine Based Accelerated Ash Loading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Ash Loading Protocol Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st...

  4. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  5. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  6. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  7. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  8. Blue Ash, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Blue Ash is a city in Hamilton County, Ohio. It falls under Ohio's 2nd congressional...

  9. Transcending Portland Cement with 100 percent fly ash concrete

    SciTech Connect (OSTI)

    Cross, D.; Akin, M.; Stephens, J.; Cuelh, E.

    2009-07-01

    The use of concrete, made with 100% fly ash and no Portland cement, in buildings at the Transportation Institute in Bozeman, MT, USA, is described. 3 refs., 7 figs.

  10. Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil

    Energy Savers [EERE]

    Conditioning Filter | Department of Energy Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Under the test conditions used in this study, the strong base filter had a significant and beneficial effect on the rate of oil degradation. The strong base filter reduced lubricant acidity by absorbing acidic contaminants in the lubricant PDF icon deer09_watson.pdf More

  11. Ash Reduction of Corn Stover by Mild Hydrothermal Preprocessing

    SciTech Connect (OSTI)

    M. Toufiq Reza; Rachel Emerson; M. Helal Uddin; Garold Gresham; Charles J. Coronella

    2014-04-22

    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrates chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICPAES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.

  12. Ash level meter for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  13. DOE Awards $63 Million to Advance Clean Energy Commercialization |

    Office of Environmental Management (EM)

    Department of Energy 63 Million to Advance Clean Energy Commercialization DOE Awards $63 Million to Advance Clean Energy Commercialization September 22, 2010 - 11:00am Addthis DOE announced on September 15 its award of more than $63 million to support the commercialization of clean energy technologies, including $57 million for small businesses and $5.3 million for universities. The awards to small businesses include nearly $11 million provided through the American Recovery and Reinvestment

  14. Influence of metal(loid) bioaccumulation and maternal transfer on embryo-larval development in fish exposed to a major coal ash spill

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greeley, Jr., Mark Stephen; Adams, S. Marshall; Elmore, Logan R.; McCracken, Mary Kitty

    2016-01-03

    In December 2008, an earthen retaining wall at the Tennessee Valley Authority (TVA) Kingston Fossil Fuel Plant failed and released 4.1 million m3 of coal ash to rivers flowing into Watts Bar Reservoir in east Tennessee, United States (U.S.). As part of a comprehensive effort to evaluate the risks to aquatic resources from this spill – the largest in U.S. history – we compared bioaccumulation and maternal transfer of selenium (Se), arsenic (As), and mercury (Hg) in adult redear sunfish (Lepomis macrolophus), collected two years after the spill from both coal-ash exposed and non-exposed areas of the Emory and Clinchmore » Rivers, with the success of embryo-larval development in their offspring. Whole body and ovary concentrations of Se in female sunfish at three study sites downstream of the spill were significantly elevated (site means = 4.9–5.3 and 6.7–9.0 mg/kg d.w. whole body and ovary concentrations, respectively) compared with concentrations in fish from reference sites upstream of the spill site (2.2–3.2 mg/kg d.w. for whole bodies and 3.6–4.8 mg/kg d.w. for ovaries). However, Se concentrations in coal ash-exposed areas remain below proposed U.S. Environmental Protection Agency (USEPA) criteria for the protection of aquatic life. Site-to-site variation in fish concentrations of As and Hg were not well-correlated with ash-exposure, reflecting the multiple sources of these metal(loid)s in the affected watersheds. In 7-day laboratory tests of embryos and larvae derived from in vitro crosses of eggs and sperm from these field-collected sunfish, fertilization success, hatching success, embryo-larval survival, and incidences of developmental abnormalities did not differ significantly between ash-exposed and non-exposed fish. Furthermore, these developmental endpoints were not correlated with whole body or ovary concentrations of Se, As, or Hg in the maternal fish, or with fish size, ovary weight, or gonadal-somatic indices. Furthermore, results from this and related studies associated with the Kingston coal ash spill are consistent with proposed USEPA fish-based water quality criteria for Se, and to date continue to suggest that long-term exposures to sediment containing residual ash may not present a significant chronic risk to fish populations exposed to this major coal ash release.« less

  15. Energy Department Announces $12 Million for Technologies to Produce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces 12 Million for Technologies to Produce Renewable Carbon Fiber from Biomass Energy Department Announces 12 Million for Technologies to Produce Renewable Carbon Fiber ...

  16. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Office of Environmental Management (EM)

    20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests 20 Million ... materials that can produce hydrogen from water using solar energy. ...

  17. Department of Energy Awards More Than $175 Million for Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    75 Million for Advanced Vehicle Research and Development Department of Energy Awards More Than 175 Million for ... lubricants, lighter weight materials, longer-lasting and cheaper ...

  18. Two small businesses selected for work valued at $80 million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Businesses compete for drilling, monitoring work Two small businesses selected for work valued at 80 million Two small businesses compete for up to 80 million in well drilling ...

  19. Montana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  20. Energy Secretary Chu Announces Five Million Smart Meters Installed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid...

  1. Energy Department Announces $13 Million to Strengthen Local Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million to Strengthen Local Solar Markets and Spur Solar Deployment Across the United States Energy Department Announces 13 Million to Strengthen Local Solar Markets and Spur...

  2. Department of Energy Announces $188 Million for Small Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    188 Million for Small Business Technology Commercialization Department of Energy Announces 188 Million for Small Business Technology Commercialization August 2, 2010 - 12:00am ...

  3. Energy Secretary Bodman Announces $119 Million in Funding and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles Energy Secretary Bodman Announces 119 Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles ...

  4. Obama Administration Announces $12 Million i6 Green Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Million i6 Green Investment to Promote Clean Energy Innovation and Job Creation Obama Administration Announces 12 Million i6 Green Investment to Promote Clean Energy Innovation ...

  5. Secretary Chu Announces $45 Million to Support Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu Announces 45 Million to Support Next Generation of Wind Turbine Designs Secretary Chu Announces 45 Million to Support Next Generation of Wind Turbine Designs...

  6. Energy Department Offers $50 Million to Advance Fuel Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    Moniz Announces Nearly 50 Million to Advance High-Tech, Fuel Efficient American Autos Energy Department Invests More Than 55 Million to Advance Efficient Vehicle...

  7. Small Business Innovation Research Announces $1.15 Million to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research Announces 1.15 Million to Expand Under-Utilized Geothermal Markets Small Business Innovation Research Announces 1.15 Million to Expand ...

  8. Obama Administration Awards More than $96 Million for State Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    96 Million for State Energy Programs in Ohio, Oregon, Virginia and West Virginia Obama Administration Awards More than 96 Million for State Energy Programs in Ohio, Oregon, ...

  9. Energy Department Announces $3 Million for Industry Access to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Million for Industry Access to High Performance Computing Energy Department Announces 3 Million for Industry Access to High Performance Computing March 17, 2016 - 2:00pm ...

  10. Department of Energy Awards $15 Million for Nuclear Fuel Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million for Nuclear Fuel Cycle Technology Research and Development Department of Energy Awards 15 Million for Nuclear Fuel Cycle Technology Research and Development August 1,...

  11. Energy Department Announces $10 Million for Innovative Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Announces 10 Million for Innovative Commercial Building Technologies and Unveils New Commercial Buildings 101 Video Energy Department Announces 10 Million for...

  12. Department of Energy Finalizes Partial Guarantee for $852 Million...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial Guarantee for 852 Million Loan to Support California Concentrating Solar Power Plant Department of Energy Finalizes Partial Guarantee for 852 Million Loan to Support...

  13. DOE Announces Over $30 Million to Help Universities Train the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Over 30 Million to Help Universities Train the Next Generation of Industrial Energy Efficiency Experts DOE Announces Over 30 Million to Help Universities Train the...

  14. Energy Department, Treasury Announce Availability of $150 Million...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department, Treasury Announce Availability of 150 Million in Tax Credits for Clean Energy Manufacturers Energy Department, Treasury Announce Availability of 150 Million in Tax...

  15. Department of Energy Awards Nearly $7 Million to Advance Fuel...

    Energy Savers [EERE]

    Department of Energy Awards Nearly 7 Million to Advance Fuel Cell and Hydrogen Storage Systems Research Department of Energy Awards Nearly 7 Million to Advance Fuel Cell and...

  16. Energy Secretary Bodman Announces $119 Million in Funding and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Bodman Announces 119 Million in Funding and Roadmap to Advance Hydrogen Fuel Cell Vehicles Energy Secretary Bodman Announces 119 Million in Funding and Roadmap to...

  17. Energy Department Announces $2 Million to Support Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Million to Support Manufacturing of Taller Wind Turbine Towers Energy Department Announces 2 Million to Support Manufacturing of Taller Wind Turbine Towers September 17, 2014 - ...

  18. Department of Energy Announces $15 Million to Promote Innovative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Million to Promote Innovative Geothermal Heat Recovery Methods and Technologies Department of Energy Announces 15 Million to Promote Innovative Geothermal Heat Recovery...

  19. $3 million approved for 2015 LANS Community Commitment Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANS Community Commitment Plan will provide 1 million for education, including science, technology, engineering and math (STEM) education programs 1 million for economic...

  20. Kansas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  1. Department Of Energy Offers $60 Million to Spur Industry Engagement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear Energy Partnership Department Of Energy Offers 60 Million to Spur Industry Engagement in Global Nuclear...

  2. Indiana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  3. Oregon Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  4. Arkansas Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  5. Alaska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alaska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  6. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  7. Nebraska Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  8. Michigan Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  9. Minnesota Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  10. Utah Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  11. Missouri Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. Virginia Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  13. Maryland Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  14. Wyoming Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  15. Ohio Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  16. Illinois Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  17. Iowa Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  18. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  19. Texas Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  20. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  1. Alabama Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  2. Secretary Chu Announces $93 Million from Recovery Act to Support...

    Energy Savers [EERE]

    Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects Secretary Chu Announces 93 Million from Recovery Act to Support Wind Energy Projects April ...

  3. DOE Awards $63 Million to Advance Clean Energy Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Awards 63 Million to Advance Clean Energy Commercialization DOE Awards 63 Million to ... grids, three for next-generation nuclear power, and three for cleaner fossil energy. ...

  4. Energy Department Invests $20 Million to Advance Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Invests 20 Million to Advance Hydrogen Production and Delivery Technologies Energy Department Invests 20 Million to Advance Hydrogen Production and Delivery...

  5. Energy Secretary Announces $170 Million Solicitation for Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70 Million Solicitation for Solar Energy Technologies Energy Secretary Announces 170 Million Solicitation for Solar Energy Technologies June 28, 2006 - 2:36pm Addthis Key Element ...

  6. Energy Department Finalizes $737 Million Loan Guarantee to Tonopah...

    Office of Environmental Management (EM)

    737 Million Loan Guarantee to Tonopah Solar Energy for Nevada Project Energy Department Finalizes 737 Million Loan Guarantee to Tonopah Solar Energy for Nevada Project September ...

  7. Energy Department Announces $18 Million to Develop Solar Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18 Million to Develop Solar Energy Storage Solutions, Boost Grid Resiliency Energy Department Announces 18 Million to Develop Solar Energy Storage Solutions, Boost Grid Resiliency ...

  8. Energy Department Announces $15 Million to Integrate Affordable...

    Office of Environmental Management (EM)

    5 Million to Integrate Affordable Solar Energy into Nation's Electrical Grid Energy Department Announces 15 Million to Integrate Affordable Solar Energy into Nation's Electrical ...

  9. Interior Department to Open 190 Million Acres to Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interior Department to Open 190 Million Acres to Geothermal Power Interior Department to Open 190 Million Acres to Geothermal Power October 29, 2008 - 3:56pm Addthis ...

  10. Departments of Energy and Interior Award Nearly $17 Million for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award Nearly 17 Million for Advanced Hydropower Technologies Departments of Energy and Interior Award Nearly 17 Million for Advanced Hydropower Technologies September 6, 2011 - ...

  11. New York Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  12. Energy Department Announces $70 Million for Innovation Institute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70 Million for Innovation Institute on Smart Manufacturing Energy Department Announces 70 Million for Innovation Institute on Smart Manufacturing September 16, 2015 - 8:36am...

  13. Secretary Chu Announces $30 Million for Research Competition...

    Office of Environmental Management (EM)

    0 Million for Research Competition to Develop Next Generation Energy Storage Technologies Secretary Chu Announces 30 Million for Research Competition to Develop Next Generation ...

  14. Leaching of Mixtures of Biochar and Fly Ash

    SciTech Connect (OSTI)

    Palumbo, Anthony Vito; Porat, Iris; Phillips, Jana Randolph; Amonette, J. E.; Drake, Meghan M; Brown, Steven D; Schadt, Christopher Warren

    2009-01-01

    Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments.2, 5, 6 Both the residual char from biomass pyrolysis7-9, 12 (biochar) and fly ash from coal combustion1, 13, 14 have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations.10, 11, 16 Adding biochar to soil generally raises pH, increases total nitrogen and total phosphorous, encourages greater root development, improves cation exchange capacity and reduces available aluminum.3, 17 Combinations of these benefits likely lead to the observed increased yields for crops including corn and sugarcane.17 with biochar addition to soil. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) 8, 17 than do unammended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way.18 Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes.15 Here, we are examining the properties of mixtures of biochar, fly ash, and soil and evaluating leaching of organic carbon and metals from the mixtures.

  15. A Million Meter Milestone | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Million Meter Milestone A Million Meter Milestone March 4, 2011 - 2:36pm Addthis To see what installing the 1 millionth meter looked like, check out this video. Don Macdonald Don Macdonald Senior Advisor for Strategic Projects What does this mean for me? Smart meters allow consumers to take personal control and ownership of her energy usage in a way not possible before. As program manager for the Department of Energy's Recovery Act funded Smart Grid Investment Grant (SGIG) program, I've had

  16. Arizona Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) Arizona Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 103 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Used for Repressuring Arizona Natural Gas Gross Withdrawals

  17. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Structural and Geographic Characteristics of Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" "Structural

  18. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Structural and Geographic Characteristics of Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" "Structural and Geographic

  19. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Appliances in Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,,,,,"Pacific Census Division" ,,,,"Mountain North Sub-Division",,,"Mountain South Sub-Division" ,"Total U.S.1 (millions)",,,"Total Mountain North",,,"Total Mountain South" ,,"Total West","Total Mountain",,,"ID, MT, UT,

  20. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Appliances in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South Central Census Division",,,"West South Central Census Division" ,,,,,,,,,"Total East South Central",,,"Total West South Central" ,"Total U.S.1 (millions)",,"Total South Atlantic" ,,"Total South",,,,,"DC, DE, MD,

  1. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Structural and Geographic Characteristics of U.S. Homes, by Owner/Renter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With" ,,,,"Detached",,"Attached",,"2 to 4 Units",,"5 or More Units",,"Mobile Homes" ,"Total U.S.1 (millions)" "Structural and Geographic

  2. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Structural and Geographic Characteristics of U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,,,,,"5 or More Members" ,,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Census Region and Division"

  3. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Structural and Geographic Characteristics of Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle Atlantic Census Division" ,"Total U.S.1 (millions)",,"Total New England",,,"Total Middle Atlantic" "Structural and Geographic Characteristics",,"Total Northeast",,,"CT, ME, NH, RI, VT"

  4. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Structural and Geographic Characteristics of Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Total Midwest",,,,," IN,

  5. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Appliances in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,,,,,"5 or More Units","Mobile Homes" "Appliances",,"Detached","Attached","2 to 4 Units" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Cooking Appliances" "Stoves (Units With

  6. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Appliances in Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census Division",,,,,"West North Central Census Division" ,,,"Total East North Central",,,,,"Total West North Central" ,"Total U.S.1 (millions)" ,,"Total Midwest",,,,," IN, OH",,,"IA, MN, ND, SD"

  7. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Structural and Geographic Characteristics of U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Total

  8. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Structural and Geographic Characteristics of U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Very Cold/","Mixed- Humid","Mixed-Dry/" ,,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Census Region and Division"

  9. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Structural and Geographic Characteristics of U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" "Structural and Geographic Characteristics",,"Northeast","Midwest","South","West" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Urban and Rural2" "Urban",88.1,18,19.9,28.6,21.5 "Rural",25.5,2.8,6,13.4,3.3

  10. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Appliances in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More Members" "Appliances",,"1 Member","2 Members","3 Members","4 Members" "Total Homes",113.6,31.3,35.8,18.1,15.7,12.7 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

  11. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Appliances in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold/","Mixed- Humid","Mixed-Dry/" "Appliances",,"Cold",,"Hot-Dry","Hot-Humid","Marine" "Total Homes",113.6,38.8,35.4,14.1,19.1,6.3 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)"

  12. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Appliances in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,"Total U.S.1 (millions)","Census Region" "Appliances",,"Northeast","Midwest","South","West" "Total Homes",113.6,20.8,25.9,42.1,24.8 "Cooking Appliances" "Stoves (Units With Both" "an Oven and a Cooktop)" "Use a Stove",102.3,19.2,23.9,38.2,20.9

  13. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Air Conditioning" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Air Conditioning Equipment"

  14. Tennessee Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Tennessee Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 1990's 19 26 0 0 0 0 0 0 2010's 6,146 6,200 6,304 5,721 5,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Tennessee Natural Gas Plant Processing Natural Gas

  15. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    SciTech Connect (OSTI)

    CHRISTOPHER J. ZYGARLICKE; DONALD P. MCCOLLOR; JOHN P. KAY; MICHAEL L. SWANSON

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: ? Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. ? Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. ? Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. ? Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. ? Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. ? Evaluate corrosion for alloys being used in supercritical combustion systems.

  16. Chloride chemical form in various types of fly ash

    SciTech Connect (OSTI)

    Fenfen Zhu; Masaki Takaoka; Kenji Shiota; Kazuyuki Oshita; Yoshinori Kitajima

    2008-06-01

    Chloride content is a critical problem for the reuse of fly ash as a raw material in cement, and the method used by recyclers to reduce the fly ash chloride content depends on the chemical form of the chlorides. However, limited information is available on the quantitative distribution of chlorides and the identity of some chlorides such as Friedel's salt. We examined chloride forms and percentages using X-ray absorption near edge structure and X-ray diffraction analyses, as well as corresponding washing experiments. Approximately 15% of the chlorine in raw fly ash was estimated to be in the form of NaCl, 10% in KCl, 50% in CaCl{sub 2}, and the remainder in the form of Friedel's salt. Fly ash collected in a bag filter with the injection of calcium hydroxide for acid gas removal (CaFA) contained 35% chlorine as NaCl, 11% as KCl, 37% as CaCl{sub 2}, 13% as Friedel's salt, and the remaining 4% as CaClOH. In fly ash collected in a bag filter with the injection of sodium bicarbonate for acid gas removal (NaFA), approximately 79% of chlorine was in NaCl, 12% was in KCl, and 9% was in Friedel's salt. 25 refs., 4 figs., 4 tabs.

  17. Release of Ammonium and Mercury from NOx Controlled Fly Ash

    SciTech Connect (OSTI)

    Schroeder, K.T.; Cardone, C.R.; Kim, A.G

    2007-07-01

    One of the goals of the Department of Energy is to increase the reuse of coal utilization byproducts (CUB) to 50% by 2010. This will require both developing new markets and maintaining traditional ones such as the use of fly ash in concrete. However, the addition of pollution control devices can introduce side-effects that affect the marketability of the CUB. Such can be the case when NOx control is achieved using selective catalytic or non-catalytic reduction (SCR or SNCR). Depending on site-specific details, the ammonia slip can cause elevated levels of NH3 in the fly ash. Disposal of ammoniated fly ash can present environmental concerns related to the amount of ammonia that might be released, the amount of water that might become contaminated, and the extent to which metals might be mobilized by the presence of the ammonia. Ammonia retained in fly ash appears to be present as either an ammonium salt or as a chemisorbed species. Mercury in the leachates correlated to neither the amount of leachable ammonium nor to the total amount of Hg in the ash. The strongest correlation was between the decreases in the amount of Hg leached with increased LOI.

  18. Team Surpasses 1 Million Hours Safety Milestone

    Broader source: Energy.gov [DOE]

    NISKAYUNA, N.Y. – Vigilance and dedication to safety led the EM program’s disposition project team at the Separations Process Research Unit (SPRU) to achieve a milestone of one million hours — over two-and-a-half-years — without injury or illness resulting in time away from work.

  19. Ash bed level control system for a fixed-bed coal gasifier

    DOE Patents [OSTI]

    Fasching, George E. (Morgantown, WV); Rotunda, John R. (Fairmont, WV)

    1984-01-01

    An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

  20. Cementation and solidification of Rocky Flats Plant incinerator ash

    SciTech Connect (OSTI)

    Phillips, J.A.; Semones, G.B.

    1994-04-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes.

  1. Energy Department Announces $21 Million to Lower Solar Energy Deployment

    Energy Savers [EERE]

    Barriers | Department of Energy 1 Million to Lower Solar Energy Deployment Barriers Energy Department Announces $21 Million to Lower Solar Energy Deployment Barriers February 8, 2016 - 8:30am Addthis Energy Department Announces $21 Million to Lower Solar Energy Deployment Barriers The U.S. Department of Energy today announced $21 million in new funding to lower solar energy deployment barriers and expand access to solar energy to all Americans. The Department is making $13 million available

  2. IG Investigation with DOJ Results in over $10million Settlement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy IG Investigation with DOJ Results in over $10million Settlement IG Investigation with DOJ Results in over $10million Settlement PDF icon IG Investigation with DOJ Results in Over $10million Settlement More Documents & Publications Savannah River Site Contractor Agrees to Pay $3.8 Million to Settle False Claims Act Allegations Semiannual Report to Congress: April 1, 2015 - September 30, 2015 Sandia Corporation Agrees to Pay $4.7 Million to Resolve Allegations Related

  3. Ash reduction system using electrically heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  4. High-performance, high-volume fly ash concrete

    SciTech Connect (OSTI)

    2008-01-15

    This booklet offers the construction professional an in-depth description of the use of high-volume fly ash in concrete. Emphasis is placed on the need for increased utilization of coal-fired power plant byproducts in lieu of Portland cement materials to eliminate increased CO{sub 2} emissions during the production of cement. Also addressed is the dramatic increase in concrete performance with the use of 50+ percent fly ash volume. The booklet contains numerous color and black and white photos, charts of test results, mixtures and comparisons, and several HVFA case studies.

  5. Continuous air agglomeration method for high carbon fly ash beneficiation

    DOE Patents [OSTI]

    Gray, McMahon L. (Pittsburgh, PA); Champagne, Kenneth J. (Monongahela, PA); Finseth, Dennis H. (Pittsburgh, PA)

    2000-01-01

    The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

  6. Geotechnical properties of fly and bottom ash mixtures for use in highway embankments

    SciTech Connect (OSTI)

    Kim, B.; Prezzi, M.; Salgado, R.

    2005-07-01

    Class F fly ash and bottom ash are the solid residue byproducts produced by coal-burning electric utilities. They are usually disposed of together as a waste in utility disposal sites with a typical disposal rate of 80% fly ash and 20% bottom ash. Direct use of these materials in construction projects consuming large volumes of materials, such as highway embankment construction, not only provides a promising solution to the disposal problem, but also an economic alternative to the use of traditional materials. Representative samples of class F fly and bottom ash were collected from two utility power plants in Indiana and tested for their mechanical properties (compaction, permeability, strength, stiffness, and compressibility). Three mixtures of fly and bottom ash with different mixture ratios (i.e., 50, 75, and 100% fly ash content by weight) were prepared for testing. Test results indicated that ash mixtures compare favorably with conventional granular materials.

  7. Structure of the SPRY domain of human Ash2L and its interactions...

    Office of Scientific and Technical Information (OSTI)

    Structure of the SPRY domain of human Ash2L and its interactions with RbBP5 and DPY30 Citation Details In-Document Search Title: Structure of the SPRY domain of human Ash2L and its ...

  8. Ashe County, North Carolina ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Ashe County, North Carolina ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Ashe County, North Carolina ASHRAE Standard ASHRAE 169-2006 Climate...

  9. Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste

    SciTech Connect (OSTI)

    H. Carrasco; H. Sarper

    2006-06-30

    The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through the system without requiring any equipment or process changes. (10) Although the above attempt failed, the plant is still interested in producing briquettes. (11) An economic analysis of investing in a production facility manufacturing such briquettes was conducted to determine the economic viability of the project. Such a project is estimated to have an internal rate of return of 14% and net present value of about $400,000. (12) An engineering independent study class (4 students) is now working on selecting a site near the power plant and determining the layout of the future plant that will produce briquettes.

  10. Controlled Experiments on the Effects of Lubricant/Additive (Low-Ash,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ashless) Characteristics on DPF Degradation | Department of Energy Experiments on the Effects of Lubricant/Additive (Low-Ash, Ashless) Characteristics on DPF Degradation Controlled Experiments on the Effects of Lubricant/Additive (Low-Ash, Ashless) Characteristics on DPF Degradation Effects of lubricant additive chemistries and exhaust conditions on ash properties affecting diesel particulate filter performance. Comparison of ash characteristics such as packing density and elemental

  11. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Repressuring (Million Cubic Feet) Tennessee Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 146 436 897 538 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  12. Ohio Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Repressuring (Million Cubic Feet) Ohio Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 1,808 850 889 0 1,141 1,234 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  13. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Repressuring (Million Cubic Feet) Oklahoma Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 81,755 86,285 87,196 1970's 86,432 85,027 82,265 82,396 83,488 83,486 85,479 89,365 91,342 96,366 1980's 101,198 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  14. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Repressuring (Million Cubic Feet) Pennsylvania Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 375 320 312 1970's 273 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  15. Illinois Natural Gas Processed (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Processed (Million Cubic Feet) Illinois Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 483,902 483,336 478,291 1970's 429,691 341,750 376,310 358,142 342,046 322,393 305,441 275,060 327,451 1980's 150,214 152,645 166,568 156,791 153,419 146,463 106,547 757 509 1990's 607 951 942 809 685 727 578 500 468 358 2000's 271 233 299 306 328 280 242 235 233 164 2010's 5,393 294 - = No Data Reported; -- = Not Applicable; NA =

  16. " Million Housing Units, Final"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950 to 1959","1960 to 1969","1970 to 1979","1980 to 1989","1990 to 1999","2000 to 2009" "Appliances" "Total Homes",113.6,14.4,5.2,13.5,13.3,18.3,17,16.4,15.6 "Cooking Appliances"

  17. Michigan Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Michigan Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 171,531 156,996 143,802 1970's 139,571 141,784 94,738 37,384 45,106 79,154 151,318 172,578 199,347 1980's 155,984 151,560 137,364 148,076 151,393 142,255 137,687 125,183 123,578 1990's 134,550 170,574 186,144 201,985 196,000 179,678 117,119 86,564 83,052 67,514 2000's 58,482 50,734 47,292 41,619 37,977 34,545 33,213 29,436 30,008

  18. Nebraska Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Nebraska Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 13,130 9,437 6,415 1970's 3,697 2,848 2,890 33,369 34,243 34,463 35,351 32,226 29,828 1980's 1,648 1,281 1,154 1,256 1,097 707 987 690 381 1990's 31 136 65 586 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  19. Nebraska Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Nebraska Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,629 1,200 427 1970's 318 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  20. Ohio Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Ohio Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 207 670 1,713 2,263 2,591 2,555 3,036 2,812 2,608 1990's 3,081 2,615 2,730 2,989 2,930 2,257 2,477 2,553 2,895 2,933 2000's 3,285 4,336 4,098 3,609 3,883 2,657 2,397 1,456 2010's 2,211 33,031 344,073 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. Ohio Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Ohio Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 1,808 850 889 0 1,141 1,234 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  2. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Oklahoma Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 81,755 86,285 87,196 1970's 86,432 85,027 82,265 82,396 83,488 83,486 85,479 89,365 91,342 96,366 1980's 101,198 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  3. Pennsylvania Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Pennsylvania Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 375 320 312 1970's 273 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  4. Tennessee Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Tennessee Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 146 436 897 538 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  5. Utah Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Utah Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 68,211 95,670 93,934 98,598 99,233 241,904 274,470 286,592 286,929 1990's 334,067 333,591 319,017 348,010 368,585 308,174 265,546 249,930 242,070 211,514 2000's 169,553 166,505 136,843 161,275 193,093 187,524 193,836 195,701 202,380 412,639 2010's 454,832 490,233 535,365 448,687 419,773 - = No Data

  6. California Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) California Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 505,063 476,596 455,692 1970's 444,700 431,605 386,664 359,841 252,402 213,079 216,667 206,981 204,693 1980's 169,812 261,725 263,475 276,209 281,389 263,823 276,969 270,191 254,286 1990's 263,667 246,335 243,692 246,283 228,346 226,548 240,566 243,054 235,558 259,518 2000's 260,049 258,271 249,671 238,743 236,465 226,230 223,580

  7. Colorado Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Colorado Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 112,440 96,397 85,171 1970's 82,736 97,420 104,116 110,662 118,686 136,090 175,624 171,233 167,959 1980's 201,637 220,108 173,894 181,150 191,625 163,614 180,290 178,048 196,682 1990's 208,069 234,851 256,019 307,250 353,855 345,441 493,963 374,728 425,083 444,978 2000's 494,581 497,385 534,295 555,544 703,804 730,948 751,036

  8. Florida Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Florida Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 375,090 409,248 765,597 854,064 886,147 859,996 1980's 279,690 272,239 270,004 265,840 247,870 218,288 228,721 226,028 260,627 1990's 258,984 222,893 226,254 207,975 10,265 9,061 8,514 8,364 8,174 8,439 2000's 7,844 7,186 6,063 5,771 4,805 3,584 3,972 2,422 300 2010's 2,915 - = No Data Reported; -- = Not

  9. Kansas Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Kansas Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,250,286 1,239,723 1,493,907 1970's 1,445,817 1,451,438 1,497,319 1,503,660 1,407,239 1,367,949 1,389,850 1,427,654 1,476,110 1980's 1,046,516 825,440 874,488 926,348 997,710 951,222 908,673 943,335 885,253 1990's 794,705 955,040 943,923 961,518 965,674 965,266 970,163 749,423 732,828 653,515 2000's 610,039 576,231 572,044 530,938

  10. Kentucky Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Kentucky Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 237,759 230,940 241,558 256,522 253,652 150,627 26,888 26,673 18,707 1990's 28,379 40,966 47,425 45,782 42,877 44,734 46,015 43,352 37,929 44,064 2000's 36,734 36,901 41,078 42,758 38,208 38,792 39,559 38,158 58,899 60,167 2010's 66,579 60,941 92,883 85,549 79,985 - = No Data Reported; -- = Not

  11. Consumers face $5. 9 million rate increase

    SciTech Connect (OSTI)

    Not Available

    1984-11-01

    Testimony at hearings before the Garrison Diversion Compromise Commission claimed that rural consumers in the Upper Midwest could face $5.9 million in electric rate increases if the commission deauthorizes the project and hydroelectric rates go up to pay the costs of the 1944 Pick-Sloan project originally assigned to irrigation. If there is no irrigation development, the revenue that irrigation must raise to repay the $67 million debt assigned to irrigation must be reassigned to hydroelectric power. The commission represents a compromise between supporters and opponents of the Garrison Diversion project. Spokesmen for regional utilities spoke in support of the project as an investment whose costs have escalated because of delays at the expense of economic development in North Dakota.

  12. Wyoming Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Wyoming Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 261,478 259,227 269,921 1970's 276,926 292,434 298,439 303,519 263,684 215,104 251,846 262,801 255,760 1980's 366,530 393,027 432,313 579,479 624,619 506,241 512,579 560,603 591,472 1990's 635,922 681,266 728,113 750,853 821,689 895,129 845,253 863,052 870,518 902,889 2000's 993,702 988,595 1,083,860 1,101,425 1,249,309 1,278,087

  13. Emulating a million machines to investigate botnets.

    SciTech Connect (OSTI)

    Rudish, Donald W.

    2010-06-01

    Researchers at Sandia National Laboratories in Livermore, California are creating what is in effect a vast digital petridish able to hold one million operating systems at once in an effort to study the behavior of rogue programs known as botnets. Botnets are used extensively by malicious computer hackers to steal computing power fron Internet-connected computers. The hackers harness the stolen resources into a scattered but powerful computer that can be used to send spam, execute phishing, scams or steal digital information. These remote-controlled 'distributed computers' are difficult to observe and track. Botnets may take over parts of tens of thousands or in some cases even millions of computers, making them among the world's most powerful computers for some applications.

  14. One million curies of radioactive material recovered

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radioactive material recovered One million curies of radioactive material recovered The accomplishment represents a major milestone in protecting our nation and the world from material that could be used in "dirty bombs" by terrorists. December 22, 2014 Rick Day of Los Alamos National Laboratory's International Threat Reduction group and the Off-Site Source Recovery Project (OSRP) holds a non-radioactive training mockup of what a typical cobalt-60 source might look like. The source is

  15. Employees pledge record $2.8 million

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012 Employee Giving Campaign sets record Employees pledge record $2.8 million during 2012 employee giving campaign Laboratory employee contributions will fund a wide range of programs offered by eligible nonprofit organizations. December 13, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  16. Nevada Natural Gas Wellhead (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 NA NA NA 2010's NA - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Quantity of Natural Gas Production Associated with Reported Wellhead Value Nevada Natural Gas Wellhead Value and Marketed Production

  17. Annual Energy Outlook 2015 - Appendix G

    Gasoline and Diesel Fuel Update (EIA)

    G-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production .................................................. million Btu per short ton 20.169 Consumption .............................................. million Btu per short ton 19.664 Coke plants ............................................. million Btu per short ton 28.710 Industrial .................................................. million Btu per short

  18. Hydration and strength development of binder based on high-calcium oil shale fly ash

    SciTech Connect (OSTI)

    Freidin, C. [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)] [Ben-Gurion Univ. of the Negev, Sede-Boqer (Israel)

    1998-06-01

    The properties of high-calcium oil shale fly ash and low-calcium coal fly ash, which are produced in Israeli power stations, were investigated. High-calcium oil shale fly ash was found to contain a great amount of CaO{sub free} and SO{sub 3} in the form of lime and anhydrite. Mixtures of high-calcium oil shale fly ash and low-calcium coal fly ash, termed fly ash binder, were shown to cure and have improved strength. The influence of the composition and curing conditions on the compressive strength of fly ash binders was examined. The microstructure and the composition of fly ash binder after curing and long-term exposure in moist air, water and open air conditions were studied. It was determined that ettringite is the main variable in the strength and durability of cured systems. The positive effect of calcium silicate hydrates, CSH, which are formed by interaction of high-calcium oil shale fly ash and low-calcium coal fly ash components, on the carbonation and dehydration resistance of fly ash binder in open air is pronounced. It was concluded that high-calcium oil shale fly ash with high CaO{sub free} and SO{sub 3} content can be used as a binder for building products.

  19. Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan

    SciTech Connect (OSTI)

    Shim, Young-Sook; Rhee, Seung-Whee; Lee, Woo-Keun . E-mail: woklee@kangwon.ac.kr

    2005-07-01

    The objective of this research was to compare the leaching characteristics of heavy metals such as cadmium, chromium, copper, nickel, lead, etc., in Korean and Japanese municipal solid waste incineration (MSWI) ash. The rate of leaching of heavy metal was measured by KSLT and JTL-13, and the amount of heavy metals leached was compared with the metal content in each waste component. Finally, bio-availability testing was performed to assess the risks associated with heavy metals leached from bottom ash and fly ash. From the results, the value of neutralization ability in Japanese fly ash was four times higher than that in Korean fly ash. The reason was the difference in the content of Ca(OH){sub 2} in fly ash. The amount of lead leached exceeded the regulatory level in both Japanese and Korean fly ash. The rate of leaching was relatively low in ash with a pH in the range of 6-10. The bio-availability test in fly ash demonstrated that the amount of heavy metals leached was Pb > Cd > Cr, but the order was changed to Pb > Cr > Cd in the bottom ash. The leaching concentration of lead exceeded the Japanese risk level in all fly ashes from the two countries, but the leaching concentration of cadmium exceeded the regulatory level in Korean fly ash only.

  20. Distribution of polycyclic aromatic hydrocarbons in lime spray dryer ash

    SciTech Connect (OSTI)

    Ping Sun; Panuwat Taerakul; Linda K. Weavers; Harold W. Walker

    2005-10-01

    Four lime spray dryer (LSD) ash samples were collected from a spreader stoker boiler and measured for their concentrations of 16 U.S. EPA specified polycyclic aromatic hydrocarbons (PAHs). Results showed that the total measured PAH concentration correlated with the organic carbon content of the LSD ash. Each LSD ash sample was then separated using a 140 mesh sieve into two fractions: a carbon-enriched fraction ({gt}140 mesh) and a lime-enriched fraction ({lt}140 mesh). Unburned carbon was further separated from the carbon-enriched fraction with a lithiumheteropolytungstate (LST) solution. PAH measurements on these different fractions showed that unburned carbon had the highest PAH concentrations followed by the carbon-enriched fraction, indicating that PAHs were primarily associated with the carbonaceous material in LSD ash. However, detectable levels of PAHs were also found in the lime-enriched fraction, suggesting that the fine spray of slaked lime may sorb PAH compounds from the flue gas in the LSD process. 37 refs., 5 figs., 4 tabs.

  1. Mechanical characterization of filler sandcretes with rice husk ash additions. Study applied to Senegal

    SciTech Connect (OSTI)

    Cisse, I.K.; Laquerbe, M.

    2000-01-01

    To capitalize on the local materials of Senegal (agricultural and industrial wastes, residual fines from crushing process, sands from dunes, etc.), rise husk ash and residues of industrial and agricultural wastes have been used as additions in sandcretes. The mechanical resistance of sandcrete blocks obtained when unground ash (and notably the ground ash) is added reveals that there is an increase in performance over the classic mortar blocks. In addition, the use of unground rice husk ash enables production of a lightweight sandcrete with insulating properties, at a reduced cost. The ash pozzolanic reactivity explains the high strengths obtained.

  2. Soil stabilization and pavement recycling with self-cementing coal fly ash

    SciTech Connect (OSTI)

    2008-01-15

    This manual provides design information for self-cementing coal fly ash as the sole stabilizing agent for a wide range of engineering applications. As in any process, the application of sound engineering practices, appropriate testing, and evaluation of fly ash quality and characteristics will lend themselves to successful projects using the guidelines in this manual. Topics discussed include: self-cementing coal fly ash characteristics; laboratory mix design; stabilization of clay soils; stabilisation of granular materials; construction considerations; high sulfate ash; environmental considerations for fly ash stabilization; design considerations; state specification/guidelines/standards; and a sample of a typical stabilization specification.

  3. Louisiana--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  4. Texas--State Offshore Natural Gas Dry Production (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Texas--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  5. Energy Department Announces $150 Million in Tax Credits to Invest...

    Office of Environmental Management (EM)

    Announces 150 Million in Tax Credits to Invest in U.S. Clean Energy Manufacturing Energy Department Announces 150 Million in Tax Credits to Invest in U.S. Clean Energy...

  6. Montana Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) Montana Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 317 313...

  7. California Natural Gas Gross Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) California Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 998...

  8. Department of Energy Offers $102 Million Conditional Commitment...

    Office of Environmental Management (EM)

    02 Million Conditional Commitment for Loan Guarantee to U.S. Geothermal, Inc. Department of Energy Offers 102 Million Conditional Commitment for Loan Guarantee to U.S. Geothermal,...

  9. Department of Energy Offers $102 Million Conditional Commitment...

    Office of Environmental Management (EM)

    Offers 102 Million Conditional Commitment for Loan Guarantee to U.S. Geothermal Inc. Department of Energy Offers 102 Million Conditional Commitment for Loan Guarantee to U.S....

  10. Better Buildings Challenge Saves $840 Million in Energy Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saves 840 Million in Energy Costs, Adds New Water Savings Goal Better Buildings Challenge Saves 840 Million in ... BioStar Renewables joins as a financial ally. Bucks County Water & ...

  11. Secretary Bodman Announces Sale of 11 Million Barrels of Crude...

    Office of Environmental Management (EM)

    Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic Petroleum Reserve Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the Nation's Strategic...

  12. Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 271 275...

  13. New Mexico Crude Oil + Lease Condensate Reserves Sales (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

  14. Secretary Chu Announces more than $200 Million for Solar and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more than 200 Million for Solar and Water Power Technologies Secretary Chu Announces more than 200 Million for Solar and Water Power Technologies April 22, 2010 - 12:00am Addthis...

  15. Energy Department Offers $50 Million to Advance Fuel Efficient...

    Energy Savers [EERE]

    Offers 50 Million to Advance Fuel Efficient Autos Energy Department Offers 50 Million to Advance Fuel Efficient Autos January 29, 2014 - 12:00am Addthis The Energy Department on...

  16. Obama Administration Announces More Than $16 Million for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16 Million for Energy Projects in Iowa Obama Administration Announces More Than 16 Million for Energy Projects in Iowa June 22, 2009 - 12:00am Addthis Des Moines, IA - U.S. ...

  17. Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Arizona Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

  18. Energy Department Announces $4 Million Solicitation for Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Million Solicitation for Solid-State Lighting Research Energy Department Announces 4 Million Solicitation for Solid-State Lighting Research August 29, 2005 - 2:46pm Addthis ...

  19. Energy Department Provides $7 Million for Solid-State Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Million for Solid-State Lighting Product Development Energy Department Provides 7 Million for Solid-State Lighting Product Development June 6, 2006 - 2:15pm Addthis Funding to ...

  20. DOE's Office of Science Awards 18 Million Hours of Supercomputing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Office of Science Awards 18 Million Hours of Supercomputing Time to 15 Teams for Large-Scale Scientific Computing DOE's Office of Science Awards 18 Million Hours of...

  1. New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) New Mexico Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 4,406...

  2. Texas Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Texas Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  3. Texas Natural Gas Exports (No Intransit Deliveries) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports (No Intransit Deliveries) (Million Cubic Feet) Texas Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  4. Texas--Onshore Natural Gas Dry Production (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Onshore Natural Gas Dry Production (Million Cubic Feet) Texas--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. Texas Onshore Natural Gas Processed in New Mexico (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Mexico (Million Cubic Feet) Texas Onshore Natural Gas Processed in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  6. Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet) Texas--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  7. Texas Natural Gas Plant Liquids Production (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Texas Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  8. Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  9. Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    and Plant Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  10. Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Liquids, Proved Reserves (Million Barrels) Texas Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  11. Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  12. Texas Onshore Natural Gas Processed in Texas (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Texas Onshore Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's...

  13. Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  14. Texas Natural Gas Input Supplemental Fuels (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Input Supplemental Fuels (Million Cubic Feet) Texas Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  15. Texas--onshore Natural Gas Marketed Production (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Texas--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. DOE Announces up to $22 Million for Community Renewable Energy...

    Energy Savers [EERE]

    up to 22 Million for Community Renewable Energy Deployment DOE Announces up to 22 Million for Community Renewable Energy Deployment July 15, 2009 - 12:00am Addthis WASHINGTON, DC...

  17. Kansas Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gross Withdrawals (Million Cubic Feet per Day) Kansas Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 1,049...

  18. DOE Announces Over $8 Million to Increase Use and Availability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Million to Increase Use and Availability of Alternative Fuels DOE Announces Over 8 Million to Increase Use and Availability of Alternative Fuels October 25, 2006 - 9:17am ...

  19. West Virginia Natural Gas Processed in West Virginia (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in West Virginia (Million Cubic Feet) West Virginia Natural Gas Processed in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) West Virginia Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006...

  1. West Virginia Natural Gas Repressuring (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Repressuring (Million Cubic Feet) West Virginia Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's...

  2. Kentucky Natural Gas Processed in West Virginia (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia (Million Cubic Feet) Kentucky Natural Gas Processed in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  3. West Virginia Natural Gas Plant Liquids, Proved Reserves (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) West Virginia Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  4. Connecticut Natural Gas Input Supplemental Fuels (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Input Supplemental Fuels (Million Cubic Feet) Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  5. Connecticut Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) Connecticut Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  6. El Paso, TX Natural Gas Pipeline Imports From Mexico (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Million Cubic Feet) El Paso, TX Natural Gas Pipeline Imports From Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

  7. Virginia Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0...

  8. Tennessee Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0...

  9. Texas Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Texas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 134,707 134,707...

  10. Washington Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,300 21,300...

  11. Alaska Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Alaska Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 7,622 14,197...

  12. Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944...

  13. Virginia Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0...

  14. Missouri Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,600 21,600...

  15. Maryland Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Maryland Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,677 46,677...

  16. Indiana Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 74,572 74,572...

  17. Kentucky Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 105,889 105,889...

  18. Missouri Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,081...

  19. Michigan Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 395,529 395,529...

  20. Louisiana Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418...

  1. Minnesota Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,655 4,655...

  2. North Carolina Natural Gas Underground Storage Withdrawals (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Withdrawals (Million Cubic Feet) North Carolina Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  3. Colorado Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,491...

  4. South Carolina Natural Gas Underground Storage Withdrawals (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) South Carolina Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  5. Ohio Natural Gas in Underground Storage (Base Gas) (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 338,916 338,916...

  6. New Jersey Natural Gas Underground Storage Withdrawals (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Withdrawals (Million Cubic Feet) New Jersey Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  7. Rhode Island Natural Gas Underground Storage Withdrawals (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Withdrawals (Million Cubic Feet) Rhode Island Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  8. Alabama Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497...

  9. Wyoming Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 31,205 31,205...

  10. Ohio Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Ohio Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 100,467...

  11. Arkansas Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 19,202 19,202...

  12. Arkansas Natural Gas in Underground Storage (Working Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Gas) (Million Cubic Feet) Arkansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,676...

  13. Oklahoma Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,385 163,458...

  14. Oregon Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,291 3,291 3,291...

  15. Utah Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993...

  16. Mississippi Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,050...

  17. Louisiana Natural Gas in Underground Storage (Base Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Base Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 262,136...

  18. Alabama Natural Gas in Underground Storage (Base Gas) (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Base Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 880 880 880 880...

  19. Nebraska Natural Gas in Underground Storage (Working Gas) (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 55,226...

  20. Nebraska Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,312 27,312...