Sample records for millimeter cloud radar

  1. ARM: Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen

    Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

  2. Ice cloud microphysics retrievals from millimeter radar and visible optical depth using an estimation theory approach

    E-Print Network [OSTI]

    Stephens, Graeme L.

    of the planet. These effects occur as a consequence of the way cloud particles scatter and absorb radiation, 0325); 1655 Global Change: Water cycles (1836); KEYWORDS: ice water content retrieval, cirrus cloud), 4335, doi:10.1029/2002JD002693, 2003. 1. Introduction [2] Clouds profoundly affect the radiation budget

  3. MECHANICAL VIBRATION SENSING FOR STRUCTURAL HEALTH MONITORING USING A MILLIMETER-WAVE DOPPLER RADAR SENSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MECHANICAL VIBRATION SENSING FOR STRUCTURAL HEALTH MONITORING USING A MILLIMETER-WAVE DOPPLER RADAR of structural health monitoring (SHM). In this paper, we report on a millimeter-wave Doppler radar sensor sensing, millimeter-waves, structural health monitoring. INTRODUCTION Structural health monitoring based

  4. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  5. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma [McGill Univ., Montreal, QC (Canada); Giangrande, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Kollias, Pavlos [McGill Univ., Montreal, QC (Canada)

    2014-12-01T23:59:59.000Z

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  6. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended

  7. SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS

    E-Print Network [OSTI]

    SCANNING CLOUD RADAR OBSERVATIONS AT AZORES: PRELIMINARY 3D CLOUD PRODUCTS P. Kollias, I. Jo, A, NY www.bnl.gov ABSTRACT The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers

  8. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11T23:59:59.000Z

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  9. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloudscale. Profiling, millimeterwavelength (cloud) radars can provide such observations. In particular, the first three

  10. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    SciTech Connect (OSTI)

    Luke,E.; Kollias, P.

    2007-08-06T23:59:59.000Z

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phase cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.

  11. Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)

    SciTech Connect (OSTI)

    Russell, M.E.; Crain, A.; Curran, A.; Campbell, R.A.; Drubin, C.A.; Miccioli, W.F. [Raytheon, Tewksbury, MA (United States)] [Raytheon, Tewksbury, MA (United States)

    1997-12-01T23:59:59.000Z

    If automotive intelligent cruise-control (ICC) systems are to be successful in the marketplace, they must provide robust performance in a complex roadway environment. Inconveniences caused by reduced performance during inclement weather, interrupted performance due to dropped tracks, and annoying nuisance alarms will not be tolerated by the consumer, and would likely result in the rejection of this technology in the marketplace. An all-weather automotive millimeter-wave (MMW) radar sensor is described that uses a frequency-modulation coplanar-wave (FMCW) radar design capable of acquiring and tracking all obstacles in its field of view. Design tradeoffs are discussed and radar-sensor test results are presented along with the applicability of the radar to collision-warning systems.

  12. Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar

    E-Print Network [OSTI]

    Li, Zhanqing

    Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud to analyze cloud vertical structure over this area by taking advantage of the first direct measurements of cloud vertical layers from the 95 GHz radar. Singlelayer, twolayer, and threelayer clouds account for 28

  13. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA

    E-Print Network [OSTI]

    Shupe, Matthew

    distribution of cloud boundary heights, and occurrence of liquid phase in clouds are determined from radar-observed clouds containing liquid was 73% for the year. The least amount of liquid water phase was observed during-detected clouds. Liquid was distributed in a combination of all-liquid and mixed phase clouds, and was detected

  14. On the Feasibility of Precisely Measuring the Properties of a Precipitating Cloud with a Weather Radar

    E-Print Network [OSTI]

    Runnels, R.C.

    In this paper the results of an investigation are presented that are concerned with the feasibility of employing a weather radar to make precise measurements of the properties of a precipitating cloud. A schematic cloud is proposed as a model...

  15. Prospects of the WSR-88D Radar for Cloud Studies

    E-Print Network [OSTI]

    Melnikov, Valery M.; Zrni?, Dusan S.; Doviak, Richard J.; Chilson, Phillip B.; Mechem, David B.; Kogan, Yefim L.

    2011-04-01T23:59:59.000Z

    - flectivity field at 908 azimuth. APRIL 2011 M E L N I K O V E T A L . 863 compared measured solar radiation with model results. The Bird model (Bird and Hulstrom 1981) has been used to estimate the solar flux on the ground in the absence of clouds....S. Department of Commerce). REFERENCES Battan, L. J., 1973: Radar Observation of the Atmosphere. Uni- versity of Chicago, 324 pp. Bird, R. E., and R. L. Hulstrom, 1981: A simplified clear sky model for direct and diffuse insolation on horizontal surfaces. Solar...

  16. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29T23:59:59.000Z

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

  17. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06T23:59:59.000Z

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

  18. Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity

    E-Print Network [OSTI]

    Bellan, Paul M.

    Ice iron/sodium film as cause for high noctilucent cloud radar reflectivity P. M. Bellan1 Received] Noctilucent clouds, tiny cold electrically charged ice grains located at about 85 km altitude, exhibit by assuming the ice grains are coated by a thin metal film; substantial evidence exists indicating

  19. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16T23:59:59.000Z

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  20. Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data

    E-Print Network [OSTI]

    Stoffelen, Ad

    Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data ERWIN L. A. WOLTERS, ROBERT A. ROEBELING, AND ARNOUT J. FEIJT Royal Netherlands 2007) ABSTRACT Three cloud-phase determination algorithms from passive satellite imagers are explored

  1. Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Measurements at PEARL

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Atmospheric Radiative Transfer (SBDART) code. Results on the climatology and radiative effects of clouds, arctic regions are the site of interactions between aerosols, clouds, radiation and precipitations

  2. Constructing a Merged CloudPrecipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    E-Print Network [OSTI]

    of observations from three radars--the S-band dual-polarization Doppler radar (S-Pol), the C-band Shared Mobile, and radiative heating rate retrievals. With this dataset the full spectrum of tropical convective clouds during, U.S. Department of Energy, Washington, D.C. Corresponding author address: Dr. Zhe Feng, Pacific

  3. NOTES AND CORRESPONDENCE CloudSat as a Global Radar Calibrator

    E-Print Network [OSTI]

    Protat, Alain

    Research, Melbourne, Victoria, Australia 1 Laboratoire Atmosphe`re, Milieux, et Observations Spatiales, Ve is the case). The power of using CloudSat as a global radar calibrator is demonstrated using the Atmospheric, Melbourne, VIC 3008, Australia. E-mail: a.protat@bom.gov.au MARCH 2011 N O T E S A N D C O R R E S P O N D E

  4. ARM: W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

    W-Band Scanning ARM Cloud Radar (W-SACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  5. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Widener, Kevin; Nelson, Dan; Bharadwaj, Nitin; Lindenmaier, Iosif [Andrei; Johnson, Karen

    X-Band Scanning ARM Cloud Radar (XSACR) Hemispherical Sky RHI Scans (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  6. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bharadwaj, Nitin; Widener, Kevin

    Ka-Band Scanning ARM Cloud Radar (KASACR) Hemispherical Sky RHI Scan (6 horizon-to-horizon scans at 30-degree azimuth intervals)

  7. Scanning ARM Cloud Radars Part II: Data Quality Control and Processing

    SciTech Connect (OSTI)

    Kollias, Pavlos; Jo, Ieng; Borque, Paloma; Tatarevic, Aleksandra; Lamer, Katia; Bharadwaj, Nitin; Widener, Kevin B.; Johnson, Karen; Clothiaux, Eugene E.

    2014-03-01T23:59:59.000Z

    The Scanning ARM Cloud Radars (SACR’s) are the primary instruments for documenting the four-dimensional structure and evolution of clouds within a 20-30 km radius from the ARM fixed and mobile sites. Here, the post-processing of the calibrated SACR measurements is discussed. First, a feature mask algorithm that objectively determines the presence of significant radar returns is described. The feature mask algorithm is based on the statistical properties of radar receiver noise. It accounts for atmospheric emission and is applicable even for SACR profiles with few or no signal-free range gates. Using the nearest-in-time atmospheric sounding, the SACR radar reflectivities are corrected for gaseous attenuation (water vapor and oxygen) using a line-by-line absorption model. Despite having a high pulse repetition frequency, the SACR has a narrow Nyquist velocity limit and thus Doppler velocity folding is commonly observed. An unfolding algorithm that makes use of a first guess for the true Doppler velocity using horizontal wind measurements from the nearest sounding is described. The retrieval of the horizontal wind profile from the Hemispherical Sky – Range Height Indicator SACR scan observations and/or nearest sounding is described. The retrieved horizontal wind profile can be used to adaptively configure SACR scan strategies that depend on wind direction. Several remaining challenges are discussed, including the removal of insect and second-trip echoes. The described algorithms significantly enhance SACR data quality and constitute an important step towards the utilization of SACR measurements for cloud research.

  8. Stratus cloud structure from MM-radar transects and satellite images: scaling properties and artifact detection with semi-discrete wavelet analysis

    SciTech Connect (OSTI)

    Davis, A. B. (Anthony B.); Petrov, N. P. (Nikola P.); Clothiaux, E. E. (Eugene E.); Marshak, A. (Alexander)

    2002-01-01T23:59:59.000Z

    Spatial and/or temporal variabilities of clouds is of paramount importance for at least two in tensely researched sub-problems in global and regional climate modeling: (1) cloud-radiation interaction where correlations can trigger 3D radiative transfer effects; and (2) dynamical cloud modeling where the goal is to realistically reproduce the said correlations. We propose wavelets as a simple yet powerful way of quantifying cloud variability. More precisely, we use 'semi-discrete' wavelet transforms which, at least in the present statistical applications, have advantages over both its continuous and discrete counterparts found in the bulk of the wavelet literature. With the particular choice of normalization we adopt, the scale-dependence of the variance of the wavelet coefficients (i.e,, the wavelet energy spectrum) is always a better discriminator of transition from 'stationary' to 'nonstationary' behavior than conventional methods based on auto-correlation analysis, second-order structure function (a.k.a. the semi-variogram), or Fourier analysis. Indeed, the classic statistics go at best from monotonically scale- or wavenumber-dependent to flat at such a transition; by contrast, the wavelet spectrum changes the sign of its derivative with respect to scale. We apply 1D and 2D semi-discrete wavelet transforms to remote sensing data on cloud structure from two sources: (1) an upward-looking milli-meter cloud radar (MMCR) at DOE's climate observation site in Oklahoma deployed as part of the Atmospheric Radiation Measurement (ARM) Progrm; and (2) DOE's Multispectral Thermal Imager (MTI), a high-resolution space-borne instrument in sunsynchronous orbit that is described in sufficient detail for our present purposes by Weber et al. (1999). For each type of data, we have at least one theoretical prediction - with empirical validation already in existence - for a power-law relation for wavelet statistics with respect to scale. This is what is expected in physical (i.e., finite scaling range) fractal phenomena. In particular, we find long-range correlations in cloud structure coming from the important nonstationary regime. More surprisingly, we also uncover artifacts the data that are traceable either to instrumental noise (in the satellite data) or to smoothing assumptions (in the MMCR data processing). Finally, we discuss the potentially damaging ramifications the smoothing artifact can have on both cloud-radiation and cloud-modeling studies using MMCR data.

  9. Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave radiometer data are systematically compared to models to quantify and

    E-Print Network [OSTI]

    Hogan, Robin

    Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave a systematic evaluation of clouds in forecast models. Clouds and their associated microphysical processes for end users of weather forecasts, who may be interested not only in cloud cover, but in other variables

  10. STUDY OF CLOUD LIFETIME EFFECTS USING THE SGP HETEROGENEOUS DISTRIBUTED RADAR NETWORK: PRELIMINARY CONSIDERATIONS

    E-Print Network [OSTI]

    stages of cloud development. Here, we express cloud life cycle in terms of the temporal evolution-dimensional morphology and life cycle of clouds. Detailing key cloud processes as they transit from the formation stage National Laboratory For presentation at The Second Science Team Meeting of the Atmospheric System Research

  11. Using MSG-SEVIRI Cloud Physical Properties and Weather Radar Observations for the Detection of Cb/TCu Clouds

    E-Print Network [OSTI]

    Schmeits, Maurice

    . The presence of associated severe weather can be rel- evant to, for example, the transport industry, tourism, the energy supply industry, the construction industry, and farmers. The Cb and TCu clouds may pose a serious Society #12;wind shear, heavy precipitation, and lightning, that is associated with these clouds. Also

  12. Digital phase tightening for improved spatial resolution in millimeter-wave imaging systems

    E-Print Network [OSTI]

    Lu, Ke, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Imaging systems using millimeter-wave frequencies allow for the possibilities of vehicular radar and concealed weapons detection. By using silicon technology, the integration of millimeter-wave circuits can reach new levels ...

  13. Cloud Properties and Radiative Heating Rates for TWP

    SciTech Connect (OSTI)

    Comstock, Jennifer

    2013-11-07T23:59:59.000Z

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  14. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  15. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect (OSTI)

    Janet Intrieri; Mathhew Shupe

    2005-01-01T23:59:59.000Z

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

  16. Detection of supercooled liquid in mixedphase clouds using radar Doppler spectra

    E-Print Network [OSTI]

    Shupe, Matthew

    in the temperature range from 0 to -40°C, where both liquid and ice hydrometeor phases are sustainable of their hydrometeors (i.e., liquid or ice). Current cloud parameterizations that parti- tion water into liquid and ice 2010; published 1 October 2010. [1] Cloud phase identification from active remote sensors

  17. The use of Doppler radar to predict cloud-to-ground lightning

    E-Print Network [OSTI]

    Aclin, Keith Andrew

    1995-01-01T23:59:59.000Z

    during the spring of 1993 for squall line activity. These data will then be combined with the cloud-to-ground lightning that occurred within the six minutes of the scan time. Three sets of linear correlations will be generated. The first...

  18. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15T23:59:59.000Z

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMsâ�� cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10�° (latitude) x 10�° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  19. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory

    SciTech Connect (OSTI)

    Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y.; Protat, A.; Dudhia, J.

    2005-03-18T23:59:59.000Z

    Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.

  20. Millimeter wave transmissometer computer system

    SciTech Connect (OSTI)

    Wiberg, J.D.; Widener, K.B.

    1990-04-01T23:59:59.000Z

    A millimeter wave transmissometer has been designed and built by the Pacific Northwest Laboratory in Richland, Washington for the US Army at the Dugway Proving Grounds in Dugway, Utah. This real-time data acquisition and control system is used to test and characterize battlefield obscurants according to the transmittance of electromagnetic radiation in the millimeter wavelengths. It is an advanced five-frequency instrumentation radar system consisting of a transceiver van and a receiver van deployed at opposite sides of a test grid. The transceiver computer systems is the successful integration of a Digital Equipment Corporation (DEC) VAX 8350, multiple VME bus systems with Motorola M68020 processors (one for each radar frequency), an IEEE-488 instrumentation bus, and an Aptec IOC-24 I/O computer. The software development platforms are the VAX 8350 and an IBM PC/AT. A variety of compilers, cross-assemblers, microcode assemblers, and linkers were employed to facilitate development of the system software. Transmittance measurements from each radar are taken forty times per second under control of a VME based M68020.

  1. An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar

    SciTech Connect (OSTI)

    Lo, C; Comstock, JM; Flynn, C

    2006-10-01T23:59:59.000Z

    The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when ? approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

  2. Parameterizing the Difference in Cloud Fraction Defined by Area and by Volume as Observed with Radar and Lidar

    E-Print Network [OSTI]

    Reading, University of

    partially cloudy grid boxes by weighting clear and cloudy fluxes by the fractional area of cloud cover (Ca cloud cover from 53% to 63%, and so is of similar importance to the cloud overlap assumption. A simple for calculating the radiative effect of cloud (Stephens 1984; Edwards and Slingo 1996) and the representation

  3. Comparing Clouds Using Cloud Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingth Lomonosov1Compact highDepartmentIntensity

  4. Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: a study of lightning initiation signatures as indicated by Doppler radar

    E-Print Network [OSTI]

    Gremillion, Michael Shane

    1998-01-01T23:59:59.000Z

    , except for 1806-1824 UTC 58 29 Same as Fig. 27, except for 1830-1847 UTC 59 30 Radar echo tops for all categories of storms 95 31 Scatter diagram of mixed-phase reflectivity lapse rate and maximum reflectivity at the freezing level for all storms... Mexico. Taylor (1978) also found the center of activity to be associated with the supercooled cloud layer between the regions of ? 5'C and ? 20'C. One theory of thunderstorm electrification supports the idea of an ice-related precipitation...

  5. Fine-scale Horizontal Structure of Arctic Mixed-Phase Clouds.

    SciTech Connect (OSTI)

    Rambukkange,M.; Verlinde, J.; Elorante, E.; Luke, E.; Kollias, P.; Shupe, M.

    2006-07-10T23:59:59.000Z

    Recent in situ observations in stratiform clouds suggest that mixed phase regimes, here defined as limited cloud volumes containing both liquid and solid water, are constrained to narrow layers (order 100 m) separating all-liquid and fully glaciated volumes (Hallett and Viddaurre, 2005). The Department of Energy Atmospheric Radiation Measurement Program's (DOE-ARM, Ackerman and Stokes, 2003) North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) recently started collecting routine measurement of radar Doppler velocity power spectra from the Millimeter Cloud Radar (MMCR). Shupe et al. (2004) showed that Doppler spectra has potential to separate the contributions to the total reflectivity of the liquid and solid water in the radar volume, and thus to investigate further Hallett and Viddaurre's findings. The Mixed-Phase Arctic Cloud Experiment (MPACE) was conducted along the NSA to investigate the properties of Arctic mixed phase clouds (Verlinde et al., 2006). We present surface based remote sensing data from MPACE to discuss the fine-scale structure of the mixed-phase clouds observed during this experiment.

  6. Real-Time C-Band Radar Observations of 1992 Eruption Clouds from Crater Peak, Mount Spurr Volcano, Alaska

    E-Print Network [OSTI]

    Rose, William I.

    Survey (USGS), and the Federal Aviation Administration (FAA) at Anchorage provides for the exchange of the eruptions has had a considerable impact on commercial aviation in south- central Alaska, particularly of measuring and tracking ash clouds, in order to advise the aviation community about how to avoid ash clouds

  7. The Microbase Value-Added Product: A Baseline Retrieval of Cloud Microphysical Properties

    SciTech Connect (OSTI)

    Dunn, M; Johnson, K; Jensen, M

    2011-05-31T23:59:59.000Z

    This report describes the Atmospheric Radiation Measurement (ARM) Climate Research Facility baseline cloud microphysical properties (MICROBASE) value-added product (VAP). MICROBASE uses a combination of millimeter-wavelength cloud radar, microwave radiometer, and radiosonde observations to estimate the vertical profiles of the primary microphysical parameters of clouds including the liquid/ice water content and liquid/ice cloud particle effective radius. MICROBASE is a baseline algorithm designed to apply to most conditions and locations using a single set of parameterizations and a simple determination of water phase based on temperature. This document provides the user of this product with guidelines to assist in determining the accuracy of the product under certain conditions. Quality control flags are designed to identify outliers and indicate instances where the retrieval assumptions may not be met. The overall methodology is described in this report through a detailed description of the input variables, algorithms, and output products.

  8. 4A.5 DERIVING TURBULENT KINETIC ENERGY DISSIPATION RATE WITHIN CLOUDS USING GROUND BASED 94 GHZ RADAR

    E-Print Network [OSTI]

    Hogan, Robin

    Terrestre et Plan´etaire, V´elizy, France University of Reading, Reading, United Kingdom 1. INTRODUCTION. The variance 1 #12;v 2 of the mean wind is an indicator of the kinetic energy in turbulent scales4A.5 DERIVING TURBULENT KINETIC ENERGY DISSIPATION RATE WITHIN CLOUDS USING GROUND BASED 94 GHZ

  9. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect (OSTI)

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06T23:59:59.000Z

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

  10. Millimeter-wave sensors

    E-Print Network [OSTI]

    Kim, Seoktae

    2006-04-12T23:59:59.000Z

    New millimeter wave interferometric, multifunctional sensors have been studied for industrial sensing applications: displacement measurement, liquid-level gauging and velocimetry. Two types of configuration were investigated to implement the sensor...

  11. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Williams, Christopher

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  12. Progress In Electromagnetics Research C, Vol. 49, 6777, 2014 Analysis and Design of Millimeter-Wave Circularly Polarized

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Communications Commission (FCC) for wireless communications and automotive radar [1­4]. The 77-GHz band has been transceivers for communication and radar systems at millimeter-wave frequencies. 1. INTRODUCTION Using on their applications. There are several frequency bands in the mm-wave range which have been approved by the Federal

  13. The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at the

    E-Print Network [OSTI]

    Protat, Alain

    distribution are critical to the global radiative effect of ice clouds. One of the main uncertainties. To quantify the effect of these clouds onto climate and weather systems, their global coverage, altitude, tem effect. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium

  14. Calibration of the groundbased radars during CLARE'98 Robin J. Hogan

    E-Print Network [OSTI]

    Hogan, Robin

    Calibration of the ground­based radars during CLARE'98 Robin J. Hogan Department of Meteorology. The approach used to calibrate the radars is to start with the absolute calibration provided by the Rabelais radar in Rayleigh­scattering light rain or cloud. Finally the W­band radars are calibrated

  15. Cloud Services Cloud Services

    E-Print Network [OSTI]

    Cloud Services Cloud Services In 2012 UCD IT Services launched an exciting new set of cloud solutions called CloudEdu, which includes cloud servers, cloud storage, cloud hosting and cloud network. The CloudEdu package includes a consultancy service in design, deployment, management and utilisation

  16. The Accuracy of Radar Estimates of Ice Terminal Fall Speed from Vertically Pointing Doppler Radar Measurements

    E-Print Network [OSTI]

    Protat, Alain

    The Accuracy of Radar Estimates of Ice Terminal Fall Speed from Vertically Pointing Doppler Radar and 2835 MHz) are used to characterize the terminal fall speed of hydrometeors and the vertical air motion air velocity in ice clouds is small on average, as is assumed in terminal fall speed retrieval methods

  17. MMCR Calibration Report

    SciTech Connect (OSTI)

    Mead, D

    2010-03-23T23:59:59.000Z

    Calibration report for the Millimeter Wavelength Cloud Radar performed for the ARM Climate Research Facility by ProSensing Inc.

  18. Properties of tropical convection observed by ARM millimeter-radars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 HgPromising Magnesium Battery Research Weekly

  19. The Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    SciTech Connect (OSTI)

    Petersen,W.; Jensen,M.; Genio, A. D.; Giangrande, S.; Heymsfield, A.; Heymsfield, G.; Hou, A.; Kollias, P.; Orr, B.; Rutledge, S.; Schwaller, M.; Zipser, E.

    2010-03-15T23:59:59.000Z

    The Midlatitude Continental Convective Cloud Experiment (MC3E) will take place in central Oklahoma during the April-May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy Atmospheric Radition Measurement Program and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement (GPM) mission Ground Validation program. The Intensive Observation Period leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall observations over land that have never before been available. Several different components of convective processes tangible to the convective parameterization problem are targeted such as, pre-convective environment and convective initiation, updraft / downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, influence on the environment and radiation and a detailed description of the large-scale forcing. MC3E will use a new multi-scale observing strategy with the participation of a network of distributed sensors (both passive and active). The approach is to document in 3-D not only the full spectrum of precipitation rates, but also clouds, winds and moisture in an attempt to provide a holistic view of convective clouds and their feedback with the environment. A goal is to measure cloud and precipitation transitions and environmental quantities that are important for satellite retrieval algorithms, convective parameterization in large-scale models and cloud-resolving model simulations. This will be accomplished through the deployment of several different elements that complement the existing (and soon to become available) ARM facilities: a network of radiosonde stations, NASA scanning multi-frequency/parameter radar systems at three different frequencies (Ka/Ku/S), high-altitude remote sensing and in situ aircraft, wind profilers and a network of surface disdrometers. In addition to these special MC3E instruments, there will be important new instrumentation deployed by DOE at the ARM site including: 3 networked scanning X-band radar systems, a C-band scanning radar, a dual wavelength (Ka/W) scanning cloud radar, a Doppler lidar and upgraded vertically pointing millimeter cloud radar (MMCR) and micropulse lidar (MPL).To fully describe the properties of precipitating cloud systems, both in situ and remote sensing airborne observations are necessary. The NASA GPM-funded University of North Dakota (UND) Citation will provide in situ observations of precipitation-sized particles, ice freezing nuclei and aerosol concentrations. As a complement to the UND Citation's in situ observations, the NASA ER-2 will provide a high altitude satellite simulator platform that carrying a Ka/Ku band radar and passive microwave radiometers (10-183 GHZ).

  20. Parameterization of Infrared Absorption in Midlatitude Cirrus Clouds

    SciTech Connect (OSTI)

    Sassen, Kenneth; Wang, Zhien; Platt, C.M.R.; Comstock, Jennifer M.

    2003-01-01T23:59:59.000Z

    Employing a new approach based on combined Raman lidar and millimeter-wave radar measurements and a parameterization of the infrared absorption coefficient {sigma}{sub a}(km{sup -1}) in terms of retrieved cloud microphysics, we derive a statistical relation between {sigma}{sub a} and cirrus cloud temperature. The relations {sigma}{sub a} = 0.3949 + 5.3886 x 10{sup -3} T + 1.526 x 10{sup -5} T{sup 2} for ambient temperature (T,{sup o}C), and {sigma}{sub a} = 0.2896 + 3.409 x 10{sup -3} T{sub m} for midcloud temperature (T{sub m}, {sup o}C), are found using a second order polynomial fit. Comparison with two {sigma}{sub a} versus T{sub m} relations obtained primarily from midlatitude cirrus using the combined lidar/infrared radiometer (LIRAD) approach reveals significant differences. However, we show that this reflects both the previous convention used in curve fitting (i. e., {sigma}{sub a} {yields} 0 at {approx} 80 C), and the types of clouds included in the datasets. Without such constraints, convergence is found in the three independent remote sensing datasets within the range of conditions considered valid for cirrus (i.e., cloud optical depth {approx} 3.0 and T{sub m} < {approx}20 C). Hence for completeness we also provide reanalyzed parameterizations for a visible extinction coefficient {sigma}{sub a} versus T{sub m} relation for midlatitude cirrus, and a data sample involving cirrus that evolved into midlevel altostratus clouds with higher optical depths.

  1. Testing IWC Retrieval Methods using Radar and Ancillary Measurements with In-Situ Andrew J. Heymsfield1

    E-Print Network [OSTI]

    Hogan, Robin

    profiles of ice water content (IWC) can now be derived globally from spaceborne cloud radar (CloudSat) data energy to space. Because of their height in the atmosphere, ice clouds have a dominant effect on longwave (), and ice particle shape, significantly affect ice cloud radiative properties. CloudSat, with an onboard

  2. Kinematical relations among radar-observed water concentrations, vertical motions, and liquid-water drop-size spectra in convective clouds

    E-Print Network [OSTI]

    Runnels, Robert Clayton

    1962-01-01T23:59:59.000Z

    of return settling are often cloudless or consist of cumulus clouds which have had their growth impeded. If conditions in the atmosphere are favorable, convection cells form and the updraft areas associated with these cells develop into cumulonimbus... and time, M & M(x, y, z, t). The x- and y-directions are horizontal and z-direction is positive toward the zenith. If the quantity M is conservative, the local rate of change at a fixed locality (the local change) can be represented by the following...

  3. Millimeter-wave active probe

    DOE Patents [OSTI]

    Majidi-Ahy, Gholamreza (Sunnyvale, CA); Bloom, David M. (Portola Valley, CA)

    1991-01-01T23:59:59.000Z

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  4. The millimeter/sub-millimeter spectrum of the LiS radical in its 2

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    millimeter/sub-millimeter direct absorption methods. This radical was synthesized from lithium vapor and CS2 reactions, corrosion processes, catalysis and in stellar atmospheres [1±3]. Examining the bonding

  5. 7, 80878111, 2007 Influence of cloud top

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 8087­8111, 2007 Influence of cloud top variability on radiative transfer Richter, Barfus top variability from radar measurements on 3-D radiative transfer F. Richter 1 , K. Barfus 1 , F. H.richter@awi.de) 8087 #12;ACPD 7, 8087­8111, 2007 Influence of cloud top variability on radiative transfer Richter

  6. Shipboard measurements of the cloud-capped marine boundary layer during FIRE/ASTEX

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Results are reported on measurements of the cloud-capped marine boundary layer during FIRE/ASTEX. A method was developed from the ASTEX dataset for measuring profiles of liquid water content, droplet size and concentration from cloud radar/microwave radiometer data in marine boundary layer clouds. Profiles were also determined from the first three moments of the Doppler spectrum measured in drizzle with the ETL cloud radar during ASTEX.

  7. Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds

    SciTech Connect (OSTI)

    Rambukkange, Mahlon P.; Verlinde, J.; Eloranta, E. W.; Flynn, Connor J.; Clothiaux, Eugene E.

    2011-01-31T23:59:59.000Z

    Multimodality of cloud radar Doppler spectra is used to partition cloud particle phases and to separate distinct ice populations in the radar sample volume, thereby facilitating analysis of individual ice showers in multilayered mixed-phase clouds. A 35-GHz cloud radar located at Barrow, Alaska, during the Mixed-Phase Arctic Cloud Experiment collected the Doppler spectra. Data from a pair of collocated depolarization lidars confirmed the presence of two liquid cloud layers reported in this study. Surprisingly, both of these cloud layers were embedded in ice precipitation yet maintained their liquid. Our spectral separation of the ice precipitation yielded two distinct ice populations: ice initiated within the two liquid cloud layers and ice precipitation formed in higher cloud layers. Comparisons of ice fall velocity versus radar reflectivity relationships derived for distinct showers reveal that a single relationship might not properly represent the ice showers during this period.

  8. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments?

  9. A census of precipitation features in the tropics using TRMM: radar, ice scattering, and lightning observations

    E-Print Network [OSTI]

    Nesbitt, Stephen William

    1999-01-01T23:59:59.000Z

    and two ocean regions during August, September and October 1998, this study used radar retrievals and 85 GHz Polarization Corrected Temperatures (PCTs, which passively measure relative concentrations of precipitation-sized ice particles within a cloud...

  10. PROGRESS REPORT OF FY 2004 ACTIVITIES: IMPROVED WATER VAPOR AND CLOUD RETRIEVALS AT THE NSA/AAO

    SciTech Connect (OSTI)

    E. R. Westwater; V. V. Leuskiy; M. Klein; A. J. Gasiewski; and J. A. Shaw

    2004-11-01T23:59:59.000Z

    The basic goals of the research are to develop and test algorithms and deploy instruments that improve measurements of water vapor, cloud liquid, and cloud coverage, with a focus on the Arctic conditions of cold temperatures and low concentrations of water vapor. The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement Program. Although several technologies have been investigated to measure these column amounts, microwave radiometers (MWR) have been used operationally by the ARM program for passive retrievals of these quantities: precipitable water vapor (PWV) and integrated water liquid (IWL). The technology of PWV and IWL retrievals has advanced steadily since the basic 2-channel MWR was first deployed at ARM CART sites Important advances are the development and refinement of the tipcal calibration method [1,2], and improvement of forward model radiative transfer algorithms [3,4]. However, the concern still remains that current instruments deployed by ARM may be inadequate to measure low amounts of PWV and IWL. In the case of water vapor, this is especially important because of the possibility of scaling and/or quality control of radiosondes by the water amount. Extremely dry conditions, with PWV less than 3 mm, commonly occur in Polar Regions during the winter months. Accurate measurements of the PWV during such dry conditions are needed to improve our understanding of the regional radiation energy budgets. The results of a 1999 experiment conducted at the ARM North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO) site during March of 1999 [5] have shown that the strength associated with the 183 GHz water vapor absorption line makes radiometry in this frequency regime suitable for measuring low amounts of PWV. As a portion of our research, we conducted another millimeter wave radiometric experiment at the NSA/AAO in March-April 2004. This experiment relied heavily on our experiences of the 1999 experiment. Particular attention was paid to issues of radiometric calibration and radiosonde intercomparisons. Our theoretical and experimental work also supplements efforts by industry (F. Solheim, Private Communication) to develop sub-millimeter radiometers for ARM deployment. In addition to quantitative improvement of water vapor measurements at cold temperature, the impact of adding millimeter-wave window channels to improve the sensitivity to arctic clouds was studied. We also deployed an Infrared Cloud Imager (ICI) during this experiment, both for measuring continuous day-night statistics of the study of cloud coverage and identifying conditions suitable for tipcal analysis. This system provided the first capability of determining spatial cloud statistics continuously in both day and night at the NSA site and has been used to demonstrate that biases exist in inferring cloud statistics from either zenith-pointing active sensors (lidars or radars) or sky imagers that rely on scattered sunlight in daytime and star maps at night [6].

  11. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect (OSTI)

    Jensen, M; Jensen, K

    2006-06-01T23:59:59.000Z

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  12. The millimeter VLBI Properties of EGRET Blazars

    E-Print Network [OSTI]

    Geoffrey C. Bower

    1999-08-13T23:59:59.000Z

    We give a progress report on a snapshot 86 GHz-VLBI survey of the EGRET blazars with the observatories of the CMVA. A high fraction (17/18) of the EGRET blazars were detected on the Pico Veleta-Onsala baseline with a baseline length on the order of 500 $M\\lambda$. The detection threshold on the Pico Veleta-Onsala baseline was $\\sim 0.2$ Jy. Six of these sources were not previously detected with 3-millimeter VLBI. We also present the detection of three new non-EGRET sources. The high detection rate for EGRET sources indicates that gamma-ray flux is a robust predictor of millimeter wavelength intensity. Future more sensitive high-energy gamma-ray experiments should find a larger class of objects detectable with millimeter wavelength VLBI.

  13. Near-field millimeter-wave imaging for weapon detection

    SciTech Connect (OSTI)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01T23:59:59.000Z

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K[sub a]-band system.

  14. Near-field millimeter-wave imaging for weapon detection

    SciTech Connect (OSTI)

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01T23:59:59.000Z

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K{sub a}-band system.

  15. Sub-millimeter sized methyl butanoate droplet combustion: Microgravity experiments

    E-Print Network [OSTI]

    Walter, M.Todd

    -dependent, sphero-symmetric droplet combustion simulation that includes detailed gas phase chemical kineticsSub-millimeter sized methyl butanoate droplet combustion: Microgravity experiments and detailed 2012 Abstract Combustion characteristics of isolated sub-millimeter sized methyl butanoate (MB

  16. Millimeter-VLBI with a Large Millimeter-Array: Future Possibilities

    E-Print Network [OSTI]

    Thomas P. Krichbaum

    2003-08-04T23:59:59.000Z

    We discuss possibilities and improvements which could be obtained, if a phased array with a large number (N=50-100) of sub-millimeter antennas - like the planned large southern array (the former LSA, now ALMA) is used for radio-interferometry with very long baselines (VLBI) at millimeter wavelengths. We find that the inclusion of such an instrument in global VLBI network will push the sensitivity and the imaging capabilities of high resolution millimeter interferometry by up to 2 orders of magnitude. This will cause many but todate unforseeable new discoveries.

  17. Millimeter wave sensor for monitoring effluents

    DOE Patents [OSTI]

    Gopalsami, Nachappa (Naperville, IL); Bakhtiari, Sasan (Bolingbrook, IL); Raptis, Apostolos C. (Downers Grove, IL); Dieckman, Stephen L. (Downers Grove, IL)

    1995-01-01T23:59:59.000Z

    A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.

  18. Sandia National Laboratories: Radar Friendly Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MitigationRadar Friendly Blades Radar Friendly Blades Some wind farms have the potential to cause interference with the normal operation of radar systems used for security, weather...

  19. Tripleclouds: An Efficient Method for Representing Horizontal Cloud Inhomogeneity in 1D Radiation Schemes by Using Three Regions at Each Height

    E-Print Network [OSTI]

    Hogan, Robin

    that a mere 4% increase in global cloud cover could counter- act the warming caused by a doubling of carbon the effect of in- homogeneity on the radiative properties of high cloud. They used cloud radar data to inferTripleclouds: An Efficient Method for Representing Horizontal Cloud Inhomogeneity in 1D Radiation

  20. Cloud Computing

    SciTech Connect (OSTI)

    Pete Beckman and Ian Foster

    2009-12-04T23:59:59.000Z

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  1. Wide-open, high-resolution microwave/millimeter-wave Doppler frequency shift estimation using photonics technology

    E-Print Network [OSTI]

    Zou, Xihua; Lu, Bing; Pan, Wei; Yan, Lianshan; Shao, Liyang

    2014-01-01T23:59:59.000Z

    Today, wide-open, high-resolution Doppler frequency shift (DFS) estimation is essential for radar, microwave/millimeter-wave, and communication systems. Using photonics technology, an effective approach is proposed and experimentally demonstrated, providing a high-resolution and frequency-independent solution. In the approach consisting of two cascaded opto-electronic modulators, DFS between the transmitted microwave/ millimeter-wave signal and the received echo signal is mapped into a doubled spacing between two target optical sidebands. Subsequently, the DFS is then estimated through the spectrum analysis of a generated low-frequency electrical signal, with an improved resolution by a factor of 2. In experiments, DFSs from -90 to 90 KHz are successfully estimated for microwave/millimeter-wave signals at 10, 15, and 30 GHz, where estimation errors keep lower than +/- 5e-10 Hz. For radial velocity measurement, these results reveal a range from 0 to 900 m/s (0 to 450 m/s) and a resolution of 1e-11 m/s (5e-12 m...

  2. Deflection microwave and millimeter-wave amplifiers

    SciTech Connect (OSTI)

    Tang., C.M. [Naval Research Lab., Washington, DC (United States)] [Naval Research Lab., Washington, DC (United States); Lau, Y.Y. [Univ. of Michigan, Ann Arbor, MI (United States)] [Univ. of Michigan, Ann Arbor, MI (United States); Swyden, T.A. [FM Technologies, Inc., Fairfax, VA (United States)] [FM Technologies, Inc., Fairfax, VA (United States)

    1994-03-01T23:59:59.000Z

    A new class of microwave and millimeter-wave amplifiers, called deflectron amplifiers, which are based on the deflection of low voltage electron beams in a microstructure were analyzed. This concept may be applied in two ways: as microelectronic amplifiers or as bunched beam cathodes to power conventional amplifier configurations such as klystrodes and traveling wave tubes. Estimates for gain and efficiency are obtained from a circuit analysis. Particle codes are used to test the viability of the concept. Frequencies of operation are projected up to a few tens of GHz for microelectronic amplifiers and up to {approx}80 GHz for power amplifiers 29 refs., 5 figs.

  3. The millimeter-wave properties of superconducting microstrip lines

    E-Print Network [OSTI]

    The millimeter-wave properties of superconducting microstrip lines A. VayonakisŁ, C. Luo , H of the millimeter-wave properties of superconducting thin-film microstrip transmission lines. Our exper- imental, with a temperature-independent loss tangent of 5 3 ¦0 5 ˘10 3 for our samples. INTRODUCTION Superconducting

  4. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  5. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  6. Impulse radar studfinder

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  7. Final Technical Report on Scaling Models of the Internal Variability of Clouds DoE Grant No. DE-FG02-04ER63773

    SciTech Connect (OSTI)

    Ivanova, Kristinka

    2008-04-24T23:59:59.000Z

    The purpose of this proposal is to gain a better understanding of the space-time correlations of atmospheric fluctuations in clouds through application of methods from statistical physics to high resolution, continuous data sets of cloud observations available at the Department of Energy Atmospheric Radiation Measurement Program archive. In this report we present the accomplishments achieved during the four year period. Starting with the most recent one, we report on two break-throughs in our research that make the fourth year of the project exceptionally successful and markedly outperforming the objectives. The first break-through is on characterization of the structure of cirrus radiative properties at large, intermediate and small, generating cells scales by applying the Fokker-Planck equation method and other methods to ARM millimeter wavelength radar observations collected at the Southern Great Plains site. The second break-through is that we show that different characterizations of the cirrus radiative properties are obtained for different synoptic scale environments. We outline a stochastic approach to investigate the internal structure of radiative properties of cirrus clouds based on empirical modeling and draw conclusions about cirrus dynamical properties in the context of the synoptic environment. Results on the structure of cirrus dynamical properties are consistent with the structure of cirrus based on aircraft in situ measurements, with results from ground-based Raman lidar, and with results from model studies. These achievements would not have been possible without the accomplishments from the previous years on a number of problems that involve application of methods of analysis such as the Fokker-Planck equation approach, Tsallis nonextensive statistical mechanics, detrended fluctuation analysis, and others. These include stochastic analysis of neutrally stratified cirrus layers, internal variability and turbulence in cirrus, dynamical model and nonextensive statistical mechanics of liquid water path fluctuations, etc.

  8. A Millimeter-Wave Radar Microfabrication Technique and Its Application in Detection of

    E-Print Network [OSTI]

    Sarabandi, Kamal

    , Greg Allion, Brian VanDerElzen, Matt Oonk, David Yates, Russ Clifford, Robert Hower, Sanrine Matrin

  9. FOCUS OF ATTENTION FOR MILLIMETER AND ULTRA WIDEBAND SYNTHETIC APERTURE RADAR IMAGERY

    E-Print Network [OSTI]

    Slatton, Clint

    , but is not limited to, Chuan Wang, Doxing Xu and Quin Zhao for useful discussions on signal processing theory

  10. At this meeting: Oral presentation: Cloud Properties From (A)ATSR (Caroline Poulsen)

    E-Print Network [OSTI]

    Oxford, University of

    sensors including radars, an infrared and microwave sounder unit, and microwave radiometer integrated vertically over each layer separated by cloud base. This strategy makes it possible to evaluate. Recent progress in satellite sensor technology, exempli- fied by hyperspectral sounders and cloud

  11. Anvil characteristics as seen by C-POL during the Tropical Warm Pool International Cloud Experiment (TWP-ICE)

    E-Print Network [OSTI]

    Frederick, Kaycee Loretta

    2007-04-25T23:59:59.000Z

    The Tropical Pacific Warm Pool International Cloud Experiment (TWP-ICE) took place in Darwin, Australia in early 2006. C-band radar data from this experiment were used to characterize tropical anvil areal coverage, height, and thickness during...

  12. Imaging synthetic aperture radar

    DOE Patents [OSTI]

    Burns, Bryan L. (Tijeras, NM); Cordaro, J. Thomas (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  13. Mode conversation losses in overmolded millimeter wave transmission lines

    E-Print Network [OSTI]

    Tax, David S. (David Samuel)

    2008-01-01T23:59:59.000Z

    Millimeter wave transmission lines are integral components for many important applications like nuclear fusion and NMR spectroscopy. In low loss corrugated transmission lines propagating the HE,1 mode with a high waveguide ...

  14. PNNL Expert Doug McMakin Discusses Millimeter Wave Technology

    ScienceCinema (OSTI)

    Doug McMakin

    2012-12-31T23:59:59.000Z

    Electrical Engineer Doug McMakin discusses Millimeter Wave Holographic technology, which uses non-harmful, ultrahigh-frequency radio waves to penetrate clothing to detect and identify concealed objects, as well as obtain accurate body measurements.

  15. acrf millimeter wave: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USA kimik@yonsei.ac.kr Abstract- In this paper, one linear tapered slot antenna (LTSA), backed Tentzeris, Manos 63 Horn antenna design for BAN millimeter wave on-body...

  16. 620 VOLUME 41J O U R N A L O F A P P L I E D M E T E O R O L O G Y 2002 American Meteorological Society

    E-Print Network [OSTI]

    Stephens, Graeme L.

    - craft or precipitation gauge measurements, for example, radars offer the potential for the probing over Society Cirrus Cloud Ice Water Content Radar Algorithm Evaluation Using an Explicit Cloud Microphysical retrieval algorithms based on millimeter-wave radar reflectivity measurements. The simulated ice particle

  17. Retrieval of cloud properties using SCIAMACHY on ENVISAT

    E-Print Network [OSTI]

    Kuligowski, Bob

    ;2 AGENDA 1. Rationale 2. SCIAMACHY and its calibration 3. Algorithms 4. SCIMACHY cloud retrievals 5 Synthetic Aperture Radar (ASAR), operating at C-band, ASAR ensures continuity with the image mode (SAR;13 VICARIOUS CALIBRATION USING MERIS #12;14 MERIS on ENVISAT spacecraft /1.03.2002-present/ · Instrument bands

  18. Radar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:b <RGS Development BV JumpRTEV IncRadar

  19. ARM Scanning Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP Update Information on new,Scanning Radar Azores Graciosa

  20. Cloud Computing Adam Barker

    E-Print Network [OSTI]

    St Andrews, University of

    Cloud Computing 1 Adam Barker #12;Overview · Introduction to Cloud computing · Enabling technologies · Di erent types of cloud: IaaS, PaaS and SaaS · Cloud terminology · Interacting with a cloud: management consoles · Launching an instance · Connecting to an instance · Running your application · Clouds

  1. ARM Climate Research Facility Radar Operations Plan

    SciTech Connect (OSTI)

    Voyles, JW

    2012-05-18T23:59:59.000Z

    Roles, responsibilities, and processes associated with Atmospheric Radiation Measurement (ARM) Radar Operations.

  2. Lecture Ch. 8 Cloud Classification

    E-Print Network [OSTI]

    Russell, Lynn

    clouds Middle clouds Grayish, block the sun, sometimes patchy Sharp outlines, rising, bright white1 Lecture Ch. 8 · Cloud Classification ­ Descriptive approach to clouds · Drop Growth and Precipitation Processes ­ Microphysical characterization of clouds · Complex (i.e. Real) Clouds ­ Examples

  3. Radar polarimetry for geoscience applications

    SciTech Connect (OSTI)

    Elachi, C.; Kuga, Y.; McDonald, K.; Sarabandi, K.; Ulaby, F.T.; Whitt, M.; Zebker, H.; van Zyl, J.J.

    1990-01-01T23:59:59.000Z

    A source book for remote sensing and radar design engineers, this text covers wave polarization, polarization synthesis, scattering matrices, SAR polarization systems, and an array of applications It covers: an introduction to the different mathematical representations used to describe scattering properties, a review of scatterometer system design and calibration techniques for use in polarimetric measurements, a study of specific polarimetric radar systems, such as the shuttle imaging radar C (SIR-C), that includes calibration and compression techniques, data processing guidelines, and design approaches.

  4. Millimeter-Wave Absorption as a Quality Control Tool for M-Type...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders. Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders....

  5. Low-EVM Adaptive Millimeter-Wave Transmit and Receive Systems

    E-Print Network [OSTI]

    Gupta, Arpit Kumar

    Accurate (Low-EVM) Millimeter-wave Direct-conversion I/Qmillimeter-wave direct-conversion modulators,” MicrowaveLow-EVM, Millimeter-Wave Direct-Conversion Modulators”, IEEE

  6. X-band Scanning ARM Precipitation Radar (X-SAPR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N

    2012-10-29T23:59:59.000Z

    The X-band scanning ARM cloud radar (X-SAPR) is a full-hemispherical scanning polarimetric Doppler radar transmitting simultaneously in both H and V polarizations. With a 200 kW magnetron transmitter, this puts 100 kW of transmitted power for each polarization. The receiver for the X-SAPR is a Vaisala Sigmet RVP-900 operating in a coherent-on-receive mode. Three X-SAPRs are deployed around the Southern Great Plains (SGP) Central Facility in a triangular array. A fourth X-SAPR is deployed near Barrow, Alaska on top of the Barrow Arctic Research Center.

  7. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic) clouds is reviewed, with an emphasis on factors that may be expected to change in a changing climate of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  8. Cloud Controlling Factors --Low Clouds BJORN STEVENS,

    E-Print Network [OSTI]

    Stevens, Bjorn

    Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic conspire to determine the statistics and cli- matology of layers of shallow (boundary layer) clouds of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

  9. Cloud Tracking in Cloud-Resolving Models

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

  10. ARM - Field Campaign - DC-8 Cloud Radar Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment at

  11. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office PressPostdoctoraldecadal observations71971 Posters

  12. Mixed-Phase Cloud Retrievals Using Doppler Radar Spectra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE625DataNeutrinoMissionMissionJenningsMixed-Phase

  13. Time Correlations in Backscattering Radar Reflectivity Measurements from Cirrus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003 (Next ReleaseThomasTheoriesClean

  14. Algorithms for Filtering Insect Echoes from Cloud Radar Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973ManagedStrategic| NationalAlexanderAlgal

  15. W-Band ARM Cloud Radar - Specifications and Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 -VisualizingVote For the Next HowSEE

  16. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 -VisualizingVote For the Next HowSEEW-band ARM

  17. Development of precipitation retrievals at millimeter and sub-millimeter wavelengths for geostationary satellites

    E-Print Network [OSTI]

    Chaboureau, Jean-Pierre

    for precipitation retrieval from geostationary sensors based on mesoscale cloud modeling and radiative transfer resolution problem from a geostationary orbit. Adding the thermal infrared observations has a limited impact rain and the other hydrometeor profiles. These theoretical results are evaluated at close

  18. Cloud Security by Max Garvey

    E-Print Network [OSTI]

    Tolmach, Andrew

    Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service Network access Resource pooling Elasticity of Resources Measured Service #12;Cloud Types/Variants Iaa Cloud Public Cloud Hybrid Cloud combination. Private cloud with overflow going to public cloud. #12

  19. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  20. A MILLIMETER-WAVE PERPENDICULAR COAX-TO-MICROSTRIP TRANSITION

    E-Print Network [OSTI]

    A MILLIMETER-WAVE PERPENDICULAR COAX-TO- MICROSTRIP TRANSITION Matthew Morgan1 and Sander Weinreb2 transition from coaxial cable to microstrip is presented in which the coax connector is perpendicular to the substrate of the printed circuit. Such a right-angle transition has practical advantages over more common

  1. Flame Dynamics and Structure Within Sub-Millimeter Combustors

    E-Print Network [OSTI]

    provided by combusting hydro- carbon fuels has stimulated interest in recent years toward the development of micro-and mesoscale portable heat and power sources, and systems for a myriad of applications,1 and maximizing the heat output. Maintaining an optimal balance at the micro- or sub-millimeter length scale

  2. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    SciTech Connect (OSTI)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20T23:59:59.000Z

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  3. A Comparison of ARM Cloud Radar Profiles with MMF Simulated Radar Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2 Q3(SC) ANeutronPastAARM

  4. Merged and corrected 915 MHz Radar Wind Profiler moments

    SciTech Connect (OSTI)

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    2014-06-25T23:59:59.000Z

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  5. Merged and corrected 915 MHz Radar Wind Profiler moments

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jonathan Helmus,Virendra Ghate, Frederic Tridon

    The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is configured to run in two main operating modes: a precipitation (PR) mode with frequent vertical observations and a boundary layer (BL) mode that is similar to what has been traditionally applied to RWPs. To address issues regarding saturation of the radar signal, range resolution and maximum range, the RWP PR mode is set to operate with two different pulse lengths, termed as short pulse (SP) and long pulse (LP). Please refer to the RWP handbook (Coulter, 2012) for further information. Data from the RWP PR-SP and PR-LP modes have been extensively used to study deep precipitating clouds, especially their dynamical structure as the RWP data does not suffer from signal attenuation during these conditions (Giangrande et al., 2013). Tridon et al. (2013) used the data collected during the Mid-latitude Continental Convective Cloud Experiment (MC3E) to improve the estimation of noise floor of the RWP recorded Doppler spectra.

  6. Cloud Computing og availability

    E-Print Network [OSTI]

    Christensen, Henrik Bćrbak

    Cloud Computing og availability Projekt i pĺlidelighed Henrik Lavdal - 20010210 Sřren Bardino Kaa - 20011654 Gruppe 8 19-03-2010 #12;Cloud Computing og availability Side 2 af 28 Indholdsfortegnelse as a Service (SaaS) ...................................................................9 Availability i cloud

  7. Ad hoc cloud computing 

    E-Print Network [OSTI]

    McGilvary, Gary Andrew

    2014-11-27T23:59:59.000Z

    Commercial and private cloud providers offer virtualized resources via a set of co-located and dedicated hosts that are exclusively reserved for the purpose of offering a cloud service. While both cloud models appeal to ...

  8. Signal processing for airborne bistatic radar 

    E-Print Network [OSTI]

    Ong, Kian P

    The major problem encountered by an airborne bistatic radar is the suppression of bistatic clutter. Unlike clutter echoes for a sidelooking airborne monostatic radar, bistatic clutter echoes are range dependent. Using ...

  9. Obstacle penetrating dynamic radar imaging system

    DOE Patents [OSTI]

    Romero, Carlos E. (Livermore, CA); Zumstein, James E. (Livermore, CA); Chang, John T. (Danville, CA); Leach, Jr.. Richard R. (Castro Valley, CA)

    2006-12-12T23:59:59.000Z

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  10. Antarctic Mapping Project ACTIVE RADAR CALIBRATOR

    E-Print Network [OSTI]

    Howat, Ian M.

    RADARSAT Antarctic Mapping Project ACTIVE RADAR CALIBRATOR INSTALLATION DOCUMENT October, 1999 ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN CENTER FOR EARTH SCIENCES ALASKA SAR FACILITY BYRD POLAR RESEARCH...................................................................................................................................................3 Active Radar Calibrator Testing

  11. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01T23:59:59.000Z

    Toward Vehicular Service Cloud . . . . . . . . . . . . . . .4.2 Open Mobile Cloud Requirement . . . . .3.1 Mobile Cloud

  12. GMTI radar minimum detectable velocity.

    SciTech Connect (OSTI)

    Richards, John Alfred

    2011-04-01T23:59:59.000Z

    Minimum detectable velocity (MDV) is a fundamental consideration for the design, implementation, and exploitation of ground moving-target indication (GMTI) radar imaging modes. All single-phase-center air-to-ground radars are characterized by an MDV, or a minimum radial velocity below which motion of a discrete nonstationary target is indistinguishable from the relative motion between the platform and the ground. Targets with radial velocities less than MDV are typically overwhelmed by endoclutter ground returns, and are thus not generally detectable. Targets with radial velocities greater than MDV typically produce distinct returns falling outside of the endoclutter ground returns, and are thus generally discernible using straightforward detection algorithms. This document provides a straightforward derivation of MDV for an air-to-ground single-phase-center GMTI radar operating in an arbitrary geometry.

  13. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    SciTech Connect (OSTI)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01T23:59:59.000Z

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  14. The Diurnal Cycle of Clouds and Precipitation along the Sierra Madre Occidental Observed during NAME-2004: Implications for Warm Season Precipitation Estimation

    E-Print Network [OSTI]

    Rutledge, Steven

    . Ground-based precipitation retrievals from the NAME Event Rain Gauge Network (NERN) and Colorado State University­National Center for Atmospheric Research (CSU­NCAR) version 2 radar composites over the southern due to changes in the depth and vigor of shallow clouds and mixed-phase cloud depths

  15. ARM KAZR-ARSCL Value Added Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    The Ka-band ARM Zenith Radars (KAZRs) have replaced the long-serving Millimeter Cloud Radars, or MMCRs. Accordingly, the primary MMCR Value Added Product (VAP), the Active Remote Sensing of CLouds (ARSCL) product, is being replaced by a KAZR-based version, the KAZR-ARSCL VAP. KAZR-ARSCL provides cloud boundaries and best-estimate time-height fields of radar moments.

  16. Microwave emissions from police radar

    E-Print Network [OSTI]

    Fink, John Michael

    1994-01-01T23:59:59.000Z

    MICROWAVE EMISSIONS FROM POLICE RADAR A Thesis by JOHN MICHAEL FINK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1994 Major Subject...: Industrial Hygiene MICROWAVE EMISSIONS FROM POLICE RADAR A Thesis by JOHN MICHAEL FINK Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE John P. Wag (Chair of Committee) Jero e J. C...

  17. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    SciTech Connect (OSTI)

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet [Terahertz Systems Laboratory (TeSLa) - Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 (United States)

    2014-02-18T23:59:59.000Z

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing.

  18. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25T23:59:59.000Z

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  19. Cloud Computing For Bioinformatics

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Cloud Computing For Bioinformatics EC2 and AMIs #12;Quick-starting an EC2 instance (let's get our feet wet!) Cloud Computing #12;Cloud Computing: EC2 instance Quick Start · On EC2 console, we can click on Launch Instance · This will let us get up and going quickly #12;Cloud Computing: EC2 instance

  20. Ice Formation in Arctic Mixed-Phase Clouds: Insights from a 3-D Cloud-Resolving Model with Size-Resolved Aerosol and Cloud Microphysics

    SciTech Connect (OSTI)

    Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

    2009-02-27T23:59:59.000Z

    The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program’s Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a 3-dimensional cloud-resolving model the System for Atmospheric Modeling (SAM) coupled with an explicit bin microphysics scheme and a radar-lidar simulator. Two possible ice enhancement mechanisms – activation of droplet evaporation residues by condensation-followed-by-freezing and droplet freezing by contact freezing inside-out, are scrutinized by extensive comparisons with aircraft and radar and lidar measurements. The locations of ice initiation associated with each mechanism and the role of ice nuclei (IN) in the evolution of mixed-phase clouds are mainly addressed. Simulations with either mechanism agree well with the in-situ and remote sensing measurements on ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give very similar cloud microphysical, macrophysical, dynamical, and radiative properties, although the ice nucleation properties (rate, frequency and location) are completely different. Ice nucleation from activation of evaporation nuclei is most efficient near cloud top areas concentrated on the edges of updrafts, while ice initiation from the drop freezing process has no significant location preference (occurs anywhere that droplet evaporation is significant). Both enhanced nucleation mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. The contribution of ice nuclei (IN) recycling from ice particle evaporation to IN and ice particle concentration is found to be very significant in this case. Cloud can be very sensitive to IN initially and form a nonquilibrium transition condition, but become much less sensitive as cloud evolves to a steady mixed-phase condition. The parameterization of Meyers et al. [1992] with the observed MPACE IN concentration is able to predict the observed mixed-phase clouds reasonably well. This validation may facilitate the application of this parameterization in the cloud and climate models to simulate Arctic clouds.

  1. High-Efficiency and High-Power CMOS Power Amplifiers for Millimeter-Wave Applications /

    E-Print Network [OSTI]

    Agah, Amir

    2013-01-01T23:59:59.000Z

    large output powers at the millimeter-wave regime has been mainly focused on power combining techniques, using Wilkinson combiners and transformer-

  2. Millimeter wave ferromagnetic resonance in gallium-substituted ?-iron oxide

    SciTech Connect (OSTI)

    Chao, Liu, E-mail: liu.chao@tufts.edu; Afsar, Mohammed N. [Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155 (United States); Ohkoshi, Shin-ichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-05-07T23:59:59.000Z

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60?GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A new series of gallium-substituted ?-iron oxides (?-Ga{sub x}Fe{sub 2?x}O{sub 3}) are synthesized which have ferromagnetic resonant frequencies appearing over the frequency range 30 GHz–150 GHz. The ?-Ga{sub x}Fe{sub 2?x}O{sub 3} is synthesized by the combination of reverse micelle and sol-gel techniques or the sol-gel method only. The particle sizes are observed to be smaller than 100 nm. In this paper, the free space magneto-optical approach has been employed to study these newly developed ?-Ga{sub x}Fe{sub 2?x}O{sub 3} particles in millimeter waves. This technique enables to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the millimeter wave frequency range from a single set of direct measurements. The transmittance and absorbance spectra of ?-Ga{sub x}Fe{sub 2?x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  3. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  4. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-11-07T23:59:59.000Z

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  5. Microwave Photonic Integrated Circuits for Millimeter-Wave Wireless Communications

    E-Print Network [OSTI]

    Carpintero, G.; Balakier, K.; Yang, Z.; Guzmán, R.C.; Corradi, A.; Jimenez, A.; Kervella, G.; Fice, M.J.; Lamponi, M.; Chitoui, M.; van Dijk, F.; Renaud, C. C.; Wonfor, A.; Bente, E.A.J.M.; Penty, R.V.; White, I.H.; Seeds, A. J.

    2014-05-06T23:59:59.000Z

    -frequency applications. Integrated transmitter modules based on InP high-electron mobility transistor (HEMT) millimeter-wave (MMW) monolithic integrated circuits chipsets were used in the most successful demonstration of a wireless link at 120 GHz, transmitting HD... , with a -3 dB linewidth of 250 kHz, the narrowest RF linewidth generated from a free running dual wavelength semiconductor laser [14]. An important drawback of this device structure is that it employs cleaved facets to define the cavity, which severely...

  6. Millimeter wave analysis of the dielectric properties of oil shales

    E-Print Network [OSTI]

    John A. Scales; Michael Batzle

    2006-06-06T23:59:59.000Z

    Natural sedimentation processes give rise to fine layers in shales. If these layers alternate between organic-rich and organic-poor sediments, then the contrast in dielectric properties gives rise to an effective birefringence as the presence of hydrocarbons suppresses the dielectric constant of the host rock. We have measured these effects with a quasioptical millimeter wave setup that is rapid and noncontacting. We find that the strength of this birefringence and the overall dielectric permittivity provide two useful diagnostic of the organic content of oil shales.

  7. Minimizing Biases in Radar Precipitation Estimates

    E-Print Network [OSTI]

    McRoberts, Douglas B

    2014-12-08T23:59:59.000Z

    ................................................................................................. 57 3.4 The same as Fig. 3.3b, but with HRAP grid cells detected by the flagging algorithm (gray diamonds) in the 90 km – 100 km annulus in the KABR radar domain .......................................................................... 62 3.5... ...................... 163 xiii FIGURE Page 5.1 Same as Fig. 3.1, but without radar locations or boundaries for radar domains ................................................................................................... 169 5.2 (a) Stage IV 1-month Po...

  8. A land based radar polarimeter processing system

    E-Print Network [OSTI]

    Kronke, Chester William

    1984-01-01T23:59:59.000Z

    Assignments 4 Indicator Circuit Read Port Assignments. 5 Interpretation of Indicator Circuit Data . 6 RF Head Common Control Port Signal Assignments . 7 iSBC-80/24 Parallel I/O Summary. 8 iSBX-311 Analog Input Signal Assignments 9 Memory Map... Polarimeter Antennas 2 Azimuthal Angle of Radar Polarimeter Boom. 3 Block Diagram of the Radar Polarimeter System. 4 Block Diagram of Radar Hardware. 10 5 Microwave Transceiver Circuit Transfer Switches Controlled by RDADS. 12 6 Block Diagram...

  9. Radar range measurements in the atmosphere.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-02-01T23:59:59.000Z

    The earth's atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  10. Development of microwave and millimeter-wave integrated-circuit stepped-frequency radar sensors for surface and subsurface profiling

    E-Print Network [OSTI]

    Park, Joongsuk

    2005-02-17T23:59:59.000Z

    for subsurface and surface measurements including small size, light weight, good accuracy, fine resolution and deep penetration. In addition, two novel wideband microstrip quasi-TEM horn antennae that are capable of integration with a seamless connection have...

  11. Development of microwave and millimeter-wave integrated-circuit stepped-frequency radar sensors for surface and subsurface profiling 

    E-Print Network [OSTI]

    Park, Joongsuk

    2005-02-17T23:59:59.000Z

    ) for various surface and subsurface applications, such as profiling the surface and subsurface of pavements, detecting and localizing small buried Anti-Personnel (AP) mines and measuring the liquid level in a tank. These sensors meet the critical requirements...

  12. Millimeter-wave circuits and pulse compression radar baseband/analog signal processing blocks in silicon processes

    E-Print Network [OSTI]

    Parlak, Mehmet; Parlak, Mehmet

    2012-01-01T23:59:59.000Z

    solid) and simulated (dashed) conversion loss versus LO power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Measured (solid) and simulated (dashed) input-output powerMeasured (solid) and simulated (dashed) input-output power

  13. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 12, DECEMBER 1999 1807 Millimeter-Wave Radar Phenomenology of

    E-Print Network [OSTI]

    Sarabandi, Kamal

    , The University of Michigan, Ann Arbor, MI 48109-2122 USA. Publisher Item Identifier S 0018-926X(99)09982-2. have layer of water and a layer of ice over the power line surface on its polarimetric scattering behavior

  14. Millimeter-Wave Concurrent Dual-Band BiCMOS RFIC Transmitter for Radar and Communication Systems

    E-Print Network [OSTI]

    Huynh, Cuong Phu Minh 1976-

    2012-11-21T23:59:59.000Z

    like to specially thank him for bringing me to his research group and giving me faith; hence a comfortableness in doing the research. The academic lessons I have learned from his courses and weekly research meetings have been turning... inspirations to me for new ideas which significantly improve RFIC circuit and system performances, and for the definite shape of the research in this dissertation. I would like to thank him for kindly letting me have the freedom in searching new things...

  15. Radar network communication through sensing of frequency hopping

    DOE Patents [OSTI]

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28T23:59:59.000Z

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  16. Lightning and radar observations of hurricane Rita landfall

    SciTech Connect (OSTI)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  17. RISK ASSESSMENT CLOUD COMPUTING

    E-Print Network [OSTI]

    Columbia University

    SECURITY RESEARCH PRIVACY RISK ASSESSMENT AMC DATA FISMA CLOUD COMPUTING MOBILE DEVICES OPERATIONS application hosted in the cloud · Alaska DHHS fined $1.7M ­ Portable device stolen from vehicle · Mass Eye

  18. Sandia Energy - TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radar technologies and techniques developed at TTU have the potential to revolutionize wind energy generation by providing comprehensive information about the modulated flows...

  19. Radar investigation of the Hockley salt dome

    E-Print Network [OSTI]

    Hluchanek, James Andrew

    1973-01-01T23:59:59.000Z

    : Geophysics RADAR INVESTIGATION OF THE HOCKLEY SALT DOME A Thesis by UAMES ANDREW HLUCHANEK A'pproved as to style and content by: (Head of Departme t ? Member) May 1. 973 ABSTRACT Radar investigation of the Hockley Salt Dome. . (Nay, 1973) James... Andrew Hluchanek, B. S. , Texas A&M University Directed by: Dr. Robert R. Unterberger Radar probing through salt was accomplished at 17 radar stations established in the United Salt Company mine at Hockley, Texas. The top of the salt dom is mapped...

  20. Sandia National Laboratories: TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rotor sweep. Doppler radar technologies and techniques developed at TTU have the potential to revolutionize wind energy generation by providing comprehensive information...

  1. Higher Energy States in the CO Dimer: Millimeter-Wave Spectra and Rovibrational Calculations

    E-Print Network [OSTI]

    Higher Energy States in the CO Dimer: Millimeter-Wave Spectra and Rovibrational Calculations Leonid, Russia Ge´ W. M. Vissers Department of Chemistry, The Ohio State UniVersity, Columbus, Ohio 43210 Ad van millimeter-wave data yielded the precise location of 33 new energy levels of A+ symmetry and 20 levels of A

  2. Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites

    E-Print Network [OSTI]

    Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites Young 2009 A hexagonal ferrite-based millimeter wave notch filter was demonstrated. The filter consists of microwave Faraday rotation in ferrites by Hogan in 1952, a diverse range of microwave magnetic de- vices

  3. Using Millimeter VLBI to Constrain RIAF Models of Sagittarius A*

    E-Print Network [OSTI]

    Vincent L. Fish; Avery E. Broderick; Sheperd S. Doeleman; Abraham Loeb

    2008-12-17T23:59:59.000Z

    The recent detection of Sagittarius A* at lambda = 1.3 mm on a baseline from Hawaii to Arizona demonstrates that millimeter wavelength very long baseline interferometry (VLBI) can now spatially resolve emission from the innermost accretion flow of the Galactic center region. Here, we investigate the ability of future millimeter VLBI arrays to constrain the spin and inclination of the putative black hole and the orientation of the accretion disk major axis within the context of radiatively inefficient accretion flow (RIAF) models. We examine the range of baseline visibility and closure amplitudes predicted by RIAF models to identify critical telescopes for determining the spin, inclination, and disk orientation of the Sgr A* black hole and accretion disk system. We find that baseline lengths near 3 gigalambda have the greatest power to distinguish amongst RIAF model parameters, and that it will be important to include new telescopes that will form north-south baselines with a range of lengths. If a RIAF model describes the emission from Sgr A*, it is likely that the orientation of the accretion disk can be determined with the addition of a Chilean telescope to the array. Some likely disk orientations predict detectable fluxes on baselines between the continental United States and even a single 10-12 m dish in Chile. The extra information provided from closure amplitudes by a four-antenna array enhances the ability of VLBI to discriminate amongst model parameters.

  4. XSEDE Cloud Survey Report

    E-Print Network [OSTI]

    Walter, M.Todd

    XSEDE Cloud Survey Report David Lifka, Cornell Center for Advanced Computing Ian Foster, ANL, ANL and The University of Chicago A National Science Foundation-sponsored cloud user survey was conducted from September 2012 to April 2013 by the XSEDE Cloud Integration Investigation Team to better

  5. Research Cloud Computing Recommendations

    E-Print Network [OSTI]

    Qian, Ning

    Research Cloud Computing Recommendations SRCPAC December 3, 2014 #12;Mandate and Membership SRCPAC convened this committee in Sept 2014 to investigate the role that cloud computing should play in our & Academic Affairs (Social Work) #12;Questions discussed · What cloud resources are available? · Which kinds

  6. Sandia National Laboratories: National Air Space radar system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Space radar system Sandia Develops Tool to Evaluate Wind-TurbineRadar Impacts On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

  7. Radar MeteorologyRadar Meteorology Feb 20, 1941 10 cm (S-band) radar used to track rain showers (Ligda)

    E-Print Network [OSTI]

    Rutledge, Steven

    (Ligda) Possibility of such observations was predicted by Ryde (1941) MIT Radiation Laboratory made in 1943 First operational weather radar, Panama, 1943 Science of radar meteorology born from WWII research fluctuations at 1/2 the wavelength of the incident radiation (a few meters in this case). Power returned from

  8. Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics

    DOE Patents [OSTI]

    Bakhtiari, Sasan (Westmont, IL); Gopalsami, Nachappa (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1999-03-23T23:59:59.000Z

    A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.

  9. Ultra-wideband radar sensors and networks

    DOE Patents [OSTI]

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06T23:59:59.000Z

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  10. Sandia Energy - Radar Friendly Blades

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid IntegrationOffshoreLiveSustainablePriceRadar

  11. Computing the apparent centroid of radar targets

    SciTech Connect (OSTI)

    Lee, C.E.

    1996-12-31T23:59:59.000Z

    A high-frequency multibounce radar scattering code was used as a simulation platform for demonstrating an algorithm to compute the ARC of specific radar targets. To illustrate this simulation process, several targets models were used. Simulation results for a sphere model were used to determine the errors of approximation associated with the simulation; verifying the process. The severity of glint induced tracking errors was also illustrated using a model of an F-15 aircraft. It was shown, in a deterministic manner, that the ARC of a target can fall well outside its physical extent. Finally, the apparent radar centroid simulation based on a ray casting procedure is well suited for use on most massively parallel computing platforms and could lead to the development of a near real-time radar tracking simulation for applications such as endgame fuzing, survivability, and vulnerability analyses using specific radar targets and fuze algorithms.

  12. Tangential velocity measurement using interferometric MTI radar

    DOE Patents [OSTI]

    Doerry, Armin W.; Mileshosky, Brian P.; Bickel, Douglas L.

    2006-01-03T23:59:59.000Z

    Radar systems use time delay measurements between a transmitted signal and its echo to calculate range to a target. Ranges that change with time cause a Doppler offset in phase and frequency of the echo. Consequently, the closing velocity between target and radar can be measured by measuring the Doppler offset of the echo. The closing velocity is also known as radial velocity, or line-of-sight velocity. Doppler frequency is measured in a pulse-Doppler radar as a linear phase shift over a set of radar pulses during some Coherent Processing Interval (CPI). An Interferometric Moving Target Indicator (MTI) radar can be used to measure the tangential velocity component of a moving target. Multiple baselines, along with the conventional radial velocity measurement, allow estimating the true 3-D velocity of a target.

  13. Magneto-Radar Hidden Metal Detector

    DOE Patents [OSTI]

    McEwan, Thomas E. (Las Vegas, NV)

    2005-07-05T23:59:59.000Z

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  14. Working inside the Cloud: Developing a Cloud Computing Infrastructure

    E-Print Network [OSTI]

    Krause, Rolf

    UROP 2012 Working inside the Cloud: Developing a Cloud Computing Infrastructure Cloud computing and live-migration of running VM. USI participates to the development of the first European Cloud computing for a motivated student that will have a chance to improve his/her knowledge on Cloud computing, Java and/or Ruby

  15. Dynamic Cloud Resource Reservation via Cloud Brokerage

    E-Print Network [OSTI]

    Li, Baochun

    Department of Electrical and Computer Engineering, University of Toronto Department of Electrical@eecg.toronto.edu, liang@utoronto.ca Abstract--Infrastructure-as-a-Service clouds offer diverse pric- ing options

  16. Observations of colocated optical and radar aurora H. Bahcivan,1

    E-Print Network [OSTI]

    Lummerzheim, Dirk

    Observations of colocated optical and radar aurora H. Bahcivan,1 D. L. Hysell,2 D. Lummerzheim,3 M of the E region radar aurora obtained with a 30 MHz imaging radar and the optical aurora (green line, the radar aurora in the vicinity of a stable evening auroral arc arises because of the arc's polarization

  17. An Autonomous Reliabilit Cloud Comput

    E-Print Network [OSTI]

    Buyya, Rajkumar

    An Autonomous Reliabilit Ami Cloud Comput Department of Computing and Informa Abstract--Cloud computing paradigm allo based access to computing and storages s Internet. Since with advances of Cloud. Keywords- Cloud computing; SLA negotiat I. INTRODUCTION Cloud computing has transferred the services

  18. Development of the Solid State X-band Radar and the Phased Array Radar System in Japan

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    Development of the Solid State X-band Radar and the Phased Array Radar System in Japan By DR. TOMOO array radar system have been developed. Toshiba has developed the latest model of weather radar of precipitation and to achieve drastic reduction of its size and life cycle cost. It is now well known

  19. Clouds up close | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions that affect clouds and thus improve climate projections. Contact Heng Xiao Pacific Northwest National Laboratory 902 Battelle Blvd., PO Box 999 MSIN: K9-30...

  20. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  1. Using doppler radar images to estimate aircraft navigational heading error

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM); Jordan, Jay D. (Albuquerque, NM); Kim, Theodore J. (Albuquerque, NM)

    2012-07-03T23:59:59.000Z

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  2. SURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE VARIATION

    E-Print Network [OSTI]

    that have been used to quantify the effect of clouds on radiation budget in both modeling and observationalSURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE/Atmospheric Sciences Division Brookhaven National Laboratory P.O. Box, Upton, NY www.bnl.gov ABSTRACT Cloud-radiation

  3. Millimeter-wave GaN high electron mobility transistors and their integration with silicon electronics

    E-Print Network [OSTI]

    Chung, Jinwook W. (Jinwook Will)

    2011-01-01T23:59:59.000Z

    In spite of the great progress in performance achieved during the last few years, GaN high electron mobility transistors (HEMTs) still have several important issues to be solved for millimeter-wave (30 ~ 300 GHz) applications. ...

  4. Novel millimeter wave sensor concepts for energy, environment, and national security

    E-Print Network [OSTI]

    Sundaram, S. K.

    Millimeter waves are ideally suited for sensing and diagnosing materials, devices, and processes that are broadly important to energy, environment, and national security. Thermal return reflection (TRR) techniques that ...

  5. The use of chirped pulse millimeter-wave spectroscopy in chemical dynamics and kinetics

    E-Print Network [OSTI]

    Shaver, Rachel Glyn

    2013-01-01T23:59:59.000Z

    .Chirped-pulse millimeter wave (CPmmW) spectroscopy is a revolutionary technique that has taken advantage of advances in electronics to give high signal to noise broadband rotational spectra in a very short period of time ...

  6. Chirped-pulse millimeter-wave spectroscopy: Spectrum, dynamics, and manipulation of Rydberg–Rydberg transitions

    E-Print Network [OSTI]

    Colombo, Anthony P.

    2013-01-01T23:59:59.000Z

    We apply the chirped-pulse millimeter-wave (CPmmW) technique to transitions between Rydberg states in calcium atoms. The unique feature of Rydberg–Rydberg transitions is that they have enormous electric dipole transition ...

  7. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Computing Services Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure Cloud Computing...

  8. Profiling clouds' inner life | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    life Released: May 29, 2014 Subgrid modeling pinpoints cloud transformation to uncover true reflective power An accurate understanding of clouds over the ocean is important for...

  9. CONTRIBUTED Green Cloud Computing

    E-Print Network [OSTI]

    Tucker, Rod

    to manage energy consumption across the entire information and communications technology (ICT) sector. While considers both public and private clouds, and includes energy consumption in switching and transmission to energy consumption and cloud computing seems to be an alternative to office-based computing. By Jayant

  10. Toward Securing Sensor Clouds

    E-Print Network [OSTI]

    · 32 GB microSDHC storage 2 Image from http://hothardware.com/News/Leaked-Motorola-DROID-X-2-Daytona Computer Mini Computer External Storage External Storage Router Router Router Router Cloud Computing Cloud: micro surveys, amber alerts 4 #12;Router Router Router Router Mini Computer Mini Computer Mini Computer

  11. Radar echo signatures versus relative precipitation

    E-Print Network [OSTI]

    Huber, Terry Alvin

    1987-01-01T23:59:59.000Z

    the relationship between cell-echo signatures and precipitation characteristics, and to support the hypothesis that, during the lifespan of any particular isolated convective cell, the relative rainfall rate, as determined by radar for a given volume scan... Cooperative Program) field experiment of 1979. Four isolated cases, two rainshowers and two thundershowers, were selected for study. Profiles from volume scans taken 10 minutes before, during, and 10 minutes after the maximum radar-determined rainfall rate...

  12. Using Surface Remote Sensors to Derive Radiative Characteristics of Mixed-Phase Clouds: An Example from M-PACE

    SciTech Connect (OSTI)

    de Boer, Gijs; Collins, William D.; Menon, Surabi; Long, Charles N.

    2011-12-02T23:59:59.000Z

    Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

  13. July 2012July 2012 Cloud Computing and Virtualization:Cloud Computing and Virtualization

    E-Print Network [OSTI]

    Liu, Jiangchuan (JC)

    July 2012July 2012 Cloud Computing and Virtualization:Cloud Computing and Virtualization/26/2633 Recent: CloudRecent: Cloud The fast growth of cloud computing Cloud file storage/synchronization services Google entries about cloud computing: 184,000,000 #12;July 2012July 2012 44/26/2644 Our CloudOur Cloud 7

  14. Millimeter-wave imaging of thermal and chemical signatures.

    SciTech Connect (OSTI)

    Gopalsami, N.

    1999-03-30T23:59:59.000Z

    Development of a passive millimeter-wave (mm-wave) system is described for remotely mapping thermal and chemical signatures of process effluents with application to arms control and nonproliferation. Because a large amount of heat is usually dissipated in the air or waterway as a by-product of most weapons of mass destruction facilities, remote thermal mapping may be used to detect concealed or open facilities of weapons of mass destruction. We have developed a focal-plane mm-wave imaging system to investigate the potential of thermal mapping. Results of mm-wave images obtained with a 160-GHz radiometer system are presented for different target scenes simulated in the laboratory. Chemical and nuclear facilities may be identified by remotely measuring molecular signatures of airborne molecules emitted from these facilities. We have developed a filterbank radiometer to investigate the potential of passive spectral measurements. Proof of principle is presented by measuring the HDO spectral line at 80.6 GHz with a 4-channel 77-83 GHz radiometer.

  15. When Clouds become Green: the Green Open Cloud Architecture

    E-Print Network [OSTI]

    Boyer, Edmond

    of a new original energy-efficient Cloud infrastructure called Green Open Cloud. Keywords. Energy with the support of energy-efficient frameworks dedicated to Cloud architectures. Virtualization is a key feature of the energy-aware Cloud infras- tructure that we propose. The conclusion and future works are reviewed

  16. Ground Penetrating Radar in Hydrogeophysics

    SciTech Connect (OSTI)

    Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E.; Hubbard, S.

    2008-01-15T23:59:59.000Z

    To meet the needs of a growing population and to provide us with a higher quality of life, increasing pressures are being placed on our environment through the development of agriculture, industry, and infrastructures. Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels by biofuels for energy production and climate change have been recognized as potential threats to our water resources and sustained agricultural productivity. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff , groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the Earth's surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially impact climate change. The vadose zone's inherent spatial variability and inaccessibility precludes direct observation of the important subsurface processes. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone. In particular, hydrogeophysical approaches applied at relevant scales are required to appraise dynamic subsurface phenomena and to develop optimal sustainability, exploitation, and remediation strategies. Among existing geophysical techniques, ground penetrating radar (GPR) technology is of particular interest for providing high-resolution subsurface images and specifically addressing water-related questions. Ground penetrating radar is based on the transmission and reception of VHF-UHF (30-3000 MHz) electromagnetic waves into the ground, whose propagation is determined by the soil electromagnetic properties and their spatial distribution. As the dielectric permittivity of water overwhelms the permittivity of other soil components, the presence of water in the soil principally governs GPR wave propagation. Therefore, GPR-derived dielectric permittivity is usually used as surrogate measure for soil water content. In the areas of unsaturated zone hydrology and water resources, GPR has been used to identify soil stratigraphy, to locate water tables, to follow wetting front movement, to estimate soil water content, to assist in subsurface hydraulic parameter identification, to assess soil salinity, and to support the monitoring of contaminants. The purpose of this special section of the Vadose Zone Journal is to present recent research advances and applications of GPR in hydrogeophysics, with a particular emphasis on vadose zone investigations. This special section includes contributions presented at the European Geosciences Union General Assembly 2006 (EGU 2006, Vienna, Austria) and the 11th International Conference on Ground Penetrating Radar (GPR 2006, Columbus, OH). The studies presented here deal with a wide range of surface and borehole GPR applications, including GPR sensitivity to contaminant plumes, new methods for soil water content determination, three-dimensional imaging of the subsurface, time-lapse monitoring of hydrodynamic events and inversion techniques for soil hydraulic properties estimation, and joint interpretation of GPR and electric resistivity tomography (ERT) data.

  17. Attribution Analysis of Cloud Feedback

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15T23:59:59.000Z

    -term global warming. If the EIS-low cloud fraction relationship holds under global warming, it is likely that the tropical low cloud fraction change is non-negative. Climate models without significant negative low cloud fraction change suggest that the cloud...

  18. Convective Cloud Lifecycles Lunchtime seminar

    E-Print Network [OSTI]

    Plant, Robert

    Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

  19. On the measurement of wind speeds in tornadoes with a portable CW/FM-CW Doppler radar

    SciTech Connect (OSTI)

    Bluestein, H.B. (Oklahoma Univ., Norman, OK (USA). School of Meteorology); Unruh, W.P. (Los Alamos National Lab., NM (USA))

    1991-01-01T23:59:59.000Z

    Both the formation mechanism and structure of tornadoes are not yet well understood. The Doppler radar is probably the best remote-sensing instrument at present for determining the wind field in tornadoes. Although much has been learned about the non-supercell tornado from relatively close range using Doppler radars at fixed sites, close-range measurements in supercell tornadoes are relatively few. Doppler radar can increase significantly the number of high-resolution, sub-cloud base measurements of both the tornado vortex and its parent vortex in supercells, with simultaneous visual documentation. The design details and operation of the CW/FM-CW Doppler radar developed at the Los Alamos National Laboratory and used by storm-intercept teams at the Univ. of Oklahoma are described elsewhere. The radar transmits 1 W at 3 cm, and can be switched back and forth between CW and FM-CW modes. In the FM-CW mode the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the corresponding maximum unambiguous range and velocity, and range resolution are 5 km, {plus minus} 115 m s{sup {minus}1}, and 78 m respectively. The bistatic antennas, which have half-power beamwidths of 5{degree}, are easily pointed wit the aid of a boresighted VCR. FM-CW Data are recorded on the VCR, while voice documentation is recorded on the audio tape; video is recorded on another VCR. The radar and antennas are easily mounted on a tripod, and can be set up by three people in a minute or two. The purpose of this paper is to describe the signal processing techniques used to determine the Doppler spectrum in the FM-CW mode and a method of its interpretation in real time, and to present data gathered in a tornadic storm in 1990. 15 refs., 7 figs.

  20. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G. (Ojai, CA); Bashforth, Michael B. (Buellton, CA); Lewallen, Tricia S. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA)

    1994-01-01T23:59:59.000Z

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  1. Interannual Variations of Arctic Cloud Types

    E-Print Network [OSTI]

    Hochberg, Michael

    Sciences #12;Changes in Arctic Climate What is the role of cloud cover in Arctic climate change? What is the Cloud Radiative Effect (CRE) in the Arctic? #12;CRE depends on season, cloud type CRE ­ whether clouds specifically chosen to include nighttime obs Total cloud cover and nine cloud types: - High cloud (cirriform

  2. Interannual Variations of Arctic Cloud Types

    E-Print Network [OSTI]

    Hochberg, Michael

    Declining September sea-ice extent #12;Clouds & Changes in Arctic Climate What is the role of cloud cover in Arctic climate change? What is the Cloud Radiative Effect (CRE) in the Arctic? #12;CRE Defined CRE nighttime obs Total cloud cover and nine cloud types: - High cloud (cirriform) - Middle Clouds: Altocumulus

  3. Feel free to contact the authors either here at the conference or at zadelhof@knmi.nl resp. donovan@knmi.nl Towards vertical cloud profile retrieval from

    E-Print Network [OSTI]

    Zadelhoff, Gerd-Jan van

    to the parameterizations of clouds used. To provide better and more reliable predictions the parameterization schemes have to be measured and related to their liquid water content (LWC), ice water content (IWC regime of the radar. R ¨ ¥ ¦ can be related to R¥ ¦ through assumptions of the type of ice

  4. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01T23:59:59.000Z

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  5. A developer's survey on different cloud platforms

    E-Print Network [OSTI]

    Doan, Dzung

    2009-01-01T23:59:59.000Z

    1 Introduction Cloud computing is a computing paradigm inFor this reason, cloud computing has also been describedparallel processing. Cloud computing can be contrasted with

  6. Tracking butterfly flight paths across the landscape with harmonic radar

    E-Print Network [OSTI]

    Northampton, University of

    Tracking butterfly flight paths across the landscape with harmonic radar E. T. Cant1,*, A. D. Smith of five butterfly species were successfully tracked using harmonic radar within an agricultural landscape. Keywords: butterfly flight; harmonic radar; linear landscape features; Aglais urticae; Inachis io 1

  7. Bias adjustment of radar-based 3-hour precipitation accumulations

    E-Print Network [OSTI]

    Stoffelen, Ad

    projection of KNMI radar images 55 4 #12;Chapter 1 Introduction Since June 2003 a daily gauge is generated at 1400 UTC when the majority of the manual gauge observations have been reported. The radar-gaugeBias adjustment of radar-based 3-hour precipitation accumulations Iwan Holleman Technical Report

  8. Climatology of extreme rainfall from rain gauges and weather radar

    E-Print Network [OSTI]

    Stoffelen, Ad

    by conventional rain gauge networks. A 10-year radar-based climatology of rainfall depths for durations of 15 minClimatology of extreme rainfall from rain gauges and weather radar Aart Overeem #12;Thesis:30 PM in the Aula #12;Aart Overeem Climatology of extreme rainfall from rain gauges and weather radar

  9. Thin Cloud Length Scales Using CALIPSO and CloudSat Data

    E-Print Network [OSTI]

    Solbrig, Jeremy E.

    2010-10-12T23:59:59.000Z

    Thin clouds are the most difficult cloud type to observe. The recent availability of joint cloud products from the active remote sensing instruments aboard CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) facilitates...

  10. Soil-penetrating synthetic aperture radar

    SciTech Connect (OSTI)

    Boverie, B.; Brock, B.C.; Doerry, A.W.

    1994-12-01T23:59:59.000Z

    This report summarizes the results for the first year of a two year Laboratory Directed Research and Development (LDRD) effort. This effort included a system study, preliminary data acquisition, and preliminary algorithm development. The system study determined the optimum frequency and bandwidth, surveyed soil parameters and targets, and defined radar cross section in lossy media. The data acquisition imaged buried objects with a rail-SAR. Algorithm development included a radar echo model, three-dimensional processing, sidelobe optimization, phase history data interpolation, and clutter estimation/cancellation.

  11. Millimeter radiation from a 3D model of the solar atmosphere I. Diagnosing chromospheric thermal structure

    E-Print Network [OSTI]

    Loukitcheva, Maria; Carlsson, Mats; White, Stephen

    2015-01-01T23:59:59.000Z

    Aims. We use advanced 3D NLTE radiative magnetohydrodynamic simulations of the solar atmosphere to carry out detailed tests of chromospheric diagnostics at millimeter and submillimeter wavelengths. Methods. We focused on the diagnostics of the thermal structure of the chromosphere in the wavelength bands from 0.4 mm up to 9.6 mm that can be accessed with the Atacama Large Millimeter/Submillimeter Array (ALMA) and investigated how these diagnostics are affected by the instrumental resolution. Results. We find that the formation height range of the millimeter radiation depends on the location in the simulation domain and is related to the underlying magnetic structure. Nonetheless, the brightness temperature is a reasonable measure of the gas temperature at the effective formation height at a given location on the solar surface. There is considerable scatter in this relationship, but this is significantly reduced when very weak magnetic fields are avoided. Our results indicate that although instrumental smearin...

  12. USAGE OF RADARS FOR WIND ENERGY APPICATIONS Determine the benefit of using radar observations for wind energy applications by

    E-Print Network [OSTI]

    USAGE OF RADARS FOR WIND ENERGY APPICATIONS TASK: Determine the benefit of using radar observations for wind energy applications by analyzing i) the resolution effects and ii) sensitivity effects of weather radar systems. MOTIVATION: Wind energy applications strongly focus high-resolution wind observations

  13. Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape

    E-Print Network [OSTI]

    Prentiss, Mara

    three-dimensional, microfluidic, paper-based analyt- ical devices (3D-mPADs) as ``stamps'' (eMillimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape This communication describes a simple method for printing aqueous solutions with millimeter-scale patterns

  14. Power and polarization monitor development for high power millimeter-wave

    SciTech Connect (OSTI)

    Makino, R., E-mail: makino.ryohhei@ms.nifs.ac.jp; Kobayashi, K. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Kubo, S. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan); Kobayashi, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-11-15T23:59:59.000Z

    A new type monitor of power and polarization states of millimeter-waves has been developed to be installed at a miter-bend, which is a part of transmission lines of millimeter-waves, for electron cyclotron resonance heating on the Large Helical Device. The monitor measures amplitudes and phase difference of the electric field of the two orthogonal polarizations which are needed for calculation of the power and polarization states of waves. The power and phase differences of two orthogonal polarizations were successfully detected simultaneously.

  15. Detecting Flaring Structures in Sagittarius A* with (Sub)Millimeter VLBI

    E-Print Network [OSTI]

    Vincent L. Fish; Sheperd S. Doeleman; Avery E. Broderick; Abraham Loeb; Alan E. E. Rogers

    2008-07-15T23:59:59.000Z

    Multiwavelength monitoring observations of Sagittarius A* exhibit variability on timescales of minutes to hours, indicating emission regions localized near the event horizon. (Sub)Millimeter-wavelength VLBI is uniquely suited to probe the environment of the assumed black hole on these scales. We consider a range of orbiting hot-spot and accretion-disk models and find that periodicity in Sgr A* flares is detectable using closure quantities. Our methods are applicable to any model producing source structure changes near the black hole, including jets and magnetohydrodynamic disk instabilities, and suggest that (sub)millimeter VLBI will play a prominent role in investigating Sgr A* near the event horizon.

  16. Ice Heating Up Cold Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Released: October 04, 2011 In a heated battle, ice crystals win the competition for cloud water vapor The mighty cloud ice...

  17. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15T23:59:59.000Z

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  18. Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia

    SciTech Connect (OSTI)

    Comstock, Jennifer M.; Protat, Alain; McFarlane, Sally A.; Delanoe, Julien; Deng, Min

    2013-05-22T23:59:59.000Z

    Ground-based radar and lidar observations obtained at the Department of Energy’s Atmospheric Radiation Measurement Program’s Tropical Western Pacific site located in Darwin, Australia are used to retrieve ice cloud properties in anvil and cirrus clouds. Cloud microphysical properties derived from four different retrieval algorithms (two radar-lidar and two radar only algorithms) are compared by examining mean profiles and probability density functions of effective radius (Re), ice water content (IWC), extinction, ice number concentration, ice crystal fall speed, and vertical air velocity. Retrieval algorithm uncertainty is quantified using radiative flux closure exercises. The effect of uncertainty in retrieved quantities on the cloud radiative effect and radiative heating rates are presented. Our analysis shows that IWC compares well among algorithms, but Re shows significant discrepancies, which is attributed primarily to assumptions of particle shape. Uncertainty in Re and IWC translates into sometimes-large differences in cloud radiative effect (CRE) though the majority of cases have a CRE difference of roughly 10 W m-2 on average. These differences, which we believe are primarily driven by the uncertainty in Re, can cause up to 2 K/day difference in the radiative heating rates between algorithms.

  19. Some non-precipitation radar echoes as observed by CPS-9 radar

    E-Print Network [OSTI]

    Luckenbach, Guenther Edward

    1959-01-01T23:59:59.000Z

    . Solar Signal Lightning Metallic Objects Anomalous Propagation 23 23 25 25 1. 23 July 1958 5 August 1958 7 August 1958 13 August 1958 5. 8 September 1958. 9 September 1958 Cold Front 32 32 41 41 47 10. Lightning Layers - Radiosonde... artificially produced boundaries of temperature~ humidity, and turbulence but failed to detect angels on 3. 2 and 1. 25 cm radar. No means independent of the radar for measuring the inhomogenities was employed. In 1948, Baldwin [ 2 ] suggested that angels...

  20. Motion Measurement for Synthetic Aperture Radar.

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2015-01-01T23:59:59.000Z

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3 - D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision and accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.

  1. Doppler Radar Wind Profiles Iwan Holleman

    E-Print Network [OSTI]

    Stoffelen, Ad

    ). The potential impact of a network of boundary layer wind profilers and sodars for mesoscale wind analysisDoppler Radar Wind Profiles Iwan Holleman Scientific Report, KNMI WR-2003-02, 2003 #12;2 #12 Strategy 18 3 Methods for Wind Profile Retrieval 25 3.1 Radial Velocity from Local Wind Model 25 3

  2. Attribution Analysis of Cloud Feedback 

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15T23:59:59.000Z

    Uncertainty on cloud feedback is the primary contributor to the large spread of equilibrium climate sensitivity (ECS) in climate models. In this study, we compare the short-term cloud feedback in climate models with observations, and evaluate...

  3. Modeling Incoherent Electron Cloud Effects

    E-Print Network [OSTI]

    Benedetto, E.

    2008-01-01T23:59:59.000Z

    electron-cloud effects and synchrotron radiation can lead toelectron-cloud effects and synchrotron radiation can lead tocloud phenomena in positrons storage rings the effect of syn- chrotron radiation

  4. Secure Cloud Computing With Brokered Trusted

    E-Print Network [OSTI]

    ) ·Audio ·QualComm 7201 528MHZ ·64MB Ram ·MicroSD Slow Storage ·Currently NO SIM CHIPS Monday, March 29 External Storage External Storage Router Router Router Router Cloud Computing Cloud Computing Cloud Storage External Storage Router Router Router Router Cloud Computing Cloud Computing Cloud Computing Tower

  5. Micropower impulse radar technology and applications

    SciTech Connect (OSTI)

    Mast, J., LLNL

    1998-04-15T23:59:59.000Z

    The LLNL-developed Micropower Impulse Radar (MIR) technology has quickly gone from laboratory concept to embedded circuitry in numerous government and commercial systems in the last few years[l]. The main ideas behind MIR, invented by T. McEwan in the Laser Program, are the generation and detection systems for extremely low- power ultra-wideband pulses in the gigaHertz regime using low-cost components. These ideas, coupled with new antenna systems, timing and radio-frequency (RF) circuitry, computer interfaces, and signal processing, have provided the catalyst for a new generation of compact radar systems. Over the past several years we have concentrated on a number of applications of MIR which address a number of remote-sensing applications relevant to emerging programs in defense, transportation, medical, and environmental research. Some of the past commercial successes have been widely publicized [2] and are only now starting to become available for market. Over 30 patents have been filed and over 15 licenses have been signed on various aspects of the MIR technology. In addition, higher performance systems are under development for specific laboratory programs and government reimbursables. The MIR is an ultra- wideband, range-gated radar system that provides the enabling hardware technology used in the research areas mentioned above. It has numerous performance parameters that can be Selected by careful design to fit the requirements. We have improved the baseline, short- range, MIR system to demonstrate its effectiveness. The radar operates over the hand from approximately I to 4 GHz with pulse repetition frequencies up to 10 MHz. It provides a potential range resolution of I cm at ranges of greater than 20 m. We have developed a suite of algorithms for using MIR for image formation. These algorithms currently support Synthetic aperture and multistate array geometries. This baseline MIR radar imaging system has been used for several programmatic applications.

  6. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM)

    2009-01-20T23:59:59.000Z

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  7. Command Line Tools Cloud Computing

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Command Line Tools Cloud Computing #12;Everybody (or nearly everybody) loves GUI. AWS Command Line of advanced features. After surviving the cloud computing class till now, Your are almost a command line guru! You need AWS command line tools, ec2-api-tools, to maximize the power of AWS cloud computing. Plugging

  8. 8, 96979729, 2008 FRESCO+ cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 9697­9729, 2008 FRESCO+ cloud retrieval algorithm P. Wang et al. Title Page Abstract Chemistry and Physics Discussions FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric on behalf of the European Geosciences Union. 9697 #12;ACPD 8, 9697­9729, 2008 FRESCO+ cloud retrieval

  9. 3, 33013333, 2003 Cirrus cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 3, 3301­3333, 2003 Cirrus cloud occurrence as function of ambient relative humidity J. Str and Physics Discussions Cirrus cloud occurrence as function of ambient relative humidity: A comparison¨om (johan@itm.su.se) 3301 #12;ACPD 3, 3301­3333, 2003 Cirrus cloud occurrence as function of ambient

  10. Cloud Formation, Evolution and Destruction

    E-Print Network [OSTI]

    Estalella, Robert

    Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

  11. 5, 60136039, 2005 FRESCO cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 6013­6039, 2005 FRESCO cloud algorithm N. Fournier et al. Title Page Abstract Introduction cloud information over deserts from SCIAMACHY O2 A-band N. Fournier 1 , P. Stammes 1 , M. de Graaf 1 , R, 6013­6039, 2005 FRESCO cloud algorithm N. Fournier et al. Title Page Abstract Introduction Conclusions

  12. NIST Cloud Computing Reference Architecture

    E-Print Network [OSTI]

    Perkins, Richard A.

    NIST Cloud Computing Reference Architecture Recommendations of the National Institute of Standards Publication 500-292 #12;i NIST Special Publication 500-292 NIST Cloud Computing Reference Architecture, John Messina, Lee Badger and Dawn Leaf Information Techonology Laboratory Cloud Computing Program

  13. C ISOTOPE GRADIENT DERIVED FROM MILLIMETER TRANSITIONS OF CN: THE CASE FOR GALACTIC CHEMICAL EVOLUTION

    E-Print Network [OSTI]

    Ziurys, Lucy M.

    THE 12 C/13 C ISOTOPE GRADIENT DERIVED FROM MILLIMETER TRANSITIONS OF CN: THE CASE FOR GALACTIC kinetic temperature, suggests that chemical fractionation and isotope-selective photodissociation both do be a result of 13 C enrichment since the formation of the solar system, as predicted by recent models. Subject

  14. Integrated Nano-to-Millimeter (In2m) Systems MEMS Safety &

    E-Print Network [OSTI]

    Maryland at College Park, University of

    CALCE Electronic Products and Systems Center University of Maryland Article: Nano-to-Millimeter Scale Integrated Systems H. Last, M. Deeds, D. Garvick, R. Kavetsky Naval Surface Warfare Center, Indian Head Division P. Sandborn, E. B. Magrab, S. K. Gupta CALCE Electronic Products and Systems Center University

  15. FERRITE TUNABLE MILLIMETER WAVE PRINTED CIRCUIT FILTERS Jaroslaw Uher, Jens Bornemann*, and Fritz Arndt

    E-Print Network [OSTI]

    Bornemann, Jens

    FF-2 FERRITE TUNABLE MILLIMETER WAVE PRINTED CIRCUIT FILTERS Jaroslaw Uher, Jens Bornemann of ferrite-slab loaded waveguides. Computer optimized design data based on the rigorous modal S-matrix method resonators [1] - [3] , or ferrite slabs in resonating below-cutoff waveguides [4], ~~ii;~'~rpaper describes

  16. Combined Illumination Cylindrical Millimeter-Wave Imaging Technique for Concealed Weapon Detection

    SciTech Connect (OSTI)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2000-04-01T23:59:59.000Z

    A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30-300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3-D images of the person. After reconstruction, the images are combined into a single high-resolution three-dimensional image of the person under surveillance. This combined image is then rendered using 3-D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operator will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration (FAA).

  17. DOI: 10.1002/adem.201000145 Titanium Alloy Lattice Structures with Millimeter Scale Cell

    E-Print Network [OSTI]

    Wadley, Haydn

    DOI: 10.1002/adem.201000145 Titanium Alloy Lattice Structures with Millimeter Scale Cell Sizes­9] acoustic damping,[10,11] and impact energy absorption.[12­14] The earliest foams were made from easily cast recently proposed for the making of cellular materials from titanium coated SiC monofilaments.[35] We show

  18. Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials

    SciTech Connect (OSTI)

    Wosko, Paul; Sundram, S. K.

    2012-10-16T23:59:59.000Z

    New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 şC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 şC.

  19. A Wideband Body-Enabled Millimeter-Wave Transceiver for Wireless Network-an-Chip

    E-Print Network [OSTI]

    Pande, Partha Pratim

    -A highly energy-efficient on-chip communication network is crucial for the development of future multiA Wideband Body-Enabled Millimeter-Wave Transceiver for Wireless Network-an-Chip Xinmin Yu, Suman Prasad Sah, Sujay Deb, Partha Pratim Pande, Benjamin Belzer, and Deukhyoun Heo School of Electrical

  20. Millimeter and Submillimeter Survey of the R Corona Australis Region

    E-Print Network [OSTI]

    Christopher Groppi; Craig Kulesa; Christopher Walker; Christopher Martin

    2004-06-08T23:59:59.000Z

    Using a combination of data from the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO), the Arizona Radio Observatory Kitt Peak 12m telescope and the Arizona Radio Observatory 10m Heinrich Hertz Telescope, we have studied the most active part of the R CrA molecular cloud in multiple transitions of Carbon Monoxide, HCO$^+$ and 870\\micron continuum emission. Since R CrA is nearby (130 pc), we are able to obtain physical spatial resolution as high as 0.01pc over an area of 0.16 pc$^2$, with velocity resolution finer than 1 km/s. Mass estimates of the protostar driving the mm-wave emission derived from HCO$^+$, dust continuum emission and kinematic techniques point to a young, deeply embedded protostar of $\\sim$0.5-0.75 M$_\\odot$, with a gaseous envelope of similar mass. A molecular outflow is driven by this source that also contains at least 0.8 M$_\\odot$ of molecular gas with $\\sim$0.5 L$_\\odot$ of mechanical luminosity. HCO$^+$ lines show the kinematic signature of infall motions as well as bulk rotation. The source is most likely a Class 0 protostellar object not yet visible at near-IR wavelengths. With the combination of spatial and spectral resolution in our data set, we are able to disentangle the effects of infall, rotation and outflow towards this young object.

  1. Stratocumulus Clouds ROBERT WOOD

    E-Print Network [OSTI]

    Wood, Robert

    by latent heating in updrafts and cooling in downdrafts. Turbulent eddies and evaporative cooling drives, stratification of the STBL, and in some cases cloud breakup. Feedbacks between radiative cooling, precipitation- way interactions may be a key driver of aerosol concentrations over the remote oceans. Aerosol

  2. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels

    E-Print Network [OSTI]

    Hartmann, Dennis

    radiative forcing. The global and annual mean model-simulated cloud feedback is dominated by contributions to a hypothetical cloudless but other- wise identical planet, the global and annual mean effect of clouds at the top is how cloud radiative effects will change as the planet warms because of long-lived greenhouse gases

  3. Radiation Parameterization for Three-Dimensional Inhomogeneous Cirrus Clouds Applied to ARM Data and Climate Models

    SciTech Connect (OSTI)

    Kuo-Nan Liou

    2003-12-29T23:59:59.000Z

    OAK-B135 (a) We developed a 3D radiative transfer model to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilized a diffusion approximation approach (four-term expansion in the intensity) employing Cartesian coordinates. The required single-scattering parameters, including the extinction coefficient, single-scattering albedo, and asymmetry factor, for input to the model, were parameterized in terms of the ice water content and mean effective ice crystal size. The incorporation of gaseous absorption in multiple scattering atmospheres was accomplished by means of the correlated k-distribution approach. In addition, the strong forward diffraction nature in the phase function was accounted for in each predivided spatial grid based on a delta-function adjustment. The radiation parameterization developed herein is applied to potential cloud configurations generated from GCMs to investigate broken clouds and cloud-overlapping effects on the domain-averaged heating rate. Cloud inhomogeneity plays an important role in the determination of flux and heating rate distributions. Clouds with maximum overlap tend to produce less heating than those with random overlap. Broken clouds show more solar heating as well as more IR cooling as compared to a continuous cloud field (Gu and Liou, 2001). (b) We incorporated a contemporary radiation parameterization scheme in the UCLA atmospheric GCM in collaboration with the UCLA GCM group. In conjunction with the cloud/radiation process studies, we developed a physically-based cloud cover formation scheme in association with radiation calculations. The model clouds were first vertically grouped in terms of low, middle, and high types. Maximum overlap was then used for each cloud type, followed by random overlap among the three cloud types. Fu and Liou's 1D radiation code with modification was subsequently employed for pixel-by-pixel radiation calculations in the UCLA GCM. We showed that the simulated cloud cover and OLR fields without special tuning are comparable to those of ISCCP dataset and the results derived from radiation budget experiments. Use of the new radiation and cloud schemes enhances the radiative warming in the middle to upper tropical troposphere and alleviates the cold bias in the UCLA atmospheric GCM. We also illustrated that ice crystal size and cloud inhomogeneous are significant factors affecting the radiation budgets at the top of the atmosphere and the surface (Gu et al. 2003). (c) An innovative approach has been developed to construct a 3D field of inhomogeneous clouds in general and cirrus in particular in terms of liquid/ice water content and particle size on the basis of a unification of satellite and ground-based cloud radar data. Satellite remote sensing employing the current narrow-band spectro-radiometers has limitation and only the vertically integrated cloud parameters (optical depth and mean particle size) can be determined. However, by combining the horizontal cloud mapping inferred from satellites with the vertical structure derived from the profiling Doppler cloud radar, a 3D cloud field can be constructed. This represents a new conceptual approach to 3D remote sensing and imaging and offers a new perspective in observing the cloud structure. We applied this novel technique to AVHRR/NOAA satellite and mm-wave cloud radar data obtained from the ARM achieve and assessed the 3D cirrus cloud field with the ice crystal size distributions independently derived from optical probe measurements aboard the University of North Dakota Citation. The retrieved 3D ice water content and mean effective ice crystal size involving an impressive cirrus cloud occurring on April 18, 1997, are shown to be comparable to those derived from the analysis of collocated and coincident in situ aircraft measurements (Liou et al. 2002). (d) Detection of thin cirrus with optical depths less than 0.5, particularly those occurring i n the tropics remains a fundamental problem in remote sensing. We developed a new detection scheme for the

  4. Development of a Drillrod/Telemetry Radar

    SciTech Connect (OSTI)

    Raton Technology Research, Inc.

    1999-11-12T23:59:59.000Z

    Efficient extraction of deeply buried natural resources is dependent upon accurate geologic models. The model becomes the basis for developing plans for extraction of the resource. Geoscientists working in geothermal and hydrocarbon recovery have a great deal in common with fellow geoscientists working in the mining industry. They appreciate the intractable problem of increasing the depth of investigation to tens of meters from the wellbore. The goal of this project was to develop a borehole radar tool to acquire data within tens of meters from the wellbore. For geothermal and hydrocarbon applications, the tool was to acquire data for mapping fractures surrounding the wellbore. In mining of coal, the radar acquires data for determining coal seam thickness and detecting geologic anomalies ahead of mining.

  5. EA-1852: Cloud County Community College Wind Energy Project,...

    Broader source: Energy.gov (indexed) [DOE]

    2: Cloud County Community College Wind Energy Project, Cloud County, Kansas EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas Summary This EA...

  6. Digitized dual wavelength radar data from a Texas thunderstorm

    E-Print Network [OSTI]

    Radlein, Robin Ann

    1977-01-01T23:59:59.000Z

    DIGITIZED DUAL WAVL'LENGTH RADAR DATA FROM A TEXAS THUNDERSTORM A Thesis ROBIN ANN RADLEIN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree ol MASTER OF SCIENCE December 1977... Wavelength Radar Data from a Texas Thunderstorm. (December 1977) Robin Ann Radlein~ B. S , Texas ASN University Chairman of Advisory Committee: Dr Vance Noyer Nulti-tilt digitized dual wavelength radar data collected during a Texas thunderstorm were...

  7. CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications

    E-Print Network [OSTI]

    Calheiros, Rodrigo N.

    CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications Bhathiya Wickremasinghe1 , Rodrigo N. Calheiros2 , and Rajkumar Buyya1 1 The Cloud Computing and Distributed Systems (CLOUDS) Laboratory Department of Computer Science and Software Engineering The University

  8. CloudSat Overview CloudSat will provide, from space, the first global survey of cloud profiles and

    E-Print Network [OSTI]

    on the radiative and water budgets of clouds are broadly referred to as indirect aerosol effects. The aerosol processes and their accumulated effects on the global scale. 2. Mission Description CloudSat is plannedCloudSat Overview CloudSat will provide, from space, the first global survey of cloud profiles

  9. Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology Hydrology and Earth System Sciences, 5(4), 615627 (2001) EGS

    E-Print Network [OSTI]

    Boyer, Edmond

    Raindrop size distributions and radar reflectivity-rain rate relationships for radar hydrology 615 Hydrology and Earth System Sciences, 5(4), 615­627 (2001) © EGS Raindrop size distributions and radar reflectivity­rain rate relationships for radar hydrology* Remko Uijlenhoet1 Sub-department Water Resources

  10. Applications of Radar Interferometry to Detect Surface Deformation...

    Open Energy Info (EERE)

    Valley in Southern California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Applications of Radar Interferometry to Detect Surface...

  11. NNSA Completes its Critical Radar Arming and Fuzing Test for...

    National Nuclear Security Administration (NNSA)

    its Critical Radar Arming and Fuzing Test for the W88 ALT 370 | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  12. Design and Development of Dual Polarized, Stacked Patch Antenna Element for S-Band Dual-Pol Weather Radar Array

    E-Print Network [OSTI]

    Bhardwaj, Shubhendu

    2012-01-01T23:59:59.000Z

    in Weather Detection . . . . . . . . . . . . . . . . . .for S-Band Weather Radar . . . . . . . . . . . . . Dual-polpatterns of polarimetric weather radars,” Journal of

  13. A Catalog of HI Clouds in the Large Magellanic Cloud

    E-Print Network [OSTI]

    S. Kim; E. Rosolowsky; Y. Lee; Y. Kim; Y. C. Jung; M. A. Dopita; B. G. Elmegreen; K. C. Freeman; R. J. Sault; M. J. Kesteven; D. McConnell; Y. -H. Chu

    2007-06-28T23:59:59.000Z

    A 21 cm neutral hydrogen interferometric survey of the Large Magellanic Cloud (LMC) combined with the Parkes multi-beam HI single-dish survey clearly shows that the HI gas is distributed in the form of clumps or clouds. The HI clouds and clumps have been identified using a thresholding method with three separate brightness temperature thresholds ($T_b$). Each catalog of HI cloud candidates shows a power law relationship between the sizes and the velocity dispersions of the clouds roughly following the Larson Law scaling $\\sigma_v \\propto R^{0.5}$, with steeper indices associated with dynamically hot regions. The clouds in each catalog have roughly constant virial parameters as a function mass suggesting that that the clouds are all in roughly the same dynamical state, but the values of the virial parameter are significantly larger than unity showing that turbulent motions dominate gravity in these clouds. The mass distribution of the clouds is a power law with differential indices between -1.6 and -2.0 for the three catalogs. In contrast, the distribution of mean surface densities is a log-normal distribution.

  14. A novel millimeter-wave beam-steering technique using a dielectric-image-line-fed grating film

    E-Print Network [OSTI]

    Rodenbeck, Christopher Timothy

    2001-01-01T23:59:59.000Z

    This thesis introduces a novel, broadband, low-cost technique for beam steering at millimeter-wave frequencies using a moveable grating film fed by dielectric image line. An excellent radiation pattern is maintained over wide scan angles across...

  15. Influence of Boundary Conditions on Sub-Millimeter Combustion Shaurya Prakash,*,, Roald Akberov, Damena Agonafer, Adrian D. Armijo, and

    E-Print Network [OSTI]

    cells, photovoltaic systems, and other thermal energy conversion systems present another attractive of a silicon-based millimeter scale, PEM fuel cell operating with hydrogen, methanol, or formic acid. Sens

  16. Broken and inhomogeneous cloud impact on satellite cloud particle effective radius and cloudphase retrievals

    E-Print Network [OSTI]

    Stoffelen, Ad

    on the particle size distribution, height, and thermo- dynamic phase of clouds. Water and ice clouds have parameterizations is the global dis- tribution of cloud thermodynamic phase, i.e., whether a cloud is composed on satellitederived cloud particle effective radius (re) and cloud phase (CPH) for broken and overcast inhomogeneous

  17. SSALMON - The Solar Simulations for the Atacama Large Millimeter Observatory Network

    E-Print Network [OSTI]

    Wedemeyera, S; Brajsa, R; Barta, M; Hudson, H; Fleishman, G; Loukitcheva, M; Fleck, B; Kontar, E; De Pontieu, B; Tiwari, S; Kato, Y; Soler, R; Yagoubov, P; Black, J H; Antolin, P; Gunar, S; Labrosse, N; Benz, A O; Nindos, A; Steffen, M; Scullion, E; Doyle, J G; Zaqarashvili, T; Hanslmeier, A; Nakariakov, V M; Heinzel, P; Ayres, T; Karlicky, M

    2015-01-01T23:59:59.000Z

    The Solar Simulations for the Atacama Large Millimeter Observatory Network (SSALMON) was initiated in 2014 in connection with two ALMA development studies. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new tool, which can also observe the Sun at high spatial, temporal, and spectral resolution. The international SSALMONetwork aims at coordinating the further development of solar observing modes for ALMA and at promoting scientific opportunities for solar physics with particular focus on numerical simulations, which can provide important constraints for the observing modes and can aid the interpretation of future observations. The radiation detected by ALMA originates mostly in the solar chromosphere - a complex and dynamic layer between the photosphere and corona, which plays an important role in the transport of energy and matter and the heating of the outer layers of the solar atmosphere. Potential targets include active regions, prominences, quiet Sun regions, flares. Here, we give a...

  18. 36th Annual International Conference on Infrared Millimeter and Terahertz Waves

    SciTech Connect (OSTI)

    Mittleman, Daniel M. [Rice University

    2011-12-31T23:59:59.000Z

    The Major Topic List of the 2011 conference featured a category entitled “IR, millimeter-wave, and THz spectroscopy,” another entitled “Gyro-Oscillators and Amplifiers, Plasma Diagnostics,” and a third called “Free Electron Lasers and Synchrotron Radiation.” Topical areas of interest to meeting participants include millimeter-wave electronics, high-power sources, high-frequency communications systems, and terahertz sensing and imaging, all of which are prominent in the research portfolios of the DOE. The development and study of new materials, components, and systems for use in the IR, THz, and MMW regions of the spectrum are of significant interest as well. a series of technical sessions were organized on the following topics: terahertz metamaterials and plasmonics; imaging techniques and applications; graphene spectroscopy; waveguide concepts; gyrotron science and technology; ultrafast terahertz measurements; and quantum cascade lasers.

  19. Observation of Chromospheric Sunspot at Millimeter Range with the Nobeyama 45 m Telescope

    E-Print Network [OSTI]

    Iwai, Kazumasa

    2015-01-01T23:59:59.000Z

    The brightness temperature of the radio free-free emission at millimeter range is an effective tool for characterizing the vertical structure of the solar chromosphere. In this paper, we report on the first single-dish observation of a sunspot at 85 and 115 GHz with sufficient spatial resolution for resolving the sunspot umbra using the Nobeyama 45 m telescope. We used radio attenuation material, i.e. a solar filter, to prevent the saturation of the receivers. Considering the contamination from the plage by the side-lobes, we found that the brightness temperature of the umbra should be lower than that of the quiet region. This result is inconsistent with the preexisting atmospheric models. We also found that the brightness temperature distribution at millimeter range strongly corresponds to the ultraviolet (UV) continuum emission at 1700 {\\AA}, especially at the quiet region.

  20. MILLIMETER-SCALE GENETIC GRADIENTS AND COMMUNITY-LEVEL MOLECULAR CONVERGENCE IN A HYPERSALINE MICROBIAL MAT

    SciTech Connect (OSTI)

    Fenner, Marsha W; Kunin, Victor; Raes, Jeroen; Harris, J. Kirk; Spear, John R.; Walker, Jeffrey J.; Ivanova, Natalia; Mering, Christian von; Bebout, Brad M.; Pace, Norman R.; Bork, Peer; Hugenholtz, Philip

    2008-04-30T23:59:59.000Z

    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that are consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino acid usage indicating that hypersalinity enforces an overriding selective pressure on the mat community.

  1. Monolithic Millimeter-wave Distributed Amplifiers using AlGaN/GaN HEMTs

    E-Print Network [OSTI]

    York, Robert A.

    Monolithic Millimeter-wave Distributed Amplifiers using AlGaN/GaN HEMTs Rajkumar Santhakumar, Yi have been designed and fabricated using AlGaN/GaN HEMTs. One of them uses a standard HEMT for the unit-gate distributed amplifier achieves a CW peak output power of 1W and a PAE of about 16% at 4GHz. Index Terms -- GaN

  2. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect (OSTI)

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31T23:59:59.000Z

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day?km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by the cloud radiative heating profiles. However, the height of the radiative heating maxima and gradient of the heating profiles are important to determine the sign and patterns of the horizontal circulation anomaly driven by radiative heating at upper levels.

  3. A Survey on Cloud Provider Security

    E-Print Network [OSTI]

    A Survey on Cloud Provider Security Measures Alex Pucher, Stratos Dimopoulos Abstract Cloud take advantage of this model already, but security and privacy concerns limit the further adoption agencies and start offering security certifications and separate tightly controlled "government" cloud

  4. Cicada: Predictive Guarantees for Cloud Network Bandwidth

    E-Print Network [OSTI]

    LaCurts, Katrina

    2014-03-24T23:59:59.000Z

    In cloud-computing systems, network-bandwidth guarantees have been shown to improve predictability of application performance and cost. Most previous work on cloud-bandwidth guarantees has assumed that cloud tenants know ...

  5. Electron-Cloud Build-Up: Summary

    E-Print Network [OSTI]

    Furman, M.A.

    2007-01-01T23:59:59.000Z

    Properties In?uencing Electron Cloud Phenomena,” Appl. Surf.Dissipation of the Electron Cloud,” Proc. PAC03 (Portland,is no signi?cant electron-cloud under nominal operating

  6. DIRSIG Cloud Modeling Capabilities; A Parametric Study

    E-Print Network [OSTI]

    Salvaggio, Carl

    1 DIRSIG Cloud Modeling Capabilities; A Parametric Study Kristen Powers powers:................................................................................................................... 13 Calculation of Sensor Reaching Radiance Truth Values for Cloudless & Stratus Cloud Scenes and Atmospheric Database Creation for Stratus Cloud Scene & Calculation of Associated Sensor Reaching Radiance

  7. Magellan: experiences from a Science Cloud

    E-Print Network [OSTI]

    Ramakrishnan, Lavanya

    2013-01-01T23:59:59.000Z

    2010. From Clusters To Clouds: xCAT 2 Is Out Of The Bag.Cost of Doing Science on the Cloud: The Montage Example. Incost of doing science on the cloud: the montage example. In

  8. The Cloud Computing and Other Variables

    E-Print Network [OSTI]

    Borjon-Kubota, Martha Estela

    2011-01-01T23:59:59.000Z

    12. Fragments in Six 13. Cloud Computing 14. Phase 15.Note 48. Devoured vi Cloud Computing and other Variables I.moment. Lasts hours. Cloud Computing Just there Over the

  9. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01T23:59:59.000Z

    4.3.1 Cloud Computing Attractive Features . 4.3.2A berkeley view of cloud computing. Technical Report UCB/matching computations on cloud computing platforms and hpc

  10. 32nd Conf. Radar Meteorology Albuquerque, NM, 2005

    E-Print Network [OSTI]

    Xue, Ming

    32nd Conf. Radar Meteorology Albuquerque, NM, 2005 J1J.4 MULTIPLE DOPPLER WIND ANALYSIS and smoothness constraints by incorporating them into a cost function yielding the 3-D wind. In this study, this 3DVAR analysis method is adapted to perform multiple Doppler wind analysis for CASA radars, together

  11. Radar-cross-section reduction of wind turbines. part 1.

    SciTech Connect (OSTI)

    Brock, Billy C.; Loui, Hung; McDonald, Jacob J.; Paquette, Joshua A.; Calkins, David A.; Miller, William K.; Allen, Steven E.; Clem, Paul Gilbert; Patitz, Ward E.

    2012-03-05T23:59:59.000Z

    In recent years, increasing deployment of large wind-turbine farms has become an issue of growing concern for the radar community. The large radar cross section (RCS) presented by wind turbines interferes with radar operation, and the Doppler shift caused by blade rotation causes problems identifying and tracking moving targets. Each new wind-turbine farm installation must be carefully evaluated for potential disruption of radar operation for air defense, air traffic control, weather sensing, and other applications. Several approaches currently exist to minimize conflict between wind-turbine farms and radar installations, including procedural adjustments, radar upgrades, and proper choice of low-impact wind-farm sites, but each has problems with limited effectiveness or prohibitive cost. An alternative approach, heretofore not technically feasible, is to reduce the RCS of wind turbines to the extent that they can be installed near existing radar installations. This report summarizes efforts to reduce wind-turbine RCS, with a particular emphasis on the blades. The report begins with a survey of the wind-turbine RCS-reduction literature to establish a baseline for comparison. The following topics are then addressed: electromagnetic model development and validation, novel material development, integration into wind-turbine fabrication processes, integrated-absorber design, and wind-turbine RCS modeling. Related topics of interest, including alternative mitigation techniques (procedural, at-the-radar, etc.), an introduction to RCS and electromagnetic scattering, and RCS-reduction modeling techniques, can be found in a previous report.

  12. Greenland snow accumulation estimates from satellite radar scatterometer data

    E-Print Network [OSTI]

    Long, David G.

    Greenland snow accumulation estimates from satellite radar scatterometer data Mark R. Drinkwater accumulation on the Greenland ice sheet. Microwave radar backscatter images of Greenland are derived using (or decrease) in net snow accumulation on the polar ice caps. The net mass balance of the Greenland

  13. Weather Radar Control System Seidu Ibrahim; Advisor: Eric J. Knapp

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Weather Radar Control System Seidu Ibrahim; Advisor: Eric J. Knapp Dept. of Electrical and Computer Engineering University of Massachusetts, Amherst Abstract Weather radar is an important part of the national infrastructure that is used in producing forecasts and issuing hazardous weather warnings. Traditional weather

  14. Cassini Radio Detection and Ranging (RADAR): Earth and Venus observations

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    of operation is as a synthetic aperture radar (SAR) mapper at Titan, with the fan-shaped beam dragged across of incidence angles. During all of the active modes, SAR, altimeter, and scat- terometer, the microwave power but rather was operated to obtain calibration data and rehearse instrument operations. 2. Venus The RADAR

  15. Ultrawideband radar clutter measurements of forested terrain, 1991--1992

    SciTech Connect (OSTI)

    Sheen, D.M.; Severtsen, R.H.; Prince, J.M.; Davis, K.C.; Collins, H.D.

    1993-06-01T23:59:59.000Z

    The ultrawideband (UWB) radar clutter measurements project was conducted to provide radar clutter data for new ultrawideband radar systems which are currently under development. A particular goal of this project is to determine if conventional narrow band clutter data may be extrapolated to the UWB case. This report documents measurements conducted in 1991 and additional measurements conducted in 1992. The original project consisted of clutter measurements of forested terrain in the Olympic National Forest near Sequim, WA. The impulse radar system used a 30 kW peak impulse source with a 2 Gigasample/second digitizer to form a UHF (300--1000 MHz) ultrawideband impulse radar system. Additional measurements were conducted in parallel using a Systems Planning Corporation (SPC) step-chirp radar system. This system utilized pulse widths of 1330 nanoseconds over a bandwidth of 300--1000 MHz to obtain similar resolution to the impulse system. Due to the slow digitizer data throughput in the impulse radar system, data collection rates were significantly higher using the step-chirp system. Additional forest clutter measurements were undertaken in 1992 to increase the amount of data available, and especially to increase the amount of data from the impulse radar system.

  16. Radar-Derived Forecasts of Cloud-to-Ground Lightning Over Houston, Texas

    E-Print Network [OSTI]

    Mosier, Richard Matthew

    2011-02-22T23:59:59.000Z

    .1.6 Comparison to Previous Studies......................................................................59 3.2 VII Forecast Method...............................................................................................61 3.2.1 Percentile Value...) percentile values for the entire dataset (1997-2006) when considering only cells with a minimum track count of 2.......................................................................... 117 3.5 Same as Figure 3.4 for the POD values...

  17. ARRA-funded Cloud Radar Development for the Department of Energy's ARM Climate Research Facility

    E-Print Network [OSTI]

    percent of all expenses on this contract will be required to purchase components and subsystems from US Power Industries (CPI) of Beverly, MA will be building 27 high voltage power supply-modulator units

  18. Cloud Properties from Doppler Radar Spectra - a Growing Suite of Information Extraction Algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOE NationalCommittee offrom Doppler

  19. A Radar-based Observing System for Validation of Cloud Resolving Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1A Month toAA Present .ARadar

  20. ARM - Publications: Science Team Meeting Documents: W-Band ARM Cloud Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArctic Facilityandofuncover

  1. Sunlight Changes Aerosols in Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunlight Changes Aerosols in Clouds Sunlight Changes Aerosols in Clouds Released: October 20, 2011 Scientists show how sunlight alters optical, chemical properties of atmospheric...

  2. Simulating mixed-phase Arctic stratus clouds: Sensitivity to ice initiationmechanisms

    SciTech Connect (OSTI)

    Sednev, I.; Menon, S.; McFarquhar, G.

    2009-04-10T23:59:59.000Z

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during October 9th-10th, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-hour simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and subsaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

  3. Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms

    SciTech Connect (OSTI)

    Sednev, Igor; Sednev, I.; Menon, S.; McFarquhar, G.

    2008-02-18T23:59:59.000Z

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9th-10th October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and undersaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

  4. 3, 44614488, 2003 Cloud particle

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    effects. On one hand, clouds reflect the incoming solar radiation and thus cool the Earth significant effect on the radiation balance (Wielicki et al, 1996; Mitchell, 1989) due to two competing-Atmosphere system. On the other hand, clouds absorb longwave thermal radiation coming from the surface and then re

  5. Radar transponder apparatus and signal processing technique

    DOE Patents [OSTI]

    Axline, Jr., Robert M. (Albuquerque, NM); Sloan, George R. (Albuquerque, NM); Spalding, Richard E. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  6. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1998-09-08T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna (10), so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive (24) and transmit cavities (22) by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling.

  7. Impulse radar with swept range gate

    DOE Patents [OSTI]

    McEwan, T.E.

    1998-09-08T23:59:59.000Z

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. The antennas can be arranged in a side-by-side parallel spaced apart configuration or in a coplanar opposed configuration which significantly reduces main bang coupling. 25 figs.

  8. Assembly flow simulation of a radar

    SciTech Connect (OSTI)

    Rutherford, W.C.; Biggs, P.M.

    1993-10-01T23:59:59.000Z

    A discrete event simulation model has been developed to predict the assembly flow time of a new radar product. The simulation was the key tool employed to identify flow constraints. The radar, production facility, and equipment complement were designed, arranged, and selected to provide the most manufacturable assembly possible. A goal was to reduce the assembly and testing cycle time from twenty-six weeks to six weeks. A computer software simulation package (SLAM II) was utilized as the foundation a for simulating the assembly flow time. FORTRAN subroutines were incorporated into the software to deal with unique flow circumstances that were not accommodated by the software. Detailed information relating to the assembly operations was provided by a team selected from the engineering, manufacturing management, inspection, and production assembly staff. The simulation verified that it would be possible to achieve the cycle time goal of six weeks. Equipment and manpower constraints were identified during the simulation process and adjusted as required to achieve the flow with a given monthly production requirement. The simulation is being maintained as a planning tool to be used to identify constraints in the event that monthly output is increased. ``What-if`` studies have been conducted to identify the cost of reducing constraints caused by increases in output requirement.

  9. Final Report on the Development of an Improved Cloud Microphysical Product for Model and Remote Sensing Evaluation using RACORO Observations

    SciTech Connect (OSTI)

    McFarquhar, Greg

    2012-09-19T23:59:59.000Z

    We proposed to analyze data collected during the Routine Aerial Facilities (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) in order to develop an integrated product of cloud microphysical properties (number concentration of drops in different size bins, total liquid drop concentration integrated over all bin sizes, liquid water content LWC, extinction of liquid clouds bw, effective radius of water drops re, and radar reflectivity factor) that could be used to evaluate large-eddy simulations (LES), general circulation models (GCMs) and ground-based remote sensing retrievals, and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. We have completed the development of this microphysical database and have submitted it to ARM for consideration of its inclusion on the ARM database as a PI product. This report describes the development of this database, and also describes research that has been conducted on cloud-aerosol interactions using the data obtained during RACORO. A list of conference proceedings and publications is also included.

  10. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect (OSTI)

    Schumacher, Courtney

    2012-12-13T23:59:59.000Z

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  11. The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report

    SciTech Connect (OSTI)

    Jensen, Michael [Brookhaven National Laboratory; Kollias, Pavlos [McGill University; Giangrande, Scott

    2014-04-01T23:59:59.000Z

    The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administration’s (NASA’s) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and in situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.

  12. A 10-year radar-based climatology of rainfall Aart Overeem, Iwan Holleman, Adri Buishand

    E-Print Network [OSTI]

    Stoffelen, Ad

    the derivation of a 10- year radar-based precipitation climatology for the Netherlands. Using rain gauges of the radar-based accumulations with an independent gauge network confirms the quality of the data set. Finally, the radar data are used to obtain exceedance probabilities and maximum rainfall depths. II. RADAR

  13. ELEVATION-DEPENDENT TRENDS IN PRECIPITATION OBSERVED BY THE NAME RADAR NETWORK

    E-Print Network [OSTI]

    Rutledge, Steven

    i THESIS ELEVATION-DEPENDENT TRENDS IN PRECIPITATION OBSERVED BY THE NAME RADAR NETWORK Submitted BY ANGELA K. ROWE ENTITLED ELEVATION- DEPENDENT TRENDS IN PRECIPITATION OBSERVED BY THE NAME RADAR NETWORK BY THE NAME RADAR NETWORK Radar data from the 2004 North American Monsoon Experiment (NAME) Enhanced Observing

  14. Considerations for the use of radar-derived precipitation estimates in determining return intervals for extreme

    E-Print Network [OSTI]

    Allen, Robert J.

    to those based on traditional rain gauge networks. For both the radar and gauge data, increasing, considerable differences between radar ARF and gauge ARF exist. Radar ARF decays at a faster rate (with increasing area) than gauge ARF. For a basin size of 20,000 km2 , the percent difference between radar ARF

  15. Radar echo, Doppler Effect and Radar detection in the uniformly accelerated reference frame

    E-Print Network [OSTI]

    Bernhard Rothenstein; Stefan Popescu

    2006-09-14T23:59:59.000Z

    The uniformly accelerated reference frame described by Hamilton, Desloge and Philpott involves the observers who perform the hyperbolic motion with constant proper acceleration gi. They start to move from different distances measured from the origin O of the inertial reference frame K(XOY), along its OX axis with zero initial velocity. Equipped with clocks and light sources they are engaged with each other in Radar echo, Doppler Effect and Radar detection experiments. They are also engaged in the same experiments with an inertial observer at rest in K(XOY) and located at its origin O. We derive formulas that account for the experiments mentioned above. We study also the landing conditions of the accelerating observers on a uniformly moving platform.

  16. Platform for Hybrid Cloud Technical White Paper

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Platform for Hybrid Cloud Technical White Paper Published: September 2013 (updated) Applies to: SQL Server and Windows Azure Summary: Cloud computing brings a new paradigm shift in computing in the cloud with greater scale and flexibility. Microsoft SQL Server runs very well in the cloud environment

  17. Cloud Computing An enterprise perspective Raghavan Subramanian

    E-Print Network [OSTI]

    Rajamani, Sriram K.

    Cloud Computing ­ An enterprise perspective Raghavan Subramanian Infosys Technologies Limited #12;2Infosys Confidential Overview of cloud computing? Cloud computing* Computing in which dynamically scalable of cloud computing 1. On-demand self-service 2. Ubiquitous network access 3. Location independent resource

  18. IBM Software Solution Brief Safeguarding the cloud

    E-Print Network [OSTI]

    IBM Software Solution Brief Safeguarding the cloud with IBM Security solutions Maintain visibility and control with proven security solutions for public, private and hybrid clouds Highlights Address cloud internal and external users, data, applications and workloads as they move to and from the cloud Regain

  19. 7, 1711717146, 2007 Dependence of cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 17117­17146, 2007 Dependence of cloud fraction and cloud height on temperature T. Wagner et a Creative Commons License. Atmospheric Chemistry and Physics Discussions Dependence of cloud fraction and cloud top height on surface temperature derived from spectrally resolved UV/vis satellite observations T

  20. Draft NISTIR 80061 NIST Cloud Computing2

    E-Print Network [OSTI]

    Draft NISTIR 80061 NIST Cloud Computing2 Forensic Science Challenges NIST Cloud Computing Forensic Computing11 Forensic Science Challenges 12 NIST Cloud Computing Forensic Science Working Group13 Information challenges77 faced by experts when responding to incidents that have occurred in a cloud-computing ecosystem

  1. Cloud Data Management (CDM) Yunpeng Chai

    E-Print Network [OSTI]

    /W performance / Parallelism No/ Simple SQL operations 12 /26 Survey of CDM Cloud Storage: Architecture: Master#12;Cloud Data Management (CDM) Yunpeng Chai 2 /26 Outline Motivation of CDM Survey of CDM IBM SUR Cloud China Mobile National Health Care #12;9 /26 Outline Motivation of CDM Survey of CDM IBM SUR Cloud

  2. 6, 43414373, 2006 Cloud-borne aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Discussions Impact of cloud-borne aerosol representation on aerosol direct and indirect effects S. J. Ghan of aerosols employ a variety of rep- resentations of such cloud-borne particles. Here we use a global aerosol- ulated aerosol, cloud and radiation fields to various approximations to the representa- tion of cloud

  3. Vision: Cloud-Powered Sight for All Showing the Cloud What You See

    E-Print Network [OSTI]

    Zhong, Lin

    Vision: Cloud-Powered Sight for All Showing the Cloud What You See Paramvir Bahl Matthai Philipose argue that for computers to do more for us, we need to show the cloud what we see and embrace cloud General Terms Algorithms, Design, Human Factors, Languages, Performance, Security Keywords Camera, cloud

  4. CLOUD, DRIZZLE, AND TURBULENCE OBSERVATIONS IN MARINE STRATOCUMULUS CLOUDS IN THE AZORES

    E-Print Network [OSTI]

    CLOUD, DRIZZLE, AND TURBULENCE OBSERVATIONS IN MARINE STRATOCUMULUS CLOUDS IN THE AZORES Jasmine at the Azores provided a unique, long-term record (May 2009 to December 2010) of cloud observations in a regime dominated by low-level stratiform clouds. First, a comprehensive cloud classification scheme that utilizes

  5. Cloud Futures Workshop 2010 Cloud Computing Support for Massively Social Gaming Alexandru Iosup

    E-Print Network [OSTI]

    Iosup, Alexandru

    1 Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming Alexandru Iosup Pierre (Vrije U.). Cloud Computing Support for Massively Social Gaming (Rain for the Thirsty) #12;Cloud Futures Workshop 2010 ­ Cloud Computing Support for Massively Social Gaming 2 Intermezzo: Tips on how

  6. Changes in Cloud Cover and Cloud Types Over the Ocean from Surface

    E-Print Network [OSTI]

    Hochberg, Michael

    Total cloud cover 54 68 Clear sky (frequency) 22 3 #12;Low Clouds & Solar Radiation Low clouds scatterChanges in Cloud Cover and Cloud Types Over the Ocean from Surface Observations, 1954-2008 Ryan This produces a weak net warming effect in the atmosphere, since more radiation comes in, and less goes out

  7. Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey interactions radiative effects, i.e., the cloud cover, liquid water path (LWP) and cloud drop radius (Twomey negative radiative forcing on the global scale, mainly due to the cloud cover effect. © 2013 Elsevier B

  8. A Survey of Changes in Cloud Cover and Cloud Types over Land from Surface Observations, 197196

    E-Print Network [OSTI]

    Hochberg, Michael

    of their effects on solar radiation, terrestrial radiation, and precipitation. These effects depend on cloud height, and the season of the year and time of day. The effect of clouds on the earth's radiation budget, the "cloud to be a useful classification in studies of cloud processes (Houze 1993). The climatic effects of clouds further

  9. Automatic signal processing of front monitor radar for tunneling machines

    SciTech Connect (OSTI)

    Sato, Toru [Kyoto Univ. (Japan). Dept. of Electronics and Communication] [Kyoto Univ. (Japan). Dept. of Electronics and Communication; Takeda, Kenya [NTT Co. Ltd., Chiba (Japan)] [NTT Co. Ltd., Chiba (Japan); Nagamatsu, Takashi [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)] [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Wakayama, Toshio [Mitsubishi Electric Corp., Kamakura, Kanagawa (Japan)] [Mitsubishi Electric Corp., Kamakura, Kanagawa (Japan); Kimura, Iwane [Osaka Inst. of Tech., Hirakata, Osaka (Japan)] [Osaka Inst. of Tech., Hirakata, Osaka (Japan); Shinbo, Tetsuya [Komatsu Co. Ltd., Kanagawa (Japan)] [Komatsu Co. Ltd., Kanagawa (Japan)

    1997-03-01T23:59:59.000Z

    It is planned to install a front monitoring impulse radar on the surface of the rotating drill of tunneling machines in order to detect obstacles such as casing pipes of vertical borings. The conventional aperture synthesis technique can no more be applied to such cases because the radar image of a pipe dies not constituent a hyperbola as is the case for linear scanning radars. The authors have developed a special purpose signal processing algorithm with the aid of the discrete model fitting method, which can be used for any pattern of scanning. The details of the algorithm are presented together with the results of numerical simulations and test site experiments.

  10. Development and characterization analysis of a radar polarimeter

    E-Print Network [OSTI]

    Bong, Soei Siang

    1984-01-01T23:59:59.000Z

    . OPERATIONAL ANALYSIS OF THE RPS Assembling the RPS. Theoretical Calculations. Losses in the RF Heads. 1. The L-Band Radar Head (1. 6 GHz). 2. The C-Band Radar Head (4. 75 GHz) 3. The X-Band Radar Head (10. 003 GHz) RF Head Stability as Measured... of the Components in the IF Section. List of Components in the L-Band RF Head. List of Components in the C-Band RF Head. List of Components in the X-Band RF Head. Detail List of Components in the L-Band RF Head . Specifications of the Components in the L...

  11. Development and characterization analysis of a radar polarimeter 

    E-Print Network [OSTI]

    Bong, Soei Siang

    1984-01-01T23:59:59.000Z

    . OPERATIONAL ANALYSIS OF THE RPS Assembling the RPS. Theoretical Calculations. Losses in the RF Heads. 1. The L-Band Radar Head (1. 6 GHz). 2. The C-Band Radar Head (4. 75 GHz) 3. The X-Band Radar Head (10. 003 GHz) RF Head Stability as Measured... of the Components in the IF Section. List of Components in the L-Band RF Head. List of Components in the C-Band RF Head. List of Components in the X-Band RF Head. Detail List of Components in the L-Band RF Head . Specifications of the Components in the L...

  12. CONFIRMING THE PRIMARILY SMOOTH STRUCTURE OF THE VEGA DEBRIS DISK AT MILLIMETER WAVELENGTHS

    SciTech Connect (OSTI)

    Hughes, A. Meredith; Plambeck, Richard; Chiang, Eugene [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Wilner, David J.; Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mason, Brian [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Carpenter, John M. [California Institute of Technology, Department of Astronomy, MC 105-24, Pasadena, CA 91125 (United States); Chiang, Hsin-Fang [Institute for Astronomy, University of Hawaii, 640 North Aohoku Place, Hilo, HI 96720 (United States); Williams, Jonathan P. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Hales, Antonio [Joint ALMA Observatory, Av. El Golf 40, Piso 18, Santiago (Chile); Su, Kate [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Dicker, Simon; Korngut, Phil; Devlin, Mark, E-mail: mhughes@astro.berkeley.edu [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)

    2012-05-01T23:59:59.000Z

    Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with higher sensitivity has disputed the observed structure. We present three new millimeter-wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the Vega system with the Submillimeter Array (SMA) at a wavelength of 880 {mu}m and an angular resolution of 5''; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and an angular resolution of 5''; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10''. Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3{sigma}) detection of disk emission in the GBT data; the spatial distribution of the emission is not well constrained. We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20-100 AU and width {approx}> 50 AU. The interferometric data require that at least half of the 860 {mu}m emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of {approx}<100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious.

  13. Estimating the Parameters of Sgr A*'s Accretion Flow Via Millimeter VLBI

    E-Print Network [OSTI]

    Avery E. Broderick; Vincent L. Fish; Sheperd S. Doeleman; Abraham Loeb

    2009-03-03T23:59:59.000Z

    Recent millimeter-VLBI observations of Sagittarius A* (Sgr A*) have, for the first time, directly probed distances comparable to the horizon scale of a black hole. This provides unprecedented access to the environment immediately around the horizon of an accreting black hole. We leverage both existing spectral and polarization measurements and our present understanding of accretion theory to produce a suite of generic radiatively inefficient accretion flow (RIAF) models of Sgr A*, which we then fit to these recent millimeter-VLBI observations. We find that if the accretion flow onto Sgr A* is well described by a RIAF model, the orientation and magnitude of the black hole's spin is constrained to a two-dimensional surface in the spin, inclination, position angle parameter space. For each of these we find the likeliest values and their 1-sigma & 2-sigma errors to be a=0(+0.4+0.7), inclination=50(+10+30)(-10-10) degrees, and position angle=-20(+31+107)(-16-29) degrees, when the resulting probability distribution is marginalized over the others. The most probable combination is a=0(+0.2+0.4), inclination=90(-40-50) degrees and position angle=-14(+7+11)(-7-11) degrees, though the uncertainties on these are very strongly correlated, and high probability configurations exist for a variety of inclination angles above 30 degrees and spins below 0.99. Nevertheless, this demonstrates the ability millimeter-VLBI observations, even with only a few stations, to significantly constrain the properties of Sgr A*.

  14. Mixed phase clouds, cloud electrification and remote sensing.

    SciTech Connect (OSTI)

    Chylek, P. (Petr); Borel, C. C. (Christoph C.); Klett, James

    2004-01-01T23:59:59.000Z

    Most of hypothesis trying to explain charge separation in thunderstorm clouds require presence of ice and supercooled water. Thus the existence of ice or at least mixed phase regions near cloud tops should be a necessary (but not a sufficient) condition for development of lightning. We show that multispectral satellite based instruments, like the DOE MTI (Multispectral Thermal Imager) or NASA MODIS (Moderate Resolution Imaging Spectroradiometer), using the near infrared and visible spectral bands are able to distinguish between water, ice and mixed phase cloud regions. An analysis of the MTI images of mixed phase clouds - with spatial resolution of about 20 m - shows regions of pure water, pure ice as well as regions of water/ice mixtures. We suggest that multispectral satellite instruments may be useful for a short time forecast of lightning probabilities.

  15. Monitoring internal organ motion with continuous wave radar in CT

    SciTech Connect (OSTI)

    Pfanner, Florian [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Maier, Joscha [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Allmendinger, Thomas; Flohr, Thomas [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany)] [Siemens AG, Healthcare Sector, Siemensstr. 1, 91301 Forchheim (Germany); Kachelrieß, Marc [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)] [Institute of Medical Physics, University of Erlangen–Nürnberg, 91052 Erlangen, Germany and Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2013-09-15T23:59:59.000Z

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the measurements of the test persons, there is a very good correlation (?= 0.917) between the respiratory motion phases received by the radar system and the external motion monitor. Our concept of using an array of transmitting antennas turned out to be widely insensitive to the positioning of the test persons. A time shift between the respiratory motion curves recorded with the radar system and the motion curves from the external respiratory monitor was observed which indicates a slight difference between internal organ motion and motion detected by the external respiratory monitor. The simulations were in good accordance with the measurements.Conclusions: A continuous wave radar operating in the near field of the antennas can be used to determine the respiratory motion of humans accurately. In contrast to trigger systems used today, the radar system is able to measure motion inside the body. If such a monitor was routinely available in clinical CT, it would be possible optimizing the scan start with respect to the respiratory state of the patient. Breathing commands would potentially widely be avoided, and as far as uncooperative patients or children are concerned, less sedation might be necessary. Further applications of the radar system could be in radiation therapy or interventional imaging for instance.

  16. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12T23:59:59.000Z

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  17. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B. (Buellton, CA); Gardner, Duane (Santa Maria, CA); Patrick, Douglas (Santa Maria, CA); Lewallen, Tricia A. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA); Painter, Kelly D. (Goleta, CA); Vadnais, Kenneth G. (Alexandria, VA)

    1996-01-01T23:59:59.000Z

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  18. Coherent radar ice thickness measurements over the Greenland ice sheet

    E-Print Network [OSTI]

    Gogineni, S. Prasad; Tammana, Dilip; Braaten, David A.; Leuschen, C.; Legarsky, J.; Kanagaratnam, P.; Stiles, J.; Allen, C.; Jezek, K.; Akins, T.

    2001-12-27T23:59:59.000Z

    We developed two 150-MHz coherent radar depth sounders for ice thickness measurements over the Greenland ice sheet. We developed one of these using connectorized components and the other using radio frequency integrated circuits (RFICs). Both...

  19. Sea surface wave reconstruction from marine radar images

    E-Print Network [OSTI]

    Qi, Yusheng, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The X-band marine radar is one type of remote sensing technology which is being increasingly used to measure sea surface waves nowadays. In this thesis, how to reconstruct sea surface wave elevation maps from X-band marine ...

  20. Inversion of synthetic aperture radar interferograms for sources...

    Open Energy Info (EERE)

    synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to...

  1. Earth curvature and atmospheric refraction effects on radar signal propagation.

    SciTech Connect (OSTI)

    Doerry, Armin Walter

    2013-01-01T23:59:59.000Z

    The earth isn't flat, and radar beams don't travel straight. This becomes more noticeable as range increases, particularly at shallow depression/grazing angles. This report explores models for characterizing this behavior.

  2. Radar Vehicle Detection Within Four Quadrant Gate Crossings

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    of the exit gate · Less delay between entry and exit gate descent · Extends the exit gate delay only) Methodology 4) Results 5) Conclusions 6) Acknowledgments Exit Gate Operating Modes (EGOM) Radar Vehicle

  3. A spatial display for Ground-Penetrating Radar change detection

    E-Print Network [OSTI]

    Quimby, Paul W

    2013-01-01T23:59:59.000Z

    Ground-Penetrating Radar (GPR) enables the exploration and mapping of subterranean volumes for applications such as construction, humanitarian demining, archeology, and environmental science. In each of these applications, ...

  4. Sandia National Laboratories: evaluating wind-turbine/radar impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Space (NAS) radar system, which has led to a blanket rejection of several wind-farm developments. To improve the siting and ... Last Updated: December 3, 2014 Go To...

  5. An airborne digital processor for radar scatterometer data

    E-Print Network [OSTI]

    Yeadon, David Steven

    1977-01-01T23:59:59.000Z

    AN AIRBORNE DIGITAL PROCESSOR FOR RADAR SCATTEROMETER DATA A Thesis by DAVID STEVEN YEADON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1977... Major Subject: Electrical Engineering AN AIRBORNE DIGITAL PROCESSOR FOR RADAR SCATTEROMETER DATA A Thesis by DAVID STEVEN YEADON Approved as to style and content by: (Chairman o Committee) Head of epartment) ( (Member ) (Member) August 1977...

  6. Differences in radar derived rainfall amounts due to sampling intervals

    E-Print Network [OSTI]

    Zdenek, David James

    1986-01-01T23:59:59.000Z

    DIFFERENCES IN RADAR DERIVED RAINFALL AMOUNTS DUE TO SAMPLING INTERVALS A Thesis by DAVID JAMES ZDENEK Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1986 Major Subject: Meteorology DIFFERENCES IN RADAR DERIVED RAINFALL AMOUNTS DUE TO SAMPLING INTERVALS A Thesis by DAVID JAMES ZDENEK Approved as to style and content by: eorge L. Huebner (Chairman of Committee) CP~ CG~& Robert C...

  7. System using a megawatt class millimeter wave source and a high-power rectenna to beam power to a suspended platform

    DOE Patents [OSTI]

    Caplan, Malcolm; Friedman, Herbert W.

    2005-07-19T23:59:59.000Z

    A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.

  8. 1204 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 9, SEPTEMBER 1999 Breakdown in Millimeter-Wave Power InP

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    1204 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 34, NO. 9, SEPTEMBER 1999 Breakdown in Millimeter-Wave Power InP HEMT's: A Comparison with GaAs PHEMT's J. A. del Alamo and M. H. Somerville Abstract's) deliver lower output power than GaAs pseudomorphic HEMT's (PHEMT's) throughout most of the millimeter

  9. Cloud Computing and Validation of Expandable In Silico Livers

    E-Print Network [OSTI]

    Ropella, Glen EP; Hunt, C Anthony

    2010-01-01T23:59:59.000Z

    benefit analysis of cloud computing versus desktop grids.as: Ropella and Hunt: Cloud computing and validation ofCloud computing and validation of expandable in silico

  10. Retrieval of Cloud Ice Water Content Profiles from Advanced Microwave Sounding Unit-B Brightness Temperatures Near the Atmospheric Radiation Measurement Southern Great Plains Site

    SciTech Connect (OSTI)

    Seo, E-K.; Liu, G.

    2005-03-18T23:59:59.000Z

    One of the Atmospheric Radiation Measurement (ARM) Program important goals is to develop and test radiation and cloud parameterizations of climate models using single column modeling (SCMs) (Randall et al. 1996). As forcing terms, SCMs need advection tendency of cloud condensates besides the tendencies of temperature, moisture and momentum. To compute the tendency terms of cloud condensates, 3D distribution of cloud condensates over a scale much larger than the climate model's grid scale is needed. Since they can cover a large area within a short time period, satellite measurements are useful utilities to provide advection tendency of cloud condensates for SCMs. However, so far, most satellite retrieval algorithms only retrieve vertically integrated quantities, for example, in the case of cloud ice, ice water path (IWP). To fulfill the requirement of 3D ice water content field for computing ice water advection, in this study, we develop an ice water content profile retrieval algorithm by combining the vertical distribution characteristics obtained from long-term surface radar observations and satellite high-frequency microwave observations that cover a large area. The algorithm is based on the Bayesian theorem using a priori database derived from analyzing cloud radar observations at the Southern Great Plains (SGP) site. The end product of the algorithm is a 3D ice water content covering 10{sup o} x 10{sup o} surrounding the SGP site during the passage of the satellite. This 3D ice water content, together with wind field analysis, can be used to compute the advection tendency of ice water for SCMs.

  11. Conventional and synthetic aperature processing for airborne ground penetrating radar

    SciTech Connect (OSTI)

    Cameron, R.M. [Airborne Environmental Surveys, Santa Maria, CA (United States); Simkins, W.L.; Brown, R.D. [MSB Technologies, Inc., Rome, NY (United States)

    1994-12-31T23:59:59.000Z

    For the past four years Airborne Environmental Surveys (AES), a Division of Era Aviation, Inc. has used unique and patented airborne Frequency-Modulated, Continuous Wave (FM-CW) radars and processes for detecting and mapping subsurface phenomena. Primary application has focused on the detection of man-made objects in landfills, hazardous waste sites (some of which contain unexploded ordinance), and subsurface plumes of refined free-floating hydrocarbons. Recently, MSB Technologies, Inc. (MSB) has developed a form of synthetic aperture radar processing (SAR), called GPSAR{trademark}, that is tailored especially for the AES radars. Used as an adjunct to more conventional airborne ground-penetrating radar data processing techniques, GPSAR takes advantage of the radars` coherent transmission and produces imagery that is better focused and more accurate in determining an object`s range and true depth. This paper describes the iterative stages of data processing and analysis used with the radars and shows the added advantages that GPSAR processing offers.

  12. Title: Networking the Cloud: Enabling Enterprise Computing and Storage Cloud computing has been changing how enterprises run and manage their IT systems. Cloud

    E-Print Network [OSTI]

    Title: Networking the Cloud: Enabling Enterprise Computing and Storage Abstract: Cloud computing has been changing how enterprises run and manage their IT systems. Cloud computing platforms provide introduction on Cloud Computing. We propose a Virtual Cloud Pool abstraction to logically unify cloud

  13. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01T23:59:59.000Z

    represent cloud effects on gridbox mean visible radiationclouds and the resulting effect on the balance of radiationrepresent cloud effects on grid-box-mean visible radiation

  14. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P.; The ATLAS collaboration; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01T23:59:59.000Z

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  15. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect (OSTI)

    Chiswell, S.; Buckley, R.

    2009-01-15T23:59:59.000Z

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.

  16. Dust takes detour on ice-cloud journey | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dust takes detour on ice-cloud journey Dust takes detour on ice-cloud journey Pollution-coated particles bypass ice formation, but influence clouds Cirrus clouds are composed of...

  17. SiGe BiCMOS Topologies for Low-Voltage Millimeter-Wave Voltage Controlled Oscillators and Frequency Dividers

    E-Print Network [OSTI]

    Voinigescu, Sorin Petre

    SiGe BiCMOS Topologies for Low-Voltage Millimeter-Wave Voltage Controlled Oscillators and Frequency-mail: tod@eecg.toronto.edu Abstract -- BiCMOS topologies for mm-wave voltage- controlled oscillators operation for mm-wave applications. II. BICMOS VOLTAGE-CONTROLLED OSCILLATOR The Colpitts topology

  18. Measuring soil moisture with imaging radars

    SciTech Connect (OSTI)

    Dubois, P.C.; Zyl, J. van [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.] [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.; Engman, T. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)] [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1995-07-01T23:59:59.000Z

    An empirical algorithm for the retrieval of soil moisture content and surface Root Mean Square (RMS) height from remotely sensed radar data was developed using scatterometer data. The algorithm is optimized for bare surfaces and requires two copolarized channels at a frequency between 1.5 and 11 GHz. It gives best results for kh {le} 2.5, {mu}{sub {upsilon}}{le}35%, and {theta}{ge}30{degree}. Omitting the usually weaker hv-polarized returns makes the algorithm less sensitive to system cross-talk and system noise, simplify the calibration process and adds robustness to the algorithm in the presence of vegetation. However, inversion results indicate that significant amounts of vegetation (NDVI>0.4) cause the algorithm to underestimate soil moisture and overestimate RMS height. A simple criteria based on the {sigma}{sub hv}{sup 0}/{sigma}{sub vv}{sup 0} ratio is developed to select the areas where the inversion is not impaired by the vegetation. The inversion accuracy is assessed on the original scatterometer data sets but also on several SAR data sets by comparing the derived soil moisture values with in-situ measurements collected over a variety of scenes between 1991 and 1994. Both spaceborne (SIR-C) and airborne (AIRSAR) data are used in the test. Over this large sample of conditions, the RMS error in the soil moisture estimate is found to be less than 4.2% soil moisture.

  19. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    SciTech Connect (OSTI)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Hu, Zhirun [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Liu, Peiguo [College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-15T23:59:59.000Z

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  20. Socially Optimal Pricing of Cloud Computing Resources

    E-Print Network [OSTI]

    Menache, Ishai

    The cloud computing paradigm offers easily accessible computing resources of variable size and capabilities. We consider a cloud-computing facility that provides simultaneous service to a heterogeneous, time-varying ...

  1. The Evolution of Cloud Computing in ATLAS

    E-Print Network [OSTI]

    Taylor, Ryan P; The ATLAS collaboration; Brasolin, Franco; Cordeiro, Cristovao; Desmarais, Ron; Field, Laurence; Gable, Ian; Giordano, Domenico; Di Girolamo, Alessandro; Hover, John; Leblanc, Matthew Edgar; Love, Peter; Paterson, Michael; Sobie, Randall; Zaytsev, Alexandr

    2015-01-01T23:59:59.000Z

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This paper describes the overall evolution of cloud computing in ATLAS. The current status of the virtual machine (VM) management systems used for harnessing infrastructure as a service (IaaS) resources are discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for ma...

  2. Disruptive technology business models in cloud computing

    E-Print Network [OSTI]

    Krikos, Alexis Christopher

    2010-01-01T23:59:59.000Z

    Cloud computing, a term whose origins have been in existence for more than a decade, has come into fruition due to technological capabilities and marketplace demands. Cloud computing can be defined as a scalable and flexible ...

  3. High power water load for microwave and millimeter-wave radio frequency sources

    DOE Patents [OSTI]

    Ives, R. Lawrence (Saratoga, CA); Mizuhara, Yosuke M. (Palo Alto, CA); Schumacher, Richard V. (Sunnyvale, CA); Pendleton, Rand P. (Saratoga, CA)

    1999-01-01T23:59:59.000Z

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  4. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOE Patents [OSTI]

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01T23:59:59.000Z

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  5. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms

    SciTech Connect (OSTI)

    Gordon, Joshua A., E-mail: josh.gordon@nist.gov; Holloway, Christopher L. [National Institute of Standards and Technology (NIST), Electromagnetics Division, U.S. Department of Commerce, Boulder Laboratories, Boulder, Colorado 80305 (United States); Schwarzkopf, Andrew; Anderson, Dave A.; Miller, Stephanie; Thaicharoen, Nithiwadee; Raithel, Georg [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-07-14T23:59:59.000Z

    In this paper, we demonstrate the detection of millimeter waves via Autler-Townes splitting in {sup 85}Rb Rydberg atoms. This method may provide an independent, atom-based, SI-traceable method for measuring mm-wave electric fields, which addresses a gap in current calibration techniques in the mm-wave regime. The electric-field amplitude within a rubidium vapor cell in the WR-10 wave guide band is measured for frequencies of 93.71 GHz and 104.77?GHz. Relevant aspects of Autler-Townes splitting originating from a four-level electromagnetically induced transparency scheme are discussed. We measured the E-field generated by an open-ended waveguide using this technique. Experimental results are compared to a full-wave finite element simulation.

  6. Cloud-Top Temperatures for Precipitating Winter Clouds JAY W. HANNA

    E-Print Network [OSTI]

    Schultz, David

    1 Cloud-Top Temperatures for Precipitating Winter Clouds JAY W. HANNA NOAA/NESDIS Satellite of satellite-derived cloud-top brightness temperatures from GOES longwave infrared (channel 4) satellite data, rain, freezing rain, and sleet. The distributions of cloud-top brightness temperatures were constructed

  7. Cloud networking and communications Cloud computing is having an important impact on

    E-Print Network [OSTI]

    Boutaba, Raouf

    Editorial Cloud networking and communications Cloud computing is having an important impact attention has been devoted to system aspects of Cloud computing. More recently, however, the focus is shifting towards Cloud net- working and communications with evolutionary and revo- lutionary propositions

  8. Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus

    E-Print Network [OSTI]

    Miami, University of

    Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus hygroscopic aerosols were introduced into a solid marine stratocumulus cloud (200 m thick) by burning hygroscopic flares mounted on an aircraft. The cloud microphysical response in two parallel seeding plumes

  9. The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise

    E-Print Network [OSTI]

    Sommerville, Ian

    1 The Cloud Adoption Toolkit: Supporting Cloud Adoption Decisions in the Enterprise Ali Khajeh-Hosseini, David Greenwood, James W. Smith, Ian Sommerville Cloud Computing Co-laboratory, School of Computer Science University of St Andrews, UK {akh, dsg22, jws7, ifs}@cs.st-andrews.ac.uk Abstract Cloud computing

  10. CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy

    E-Print Network [OSTI]

    Lin, Jimmy

    CLOUD COMPUTING AND INFORMATION POLICY 1 Cloud Computing and Information Policy: Computing in a Policy Cloud? Forthcoming in the Journal of Information Technology and Politics, 5(3). Paul T. Jaeger University of Maryland Jimmy Lin University of Maryland Justin M. Grimes University of Maryland #12;CLOUD

  11. HPI Cloud Symposium ,Operating The Cloud` 25.09.2013, Hasso-Plattner-Institut, Auditorium Building

    E-Print Network [OSTI]

    Weske, Mathias

    Agenda HPI Cloud Symposium ,Operating The Cloud` 25.09.2013, Hasso-Plattner-Institut, Auditorium Building 09:30h Registration 10:00h Opening Prof. Dr. Christoph Meinel, HPI Potsdam 10:30h Cloud-RAID: Eine Methode zur Bereitstellung zuverlässiger Speicherressourcen in Öffentlichen Clouds Maxim Schnajkin, HPI

  12. Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman

    E-Print Network [OSTI]

    Jaeger, Trent

    Cloud Verifier: Verifiable Auditing Service for IaaS Clouds Joshua Schiffman Security Architecture University Park, PA, USA yus138,hvijay,tjaeger@cse.psu.edu Abstract--Cloud computing has commoditized compute paradigm, its adoption has been stymied by cloud platform's lack of trans- parency, which leaves customers

  13. Cloud Tracking in Cloud-Resolving Models R. S. Plant1

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models R. S. Plant1 1 Department of Meteorology, University. INTRODUCTION In recent years Cloud Resolving Models (CRMs) have become an increasingly important tool for CRM data, which allows one to investigate statistical prop- erties of the lifecycles of the "clouds

  14. From mini-clouds to Cloud Computing Boris Mejias, Peter Van Roy

    E-Print Network [OSTI]

    Bonaventure, Olivier

    From mini-clouds to Cloud Computing Boris Mej´ias, Peter Van Roy Universit´e catholique de Louvain ­ Belgium {boris.mejias|peter.vanroy}@uclouvain.be Abstract Cloud computing has many definitions with different views within industry and academia, but everybody agrees on that cloud computing is the way

  15. AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing

    E-Print Network [OSTI]

    Hamlen, Kevin W.

    AnonymousCloud: A Data Ownership Privacy Provider Framework in Cloud Computing Safwan Mahmud Khan their computation results are ultimately delivered. To provide this data ownership privacy, the cloud's distributed-anonymity; authentication; cloud computing; in- formation security; privacy; Tor I. INTRODUCTION Revolutionary advances

  16. Leveraging Platform Basic Services in Cloud Application Platforms for the Development of Cloud

    E-Print Network [OSTI]

    Simons, Anthony J. H.

    Leveraging Platform Basic Services in Cloud Application Platforms for the Development of Cloud.Simons@dcs.shef.ac.uk Abstract-- Cloud application platforms gain popularity and have the potential to alter the way service based cloud applications are developed involving utilisation of platform basic services. A platform

  17. Structure and trapping of three-dimensional dust clouds in a capacitively coupled rf-discharge

    SciTech Connect (OSTI)

    Arp, O.; Block, D.; Piel, A. [IEAP, Christian-Albrechts-University, D-24098 Kiel (Germany)

    2005-10-31T23:59:59.000Z

    In this survey the recently found 'Coulomb balls' are discussed, which show an unusual kind of crystalline order. These three-dimensional dust clouds consisting of hundreds or thousands of micrometer-sized dust particles have a spherical shape and exist in a wide range of plasma conditions. Coulomb balls are optically highly transparent and have macroscopic dimensions of several millimeters in diameter. The clouds allow for the observation of each single particle and thus the complete reconstruction of the crystal structure by means of video microscopy techniques. The particles are arranged in distinct nested shells in which they form patterns with mostly five and six neighbors. The confinement of Coulomb balls by dielectric walls involves electric forces, surface charges, ion drag forces, and thermophoretic levitation. The thermophoretic force field is measured with tracer particles and particle image velocimetry (PIV). The electric forces are derived from simulations with the two-dimensional SIGLO-2D code. It is shown the the sum of all confining forces results in a stable potential well that describes levitation and spherical confinement of the Coulomb ball.

  18. Carbon Chemistry in interstellar clouds

    E-Print Network [OSTI]

    Maryvonne Gerin; David Fosse; Evelyne Roueff

    2002-12-03T23:59:59.000Z

    We discuss new developments of interstellar chemistry, with particular emphasis on the carbon chemistry. We confirm that carbon chains and cycles are ubiquitous in the ISM and closely chemically related to ea ch other, and to carbon. Investigation of the carbon budget in shielded and UV illuminated gas shows that the inventory of interstellar molecules is not complete and more complex molecules with 4 or more carbon atoms must be present. Finally we discuss the consequences for the evolution of clouds and conclude that the ubiquitous presence of carbon chains and cycles is not a necessary consequence of a very young age for interstellar clouds.

  19. Changes in high cloud conditions

    E-Print Network [OSTI]

    Himebrook, Richard Frank

    1974-01-01T23:59:59.000Z

    ). When the effect of unknowns is added to the data (Figs. 3(a) and 3(b), p, 21), the period with most high-cloud cover seems to alter- nate back and forth almost monthly, The average, global, solar radiation (Fig. 3(c), p. 21) depicts a decrease from... radiation, per cent possible sunshine, and average sky cover. The increases in high-cloud cover occurred in areas with the following characteristics: strong upper-air flow; frequent jet ' aircraft traffic; coverage of less than half the sky; late...

  20. Incoherent scatter radar detection of enhanced plasma line in ionospheric E-region over Arecibo

    E-Print Network [OSTI]

    Pradipta, Rezy

    2006-01-01T23:59:59.000Z

    A series of incoherent scatter radar (ISR) observation were conducted at the Arecibo Observatory from December 27, 2005 until January 3, 2006. From plasma line measurements that were taken during this radar campaign, we ...

  1. Focused synthetic aperture radar processing of ice-sounder data collected over the Greenland ice sheet

    E-Print Network [OSTI]

    Legarsky, J.; Gogineni, Sivaprasad; Akins, T. L.

    2001-10-01T23:59:59.000Z

    We developed a synthetic aperture radar (SAR) processing algorithm for airborne/spaceborne ice-sounding radar systems and applied it to data collected in Greenland. By using focused SAR (phase-corrected coherent averaging), we improved along...

  2. Accuracy and resolution of shuttle radar topography mission data Bridget Smith and David Sandwell

    E-Print Network [OSTI]

    Sandwell, David T.

    Accuracy and resolution of shuttle radar topography mission data Bridget Smith and David Sandwell: General or miscellaneous. Citation: Smith, B., and D. Sandwell, Accuracy and resolution of shuttle radar

  3. Near real-time runoff estimation using spatially distributed radar rainfall data

    E-Print Network [OSTI]

    Hadley, Jennifer Lyn

    2004-09-30T23:59:59.000Z

    associated with rainfall. Radar networks, such as the Next Generation Weather Radar (NEXRAD) of the National Weather Service (NWS), which are widely available and continue to improve in quality and resolution, can accomplish these tasks. In general, a...

  4. Near Real-Time Runoff Estimation Using Spatially Distributed Radar Rainfall Data

    E-Print Network [OSTI]

    Hadley, Jennifer Lynn

    associated with rainfall. Radar networks, such as the Next Generation Weather Radar (NEXRAD) of the National Weather Service (NWS), which are widely available and continue to improve in quality and resolution, can accomplish these tasks. In general, a...

  5. Antarctica X-band MiniSAR crevasse detection radar : final report.

    SciTech Connect (OSTI)

    Sander, Grant J.; Bickel, Douglas Lloyd

    2007-09-01T23:59:59.000Z

    This document is the final report for the Antarctica Synthetic Aperture Radar (SAR) Project. The project involved the modification of a Sandia National Laboratories MiniSAR system to operate at X-band in order to assess the feasibility of an airborne radar to detect crevasses in Antarctica. This radar successfully detected known crevasses at various geometries. The best results were obtained for synthetic aperture radar resolutions of at most one foot and finer. In addition to the main goal of detecting crevasses, the radar was used to assess conops for a future operational radar. The radar scanned large areas to identify potential safe landing zones. In addition, the radar was used to investigate looking at objects on the surface and below the surface of the ice. This document includes discussion of the hardware development, system capabilities, and results from data collections in Antarctica.

  6. Analog FIR Filter Used for Range-Optimal Pulsed Radar Applications

    E-Print Network [OSTI]

    Su, Eric Chen

    2014-08-13T23:59:59.000Z

    Matched filter is one of the most critical block in radar applications. With different measured range and relative velocity of a target we will need different bandwidth of the matched filter to maximize the radar signal to noise ratio (SNR...

  7. On reconciling ground-based with spaceborne normalized radar cross section measurements

    E-Print Network [OSTI]

    Baumgartner, F.; Munk, J.; Jezek, K. C.; Gogineni, Sivaprasad

    2002-02-01T23:59:59.000Z

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) ...

  8. Bolocam Survey for 1.1 mm Dust Continuum Emission in the c2d Legacy Clouds. II. Ophiuchus

    E-Print Network [OSTI]

    K. E. Young; M. L. Enoch; N. J. Evans II; J. Glenn; A. Sargent; T. Huard; J. Aguirre; S. Golwala; D. Haig; P. Harvey; G. Laurent; P. Mauskopf; J. Sayers

    2006-02-11T23:59:59.000Z

    We present a large-scale millimeter continuum map of the Ophiuchus molecular cloud. Nearly 11 square degrees, including all of the area in the cloud with visual extinction more than 3 magnitudes, was mapped at 1.1 mm with Bolocam on the Caltech Submillimeter Observatory (CSO). By design, the map also covers the region mapped in the infrared with the Spitzer Space Telescope. We detect 44 definite sources, and a few likely sources are also seen along a filament in the eastern streamer. The map indicates that dense cores in Ophiuchus are very clustered and often found in filaments within the cloud. Most sources are round, as measured at the half power point, but elongated when measured at lower contour levels, suggesting spherical sources lying within filaments. The masses, for an assumed dust temperature of 10 K, range from 0.24 to 3.9 solar masses, with a mean value of 0.96 solar masses. The total mass in distinct cores is 42 solar masses, 0.5 to 2% of the total cloud mass, and the total mass above 4 sigma is about 80 solar masses. The mean densities in the cores are quite high, with an average of 1.6 x 10^6 per cc, suggesting short free-fall times. The core mass distribution can be fitted with a power law with slope of 2.1 plus or minus 0.3 for M>0.5 solar masses, similar to that found in other regions, but slightly shallower than that of some determinations of the local IMF. In agreement with previous studies, our survey shows that dense cores account for a very small fraction of the cloud volume and total mass. They are nearly all confined to regions with visual extinction at least 9 mag, a lower threshold than found previously.

  9. Interactive physically-based cloud simulation

    E-Print Network [OSTI]

    Overby, Derek Robert

    2002-01-01T23:59:59.000Z

    of digital artistic media. Previous methods for modeling the growth of clouds do not account for the fluid interactions that are responsible for cloud formation in the physical atmosphere. We propose a model for simulating cloud formation based on a basic...

  10. Dynamics of Clouds Fall Semester 2012

    E-Print Network [OSTI]

    ATS712 Dynamics of Clouds Fall Semester 2012 Meeting Times: T/Th: 9-10:15am Room: ATS 101-2pm Course Description: This class focuses on the general dynamics of cloud systems. Models of fog and other Tools / Skills Cotton, W.R., G.H. Bryan, and S.C. van den Heever, 2010: Storm and Cloud Dynamics

  11. Microsoft Private Cloud Title of document

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Microsoft Private Cloud Title of document 1 1 Microsoft Private Cloud A Comparative Look at Functionality, Benefits, and Economics November2012 #12;Microsoft Private Cloud Title of document 2 2 Copyright Information © 2012 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information

  12. Performance Engineering for Cloud Computing John Murphy

    E-Print Network [OSTI]

    Murphy, John

    Performance Engineering for Cloud Computing John Murphy Lero ­ The Irish Software Engineering.Murphy@ucd.ie Abstract. Cloud computing potentially solves some of the major challenges in the engineering of large efficient operation. This paper argues that cloud computing is an area where performance engineering must

  13. Level Set Implementations on Unstructured Point Cloud

    E-Print Network [OSTI]

    Duncan, James S.

    Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong A Thesis Submitted;Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong This is to certify that I have implementations on unstructured point cloud 15 3.1 Level set initialization

  14. 6, 93519388, 2006 Aerosol-cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

  15. Cloud Security: Issues and Concerns Pierangela Samarati*

    E-Print Network [OSTI]

    Samarati, Pierangela

    1 Cloud Security: Issues and Concerns Authors Pierangela Samarati* Universitŕ degli Studi di Milano, Italy sabrina.decapitani@unimi.it Keywords cloud security confidentiality integrity availability secure data storage and processing Summary The cloud has emerged as a successful computing paradigm

  16. Cloud Computing: Centralization and Data Sovereignty

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Cloud Computing: Centralization and Data Sovereignty Primavera De Filippi, Smari McCarthy Abstract: Cloud computing can be defined as the provision of computing resources on-demand over and elasticity of costs, problems arise concerning the collection of personal information in the Cloud

  17. Optimizing Offloading Strategies in Mobile Cloud Computing

    E-Print Network [OSTI]

    Hyytiä, Esa

    Optimizing Offloading Strategies in Mobile Cloud Computing Esa Hyyti¨a Department of Communications Abstract--We consider a dynamic offloading problem arising in the context of mobile cloud computing (MCC consider the task assignment problem arising in the context of the mobile cloud computing (MCC). In MCC

  18. CONTROLLING DATA IN THE CLOUD: OUTSOURCING COMPUTATION

    E-Print Network [OSTI]

    Zou, Cliff C.

    #12;CONTROLLING DATA IN THE CLOUD: OUTSOURCING COMPUTATION WITHOUT OUTSOURCING CONTROL Paper By Laboratories Of America 2009 ACM WORKSHOP ON CLOUD COMPUTING SECURITY (CCSW 2009) Presented By Talal Basaif CAP that will arise later · New directions to solve some issues #12;INTRODUCTION · Cloud computing is one of desirable

  19. Towards a Ubiquitous Cloud Computing Infrastructure

    E-Print Network [OSTI]

    van der Merwe, Kobus

    Towards a Ubiquitous Cloud Computing Infrastructure Jacobus Van der Merwe, K.K. Ramakrishnan of a number of cloud computing use cases. We specifically consider cloudbursting and follow-the-sun and focus that are also network service providers. I. INTRODUCTION Cloud computing is rapidly gaining acceptance

  20. Cloud Computing: Legal Issues in Centralized Architectures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Cloud Computing: Legal Issues in Centralized Architectures Primavera DE FILIPPI1 , Smari McCARTHY2, Reykjavik, 101, Iceland - Email: smari@gmail.com Abstract: Cloud computing can be defined as the provision they can access their data and the extent to which parties can exploit it. Keywords: Cloud Computing

  1. FMCW radars for snow research Hans-Peter Marshall a,b,, Gary Koh a

    E-Print Network [OSTI]

    Marshall, Hans-Peter

    -available impulse radars are currently used operationally in Scandinavia's deep snow packs (e.g. Sand and Bruland

  2. Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    1 Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar Deanna A's Precipitation Radar (TRMM PR) show the vertical structure of tropical cyclone rainbands. Radar-echo statistics show that rainbands have a two-layered structure, with distinct modes separated by the melting layer

  3. Off-The-Grid X-band Weather Radar Network for the West

    E-Print Network [OSTI]

    Gilbes, Fernando

    and target. CayeyNWS radar Mayaguez The Problem #12;Puerto Rico Test Bed · Multi-level Research Team · Low · Relay Stations #12;Network Node · Weather Radar · Processing Computer · Wireless Link #12;X-Band Weather cost · Better Merging algorithms · More Radars.... #12;PR Test Bed Team #12;Questions · ??? #12;Live

  4. Radar Network Scanning Coordination Based on Ensemble Transform Kalman Filtering Variance

    E-Print Network [OSTI]

    White, Luther

    Radar Network Scanning Coordination Based on Ensemble Transform Kalman Filtering Variance an ensemble Kalman filter is used as a criterion with which to op- timize radar network scanning strategies, is a function of the retrieval scanning parameters. It is shown that the mapping from radar parameters

  5. ERAD 2008 -THE FIFTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGYAND HYDROLOGY 1. Introduction

    E-Print Network [OSTI]

    Haak, Hein

    , and the enhancement of the radar processing with capabilities found in modern radar equipment. In the European tender receivers and all data processing equipment in the radar sensor was replaced with modern equipment. The short pulse mode (0.8 microseconds) is used for PRFs up to 1200 Hz. To enhance reliability the thyratron

  6. A New Coherent Radar for Ice Sounding in Greenland A. Moussessian

    E-Print Network [OSTI]

    Kansas, University of

    A New Coherent Radar for Ice Sounding in Greenland A. Moussessian 1 , R.L. Jordan 1 , E. Rodriguez of this radar on board a P-3 aircraft took place in May of 1999 over Greenland with successful results blanking. The first deployment of this radar took place in May of 1999 in Greenland. During this deployment

  7. 2 1 APPLICATION GALLERY 1.1 Tracking ``Fuzzy'' Storms in Doppler Radar Images

    E-Print Network [OSTI]

    Barron, John

    and tornadoes. The Doppler radar generates intensity and radial velocity images, examples of which are shown Doppler radar radial and velocity image (a) (b) (c) (d) Figure 1.2: The storm tracks for the (a) 5 th , (b2 1 APPLICATION GALLERY 1.1 Tracking ``Fuzzy'' Storms in Doppler Radar Images J. L. Barron 1 , R. E

  8. Determining weather radar antenna pointing using signals detected from the sun at low antenna elevations

    E-Print Network [OSTI]

    Stoffelen, Ad

    Determining weather radar antenna pointing using signals detected from the sun at low antenna radiation of the sun for checking of the antenna alignment and of the sensitivity of the receiver chain is a well established method in weather radar maintenance, and radar manufacturers offer sun calibration

  9. Resultados obtidos com a utilizao de imagens de RADAR do satlite ALOS

    E-Print Network [OSTI]

    Resultados obtidos com a utilizaçăo de imagens de RADAR do satélite ALOS no combate ao desmatamento Documentos Indicativos de desmatamento com ALOS PALSAR #12;#12;INDICAR- Indicador de desmatamento por imagens de RADAR · Projeto desenvolvido pelo CSR/IBAMA · Utiliza imagens de RADAR do satélite Japonęs ALOS

  10. Influence of small scale rainfall variability on standard comparison tools between radar and rain gauge data

    E-Print Network [OSTI]

    in revised form 18 October 2013 Accepted 8 November 2013 Rain gauges and weather radars do not measure some usual practice. © 2013 Elsevier B.V. All rights reserved. Keywords: Radar­rain gauge comparison are tipping bucket rain gauges, disdrometers, weather radars and (passive or active) sensors onboard

  11. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    SciTech Connect (OSTI)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20T23:59:59.000Z

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  12. Cloud Seeding By: Julie Walter

    E-Print Network [OSTI]

    Toohey, Darin W.

    , smoke, that then are cooled because of the high altitudes. As the water or condensation nuclei cool more pushed up enough the warm air that is filled with moisture should reach an optimum cooling point-based Western Weather Consultants, whose company supplied Vail Resorts with the cloud seeding generators

  13. Cloud and Autonomic Computing Center

    E-Print Network [OSTI]

    Gelfond, Michael

    boundary layers and wind turbine aerodynamics Siva Parameswarn, Ph.D. Professor in the Department vehicles » Wake development behind wind turbines PHYSICS Ismael Regis de Farias Jr., Ph.D. Associate in cloud environments » Intelligent data management & understanding » Automated web service composition

  14. A radar study of the interaction between lightning and precipitation

    SciTech Connect (OSTI)

    Holden, D.N.; Ulbrich, C.W.

    1988-01-01T23:59:59.000Z

    A radar study was made of the interaction between lightning and precipitation with the 430 MHz Doppler radar at the Arecibo Observatory in Puerto Rico. On one occasion, the spectral power at Doppler velocities near that corresponding to the updraft increased substantially within a fraction of a second after a discharge was detected in the beam. Calculations were made to simulate the effect of an electric field change on mean Doppler velocity for a distribution of droplets in a thunderstorm. 13 refs., 4 figs.

  15. Elements of a continuous-wave borehole radar. Final report

    SciTech Connect (OSTI)

    Caffey, T.W.H. [Sandia National Labs., Albuquerque, NM (United States). Geophysical Technology Dept.

    1997-08-01T23:59:59.000Z

    The theory is developed for the antenna array for a proposed continuous-wave, ground-penetrating radar for use in a borehole, and field measurements are presented. Accomplishments include the underground measurement of the transmitting beam in the azimuth plane, active azimuth-steering of the transmitting beam, and the development of a range-to-target algorithm. The excellent performance of the antenna array supports the concept of a continuous-wave borehole radar. A field-prototype should be developed for use in both geothermal zones and for the exploration and recovery of oil and gas.

  16. Global cloud liquid water path simulations

    SciTech Connect (OSTI)

    Lemus, L. [Southern Hemisphere Meteorology, Clayton, Victoria (Australia)] [Southern Hemisphere Meteorology, Clayton, Victoria (Australia); Rikus, L. [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia)] [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia); Martin, C.; Platt, R. [CSIRO, Aspendale, Victoria (Australia)] [CSIRO, Aspendale, Victoria (Australia)

    1997-01-01T23:59:59.000Z

    A new parameterization of cloud liquid water and ice content has been included in the Bureau of Meteorology Global Assimilation and Prediction System. The cloud liquid water content is derived from the mean cloud temperatures in the model using an empirical relationship based on observations. The results from perpetual January and July simulations are presented and show that the total cloud water path steadily decreases toward high latitudes, with two relative maxima at midlatitudes and a peak at low latitudes. To validate the scheme, the simulated fields need to be processed to produce liquid water paths that can be directly compared with the corresponding field derived from Special Sensor Microwave/Imager (SSM/I) data. This requires the identification of cloud ice water content within the parameterization and a prescription to account for the treatment of strongly precipitating subgrid-scale cloud. The resultant cloud liquid water paths agree qualitatively with the SSM/I data but show some systematic errors that are attributed to corresponding errors in the model`s simulation of cloud amounts. Given that a more quantitative validation requires substantial improvement in the model`s diagnostic cloud scheme, the comparison with the SSM/I data indicates that the cloud water path, derived from the cloud liquid water content parameterization introduced in this paper, is consistent with the observations and can be usefully incorporated in the prediction system. 40 refs., 11 figs., 1 tab.

  17. Millimeter Wave Sensor Technologies Track Biometrics; Detect Chemicals, Gases, and Radiation: Argonne’s millimeter wave (mmW) sensor technologies measure a wide range of threat materials remotely

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-04-15T23:59:59.000Z

    Security threats come in many forms—airborne, radiative, gaseous, human, or infiltrative—and it can be costly and impractical to deploy a broad suite of detector technologies to identify all potential hazards in public places. Argonne’s millimeter wave (mmW) sensor technologies measure a wide range of threat materials remotely, making them well suited to many security, industrial and medical applications....

  18. A Monolithic Approach to Fabricating Low-Cost, Millimeter-Scale Multi-Axis Force Sensors for Minimally-Invasive Surgery

    E-Print Network [OSTI]

    A Monolithic Approach to Fabricating Low-Cost, Millimeter-Scale Multi-Axis Force Sensors-manufacturing alignment and assembly. The sensor and its custom-fabricated signal conditioning circuitry fit within a 1x1x

  19. Progress reports for October 1994 -- Joint UK/US Radar Program

    SciTech Connect (OSTI)

    Twogood, R.E.; Brase, J.M.; Mantrom, D.D.; Chambers, D.H.; Robey, H.F.

    1994-11-18T23:59:59.000Z

    This report gives the principle investigator, objectives, recent accomplishments, milestones for reporting period, expected milestones for ensuing period, other issues and planned expenditures for each of the following programs: airborne RAR/SAR; radar data processor; ground-based SAR signal processing workstation; static airborne radar; multi-aperture space-time array radar; radar field experiments; data analysis and detection theory; management; E-2C radar data analysis; modeling and analysis; current meter array; UCSB wave tank; stratified flow facility; and IR sensor system. Finally the budget status is given.

  20. Cloud speed impact on solar variability scaling â?? Application to the wavelet variability model

    E-Print Network [OSTI]

    Lave, Matthew; Kleissl, Jan

    2013-01-01T23:59:59.000Z

    Kleissl, J. , 2013. Deriving cloud velocity from an array ofCloud Speed Impact on Solar Variability Scaling -this work, we determine from cloud speeds. Cloud simulator

  1. Solar science with the Atacama Large Millimeter/submillimeter Array - A revolutionizing new view of our Sun

    E-Print Network [OSTI]

    Wedemeyer, S; Brajsa, R; Barta, M; Hudson, H; Fleishman, G; Loukitcheva, M; Fleck, B; Kontar, E P; De Pontieu, B; Tiwari, S K; Kato, Y; Soler, R; Yagoubov, P; Black, J H; Antolin, P; Scullion, E; Gun'ar, S; Labrosse, N; Benz, A O; Ludwig, H -G; Hauschildt, P; Doyle, J G; Nakariakov, V M; Solanki, S K; White, S M; Ayres, T; Heinzel, P; Karlicky, M; Van Doorsselaere, T; Gary, D; Alissandrakis, C E; Nindos, A; van der Voort, L Rouppe; Shimojo, M; Zaqarashvili, T; Perez, E

    2015-01-01T23:59:59.000Z

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful tool for observing the Sun at high spatial, temporal, and spectral resolution. These capabilities can address a broad range of fundamental scientific questions in solar physics. The radiation observed by ALMA originates mostly from the chromosphere - a complex and dynamic region between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer layers of the solar atmosphere. Based on first solar test observations, strategies for regular solar campaigns are currently being developed. State-of-the-art numerical simulations of the solar atmosphere and modeling of instrumental effects can help constrain and optimize future observing modes for ALMA. Here we present a short technical description of ALMA and an overview of past efforts and future possibilities for solar observations at submillimeter and millimeter wavelengths. In addition, selected numerical simulatio...

  2. Assessment Of The Wind Farm Impact On The Radar

    E-Print Network [OSTI]

    Norman, Evgeny D

    2010-01-01T23:59:59.000Z

    This study shows the means to evaluate the wind farm impact on the radar. It proposes the set of tools, which can be used to realise this objective. The big part of report covers the study of complex pattern propagation factor as the critical issue of the Advanced Propagation Model (APM). Finally, the reader can find here the implementation of this algorithm - the real scenario in Inverness airport (the United Kingdom), where the ATC radar STAR 2000, developed by Thales Air Systems, operates in the presence of several wind farms. Basically, the project is based on terms of the department "Strategy Technology & Innovation", where it has been done. Also you can find here how the radar industry can act with the problem engendered by wind farms. The current strategies in this area are presented, such as a wind turbine production, improvements of air traffic handling procedures and the collaboration between developers of radars and wind turbines. The possible strategy for Thales as a main pioneer was given as ...

  3. Generating nonlinear FM chirp radar signals by multiple integrations

    DOE Patents [OSTI]

    Doerry, Armin W. (Albuquerque, NM)

    2011-02-01T23:59:59.000Z

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  4. PAVEMENT OVERLAY THICKNESS EVALUATION USING GROUND PENTRATING RADAR (GPR)

    E-Print Network [OSTI]

    Shan, Jie

    PAVEMENT OVERLAY THICKNESS EVALUATION USING GROUND PENTRATING RADAR (GPR) Dwayne Harris, M.Sc., PG University, West Lafayette, IN 47907 jshan@ecn.purdue.edu ABSTRACT Accurate knowledge of pavement thickness is important information to have both at a network and project level. This information aids in pavement

  5. Automatic Radar Antenna Scan Type Recognition in Electronic

    E-Print Network [OSTI]

    Barshan, Billur

    Automatic Radar Antenna Scan Type Recognition in Electronic Warfare BILLUR BARSHAN BAHAEDDIN ERAVCI in electronic warfare (EW). The stages of the algorithm are scan period estimation, preprocessing (normalization Continuous-wave EW Electronic warfare EM Electromagnetic LFM Linear frequency modulation DTW Dynamic time

  6. RADAR OBSERVATIONS OF COMET 103P/HARTLEY 2

    SciTech Connect (OSTI)

    Harmon, John K.; Nolan, Michael C.; Howell, Ellen S.; Taylor, Patrick A. [Arecibo Observatory, National Astronomy and Ionosphere Center, HC3 Box 53995, Arecibo, Puerto Rico 00612 (Puerto Rico); Giorgini, Jon D., E-mail: harmon@naic.edu [Jet Propulsion Laboratory, California Institute of Technology, MS 301-150, 4800 Oak Grove Dr., Pasadena, California 91109 (United States)

    2011-06-10T23:59:59.000Z

    Comets rarely come close enough to be studied intensively with Earth-based radar. The most recent such occurrence was when Comet 103P/Hartley 2 passed within 0.12 AU in late 2010 October, less than two weeks before the EPOXI flyby. This offered a unique opportunity to improve pre-encounter trajectory knowledge and obtain complementary physical data for a spacecraft-targeted comet. 103P/Hartley 2 is only the fourth comet nucleus to be imaged with radar and already the second to be identified as an elongated, bilobate object based on its delay-Doppler signature. The images show the dominant spin mode to be a rotation about the short axis with a period of 18.2 hr. The nucleus has a low radar albedo consistent with a surface density of 0.5-1.0 g cm{sup -3}. A separate echo component was detected from large (>cm) grains ejected anisotropically with velocities of several to tens of meters per second. Radar shows that, in terms of large-grain production, 103P/Hartley 2 is an unusually active comet for its size.

  7. Automated Target Recognition Using Passive Radar and Coordinated Flight Models

    E-Print Network [OSTI]

    Lanterman, Aaron

    of altitude and range. The Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, so Georgia Institute of Technology, Atlanta, GA 30332, USA ABSTRACT Rather than emitting pulses, passive system is in the transmitter, whereas designers of "hitchhiking" or "parasitic" radars have high

  8. The use of composite radar photographs in synoptic weather analysis

    E-Print Network [OSTI]

    Smith, G. D.

    1957-01-01T23:59:59.000Z

    of ursa. Velooity of line, figure K3 Xn addition t* th? foregoing infornacion, the bases and tope of leyscs end tops of convective echoes oan be ruporced. With certain radar installations, end under certain conditions, tha height of thu freeaing...

  9. Synthetic Aperture Radar Imaging with Motion Estimation and Liliana Borcea

    E-Print Network [OSTI]

    Papanicolaou, George C.

    Callaghan George Papanicolaou Abstract We introduce from first principles a synthetic aperture radar (SAR calibrated small apertures, (b) preliminary motion estimation from the data using the Wigner transform-band persistent surveillance SAR is a specific application that is covered by our analysis. Detailed numerical

  10. Synthetic aperture radar and interferometry development at Sandia National Laboratories

    SciTech Connect (OSTI)

    NONE

    1993-04-01T23:59:59.000Z

    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  11. Real-time Non-contact Millimeter Wave Characterization of Water-Freezing and Ice-Melting Dynamics

    SciTech Connect (OSTI)

    Sundaram, S. K.; Woskov, Paul P.

    2008-11-12T23:59:59.000Z

    We applied millimeter wave radiometry for the first time to monitor water-freezing and ice-melting dynamics in real-time non-contact. The measurements were completed at a frequency of 137 GHz. Small amounts (about 2 mL) of freshwater or saltwater were frozen over a Peltier cooler and the freezing and melting sequence was recorded. Saltwater was prepared in the laboratory that contained 3.5% of table salt to simulate the ocean water. The dynamics of freezing-melting was observed by measuring the millimeter wave temperature as well as the changes in the ice or water surface reflectivity and position. This was repeated using large amounts of freshwater and saltwater (800 mL) mimicking glaciers. Millimeter wave surface level fluctuations indicated as the top surface melted, the light ice below floated up indicating lower surface temperature until the ice completely melted. Our results are useful for remote sensing and tracking temperature for potentially large-scale environmental applications, e.g., global warming.

  12. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    E-Print Network [OSTI]

    Klein, Stephen A.

    2009-01-01T23:59:59.000Z

    cloud has the correct effect on surface fluxes of radiation.radiation is 200 W m –2 in clear-sky STREAMER calculations, the longwave cloud radiative effect

  13. Status of SuperSpec: A Broadband, On-Chip Millimeter-Wave Spectrometer

    E-Print Network [OSTI]

    Hailey-Dunsheath, S; Barry, P S; Bradford, C M; Chattopadhyay, G; Day, P; Doyle, S; Hollister, M; Kovacs, A; LeDuc, H G; Mauskopf, P; McKenney, C M; Monroe, R; O'Brient, R; Padin, S; Reck, T; Swenson, L; Tucker, C E; Zmuidzinas, J

    2015-01-01T23:59:59.000Z

    SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100 - 500), large bandwidth (~1.65:1) submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector (KID) operating at 100-200 MHz. We have tested a new prototype device that is more sensitive than previous devices, and easier to fabricate. We present a characterization of a representative R=282 channel at f = 236 GHz, including measurements of the spectrometer detection efficiency, the detector responsivity over a large range of optical loading, and the full system optical efficiency. We outline future improvements to the current system that we expect will enable construction of a photon-noise-lim...

  14. ALMA Imaging of Millimeter/Submillimeter Continuum Emission in Orion KL

    E-Print Network [OSTI]

    Hirota, Tomoya; Kurono, Yasutaka; Honma, Mareki

    2015-01-01T23:59:59.000Z

    We have carried out high resolution observations with Atacama Large Millimeter/Submillimeter Array (ALMA) of continuum emission from Orion KL region. We identify 11 compact sources at ALMA band 6 (245 GHz) and band 7 (339 GHz), including Hot Core, Compact Ridge, SMA1, IRc4, IRc7, and a radio source I (Source I). Spectral energy distribution (SED) of each source is determined by using previous 3 mm continuum emission data. Physical properties such as size, mass, hydrogen number density and column density are discussed based on the dust graybody SED. Among 11 identified sources, Source I, a massive protostar candidate, is a dominant energy source in Orion KL. We extensively investigate its SED from centimeter to submillimeter wavelengths. The SED of Source I can be fitted with a single power-law index of 1.97 suggesting an optically thick emission. We employ the H$^{-}$ free-free emission as an opacity source of this optically thick emission. The temperature, density, and mass of the circumstellar disk associat...

  15. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    E-Print Network [OSTI]

    Alarcon, R; Benson, S V; Bertozzi, W; Boyce, J R; Cowan, R; Douglas, D; Evtushenko, P; Fisher, P; Ihloff, E; Kalantarians, N; Kelleher, A; Kossler, W J; Legg, R; Long, E; Milner, R G; Neil, G R; Ou, L; Schmookler, B; Tennant, C; Tschalaer, C; Williams, G P; Zhang, S

    2013-01-01T23:59:59.000Z

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is ...

  16. MILLIMETER EMISSION STRUCTURE IN THE FIRST ALMA IMAGE OF THE AU Mic DEBRIS DISK

    SciTech Connect (OSTI)

    MacGregor, Meredith A.; Wilner, David J.; Rosenfeld, Katherine A.; Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matthews, Brenda; Booth, Mark [Herzberg Institute of Astrophysics, 5072 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Hughes, A. Meredith; Chiang, Eugene; Graham, James R.; Kalas, Paul [Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720 (United States); Kennedy, Grant [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Sibthorpe, Bruce [SRON Netherlands Institute for Space Research, NL-9747 AD Groningen (Netherlands)

    2013-01-10T23:59:59.000Z

    We present 1.3 mm ALMA Cycle 0 observations of the edge-on debris disk around the nearby, {approx}10 Myr old, M-type star AU Mic. These observations obtain 0.''6 (6 AU) resolution and reveal two distinct emission components: (1) the previously known dust belt that extends to a radius of 40 AU and (2) a newly recognized central peak that remains unresolved. The cold dust belt of mass {approx}1 M{sub Moon} is resolved in the radial direction with a rising emission profile that peaks sharply at the location of the outer edge of the 'birth ring' of planetesimals hypothesized to explain the midplane scattered light gradients. No significant asymmetries are discerned in the structure or position of this dust belt. The central peak identified in the ALMA image is {approx}6 times brighter than the stellar photosphere, which indicates an additional emission process in the inner regions of the system. Emission from a stellar corona or activity may contribute, but the observations show no signs of temporal variations characteristic of radio-wave flares. We suggest that this central component may be dominated by dust emission from an inner planetesimal belt of mass {approx}0.01 M{sub Moon}, consistent with a lack of emission shortward of 25 {mu}m and a location {approx}<3 AU from the star. Future millimeter observations can test this assertion, as an inner dust belt should be readily separated from the central star at higher angular resolution.

  17. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    SciTech Connect (OSTI)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01T23:59:59.000Z

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  18. Determinating Timing Channels in Statistically Multiplexed Clouds

    E-Print Network [OSTI]

    Aviram, Amittai; Ford, Bryan; Gummadi, Ramakrishna

    2010-01-01T23:59:59.000Z

    Timing side-channels represent an insidious security challenge for cloud computing, because: (a) they enable one customer to steal information from another without leaving a trail or raising alarms; (b) only the cloud provider can feasibly detect and report such attacks, but the provider's incentives are not to; and (c) known general-purpose timing channel control methods undermine statistical resource sharing efficiency, and, with it, the cloud computing business model. We propose a new cloud architecture that uses provider-enforced deterministic execution to eliminate all timing channels internal to a shared cloud domain, without limiting internal resource sharing. A prototype determinism-enforcing hypervisor demonstrates that utilizing such a cloud might be both convenient and efficient. The hypervisor enables parallel guest processes and threads to interact via familiar shared memory and file system abstractions, and runs moderately coarse-grained parallel tasks as efficiently and scalably as current nond...

  19. In Proceedings of APSEC 2010 Cloud Workshop, Sydney, Australia, 30th An Analysis of The Cloud Computing Security Problem

    E-Print Network [OSTI]

    Grundy, John

    of The Cloud Computing Security Problem Mohamed Al Morsy, John Grundy and Ingo Müller Computer Science to adopt IT without upfront investment. Despite the potential gains achieved from the cloud computing solution. Keywords: cloud computing; cloud computing security; cloud computing security management. I

  20. April 12, 2014: The Era of Cloud Computing is coming Headline: The Era of Cloud Computing is coming

    E-Print Network [OSTI]

    Buyya, Rajkumar

    April 12, 2014: The Era of Cloud Computing is coming #12;Headline: The Era of Cloud Computing of Cloud Computing at a seminar in MANIT and RGPV on Saturday. Inset headline: This is the right time to build a career in Cloud Computing Article: Prof. Rajkumar Buyya gave guidance to students about Cloud

  1. After the definition of Cloud Computing ... What has NIST done in the Cloud space lately? What's next?

    E-Print Network [OSTI]

    After the definition of Cloud Computing ... What has NIST done in the Cloud space lately? What Publication SP 500-292: Cloud Computing Reference Architecture. This document takes the NIST definition of Cloud Computing a step further by expanding the definition into a logical representation of the cloud

  2. Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1

    E-Print Network [OSTI]

    Hartmann, Dennis

    by adjusting the change in cloud radiative forcing for non-cloud22 related effects as in Soden et al. (2008 planet, the global and annual mean effect40 of clouds at the top of atmosphere (TOA) is to increase Feedbacks using Cloud1 Property Histograms.2 Part I: Cloud Radiative Kernels3 Mark D. Zelinka Department

  3. Influence of Cloud-Top Height and Geometric Thickness on a MODIS Infrared-Based Ice Cloud Retrieval

    E-Print Network [OSTI]

    Baum, Bryan A.

    of the net cloud radiative forc- ing of these clouds requires a global, diurnal climatology, which can most and temporal scales. In this study, the sensitivity of an infrared-based ice cloud retrieval to effective cloud temperature is investigated, with a focus on the effects of cloud-top height and geometric thickness

  4. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85719 (United States); Rodriguez, Sebastien [Laboratoire AIM, Universite Paris 7/CNRS/CEA-Saclay, DSM/IRFU/SAp (France); Le Mouelic, Stephane [Laboratoire de Planetologie et Geodynamique, CNRS, UMR-6112, Universite de Nantes, 44000 Nantes (France); Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Clark, Roger [U.S. Geological Survey, Denver, CO 80225 (United States); Nicholson, Phil [Department of Astronomy, Cornell University, Ithaca, NY (United States); Jaumann, Ralf [Institute of Planetary Exploration, Deutsche Zentrum, fuer Luft- und Raumfahrt (Germany)

    2009-09-10T23:59:59.000Z

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  5. Interstellar Turbulence, Cloud Formation and Pressure Balance

    E-Print Network [OSTI]

    Enrique Vazquez-Semadeni

    1998-10-23T23:59:59.000Z

    We discuss HD and MHD compressible turbulence as a cloud-forming and cloud-structuring mechanism in the ISM. Results from a numerical model of the turbulent ISM at large scales suggest that the phase-like appearance of the medium, the typical values of the densities and magnetic field strengths in the intercloud medium, as well as Larson's velocity dispersion-size scaling relation in clouds may be understood as consequences of the interstellar turbulence. However, the density-size relation appears to only hold for the densest simulated clouds, there existing a large population of small, low-density clouds, which, on the other hand, are hardest to observe. We then discuss several tests and implications of a fully dynamical picture of interstellar clouds. The results imply that clouds are transient, constantly being formed, distorted and disrupted by the turbulent velocity field, with a fraction of these fluctuations undergoing gravitational collapse. Simulated line profiles and estimated cloud lifetimes are consistent with observational data. In this scenario, we suggest it is quite unlikely that quasi-hydrostatic structures on any scale can form, and that the near pressure balance between clouds and the intercloud medium is an incidental consequence of the density field driven by the turbulence and in the presence of appropriate cooling, rather than a driving or confining mechanism.

  6. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during

    E-Print Network [OSTI]

    Zuidema, Paquita

    /crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterizationIntercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud

  7. Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and Online Slack Space

    E-Print Network [OSTI]

    Dark Clouds on the Horizon: Using Cloud Storage as Attack Vector and Online Slack Space Martin this as online slack space. We conclude by discussing security improvements for mod- ern online storage services protocol. With the advent of cloud computing and the shared usage of resources, these centralized storage

  8. To Cloud or Not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications

    E-Print Network [OSTI]

    Namboodiri, Vinod

    To Cloud or Not to Cloud: A Mobile Device Perspective on Energy Consumption of Applications Vinod important criteria might be the energy consumed by the applications they run. The goal of this work is to characterize under what scenarios cloud-based applications would be relatively more energy-efficient for users

  9. Aircraft Microphysical Documentation from Cloud Base to Anvils of Hailstorm Feeder Clouds in Argentina

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    in Argentina DANIEL ROSENFELD The Hebrew University of Jerusalem, Jerusalem, Israel WILLIAM L. WOODLEY Woodley, Argentina, with a cloud-physics jet aircraft penetrating the major feeder clouds from cloud base to the 45°C. Introduction The province of Mendoza in western Argentina (32°S, 68°W), which is known worldwide for its wine

  10. Investigating the Radiative Impact Clouds Using Retrieved Properties to Classify Cloud Type

    E-Print Network [OSTI]

    Hogan, Robin

    of Reading, RG6 6AL, UK Abstract. Active remote sensing allows cloud properties such as ice and liquid water remote sensing, Cloud categorization, Cloud properties, Radiative impact. PACS: 92.60. Vb. INTRODUCTION in a radiation scheme which can simulate the radiation budget and heating rates throughout the atmospheric

  11. The Design of a Community Science Cloud: The Open Science Data Cloud Perspective

    E-Print Network [OSTI]

    Grossman, Robert

    The Design of a Community Science Cloud: The Open Science Data Cloud Perspective Robert L. Grossman, Matthew Greenway, Allison P. Heath, Ray Powell, Rafael D. Suarez, Walt Wells, and Kevin White University Abstract--In this paper we describe the design, and implemen- tation of the Open Science Data Cloud

  12. From Grid to private Clouds, to interClouds. Project Team

    E-Print Network [OSTI]

    Vialle, Stéphane

    24/10/2011 1 From Grid to private Clouds, to interClouds. AlGorille Project Team An overviewGorille INRIA Project Team October 21, 2011 I Premise of Grid ComputingI Premise of Grid Computing... From Grid to private Clouds, to inter

  13. LETTER The incidence and implications of clouds for cloud forest plant water relations

    E-Print Network [OSTI]

    Goldsmith, Greg

    , the montane forest experienced higher precipi- tation, cloud cover and leaf wetting events of longer duration for an improved understanding of clouds and their effects on cloud forest plant functioning. As summarised below (VPD) and photosynthetically active radiation. In turn, this decreases plant water demand. The suppres

  14. Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 19542008

    E-Print Network [OSTI]

    Hochberg, Michael

    ). MSC therefore have a cooling ef- fect on climate [negative cloud radiative effect (CRE)]. Randall et in climate, affecting both radiation fluxes and latent heat fluxes, but the various cloud types affect marine. By contrast, high (cirriform) clouds are thinner and colder, so their longwave effect dominates, giving them

  15. A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS

    E-Print Network [OSTI]

    Hogan, Robin

    A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS, Berkshire, United Kingdom 1 INTRODUCTION The importance of ice clouds on the earth's radiation budget for quantifying this effect, and several such models exist for boundary layer clouds, such as those of Cahalan et

  16. Methods And System Suppressing Clutter In A Gain-Block, Radar-Responsive Tag System

    DOE Patents [OSTI]

    Ormesher, Richard C. (Albuquerque, NM); Axline, Robert M. (Albuquerque, NM)

    2006-04-18T23:59:59.000Z

    Methods and systems reduce clutter interference in a radar-responsive tag system. A radar transmits a series of linear-frequency-modulated pulses and receives echo pulses from nearby terrain and from radar-responsive tags that may be in the imaged scene. Tags in the vicinity of the radar are activated by the radar's pulses. The tags receive and remodulate the radar pulses. Tag processing reverses the direction, in time, of the received waveform's linear frequency modulation. The tag retransmits the remodulated pulses. The radar uses a reversed-chirp de-ramp pulse to process the tag's echo. The invention applies to radar systems compatible with coherent gain-block tags. The invention provides a marked reduction in the strength of residual clutter echoes on each and every echo pulse received by the radar. SAR receiver processing effectively whitens passive-clutter signatures across the range dimension. Clutter suppression of approximately 14 dB is achievable for a typical radar system.

  17. Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management »EnergyHubs | DepartmentCloud Spatial

  18. Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Shoring up Infrastructure Weaknesses with Hybrid Cloud Storage #12;2StorSimple White Pages: Shoring Up Infrastructure Weaknesses with Hybrid Cloud Storage Table of Contents The Hybrid Cloud Context for IT Managers ............................................................. 3 The Bottleneck of Managing Storage

  19. Satellite Remote Sensing of Mid-level Clouds

    E-Print Network [OSTI]

    Jin, Hongchun 1980-

    2012-11-07T23:59:59.000Z

    algorithm is evaluated using the CALIPSO cloud phase products for single-layer, heterogeneous, and multi-layer scenes. The AIRS phase algorithm has excellent performance (>90%) in detecting ice clouds compared to the CALIPSO ice clouds. It is capable...

  20. A cloud-assisted design for autonomous driving

    E-Print Network [OSTI]

    Suresh Kumar, Swarun

    This paper presents Carcel, a cloud-assisted system for autonomous driving. Carcel enables the cloud to have access to sensor data from autonomous vehicles as well as the roadside infrastructure. The cloud assists autonomous ...

  1. Aneka Cloud Application Platform and Its Integration with Windows Azure

    E-Print Network [OSTI]

    Melbourne, University of

    scheduling, and energy efficient resource utilization. The Aneka Cloud Application platform, together. Ltd., Melbourne, Victoria, Australia 2 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia Abstract

  2. Fair-weather clouds hold dirty secret | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fair-weather clouds hold dirty secret Fair-weather clouds hold dirty secret Released: May 05, 2013 New study reveals particles that seed small-scale clouds over Oklahoma Air...

  3. E-Cloud Build-up in Grooved Chambers

    E-Print Network [OSTI]

    Venturini, Marco

    2007-01-01T23:59:59.000Z

    and F. Zimmermann, ”LC e-Cloud Activities at CERN”, talkal. , Simulations of the Electron Cloud for Vari- ous Con?E-CLOUD BUILD-UP IN GROOVED CHAMBERS ? M. Venturini † LBNL,

  4. Building Dynamic Computing Infrastructures over Distributed Clouds Pierre Riteau

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Building Dynamic Computing Infrastructures over Distributed Clouds Pierre Riteau University--The emergence of cloud computing infrastructures brings new ways to build and manage computing systems objectives. First, leveraging virtualization and cloud computing infrastruc- tures to build distributed large

  5. Modelling Cloud Computing Infrastructure Marianne Hickey and Maher Rahmouni,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modelling Cloud Computing Infrastructure Marianne Hickey and Maher Rahmouni, HP Labs, Long Down, and shared vocabularies. Keywords: Modelling, Cloud Computing, RDF, Ontology, Rules, Validation 1 Introduction There is currently a shift towards cloud computing, which changes the model of provision

  6. Consistent cloud computing storage as the basis for distributed applications

    E-Print Network [OSTI]

    Anderson, James William

    2011-01-01T23:59:59.000Z

    Messaging in Cloud Computing . . . . . . . . . .7 1.4Eucalyptus Open—Source Cloud—Computing System. In C'C&#http://www.eweek.com/c/a/Cloud-Computing/Amazons—Head—Start—

  7. Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report

    SciTech Connect (OSTI)

    Oglesby, Kenneth [Impact Technologies LLC; Woskov, Paul [MIT; Einstein, Herbert [MIT

    2014-12-30T23:59:59.000Z

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260oC, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650oC, even exceeding 3000oC, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.

  8. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect (OSTI)

    SCHWARTZ, S.E.

    2005-09-01T23:59:59.000Z

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  9. The Giant Molecular Cloud Environments of Infrared Dark Clouds

    E-Print Network [OSTI]

    Hernandez, Audra K

    2015-01-01T23:59:59.000Z

    We study the GMC environments surrounding 10 IRDCs, based on 13CO molecular line emission from the Galactic Ring Survey. Using a range of physical scales, we measure the physical properties of the IRDCs and their surrounding molecular material extending out to radii, R, of 30pc. By comparing different methods for defining cloud boundaries and for deriving mass surface densities, Sigma, and velocity dispersions, sigma, we settled on a preferred "CE,tau,G" method of "Connected Extraction" in position-velocity space along with Gaussian fitting to opacity-corrected line profiles for velocity dispersion and mass estimation. We examine how cloud definition affects measurements of the magnitude and direction of line of sight velocity gradients and velocity dispersions, including the associated dependencies on size scale. CE,tau,G-defined IRDCs and GMCs show velocity gradient versus size relations that scale approximately as dv_0/ds~s^(-1/2) and velocity dispersion versus size relations sigma~s^(1/2), which are consi...

  10. A MILLIMETER-WAVE GALACTIC PLANE SURVEY WITH THE BICEP POLARIMETER

    SciTech Connect (OSTI)

    Bierman, E. M.; Keating, B. G.; Barron, D.; Kaufman, J. P. [University of California, San Diego (United States); Matsumura, T.; Dowell, C. D.; Bock, J. J.; Chiang, H. C.; Culverhouse, T. L.; Hristov, V. V.; Kovac, J. M.; Lange, A. E. [California Institute of Technology (United States); Ade, P. [University of Wales (United Kingdom); Barkats, D. [Joint ALMA Office-NRAO (Chile); Battle, J. O.; Leitch, E. M. [Jet Propulsion Laboratory (United States); Duband, L. [Commissariat a l'Energie Atomique (France); Hivon, E. F. [Institut d'Astrophysique de Paris (France); Holzapfel, W. L. [University of California, Berkeley (United States); Kuo, C. L., E-mail: ebierman@physics.ucsd.edu [Stanford University, CA (United States)

    2011-11-10T23:59:59.000Z

    In order to study inflationary cosmology and the Milky Way Galaxy's composition and magnetic field structure, Stokes I, Q, and U maps of the Galactic plane covering the Galactic longitude range 260 Degree-Sign < l < 340 Degree-Sign in three atmospheric transmission windows centered on 100, 150, and 220 GHz are presented. The maps sample an optical depth 1 {approx}< A{sub V} {approx}< 30, and are consistent with previous characterizations of the Galactic millimeter-wave frequency spectrum and the large-scale magnetic field structure permeating the interstellar medium. The polarization angles in all three bands are generally perpendicular to those measured by starlight polarimetry as expected and show changes in the structure of the Galactic magnetic field on the scale of 60 Degree-Sign . The frequency spectrum of degree-scale Galactic emission is plotted between 23 and 220 GHz (including WMAP data) and is fit to a two-component (synchrotron and dust) model showing that the higher frequency BICEP data are necessary to tightly constrain the amplitude and spectral index of Galactic dust. Polarized emission is detected over the entire region within two degrees of the Galactic plane, indicating the large-scale magnetic field is oriented parallel to the plane of the Galaxy. A trend of decreasing polarization fraction with increasing total intensity is observed, ruling out the simplest model of a constant Galactic magnetic field orientation along the line of sight in the Galactic plane. A generally increasing trend of polarization fraction with electromagnetic frequency is found, varying from 0.5%-1.5% at frequencies below 50 GHz to 2.5%-3.5% above 90 GHz. The effort to extend the capabilities of BICEP by installing 220 GHz band hardware is described along with analysis of the new band.

  11. CORRELATIONS IN THE (SUB)MILLIMETER BACKGROUND FROM ACT Multiplication-Sign BLAST

    SciTech Connect (OSTI)

    Hajian, Amir; Battaglia, Nick; Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Viero, Marco P.; Bock, James J. [California Institute of Technology, Pasadena, CA 91125 (United States); Addison, Graeme [Department of Astrophysics, Oxford University, Oxford, OX1 3RH (United Kingdom); Aguirre, Paula [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica, Casilla 306, Santiago 22 (Chile); Appel, John William; Duenner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Das, Sudeep; Dunkley, Joanna [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Devlin, Mark J.; Dicker, Simon R. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hasselfield, Matthew [Laboratoire APC, Universite Paris Diderot, 75205 Paris (France); Hilton, Matt [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041 (South Africa); and others

    2012-01-01T23:59:59.000Z

    We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at 250, 350, and 500 {mu}m (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope (BLAST); and at 1380 and 2030 {mu}m (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope (ACT). The overlapping observations cover 8.6 deg{sup 2} in an area relatively free of Galactic dust near the south ecliptic pole. The ACT bands are sensitive to radiation from the cosmic microwave background, to the Sunyaev-Zel'dovich effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline and also detect correlations between the ACT and BLAST maps at over 25{sigma} significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the cross-frequency power spectra, we detect a clustered signal at 4{sigma}, and using a model for the DSFG evolution and number counts, we successfully fit all of our spectra with a linear clustering model and a bias that depends only on redshift and not on scale. Finally, the data are compared to, and generally agree with, phenomenological models for the DSFG population. This study demonstrates the constraining power of the cross-frequency correlation technique to constrain models for the DSFGs. Similar analyses with more data will impose tight constraints on future models.

  12. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30T23:59:59.000Z

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  13. ARM - Lesson Plans: Making Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow, Alaska OutreachMaking Clouds Outreach Home

  14. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCaptureCloud Computing Services

  15. Feasibility of a borehole VHF radar technique for fracture mapping

    SciTech Connect (OSTI)

    Chang, H.T.

    1984-01-01T23:59:59.000Z

    Experiments were conducted to establish the feasibility of a downhole high-frequency electromagnetic technique for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver operated at 30 to 300 MHz was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole VHF radar for use in a single borehole for detection of fractures located away from the borehole.

  16. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 5, MAY 1999 851 Low Grazing Incidence Millimeter-Wave Scattering

    E-Print Network [OSTI]

    Sarabandi, Kamal

    analytically. The University of Michigan 94-GHz polarimetric radar system was used to perform polarimetric- neering and Computer Science, The University of Michigan, Ann Arbor, MI 48109 USA. Publisher Item are characterized experimentally. Ice and water over asphalt and concrete surfaces are modeled by homoge- neous

  17. Forensic Application of FM-CW and Pulse Radar

    SciTech Connect (OSTI)

    S. K. Koppenjan; R. S. Freeland; M. L. Miller; R. E. Yoder

    2003-01-01T23:59:59.000Z

    Ground-penetrating radar (GPR) technology has supplied vital assistance in criminal investigations. However, law enforcement personnel desire further developments such that the technology is rapidly deployable, and that it provides both a simple user interface and sophisticated target identification. To assist in the development of target identification algorithms, our efforts involve gathering background GPR data for the various site conditions and circumstances that often typify clandestine burials. For this study, forensic anthropologists established shallow-grave plots at The University of Tennessee Anthropological Research Facility (ARF) that are specific to GPR research. These plots contain donated human cadavers lying in various configurations and depths, surrounded by assorted construction material and backfill debris. We scanned the plots using two GPR technologies: (1) a multi-frequency synthetic-aperture FM-CW radar (200-700 MHz) (GPR-X) developed by the U.S. Department of Energy's (DOE) Special Technologies Laboratory (STL), Bechtel Nevada (Koppenjan et al., 2000), and (2) a commercial pulse radar (SIR-20) manufactured by Geophysical Survey Systems, Inc. (400 and 900 MHz)(GSSI). The sweep-frequency data show the large biological mass decomposing within the torso as encircled ''hot spots.'' The 400-MHz pulse radar exhibit major horizontal reflectors above the body, with shadow reflectors (horizontal multiples) occurring beneath the body at 60 cm depth. The 400-MHz antenna was able to discern the grave walls and folded tarp covering the lower body. Under these moist, clay-rich conditions, the 900-MHz antenna was able to penetrate slightly beyond 30 cm beneath the concrete layer. However, neither system was able to penetrate beyond a one meter depth in the moist, clay-rich soil (fine, mixed, thermic Typic Paleudalf). Example scans from each system are provided, along with a discussion of the survey protocol and general performance.

  18. Radar antenna pointing for optimized signal to noise ratio.

    SciTech Connect (OSTI)

    Doerry, Armin Walter; Marquette, Brandeis [General Atomics Aeronautical Systems, Inc., San Diego, CA

    2013-01-01T23:59:59.000Z

    The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

  19. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    E-Print Network [OSTI]

    Kirkby, Jasper

    2001-01-01T23:59:59.000Z

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  20. CloneCloud: Boosting Mobile Device Applications Through Cloud Clone Execution

    E-Print Network [OSTI]

    Chun, Byung-Gon; Maniatis, Petros; Naik, Mayur

    2010-01-01T23:59:59.000Z

    Mobile applications are becoming increasingly ubiquitous and provide ever richer functionality on mobile devices. At the same time, such devices often enjoy strong connectivity with more powerful machines ranging from laptops and desktops to commercial clouds. This paper presents the design and implementation of CloneCloud, a system that automatically transforms mobile applications to benefit from the cloud. The system is a flexible application partitioner and execution runtime that enables unmodified mobile applications running in an application-level virtual machine to seamlessly off-load part of their execution from mobile devices onto device clones operating in a computational cloud. CloneCloud uses a combination of static analysis and dynamic profiling to optimally and automatically partition an application so that it migrates, executes in the cloud, and re-integrates computation in a fine-grained manner that makes efficient use of resources. Our evaluation shows that CloneCloud can achieve up to 21.2x s...

  1. Public Cloud B CarbonEmission

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Sensors, Demand Prediction Power Capping, Green Software Services such as energy-efficient scientific) Request a Cloud service 4) Allocate service 5) Request service allocation 3) Request energy efficiency information Green Offer Directory 2) Request any `Green Offer' Routers Internet Green Broker #12;Cloud

  2. The CloudNets Network Virtualization Architecture

    E-Print Network [OSTI]

    Schmid, Stefan

    Nets Network Virtualization Architecture Johannes Grassler jgrassler@inet.tu-berlin.de 05. Februar, 2014 Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12;..... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . .... . .... . ..... . .... . ..... . .... . .... . Johannes Grassler jgrassler@inet.tu-berlin.de The CloudNets Network Virtualization Architecture #12

  3. Verifiable Resource Accounting for Cloud Computing Services

    E-Print Network [OSTI]

    Maniatis, Petros

    Verifiable Resource Accounting for Cloud Computing Services Vyas Sekar Intel Labs Petros Maniatis Intel Labs ABSTRACT Cloud computing offers users the potential to reduce operating and capital expenses cause providers to incorrectly attribute resource consumption to customers or im- plicitly bear

  4. Compression of Antiproton Clouds for Antihydrogen Trapping

    E-Print Network [OSTI]

    G. B. Andresen; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; M. C. Fujiwara; R. Funakoshi; D. R. Gill; J. S. Hangst; W. N. Hardy; R. S. Hayano; M. E. Hayden; R. Hydomako; M. J. Jenkins; L. V. Jorgensen; L. Kurchaninov; R. Lambo; N. Madsen; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; S. Seif El Nasr; D. M. Silveira; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele; Y. Yamazaki

    2008-06-30T23:59:59.000Z

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  5. CLOUD COMPUTING INFRASTRUCTURE AND OPERATIONS PROGRAM

    E-Print Network [OSTI]

    Schaefer, Marcus

    theory and best practices, Cloud operations analytics, globally-responsive architecture, functional of Cloud infrastructures Best practices for building Infrastructure as a Service (IaaS), with an emphasis-distributed, responsive web application capable of massive scale with operational performance metrics. DePaul University

  6. Privacy in the Cloud Computing Era

    E-Print Network [OSTI]

    Narasayya, Vivek

    Privacy in the Cloud Computing Era A Microsoft Perspective November 2009 #12;The information information presented after the date of publication. This white paper is for informational purposes only. Microsoft Corp. · One Microsoft Way · Redmond, WA 98052-6399 · USA #12;Contents Cloud Computing and Privacy

  7. Digital meteorological radar data compared with digital infrared data from a geostationary meteorological satellite

    E-Print Network [OSTI]

    Henderson, Rodney Stuart

    1979-01-01T23:59:59.000Z

    OF CONTENTS Page ABSTRACT. ACKNOWLEDGMENTS. DEDICATION . iv vi TABLE OF CONTENTS . vii LIST OF TABLES. IX LIST OF FIGURES . LIST OF ACRONYMS CHAPTER xii I. INTRODUCTION 1. The Need for This Investigation 2. Present Status of Research Relating... to This Investigation 3. Objectives of the Investigation 4. Techniques and Scope of the Investigation. II. METEOROLOGICAL RADAR DATA . 10 1. Basic Radar Theory . 2. Earth Curvature Correction . 3. The TAMU Weather Radar System. 4. Data Reduction and Display 10...

  8. Cloud-integrated Storage What & Why 2StoreSimple White Pages: Shoring Up Infrastructure Weaknesses with Cloud Storage

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Cloud-integrated Storage ­ What & Why #12;2StoreSimple White Pages: Shoring Up Infrastructure Weaknesses with Cloud Storage Overview..........................................................................................................3 Enterprise-class storage platform

  9. Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOE NationalCommitteeof3

  10. Improving ISR Radar Utilization (How I quit blaming the user and made the radar easier to use).

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2014-08-01T23:59:59.000Z

    In modern multi - sensor multi - mode Intelligence, Surveillance, and Reconnaissance ( ISR ) platforms, the plethora of options available to a sensor/payload operator are quite large, leading to an over - worked operator often down - selecting to favorite sensors an d modes. For example, Full Motion Video (FMV) is justifiably a favorite sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. The challenge is then to increase the utilization of the radar modes in a man ner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into 'super - modes'. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia Natio nal Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL850 00.

  11. Stratus Cloud Structure from MM-Radar Transects and Satellite Images: Scaling Properties and Artifact Detection with Semi-...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochasticPlanHigh-Level RadioactiveStructure

  12. NEWLY IDENTIFIED EXTENDED GREEN OBJECTS (EGOs) FROM THE SPITZER GLIMPSE II SURVEY. II. MOLECULAR CLOUD ENVIRONMENTS

    SciTech Connect (OSTI)

    Chen Xi; Gan Conggui; Shen Zhiqiang [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030 (China); Ellingsen, Simon P.; Titmarsh, Anita [School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania (Australia); He Jinhua, E-mail: chenxi@shao.ac.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Astronomical Observatory/National Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011, Yunnan Province (China)

    2013-06-01T23:59:59.000Z

    We have undertaken a survey of molecular lines in the 3 mm band toward 57 young stellar objects using the Australia Telescope National Facility Mopra 22 m radio telescope. The target sources were young stellar objects with active outflows (extended green objects (EGOs)) newly identified from the GLIMPSE II survey. We observe a high detection rate (50%) of broad line wing emission in the HNC and CS thermal lines, which combined with the high detection rate of class I methanol masers toward these sources (reported in Paper I) further demonstrates that the GLIMPSE II EGOs are associated with outflows. The physical and kinematic characteristics derived from the 3 mm molecular lines for these newly identified EGOs are consistent with these sources being massive young stellar objects with ongoing outflow activity and rapid accretion. These findings support our previous investigations of the mid-infrared properties of these sources and their association with other star formation tracers (e.g., infrared dark clouds, methanol masers and millimeter dust sources) presented in Paper I. The high detection rate (64%) of the hot core tracer CH{sub 3}CN reveals that the majority of these new EGOs have evolved to the hot molecular core stage. Comparison of the observed molecular column densities with predictions from hot core chemistry models reveals that the newly identified EGOs from the GLIMPSE II survey are members of the youngest hot core population, with an evolutionary time scale of the order of 10{sup 3} yr.

  13. Magnetic Fields in Molecular Cloud Cores

    E-Print Network [OSTI]

    Shantanu Basu

    2004-10-22T23:59:59.000Z

    Observations of magnetic field strengths imply that molecular cloud fragments are individually close to being in a magnetically critical state, even though both magnetic field and column density measurements range over two orders of magnitude. The turbulent pressure also approximately balances the self-gravitational pressure. These results together mean that the one-dimensional velocity dispersion $\\sigv$ is proportional to the mean \\Alf speed of a cloud $\\va$. Global models of MHD turbulence in a molecular cloud show that this correlation is naturally satisfied for a range of different driving strengths of the turbulence. For example, an increase of turbulent driving causes a cloud expansion which also increases $\\va$. Clouds are in a time averaged balance but exhibit large oscillatory motions, particularly in their outer rarefied regions. We also discuss models of gravitational fragmentation in a sheet-like region in which turbulence has already dissipated, including the effects of magnetic fields and ion-neutral friction. Clouds with near-critical mass-to-flux ratios lead to subsonic infall within cores, consistent with some recent observations of motions in starless cores. Conversely, significantly supercritical clouds are expected to produce extended supersonic infall.

  14. Clouds and the Faint Young Sun Paradox

    E-Print Network [OSTI]

    Goldblatt, Colin

    2011-01-01T23:59:59.000Z

    We investigate the role which clouds could play in resolving the Faint Young Sun Paradox (FYSP). Lower solar luminosity in the past means that less energy was absorbed on Earth (a forcing of -50 Wm-2 during the late Archean), but geological evidence points to the Earth being at least as warm as it is today, with only very occasional glaciations. We perform radiative calculations on a single global mean atmospheric column. We select a nominal set of three layered, randomly overlapping clouds, which are both consistent with observed cloud climatologies and reproduce the observed global mean energy budget of Earth. By varying the fraction, thickness, height and particle size of these clouds we conduct a wide exploration of how changed clouds could affect climate, thus constraining how clouds could contribute to resolving the FYSP. Low clouds reflect sunlight but have little greenhouse effect. Removing them entirely gives a~forcing of +25 Wm-2 whilst more modest reduction in their efficacy gives a forcing of +10 ...

  15. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  16. Securely Managing Cryptographic Keys used within a Cloud Environment

    E-Print Network [OSTI]

    , Co-tenancy, Distributed Management Cryptography essential to secure cloud operations Use of sound;Page 3 Cloud Service Provider (CSP) - Models Cloud Service Models Software as a Service (Saa CSP know who I am? How is my connection to cloud components protected? Administration Who

  17. Proximity Graphs for Defining Surfaces over Point Clouds

    E-Print Network [OSTI]

    Behnke, Sven

    over Point Clouds Gabriel Zachmann University of Bonn Germany Jan Klein University of Paderborn Germany

  18. The aerosol direct radiative effect (DRE) over clouds is quantified using measured reflectance spectra of UV-absorbing aerosol polluted cloud scenes and modeled reflectance spectra of unpolluted cloud scenes. The cloud reflectance spectra are read from

    E-Print Network [OSTI]

    Graaf, Martin de

    distribution of clouds and aerosols along the white CALIPSO track in Fig.1b is shown in Fig. 2. The distanceThe aerosol direct radiative effect (DRE) over clouds is quantified using measured reflectance spectra of UV-absorbing aerosol polluted cloud scenes and modeled reflectance spectra of unpolluted cloud

  19. CLOUD PHYSICS From aerosol-limited to invigoration

    E-Print Network [OSTI]

    Napp, Nils

    CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

  20. Fault-Tolerant and Reliable Computation in Cloud Computing

    E-Print Network [OSTI]

    Deng, Jing

    Fault-Tolerant and Reliable Computation in Cloud Computing Jing Deng Scott C.-H. Huang Yunghsiang S, Taipei, 106 Taiwan. § Intelligent Automation, Inc., Rockville, MD, USA. Abstract-- Cloud computing of scientific computation in cloud computing. We investigate a cloud selection strategy to decompose the matrix

  1. How Mobility Increases Mobile Cloud Computing Processing Capacity

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    How Mobility Increases Mobile Cloud Computing Processing Capacity Anh-Dung Nguyen, Patrick S--In this paper, we address a important and still unanswered question in mobile cloud computing "how mobility the resilience of mobile cloud computing services. Keywords--Mobile cloud computing, mobility, quality of service

  2. IBM Tivoli Cloud Computing: Technical Enablement for IBM Business Partners

    E-Print Network [OSTI]

    IBM Tivoli Cloud Computing: Technical Enablement for IBM Business Partners Cloud computing is a key part of driving greater alignment between business and IT. IBM Service Management and Cloud Computing to the IBM technical community. IBM Cloud Computing Business Partner Technical Enablement Offering

  3. Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol

    E-Print Network [OSTI]

    Collins, Gary S.

    Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

  4. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research

    SciTech Connect (OSTI)

    Platt, C.M.; Young, S.A. [Division of Atmospheric Research, Victoria (Australia)] [Division of Atmospheric Research, Victoria (Australia); Carswell, A.I.; Pal, S.R. [York Univ., North York, Ontario (Canada)] [York Univ., North York, Ontario (Canada); McCormick, M.P.; Winker, D.M. [NASA Langley Research Center, Hampton, VA (United States)] [NASA Langley Research Center, Hampton, VA (United States); DelGuasta, M.; Stefanutti, L. [Institute Ricerca Onde Elettromagnetiche, Florence (Italy)] [Institute Ricerca Onde Elettromagnetiche, Florence (Italy); Eberhard, W.L.; Hardesty, M. [NOAA Environmental Technology Lab., Boulder, CO (United States)] [and others] [NOAA Environmental Technology Lab., Boulder, CO (United States); and others

    1994-09-01T23:59:59.000Z

    The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and April-July 1991, with intensive 30-day periods selected within the two time intervals. Data are being archived at NASA Langley Research Center, and, once there, are readily available to the international scientific community. 43 refs., 13 figs., 4 tabs.

  5. NIST Cloud Computing Strategy working paper, April 2011 1 of 25 NIST Strategy to build a USG Cloud Computing

    E-Print Network [OSTI]

    NIST Cloud Computing Strategy working paper, April 2011 1 of 25 NIST Strategy to build a USG Cloud of United States Government (USG) secure and effective adoption of the Cloud Computing2 model to reduce costs and improve services. The working document describes the NIST Cloud Computing program efforts

  6. Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1

    E-Print Network [OSTI]

    Hartmann, Dennis

    Generated using version 3.0 of the official AMS LATEX template Computing and Partitioning Cloud Feedbacks using Cloud1 Property Histograms.2 Part II: Attribution to the Nature of Cloud Changes3 Mark D-103 Livermore, CA 94551 E-mail: zelinka1@llnl.gov 1 #12;ABSTRACT7 Cloud radiative kernels

  7. IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1 Cloud Federations in the Sky: Formation Game

    E-Print Network [OSTI]

    Grosu, Daniel

    IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1 Cloud Federations in the Sky federation, virtual machine, game theory. 1 INTRODUCTION CLOUDS are large-scale distributed computing sys (VM) instances. Cloud computing systems' ability to provide on de- mand access to always-on computing

  8. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect (OSTI)

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27T23:59:59.000Z

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  9. Evaluation of convection-permitting model simulations of cloud populations associated with the Madden-Julian Oscillation using data collected during the AMIE/DYNAMO field campaign

    SciTech Connect (OSTI)

    Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.; Lim, Kyo-Sun; Long, Charles N.; Wu, Di; Thompson, Gregory

    2014-11-12T23:59:59.000Z

    Regional cloud permitting model simulations of cloud populations observed during the 2011 ARM Madden Julian Oscillation Investigation Experiment/ Dynamics of Madden-Julian Experiment (AMIE/DYNAMO) field campaign are evaluated against radar and ship-based measurements. Sensitivity of model simulated surface rain rate statistics to parameters and parameterization of hydrometeor sizes in five commonly used WRF microphysics schemes are examined. It is shown that at 2 km grid spacing, the model generally overestimates rain rate from large and deep convective cores. Sensitivity runs involving variation of parameters that affect rain drop or ice particle size distribution (more aggressive break-up process etc) generally reduce the bias in rain-rate and boundary layer temperature statistics as the smaller particles become more vulnerable to evaporation. Furthermore significant improvement in the convective rain-rate statistics is observed when the horizontal grid-spacing is reduced to 1 km and 0.5 km, while it is worsened when run at 4 km grid spacing as increased turbulence enhances evaporation. The results suggest modulation of evaporation processes, through parameterization of turbulent mixing and break-up of hydrometeors may provide a potential avenue for correcting cloud statistics and associated boundary layer temperature biases in regional and global cloud permitting model simulations.

  10. Incorporating WAAS Data Into an Ionospheric Model for Correcting Satellite Radar

    E-Print Network [OSTI]

    Toews, Carl

    at the Millstone Hill Satellite Tracking Radar. She currently holds a joint appointment with the Atmospheric corrections to radar measurements, incorporating data from a single receiver to generate TEC estimates that the GRIMS ionospheric model degenerates during times of sharp spatial TEC gradients, e.g. during geomagnetic

  11. Vertical Structure of Tropical Cyclone Rainbands as Seen by the TRMM Precipitation Radar

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    Vertical Structure of Tropical Cyclone Rainbands as Seen by the TRMM Precipitation Radar DEANNA A Measurement Mission satellite's Precipitation Radar (TRMM PR) show the vertical structure of tropical cyclone separated by the melting layer. The ice layer is a combination of particles imported from the eyewall

  12. Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar

    E-Print Network [OSTI]

    Houze Jr., Robert A.

    1 Vertical Structure of Tropical Cyclone Rainbands as seen by the TRMM Precipitation Radar Deanna A (TRMM PR) show the vertical structure of tropical cyclone rainbands. Radar-echo2 statistics show that rainbands have a two-layered structure, with distinct modes separated by the3 melting layer. The ice layer

  13. Operational Monitoring of Weather Radar Receiving Chain Using the Sun IWAN HOLLEMAN

    E-Print Network [OSTI]

    Stoffelen, Ad

    Operational Monitoring of Weather Radar Receiving Chain Using the Sun IWAN HOLLEMAN Royal, is presented. The ``online'' method is entirely based on the analysis of sun signals in the polar volume data- termining the weather radar antenna pointing at low elevations using sun signals, and it is suited

  14. Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments

    E-Print Network [OSTI]

    Xue, Ming

    Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model on an ensemble Kalman filter (EnKF) method and tested with simulated radar data from a supercell storm for at least 2 h. 1. Introduction Since its introduction by Evensen (1994), the en- semble Kalman filter (En

  15. Wind Profiling by Doppler Weather Radar Iwan Holleman (holleman@knmi.nl)

    E-Print Network [OSTI]

    Stoffelen, Ad

    Wind Profiling by Doppler Weather Radar Iwan Holleman (holleman@knmi.nl) Royal Netherlands wind profiles at a high temporal resolution. Several algorithms and quality ensuring procedures for the extraction of wind profiles from radar volume data have been published. A comparison and verification

  16. ERAD 2008 -THE FIFTH EUROPEAN CONFERENCE ON RADAR IN METEOROLOGY AND HYDROLOGY 1. Introduction

    E-Print Network [OSTI]

    Stoffelen, Ad

    , and the enhancement of the radar processing with capabilities found in modern radar equipment. In the European tender receivers and completely new data processing equipment. This modern equipment was integrated in the existing for PRFs up to 1200 Hz. To enhance reliability the thyratron powered switch unit, used to "fire

  17. Soil texture estimation over a semi-arid area using TERRASAR-X radar data

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Soil texture estimation over a semi-arid area using TERRASAR-X radar data M. Zribi1 , F. Kotti1 , Z Abstract In this paper, it is proposed to use TERRASAR-X data for analysis and estimation of soil surface. Simultaneously to TERRASAR-X radar acquisitions, ground measurements (texture, soil moisture and roughness) were

  18. Lagrangian Structures in Very High-Frequency Radar Data and Optimal Pollution Timing

    E-Print Network [OSTI]

    Marsden, Jerrold

    Lagrangian Structures in Very High-Frequency Radar Data and Optimal Pollution Timing Francois radar-based pollution release scheme using the hidden flow structure reduces the effect of industrial pollution in the coastal environment. INTRODUCTION The release of pollution in coastal areas [1, 2, 3] can

  19. Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear

    E-Print Network [OSTI]

    Marsden, Jerrold

    Optimal Pollution Mitigation in Monterey Bay Based on Coastal Radar Data and Nonlinear Dynamics run-off which is a typical source of pollution in the bay. We show that a HF radar-based pollution release scheme using this flow structure reduces the impact of pollution on the coastal envi- ronment

  20. Radar Sounding of Glaciers in Greenland C. Allen, B, Wohletz, and S, Gogineni

    E-Print Network [OSTI]

    Kansas, University of

    Radar Sounding of Glaciers in Greenland C. Allen, B, Wohletz, and S, Gogineni The University on several flights over Greenland glaciers during the summer of 1995. The radar data were collected the theory and present results of the homomorphic deconvolution procedure. INTRODUCTION The Greenland