Powered by Deep Web Technologies
Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Williston basin Seislog study  

SciTech Connect (OSTI)

This paper describes the results of Seislog (trade name) processing and interpretation of an east-west line in the North Dakota region of the Williston basin. Seislog processing involves inversion of the seismic trace data to produce a set of synthetic sonic logs. These resulting traces, which incorporate low-frequency velocity information, are displayed in terms of depth and isotransit times. These values are contoured and colored, based on a standard stratigraphic color scheme. The section studied is located just north of a dual producing oil pool from zones in the Ordovician Red River and Devonian Duperow Formations. A sonic log from the Long Creek 1 discovery well was digitized and filtered to match the frequency content of the original seismic data. This allows direct comparison between units in the well and the pseudosonic log (Seislog) trace nearest the well. Porosity development and lithologic units within the lower Paleozoic stratigraphic section can be correlated readily between the well and Seislog traces. Anomalous velocity zones within the Duperow and Red River Formations can be observed and correlated to producing intervals in the nearby wells. These results emphasize the importance of displaying inversion products that incorporate low-frequency data in the search for hydrocarbons in the Williston basin. The accumulations in this region are local in extent and are difficult to pinpoint by using conventional seismic data or displays. Seislog processing and displays provide a tested method for identification and delineation of interval velocity anomalies in the Red River and Duperow stratigraphic sections. These techniques can significantly reduce risks in both exploration and delineation drilling of these types of targets.

Mummery, R.C.

1985-02-01T23:59:59.000Z

2

LAND USE AND OWNERSHIP, WILLISTON BASIN  

E-Print Network [OSTI]

Chapter WM LAND USE AND OWNERSHIP, WILLISTON BASIN By T.T. Taber and S.A. Kinney In U.S. Geological........................................WM-1 Map Information for the Williston Basin Land Use And Land Cover Map.........................................................WM-2 Map Information for the Williston Basin Subsurface Ownership map

3

BIOSTRATIGRAPHY, WILLISTON BASIN By D.J. Nichols  

E-Print Network [OSTI]

Chapter WB BIOSTRATIGRAPHY, WILLISTON BASIN By D.J. Nichols in U.S. Geological Survey Professional .........................................................................................................WB-3 Figures WB-1. Biostratigraphic reference sections in the Williston Basin. WB-2. Occurrences. Palynostratigraphic zones of the Paleocene in the Williston Basin composite reference section. WB-4. Distribution

4

Williston in the family of cratonic basins  

SciTech Connect (OSTI)

The Williston basin is one of a clan of subcircular to elliptical elements in the interiors of all cratons; such basins are distinguished by characteristics common to all. In each, the basement consists of continental crust and each basin is surrounded by areas of continental crust. Subsidence rates are typically low, so that conditions near depositional base level prevailed during much of the history of sediment accumulation. Episodic subsidence occurred over time spans of 10/sup 7/-10/sup 8/ years; major episodes of subsidence are broadly concurrent on all cratons. Tectonic tempo and mode of subsidence evolved synchronously on all cratons; therefore, similar isopach and facies patterns (and similar oil or gas maturation, migration, and trap potentials) occur on all cratons. All members of the clan exhibit a range of individual variations imposed by latitude and climate. Intraplate tectonism and volcanism, approach to or distance from source areas, and distribution paths of detrital sediment. Nevertheless, facts and concepts developed by intensive study of basins with high-density documentation (outcrop and subsurface) are commonly applicable to basins such as the Williston, which is in a less mature stage of exploration.

Sloss, L.L.

1985-05-01T23:59:59.000Z

5

Mississippian Lodgepole Play, Williston Basin: A review  

SciTech Connect (OSTI)

Waulsortian-type carbonate mud mounds in the lower Mississippian Lodgepole formation (Bottineau interval, Madison Group) comprise an important new oil play in the Williston basin with strong regional potential. The play is typified by wells capable of producing 1000-2500 bbl of oil per day and by reserves that have as much as 0.5-3.0 million bbl of oil per well. Currently centered in Stark County, North Dakota, along the southern flank of the basin, the play includes 38 wells, with 21 producers and 6 new fields. Initial discovery was made at a Silurian test in Dickinson field, traditionally productive from Pennsylvanian sands. The largest pool discovered to date is Eland field, which has 15 producers and estimated total reserves of 12-15 million bbl. This report summarizes geologic, well-log, seismic, and production data for this play, which promises to expand considerably in the years to come.

Montgomery, S.L. [Petroleum Consultant, Seattle, WA (United States)

1996-06-01T23:59:59.000Z

6

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

NONE

1997-03-01T23:59:59.000Z

7

Improved Recovery Demonstration for Williston Basin Carbonates  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Larry A. Carrell

1997-12-31T23:59:59.000Z

8

Improved Recovery Demonstration for Williston Basin Carbonates.  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

NONE

1997-12-31T23:59:59.000Z

9

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi- component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short- lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1996-09-01T23:59:59.000Z

10

Improved recovery demonstration for Williston Basin carbonates  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determination of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in- place will result in additional oil production by primary and enhanced recovery processes.

Carrell, L. A., Luff Exploration Co., Denver, CO

1997-12-01T23:59:59.000Z

11

Regional aquifers and petroleum in Williston Basin region of US  

SciTech Connect (OSTI)

At least five major aquifers underlie the northern Great Plains of the US, which includes parts of the Williston basin in Montana and North Dakota. These aquifers form a hydrologic system that extends more than 960 km from recharge areas in the Rocky Mountains to discharge areas in eastern North Dakota and the Canadian Provinces of Manitoba and Saskatchewan. The regional flow system in the aquifers has had a major effect on the chemical composition of ground water within the Williston basin. Hydrodynamic forces may contribute to the accumulation of petroleum within the basin.

Downey, J.S.; Busby, J.F.; Dinwiddie, G.A.

1985-05-01T23:59:59.000Z

12

Little Knife field - US Williston basin  

SciTech Connect (OSTI)

Little Knife field is a combination structural and stratigraphic trap located near the structural center of the Williston basin, North Dakota. The field is approximately 12 mi (19.3 km) long and 2.5 to 5.5 mi (4 to 8.9 km) wide. Little Knife was discovered by Gulf Oil in 1976 as part of a regional exploration play involving a transition from impermeable to porous carbonate rocks. In 1987, ultimate recovery from the Mission Canyon (Mississippian) reservoir was estimated to be 97.5 MMBO. This included 57.5 MMBO primary, 27 MMBO secondary, and 13 MMBO tertiary (CO{sub 2}) oil. At present the field is still under primary recovery, since utilization efforts have not been successful. Approximately one-third of Little Knife's 130 ft (39.6 m) oil column is trapped by structural closure beneath a regional anhydrite seal in a north-south-trending anticline. The remaining two-thirds of the oil column is trapped where the reservoir beds change facies from porous dolostones and dolomitic limestones to nonporous limestones. Structural entrapment accounts for approximately 50% (127 MMBO) of the OOIP, but covers only 30% of the producing area. Production is from the upper portions of the Mission Canyon Formation, a regressive, shoaling-upward carbonate-anhydrite sequence deposited in a slowly shrinking epeiric sea. The Mission Canyon in the Little Knife area is divided into six zones that record predominantly cyclic, subtidal deposition. These are overlain by prograding lagoonal, tidal flat, and sabkha beds. The source of Mission Canyon oil is thought to be the Bakken Formation, an organic-rich shale at the base of the Mississippian.

Wittstrom, M.D.; Lindsay, R.F. (Chevron USA, Inc., Midland, TX (United States))

1991-03-01T23:59:59.000Z

13

Successful Alternatives to Conventional Cement Designs in the Williston Basin  

SciTech Connect (OSTI)

Since mid-1981, 36 wells have been cemented in the Williston Basin with a cementing system diametrically opposed to conventional cementing designs used for bonding across massive salt members. Since implementation, along with the use of relaxed invert emulsion oil mud, not one casing problem has arisen in the wells where these systems were used.

Bryant, G.A.

1984-05-01T23:59:59.000Z

14

Regional stratigraphy and general petroleum geology, Williston Basin  

SciTech Connect (OSTI)

Paleozoic sedimentary rocks in the Northern Great Plains and northern Rocky Mountain region include a sequence of dominantly shallow-water marine carbonate, clastic, and evaporite deposits of Middle Cambrian through Early Permian age. The lower part of the Paleozoic section is a sequence of marine sandstone, shale, and minor limestone, rangeing in age from Middle Cambrian through Middle Ordovician. Some porous sandstone beds occur in this section, mainly in the eastern and southern bordering areas of the Williston basin and Central Montana trough. Upper Ordovician through middle Upper Mississippian rocks are primarily carbonate beds, which contain numerous widespread cyclic interbeds of evaporite and fine-grained clastic deposits. Carbonate mounds or banks were deposited through most of this time in the shallow-water areas of the Williston basin and northern Rocky Mountains. Porous units, mainly dolomite or dolomitic limestone, are common but discontinuous in most of this sequence, and are more widespread in the eastern and southern margins of the Williston basin. Cumulative petroleum production (January 1982) in the United States part of the Williston basin was about 1.1 billion bbl of oil and 1.6 tcf gas. Estimated remaining recoverable reserves are about 400 million bbl of oil and 0.8 tcf gas. U.S. Geological Survey 1980 estimates of undiscovered recoverable oil and gas resources are about 900 million bbl of oil and 3.5 tcf gas.

Peterson, J.A.; Maccary, L.M.

1985-05-01T23:59:59.000Z

15

COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA  

E-Print Network [OSTI]

Chapter WQ COAL QUALITY AND GEOCHEMISTRY, WILLISTON BASIN, NORTH DAKOTA By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

16

Economic appraisal of oil potential of Williston basin  

SciTech Connect (OSTI)

An economic appraisal was made of the potential of more than 80 producing fields in the Williston basin of Montana, North Dakota, and South Dakota. The major oil producing formations investigated were in the Mississippian, Devonian, Silurian and Ordovician. Data for the study came from field production and drilling statistics. An extrapolated oil production decline curve for a theoretical average producing well first was made for each field. The value of the total extrapolated amount of producible oil for the average well was then calculated, discounted for royalty, taxes, etc., and divided by the estimated cost for a completed producing well. This gave an estimate of the return per dollar invested. No considerations were given for exploration and land acquisition costs. The estimated return per dollar values, after posting on Williston basin geologic maps, show relative economic comparisons of producing formations and where within the basin the best economic returns can be expected.

Jennings, A.H.

1983-08-01T23:59:59.000Z

17

Sedimentology and diagenesis of the lower Lodgepole Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Scallion and overlying False Bakken intervals represent the lowermost portion of the Mississippian Lodgepole Formation, a predominantly carbonate unit located in the Williston Basin… (more)

Mackie, James

2013-01-01T23:59:59.000Z

18

Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Williston Basin is located in the northern Great Plains of the United States. This area includes eastern Montana, northwestern South Dakota, and western North… (more)

Spicer, James Frank

2012-01-01T23:59:59.000Z

19

Subsurface horizontal microfracture propagation within the middle member of the Bakken Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Devonian-Mississippian Bakken Formation of the Williston basin does not outcrop. All rock samples are obtained by coring. Open, uncemented, horizontal mode I (joints, with… (more)

Warner, Travis Blackburn.

2011-01-01T23:59:59.000Z

20

Sensitivity of seismic reflections to variations in anisotropy in the Bakken Formation, Williston Basin, North Dakota.  

E-Print Network [OSTI]

??The Upper Devonian–Lower Mississippian Bakken Formation in the Williston Basin is estimated to have significant amount of technically recoverable oil and gas. The objective of… (more)

Ye, Fang, geophysicist.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Trans-Hudson orogen and Williston basin in Montana and North Dakota: New COCORP deep-profiling results  

E-Print Network [OSTI]

Trans-Hudson orogen and Williston basin in Montana and North Dakota: New COCORP deep) There is no evidence for a precursor rift basin beneath the axis of the Williston basin_ With the exception of small-scale structures (e.g., Nesson and Cedar Creek anticlines), the basement surface beneath the Williston basin

Jones, Alan G.

22

Groundwater recharge estimates for the Powder River and Williston structural basins Katherine R. Aurand and Andrew J. Long  

E-Print Network [OSTI]

Groundwater recharge estimates for the Powder River and Williston structural basins Katherine R Cretaceous aquifer system in the Powder River and Williston structural basins. The study area covers about 75 production in the Powder River structural basin and oil production in the Williston structural basin

Torgersen, Christian

23

FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN  

E-Print Network [OSTI]

Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

24

Cedar Creek: a significant paleotectonic feature of Williston basin  

SciTech Connect (OSTI)

Cedar Creek is the major anticlinal structure demarcating the southwest flank of the Williston basin. This pronounced fold developed through a geologic history of recurrent tectonic movements along a northwest-southeast striking fault zone. The four major periods of tectonism documentable in the Cedar Creek area from early Paleozoic through mid-Tertiary affected the local and regional distribution, erosion, and/or preservation, and, though moderately, the depositional facies of sedimentary strata since Ordovician time.

Clement, J.H.

1983-08-01T23:59:59.000Z

25

Groundwater availability and flow processes in the Williston and Powder River basins in the Northern Great Plains  

E-Print Network [OSTI]

Groundwater availability and flow processes in the Williston and Powder River basins, OK The recent oil and gas development in the Williston structural basin (containing the Bakken will be used to develop inputs to a numerical model of groundwater flow in the Williston structural basin

Torgersen, Christian

26

Williston basin oil exploration: Past, present, and future  

SciTech Connect (OSTI)

Past: In 1951, modern oil exploration came to the Williston basin with the discovery of Paleozoic oil on the large Nesson anticline. This was quickly followed by similar discoveries on Cedar Creek and Poplar anticlines. To the north, the Canadians, lacking large structures, concentrated on Paleozoic stratigraphic traps and were highly successful. US explorationists quickly followed, finding similar traps on the basin's northeastern flank and center. The 1960s saw multiple Devonian salt dissolution structures produce on the western flank. To the northwest, shallow Mississippian and deeper Ordovician pays were found on small structural closures. These later were combined with pays in the Devonian and Silurian to give multiple pay potential. In the basin center large buried structures, visible only to seismic, were located. The 1970s revealed an Ordovician subcrop trap on the southeast flank. Centrally, a Jurassic astrobleme with Mississippian oil caused a flurry of leasing and deep drilling. The 1982 collapse of oil prices essentially halted exploration. 1987 saw a revival when horizontal drilling for the Mississippian Bakken fractured shale promised viable economics. Present: Today, emphasis is on Bakken horizontal drilling in the deeper portion of the basin. Next in importance is shallow drilling such as on the northeastern flank. Future: An estimated on billion barrels of new oil awaits discovery in the Williston basin. Additional exploration in already established production trends will find some of this oil. Most of this oil, however, will almost certainly be found by following up the numerous geological leads hinted at by past drilling.

Jennings, A.H.

1991-06-01T23:59:59.000Z

27

Thermal history of Bakken shale in Williston basin  

SciTech Connect (OSTI)

Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships include factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.

Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J. (Univ. of North Dakota, Grand Forks (USA))

1989-12-01T23:59:59.000Z

28

Rock-water interactions of the Madison Aquifer, Mission Canyon Formation, Williston Basin, North Dakota  

E-Print Network [OSTI]

The Williston Basin is located in the northern Great Plains of the United States. This area includes eastern Montana, northwestern South Dakota, and western North Dakota. The stratigraphy and geologic history of this basin are well understood...

Spicer, James Frank

1994-01-01T23:59:59.000Z

29

Groundwater recharge estimates using a soil-water-balance model for the Powder River and Williston structural basins  

E-Print Network [OSTI]

Groundwater recharge estimates using a soil-water-balance model for the Powder River and Williston for the lower Tertiary and Upper Cretaceous aquifer system in the Powder River and Williston structural basins in the Williston structural basin will require trillions of gallons of water from this aquifer system over the next

Torgersen, Christian

30

Lodgepole reef potential seen in Montana Williston basin  

SciTech Connect (OSTI)

The Williston basin Mississippian Lodgepole oil play has suffered a string of dry holes lately eroding the confidence of explorationists to find these prolific reefs, particularly in North Dakota. Detailed mapping of the Lodgepole trend suggests more Lodgepole reefs will be found in the Montana part of the trend than in North Dakota. Companies seeking impact plays should certainly give this area strong consideration. The paper discusses the delineation of a lower Lodgepole fairway extending into Montana with identification of reef facies in key wells (reef clusters), good source rocks, high quality seismic data, and impact reserve potential which makes Montana good hunting ground for significant new discoveries.

Brogdon, L. [H.A. Hedberg Trust, Fort Worth, TX (United States); Ball, S.M.; Ball, D.S. [Ball Exploration Inc., Fort Worth, TX (United States)

1996-12-16T23:59:59.000Z

31

A comparison of groundwater recharge estimation methods in the Williston and Powder River structural basins in the Northern Great Plains  

E-Print Network [OSTI]

A comparison of groundwater recharge estimation methods in the Williston and Powder River-water-balance (SWB) model to estimate groundwater recharge in the Williston and Powder River structural basins

Torgersen, Christian

32

Zuni sequence in Williston basin - evidence for Mesozoic paleotectonism  

SciTech Connect (OSTI)

The Zuni sequence in the Williston basin is a largescale lithogenetic package bounded by interregional unconformities. Within the sequence, three major subdivisions are separated by unconformities or marker beds and correspond with chronostratigraphic units: (1) Middle and Upper Jurassic, (2) Lower Cretaceous, and (3) Upper Cretaceous and Paleocene. The basin has clear expression in the Jurassic subdivision, poor expression in the Lower Cretaceous, and good expression in the Upper Cretaceous. A series of seven marginal paleotectonic elements surround the basin center on the west, south, and east in the US. Five more marginal elements have been described in Canada. Occurrences of oil in the Jurassic and Lower Cretaceous and of natural gas in the Upper Cretaceous are broadly related to the pattern of marginal paleotectonic elements. 14 figures, 1 table.

Shurr, G.W.; Anna, L.O.; Peterson, J.A.

1989-01-01T23:59:59.000Z

33

Red River play, Gulf Canada deal boost Williston basin  

SciTech Connect (OSTI)

High levels of activity in the Williston basin are assured this year with an expanding horizontal drilling play for oil in Ordovician Red River. The Red River play, like the Mississippian Lodgepole mound play, is centered in North Dakota. But the Red River play is much larger, extending into eastern Montana and northwestern South Dakota. More than 500 Red River B wells have been staked. One of the most recent companies to position itself in both plays is Gulf Canada Resources Ltd. The company forged an agreement with the Assiniboine and Sioux Indian tribes. The agreement initially provides Gulf access to about 800,000 acres on the Fort Peck Indian Reservation, mostly in Roosevelt County, Mont., on the western slope of the Williston basin. Under an option, Gulf`s access could later expand to cover the reservation`s remaining 1.3 million acres. The paper discusses the extent of the Red River play, and Gulf Canada`s role in its development.

NONE

1997-01-20T23:59:59.000Z

34

Drilling problems don't slow Williston basin operators  

SciTech Connect (OSTI)

In spite of the Williston basin's tough drilling environment, exploration activity has continued to increase, especially around northwestern North Dakota's Nesson anticline. The foremost drilling problem is the Charles slat section, which lies 8000-9000 ft deep; this section requires a salt-saturated mud system with additives, a heavyweight pipe, and a careful cementing job. Nevertheless, big discoveries - such as Texaco Inc.'s gas well in McKenzie Co., which tested at 9.9 million CF/day and 179 bbl/day of condensate - will spur exploration for some time since most of the basin remains untouched. Moreover, drilling engineers will soon be able to mitigate, if not eliminate, the typical difficulties encountered.

Moore, S.D.

1982-01-01T23:59:59.000Z

35

Paleotopography and hydrocarbon accumulation: Williston, Powder River, and Denver basins  

SciTech Connect (OSTI)

Recent geomorphic analyses of 1:24,000 scale topographic maps in the three major basins of the northern Great Plains have disclosed a persistent system of basement paleotopographic features that trend north-northeast throughout the region. Superimposed across this system and subtly influenced by it, are the northwesterly trending Laramide structural features. Paleozoic depositional patterns have been strongly influenced by the paleoridge and trough system formed by the north-northeast features. Mesozoic deposition has also been affected by the ancient subsurface system but in a more subtle manner. Many of the Paleozoic and Mezoxoic hydrocarbon locations in the three basins appear to be the results of paleotopographic control on hydrocarbon accumulation sites. This affect ranges from Paleozoic reef sites in the Williston basin through paleotrough localization of Pennsylvanian Minnelusa production in the Powder River basin to fractured Cretaceous Niobrara production at the Silo field in the Denver basin. Basement paleotopography is the underlying factor in all deposition and subsequent hydrocarbon migration in any basin. As such, it should be considered a major factor in the exploration for oil and gas.

Thomas, G.E. (Thomas and Associates, Denver, CO (United States))

1991-06-01T23:59:59.000Z

36

Geological development, origin, and energy and mineral resources of Williston Basin, North Dakota  

SciTech Connect (OSTI)

The Williston Basin of North Dakota, Montana, South Dakota, and S.-Central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Located on the western periphery of the Phanerozoic North American Craton, the Williston Basin has undergone only relatively mild tectonic distortion during Phanerozoic time. This distortion is related largely to movement of Precambrian basement blocks. Oil exploration and development in the US portion of the Williston basin from 1972 to present have given impetus to restudy of basin evolution and geologic controls for energy resource locations. Major structures in the basin, and the basin itself, may result from left-lateral shear along the Colorado-Wyoming and Eromberg zones during pre-Phanerozoic time. Deeper drilling in the basin has established several major new structures with indications of others.

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-05-01T23:59:59.000Z

37

Geological development, origin, and energy mineral resources of Williston Basin, North Dakota  

SciTech Connect (OSTI)

The Williston basin of North Dakota, Montana, South Dakota, and south-central Canada (Manitoba and Saskatchewan) is a major producer of oil and gas, lignite, and potash. Oil exploration and development in the United States portion of the Williston basin since 1972 have given impetus to restudy basin evolution and geologic controls for energy-resource locations. Consequently, oil production in North Dakota has jumped from a nadir of 19 million bbl in 1974 to 40 million bbl in 1980. The depositional origin of the basin and the major structural features of the basin are discussed. (JMT)

Gerhard, L.C.; Anderson, S.B.; Lefever, J.A.; Carlson, C.G.

1982-08-01T23:59:59.000Z

38

Subsidence history of Williston basin in North Dakota  

SciTech Connect (OSTI)

The tectonic subsidence history of the Williston basin in North Dakota has been estimated through the examination of wireline logs from 30 wells that penetrated to Precambrian basement. The initial subsidence of the basin in North Dakota began at a time not later than during deposition of the middle portion of the Deadwood Formation (earliest Ordovician; about 495-490 Ma), significantly earlier than had been estimated by most workers. The initial subsidence was centered in a north-south-trending elongate area in western North Dakota; the maximum calculated tectonic subsidence rate for this event is about 15 m/m.y. Since the Early Ordovician, exclusive of the basin initiation event, the basin has undergone at least five distinct episodes of tectonic subsidence: (1) from about 450-420 Ma, (2) from 420-355 Ma, (3) from 355-315 Ma, (4) from 270-245 Ma, and (5) beginning in the interval between about 90 and 70 Ma. Each of the subsidence episodes was characterized by a rapid initial subsidence, followed by a decline to very low subsidence rates. The maximum calculated initial subsidence rates for these episodes are 26, 32, 16, 9, and 15 m/m.y, respectively. The time between episodes 4 and 5 seems to have been one of relative quiescence; the few rocks preserved from that time interval were deposited during highstands of sea level. The subsidence history curves for episodes 1-4 are consistent with a thermal expansion model; however, with the exception of episode 3 and possibly episode 4, none of the first four subsidence events appears to be temporally coincident with major tectonic events elsewhere in North America.

Lefever, R.D.

1988-07-01T23:59:59.000Z

39

Impact origin of the Newporte structure, Williston basin, North Dakota  

SciTech Connect (OSTI)

The Newporte field is located just south of the United States-Canada border in Renville County, North Dakota, in the north-central portion of the Williston basin. Integration of seismic, well-log, and core data supports the interpretation of an impact origin for the Newporte structure. The structure involves both Precambrian basement and lower Paleozoic sedimentary units. Oil and gas production began in 1977 from brecciated basement rocks along the rim of the 3.2-km-diameter circular structure. Both well logs and seismic data were used to determine thickness changes of sedimentary units overlying the structure. Resulting isopach maps reveal a circular, bowl-shaped feature with a recognizable rim. Microscopic shock metamorphic features in quartz and feldspar are visible in basement clasts that form a mixed breccia with Cambrian Deadwood sandstone within the western rim of the structure. A Late Cambrian-Early Ordovician age is suggested for the structure because of the presence of flatlying Deadwood sandstone overlying mixed basement/sandstone breccia along portions of the rim. Identification of the Newporte structure as an impact crater adds to the growing base of evidence revealing the relevance of impact craters to petroleum exploration.

Forsman, N.F.; Gerlach, T.R. [Univ. of North Dakota, Grand Forks, ND (United States); Anderson, N.L. [Univ. of Missouri, Rolla, MO (United States)

1996-05-01T23:59:59.000Z

40

Hydrocarbon potential of Spearfish Formation in eastern Williston basin  

SciTech Connect (OSTI)

More than 36 million bbl of oil have been produced from stratigraphic traps in sandstones of the Triassic-Jurassic Spearfish Formation in the eastern part of the Williston basin. Newburg field has produced 32 million bbl of oil and Waskada field, discovered in 1980, is estimated to have over 10 million bbl of oil in reserves. A binocular microscopic and petrographic examination of cores from each of the fields has revealed considerable differences in the characteristics of producing sandstones. Cores and sample cuttings from 30 wells in the US and Canada form the basis for this comparison of the two fields. The Spearfish Formation consists of porous, permeable, well-sorted, very fine-grained sandstones with a sucrosic dolomite matrix that are interbedded with impermeable sandstones, siltstones, and shale. The environment of deposition is believed to be the intertidal zone (tidal flat). Sediments of the Spearfish Formation were deposited by a transgressive sea on an eroded Mississippian carbonate section. Oil found in the Spearfish sandstones is derived from the Mississippian.

Dodge C.J.N.; Reid, F.S.

1986-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal modeling of Bakken Formation of Williston basin  

SciTech Connect (OSTI)

Organic geochemical analyses provide a quantitative basis on which conceptual models of thermal maturation may be built. Contour maps of maturation indices of the Mississippian-Devonian Bakken Formation of the Williston basin show anomalous patterns that are not dependent on burial depth. One such area is on the western side of the Nesson anticline. One-dimensional modeling incorporating a uniform, constant heat flow, lithology-dependent thermal conductivities, and decompaction factors indicates that these areas are less mature than surrounding regions. This is due primarily to decreasing burial depth and thinning of low-thermal-conductivity Tertiary and Cretaceous shales. Additional heat transfer to these regions may be due in part to heat transfer by fluid movement through aquifers or vertical fractures. The influence of these fluid systems is simulated through the use of a two-dimensional finite difference program. Basic assumptions are made concerning heat flow, thermal properties, and ground-water flow rates through time. Modeling of the time-temperature history is simplified by restricting the study to the time of greatest maturation, the post-Jurassic.

Anderson, D.

1986-08-01T23:59:59.000Z

42

Dickinson field lodgepole reservoir: Significance of this Waulsortian-type mound to exploration in the Williston Basin  

SciTech Connect (OSTI)

Conoco`s No. 74 Dickinson State well, a deep test in Dickinson Field, Stark County, North Dakota, was completed in early 1993 capable of producing over 2,000 BOPD. It represents the first commercial oil production from the Lower Mississippian Lodgepole Formation in the U.S. portion of the Williston Basin. Three additional oil producers have now been completed and this Lodgepole discovery is fully developed. The producing reservoir, at depths of 9,700 to 10,000 ft, is a Waulsortian-type mound approximately 300 ft thick with a characteristic faunal assemblage of bryozoans and crinoids. The mound has an areal extent of slightly more than 1 square mile. Similar Waulsortian-type mounds have been recognized in rocks of Paleozoic age around the world, but have only been reported in the Williston Basin during the past decade. Such mounds are shallow to deep water deposits, tend to develop over structurally or topographically-positive areas, and may form by algal or by current action in conjunction with baffling action caused by bryozoans. The prolific nature of the Conoco discovery, plus several more-recent excellent mound discoveries in this same area, have caused renewed drilling and leasing activity. These events have also encouraged a review of existing seismic data, the shooting of new 3-D seismic programs and re-analysis of wells previously drilled through the Lodgepole Formation for evidence of similar mounds elsewhere in the basin.

Johnson, M.S. [Rocky Mountain Association of Geologists, Denver, CO (United States)

1995-07-01T23:59:59.000Z

43

Groundwater and surface water supplies in the Williston and Powder River structural basins are necessary for future development in these regions. To help determine  

E-Print Network [OSTI]

#12;i Abstract Groundwater and surface water supplies in the Williston and Powder River structural of streams, and quantify reservoir interaction in the Williston and Powder River structural basins the loss to underlying aquifers was 7790 ft3 /s. Both the Powder River and Williston basins contain gaining

Torgersen, Christian

44

Geologic setting and natural gas potential of Niobrara formation, Williston Basin  

SciTech Connect (OSTI)

Chalk units in the Niobrara Formation (Upper Cretaceous) have potential for generation and accumulation of shallow, biogenic gas in the central and eastern Williston basin. Similar to area of Niobrara gas production in the eastern Denver basin, Niobrara chalks in South and North Dakota were deposited on carbonate ramps sloping westward off the stable eastern platform of the Western Interior seaway. Within the Williston basin, the Niobrara of the western Dakotas, eastern North Dakota, and central South Dakota has different stratigraphic relationships. These three areas can be further subdivided and ranked into six areas that have different exploration potential. The south margin of the Williston basin in central South Dakota is the most attractive exploration area. Niobrara chalk reservoirs, source rocks, and structural traps in the southern Williston basin are similar to those in the eastern Denver basin. Chalk porosities are probably adequate for gas production, although porosity is controlled by burial depth. Organic carbon content of the chalk is high and shows of biogenic gas are reported. Large, low-relief structural features, which could serve as traps, are present.

Shurr, G.W.; Rice, D.D.

1985-05-01T23:59:59.000Z

45

Improved recovery demonstration for Williston Basin carbonates. Final report  

SciTech Connect (OSTI)

The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technology and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.

Sippel, M.A.

1998-07-01T23:59:59.000Z

46

Integrated study of Mississippian Lodgepole Waulsortian Mounds, Williston Basin, USA  

SciTech Connect (OSTI)

Waulsortian-type carbonate buildups in the Mississippian Lodgepole Formation, Williston Basin, constitute prolific oil reservoirs. Since the initial discovery in 1993, five fields have been discovered: Dickinson Field (Lodgepole pool); Eland Field; Duck Creek Field, Versippi Field; and Hiline Field. Cumulative production (October, 1995) is 2.32 million barrels of oil and 1.34 BCF gas, with only 69,000 barrels of water. Oil gravity ranges from 41.4 to 45.3 API. Both subsurface cores from these fields as well as outcrop (Bridget Range, Big Snowy and Little Belt Mountains, Montana) are composed of facies representing deposition in mound, reworked mound, distal reworked mound, proximal flank, distal flank, and intermound settings. Porosity values within the mound and reworked mound facies are up to 15%; permeability values (in places fracture-enhanced) are up to tens of Darcies. Geometries of the mounds are variable. Mound thicknesses in the subsurface range from approximately 130-325 feet (40-100 meters); in outcrop thicknesses range from less than 30 ft (9 m) to over 250 ft (76 m). Subsurface areal dimensions range from approximately 0.5 x 1.0 mi (0.8 x 1.6 km) to 3.5 x 5.5 mi (5.6 x 8.8 km). Integration of seismic data with core and well-log models sheds light on the exploration for Lodgepole mounds. Seismic modeling of productive mounds in the Dickinson and Eland fields identifies characteristics useful for exploration, such as local thickening of the Lodgepole to Three Forks interval. These observations are confirmed in reprocessed seismic data across Eland field and on regional seismic data. Importantly, amplitude versus offset modeling identifies problems with directly detecting and identifying porosity within these features with amplitude analyses. In contrast, multicomponent seismic data has great potential for imaging these features and quantifying porous zones within them.

Kupecz, J.A.; Arestad, J.F.; Blott, J. E. [Kupecz and Associates, Ltd., Denver, CO (United States)

1996-06-01T23:59:59.000Z

47

Horizontal drilling the Bakken Formation, Williston basin: A new approach  

SciTech Connect (OSTI)

Horizontal drilling is an attractive new approach to exploration and development of the Mississippian/Devonian Bakken Formation in the southwestern part of North Dakota. This drilling technique increases the probability of success, the profit potential, the effective drainage area maximizing recoverable reserves, and the productivity by encountering more natural occurring fractures. The target formation, the Mississippian/Devonian Bakken, consists of three members in an overlapping relationship, a lower organic-rich black shale, a middle siltstone/limestone, and an upper organic-rich black shale. It attains a maximum thickness of 145 ft and thins to a feather edge along its depositional limit. Considered to be a major source rock for the Williston basin, the Bakken is usually overpressured where productive. Overpressuring is attributed to intense hydrocarbon generation. Reservoir properties are poor with core fluid porosities being generally 5% or less and permeabilities ranging from 0.1 to 0.2 md. The presence of natural fractures in the shale are necessary for production. Two types of fractures are associated with Bakken reservoirs: large vertical fractures (of tectonic origin) and microfractures (probably related to hydrocarbon generation). An economic comparison between horizontal and vertical wells show that well completion costs are approximately two times higher (average costs; $1,500,000 for a horizontal to $850,000 for a vertical) with average payout for horizontal wells projected to occur in half the time (1.5 yr instead of 3.4 yr). Projected production and reserves are considered to be 2 to 4 times greater from a horizontal well.

Lefever, J.A. (North Dakota Geological Survey, Grand Forks (USA))

1990-05-01T23:59:59.000Z

48

Stratigraphic controls on Duperow production in Williston Basin, Montana and North Dakota  

SciTech Connect (OSTI)

Production in the Duperow Formation is primarily from dolomitized stromatoporoid-assemblage patch reefs that occur in the lower unit of the formation. Published work by others concisely defines the stratigraphy, paleontology, and facies subdivisions within the Duperow Formation. The formation consists of series of distinctive shoaling-upward carbonate sequences, and contains cyclic or repetitious bedding characteristic of the formation. There appear to be three types of traps in the Duperow Formation reservoirs in the Williston basin. The structural type is most common on the Nesson anticline. The structural-stratigraphic type is the most common trap found in the Billings nose area. The unconformity-stratigraphic type is uncommon and found only at Seven Mile and Ollie fields in Montana. The growth of stromatoporoid bioherms appears to have been influenced by tectonic activity. Many structurally positive areas, such as the Billings nose and the Nesson anticline in North Dakota and the Poplar dome and Sweetgrass arch in Montana, have stromatoporoid biohermal accumulations. These areas, probably slight topographic expressions during Duperow deposition, apparently offered optimum growth position for framework builders. A stromatoporoid bioherm is interpreted to be the reservoir at Ridgelawn field, Montana. Eight wells appear to be capable of production from the basal portion of cycle 3. The wells appear to define a patch reef that is oriented northwest-southeast and is perhaps 1-1.5 mi (1.6-2.4 km) in its longest dimension.

Pilatzke, R.H.; Fischer, D.W.; Pilatzke, C.L.

1985-05-01T23:59:59.000Z

49

Improved recovery demonstration for Williston Basin carbonates. Quarterly report, October 1, 1994--December 31, 1994  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Results of seismic surveys are presented.

NONE

1995-04-01T23:59:59.000Z

50

Oil exploration and development in the North Dakota Williston basin: 1986-1987 update  

SciTech Connect (OSTI)

A review of North Dakota's history of oil and gas discoveries and production includes an analysis of the several exploration cycles the Williston basin has undergone and the development of significant reservoirs there, emphasizing activity in 1986 and 1987. The writers analyze current conditions and offer their best prognosis of future possibilities.

Fischer, D.W.; Bluemle, J.P.

1988-07-01T23:59:59.000Z

51

COCORP profiles from the Montana plains: The Archean cratonic crust and a lower crustal anomaly beneath the Williston basin  

SciTech Connect (OSTI)

New COCORP deep seismic reflection profiles from the Montana plains between the Rocky Mountains and the Williston basin image the crystalline continental basement of the Archean Wyoming cratonic province on a regional scale. The crust is, in general, reflective throughout its entire thickness. West of the Williston basin, the crust-mantle boundary is at the base of the reflective zone and is not marked by the presence of any distinctive reflections. The lowermost crust beneath the Williston basin is, in contrast, characterized by a prominent, laterally extensive zone of relatively high-amplitude reflections. If, as the spatial correlation suggest, the anomalously reflective lower crustal zone is causally related to the subsidence of the basin, then the data place constraints in addition to those of the sedimentary record on physical models for the evolution of the Williston basin.

Latham, T.S. (Cornell Univ., Ithaca, NY (USA)); Best, J.; Chaimov, T.; Oliver, J.; Brown, L.; Kaufman, S. (Cornell Univ. Ithaca, NY (USA))

1988-12-01T23:59:59.000Z

52

A numerical soil-water-balance (SWB) model was used to estimate groundwater recharge in the Williston and Powder River structural basins in the Northern Great Plains.  

E-Print Network [OSTI]

in the Williston and Powder River structural basins in the Northern Great Plains. The SWB model consisted of 1 km2 to 2011. Average calculated recharge in the Williston basin was 0.190 in/yr (1,281 ft3 /sec) and ranged.1 percent of precipitation in the Williston basin. Average recharge in the Powder River basin was 0.136 in

Torgersen, Christian

53

A two-dimensional regional basin model of Williston basin hydrocarbon systems  

SciTech Connect (OSTI)

Institut Francais du Petrole`s two-dimensional model, TEMISPACK, is used to discuss the functioning of petroleum systems in the Williston basin along a 330-km-long section, focusing on four regional source intervals: Ordovician Yeoman formation, Lower Devonian Winnipegosis Formation, Upper Devonian-Lower Mississippian Bakken Formation, and Mississippian Lodgepole formation. Thermal history calibration against present temperature and source rock maturity profiles suggests that the Williston basin can be divided into a region of constant heat flow of about 55 mW/m{sup 2} away from the Nesson anticline, and a region of higher heat flow and enhanced thermal maturity in the vicinity of the Nesson anticline. Original kinetic parameters used in the calibration were derived for each of the four source rocks from Rock-Eval yield curves. Bakken overpressures are entirely due to oil generation, not compaction disequilibrium. Very low Bakken vertical permeabilities range from 0.01 to 0.001 and are matched against observed overpressures, whereas Bakken porosities based on the model and confirmed by measurements are inferred to be also unusually low, around 3%.

Burrus, J.; Wolf, S.; Doligez, B. [Institut Francais due Petrole, Rueil-Malmaison (France)] [and others

1996-02-01T23:59:59.000Z

54

Evaluation of injection-well risk management in the Williston basin  

SciTech Connect (OSTI)

This paper reports on a study of subsurface water-injection operations in the Williston geologic basin which demonstrated the practicality of incorporating risk management procedures into the regulation of underground injection control (UIC) programs. A realistic model of a computerized data base was developed to assess the maximum quantifiable risk that water from injection wells would reach an underground source of drinking water (USDW). In the Williston basin, the upper-bound probability of injection water escaping the wellbore and reaching a USDW is seven chances in 1 million well-years where surface casings cover the drinking-water aquifers. Where surface casings do not cover the USDW's, the probability is six chances in 1,000 well-years.

Michie, T.W. (Michie and Associates, Inc. (US)); Koch, C.A. (North Dakota Industrial Commission (US))

1991-06-01T23:59:59.000Z

55

Oil exploration and development in the North Dakota Williston Basin: 1981 update  

SciTech Connect (OSTI)

This article gives recent and historical development of the Williston Basin of North Dakota, along with numerous maps, oil and gas well data, and discoveries. Tabular data gives operators, fields, well depth, production, and producing horizons. The maps show locations of oil fields and new discoveries. Some information on production, taxes, profits and drilling activity is also given in graphical means. 14 figures, 3 tables.

Anderson, S.B.; Bluemle, J.P.

1982-01-01T23:59:59.000Z

56

Williston Basin subsidence and sea level history: Chronological and lithofacies constraints  

SciTech Connect (OSTI)

The intent is to use lithofacies information to identify the top-driven components of sediment accumulation-depositional environments, sediments supply, compaction, sediment and water load. Physical carbonate stratigraphy is used to determine sediment accumulation corrections. Physical stratigraphic geometric patterns are used to estimate the original thicknesses of dissolved salts and to determine absolute water depth. Seawater strontium chronostratigraphy constrains the ages and paleo-oceanographic setting of Devonian-Mississippian strata. The measured strontium stratigraphy can be used for correlation, age assignment and diagentic study. Removing sediment compaction, sediment/water load effects and using the newly derived Devonian-Mississippian chronostratigraphy to examine the behavior of the Williston Basin reveals a number of facts. (1) Temporal and spatial variation in the surficial components of sediment accumulation is significant and, unless removed, obscures tectonic subsidence and sea-level change patterns. (2) Both the corrected tectonic subsidence/sea level record and lithofacies patterns of the Devonian Williston Basin show flexural or in-plane stress interference reflecting plate boundary reorganization along the near edge of the Paleozoic North American craton, culminating the Antler orogeny. (3) The tectonic subsidence and sea level change record of the Williston Basin which has been corrected for sediment compaction, water and sediment load, has extremely linear subsidence through time. This is interrupted by changes in global sea level of 100-140 m over 25-35 my and apparent sea level change of 35-60 m over 2-4 my.

Lee Roark, C.K.

1989-01-01T23:59:59.000Z

57

Evaluation of injection well risk management potential in the Williston Basin  

SciTech Connect (OSTI)

The UIC regulations promulgated by the EPA under the Safe Drinking Water Act (SDWA) provide the EPA, or an EPA approved state agency, with authority to regulate subsurface injection of fluids to protect USDWs. Oil and gas producing industry interests are concerned primarily with Class 2 wells whose uses as defined by UIC regulations are: disposal of fluids brought to the surface and liquids generated in connection with oil and gas production (SWD); injection of fluids for enhanced oil recovery (EOR); and storage of liquid hydrocarbons. The Williston Basin was chosen for the pilot study of the feasibility of using the risk approach in managing Class 2 injection operations for the following reasons: it is one of the nine geologic basins which was classified as having a significant potential for external casing corrosion, which permitted an evaluation of the effectiveness of the injection well corrosion control measures used by industry; there are 731 active, 22 shut in and 203 temporarily abandoned SWD and water injection wells in the basin; and the basin covers three states. The broad objective of the Williston Basin study is to define requirements and to investigate the feasibility of incorporating risk management into administration of the UIC program. The study does not address the reporting aspects of UIC regulatory and compliance activities but the data base does contain essentially all the information required to develop the reports needed to monitor those activities. 16 refs., 10 figs., 11 tabs.

none,

1989-09-01T23:59:59.000Z

58

Petroleum exploration of Winnipegosis Formation in north-central North Dakota (Williston basin)  

SciTech Connect (OSTI)

The Winnipegosis Formation (Middle Devonian) in north-central Dakota has the greatest potential for large oil reserves in the Williston basin. The Winnipegosis carbonate (50 to 325 ft thick) was deposited in the southeast end of the Elk Point restricted sea. During Winnipegosis deposition, the Williston basin could be divided into two distinct environments: (1) a deep starved basin with accompanying pinnacle reefs separated by interreef, laminated limestone and (2) a surrounding carbonate shelf. Within the carbonate shelf are patch reefs, banks, and tidal flats. Overlying the Winnipegosis carbonate is the Prairie Formation, which has a basal anhydrite (0 to 70 ft thick) and an overlying salt (0 to 650 ft thick). These were deposited in a regressive phase of the Elk Point sea and act as seals for Winnipegosis oil entrapment. Currently, oil production from the Winnipegosis in the Williston basin is from stratigraphic traps and from small structures on the carbonate shelf. The most significant accumulation to date is Temple field, in which 11 wells produce from +/- 20 ft of Winnipegosis dolomite. The pinnacle reef environment has potential for significant oil reserves from 250-ft thick reefs covering 160 ac or less. Two pinnacle reefs have had free-oil recoveries from thin pay zones. The Rainbow/Zama fields in northwest Alberta have an ultimate reserve of more than 1 billion bbl of oil from Keg River reefs, which are correlative and similar to the Winnipegosis reefs in North Dakota. The strong seismic reflection that originates from the Winnipegosis-Prairie evaporite interface provides an excellent means of detecting Winnipegosis reefs. Amplitude of the Winnipegosis reflection is reduced dramatically over the reefs. The resulting dim spot is one criteria used in identifying reefs.

Guy, W.J. Jr.; Braden, K.W.

1986-08-01T23:59:59.000Z

59

Williston Basin: An analysis of salt drilling techniques for brine-based drilling-fluid systems  

SciTech Connect (OSTI)

Williston Basin salt intervals, ranging in depth from 5,000 to 12,500 ft (1525 to 3810 m), have been responsible for widespread casing collapse because of the plastic movement of evaporites and the subsequent point loading of casing. This phenomenon is attributable to poor cement jobs across excessively eroded salt sections. A 2-year study led to the realization that this erosion is a function of not only salt dissolution but also the mechanical action of turbulent flow in the wellbore. A laminar flow regime can be realized and salt enlargement limited by careful control of annular flow rate, jet velocity, and drilling-fluid rheology.

Stash, S.M.; Jones, M.E.

1988-03-01T23:59:59.000Z

60

Dobson Butte field, Williston basin, Stark County, North Dakota: nontypical oil production  

SciTech Connect (OSTI)

The Dobson Butte field (T139N, R96W), Stark County, North Dakota, was discovered in 1982 following a detailed seismic program. Production is primarily from a structural trap in the Interlake Formation of Silurian age. Three oil wells are presently producing from a dolomite reservoir at about 11,000 ft in depth. Primary recoverable reserves of these three producing wells is calculated to be about 2 million bbl of oil. Additional reserves will come from further development of the Interlake reservoir as well as from the deeper Red River (Ordovician) Formation. The Dobson Butte field is a nontypical oil field within the Williston basin as to its high pour point oil (90/sup 0/F), high production water cuts (85-95%), lack of good oil shows in samples, unpredictable noncontinuous oil-producing reservoirs throughout the entire 600-ft Interlake Formation, difficulty in log interpretations, and difficulty in determining the source bed. The interpretation of these nontypical characteristics of Interlake oil production in the Dobson Butte field compared to other Interlake oil production within the Williston basin will have a profound effect upon future Interlake exploration.

Guy, W.J.

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Exploration applications of a transgressive tidal-flats model to Mississippian Midale carbonates, eastern Williston Basin  

SciTech Connect (OSTI)

Midale (Mississippian) production was first indicated in 1953 in Saskatchewan, Canada. The unit was initially defined in the subsurface as the carbonate interval between the top of the Frobisher Anhydrite and the base of the Midale Anhydrite. This same nomenclature is used in this paper. In 1953, Midale production was found on the US side of the Williston basin in Bottineau County, North Dakota. Later exploration extended Midale production westward into Burke County, North Dakota, in 1955. Cumulative production from the Midale is approximately 660 million bbl with 640 million from the Canadian side of the Williston basin. Initially, hydrocarbon entrapment in the Midale was believed to be controlled by the Mississippian subcrop, with the Burke County production controlled by low-relief structural closure. Petrographic examination of cores and cuttings from the Midale in both Saskatchewan, Canada, and Burke and Bottineau Counties, North Dakota, indicates that production is controlled by facies changes within the unit. Stratigraphic traps are formed by the lateral and vertical changes from grain-supported facies deposited in tidal-channel, subtidal-bar, or beach settings; seals are formed by mud-rich sediments. Use of a transgressive carbonate tidal-flats model best explains current production patterns and indicates substantial potential for additional production in eastern North Dakota and South Dakota.

Porter, L.A.; Reid, F.S.

1985-02-01T23:59:59.000Z

62

Stratigraphy and diagenesis of the Mississippian Lodgepole Limestone, Williston Basin, North Dakota  

SciTech Connect (OSTI)

Stratigraphic correlation of the Lodgepole Limestone (Bottineau Interval) indicates a sequence of three clinoform-shaped wedges that filled in the early Williston Basin. To date four productive 100m thick mounds have been discovered in the Lodgepole Limestone at Dickinson Field. The mounds seem to have nucleated at the toe of slope of the first highstand system tract and were subsequently buried by the second highstand systems tract. By isopaching each of the systems tracts one can predict were other mounds might have nucleated. Burial depth of the Bakken Shale-Lodgepole Limestone contact grade from 0.6 km at the edge of the Williston Basin to 3.4 km in the center. With increased depth the basal Lodgepole Limestone shows three phases of dolomitization, which are: small clear early dolomite; later iron rich fracture filling saddle dolomite and a later iron rich dolomite that seems to follow stylolites. Pre-oil migration mineralization of the overlying limestone include minor amounts of: anhydrite, pyrite, iron poor sphalerite, late iron rich sphalerite, chalcopyrite and celestite.

Grover, P.W. (Texas A M Univ., College Station, TX (United States))

1996-01-01T23:59:59.000Z

63

Stratigraphy and diagenesis of the Mississippian Lodgepole Limestone, Williston Basin, North Dakota  

SciTech Connect (OSTI)

Stratigraphic correlation of the Lodgepole Limestone (Bottineau Interval) indicates a sequence of three clinoform-shaped wedges that filled in the early Williston Basin. To date four productive 100m thick mounds have been discovered in the Lodgepole Limestone at Dickinson Field. The mounds seem to have nucleated at the toe of slope of the first highstand system tract and were subsequently buried by the second highstand systems tract. By isopaching each of the systems tracts one can predict were other mounds might have nucleated. Burial depth of the Bakken Shale-Lodgepole Limestone contact grade from 0.6 km at the edge of the Williston Basin to 3.4 km in the center. With increased depth the basal Lodgepole Limestone shows three phases of dolomitization, which are: small clear early dolomite; later iron rich fracture filling saddle dolomite and a later iron rich dolomite that seems to follow stylolites. Pre-oil migration mineralization of the overlying limestone include minor amounts of: anhydrite, pyrite, iron poor sphalerite, late iron rich sphalerite, chalcopyrite and celestite.

Grover, P.W. [Texas A& M Univ., College Station, TX (United States)

1996-12-31T23:59:59.000Z

64

Potential for new stratigraphic play in Mississippian Midale anhydrite, eastern Williston basin  

SciTech Connect (OSTI)

Midale (Mississippian) production was first indicated in 1953 in Saskatchewan, Canada. The productive unit was defined initially in the subsurface as the carbonate interval between the top of the Frobisher Anhydrite and the base of the Midale Anhydrite. This same nomenclature is used in this paper. In 1953, Midale production was found on the United States side of the Williston basin in Bottineau County, North Dakota. Later exploration extended Midale production western into Burke County, North Dakota, in 1955. Cumulative production from the Midale is approximately 660 million bbl with 640 million from the Canadian side of the Williston basin. Initially, hydrocarbon entrapment in the Midale was believed to be controlled by the Mississippian subcrop, with the Burke County production controlled by low-relief structural closure. Petrographic examination of cores and cuttings from the Midale in both Saskatchewan, Canada, and Burke and Bottineau Counties, North Dakota, indicates that production is controlled by facies changes within the unit. Use of a transgressive carbonate tidal-flats model best explains current production patterns and indicates substantial potential for additional production in eastern North Dakota and South Dakota.

Porter, L.A.; Reid, F.S.

1984-07-01T23:59:59.000Z

65

Progradational sequences in lower Ordovician portion of Deadwood Formation, Williston basin  

SciTech Connect (OSTI)

In the Williston basin, the Cambrian and Ordovician Deadwood Formation can be divided into six informal members based on gamma-ray log characteristics. Members C through F are Early Ordovician (Tremadocian to Arenigian) and consist of three progradational sequences. In ascending order, the sequences consist of (1) a mixed sandstone-limestone lithotype, (2) limestone lithotypes ranging from mudstone to grainstone, (3) bioturbated, peloidal, calcareous, siliciclastic mudstone and siltstone, (4) bioturbated to planar-laminated, peloidal, calcareous siltstone and sandstone, (5) Skolithos-bored, cross-bedded to planar-laminated quartzarenite, (6) bioturbated dolomite and anhydrite-cemented fossiliferous quartz wacke, and (7) silty laminated dolomudstone. The asymmetrical sequences represent progradation of a siliciclastic shoreline, back-barrier lagoon, and intertidal algal flat over a siliciclastic shelf and a distal carbonate shoal. The present distribution of the sequences and individual lithotypes in the Williston basin is a function of the limited eastward advance of the carbonate shoal during transgression, the limited westward advance of the shoreline during progradation, deep shoreface erosion of the previous sequence during rapid transgression, and Middle Ordovician erosion.

Anderson, D.

1988-07-01T23:59:59.000Z

66

Fracture-enhanced porosity and permeability trends in Bakken Formation, Williston basin, western North Dakota  

SciTech Connect (OSTI)

Fractures play a critical role in oil production from the Bakken Formation (Devonian and Mississippian) in the North Dakota portion of the Williston basin. The Bakken Formation in the study area is known for its low matrix porosity and permeability, high organic content, thermal maturity, and relative lateral homogeneity. Core analysis has shown the effective porosity and permeability development within the Bakken Formation to be related primarily to fracturing. In theory, lineaments mapped on the surface reflect the geometry of basement blocks and the zones of fracturing propagated upward from them. Fracturing in the Williston basin is thought to have occurred along reactivated basement-block boundaries in response to varying tectonic stresses and crustal flexure throughout the Phanerozoic. Landsat-derived lineament maps were examined for the area between 47/degrees/ and 48/degrees/ north lat. and 103/degrees/ and 104/degrees/ west long. (northern Billings and Golden Valley Counties, and western McKenzie County, North Dakota) in an attempt to identify large-scale fracture trends. In the absence of major tectonic deformation in the craton, a subtle pattern of fracturing has propagated upward through the sedimentary cover and emerged as linear topographic features visible on these large-scale, remote-sensed images.

Freisatz, W.B.

1988-07-01T23:59:59.000Z

67

Koch`s experience with deep in situ combustion in Williston basin  

SciTech Connect (OSTI)

Koch Exploration Company has been active with the combustion process in the Williston basin of North and South Dakota since 1979. Koch has three ongoing combustion projects in the basin. The Medicine Pole Hills Unit (MPHU) and the Capa Madison Unit (CMU) are located in the North Dakota, while the Buffalo Unit is situated in South Dakota. Because of low primary recovery from these deep carbonate reservoirs, studies were conducted to determine how the large volume of remaining oil could be recovered, and decisions were made to initiate an in situ combustion by air injection, pressure maintenance project in these reservoirs. The principal objective of this talk is to review the past performance of these combustion projects and discuss some of the operating problems we encountered. The other objectives are to outline the economics of the projects and to speculate on the future of in situ combustion technology as Koch sees it.

Miller, R.J. [Koch Exploration Co., Wichita, KS (United States)

1995-02-01T23:59:59.000Z

68

Ordovician petroleum source rocks and aspects of hydrocarbon generation in Canadian portion of Williston basin  

SciTech Connect (OSTI)

Accumulation of rich petroleum source rocks - starved bituminous mudrocks in both the Winnipeg Formation (Middle Ordovician) and Bighorn Group (Upper Ordovician) - is controlled by cyclical deepening events with a frequency of approximately 2 m.y. Tectonics control both this frequency and the location of starved subbasins of source rock accumulation. Deepening cycles initiated starvation of offshore portions of the inner detrital and medial carbonate facies belts. Persistence of starved offshore settings was aided by marginal onlap and strandline migration in the inner detrital facies belt, and by low carbonate productivity in the medial carbonate facies belt. Low carbonate productivity was accompanied by high rates of planktonic productivity. Periodic anoxia, as a consequence of high rates of planktonic organic productivity accompanying wind-driven equatorial upwellings, is the preferred mechanism for suppressing carbonate productivity within the epeiric sea. The planktonic, although problematic, form Gloecapsamorpha prisca Zalesskey 1917 is the main contributing organism to source rock alginites. A long-ranging alga (Cambrian to Silurian), it forms kukersites in Middle and Upper Ordovician rocks of the Williston basin as a consequence of environmental controls - starvation and periodic anoxia. Source rocks composed of this organic matter type generate oils of distinctive composition at relatively high levels of thermal maturity (transformation ratio = 10% at 0.78% R/sub o/). In the Canadian portion of the Williston basin, such levels of thermal maturity occur at present depths greater than 2950 m within a region of geothermal gradient anomalies associated with the Nesson anticline. Approximately 193 million bbl (30.7 x 10/sup 6/ m/sup 3/) of oil has been expelled into secondary migration pathways from thermally mature source rocks in the Canadian portion of the basin.

Osadetz, K.G.; Snowdon, L.R.

1988-07-01T23:59:59.000Z

69

Improved recovery demonstration for Williston basin carbonates. Annual report, June 10, 1994--June 9, 1995  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

Sippel, M.; Zinke, S.; Magruder, G.; Eby, D.

1995-09-01T23:59:59.000Z

70

Upper Mission Canyon coated-grain producing facies in Williston basin  

SciTech Connect (OSTI)

The upper Mission Canyon formation, along the northeastern flank of the Williston basin, is a regressive carbonate and evaporite sequence, which has been informally divided into log-defined intervals. Oil production locally occurs at the transition from anhydrite to carbonate for each of the regressive intervals. These carbonate shoreline reservoirs are limestones dominated by coated grains. Porosity is intergranular and vuggy, and production from these reservoirs locally exceeds 400,000 bbl of oil/well. Upper Mission Canyon beds are also productive in island-shoal reservoirs, which developed basinward of of shorelines. These limestone reservoirs are also dominated by coated grains and porosity is intergranular and vuggy. Oil production from these reservoirs is variable, but wells within the Sherwood field along the US-Canadian border have produced over 2.0 MMbbl of oil/well.

Hendricks, M.L. (Hendricks and Associates, Inc., Denver, CO (USA))

1989-08-01T23:59:59.000Z

71

Improved recovery demonstration for Williston Basin carbonates. Quarterly report, July 1 - September 30, 1996  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. Field demonstrations are in progress to collect data for evaluation of horizontal completions in both the Red River and Ratcliffe. A vertical well in the Red River will test attribute analysis of 3D seismic data for prediction of porosity development. Additional seismic acquisitions and interpretation are in progress for both the Ratcliffe and Red River. A water-injectivity test in a new horizontal completion in the Red Rive B zone at Buffalo Field is scheduled for next quarter.

Carrell, L.A.

1996-12-31T23:59:59.000Z

72

Improved recovery demonstration for Williston Basin carbonates. Quarterly report, January 1, 1996--March 31, 1996  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional and multi-component seismic area is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended- reach jetting lance and other ultra-short radius lateral technologies. Improved completion efficiency, additional wells at closer spacings better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes. Technical progress is described for field demonstrations at the Ratcliffe and Buffalo fields and geophysical evaluations at Ratcliffe and Red River.

NONE

1996-07-01T23:59:59.000Z

73

Improved recovery demonstration for Williston Basin carbonates. Quarterly technical progress report, October--December 1996  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Sippel, M.A.; Carrell, L.A.

1997-04-01T23:59:59.000Z

74

Improved recovery demonstration for Williston Basin carbonates. Annual report, June 10, 1995--June 9, 1996  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

Carrell, L.A.; Sippel, M.A.

1996-09-01T23:59:59.000Z

75

Study of the geothermal production potential in the Williston Basin, North Dakota  

SciTech Connect (OSTI)

Preliminary studies of geothermal production potential for the North Dakota portion of the Williston Basin have been carried out. Reservoir data such as formation depth, subsurface temperatures, and water quality were reviewed for geothermal brine production predictions. This study, in addition, provides important information about net pay thickness, porosity, volume of geothermal water available, and productivity index for future geothermal direct-use development. Preliminary results show that the Inyan Kara Formation of the Dakota Group is the most favorable geothermal resource in terms of water quality and productivity. The Madison, Duperow, and Red River Formations are deeper formations but because of their low permeability and great depth, the potential flow rates from these three formations are considerably less than those of the Inyan Kara Formation. Also, poor water quality and low porosity will make those formations less favorable for geothermal direct-use development.

Chu, Min H.

1991-09-10T23:59:59.000Z

76

Detailed gravity survey over a known carbonate reef (Devonian) in Williston basin  

SciTech Connect (OSTI)

A detailed gravity study, conducted over the Shell Golden carbonate reef located in the Winnipegosis Formation (Devonian) of the Williston basin in north-central North Dakota, indicates a massive carbonate platform with several interconnected vertical accumulations, perhaps pinnacle in nature, from this platform. This reef is found at a depth of about 2400 m (8000 ft). Because elevations and north-south positions were surveyed to /+-/3 cm (0.1 ft) and /+-/ 1 (3.3 ft), respectively, an accuracy of 0.01 mgal was obtained. Five profiles were made: three lines running east-west and two lines running north-south, forming a grid pattern over the reef. The distance between each line was 1.6 km (1.0 mi) with gravity-station spacing along each line being 0.4 km (0.25 mi). The Golden reef and most reefs of this nature throughout the North Dakota portion of the Williston basin have been interpreted to be isolated pinnacles with physical dimensions about 60-75 m (200-250 ft) thick and 0.8 km (0.5 mi) in basal diameter. However, analysis of the residual Bouguer gravity anomalies (0.2-0.5 mgal) obtained from this study indicates this reef is more complex than previously thought. The maximum thicknesses of the complex are on the order of 120-185 m (400-600 ft) with compaction anticlines also contributing to the total gravity anomaly. The modeled reef complex extends in a northeast-southwest direction and probably extends beyond the study area along that line.

Braun, S.M.

1988-07-01T23:59:59.000Z

77

Recognition of hydrocarbon expulsion using well logs: Bakken Formation, Williston Basin  

SciTech Connect (OSTI)

The Upper Mississippian-Lower Devonian Bakken Formation forms a source/carrier/reservoir system in the Williston basin. Hydrocarbon expulsion within the Bakken has been identified by overlaying sonic and resistivity logs. Typically, these curves track in organically lean, water-saturated mudrocks because both respond mainly to porosity; however, in thermally mature organic-rich rocks and hydrocarbon reservoirs or carrier beds, the curves separate due to the anomalously high resistivity associated with replacement of pore water by hydrocarbons. Sonic/resistivity-log overlays for wells throughout the Montana and North Dakota parts of the Williston basin reveal significant increases and maximum in-curve separation within the middle siltstone member of the Bakken at subsurface temperatures of about 170 and 200{degree}F, respectively. Sequence-stratigraphic characteristics of the Bakken define the framework within which the expulsion process operates. The organic-rich upper and lower shale members represent the transgressive and early highstand systems tracts of two adjacent depositional sequences. A sequence boundary within the intervening middle siltstone member separates nearshore siltstone and sandstone of the late highstand systems tract in the lower sequence from cross-bedded subtidal to intertidal sandstones of the lowstand systems tract in the upper sequence. Reservoir properties vary across this sequence boundary. The authors attribute the log separation in the siltstone member to hydrocarbons expelled from the adjacent shales. Abrupt shifts in several geochemical properties of the shale members, indicative of hydrocarbon generation occur over the same subsurface temperature range as the rapid increase in log separation in the middle siltstone, thus indicating the contemporaneity of generation and expulsion.

Cunningham, R.; Zelt, F.B.; Morgan, S.R.; Passey, Q.R. (Exxon Production Research Co., Houston, TX (USA)); Snavely, P.D. III; Webster, R.L. (Exxon Co., U.S.A., Houston, TX (USA))

1990-05-01T23:59:59.000Z

78

Subsurface stratigraphy and depositional history of Madison Limestone (Mississippian), Williston Basin  

SciTech Connect (OSTI)

Cyclic carbonate-evaporite deposits of the Madison Limestone (Mississippian) in the Williston basin are made up of four main facies. From basin to shelf, the normal facies transition is from offshore deeper water (Lodgepole) facies to crinoidal-algal banks and back-bank fine carbonate, evaporite, and minor terrigenous clastic beds on the shallow shelf. Five major depositional cycles are correlated and mapped on the basis of shaley marker beds identified on gamma-ray-neutron or gamma-ray-sonic logs. The marker beds are interpreted as reworked and redistributed silt and clay-size sediments originally deposited, possibly by eolian processes, on the emergent shelf during low sea level phases of cycle development. From oldest to youngest, the first two cycles are characterized by increasing amounts of crinoidal-bioclastic and oolite-algal carbonates, culminating in the Mission Canyon facies of the middle cycle. The upper two cycles are characterized by increasing amounts of evaporite deposits, culminating in the Charles salt facies of the youngest cycle. Much of the Madison section on the south and east flanks of the basin consists of dolomite. Dolomite content decreased toward the basin center, where a major share of Madison petroleum production is located. Reservoir beds in the oil fields are primarily partially dolomitized oolite-algal or crinoidal-bioclastic bank carbonates. Most of the productive petroleum reservoirs are located in the middle cycles of the Madison.

Peterson, J.A.

1985-05-01T23:59:59.000Z

79

Development and distribution of Rival reservoirs in central Williston basin, western North Dakota  

SciTech Connect (OSTI)

The Mississippian Rival (Nesson) beds in the central Williston basin, North Dakota, are a limestone to evaporite regressive sequence. Progradation of the depositional system produced several distinct shallowing-upward genetic units. Cyclicity in Rival beds was produced by periodic fluctuations in sea level. Rival oil reservoirs are porous and permeable packstones and grainstones. The dominant allochems in these reservoir rocks are peloids and skeletal and algal fragments. These sediments were deposited along carbonate shorelines and within algal banks that developed basinward of shorelines. The trapping mechanism along shorelines is a lithofacies change from limestone to anhydride. Algal banks are locally productive along paleostructural trends where bathymetric shallowing produced shoals dominated by the Codiacean alga Ortonella. Algal banks are flanked by impermeable carbonate mudstones and wackestones deposited in interbank and protected shelf environments. Two distinct Rival bank trends occur in the central basin: a northwest-southeast trend in McKenzie and Williams Counties, North Dakota, parallel with the Cedar Creek anticline, and a northeast-southwest trend along the Nesson anticline and the northeast flank of the basin, parallel with the Weldon-Brockton fault trend.

Hendricks, M.L.

1988-07-01T23:59:59.000Z

80

Numerical modeling of deep groundwater flow and heat transport in the Williston Basin  

SciTech Connect (OSTI)

A numerical modeling approach has been used to evaluate quantitatively the effects of fluid flow on contemporary heat flow in an intracratonic basin. The authors have selected the Williston basin for this hydrodynamic study because of the opportunity it presents to assess the relation of deep groundwater flow to basin geothermics and the associated features of diagenesis and petroleum accumulation. The finite element method is used to solve the coupled equations of fluid flow and heat transport in two-dimensional sections of the basin. Both the fluid- and heat-flow regime are assumed to be at steady state, and the fluid flow is driven primarily by the water-table relief which is taken to be a subdued replica of land-surface topography. Buoyancy forces may also affect flow through fluid density gradients created by temperature and salinity effects. Three southwest-northwest oriented sections across the basin were modeled using available and estimated parameter data. The predicted flow patterns are most strongly affected by the topography, but the Devonian salt unit and Cretaceous shale unit exert some control. Cross-formational flow is especially important near the downdip, solution edge of the salt beds. Flow rates rarely exceed 0.5 m/year in the deep-central part of the basin, yet there does exist a marked effect on heat flow, albeit subdued by the blanket effect of the low-permeability Cretaceous shales. The regional effect of the topography-driven flow system is reflected in present-day salinity patterns and heat-flow data.

Garven, G.; Vigrass, L.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Regional-scale flow of formation waters in the Williston basin  

SciTech Connect (OSTI)

The Williston basin is a structurally simple intracratonic sedimentary basin that straddles the United States-Canada border east of the Rocky Mountains and that contains an almost continuous stratigraphic record since the Middle Cambrian. Based on the wealth of data generated by the oil industry, the regional-scale characteristics of the flow of formation waters were analyzed for the Canadian side of the basin, and integrated with previous studies performed on the American side. Several aquifers and aquifer systems identified in the basin were separated by intervening aquitards and aquicludes. The Basal, Devonian, and Mannville (Dakota) aquifers are open systems, being exposed at the land surface in both recharge and discharge areas. Recharge takes place in the west-southwest at relatively high altitude in the Bighorn and Big Snowy mountains and at the Black Hills and Central Montana uplifts, whereas discharge takes place in the east and northeast at outcrop along the Canadian Precambrian shield in Manitoba and the Dakotas. The Mississippian and Pennsylvanian aquifer systems are semi-open, cropping out only in the west-southwest where they recharge, but discharging in the northeast into adjacent aquifers through confining aquitards. On regional and geological scales, the entire system seems to be at steady-state, although locally transient flow is present in places due to water use and hydrocarbon exploitation, and to some erosional rebound in the uppermost confining shales. On the western flank of the basin, the interplay between the northeastward structural downdip direction and the northeastward flow of formation waters creates conditions favorable for hydrodynamic oil entrapment.

Bachu, S. [Alberta Department of Energy, Edmonton (Canada); Hitchon, B. [Hitchion Geochemical Services Ltd., Alberta (Canada)

1996-02-01T23:59:59.000Z

82

Hydrodynamic analysis as an aid in exploration within mature basins: Examples from Sawtooth and Sunburst Reservoirs, northwestern Williston basin  

SciTech Connect (OSTI)

Linking hydrodynamics to detailed stratigraphic and structural analyses is a powerful tool in hydrocarbon exploration in mature basins, In southernmost Canada straddling the Alberta-Saskatchewan border, significant petroleum reserves are encountered within Mesozoic units which are largely controlled by subsurface flow cells. The Jurassic Sawtooth Formation is characterized by an eastward shift from lower shoreface quartzarenites to basinal coquinas. The Sawtooth is a blanket deposit and crops out along the flanks of several Tertiary uplifts in northern Montana. In the subsurface the Sawtooth is draped over several relatively young structures. Potentiometric mapping illustrates a northerly flow orientation within the Sawtooth, and oil pools under artesian conditions are located where flow paths cross steeply flanked structures. The Lower Cretaceous Sunburst Formation is a series of valley-fill sandstones with mainly southwesterly paleoflow orientations. Hydrocarbon pools (e.g., Manyberries field) are located within a regional potentiometric low formed by three converging cells which recharge in the south, northwest, and east. This potentiometric low is characterized by systematic changes in oil and water compositions, with progressively lighter oils and NaCl-rich waters found toward the low's center. Stratigraphic variability controls pooling within the low, with hydrocarbons located on the updip flanks of valley fills which border nonreservoir rocks. In the northwestern Williston basin regional hydrodynamic analysis, combined with standard subsurface approaches, allows operators to discern large new hydrocarbon-bearing trends within and between densely drilled areas characterized by complex structure and stratigraphy.

Putnam, P.E.; Moore, S. (Petrel Robertson Ltd., Calgary, Alberta (Canada)); Ward, G. (Ward Hydrodynamics, Calgary, Alberta (Canada))

1990-05-01T23:59:59.000Z

83

Exploration applications of a transgressive tidal flats model to Mississippian Midale carbonates, eastern Williston Basin  

SciTech Connect (OSTI)

Midale (Mississippian) production was first established in 1953 in Saskatchewan, Canada. The unit was initially defined in the subsurface as the carbonate interval between the top of the Frobisher Anhydrite and the base of the Midale Anhydrite. That nomenclature is used in this report. During 1953, Midale production was found in the United States portion of the Williston basin in Bottineau County, North Dakota. Later exploration extended Midale production westward into Burke County, North Dakota. Cumulative production from the Midale is approximately 660 million bbl, of which 640 million bbl are from Canadian fields. Initially, hydrocarbon entrapment in the Midale was believed to be controlled by the Mississippian subcrop, with the Burke County production controlled by low-relief structural closure. Petrographic examination of cores and cuttings from the Midale in both Saskatchewan, Canada, and Burke and Bottineau Counties, North Dakota, indicates that production is controlled by facies changes within the unit. Stratigraphic traps are formed by the lateral and vertical changes from grain-supported facies deposited in tidal channel, subtidal bar, or beach settings; seals are formed by mud-rich sediments. Use of a transgressive carbonate tidal flats model best explains current production patterns and indicates substantial potential for additional production in eastern North Dakota and South Dakota.

Porter, L.A.; Reid, R.S.R.

1985-05-01T23:59:59.000Z

84

Improved recovery demonstration for Williston Basin carbonates. Quarterly report, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Cores from five Red River wells in the Bowman-Harding study area have been examined and described in detail; contracts have been awarded for a 3-D survey in Bowman Co., ND and a 2D, multi-component survey in Richland Co.; extended-time pressure buildup data have been analyzed from two wells which are candidates for jetting-lance completion workovers; a 20-day injectivity test has been completed in the Red River (upper member); a jetting-lance completion program has commenced with one job completed and three more scheduled during April; and reservoir data from three key Red River fields in the Bowman-Harding study area has been researched and accumulated for inclusion in the TORIS database and technology transfer activities.

Carrell, L.A.; Nautiyal, C.

1995-05-01T23:59:59.000Z

85

Exploration for stratigraphic traps in a mature hydrodynamic setting, Williston Basin, North Dakota  

SciTech Connect (OSTI)

Hydrodynamic effects on oil accumulations generally can be recognized at an early stage of exploration, but become of critical importance with increased drilling and discoveries. At the mature stage, hydrodynamic concepts readily can be applied in exploration and development to reduce risk and to increase success ratios. The south flank of the Williston basin is an example of a mature area with significant hydrodynamic effects on accumulation. Early exploration was aimed at stratigraphic traps in the Mission Canyon Formation but the development of major fields showed that all are strongly influenced by hydrodynamic flow and some may be largely independent of porosity pinchouts. Examples of hydrodynamic effects are illustrated by the Billings Nose fields, and the Elkhorn Ranch and Knutson fields. These accumulations have hydrodynamic gradients on the order of 20 ft/mi (4 m/km) or more; tilted oil-water contacts with gradient of 30 to 50 ft/mi (6 to 10 m/km); displacement of oil downdip to the northeast; and variable formation water salinities that range from nearly fresh to highly saline. Some producing zones have been described as purely hydrodynamic traps, lacking both structural and stratigraphic closure. Future success will depend on applying hydrodynamic concepts in exploration and development, and prediction methods are illustrated by possible extensions to existing one-well fields. Simple graphic techniques can estimate the limits of production before drilling, but a knowledge of local structure is most important to the interpretation.

Berg, R.R. (Texas A and M Univ., College Station (USA))

1990-05-01T23:59:59.000Z

86

Reservoir characteristics of Putnam zone (Silurian Interlake Formation) lithofacies, southwestern Williston basin  

SciTech Connect (OSTI)

Reservoirs in the Putnam zone (lower Interlake Formation) in the southwestern part of the Williston basin include oolitic-pellet dolomite grainstone, fossil-pellet grainstone, and a wide spectrum of reef-related, fossil-corral dolomite packstones and coral-stromatoporoid rudstone/boundstones. Each of these potential reservoirs has a unique pore system and, thus a different set of petrophysical properties which define their reservoir characteristics. Oolitic grainstones have a homogeneous intercrystalline-micro-crystalline pore system, whereas the fossil-pellet dolomite grainstone facies consists of separate mesovugs dispersed in well-interconnected intercrystalline porosity. Capillary pressure curves indicate that pore-throat heterogeneity is greater, and entry pressures lower, for reefal lithofacies than for pelletal grainstones. These curves also demonstrate why many of the producing fields tend to have high water cuts. In many oolitic-pellet grainstone units, irreducible water saturations of 10% would not be reached until a hydrocarbon column of 700 ft was reached. High water production characteristics are therefore expected because Red River/Interlake structures attain only 50-100 ft of closure. This, however, does not mean that Putnam is not an economic zone, especially as a secondary objective. Wells in Putnam and Crane fields, for instance, have reserves in excess of 300,000 bbl of oil. The reservoirs here may be dominated by the reef-related facies, which have an extremely high relative permeability to oil.

Inden, R. (LSSI, Denver, CO (United States)); Oglesby, C. (Bass Enterprises, Fort Worth, TX (United States)); Byrnes, A. (Geocore, Loveland, CO (United States)); Cluff, B. (The Discovery Group, Denver, CO (United States))

1991-06-01T23:59:59.000Z

87

Williston Lodgepole play fans out  

SciTech Connect (OSTI)

The Williston basin Mississippian Lodgepole oil play is swelling the rig count and oil production in North Dakota. As much as 200 sq miles of 3D seismic surveys have been acquired in southwestern North Dakota, and at least as much more is expected to be gathered through next year. Exploratory drilling so far has moved south and east for Conoco Inc.`s 1993 Lodgepole discovery in Dickinson oil field. The play also seems destined to become active in Montana. OGJ estimates North Dakota`s oil production at about 84,000 b/d, up from 75,000 b/d at the same time a year ago. State restrictions pending field unitization have reined production. The paper briefly describes the boundary of the basin and give a summary of the field.

Petzet, G.A.

1995-10-02T23:59:59.000Z

88

A chemical kinetic model of hydrocarbon generation from the Bakken Formation, Williston Basin, North Dakota  

SciTech Connect (OSTI)

This report describes a model of hydrocarbon generation and expulsion in the North Dakota portion of the Williston Basin. The modeling incorporates kinetic methods to simulate chemical reactions and 1-dimensional conductive heat flow models to simulate thermal histories of the Mississippian-Devonian Bakken Formation source rock. We developed thermal histories of the source rock for 53 wells in the basin using stratigraphic and heat flow data obtained by the University of North Dakota. Chemical kinetics for hydrocarbon generation, determined from Pyromat pyrolysis, were, then used with the diennal histories to calculate the present day value of the Rock-Eval T{sub max} for each well. The calculated Rock-Eval T{sub max} values agreed with measured values within amounts attributable to uncertainties in the chemical kinetics and the heat flow. These optimized thermal histories were then used with a more detailed chemical kinetic model of hydrocarbon generation and expulsion, modified from a model developed for the Cretaceous La Luna shale, to simulate pore pressure development and detailed aspects of the hydrocarbon chemistry. When compared to values estimated from sonic logs, the pore pressure calculation underestimates the role of hydrocarbon generation and overestimates the role of compaction disequilibrium, but it matches well the general areal extent of pore pressures of 0.7 times lithostatic and higher. The simulated chemistry agrees very well with measured values of HI, PI, H/C atomic ratio of the kerogen, and Rock-Eval S1. The model is not as successful in simulating the amount of extracted bitumen and its saturate content, suggesting that detailed hydrous pyrolysis experiments will probably be needed to further refine the chemical model.

Sweeney, J.J.; Braun, R.L.; Burnham, A.K. [Lawrence Livermore National Lab., CA (United States); Gosnold, W.D. [North Dakota Univ., Grand Forks, ND (United States)

1992-10-01T23:59:59.000Z

89

Stratigraphy and depositional environments of Fox Hills Formation (Late Cretaceous), Williston basin  

SciTech Connect (OSTI)

The Fox Hills Formation (Late Cretaceous, Maestrichtian) was investigated where it crops out along the southern flank of the Williston basin and in the subsurface over the central portion of the basin, using 300 well logs. The formation is conformable and gradational with the underlying Pierre formation and can be either conformable or unconformable with the overlying Hell Creek Formation. The Fox Hills Formation is younger, thicker, and stratigraphically more complex to the east and is comprised of marginal marine sediments deposited during the final Cretaceous regression. To the west, the Fox Hills Formation is an upward-coarsening unit generally 30 to 45 m thick and usually contains three members: from the base, Trail City, Timber Lake, and Colgate. The lower Fox Hills (Trail City, Timber Lake) is generally dominated by hummocky bedding and contains a variety of trace fossils, most notably Ophiomorpha. The upper Fox Hills (Colgate), where present, is characterized by cross-bedding. To the east, including the type area, the section is generally 80 to 100 m thick and contains four members: from the base, Trail City, Timber Lake, Iron Lightning (Colgate and Bullhead lithofacies), and Linton. In contrast to the section in the west, this section is as much as three times thicker, contains abundant body fossils, generally lacks hummocky bedding, and contains the Bullhead and Linton strata. In the west, the strata represent lower shoreface deposits, predominantly of storm origin (lower Fox Hills), overlain by upper shoreface and fluvial deposits (upper Fox Hills). In the east, the lower Fox Hills contains deposits of the lower shoreface (Trail City) and a barrier bar complex (Timber Lake), overlain by the deltaic deposits of the upper Fox Hills (Iron Lightning, Linton).

Daly, D.J.

1986-08-01T23:59:59.000Z

90

Stratigraphy and depositional environments of Fox Hills Formation in Williston basin  

SciTech Connect (OSTI)

The Fox Hills Formation (Maestrichtian), representing part of a regressive wedge deposited during the withdrawal of the sea from the Western Interior at the close of the Cretaceous, consists of marginal marine strata transitional between the offshore deposits of the underlying Pierre Shale and the terrestrial deltaic and coastal deposits of the overlying Hell Creek Formation. An investigation of outcrops of the Fox Hills Formation along the western and southern flanks of the Williston basin and study of over 300 oil and gas well logs from the central part of the basin indicate that the formation can be divided both stratigraphically and areally. Stratigraphically, the Fox Hills can be divided into lower and upper sequences; the lower includes the Trail City and Timber Lake Members, and the upper sequence includes the Colgate Member in the west and the Iron Lightning and Linton Members in the east. Areally, the formation can be divided into a northeastern and western part, where the strata are 30-45 m thick and are dominated by the lower sequence, and into a southeastern area where both the lower and upper sequences are well developed in a section 80-130 m thick. Typically, the lower Fox Hills consists of upward-coarsening shoreface or delta-front sequences containing hummocky bedding and a limited suite of trace fossils, most notably Ophiomorpha. In the southeast, however, these strata are dominated by bar complexes, oriented northeast-southwest, composed of cross-bedded medium to very fine-grained sand with abundant trace and body fossils. The upper Fox Hills represents a variety of shoreface, deltaic, and channel environments. The strata of the Fox Hills Formation exhibit facies similar to those reported for Upper Cretaceous gas reservoirs in the northern Great Plains.

Daly, D.J.

1988-07-01T23:59:59.000Z

91

Reservoir characterization of the Mississippian Ratcliffe, Richland County, Montana, Williston Basin. Topical report, September 1997  

SciTech Connect (OSTI)

This topical report is a compilation of characterizations by different disciplines of the Mississippian Ratcliffe in portions of Richland County, MT. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity and methods for improved recovery. The report covers investigations of geology, petrography, reservoir engineering and seismic. The Ratcliffe is a low permeability oil reservoir which appears to be developed across much of the study area and occurs across much of the Williston Basin. The reservoir has not been a primary drilling target in the study area because average reserves have been insufficient to payout the cost of drilling and completion despite the application of hydraulic fracture stimulation. Oil trapping does not appear to be structurally controlled. For the Ratcliffe to be a viable drilling objective, methods need to be developed for (1) targeting better reservoir development and (2) better completions. A geological model is presented for targeting areas with greater potential for commercial reserves in the Ratcliffe. This model can be best utilized with the aid of 3D seismic. A 3D seismic survey was acquired and is used to demonstrate a methodology for targeting the Ratcliffe. Other data obtained during the project include oriented core, special formation-imaging log, pressure transient measurements and oil PVT. Although re-entry horizontal drilling was unsuccessfully tested, this completion technology should improve the economic viability of the Ratcliffe. Reservoir simulation of horizontal completions with productivity of three times that of a vertical well suggested two or three horizontal wells in a 258-ha (640-acre) area could recover sufficient reserves for profitable drilling.

Sippel, M.; Luff, K.D.; Hendricks, M.L.

1998-07-01T23:59:59.000Z

92

Improved recovery demonstration for Williston Basin carbonates. Quarterly report, June 1--September 30, 1994  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil in place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. The majority of technical efforts during the first quarter have been concentrated on the Ordovician Red River formation in Bowman and Harding counties of North and South Dakota. The Cold Turkey Creek field area has been identified as the most suitable candidate for a 3-D seismic survey. Approximately 145 km of 1970`s and 1980`s vintage 2-D seismic data in Bowman county, N.D. have been cataloged for possible reprocessing. Reprocessing of these older data has been successful for 14 lines over 56 km. A 2-D seismic line has been shot over the SW Amor field area. This high-fold line is a prelude to 3-D survey design parameters and better understanding of a candidate Red River reservoir for testing water injectivity and possible unitization for secondary recovery by waterflooding. Seismic modeling of seismic shear response has begun for the Ratcliffe study area in Richland county, Montana. Secondary recovery operations by water injection and reservoir parameters have been studied by history matching using computer simulation at the West Buffalo Red River B Unit, Harding county, S.D. Results obtained from the West Buffalo history match were applied to a waterflood prediction by computer simulation for the SW Amor field. Reservoir performance parameters for volumetric drainage, transmissibility and water-drive index have been evaluated using Fetkovitch production type-curves for a sampling of Red River wells in N.D.

Not Available

1994-12-31T23:59:59.000Z

93

Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in the Williston basin  

SciTech Connect (OSTI)

Comparison of high-fold (50) vibroseis recordings with coincident low-fold (6) explosive source data from deep reflection surveys in the Williston Basin indicates that while vibroseis generated energy decays to ambient noise levels at 7--9 s two-way traveltime (twtt) (20--30 km depth), energy from explosive sources remains above ambient levels to 35--60 s twtt (105--180 km depth). Moreover, single, moderately sized (30 kg) and well-placed charges proved to be as effective as larger (90 kg) sources at penetrating to mantle traveltimes in this area. However, the explosive source energy proved highly variable, with source-to-ground coupling being a major limiting factor in shot efficacy. Stacked results from the vibroseis sources provide superior imagery of shallow and moderate crustal levels by virtue of greater redundancy and shot-to-shot uniformity; shot statics, low fold, and ray-path distortion across the relatively large (24--30 km aperture) spreads used during the explosive recording have proven to be especially problematic in producing conventional seismic sections. In spite of these complications, the explosive source recording served its primary purpose in confirming Moho truncation and the presence of a dipping reflection fabric in the upper mantle along the western flank of the Trans-Hudson orogen buried beneath the Williston Basin.

Steer, D.N.; Brown, L.D.; Knapp, J.H.; Baird, D.J. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States)

1996-01-01T23:59:59.000Z

94

A comparison of the rates of hydrocarbon generation from Lodgepole, False Bakken, and Bakken formation petroleum source rocks, Williston Basin, USA  

SciTech Connect (OSTI)

Recent successes in the Lodgepole Waulsortian Mound play have resulted in the reevaluation of the Williston Basin petroleum systems. It has been postulated that hydrocarbons were generated from organic-rich Bakken Formation source rocks in the Williston Basin. However, Canadian geoscientists have indicated that the Lodgepole Formation is responsible for oil entrapped in Lodgepole Formation and other Madison traps in portions of the Canadian Williston Basin. Furthermore, geoscientists in the U.S. have recently shown oils from mid-Madison conventional reservoirs in the U.S. Williston Basin were not derived from Bakken Formation source rocks. Kinetic data showing the rate of hydrocarbon formation from petroleum source rocks were measured on source rocks from the Lodgepole, False Bakken, and Bakken Formations. These results show a wide range of values in the rate of hydrocarbon generation. Oil prone facies within the Lodgepole Formation tend to generate hydrocarbons earlier than the oil prone facies in the Bakken Formation and mixed oil/gas prone and gas prone facies in the Lodgepole Formation. A comparison of these source rocks using a geological model of hydrocarbon generation reveals differences in the timing of generation and the required level of maturity to generate significant amounts of hydrocarbons.

Jarvie, D.M.; Elsinger, R.J. [Humble Geochemical Services Division, TX (United States); Inden, R.F. [Lithologic & Stratigraphic Solutions, Denver, CO (United States); Palacas, J.G. [Lakewood, CO (United States)

1996-06-01T23:59:59.000Z

95

Improved recovery demonstration for Williston basin carbonates. Quarterly technical progress report, October 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional and multi-component seismic area is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

NONE

1996-02-01T23:59:59.000Z

96

Statistical model for source rock maturity and organic richness using well-log data, Bakken Formation, Williston basin, United States  

SciTech Connect (OSTI)

A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using bulk density, neutron porosity, and resistivity logs, and formation temperatures. Principal components, cluster, and discriminant analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. Present-day total organic carbon values are high in the central part of the basin near northeastern Montana and along the east edge of the basin, and low in the area of the Nesson anticline and along the southwest edge of the basin. Using a regression of density on temperature and the analysis of residuals from this regression, hydrocarbon maturity effects were partially separated from depositional effects. These analyses suggest that original concentrations of organic matter were low near the limits of the Bakken and increased to a high in northeastern Montana. The pre-maturation distribution of total organic carbon and the present-day total organic carbon distribution, as determined by statistical analyses of well-log data, agree with the results of geochemical analyses. The distributions can be explained by a relatively simple depositional pattern and thermal history for the Bakken. 6 figures, 3 tables.

Krystinik, K.B.; Charpentier, R.R.

1987-01-01T23:59:59.000Z

97

Early and later diagenetic alteration of Ordovician Red River carbonates, Tioga Deep field, Williston basin, North Dakota  

SciTech Connect (OSTI)

The Ordovician Red River Formation in the Williston basin is generally subdivided into three restrictive-upward cycles referred to as 'A,' 'B,' and 'C' zones in descending order. Most Red River production in western North Dakota and eastern Montana comes from dolomitized burrowed and laminated members of the C-cycle. Four cores taken by Amerada Hess Corporation within the Tioga Deep field, Williams and Montrail Counties, North Dakota, were studied in detail to establish depositional and diagenetic controls on porosity distribution within the Red River. Dolomitized portions of the Red River C member are genetically related to downward-descending Mg-rich brines derived from hypersaline basin waters depleted of their sulfate content throught attendant precipitation of gypsum. Calcite associated with this early dolomitization phase occupied intercrystalline positions between dolomite rhombs. Following burial, limestones tended to chemically compact through pressure solution, whereas late stage fractures were localized in the more brittle dolomitic portions of the Red River. These fractures served as conduits for late stage leaching fluids, possibly associated with hydrocarbon generation, that enhanced porosity in the dolomites through the removal of associated calcite. Late-stage leaching is reflected in 'overly porous' dolomite haloes around cemented burrow centers and highly porous dolomite seams along stylolitic contacts. Previous models proposed to explain porosity distribution within Red River reservoirs should be modified to include the overprint of deep diagenetic effects.

Perkins, R.D. (Duke Univ., Durham, NC (United States))

1991-03-01T23:59:59.000Z

98

The stratigraphy of selected Mission Canyon wireline log markers, US portion of the Williston basin, North Dakota  

SciTech Connect (OSTI)

The Mission Canyon Formation along the northeast flank of the US Williston basin has been informally subdivided into intervals (members) based on wireline log markers. Wireline log responses of the markers are produced by both lithologic changes and radioactive elements present within these thin stratigraphic intervals. The wireline markers were originally described as transgressive events. Detailed stratigraphic analyses of the Sherwood and State A markers indicate they were deposited during progradation and sea level stillstand. A typical facies tract from east to west within the Sherwood marker contains anhydrites and anhydritic dolomites deposited in sabkha environments; patterned dolomudstones along shoreline trends (the Sherwood argillaceous marker); and limestones in shoaling environments along the Mission Canyon shelf (Sherwood gamma marker). During stillstand, brines produced in sabkha environments (east of the Sherwood shoreline) were enriched in magnesium and potassium. These brines migrated basinward first, dolomitizing mudstones. These brines were magnesium depleted by the time they reached shoals along the shelf. Potassium, however, remained in the system and is present within the marker along the shelf, as shown by a slight increase in API units on Spectrologs.

Hendricks, M.L. (Hendricks and Associates, Inc., Denver, CO (United States))

1991-06-01T23:59:59.000Z

99

Ordovician Red River {open_quotes}B{close_quotes}: Horizontal oil play in the southern Williston basin  

SciTech Connect (OSTI)

Recent application of horizontal drilling technology to the Ordovician Red River {open_quotes}B{close_quotes} zone in the southern Williston basin has resulted in a successful oil play, with more than 100 wells drilled in 1995 and 1996. The Red River {open_quotes}B{close_quotes} reservoir is a dolomitized laminated carbonate with microsucrosic porosity of 8-25% and permeabilities in the range of 1-66 md. It occurs within the middle of three depositional cycles ({open_quotes}A,{close_quotes} {open_quotes}B,{close_quotes} and {open_quotes}C{close_quotes}) that form the upper Red River Formation. Each cycle consists of a lower burrowed limestone, middle laminated member, and capping anhydrite or lime mudstone. The {open_quotes}B{close_quotes} reservoir is confined to the {open_quotes}B{close_quotes} laminated member and consists of an upper portion, characterized by better reservoir quality, and a lower, less permeable portion. Horizontal drilling has the advantage of significantly increasing well-bore exposure to the upper, more permeable portion. Well data indicate the total Red River {open_quotes}B{close_quotes} porosity zone has remarkable extent over parts of southwestern North Dakota, southeastern Montana, and northwestern South Dakota. Productivity from horizontal well displays considerable variation that can be correlated with structure/tectonic patterns and with reservoir petrophysical character.

Montgomery, S.L.

1997-04-01T23:59:59.000Z

100

Big Stick/Four Eyes fields: structural, stratigraphic, and hydrodynamic trapping within Mission Canyon Formation, Williston basin  

SciTech Connect (OSTI)

The Mississippian Mission Canyon formation of the Williston basin is the region's most prolific oil producing horizon. Big Stick/Four Eyes is among the most prolific of the Mission Canyon fields. Primary production from 87 wells is projected to reach 47 million bbl of oil. An additional 10-20 million bbl may be recovered through waterflooding. The complex was discovered in 1977 by the Tenneco 1-29 BN, a wildcat with primary objectives in the Devonian Duperow and Ordovician Red River Formations. A series of Mission Canyon discoveries followed in the Big Stick, Treetop, T-R, and Mystery Creek fields. Early pressure studies showed that these fields were part of an extensive common reservoir covering 44.75 mi/sup 2/ (115.91 km/sup 2/). The reservoir matrix is formed from restricted marine dolostones deposited on a low-relief ramp. Landward are algal-laminated peritidal limestones and saline and supratidal evaporites of a sabkhalike shoreline system. Open-marine limestones, rich in crinoids, brachiopods, and corals, mark the seaward limit of reservoir facies. Regressive deposition placed a blanket of anhydrite over the carbonate sequence providing a seal for the reservoir. Lateral trapping is accomplished through a combination of processes. Upper reservoir zones form belts of porosity that parallel the northeasterly trending shoreline. The trend is cut by the northward plunging Billings anticline, which provides structural closure to the north. Facies changes pinch out porosity to the south and east. Trapping along depositional strike to the southwest is only partially controlled by stratigraphic or structural factors. A gentle tilt of 25 ft per mi (5 m per km) occurs in the oil-water contact to the east-northeast, due to freshwater influx from Mississippian outcrop on the southern and southwestern basin margins.

Breig, J.J.

1988-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced stimulation technology deployment program, Williston Basin Interstate Pipeline Company, Eagle Gas Sands, Cedar Creek Anticline, Southeastern Montana. Topical report, August-December 1996  

SciTech Connect (OSTI)

In 1996, Williston Basin Interstate Pipeline Company (WBI) implemented an AST pilot program to improve production from wells completed in the Eagle formation along the Cedar Creek Anticline in southeastern Montana. Extensive pre- and post-fracture Absolute Open Flow Testing was used to evaluate the benefits of stimulation. Additional, gas production doubled when compared to direct offsets completed in previous years. This report summarizes the documentation of AST methodologies applied by WBI to an infill drilling program in the Eagle formation along the Cedar Creek Anticline.

Green, T.W.; Zander, D.M.; Bessler, M.R.

1997-02-01T23:59:59.000Z

102

Reservoir characterization of the Ordovician Red River Formation in southwest Williston Basin Bowman County, ND and Harding County, SD  

SciTech Connect (OSTI)

This topical report is a compilation of characterizations by different disciplines of the Red River Formation in the southwest portion of the Williston Basin and the oil reservoirs which it contains in an area which straddles the state line between North Dakota and South Dakota. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity, and methods for improved recovery. The report is divided by discipline into five major sections: (1) geology, (2) petrography-petrophysical, (3) engineering, (4) case studies and (5) geophysical. Interwoven in these sections are results from demonstration wells which were drilled or selected for special testing to evaluate important concepts for field development and enhanced recovery. The Red River study area has been successfully explored with two-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) and has been investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Targeted drilling from predictions using 3D seismic for porosity development were successful in developing significant reserves at close distances to old wells. Short-lateral and horizontal drilling technologies were tested for improved completion efficiency. Lateral completions should improve economics for both primary and secondary recovery where low permeability is a problem and higher density drilling is limited by drilling cost. Low water injectivity and widely spaced wells have restricted the application of waterflooding in the past. Water injection tests were performed in both a vertical and a horizontal well. Data from these tests were used to predict long-term injection and oil recovery.

Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E.

1998-07-01T23:59:59.000Z

103

Interaction of Groundwater and Surface Water in the Williston and Powder River Structural Basins  

E-Print Network [OSTI]

, Rapid City, SD 57702, email: jbednar@usgs.gov Groundwater availability in the Lower Tertiary and Upper in parts of Montana and Wyoming. Both structural basins are in the forefront of energy development associated with measuring streamflow, only fall estimates of base flow were used in the study. A net balance

Torgersen, Christian

104

Basin configuration and depositional trends in the Mission Canyon and Ratcliffe beds, U.S. portion of the Williston basin  

SciTech Connect (OSTI)

Construction of Mission Canyon and Ratcliffe depositional trends utilizing shoreline models and anhydrite edge maps shows a significant change in basin configuration associated with regional sea level changes. Sea level highstand, which began during deposition of the Scallion member of the Lodgepole Formation, was punctuated by two lowstand events. The first occurred during deposition of the MC-2 anhydrite (Tilston). During this lowstand event, the width of the carbonate basin decreased significantly. With sea level rise, a broad basin formed with carbonate and evaporate ramp deposition (Lands, Wayne, Glenburn and Mohall members). The top of the Mohall contains evidence of the second lowstand event. This event introduced quartz sand detritus into the basin (Kisbey Sandstone). Because of sea level lowstand, Sherwood and younger Mission Canyon beds were deposited during highstand in a narrower carbonate basin. Funneling of marine currents and tides in this basin created higher energy shoreline and shoal deposits than those commonly found in older Mission Canyon sediments. The top of the Mission Canyon (Rival) was capped by a deepening event or transgression which enlarged the basin and created broad Ratcliffe ramp systems similar to those that existed during Glenburn and Mohall deposition. By utilizing sequence stratigraphy and mapping shoreline trends and basin configuration, reservoir and trap geometries are identified, and exploration success is improved.

Hendricks, M.L. [Hendricks and Associates, Inc., Englewood, CO (United States)

1996-06-01T23:59:59.000Z

105

Wabek and Plaza fields: Carbonate shoreline traps in the Williston basin of North Dakota  

SciTech Connect (OSTI)

Wabek and Plaza fields in Mountrail and Ware counties, North Dakota, will ultimately produce 8 million and 3 million bbl of oil, respectively, from reservoirs in the Sherwood and Bluell intervals of the Mississippian Mission Canyon Formation. Both fields produce from porous, oolitic, and pisolitic lime packstones and grainstones deposited as shoals along a low-energy shoreline. A facies change to impermeable dolomitic and salina/sabkha environments to the east provides the updip trap. The Sherwood at Wabek has more than 100 ft of oil column driven by solution gas and water influx. Effective porosity consists of interparticle, vuggy, and minor dolomitic intercrystalline porosity. Log porosities range from 6 to 26%, averaging about 10%, and net pay averages about 26 ft. One mile west of Wabek, Plaza field produces from the Bluell, stratigraphically overlying the Sherwood. Log porosities range from 6 to 16%, averaging about 9%. Net pay averages about 6 ft. An oil-water contact is not yet defined, but at least 120 ft of oil column are present. Regional depositional slope and local depositional topography were major controls on Mission Canyon shoreline trends and the development of reservoir facies. In the Wabek-Plaza complex, the position and trend of the Sherwood and Bluell shorelines can be related to structural trends indentified in the crystalline basement from aeromagnetic data. Locally, thickness variations in the underlying Mohall interval amplified relief on the Wabek-Plaza structure and influenced the deposition of shoreline reservoirs.

Sperr, T. (Presidio Oil Co., Denver, CO (United States)); Hendricks, M.L. (Hendricks and Associates, Inc., Denver, CO (United States)); Stancel, S.G.

1991-06-01T23:59:59.000Z

106

Depositional and dissolutional processes and their resulting thinning patterns within the Middle Devonian Prairie Formation, Williston basin, North Dakota and Montana  

SciTech Connect (OSTI)

Within the Williston basin, thickness variations of the Prairie Formation are common and are interpreted to originate by two processes: differential accumulation of salt during deposition and differential removal of salt by dissolution. Unambiguous evidence for each process is rare because the Prairie/Winnipegosis interval is seldom cored within the US portion of the basin. Therefore, indirect methods, using well logs, provide the principal method for identifying characteristics of the two processes. The results of this study indicate that the two processes can be distinguished using correlations within the Prairie Formation. Several regionally correlative brining-upward and probably shoaling-upward sequences occur within the Prairie Formation. Near the basin center, the lowermost sequence is transitional with the underlying Winnipegosis Formation. This transition is characterized by thinly laminated basal carbonates that become increasingly interbedded with anhydrites of the basin-centered Ratner member. The remainder of the sequence progresses up through halite and culminates in the halite-dominated Esterhazy potash beds. Two overlying sequences also brine upward; however, these sequences lack the basal anhydrite and instead begin with halite and culminate in the Belle Plaine and Mountrail potash members, respectively. A fourth sequence is indicated by several feet of halite capping the Mountrail member in some parts of the basin. Subsequent erosion or dissolution prior to burial may have removed the upper portion of this sequence. Cross sections show that the lower Prairie gradually decreases in thickness from the basin to its margins. This thickens variation is most simply explained by decreasing accommodation potential due to decreased basin topography away from the basin depocenter and by depositional onlap of the Prairie toward the basin margins.

Oglesby, C.A.

1988-07-01T23:59:59.000Z

107

A resource evaluation of the Bakken Formation (Upper Devonian and Lower Mississippian) continuous oil accumulation, Williston Basin, North Dakota and Montana  

SciTech Connect (OSTI)

The Upper Devonian and Lower Mississippian Bakken Formation in the United States portion of the Williston Basin is both the source and the reservoir for a continuous oil accumulation -- in effect a single very large field -- underlying approximately 17,800 mi{sup 2} (46,100 km{sup 2}) of North Dakota and Montana. Within this area, the Bakken Formation continuous oil accumulation is not significantly influenced by the water column and cannot be analyzed in terms of conventional, discrete fields. Rather, the continuous accumulation can be envisioned as a collection of oil-charged cells, virtually all of which are capable of producing some oil, but which vary significantly in their production characteristics. Better well-performance statistics are linked regionally to higher levels of thermal maturity and to lower levels of reservoir heterogeneity. Although portions of the Bakken Formation continuous oil accumulation have reached a mature stage of development, the accumulation as a whole is far from depleted.

Schmoker, J.W. [Geological Survey, Denver, CO (United States)

1996-01-01T23:59:59.000Z

108

Bakken and other Devonian-Mississippian petroleum source rocks, northern Rocky Mtns.-Williston basin: Depositional and burial history and maturity estimations  

SciTech Connect (OSTI)

The three-member Devonian-Mississippian Bakken-Exshaw organic-rich shaly facies is widely distributed in the northern U.S. and southern Canadian Cordillera. Equivalent facies are also present as far south as Utah and Nevada. Paleogeographically, these rocks thin markedly or pinchout to the west approximately along the Devonian-Mississippian carbonate reef-mound belt of the Cordilleran shelf margin. Although these rocks reach maximum organic richness approximately at the Devonian-Carboniferous transition, similar but somewhat less organic-rich Bakken-like beds are also present in underlying Upper Devonian and overlying Lower Carboniferous carbonate depositional cycles. At least ten cycles are identified in the underlying Duperow and Jefferson Formations, characterized by basal organic-rich Bakken-like shale or shaly carbonate that grades upward into carbonate mound or reefal beds, overlain by evaporite or solution breccia. Cycles in the overlying Lodgepole and Mission Canyon Formations, as many as 10-12 in number, are similar except that the carbonates are composed of algal-oolith, crinoid, or mixed skeletal beds, and end-cycle evaporitic units are less prevalent in the lower cycles. These dark shaly beds are the most important source of hydrocarbon reserves in Montana and the Williston basin. Maximum net thickness of the Devonian-Mississippian organic-rich facies is in the Williston basin. However, variable thicknesses of these potential source rocks is present in parts of Montana as far west as the thrust belt. Burial history studies suggest that in some areas these rocks are probably thermally immature. However, in much of the area original burial depths are sufficient for them to reach the thermally mature stage, and therefore are of importance to further exploration efforts in the Devonian-Mississippian Madison-Duperow-Jefferson Formations.

Peterson, J.A. [Univ. of Montana, Missoula, MT (United States)

1996-06-01T23:59:59.000Z

109

Relationships among oil density, gross composition, and thermal maturity indicators in northeastern Williston basin oils and their significance for expulsion thresholds and migration pathways  

SciTech Connect (OSTI)

Oil density ({degree}API), gross composition, and biological market thermal maturity variations in northeastern Williston basin have stratigraphic and geographic significance controlled by migration pathways and source rock composition as it affects hydrocarbon generation and expulsion characteristics. When the depth and density of oil pools is compared to relationships predicted using the correlation between source rock thermal maturity and oil density, several different migration pathways can be inferred. Winnipegosis source oils indicate four paths. Most small pinnacle reef pools are sourced locally, but larger coalesced reefs contain oils migrated long distances through the Lower Member Winnipegosis Formation. Among oils that have migrated past Prairie salts, both locally sourced oils, like those on the flank of the Hummingbird Trough, and more mature, longer migrated oils in Saskatchewan Group reservoirs can be identified. Bakken oils have the longest migration pathways, controlled primarily by a lowstand shoreline sandstone on the eastern side of the basin. Lodgepole-sourced oils dominate Madison Group plays. Northwest of Steelman field, oil density increases primarily due to thermal maturity differences but also because of increasing biodegradation and water-washing that affect the western edge of the play trend. Along the margin of the Hummingbird Trough are a number of deep, medium-gravity pools whose oil compositions are entirely attributable to low thermal maturity and local migration pathways.

Osadetz, K.G.; Snowdon, L.R.; Brooks, P.W. (Geological Survey of Canada, Calgary, Alberta (Canada))

1991-06-01T23:59:59.000Z

110

Williston hunt goes on despite slowdown  

SciTech Connect (OSTI)

Despite a decline of nearly 24% in reported well completions in the Williston basin last year, exploratory interest is still very much alive, expecially on the far west side of the international region. Petroleum Information reports that completions in the basin dropped from 1,127 to 860 last year. There were several important discoveries made in the basin during the year, and the current slate calls for some more very soon. Basin exploration interest centers on the province's west side, mostly in Daniels and Valley counties, Mont. But there continues to be development work in North Dakota, hugging the Missouri River near Williston where McKenzie County, at the basin's center, ranked eighth in the region with 155 reported well completions last year, according to the Denver publication.

McCaslin, J.C.

1986-04-07T23:59:59.000Z

111

Estimates of incremental oil recoverable by carbon dioxide flooding and related carbon dioxide supply requirements for flooding major carbonate reservoirs in the Permian, Williston, and other Rocky Mountain basins  

SciTech Connect (OSTI)

The objective of the work was to build a solid engineering foundation (in) carbonate reservoirs for the purpose of extending the technology base in carbon dioxide miscible flooding. This report presents estimates of incremental oil recovery and related carbon dioxide supply requirements for selected carbonate reservoirs in the Permian, Williston, and Rocky Mountain Basins. The estimates presented here are based on calculations using a volumetric model derived and described in this report. The calculations utilized data developed in previous work. Calculations were made for a total of 279 reservoirs in the Permian, Williston, and several smaller Rocky Mountain Basins. Results show that the carbonate reservoirs of the Permian Basin constitute an order of magnitude larger target for carbon dioxide flooding than do all the carbonate reservoirs of the Williston and Rocky Mountain intermontane basins combined. Review of the calculated data in comparison with information from earlier work indicates that the figures given here are probably optimistic in that incremental oil volumes may be biased toward the high side while carbon dioxide supply requirements may be biased toward the low side. However, the information available would not permit further practical refinement of the calculations. Use of the incremental oil figures given for individual reservoirs as an official estimate is not recommended because of various uncertainties in individual field data. Further study and compilation of data for field projects as they develop appears warranted to better calibrate the calculation procedures and thus to develop more refined estimates of incremental oil potential and carbon dioxide supply requirements. 11 figures, 16 tables.

Goodrich, J.H.

1982-12-01T23:59:59.000Z

112

Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles  

E-Print Network [OSTI]

ka B.P.), such as the Williston, Michigan, and Illinois basins. We show that in such basins fluid of the Williston and Alberta basins. Under such con- ditions fluid fluxes in aquifers can be expected

Bense, Victor

113

Chemostratigraphy And Geochemical Constraints On The Deposition Of The Bakken Formation, Williston Basin, Eastern Montana And Western North Dakota.  

E-Print Network [OSTI]

??Rowe, Harold The late Devonian-early Mississippian Bakken Formation was deposited in a structural-sedimentary intracratonic basin that extends across a large part of modern day North… (more)

Maldonado, David Nyrup

2013-01-01T23:59:59.000Z

114

Chemostratigraphy And Geochemical Constraints On The Deposition Of The Bakken Formation, Williston Basin, Eastern Montana And Western North Dakota.  

E-Print Network [OSTI]

??Rowe, Harold The late Devonian-early Mississippian Bakken Formation was deposited in a structural-sedimentary intracratonic basin that extends across a large part of modern day North… (more)

Maldonado, David Nyrup

2014-01-01T23:59:59.000Z

115

Lithosphere structure beneath the Phanerozoic intracratonic basins of North America  

E-Print Network [OSTI]

Abstract Four intracratonic basins of North America, the Hudson Bay, Michigan, Illinois and Williston. The Williston and Illinois basins are associated with wide (V200 km) and thin anomalies (V100 km), whereas basin and 270 km beneath the Williston [4,6]. For two ba- sins of similar age located on the same Precam

Kaminski, Edouard

116

A Revision of the Genera Pelomyia Williston  

E-Print Network [OSTI]

A Revision of the Genera Pelomyia Williston and Masoniella Vockeroth (Diptera: Tethinidae) GEORGE A O G Y · N U M B E R 6 1 9 A Revision of the Genera Pelomyia Williston and Masoniella Vockeroth. Mathis. A Revision of the Genera Pelomyia Williston and Masoniella Vockeroth (Diptera: Tethinidae

Mathis, Wayne N.

117

MSU EASTERN AGRICULTURAL RESEARCH CENTER NDSU WILLISTON RESEARCH EXTENSION CENTER  

E-Print Network [OSTI]

MSU EASTERN AGRICULTURAL RESEARCH CENTER NDSU WILLISTON RESEARCH EXTENSION CENTER 2006 AGRICULTURAL://www.sidney.ars.usda.gov/state/ North Dakota State University Williston Research Extension Center 14120 Hwy 2 Williston, ND 58801 (701 may have been more or less. Weather Summary Williston, nd Precipitation Temperature Month 2006 Avg

Dyer, Bill

118

S.W. Williston Diptera Research Fund November 4, 2013  

E-Print Network [OSTI]

1 S.W. Williston Diptera Research Fund November 4, 2013 The S.W. Williston Diptera Research Fund about Diptera. Samuel Wendell Williston (Fig. 1) was a great biologist, who made significant achievements epitomize what this fund was established to support. The Williston Fund is administered

Mathis, Wayne N.

119

MSU EASTERN AGRICULTURAL RESEARCH CENTER NDSU WILLISTON RESEARCH EXTENSION CENTER  

E-Print Network [OSTI]

MSU EASTERN AGRICULTURAL RESEARCH CENTER NDSU WILLISTON RESEARCH EXTENSION CENTER 2007 AGRICULTURAL Dakota State University Williston Research Extension Center 14120 Hwy 2 Williston, ND 58801 (701) 774-4315 Fax: (701) 774-4307 E-mail: NDSU.Williston.REC@.ndsu.edu http

Dyer, Bill

120

File:EIA-Williston-NW-Liquids.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyomingWilliston Basin,

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

System Analysis and Design Spring 2011, Williston Campus  

E-Print Network [OSTI]

CIS4120 System Analysis and Design Spring 2011, Williston Campus Vermont Technical College Class Meeting: MW 2:25-3:40 BLP 201 Instructor: Craig A. Damon (cdamon@vtc.edu) BLP 424 Williston Office Hours am in Randolph TT and Williston MWF. Course Overview: This course gives students hands-on experience

Damon, Craig A.

122

Intro to Information Science Technology Fall 2011, Williston Campus  

E-Print Network [OSTI]

CIS1120 Intro to Information Science Technology Fall 2011, Williston Campus Vermont Technical is in BP 424. Williston Office Hours: Tue 10:30-1:00, Thu 2:30-3:00 ! (tentative, subject to change) Other hours by appointment ! In general, I am in Randolph MW and Williston TTF. Course Overview: This course

Damon, Craig A.

123

EA-1896: Williston to Stateline Transmission Line Project, Mountrail Williams Electric Cooperative, Williston, North Dakota  

Broader source: Energy.gov [DOE]

DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Stateline I transmission line, in Williston, North Dakota, to Western’s transmission system.

124

Williston to Stateline Transmission Line Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP SignInWhoWilliston to Stateline

125

CAMPUS TUTORING RESOURCE GUIDE ACCESS Williston Hall Room 100 PH: (815) 753-0203  

E-Print Network [OSTI]

CAMPUS TUTORING RESOURCE GUIDE ACCESS ­ Williston Hall ­ Room 100 PH: (815) 753-0203 http ACCY 206, 207, 288 ACCESS/PAL Tutoring Various Locations and times 753-0203 For Info Williston 100 Mon

Karonis, Nicholas T.

126

Volume 118, Number 3, May and June 2007 283 MICRODON FALCATUS WILLISTON (DPTERA  

E-Print Network [OSTI]

Volume 118, Number 3, May and June 2007 283 MICRODON FALCATUS WILLISTON (DĂŤPTERA: SYRPHIDAE Williston 1887 (DĂ­ptera: Syrphidae) is redescribed. A lectotype is designated for the name and three new, Neo- tropics More than a century ago Williston (1887) described a small microdontine fly from

Mathis, Wayne N.

127

Origin of cratonic basins  

SciTech Connect (OSTI)

Tectonic subsidence curves show that the Illinois, Michigan, and Williston basins formed by initial fault-controlled mechanical subsidence during rifting and by subsequent thermal subsidence. Thermal subsidence began around 525 Ma in the Illinois Basin, 520-460 Ma in the Michigan Basin, and 530-500 Ma in the Williston Basin. In the Illinois Basin, a second subsidence episode (middle Mississippian through Early Permian) was caused by flexural foreland subsidence in response to the Alleghanian-Hercynian orogeny. Past workers have suggested mantle phase changes at the base of the crust, mechanical subsidence in response to isostatically uncompensated excess mass following igneous intrusions, intrusion of mantle plumes into the crust, or regional thermal metamorphic events as causes of basin initiation. Cratonic basins of North America, Europe, Africa, and South America share common ages of formation, histories of sediment accumulation, temporal volume changes of sediment fills, and common dates of interregional unconformities. Their common date of formation suggests initiation of cratonic basins in response to breakup of a late Precambrian supercontinent. This supercontinent acted as a heat lens that caused partial melting of the lower crust and upper mantle followed by emplacement of anorogenic granites during extensional tectonics in response to supercontinent breakup. Intrusion of anorogenic granites and other partially melted intrusive rocks weakened continental lithosphere, thus providing a zone of localized regional stretching and permitting formation of cratonic basins almost simultaneously over sites of intrusion of these anorogenic granites and other partially melted intrusive rocks.

de V. Klein, G.; Hsui, A.T.

1987-12-01T23:59:59.000Z

128

Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompany LevelPhysical

129

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Watrous Formation, Williston Basin, Canada: a preliminaryaccumulation in the northern Williston Basin. The Watrous

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

130

File:EIA-Williston-NW-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyoming ThrustWilliston

131

File:EIA-Williston-S-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyomingWilliston

132

File:EIA-Williston-S-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyomingWilliston599

133

Basinwide fold evolution and geometric development of cratonic - foreland basin interaction  

SciTech Connect (OSTI)

Latest results of the Williston Basin Project incorporate a north-south regional seismic line, which is crossing the deepest part of the Williston Basin from Saskatchewan to South Dakota. The integration of this new profile to the two, existing east-west regional seismic sections, gives a quasi-3D image of the basin. The combined seismic data illustrate alternating extensive and compressive phases during basin development, marked by basinwide circular and radial folds. This alternating pattern of basin subsidence is the very nature of crotonic basin evolution. The structural necessity for compressive phases during crotonic basin subsidence, is shown in a regional scale interpretation that has undergone an Earth-curvature correction. The geometrical evolution of the neighboring foreland basin is also interpreted from data that has been corrected with the Earth-curvature function. It shows that basinwide folds sub-parallel and perpendicular to the longitudinal axis of the basin are analogous to the circular and radial folds of the crotonic basins. These folds, in the foreland belt, are less pronounced because larger scale structural elements can overprint them. Where the crotonic and foreland basins overlap, a complex, deformed zone is present, and contains late stage volcanism, in this area. The geometry of the Williston Basin can be modeled by the Sloss-type [open quote]inverted Gaussian function[close quote] that is modified by the periodic westward tilting of the basin and the Earth-curvature function.

Redly, P.; Hajnal, Z. (Univ. of Saskatchewan, Saskatoon (Canada))

1996-01-01T23:59:59.000Z

134

Basinwide fold evolution and geometric development of cratonic - foreland basin interaction  

SciTech Connect (OSTI)

Latest results of the Williston Basin Project incorporate a north-south regional seismic line, which is crossing the deepest part of the Williston Basin from Saskatchewan to South Dakota. The integration of this new profile to the two, existing east-west regional seismic sections, gives a quasi-3D image of the basin. The combined seismic data illustrate alternating extensive and compressive phases during basin development, marked by basinwide circular and radial folds. This alternating pattern of basin subsidence is the very nature of crotonic basin evolution. The structural necessity for compressive phases during crotonic basin subsidence, is shown in a regional scale interpretation that has undergone an Earth-curvature correction. The geometrical evolution of the neighboring foreland basin is also interpreted from data that has been corrected with the Earth-curvature function. It shows that basinwide folds sub-parallel and perpendicular to the longitudinal axis of the basin are analogous to the circular and radial folds of the crotonic basins. These folds, in the foreland belt, are less pronounced because larger scale structural elements can overprint them. Where the crotonic and foreland basins overlap, a complex, deformed zone is present, and contains late stage volcanism, in this area. The geometry of the Williston Basin can be modeled by the Sloss-type {open_quote}inverted Gaussian function{close_quote} that is modified by the periodic westward tilting of the basin and the Earth-curvature function.

Redly, P.; Hajnal, Z. [Univ. of Saskatchewan, Saskatoon (Canada)

1996-12-31T23:59:59.000Z

135

Williston Northampton Blog News and Events http://willistonblogs.com/blog/2012/11/30/pilot-science-program-tackles-the-big-problems/  

E-Print Network [OSTI]

Williston Northampton Blog News and Events http://willistonblogs.com/blog/2012/11/30/pilot Auerbach asked AP Integrated Science students to solve when he visited The Williston Northampton School the Williston students. He added that instead of opening up a textbook, his students were opening up

Auerbach, Scott M.

136

Curriculum Vitae: Albie Felix Miles  

E-Print Network [OSTI]

pest management; biological control; food systems and sustainability; introduction to environmental science; nature and properties of soils; soil ecology; integrated soil fertility management; researchCurriculum Vitae: Albie Felix Miles Ph.D. Candidate Environmental Science, Policy and Management

Silver, Whendee

137

Geology of interior cratonic sag basins  

SciTech Connect (OSTI)

Interior cratonic sag basins are thick accumulations of sediment, generally more or less oval in shape, located entirely in the interiors of continental masses. Some are single-cycle basins and others are characterized by repeated sag cycles or are complex polyhistory basins. Many appear to have developed over ancient rift systems. Interior cratonic sag basins are typified by a dominance of flexural over fault-controlled subsidence, and a low ratio of sediment volume to surface area of the basin. The Baltic, Carpentaria, Illinois, Michigan, Parana, Paris, and Williston basins are examples of interior cratonic sag basins. Tectonics played a dominant role in controlling the shapes and the geometries of the juxtaposed packets of sedimentary sequences. While the mechanics of tectonic control are not clear, evidence suggests that the movements are apparently related to convergence of lithospheric plates and collision and breakup of continents. Whatever the cause, tectonic movements controlled the freeboard of continents, altering base level and initiating new tectono-sedimentologic regimes. Sag basins situated in low latitudes during their development commonly were sites of thick carbonates (e.g., Illinois, Michigan, Williston, and Paris basins). In contrast, siliciclastic sedimentation characterized basins that formed in higher latitudes (e.g., Parana and Carpentaria basins). Highly productive sag basins are characterized by widespread, mature, organic-rich source rocks, large structures, and good seals. Nonproductive basins have one or more of the following characteristics: immature source rocks, leaky plumbing, freshwater flushing, and/or complex geology due to numerous intrusions that inhibit mapping of plays.

Leighton, M.W.; Eidel, J.J.; Kolata, D.R.; Oltz, D.F. (Illinois Geological Survey, Champaign (USA))

1990-05-01T23:59:59.000Z

138

Leakage Risk Assessment for a Potential CO2 Storage Project in Saskatchewan, Canada  

E-Print Network [OSTI]

North Dakota Portion of the Williston Basin, Energy ProcediaRichardton/Taylor Fields – Williston Basin, North Dakota.and petroleum in the Williston Basin region of the United

Houseworth, J.E.

2012-01-01T23:59:59.000Z

139

Pennsylvania Nuclear Profile - Three Mile Island  

U.S. Energy Information Administration (EIA) Indexed Site

Three Mile Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

140

Three Mile Island: then and now  

SciTech Connect (OSTI)

A review of the Three Mile Island Unit 2 accident is presented. Current activities to clean up the reactor are described.

Trauger, D.B.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A magnetotelluric investigation under the Williston Basin of southeastern Saskatchewan:1 Discussion2  

E-Print Network [OSTI]

Saskatchewan:1 Discussion2 ALAN G. JONES Geological Survey of Canada, 1 Observatory Crescent, Ottawa, Ont Saskatchewan; (ii) illustrating that based on the PanCanadian data no anomaly exists near 105°W longitude after the

Jones, Alan G.

142

Seismic attribute studies, Mississippian Frobisher-Alida oil fields, northeast Williston basin  

SciTech Connect (OSTI)

Subtle Mississippian stratigraphic traps of the Wiley and Glenburn fields of North Dakota and the Creelman field of southeast Saskatchewan illustrate similar seismic response to distinctly different geologic settings. Shoreline facies change, thick supratidal salt pans, carbonate porosity zones, buried hills, and structure on the top of the Mississippian unconformity can all cause similar seismic response (seismic facies). In each instance, vertical and lateral thickness and lithologic changes are the dominant influence on the seismic response. In addition, pitfalls due to tuning, multiples, and other causes can make it difficult, if not impossible, to differentiate these anomalies based on seismic response alone. Careful attribute studies must be coordinated with sound geologic control and models to explore effectively for these subtle stratigraphic traps.

Davis, T.L.

1988-07-01T23:59:59.000Z

143

Occurrence of pore-filling halite in carbonate rocks, Nesson Anticline, Williston basin, North Dakota  

SciTech Connect (OSTI)

Clear, colorless pore-filling halite of late diagenetic origin occurs locally in the Devonian Dawson Bay, Winnipegosis, and Ashern Formations, the Silurian Interlake Formation, and the Ordovician Red River Formation. The halite occludes a variety of pore types and individual pores are filled with single crystals or aggregates of only a few crystals. This halite is present in quantities ranging from a trace to approximately 12%. Cores from McGregor field, Williams County, show the Winnipegosis Formation consists of mixed-skeletal lime wackestones and mudstones. These contain vugs up to 4 in. (10 cm) in size, intraparticle pores, and shelter porosity within pelecypod shells, up to 4 in. (10 cm) in size, which are occluded with halite. Halite also fills common small discontinuous vertical fractures. The upper 200 ft (61 m) of the Interlake Formation locally exhibits the most striking occurrences of pore-filling halite. These dolostones consist predominantly of intraclast-peloid mudstones, wackestones, packstones, occasional grainstones, algal boundstones, and solution-collapse breccias containing vug, fenestral, interparticle, shelter, intercrystalline, moldic, channel, breccia, and fracture porosity types. All porosity types, except intercrystalline, can be halite filled. A rare occurrence of pore-filling halite exists in Red River cores from Blue Buttes field, McKenzie County, where a dolomitic, mixed-skeletal, lime mudstone and wackestone lithofacies contains vugs, discontinuous vertical fractures, and intraparticle porosity types occluded with halite. In most occurrences, the pore systems were noneffective prior to halite infilling and had no potential as hydrocarbon reservoirs. However, it has been demonstrated that halite plugging in the Interlake Formation has locally formed updip seals to hydrocarbon migration.

Bucher, E.J.

1988-07-01T23:59:59.000Z

144

DESCRIPTION OF THE BAKKEN FORMATION’S ROCK PROPERTIES OF THE WILLISTON BASIN, NORTH DAKOTA.  

E-Print Network [OSTI]

??It is possible to determine rock properties by utilizing seismic inversion techniques. The inversion technique is the most frequently used, by which the seismic interpreters… (more)

Kocoglu, Sebnem 1983-

2013-01-01T23:59:59.000Z

145

FACTORS AFFECTING BONUS BIDS FOR OIL AND GAS LEASES IN THE WILLISTON BASIN .  

E-Print Network [OSTI]

??Governments receive several revenue streams from companies that hold and operate oil and gas leases on public lands. These revenues vary in their timing and… (more)

[No author

2012-01-01T23:59:59.000Z

146

Progress Update: H4 Basin Concrete Pour  

ScienceCinema (OSTI)

The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

None

2012-06-14T23:59:59.000Z

147

The train problem assumes a circular track 101 miles in circumference. The track is labeled clockwise in miles starting at due north. ie. 0 through 100. Mile 101 would be at the same spot as mile 0.  

E-Print Network [OSTI]

A3: trains The train problem assumes a circular track 101 miles in circumference. The track as mile 0. Train1 starts at mile 0 going clockwise. Train2 starts at mile 50 also going clockwise. The program prompts for speeds of each train in mph. The output is the mile (or fraction) at which one train

Huth, Michael

148

Mile High: Noncompliance Determination (2012-SE-4501)  

Broader source: Energy.gov [DOE]

DOE issued a Notice of Noncompliance Determination to Mile High Equipment, LLC finding that Ice-O-Matic brand automatic commercial ice maker basic model ICE2106 FW, HW does not comport with the energy conservation standards.

149

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network [OSTI]

than 10 miles from the nuclear plant at any time during thewithin 10 miles of the nuclear plant is about 51 of thewithin 50 miles of the nuclear plant is less than 1% of the

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

150

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network [OSTI]

Commission on the Accident at Three Mile Island (Fabrikant,Commission on the Accident at Three Mile Island. (Fahrikant,Commission on the Accident at Three Mile Island. (Fabrikant,

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

151

Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin  

SciTech Connect (OSTI)

The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

Scott R. Reeves; Randal L. Billingsley

2004-02-26T23:59:59.000Z

152

Finance Division EXTRA MILE AWARD PROGRAM  

E-Print Network [OSTI]

Finance Division EXTRA MILE AWARD PROGRAM Nomination Form Instructions Any fulltime or parttime permanent or temporary SPA employee within the Finance Division who works 20 or more provided. The seven major departments within the Finance Division to choose from are described below

Crews, Stephen

153

US Continental Interior Precambrian-Paleozoic  

E-Print Network [OSTI]

= Reelfoot Rift, LD = La Salle deformation belt, WB = Williston Basin, IB = Illinois Basin, MB = Michigan

154

Fact #860 February 16, 2015 Relationship of Vehicle Miles of...  

Broader source: Energy.gov (indexed) [DOE]

travel. At the beginning of 2014, the vehicle miles of travel increased even as gasoline prices were increasing. Relationship of Vehicle Miles of Travel and the Price of Gasoline,...

155

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network [OSTI]

occurred during the nuclear accident, and probably noHEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT MILE ISLAND JacobENG-48 HEALTH EFFECTS OF THE NUCLEAR ACCIDENT A T THREE MILE

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

156

Fact #860 February 16, 2015 Relationship of Vehicle Miles of...  

Energy Savers [EERE]

Fact 860 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of Gasoline - Dataset Fact 860 February 16, 2015 Relationship of Vehicle Miles of Travel and the...

157

Modeling overpressures in sedimentary basins: Consequences for permeability and rheology of shales, and petroleum expulsion efficiency  

SciTech Connect (OSTI)

The prediction of overpressures using Institut Francais du Petrole's 2-D numerical model TEMISPACK is applied to several provinces of the world. In the Paris basin, France, normally pressured Liassic shales are shown to have permeabilities around a microdarcy, independently confirmed by laboratory measurements. In contrast, in the Norway section of the North Sea, Williston Basin, Canada, Gulf Coast, and in the Mahakam delta, observed overpressures of 10-50 MPa are consistently modeled with shale permeabilities around 1-10 nanodarcys. This theoretical value fits well with the lowest permeability measured in compacted shales. For these basins, compaction disequilibrium was found to explain most (>85%) of the overpressures. The only exception was the Williston basin in which overpressures observed in the organic-rich Bakken shales are entirely due to hydrocarbon generation. In Mahakam delta, the rheology of shales is nonlinear, i.e., the strength of shales increases rapidly with death. Consequently, shale compaction cannot be described by the linear behavior often assumed in hydrology. In the absence of fault barriers, numerical simulations and geological evidence suggest that overpressured source rocks have low or very low expulsion efficiency, irrespective of their organic content. However, shales with a permeability on the order of a microdarcy do not hinder petroleum migration.

Burrus, J.; Schneider, F.; Wolf, S. (Institut Francais du Petrole, Rueil-Malmaison (France))

1994-07-01T23:59:59.000Z

158

1st Mile | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14 CCR §ResourcesMile Jump to:

159

Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant  

SciTech Connect (OSTI)

A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

Loehle, C.

1990-11-01T23:59:59.000Z

160

Exploring the Texture of Ocean-Atmosphere Redox Evolution on the Early Earth  

E-Print Network [OSTI]

deltaic (B31) Bakken Fm. Williston Basin, S.W. Manitoba sub-marine (B43) Winnipeg Fm. Williston Basin, S. Manitoba sub-

Reinhard, Christopher Thomas

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Surface geology of Williston 7. 5-minute quadrangle, Aiken and Barnwell Counties, South Carolina  

SciTech Connect (OSTI)

Detailed geologic mapping has shown the distribution and lithologic character of stratigraphic units and sedimentary deposits in Williston quadrangle. A middle Eocene stratigraphic unit correlative with the restricted McBean Formation is the oldest unit at the surface. The McBean-equivalent unit occurs at low elevations along drainages in the north of the quadrangle but does not crop out. These beds are typically very fine- to fine-grained quartz sand, locally with abundant black organic matter and less commonly with calcium carbonate. The uppermost middle Eocene Orangeburg District bed, commonly composed of loose, clay-poor, very fine- to fine-grained quartz sand, occurs at the surface in the north and southwest of the quadrangle with sparse exposure. The upper Eocene Dry Branch Formation occurs on valley slopes throughout the quadrangle. The Dry Branch is composed of medium- to very coarse-grained quartz sand with varying amounts on interstitial clay and lesser bedded clay. The upper Eocene Tobacco road Sand occurs on upper valley slopes and some interfluves and consists of very fine-grained quartz sand to quartz granules. The upper Middle Miocene to lower Upper Miocene upland unit caps the interfluves and is dominantly coarse-grained quartz sand to quartz granules, with included granule-size particles of white clay that are weathered feldspars. Loose, incohesive quartzose sands of the eolian Pinehurst Formation, Upper Miocene to Lower Pliocene, occur on the eastern slopes of some interfluves in the north of the quadrangle. Quartz sand with varying included humic matter occurs in Carolina bays, and loose deposits of windblown sand occur on the rims of several Carolina bays. Quaternary alluvium fills the valley floors.

Willoughby, R.H.; Nystrom, P.G. Jr. (South Carolina Geological Survey, Columbia, SC (United States)); Denham, M.E.; Eddy, C.A. (Westinghouse Savannah River Co., Aiken, SC (United States)); Price, L.K.

1994-03-01T23:59:59.000Z

162

Three Mile Island: the financial fallout  

SciTech Connect (OSTI)

The nuclear accident at Three Mile Island raised serious questions about the financial ability of the electric utility company owners to clean up and repair the damaged reactor facilities while continuing to provide reliable electric service to customers. Financial insolvency of the companies is not imminent and power supplies are assured for the immediate future. However, the loss of earnings capability by the Metropolitan Edison Company makes it questionable whether it can fund its share of the clean-up costs and maintain system reliability without large rate increases or some external financial assistance. The accident has shown that the utilities and Federal and State regulatory agencies were not prepared to deal with recovery from such a large financial loss. The Department of Energy should move swiftly to assess the financial needs of the affected utilities and develop plans for meeting them.

Not Available

1980-07-07T23:59:59.000Z

163

Three Mile Island: meltdown of democracy  

SciTech Connect (OSTI)

Strong local opposition to a start-up of Unit 1 at Three Mile Island continues because citizen distrust of General Public Utilities was found in post-accident studies to have been justified. Several citizen groups have monitored the Unit 2 clean-up activities and have not been reassured by either the President's Commission or the Nuclear Regulatory Commission. Efforts to improve public relations by distributing radiation kits or other strategies have been outweighed by evidence of government manipulation of early bomb test data and poor industry planning. Arguments over who is responsible for the accident and who is liable for the cost have further undermined credibility. Area residents have received three recent legal signals that their position may prevail. (DCK)

Walsh, E.J.

1983-03-01T23:59:59.000Z

164

Lateral Drilling and Completion Technologies for Shallow-Shelf Carbonates of the Red River and Ratcliffe Formations, Williston Basin  

SciTech Connect (OSTI)

Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil- well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius laterals in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2590 to 2890 m (8500 to 9500 ft) in Richland Co., MT; Bowman Co., ND; and Harding Co., SD.

David Gibbons; Larry A. Carrell; Richard D. George

1997-07-31T23:59:59.000Z

165

The application of iodine and magnetic susceptibility surface geochemical surveys in the Lodgepole Play, Eastern Williston Basin, North Dakota  

SciTech Connect (OSTI)

The use of surface geochemistry as a first pass exploration tool is becoming more prevalent in petroleum exploration. This is especially true due to the high cost of 2-D and 3-D surveys in defining small targets such as the Waulsortian mounds of the Lodgepole Formation. Surface geochemical surveys are very effective in pinpointing specific target areas for seismic surveying and thus reducing costs. Presented are examples of surface geochemical surveys utilizing magnetic susceptibility and iodine methods in delineating reservoirs in the Lodgepole, Mission Canyon and Red River formations. The types of surveys presented vary from reconnaissance to detail and examples of how to define a grid will be discussed. Surface geochemical surveys can be very effective when the areal extent of the target(s) and the purpose of the survey are clearly defined prior to implementation. By determining which areas have microseepage and which areas do not, surface geochemistry can be a very effective tool in focusing exploration efforts and maximizing exploration dollars.

Tedesco, S.A. [Atoka Geochemical Services Corp., Englewood, CO (United States)

1996-06-01T23:59:59.000Z

166

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

167

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

168

Entiat 4Mile WELLs Completion Report, 2006.  

SciTech Connect (OSTI)

The Entiat 4-mile Wells (Entiat 4-mile) project is located in the Entiat subbasin and will benefit Upper Columbia steelhead, spring Chinook and bull trout. The goal of this project is to prevent juvenile fish from being diverted into an out-of-stream irrigation system and to eliminate impacts due to the annual maintenance of an instream pushup dam. The objectives include eliminating a surface irrigation diversion and replacing it with two wells, which will provide Bonneville Power Administration (BPA) and the Bureau of Reclamation (Reclamation) with a Federal Columbia River Power System (FCRPS) BiOp metric credit of one. Wells were chosen over a new fish screen based on biological benefits and costs. Long-term biological benefits are provided by completely eliminating the surface diversion and the potential for fish entrainment in a fish screen. Construction costs for a new fish screen were estimated at $150,000, which does not include other costs associated with implementing and maintaining a fish screening project. Construction costs for a well were estimated at $20,000 each. The diversion consisted of a pushup dam that diverted water into an off-channel pond. Water was then pumped into a pressurized system for irrigation. There are 3 different irrigators who used water from this surface diversion, and each has multiple water right claims totaling approximately 5 cfs. Current use was estimated at 300 gallons per minute (approximately 0.641 cfs). Some irrigated acreage was taken out of orchard production less than 5 years ago. Therefore, approximately 6.8 acre-feet will be put into the State of Washington Trust Water Right program. No water will be set aside for conservation savings. The construction of the two irrigation wells for three landowners was completed in September 2006. The Lower Well (Tippen/Wick) will produce up to 175 gpm while the Upper Well (Griffith) will produce up to 275 gpm during the irrigation season. The eight inch diameter wells were developed to a depth of 75 feet and 85 feet, respectively, and will be pumped with Submersible Turbine pumps. The irrigation wells have been fitted with new electric boxes and Siemens flowmeters (MAG8000).

Malinowksi, Richard

2007-01-01T23:59:59.000Z

169

Debate over waste imperils 3-Mile cleanup  

SciTech Connect (OSTI)

The cleanup is a task of extraordinary proportions. Every step in the cleanup must be taken in a highly sensitive political and regulatory environment. A demineralizer or ion exchange filtration unit was installed in order that the fission products could be removed from the water spilled in the auxiliary and fuel handling buildings. GPU later vented krypton gas. Twice now engineers have made cautions entries into the containment building as part of the effort to size up the job. Cleanup will be costly, requiring many workers. Some wastes will require special packaging in hundreds of containers with shielded overpacks, plus bulky items of hardware and equipment that cannot be easily packaged. There will be the damaged fuel assemblies from the reactor core. Removing the fuel from the reactor may be difficult. A troublesome waste disposal question has to do with the material to be generated in cleaning up the containment building's sump water. GPU's man in charge of clean-up strategy is to collect the wastes in a form that permits maximum flexibility with respect to their stage, packaging, transport, and ultimate disposal. If plans for disposal of all the wastes from the cleanup are to be completed, an early commitment by Pennsylvania and other northeastern states to establish a burial ground for low level waste generated within the region is needed. Also a speedy commitment by NRC, DOE, and Congress to a plan for disposal of the first-stage zeolites is needed. Should there be a failure to cope with the wastes that Three Mile Island cleanup generates, the whole nuclear enterprise may suffer.

Carter, L.J.

1980-10-10T23:59:59.000Z

170

Odometer Versus Self-Reported Estimates of Vehicle Miles Traveled  

Reports and Publications (EIA)

The findings described here compare odometer readings with self-reported estimates of Vehicle Miles Traveled (VMT) to investigate to what extent self-reported VMT is a reliable surrogate for odometer-based VMT.

2000-01-01T23:59:59.000Z

171

Full Useful Life (120,000 miles) Exhaust Emission Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with...

172

To determine the geomagnetic polarity stratigraphy and the duration and age of  

E-Print Network [OSTI]

, Williston Basin. INTRODUCTION In the Little Missouri River valley of North Dakota, a continuous succession

173

American Journal of Science DECEMBER 2011  

E-Print Network [OSTI]

and is likely contempo- raneous with unconformities in the Williston Basin and in southwestern Alberta

174

Radioactive air emissions notice of construction for the 105N Basin Stabilization  

SciTech Connect (OSTI)

The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations.

Coenenberg, E.T. [Westinghouse Hanford Co., Richland, WA (United States)

1994-05-01T23:59:59.000Z

175

National emission standards for hazardous air pollutants application for approval to stabilize the 105N Basin  

SciTech Connect (OSTI)

The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces-to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin is a reinforced unlined concrete structure 150 feet long, 50 feet wide, and 24 feet deep. The basin is segregated into seven areas sharing a common pool of water; the Discharge/Viewing (``D``) Pit, the fuel segregation pit (including a water tunnel that connects the ``D`` pit and segregation pit), two storage basins designated as North Basin and South Basin, two cask load-out pits, and a fuel examination area. The North Basin floor is entirely covered and the South Basin is partly covered by a modular array of cubicles formed by boron concrete posts and boron concrete panels.

Not Available

1994-05-01T23:59:59.000Z

176

Wind, Klickitat, Hood and Fifteen Mile Habitat Site Visits  

E-Print Network [OSTI]

Wind, Klickitat, Hood and Fifteen Mile Habitat Site Visits April 17-19th, 2013 ISRP Review Team (4 at the Sheraton Airport at 7:15 a.m. Site Visits: Depart airport and head east: Wind, Klickitat, White Salmon in this review: 1998-019-00 Wind River Watershed Underwood Conservation District (UCD), US Forest Service (USFS

177

Wireless Network Interface Energy Conservation for Bottlenecked First Mile Networks  

E-Print Network [OSTI]

user using the limited upstream capacity of the home broad- band link. We analyze the behavior of two- posed by this behavior on a client side energy saving mechanism. We also describe techniques that allowWireless Network Interface Energy Conservation for Bottlenecked First Mile Networks Surendar

Chandra, Surendar

178

Creating Efficiencies in Last Mile Delivery through Workforce  

E-Print Network [OSTI]

objectives · Extend the planning horizon to achieve more efficiency · Discuss general trends in workforceCreating Efficiencies in Last Mile Delivery through Workforce Management Maciek Nowak Associate workforce management and its advantages · Discuss new research looking to expand the customer service

Bustamante, Fabián E.

179

Equity Evaluation of Vehicle Miles Traveled Fees in Texas  

E-Print Network [OSTI]

to the infrastructure but the money needed to maintain and improve roadways is not being adequately generated. One proposed alternative to the gas tax is the creation of a vehicle miles traveled (VMT) fee; with equity being a crucial issue to consider. This research...

Larsen, Lisa Kay

2012-10-19T23:59:59.000Z

180

Boise State University Automobile Use Mileage Log (Documentation for Business Miles)  

E-Print Network [OSTI]

Boise State University Automobile Use Mileage Log (Documentation for Business Miles) Rev. 03 University Automobile Use Mileage Log (Documentation for Business Miles) Rev. 03/10 PAGE ____ (IF YOU NEED

Barrash, Warren

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NASA Green Flight Challenge: Conceptual Design Approaches and Technologies to Enable 200 Passenger Miles  

E-Print Network [OSTI]

-diesel, and other bio-fuel engines. The aircraft are using various technologies to improve aerodynamic, propulsionW = = = Jet Propellant Knots True Airspeed Kilo-Watt MPG = Miles Per Gallon MPGe MSL = = Miles Per Gallon

Waliser, Duane E.

182

Miles Below the Earth: The Next-Generation of Geothermal Energy...  

Broader source: Energy.gov (indexed) [DOE]

Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy February 7, 2011 - 12:34pm Addthis John Schueler...

183

100,000-Mile Evaluation of Transit Buses Operated on Biodiesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

00,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) Presentation given at DEER...

184

Analysis of Three Mile Island-Unit 2 accident  

SciTech Connect (OSTI)

The Nuclear Safety Analysis Center (NSAC) of the Electric Power Research Institute has analyzed the Three Mile Island-2 accident. Early results of this analysis were a brief narrative summary, issued in mid-May 1979 and an initial version of this report issued later in 1979 as noted in the Foreword. The present report is a revised version of the 1979 report, containing summaries, a highly detailed sequence of events, a comparison of that sequence of events with those from other sources, 25 appendices, references and a list of abbreviations and acronyms. A matrix of equipment and system actions is included as a folded insert.

Not Available

1980-03-01T23:59:59.000Z

185

Three Mile Island waste management: a DOE Perspective  

SciTech Connect (OSTI)

The Department of Energy (DOE) is conducting waste management research and development activities which are applicable to the cleanup of the Three Mile Island-Unit 2 nuclear reactor. These activities have enabled DOE to provide timely assistance to General Public Utilities (GPU), the utility owner, the Nuclear Regulatory Commission (NRC), and the State of Pennsylvania in their efforts to quickly and safely clean up the damaged reactor. The DOE has been particularly active in evaluating proposed cleanup systems, providing information on waste characteristics, and advising GPU and NRC as to appropriate disposal methods for the waste generated during the cleanup. A description and discussion of some of these activities is presented.

D'Ambrosia, J.T.

1982-01-01T23:59:59.000Z

186

Integrated defueling system for Three Mile Island Unit 2  

SciTech Connect (OSTI)

The unique clean-up requirements of Three Mile Island Unit 2 have posed first-of-a-kind challenges for the equipment, tools, and operators involved in the defueling effort. Various equipment components and specialty remote tools were designed as an integrated defueling system to provide a means of safely working above the reactor and removing core debris. The basic defueling system consists of support equipment and specialty remote tools for specific operations. This paper describes the different equipment and tools, and explains the key interfaces and features of the integrated defueling system.

Brown, D.A.; Gallagher, R.E.; Rider, R.L.

1986-01-01T23:59:59.000Z

187

Seven Mile, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search| Open EnergySermatecMile, Ohio: Energy

188

Vegetation survey of Pen Branch and Four Mile Creek wetlands  

SciTech Connect (OSTI)

One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

Not Available

1992-10-01T23:59:59.000Z

189

Vegetation survey of Pen Branch and Four Mile Creek wetlands  

SciTech Connect (OSTI)

One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

Not Available

1992-01-01T23:59:59.000Z

190

The relationship between coal quality and coal resource parameters of Powder River and Williston Basin coal, Wyoming, Montana, and North Dakota  

SciTech Connect (OSTI)

Clean, compliant coal from mines in the Northern Rocky Mountain and Great Plains region is utilized as fuel for coal-fired power plants in 26 states. More than 30 percent of the nation`s 1997 production was from Montana, North Dakota, and Wyoming. Production of clean, compliant coal from the region is estimated to increase to 415 million short tons by the year 2015. Studies in this region indicate a relationship between percent sulfur and ash and pounds of SO{sub 2} per million Btu and the resource parameters of coal thickness and overburden. The trends that the authors have observed indicate that both coal quality and the thickness of the coal and associated rocks are controlled by paleoenvironment and depositional setting.

Ellis, M.S.; Stricker, G.D.; Gunther, G.; Ochs, A.M.; Flores, R.M.

1998-12-31T23:59:59.000Z

191

Evaluation of X-ray Diffraction of Bit Cuttings as a Proxy for Core Data in Determining Bulk Mineralogy and Clay Species, Bakken Formation, Williston Basin.  

E-Print Network [OSTI]

??The principal question addressed in this study concerns the applicability of x-ray diffractometry to determine bulk rock mineralogy and clay species in the absence of… (more)

Barnes, Stuart Lee

2011-01-01T23:59:59.000Z

192

Lateral drilling and completion technologies for shallow-shelf carbonates of the Red River and Ratcliffe Formations, Williston Basin. Topical report, July 1997  

SciTech Connect (OSTI)

Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil-well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius lateral in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2,590 to 2,890 m in Richland County, MT; Bowman County, ND; and Harding County, SD. In theory, all of the horizontal drilling techniques explored in this project have merit for application fitting specific criteria. From a realistic point of view, the only relatively trouble-free, adequately-proven technology employed was the medium-radius steered motor/MWD technology. The slim-tool steered motor/MWD re-entry technology has been used extensively but appears to still be significantly in developmental stages. This technology will probably always be more troublesome than the technology used to drill new wells because the smaller diameter required for the tools contributes to both design and operational complexities. Although limited mechanical success has been achieved with some of the lateral jetting technologies and the Amoco tools, their predictability and reliability is unproven. Additionally, they appear to be limited to shallow depths and certain rock types. The Amoco technology probably has the most potential to be successfully developed for routinely reliable, field applications. A comparison of the various horizontal drilling technologies investigated is presented.

Carrell, L.A.; George, R.D.; Gibbons, D.

1998-07-01T23:59:59.000Z

193

Correlation of Paleocene Harmon and Hansen lignite beds, Adams, Billings, Bowman, Golden Valley, Hettinger, and Slope Counties, Williston Basin, North Dakota  

SciTech Connect (OSTI)

In southwestern North Dakota, minable lignite beds in the Paleocene Fort Union Formation include the Harmon and Hansen beds in the Bowman-Gascoyne area. Data from more than 700 drill holes penetrating these beds was used to construct stratigraphic cross sections. The Harmon and Hansen beds are the thickest and most laterally persistent lignites found under < 150 ft of overburden. The Harmon coal bed is as much as 34 ft thick, and is often split by claystone interbeds of variable thickness. The Hansen coal bed typically occurs 10--100 ft below the Harmon coal bed; it rarely attains a thickness of 15 ft, and averages 4 ft in thickness.

Keighin, C.W.; Flores, R.M.; Ochs, A. [Geological Survey, Denver, CO (United States)

1998-12-31T23:59:59.000Z

194

Mapping The Midwest Future Improving Transportation Competitiveness  

E-Print Network [OSTI]

Regina Williston Thunder Bay Thompson 356 mi 438 mi Note: Distances are in road miles The Centre of Development Shipping to Williston from Winnipeg is 20 to 50 per cent cheaper than shipping from other regional

Levinson, David M.

195

Accident at Three Mile Island: the human dimensions  

SciTech Connect (OSTI)

A separate abstract was prepared for each of the 19 chapters, divided according to the following Parts: (1) Public Perceptions of Nuclear Energy; (2) Local Responses to Nuclear Plants; (3) Institutional Responsibilities for Nuclear Energy; (4) The Interaction of Social and Technical Systems; and (5) Implications for Public Policy. All of the abstracts will appear in Energy Abstracts for Policy Analysis (EAPA); three will appear in Energy Research Abstracts (ERA). At the request of the President's Commission on the Accident at Three Mile Island (the Kemeny Commission), the Social Science Research Council commissioned social scientists to write a series of papers on the human dimensions of the event. This volume includes those papers, in revised and expanded form, and a comprehensive bibliography of published and unpublished social science research on the accident and its aftermath.

Sills, D.L.; Wolf, C.P.; Shelanski, V.B. (eds.)

1982-01-01T23:59:59.000Z

196

Hidden costs of the accident at Three Mile Island  

SciTech Connect (OSTI)

It has been possible to identify a significant drop in the performance of Pressurised Water Reactors (PWRs) in the western world following the accident at Three Mile Island (TMI). Although there are indications that the magnitude of the load factor reduction was slightly larger in the U.S., there is nevertheless strong evidence to suggest that the response was felt in all countries with operating PWRs. The effect did not, however, extend to other reactor systems; even the generically similar Boiling Water Reactor (BWR) suffered no drop in output. It is estimated that the costs, worldwide, of this fall in performance are of the same order as the TMI clean-up operation.

Evans, N.

1982-09-01T23:59:59.000Z

197

Three Mile Island accident and post-accident recovery: what did we learn  

SciTech Connect (OSTI)

A description of the accident at Three Mile Island-2 reactor is presented. Activities related to the cleanup and decontamination of the reactor are described.

Collins, E.D.

1982-01-01T23:59:59.000Z

198

SURFACE OF THE EARTH: NORTH AMERICA 2006 IRIS 5-YEAR PROPOSAL Investigating Crust and Mantle Structure with the Florida-to-Edmonton  

E-Print Network [OSTI]

provinces of the continental interior, the Mid-Continent Rift and the Williston Basin. Data quality in Iowa, and the Williston Basin. Beneath FLED in the southern Appalachians, the ratio of surface

Wysession, Michael E.

199

GEOPHYSICAL RESEARCH LETTERS, VOL. 13, NO. 7, PAGES 685-688, JULY 1986 NORTH AMERICAN CENTRAL PLAINS CONDUCTIVITY  

E-Print Network [OSTI]

of the Williston Basin. Introduction The largest and most enigmatic continental-scale struc- ture discovered. Tectonic models, and also extrapolations of Precambrian geology beneath the Williston Basin, that consider

Jones, Alan G.

200

Record pace aids healthier outlook. [North Dakota  

SciTech Connect (OSTI)

North Dakota oil production may set another record in 1984. This may also be the second best year in history for petroleum industry activity in the Williston Basin. Geophysical exploration activities in the Williston Basin are described.

Rountree, R.

1984-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electromagnetics 3: Subsurface Imaging / Case Histories Wed p.m., Nov 13  

E-Print Network [OSTI]

in the control of sedimentary structures within the Williston Basin by basement structures. Accordingly. Pan within the Trans.Hudson orogen by COCORP seismic reflection studies in the Williston Basin just s

Jones, Alan G.

202

John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report  

SciTech Connect (OSTI)

Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since the initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.

Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie [Oregon Department of Fish and Wildlife

2009-07-15T23:59:59.000Z

203

The Potential of Deep Seismic Profiling for Hydrocarbon Exploration _ B. Pinet, C. Bois (Editors) and Editions Technip, Paris 1990, pp. 141-160  

E-Print Network [OSTI]

) and Editions Technip, Paris 1990, pp. 141-160 THE CRUST BENEATH THE INTRACRATONIC WILLISTON BASIN FROM

Jones, Alan G.

204

Drop tests of the Three Mile Island knockout canister  

SciTech Connect (OSTI)

A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests were designed to confirm the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. Work conducted at the Oak Ridge National Laboratory included (1) precise physical measurements of the internal poison rod configuration before assembly, (2) canister assembly and welding, (3) nondestructive examination (an initial hydrostatic pressure test and an x-ray profile of the internals before and after each drop test), (4) addition of a simulated fuel load, (5) instrumentation of the canister for each drop test, (6) fabrication of a cask simulation vessel with a developed and tested foam impact limiter, (7) use of refrigeration facilities to cool the canister to well below freezing prior to three of the drops, (8) recording the drop test with still, high-speed, and normal-speed photography, (9) recording the accelerometer measurements during impact, (10) disassembly and post-test examination with precise physical measurements, and (11) preparation of the final report.

Box, W.D.; Aaron, W.S.; Shappert, L.B.; Childress, P.C.; Quinn, G.J.; Smith, J.V.

1986-09-01T23:59:59.000Z

205

0 20 4010 Miles NOAA Harmful Algal Bloom Operational Forecast System  

E-Print Network [OSTI]

0 20 4010 Miles NOAA Harmful Algal Bloom Operational Forecast System Texas Forecast Region Maps to Sargent BCH NOAA Harmful Algal Bloom Operational Forecast System Texas Forecast Region Maps 0 5 102 Bloom Operational Forecast System Texas Forecast Region Maps 0 5 102.5 Miles West Bay #12;Aransas Bay

206

CedarCreekanticlineCedarCreekanticline Yellowstone River  

E-Print Network [OSTI]

Principal Aquifer Systems in the Williston and Powder River Structural Basins, United States and Canada #12;Cover. Conceptual block diagram of groundwater flow in the Williston structural basin. #12;Conceptual Model of the Uppermost Principal Aquifer Systems in the Williston and Powder River Structural Basins

207

U.S. Department of the Interior U.S. Geological Survey  

E-Print Network [OSTI]

in the Williston and Powder River Structural Basins, United States and Canada #12;Cover. Generalized cross sections in the Williston and Powder River structural basins. #12;Hydrogeologic Framework of the Uppermost Principal Aquifer Systems in the Williston and Powder River Structural Basins, United States and Canada By Joanna N. Thamke

208

U.S. Department of the Interior U.S. Geological Survey  

E-Print Network [OSTI]

Formations, Williston Basin Province, Montana, North Dakota, and South Dakota, 2013 Printed on recycled paper.53 billion barrels of natural gas liquids in the Bakken and Three Forks Formations in the Williston Basin of the Figure 1. Map showing the Williston Basin Province, Bakken Total Petroleum System (TPS), and the Bakken

Torgersen, Christian

209

B3 Trains Problem Statement The train problem assumes a circular track 101 miles in circumference. The track is labeled clockwise in  

E-Print Network [OSTI]

B3 Trains ­ Problem Statement The train problem assumes a circular track 101 miles in circumference be at the same spot as mile 0. One train starts at mile 0 going clockwise, another train starts at mile 100 going counterclockwise. The program prompts for speeds of each train in mph. The output is the mile (or fraction

Huth, Michael

210

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development  

Broader source: Energy.gov [DOE]

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

211

960 x 932 km (576 x 559.2 miles) As big across as Texas  

E-Print Network [OSTI]

of Liberty! 25143 Itokowa 0.54 x 0.27 x .21 km (0.324 x 0.162 x 0.126 miles) size of the Golden Gate Bridge

Waliser, Duane E.

212

Regulations for Gas Transmission Lines Less than Ten Miles Long (New York)  

Broader source: Energy.gov [DOE]

Any person who wishes to construct a gas transmission line that is less than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of...

213

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York)  

Broader source: Energy.gov [DOE]

Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and...

214

Autonomous personal vehicle for the first- and last-mile transportation services  

E-Print Network [OSTI]

This paper describes an autonomous vehicle testbed that aims at providing the first- and last- mile transportation services. The vehicle mainly operates in a crowded urban environment whose features can be extracted a ...

Chong, Z. J.

215

ILLINOIS STATE GEOLOGICAL SURVEY Interior Cratonic Basins, 1991, edited by M. W. Leighton, D. R. Kalata, D. F. Oltz,  

E-Print Network [OSTI]

) by that year. Significant quantities of petroleum are produced from fields widely separated from known oil sources. These oils apparently migrated laterally over paths of many tens of miles and perhaps more than reservoirs more than 125 mi (200 km) from the basin's depocenter, were derived from Devonian source rocks

Bethke, Craig

216

1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion  

SciTech Connect (OSTI)

Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

Hall, D.

1982-07-01T23:59:59.000Z

217

Hydrogeological restrictions to saline ground-water discharge in the Red River of the North drainage basin, North Dakota  

SciTech Connect (OSTI)

Discharge of saline water from bedrock aquifers along the eastern margin of the Williston basin is restricted by surficial glacial till and lacustrine deposits in the Red River of the North drainage basin. Water from these aquifers reaches the surface by (1) diffusion; (2) slow, upward seepage along zones of relatively larger hydraulic conductivity in the till and lacustrine deposits; or (3) flow from artesian wells. Ground-water quality varies near the surface because of mixing of water being discharged from bedrock aquifers with shallower ground water in the surficial deposits. Ground-water quality, hydraulic-gradient, and hydraulic-conductivity data obtained from pumped-well and slug tests indicate that flow in the surficial deposits is eastward, but at slow rates because of small hydraulic conductivities. Base-flow and specific-conductance measurements of water in tributaries to the Red River of the North indicate that focused points of ground-water discharge result in substantial increases in salinity in surface water in the northern part of the basin in North Dakota. Core analyses and drillers' logs were used to generalize hydrogeologic characteristics of the deposits in the basin, and a two-dimensional ground-water-flow model was used to simulate the basin's geohydrologic processes. Model results indicate that the ground-water flow paths in the bedrock aquifers and surficial deposits converge, and that water from the bedrock aquifers contributes to the overall increase in ground-water discharge toward the east. Model results are supported by water-quality data collected along an east-west hydrogeologic section.

Strobel, M.L. (Geological Survey, Grand Forks, ND (United States) Univ. of North Dakota, Grand Forks, ND (United States))

1992-01-01T23:59:59.000Z

218

U.S. Department of the Interior U.S. Geological Survey  

E-Print Network [OSTI]

Resource Assessment of the Bakken and Three Forks Formations Williston Basin Province Montana, North Dakota and Production 6.9 billion barrels of oil consumption by U.S. annually (EIA) Production to date1 Williston of oil ~22% of Williston Basin production has been from the Bakken-Three Forks 1: Production numbers

Torgersen, Christian

219

Water Basins Civil Engineering  

E-Print Network [OSTI]

Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

Provancher, William

220

Grand Ronde Basin Fish Habitat Enhancement Project, 2008 Annual Report.  

SciTech Connect (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing the opportunities for natural fish production within the basin. This project originally provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented under revisions of the Fish and Wild Program as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires considerable time be spent developing rapport with landowners to gain acceptance, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources, is the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and coordinated by the Grande Ronde Model Watershed Program (Project. No. 199202601). Work undertaken during 2008 included: (1) completing 1 new fencing project in the North Fork John Day subbasin that protects 1.82 miles of stream and 216.2 acres of habitat, and 1 fencing project in the Wallowa subbasin that protects an additional 0.59 miles of stream and 42.5 acres of habitat; (2) constructing 0.47 miles of new channel on the Wallowa river to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) planting 10,084 plants along 0.5 miles of the Wallowa Riverproject; (4) establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; and (7) completed a comprehensive project summary report to the Independent Scientific Review panel (ISRP) that provided our conclusions regarding benefits to focal species, along with management recommendations for the future. Since initiation of this program 57 individual projects have been implemented, monitoring and maintained along 84.9 miles of anadromous fish bearing streams, that protect and enhance 3,564 acres of riparian and instream habitat.

McGowan, Vance R.; Morton, Winston H. [Oregon Department of Fish and Wildlife] [Oregon Department of Fish and Wildlife

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint  

SciTech Connect (OSTI)

Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

2011-01-01T23:59:59.000Z

222

Facebook, Twitter and Google Plus for Breaking News: Is there a winner? Miles Osborne  

E-Print Network [OSTI]

Facebook, Twitter and Google Plus for Breaking News: Is there a winner? Miles Osborne School Media have be- gun to carry news. Here we examine how Facebook, Google Plus and Twitter report Facebook or Google Plus. Face- book and Google Plus largely repost newswire stories and their main research

Osborne, Miles

223

Modeling the Last Mile of the Smart Grid G.A. Pagani  

E-Print Network [OSTI]

Modeling the Last Mile of the Smart Grid G.A. Pagani Johann Bernoulli Institute of Mathematics in the grid and allowing for micro-production to be part of the smart grid. Such changes will have a major- archical, unidirectional and capillary, though the new smart grid scenario calls for an infrastructure

Aiello, Marco

224

Crisis contained, The Department of Energy at Three Mile Island: a history  

SciTech Connect (OSTI)

An account is given of the response of US DOE to the Three Mile Island-2 accident on March 28, 1979. The accident is treated as though it was a military battle. A synoptic chronologgy of the accident events and of DOE and other responses is included. (DLC)

Cantelon, P L; Williams, R C

1980-12-01T23:59:59.000Z

225

River Basin Commissions (Indiana)  

Broader source: Energy.gov [DOE]

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

226

Answers to frequently asked questions about cleanup activities at Three Mile Island, Unit 2. Public information report  

SciTech Connect (OSTI)

The document presents answers to frequently asked questions about plans for cleanup and decontamination activities at Three Mile Island, Unit 2. Answers to the questions asked are based on information in the NRC 'Draft Programmatic Environmental Impact Statement related to decontamination and disposal of radioactive wastes resulting from March 28, 1979, accident, Three Mile Island Nuclear Station, Unit 2,' NUREG-0683.

Not Available

1980-09-01T23:59:59.000Z

227

Robin Miles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »SubmitterJ. NorbyN. Compton (1995)RobertV.Robin

228

K Basin safety analysis  

SciTech Connect (OSTI)

The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

Porten, D.R.; Crowe, R.D.

1994-12-16T23:59:59.000Z

229

Greater commitment needed to solve continuing problems at Three Mile Island. Report to the Congress  

SciTech Connect (OSTI)

The Nation's first major accident at a commercial nuclear-powered electricity generating station occurred at Three Mile Island over 2 years ago, yet the resolution of the resultant problems is still subject to regulatory and financial uncertainty. Consequently, little progress has been made to clean up the damaged facility or alleviate the extreme financial stress placed upon its owners. The remedies required to resolve the continuing problems at Three Mile Island will require unprecedented coordination and commitment by Federal and State regulatory bodies, the electric utility industry, the financial community, and the owners of the damaged facility. To safeguard against similar problems in the future, the Nuclear Regulatory Commission should develop accident recovery guidelines and ensure that increased property insurance coverage is available for nuclear facilities.

Not Available

1981-08-26T23:59:59.000Z

230

Criticality prevention during postaccident decontamination of TMI-2 (Three Mile Island Unit 2) plant systems  

SciTech Connect (OSTI)

Following the accident at Three Mile Island Unit 2 (TMI-2), the likelihood of a criticality outside of the reactor coolant system (RCS) during the plant cleanup was very small. Given the consequence of any possible critical event in the TMI-2 systems, However, it was always necessary to ensure that all steps were taken to prevent criticality. Therefore, engineered controls were developed to ensure that decontamination of plant systems containing fuel material could be conducted in a manner that precluded criticality.

Palau, G. L.

1988-01-01T23:59:59.000Z

231

Answers to questions about updated estimates of occupational radiation doses at Three Mile Island, Unit 2  

SciTech Connect (OSTI)

The purpose of this question and answer report is to provide a clear, easy-to-understand explanation of revised radiation dose estimates which workers are likely to receive over the course of the cleanup at Three Mile Island, Unit 2, and of the possible health consequences to workers of these new estimates. We will focus primarily on occupational dose, although pertinent questions about public health and safety will also be answered.

Not Available

1983-12-01T23:59:59.000Z

232

The determination of settling velocities for sewage sludge disposed at 106-Mile Site  

E-Print Network [OSTI]

THE DBTERMZNATZON OF SETTLING VELOCZTZES FOR SEWAGE SLUDGE DZSPOSED AT 106-MILE SITE A Thesis by DANIEL SAUL HERNANDEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of requirements for the degree... of MASTER OF SCIENCE December 1991 Major Subject: Civil Engineering THB DETERMZNATZON OF SBTTLZNG VELOCZTZES FOR SEWAGE SLUDGE DZSPOSBD AT 106-MZLE SZTB A Thesis by DANIEL SAUL HERNANDEZ Approved as to style and content by: James S. Bonner '(Chair...

Hernandez, Daniel Saul

1991-01-01T23:59:59.000Z

233

Umatilla River Basin Anadromus Fish Habitat Enhancement Project : 1994 Annual Report.  

SciTech Connect (OSTI)

The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, Section 7.6-7.8 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower l/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994-95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation. Four 15 year riparian easements and two right-of-way agreements were secured for enhancement of one river mile on Wildhorse Creek and l/2 river mile on Meacham Creek. Enhancements implemented between river mile (RM) 9.5 and RM 10.5 Wildhorse Creek included: (1) installation of 1.43 miles of smooth wire high tensile fence line and placement of 0.43 miles of fence posts and structures to restrict livestock from the riparian corridor, (2) construction of eighteen sediment retention structures in the stream channel to speed riparian recovery by elevating the stream grade, slowing water velocities and depositing sediments onto streambanks to provide substrate for revegetation, and (3) revegetation of the stream corridor, terraces and adjacent pasture areas with 644 pounds of native grass seed (when commercially available) or close species equivalents and 4,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Three hundred pounds of native grass/legume seed (including other grasses/legumes exhibiting native species characteristics) were broadcast in existing Boston Canyon Creek, Meacham Creek and Umatilla River project areas. The addition of two properties into the project area between RM 4.25 and RM 4.75 Meacham Creek during the 1995-96 work period will provide nearly complete project coverage of lower Meacham Creek corridor areas on the Reservation. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and photo documentation of riparian recovery within the project areas provided additional baseline data. Physical habitat surveys continued to be conducted to characterize habitat quality and to quantify various habitat types by area. This information will be utilized to assist in identification of habitat deficient areas within the watershed in which to focus habitat restoration efforts. These efforts were coordinated with the CTUIR Umatilla Basin Natural Production Monitoring and Evaluation (UBNPME) Project. Poor land use practices, which have altered natural floodplain dynamics and significantly reduced or eliminated fisheries habitat, continued to be identified in the Mission Creek Subbasin. Complied data is currently being incorporated into a data layer for a Geographic Information System (GIS) data base. This effort is being coordinated with the Natural Resource Conservation Service (NRCS). Community outreach efforts and public education opportunities continued during the reporting period. CTUIR cooperatively sponsored a bioengineering workshop on February 23, 1995 with the Oregon De

Shaw, R. Todd

1994-05-01T23:59:59.000Z

234

K Basins Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

WEBB, R.H.

1999-12-29T23:59:59.000Z

235

K Basin Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

236

EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana , Hettinger, North Dakota , and New Underwood , South Dakota , in Custer and Fallon Counties in Montana, Adams , Bowman , and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

237

Laboratory measurement verification of laser hazard analysis for miles weapon simulators used in force on force exercises.  

SciTech Connect (OSTI)

Due to the change in the batteries used with the Small Arm Laser Transmitters (SALT) from 3-volts dc to 3.6-volts dc and changes to SNL MILES operating conditions, the associated laser hazards of these units required re-evaluation to ensure that the hazard classification of the laser emitters had not changed as well. The output laser emissions of the SNL MILES, weapon simulators and empire guns, used in Force-On-Force (FOF) training exercises, was measured in accordance to the ANSI Standard Z136.4-2005, ''Recommended Practice for Laser Safety Measurements for Hazard Evaluation''. The laser hazard class was evaluated in accordance with the ANSI Standard Z136.1-2000, ''Safe Use of Lasers'', using ''worst'' case conditions associated with these MILES units. Laser safety assessment was conducted in accordance with the ANSI Standard Z136.6-2005, ''Safe Use of Lasers Outdoors''. The laser hazard evaluation of these MILES laser emitters was compared to and supersedes SAND Report SAND2002-0246, ''Laser Safety Evaluation of the MILES and Mini MILES Laser Emitting Components'', which used ''actual'' operating conditions of the laser emitters at the time of its issuance.

Augustoni, Arnold L.

2006-08-01T23:59:59.000Z

238

Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.  

SciTech Connect (OSTI)

On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream and 22.9 acres of habitat; (2) Conducting instream work activities in 3 streams to enhance habitat and/or restore natural channel dimensions, patterns or profiles; (3) Planting 31,733 plants along 3.7 stream miles, (4) Establishing 71 new photopoints and retaking 254 existing photopoint pictures; (5) Monitoring stream temperatures at 12 locations on 6 streams; (6) Completing riparian fence, water gap and other maintenance on 100.5 miles of project fences. Since initiation of the project in 1984 over 68.7 miles of anadromous fish bearing streams and 1,933 acres of habitat have been protected, enhanced and maintained.

McGowan, Vance

2003-08-01T23:59:59.000Z

239

K Basin Hazard Analysis  

SciTech Connect (OSTI)

The K East (KE)/K West (KW) Basins in the 100 K Area of the Hanford Site have been used for storage of irradiated N Reactor and single-pass reactor fuel. Remaining spent fuel is continuing to be stored underwater in racks and canisters in the basins while fuel retrieval activities proceed to remove the fuel from the basins. The Spent Nuclear Fuel (SNF) Project is adding equipment to the facility in preparation for removing the fuel and sludge from the basins In preparing this hazard analysis, a variety of hazard analysis techniques were used by the K Basins hazard analysis team, including hazard and operability studies, preliminary hazard analyses, and ''what if'' analyses (WHC-SD-SNF-PHA-001, HNF-2032, HNF-2456, and HNF-SD-SNF-SAD-002). This document summarizes the hazard analyses performed as part of the safety evaluations for the various modification projects and combines them with the original hazard analyses to create a living hazard analysis document. As additional operational activities and modifications are developed, this document will be updated as needed to ensure it covers all the hazards at the K Basins in a summary form and to ensure the subsequent safety analysis is bounding. This hazard analysis also identifies the preliminary set of design features and controls that the facility could rely on to prevent or reduce the frequency or mitigate consequences of identified accident conditions based on their importance and significance to safety. The operational controls and institutional programs relied on for prevention or mitigation of an uncontrolled release are identified as potential technical safety requirements. All operational activities and energy sources at the K Basins are evaluated in this hazard analysis. Using a systematic approach, this document identifies hazards created by abnormal operating conditions and external events (e.g., earthquakes) that have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and complies with the requirements of 10 CFR 830.

SEMMENS, L.S.

2001-04-20T23:59:59.000Z

240

Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery  

SciTech Connect (OSTI)

Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

Layne Pincock; Wendell Hintze; Dr. Koji Shirai

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sequence stratigraphy, depositional environments, and regional mapping of the late Devonian interval, upper Three Forks Formation, Sanish Member, and lower Bakken Shale, U.S. portion of the Williston Basin.  

E-Print Network [OSTI]

??Cores of the Late Devonian upper Three Forks, Sanish, and lower Bakken units from eight wells were examined and described at the North Dakota core… (more)

Sesack, Steven A.

2011-01-01T23:59:59.000Z

242

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Valley City, ND Identification and Evaluation of Residual Oil Zones (ROZs) in the Williston and Powder River Basins This assessment will attempt to identify and rank...

243

E-Print Network 3.0 - arc borborema province Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centre de mathmatiques Collection: Mathematics 23 Trans-Hudson orogen and Williston basin in Montana and North Dakota: New COCORP deep-profiling results Summary: that...

244

EA-1635: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

35: Final Environmental Assessment EA-1635: Final Environmental Assessment Williston to Tioga Transmission Line Project Pre-Approval Review Basin Electric Power Cooperative (BEPC)...

245

Gas plants, new fields spark production rise  

SciTech Connect (OSTI)

Gas plant construction is welcomed by operators in the Williston Basin, North Dakota. Petroleum and gas production has increased. The Montana portion of the Williston Basin shows new discoveries. Some secondary recovery efforts are in operation. Industrial officials share the same enthusiasm and optimism for rising production as they do for exploration potential in the basin. 5 tables.

Lenzini, D.

1980-04-01T23:59:59.000Z

246

Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of {sup 238}U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site.

Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

1997-08-01T23:59:59.000Z

247

Greater commitment needed to solve continuing problems at Three Mile Island  

SciTech Connect (OSTI)

This report examines several key issues involving the financial status of the General Public Utilities Corporation, the need for and source of funding to clean up the damaged nuclear reactor at Three Mile Island, and the prospects for continued reliable electric service to Pennsylvania and New Jersey consumers. It also examines bankruptcy as a solution to the utilities' financial problems, and the need for (1) increased property damage insurance coverage on nuclear reactors, and (2) an improved regulatory environment for nuclear accident recovery efforts. The role of the Federal Government in the accident recovery effort and Congressional support for a Federal research and development program are discussed. It is recommended that the Nuclear Regulatory Commission follow the expansion of property insurance coverage for nuclear units by the private sector and develop guidelines to expedite any future accident recovery efforts.

Not Available

1981-08-26T23:59:59.000Z

248

Analysis of the Three Mile Island Unit 2 hydrogen burn. Volume 4  

SciTech Connect (OSTI)

As a basis for the analysis of the hydrogen burn which occurred in the Three Mile Island Containment on March 28, 1979, a study of recorded temperatures and pressures was made. Long-term temperature information was obtained from the multipoint temperature recorder which shows 12 containment atmosphere temperatures plotted every 6 min. The containment atmosphere pressure recorder provided excellent long- and short-term pressure information. Short-term information was obtained from the multiplex record of 24 channels of data, recorded every 3 sec, and the alarm printer record which shows status change events and prints out temperatures, pressures, and the time of the events. The timing of these four data recording systems was correlated and pertinent data were tabulated, analyzed, and plotted to show average containment temperature and pressure versus time. Photographs and videotapes of the containment entries provided qualitative burn information.

Henrie, J.O.; Postma, A.K.

1983-03-01T23:59:59.000Z

249

Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon- Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

250

ADVANCED CHEMISTRY BASINS MODEL  

SciTech Connect (OSTI)

The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2004-05-01T23:59:59.000Z

251

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

2002-11-10T23:59:59.000Z

252

EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia  

Broader source: Energy.gov [DOE]

DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

253

Susquehanna River Basin Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

254

Rappahannock River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

255

Lessons learned from the Three Mile Island Unit 2 Advisory Panel  

SciTech Connect (OSTI)

In response to public concern about the cleanup of the Three Mile Island, Unit 2 (TMI-2) facility after an accident on March 28, 1979 involving a loss of reactor coolant and subsequent damage to the reactor fuel, twelve citizens were asked to serve on an independent Advisory Panel to consult with the Nuclear Regulatory Commission (NRC) on the decontamination and cleanup of the facility. The panel met 78 times over a period of thirteen years, holding public meetings in the vicinity of TMI-2 and meeting regularly with NRC Commissioners in Washington, DC. This report describes the results of a project designed to identify and describe the lessons learned from the Advisory Panel and place those lessons in the context of what we generally know about citizen advisory groups. A summary of the empirical literature on citizen advisory panels is followed by a brief history of the TMI-2 Advisory Panel. The body of the report contains the analysis of the lessons learned, preliminary conclusions about the effectiveness of the Panel, and implications for the NRC in the use of advisory panels. Data for the report include meeting transcripts and interviews with past and present Panel participants.

Lach, D.; Bolton, P.; Durbin, N. [Battelle Seattle Research Center, WA (United States); Harty, R. [Pacific Northwest Lab., Richland, WA (United States)

1994-08-01T23:59:59.000Z

256

Heatup of the TMI-2 (Three Mile Island Unit 2) lower head during core relocation  

SciTech Connect (OSTI)

According to current perceptions of the Three Mile Island Unit 2 (TMI-2) accident, corium largely relocated into the reactor vessel lower head at {approximately}224 min into the accident. Defueling examinations have revealed that the corium relocated from the molten core region to the lower head predominantly by way of drainage through the core former region (CFR) located between the vertical baffle plates immediately surrounding the fuel assemblies and the core barrel. An analysis has been carried out to assess the heatup of the reactor vessel lower head during the core relocation event, particularly the potential for a melting attack on the lower head wall and the in-core instrument nozzle penetration weldments. The analysis employed the THIRMAL computer code developed at Argonne National Laboratory (ANL) to predict the breakup and quenching or corium jets under film boiling conditions as well as the size distributions and quenching of the resultant molten droplets. The transient heatup and ablation of the vessel wall and penetration weldments due to impinging corium jets was calculated using the MISTI computer code.

Wang, S.K.; Sienicki, J.J.; Spencer, B.W. (Argonne National Laboratory, IL (USA))

1989-11-01T23:59:59.000Z

257

Evaluation of special safety issues associated with handling the Three Mile Island Unit 2 core debris  

SciTech Connect (OSTI)

This document reports the results of recent tests and analyses evaluating safety concerns relating to Three Mile Island Unit 2 (TMI-2) core debris pyrophoricity, radiolytic hydrogen and oxygen, and the potential for steam generation in shipping canisters during a fire. Recommendations drawn from these results include the following: (1) hydrogen-oxygen recombiners should be installed in each core debris canister, (2) water should be removed from each canister by drip drying (no vacuum pumping is required), (3) the maximum weight of the loaded, dewatered canisters and the minimum volume of gas/vapor in each canister should be controlled and measured by weighting before and after dewatering, (4) a cover gas of approximately two atmospheres of argon should be added to each canister, (5) each canister should be weighed and pressure checked prior to shipping, (6) the shipping cask should be designed to limit the temperature of the canister contents after the standard hypothetical accident (fire) such that the design pressure of the canister/cask will not be exceeded, (7) provisions should be made for canister venting during long-term storage and for cask venting in the event of an overpressure condition resulting from an ''extended'' fire, and (8) some pyrophoricity testing of samples taken during defueling should be conducted to assure adequate safety-related information during canister opening.

Henrie, J.O.; Appel, J.N.

1985-06-01T23:59:59.000Z

258

A slow comeback (clean up at the damaged Three Mile Island Unit 2 reactor)  

SciTech Connect (OSTI)

This article reports on the progress that has been made in cleaning up the damaged Three Mile Island Unit 2 reactor, with radioactive debris present not only in the reactor core, but throughout the primary cooling system. Delays in the cleanup operation have been caused by extraordinary technical challenges, regulatory procedures, and funding shortages. The initial stabilization and decontamination of the containment building, which included the removal and processing of the radioactive water, are essentially complete. Reactor disassembly and defueling have yet to begin. The NRC has reported that radiation doses at Unit 2 since the accident have been lower than those experienced at operating reactors, but the estimates for the collective radiation exposure for the work force have recently increased. The NRC has proposed that if robotic devices are used in the defueling and decontamination processes, work-force exposure could be cut by more than half. The projected completion rates for defueling Unit 2 and decontaminating the containment building now range from 1990 to past the year 2000. A five-part inspection program was conducted that included the use of video and sonar probes inside the reactor vessel, and the gathering of debris samples from the core.

Adam, J.A.

1984-04-01T23:59:59.000Z

259

Evaluation of the Three Mile Island Unit 2 reactor building decontamination process  

SciTech Connect (OSTI)

Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation.

Dougherty, D.; Adams, J. W.

1983-08-01T23:59:59.000Z

260

Historical summary of the Three Mile Island Unit 2 core debris transportation campaign  

SciTech Connect (OSTI)

Transport of the damaged core materials from the Unit 2 reactor of the Three Mile Island Nuclear Power Station (TMI-2) to the Idaho National Engineering Laboratory (INEL) for examination and storage presented many technical and institutional challenges, including assessing the ability to transport the damaged core; removing and packaging core debris in ways suitable for transport; developing a transport package that could both meet Federal regulations and interface with the facilities at TMI-2 and the INEL; and developing a transport plan, support logistics, and public communications channels suited to the task. This report is a historical summary of how the US Department of Energy addressed those challenges and transported, received, and stored the TMI-2 core debris at the INEL. Subjects discussed include preparations for transport, loading at TMI-2, institutional issues, transport operations, receipt and storage at the INEL, governmental inquiries/investigations, and lessons learned. Because of public attention focused on the TMI-2 Core Debris Transport Program, the exchange of information between the program and public was extensive. This exchange is a focus for parts of this report to explain why various operations were conducted as they were and why certain technical approaches were employed. And, because of that exchange, the program may have contributed to a better public understanding of such actions and may contribute to planning and execution of similar future actions.

Schmitt, R.C.; Tyacke, M.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Quinn, G.J. [Wastren, Inc., Germantown, MD (United States)

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Estimating commercial truck VMT (vehicle miles of travel) of interstate motor carriers: Data evaluation  

SciTech Connect (OSTI)

This memorandum summarizes the evaluation results of six data sources in terms of their ability to estimate the number of commercial trucks operating in interstate commerce and their vehicle miles of travel (VMT) by carrier type and by state. The six data sources are: (1) Truck Inventory and Use Survey (TIUS) from the Bureau of the Census, (2) nationwide truck activity and commodity survey (NTACS) from the Bureau of the Census, (3) National Truck Trip Information Survey (NTTIS) from the University of Michigan Transportation Research Institute (UMTRI), (4) highway performance monitoring system (HPMS) from the Federal Highway Administration (FHWA), Department of Transportation, (5) state fuel tax reports from each individual state and the international fuel tax agreement (IFTA), and (6) International Registration Plan (IRP) of the American Association of Motor Vehicle Administrators (AAMVA). TIUS, NTACS, and NTTIS are designed to provide data on the physical and operational characteristics of the Nation's truck population (or sub-population); HPMS is implemented to collect information on the physical and usage characteristics of various highway systems; and state fuel tax reports and IRP are tax-oriented registrations. 16 figs., 13 tabs.

Hu, P.S.; Wright, T.; Miaou, Shaw-Pin; Beal, D.J.; Davis, S.C. (Oak Ridge National Lab., TN (USA); Tennessee Univ., Knoxville, TN (USA))

1989-11-01T23:59:59.000Z

262

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2001.  

SciTech Connect (OSTI)

The John Day River is the nation's second longest free-flowing river in the contiguous United States, which is entirely unsupplemented for it's runs of anadromous fish. Located in eastern Oregon, the John Day Basin drains over 8,000 square miles, is Oregon's fourth largest drainage basin, and the basin incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the mainstem John Day River flows 284 miles in a northwesterly direction entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon, summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The Majority of the John Day Basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in John Day to coordinate basin restoration projects, monitoring, planning, and other watershed restoration activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), also located in John Day, who subcontracts the majority of the construction implementation activities for these restoration projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2001, the JDBO and GSWCD continued their successful partnership between the two agencies and basin landowners to implement an additional ten (10) watershed conservation projects. The project types include permanent lay flat diversions, pump stations, and return-flow cooling systems. Project costs in 2001 totaled $572,766.00 with $361,966.00 (67%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources, such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board (OWEB), and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2002-12-01T23:59:59.000Z

263

Thermal springs in the Payette River basin, west-central Idaho  

SciTech Connect (OSTI)

The Payette River basin, characterized by steep, rugged mountains and narrow river valleys, occupies an area of about 3300 square miles in west-central Idaho. Predominant rock types in the basin include granitic rocks of the Idaho batholith and basalt flows of the Columbia River Basalt Group. Waters from thermal springs in the basin, temperatures of which range from 34/sup 0/ to 86/sup 0/ Celsius, are sodium bicarbonate type and are slightly alkaline. Dissolved-solids concentrations range from 173 to 470 milligrams per liter. Reservoir temperatures determined from the sodium-potassium-calcium, silicic acid-corrected silica, and sulfate-water isotope geothermometers range from 53/sup 0/ to 143/sup 0/ Celsius. Tritium, present in concentrations between 0 and 2 tritium units, indicate that sampled thermal waters are at least 100 years and possibly more than 1000 years old. Stable-isotope data indicate it is unlikely any of the nonthermal waters sampled are representative of precipitation that recharges the thermal springs in the basin. Thermal springs discharged about 5700 acre-feet of water in 1979. Associated convective heat flux is 1.1 x 10/sup 7/ calories per second.

Lewis, R.E.; Young, H.W.

1980-10-01T23:59:59.000Z

264

Advanced Chemistry Basins Model  

SciTech Connect (OSTI)

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

265

RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN  

SciTech Connect (OSTI)

Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

Robert Caldwell

1998-04-01T23:59:59.000Z

266

HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K-AREA  

SciTech Connect (OSTI)

This paper discusses selecting and Implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water, sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal. The U. S. Department of Energy's (DOE) Hanford Site is considered the world's largest environmental cleanup project. The site covers 1,517 Km{sup 2} (586 square miles) along the Columbia River in an arid region of the northwest United States (U.S.). Hanford is the largest of the US former nuclear defense production sites. From the World War II era of the mid-1940s until the late-1980s when production stopped, Hanford produced 60 percent of the plutonium for nuclear defense and, as a consequence, produced a significant amount of environmental pollution now being addressed. Spent nuclear fuel was among the major challenges for DOE's environmental cleanup mission at Hanford. The end of production left Hanford with about 105,000 irradiated, solid uranium metal fuel assemblies--representing approximately 2,100 metric tons (80 percent of DOE's spent nuclear fuel). The fuel was ultimately stored in the K Basins water-filled, concrete basins attached to Hanford's K East (KE) and K West (KW) reactors. K Basin's fuel accounted for 95 percent of the total radioactivity in Hanford's former reactor production areas. Located about 457 meters (500 yards) from the Columbia River, the K Basins are two indoor, rectangular structures of reinforced concrete; each filled with more than 3.8 million liters (one million gallons) of water that has become highly contaminated with long-lived radionuclides. At the KW Basin, fuel was packaged and sealed in canisters. At the KE Basin, fuel was stored in open canisters that were exposed to water in the basin. The irradiated spent nuclear fuel corroded during long-term, wet storage; resulting in thousands of fuel assemblies becoming severely corroded and/or damaged. Corrosion, especially in the KE Basin, contributed to the formation of a layer of radioactive sludge in the basins. Sludge removal is now progressing and will be followed by dewatering and dispositioning the concrete structures. The DOE Richland Operations Office (RL) has given Fluor Hanford Inc./Fluor Government Group (Fluor) the task of preparing Hanford's K Basins for decontamination and disposal. Prior to dewatering, hydrolasing will be used to decontaminate the basin surfaces to prepare them for disposal. By removing highly contaminated surface layers of concrete, hydrolasing will be used to meet the dose objectives for protecting workers and complying with regulations for transporting demolition debris. Fluor has innovated, tested, and planned the application of the hydrolasing technology to meet the challenge of decontaminating highly radioactive concrete surfaces underwater. Newly existing technology is being adapted to this unique challenge.

CHRONISTER, G.B.

2005-06-14T23:59:59.000Z

267

Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System  

SciTech Connect (OSTI)

Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

Oliveira Neto, Francisco Moraes [ORNL] [ORNL; Chin, Shih-Miao [ORNL] [ORNL; Hwang, Ho-Ling [ORNL] [ORNL

2013-01-01T23:59:59.000Z

268

Utilization of the atmospheric release advisory capability (ARAC) services during and after the Three Mile Island accident  

SciTech Connect (OSTI)

At 0820 PST on 28 March 1979, the Department of Energy's Emergency Operations Center advised the Atmospheric Release Advisory Capability (ARAC) that the Three Mile Island nuclear power plant in Harrisburg, Pennsylvania, had experienced an accident some four hours earlier, resulting in the atmospheric release of xenon-133 and krypton-88. This report describes ARAC's response to the Three Mile Island accident, including the role ARAC played throughout the 20 days that real-time assessments were made available to the Department of Energy on-scene commander. It also describes the follow-up population-dose calculations performed for the President's Commission on Three Mile Island. At the request of the Nuclear Regulatory Commission, a questionnaire addressing the usefulness of ARAC products during the accident was sent to ARAC-product users. A summary of the findings from this questionnaire, along with recommendations for improving ARAC service, is also presented. The accident at Mississauga, Ontario, Canada, is discussed in the context of a well-planned emergency response by local and Federal officials.

Knox, J.B.; Dickerson, M.H.; Greenly, G.D.; Gudiksen, P.H.; Sullivan, T.J.

1980-07-01T23:59:59.000Z

269

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : 2003 Annual Report.  

SciTech Connect (OSTI)

The John Day is the nation's second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, Oregon's fourth largest drainage basin, and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, westslope cutthroat, and redband and bull trout, the John Day system is truly a basin with national significance. The majority of the John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) formed a partnership with the Grant Soil and Water Conservation District (GSWCD), which contracts the majority of the construction implementation activities for these projects from the JDBO. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2003, the JDBO and GSWCD proposed continuation of their successful partnership between the two agencies and basin landowners to implement an additional twelve (12) watershed conservation projects. The types of projects include off channel water developments, juniper control, permanent diversions, pump stations, and return-flow cooling systems. Due to funding issues and delays, permitting delays, fire closures and landowner contracting problems, 2 projects were canceled and 7 projects were rescheduled to the 2004 construction season. Project costs in 2003 totaled $115,554.00 with a total amount of $64,981.00 (56%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Oregon Watershed Enhancement Board, the U.S. Fish & Wildlife Service Partners in Wildlife Program and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2004-02-27T23:59:59.000Z

270

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office : Watershed Restoration Projects : Annual Report, 2000.  

SciTech Connect (OSTI)

The John Day is the second longest free-flowing river in the contiguous United States and the longest containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles--Oregon's third largest drainage basin--and incorporates portions of eleven counties. Originating in the Strawberry Mountains near Prairie City, the John Day River flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring Chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly a basin with national significance. Most all of the entire John Day basin was ceded to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the Basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Using funding from the Bonneville Power Administration, Bureau of Reclamation, and others, the John Day Basin Office (JDBO) subcontracts the majority of its construction implementation activities with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of most projects. The JDBO completes the planning, grant solicitation/review, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 2000, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional six watershed conservation projects funded by the BPA. The types of projects include permanent diversions, pump stations, and return-flow cooling systems. Project costs in 2000 totaled $533,196.00 with a total amount of $354,932.00 (67%) provided by the Bonneville Power Administration and the remainder coming from other sources such as the BOR, Oregon Watershed Enhancement Board, and individual landowners.

Confederated Tribes of the Warm Springs Reservation of Oregon. John Day Basin Office.

2001-03-01T23:59:59.000Z

272

Rivanna River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

273

The Confederated Tribes of the Warm Springs Indian Reservation of Oregon John Day Basin Office: FY 1999 Watershed Restoration Projects : Annual Report 1999.  

SciTech Connect (OSTI)

The John Day River is the second longest free-flowing river in the contiguous United States and one of the few major subbasins in the Columbia River basin containing entirely unsupplemented runs of anadromous fish. Located in eastern Oregon, the basin drains over 8,000 square miles, the fourth largest drainage area in Oregon. With its beginning in the Strawberry Mountains near the town of Prairie City, the John Day flows 284 miles in a northwesterly direction, entering the Columbia River approximately four miles upstream of the John Day dam. With wild runs of spring chinook salmon and summer steelhead, red band, westslope cutthroat, and redband trout, the John Day system is truly one of national significance. The entire John Day basin was granted to the Federal government in 1855 by the Confederated Tribes of the Warm Springs Reservation of Oregon (Tribes). In 1997, the Tribes established an office in the basin to coordinate restoration projects, monitoring, planning and other watershed activities on private and public lands. Once established, the John Day Basin Office (JDBO) initiated contracting the majority of its construction implementation actions with the Grant Soil and Water Conservation District (GSWCD), also located in the town of John Day. The GSWCD completes the landowner contact, preliminary planning, engineering design, permitting, construction contracting, and construction implementation phases of the projects. The JDBO completes the planning, grant solicitation/defense, environmental compliance, administrative contracting, monitoring, and reporting portion of the program. Most phases of project planning, implementation, and monitoring are coordinated with the private landowners and basin agencies, such as the Oregon Department of Fish and Wildlife and Oregon Water Resources Department. In 1999, the JDBO and GSWCD proposed continuation of a successful partnership between the two agencies and basin landowners to implement an additional eleven (11) watershed conservation projects. The types of projects implemented included installation of infiltration galleries, permanent diversions, pumping stations, and irrigation efficiency upgrades. Project costs in 1999 totaled $284,514.00 with a total amount of $141,628.00 (50%) provided by the Bonneville Power Administration (BPA) and the remainder coming from other sources such as the Bureau of Reclamation (BOR), Confederated Tribes of Warm Springs, Oregon Watershed Enhancement Board, and individual landowners.

Robertson, Shawn W.

2001-03-01T23:59:59.000Z

274

A review of "Indian Ink: Script and Print in the Making of the English East India Company" by Miles Ogborn  

E-Print Network [OSTI]

, Indian Ink: Script and Print in the Making of the English East India Company. Chicago and London: The University of Chicago Press, 2007. xiii + 318 pp. + 22 illus. $40.00. Review by TILLMAN W. NECHTMAN, SKIDMORE COLLEGE. The India Office Records... Company (EIC) and the English/British empire in South Asia. Miles Ogborn?s impressive new book, Indian Ink: Script and Print in the Making of the English East India Company, approaches this same archive from an important new direction. Rather than reading...

Nechtman, Tillman W.

2008-01-01T23:59:59.000Z

275

Characterization of the Three Mile Island Unit-2 reactor building atmosphere prior to the reactor building purge  

SciTech Connect (OSTI)

The Three Mile Island Unit-2 reactor building atmosphere was sampled prior to the reactor building purge. Samples of the containment atmosphere were obtained using specialized sampling equipment installed through penetration R-626 at the 358-foot (109-meter) level of the TMI-2 reactor building. The samples were subsequently analyzed for radionuclide concentration and for gaseous molecular components (O/sub 2/, N/sub 2/, etc.) by two independent laboratories at the Idaho National Engineering Laboratory (INEL). The sampling procedures, analysis methods, and results are summarized.

Hartwell, J.K.; Mandler, J.W.; Duce, S.W.; Motes, B.G.

1981-05-01T23:59:59.000Z

276

Review of Destructive Assay Methods for Nuclear Materials Characterization from the Three Mile Island (TMI) Fuel Debris  

SciTech Connect (OSTI)

This report provides a summary of the literature review that was performed and based on previous work performed at the Idaho National Laboratory studying the Three Mile Island 2 (TMI-2) nuclear reactor accident, specifically the melted fuel debris. The purpose of the literature review was to document prior published work that supports the feasibility of the analytical techniques that were developed to provide quantitative results of the make-up of the fuel and reactor component debris located inside and outside the containment. The quantitative analysis provides a technique to perform nuclear fuel accountancy measurements

Carla J. Miller

2013-09-01T23:59:59.000Z

277

The Umatilla Basin Natural Production Monitoring and Evaluation Project, 2008 Annual Progress Report.  

SciTech Connect (OSTI)

The Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPMEP) is funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L.96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). The UBNPMEP is coordinated with two Oregon Department of Fish and Wildlife (ODFW) research projects that also monitor and evaluate the success of the Umatilla Fisheries Restoration Plan. This project deals with the natural production component of the plan, and the ODFW projects evaluate hatchery operations (project No. 1990-005-00, Umatilla Hatchery M & E) and smolt outmigration (project No. 1989-024-01, Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River). Collectively these three projects monitor and evaluate natural and hatchery salmonid production in the Umatilla River Basin. The need for natural production monitoring has been identified in multiple planning documents including Wy-Kan-Ush-Mi Wa-Kish-Wit Volume I, 5b-13 (CRITFC 1996), the Umatilla Hatchery Master Plan (CTUIR & ODFW 1990), the Umatilla Basin Annual Operation Plan, the Umatilla Subbasin Summary (CTUIR & ODFW 2001), the Subbasin Plan (CTUIR & ODFW 2004), and the Comprehensive Research, Monitoring, and Evaluation Plan (CTUIR and ODFW 2006). Natural production monitoring and evaluation is also consistent with Section III, Basinwide Provisions, Strategy 9 of the 2000 Columbia River Basin Fish and Wildlife Program (NPPC 1994, NPCC 2004). The Umatilla Basin M&E plan developed along with efforts to restore natural populations of spring and fall Chinook salmon, (Oncorhynchus tshawytsha), coho salmon (O. kisutch), and enhance summer steelhead (O. mykiss). The need for restoration began with agricultural development in the early 1900's that extirpated salmon and reduced steelhead runs (Bureau of Reclamation, BOR 1988). The most notable development was the construction and operation of Three Mile Falls Dam (TMD) and other irrigation projects which dewatered the Umatilla River during salmon migrations. CTUIR and ODFW developed the Umatilla Hatchery Master Plan to restore fisheries to the basin. The plan was completed in 1990 and included the following objectives which were updated in 1999: (1) Establish hatchery and natural runs of Chinook and coho salmon. (2) Enhance existing summer steelhead populations through a hatchery program. (3) Provide sustainable tribal and non-tribal harvest of salmon and steelhead. (4) Maintain the genetic characteristics of salmonids in the Umatilla River Basin. (5) Increase annual returns to Three Mile Falls Dam to 31,500 adult salmon and steelhead. In the past the M&E project conducted long-term monitoring activities as well as two and three-year projects that address special needs for adaptive management. Examples of these projects include adult passage evaluations, habitat assessment surveys (Contor et al. 1995, Contor et al. 1996, Contor et al. 1997, Contor et al. 1998), and genetic monitoring (Currens & Schreck 1995, Narum et al. 2004). The project's goal is to provide quality information to managers and researchers working to restore anadromous salmonids to the Umatilla River Basin. The status of completion of each of BPA's standardized work element was reported in 'Pisces'(March 2008) and is summarized.

Contor, Craig R.; Harris, Robin; King, Marty [Confederated Tribes of the Umatilla Indian Reservation

2009-06-10T23:59:59.000Z

278

An Econometric Analysis of the Elasticity of Vehicle Travel with Respect to Fuel Cost per Mile Using RTEC Survey Data  

SciTech Connect (OSTI)

This paper presents the results of econometric estimation of the ''rebound effect'' for household vehicle travel in the United States based on a comprehensive analysis of survey data collected by the U.S. Energy Information Administration (EIA) at approximately three-year intervals over a 15-year period. The rebound effect is defined as the percent change in vehicle travel for a percent change in fuel economy. It summarizes the tendency to ''take back'' potential energy savings due to fuel economy improvements in the form of increased vehicle travel. Separate vehicles use models were estimated for one-, two-, three-, four-, and five-vehicle households. The results are consistent with the consensus of recently published estimates based on national or state-level data, which show a long-run rebound effect of about +0.2 (a ten percent increase in fuel economy, all else equal, would produce roughly a two percent increase in vehicle travel and an eight percent reduction in fuel use). The hypothesis that vehicle travel responds equally to changes in fuel cost-per-mile whether caused by changes in fuel economy or fuel price per gallon could not be rejected. Recognizing the interdependency in survey data among miles of travel, fuel economy and price paid for fuel for a particular vehicle turns out to be crucial to obtaining meaningful results.

Greene, D.L.; Kahn, J.; Gibson, R.

1999-03-01T23:59:59.000Z

279

Delaware River Basin Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

280

Supplementary information on K-Basin sludges  

SciTech Connect (OSTI)

Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

MAKENAS, B.J.

1999-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Atlas of the Columbia River Basin  

E-Print Network [OSTI]

#12;Atlas of the Columbia River Basin Oregon State University Computer-Assisted Cartography Course & GEOVISUALIZATION GROUP UNIVERSITY #12;2013 Oregon State University Atlas of the Columbia River Basin FOREWORDAtlas, Montana, Nevada, Wyoming, and Utah. 2013 Oregon State University Atlas of the Columbia River Basin

Jenny, Bernhard

282

Williston, Vermont: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County, Tennessee: EnergyWillis, Texas: Energy

283

A study of post-thermal recovery of the macroinvertebrate community of Four Mile Creek, June 1985--September 1987. [Savannah River Plant  

SciTech Connect (OSTI)

Four Mile Creek is one of several streams at the Savannah River Site which has received thermal effluents ({le}70{degrees}C water) from nuclear production operations. From 1955--mid-1985, Four Mile Creek received thermal effluent from C-Reactor as well as non-thermal discharges from F and H Separation Areas. Total discharges from all of these facilities was about ten times higher than the natural flow of the creek (Firth et al. 1986). All water being discharged into Four Mile Creek was originally pumped from the Savannah River. This study reports the results of the artificial substrate sampling of macroinvertebrate communities of Four Mile Creek from June 1985 through September 1987, when sampling was terminated. Macroinvertebrate taxa richness, densities, and biomass data from this study are compared to Four Mile data collected prior to the shutdown of C-Reactor (Kondratieff and Kondratieff 1985 and Firth et al. 1986), and to comparable macroinvertebrate data from other Savannah River Site streams. 29 refs., 11 figs., 4 tabs.

Lauritsen, D.; Starkel, W.; Specht, W.

1989-11-01T23:59:59.000Z

284

NILE BASIN INITIATIVE Claire Stodola  

E-Print Network [OSTI]

· Climate Change #12;Upstream states · Low water needs Downstream states · High water needs #12;Historical #12;Research Question How has the Nile Basin Initiative influenced the riparian states' management states 1959 ­ Still only BILATERAL 1960s to 1990s - Increasing frustration by upstream states #12;What

New Hampshire, University of

285

Genetic classification of petroleum basins  

SciTech Connect (OSTI)

Rather than relying on a descriptive geologic approach, this genetic classification is based on the universal laws that control processes of petroleum formation, migration, and entrapment. Petroleum basins or systems are defined as dynamic petroleum-generating and concentrating physico-chemical systems functioning on a geologic space and time scale. A petroleum system results from the combination of a generative subsystem (or hydrocarbon kitchen), essentially controlled by chemical processes, and a migration-entrapment subsystem, controlled by physical processes. The generative subsystem provides a certain supply of petroleum to the basin during a given geologic time span. The migration-entrapment subsystem receives petroleum and distributes it in a manner that can lead either to dispersion and loss or to concentration of the regional charge into economic accumulations. The authors classification scheme for petroleum basins rests on a simple working nomenclature consisting of the following qualifiers: (1) charge factor: undercharged, normally charged, or supercharged, (2) migration drainage factor: vertically drained or laterally drained, and (3) entrapment factor: low impedance or high impedance. Examples chosen from an extensive roster of documented petroleum basins are reviewed to explain the proposed classification.

Demaison, G.; Huizinga, B.J.

1989-03-01T23:59:59.000Z

286

GOLF COURSES FRASER RIVER BASIN  

E-Print Network [OSTI]

practices (BMP's) for golf courses, entitled Greening your BC Golf Course. A Guide to Environmental. It also summarizes conditions and practices in the Fraser Basin, reviews best management practices.C. Prepared by: UMA ENVIRONMENTAL A Division of UMA Engineering Ltd. Burnaby, B.C. March 1996 #12;THIRD PARTY

287

Degraded voltage resulting in non-safety UPS failure at Nine Mile Point Unit 2 August 13, 1991  

SciTech Connect (OSTI)

At approximately 5:48 a.m. on august 13, 1991, phase B of the main stepup transformer of Niagara Mohawk's Nine Mile Point Unit 2 (NMP2) Nuclear Power Plant experienced a failure resulting in degraded voltage in phase B of the electrical AC distribution system. The duration of the degraded voltage lasted 12 cycles, the time required to clear the fault and to fast transfer the house loads to alternate offsite sources. The protective relaying schemes accomplished this without any abnormalities. This paper reports that due to the nature of the fault and its protection, the turbine tripped, resulting in an automatic reactor scram. However, during the fast transfer under degraded voltage conditions, five non-0safety related Uninterruptible Power Supplies (UPS) tripped; these UPS's were supplied by Exide Electronics. The tripping of these UPS's resulted in the loss of plant process computers, Control Room annunciation, and a significant portion of non-safety related instrumentation and control circuits.

Julka, A.K. (Niagara Mohawk Power Corp. (United States))

1992-08-01T23:59:59.000Z

288

Transformer failure and common-mode loss of instrument power at Nine Mile Point Unit 2 on August 13, 1991  

SciTech Connect (OSTI)

On August 13, 1991, at Nine Mile Point Unit 2 nuclear power plant, located near Scriba, New York, on Lake Ontario, the main transformer experienced an internal failure that resulted in degraded voltage which caused the simultaneous loss of five uninterruptible power supplies, which in turn caused the loss of several nonsafety systems, including reactor control rod position indication, some reactor power and water indication, control room annunciators, the plant communications system, the plant process computer, and lighting at some locations. The reactor was subsequently brought to a safe shutdown. Following this event, the US Nuclear Regulatory Commission dispatched an Incident Investigation Team to the site to determine what happened, to identify the probable causes, and to make appropriate findings and conclusions. This report describes the incident, the methodology used by the team in its investigation, and presents and the team's findings and conclusions. 59 figs., 14 tabs.

Not Available

1991-10-01T23:59:59.000Z

289

Disposal demonstration of a high integrity container (HIC) containing an EPICOR-II prefilter from Three Mile Island  

SciTech Connect (OSTI)

A high integrity container (HIC) was developed, tested, and certified for use in disposing of unusual low-level radioactive waste from Three Mile Island Unit 2 (TMI-2). The work was coordinated by EG and G Idaho, Inc. and funded by the US Department of Energy. A disposal demonstration using an HIC containing an EPICOR-II prefilter from TMI-2 was completed at the commercial disposal facility in the State of Washington. A Certification of Compliance was issued by the Department of Social and Health Services of the State of Washington to use the HIC in disposing of up to 50 EPICOR-II prefilters. That Certification of Compliance was issued after rigorous review of the HIC design and test program by the State and by the US Nuclear Regulatory Commission. This report describes the processes of loading, transporting, and disposing of the demonstration HIC and briefly describes the design, testing, and approval effort leading up to the demonstration.

McConnell, J.W. Jr.; Tyacke, M.J.; Schmitt, R.C.; Reno, H.W.

1985-02-01T23:59:59.000Z

290

Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Haffner, D. R.

1988-06-01T23:59:59.000Z

291

Transporting TMI-2 (Three Mile Island Unit 2) core debris to INEL: Public safety and public response  

SciTech Connect (OSTI)

This paper describes the approach taken by the US Department of Energy (DOE) to ensure that public safety is maintained during transport of core debris from the Unit-2 reactor at the Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID. It provides up-to-date information about public response to the transport action and discusses DOE's position on several institutional issues. The authors advise that planners of future transport operations be prepared for a multitude of comments from all levels of federal, state, and local governments, special interest groups, and private citizens. They also advise planners to keep meticulous records concerning all informational transactions.

Schmitt, R.C.; Reno, H.W.; Young, W.R.; Hamric, J.P.

1987-01-01T23:59:59.000Z

292

THE ADVANCED CHEMISTRY BASINS PROJECT  

SciTech Connect (OSTI)

In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

2004-04-05T23:59:59.000Z

293

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

SciTech Connect (OSTI)

Private- and public-sector stakeholders formed the new ''Trenton-Black River Appalachian Basin Exploration Consortium'' and began a two-year research effort that will lead to a play book for Trenton-Black River exploration throughout the Appalachian basin. The final membership of the Consortium includes 17 gas exploration companies and 6 research team members, including the state geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia, the New York State Museum Institute and West Virginia University. Seven integrated research tasks are being conducted by basin-wide research teams organized from this large pool of experienced professionals. More than 3400 miles of Appalachian basin digital seismic data have been quality checked. In addition, inquiries have been made regarding the availability of additional seismic data from government and industry partners in the consortium. Interpretations of the seismic data have begun. Error checking is being performed by mapping the time to various prominent reflecting horizons, and analyzing for any anomalies. A regional geological velocity model is being created to make time-to-depth conversions. Members of the stratigraphy task team compiled a generalized, basin-wide correlation chart, began the process of scanning geophysical logs and laid out lines for 16 regional cross sections. Two preliminary cross sections were constructed, a database of all available Trenton-Black River cores was created, and a basin-wide map showing these core locations was produced. Two cores were examined, described and photographed in detail, and were correlated to the network of geophysical logs. Members of the petrology team began the process of determining the original distribution of porous and permeable facies within a sequence stratigraphic framework. A detailed sedimentologic and petrographic study of the Union Furnace road cut in central Pennsylvania was completed. This effort will facilitate the calibration of subsurface core and log data. A core-sampling plan was developed cooperatively with members of the isotope geochemistry and fluid inclusion task team. One hundred thirty (130) samples were prepared for trace element and stable isotope analysis, and six samples were submitted for strontium isotope analysis. It was learned that there is a good possibility that carbon isotope stratigraphy may be a useful tool to locate the top of the Black River Formation in state-to-state correlations. Gas samples were collected from wells in Kentucky, New York and West Virginia. These were sent to a laboratory for compositional, stable isotope and hydrogen and radiogenic helium isotope analysis. Decisions concerning necessary project hardware, software and configuration of the website and database were made by the data, GIS and website task team. A file transfer protocol server was established for project use. The project website is being upgraded in terms of security.

Douglas G. Patchen; James Drahovzal; Larry Wickstrom; Taury Smith; Chris Laughery; Katharine Lee Avary

2004-04-01T23:59:59.000Z

294

CLEAR LAKE BASIN 2000 PROJECT  

SciTech Connect (OSTI)

The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

LAKE COUNTY SANITATION DISTRICT

2003-03-31T23:59:59.000Z

295

Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin  

SciTech Connect (OSTI)

A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

Grube, J.P.; Crockett, J.E.; Huff, B.G. [and others

1997-08-01T23:59:59.000Z

296

Directions to Virginia Tech Chemistry Department from Interstate 81 Follow I-81 to Exit 118-B. Follow US 460 West about 6 miles. Upon entering Blacksburg, do NOT  

E-Print Network [OSTI]

Directions to Virginia Tech Chemistry Department from Interstate 81 Follow I-81 to Exit 118-B. Follow US 460 West about 6 miles. Upon entering Blacksburg, do NOT use "Business" US 460 which is also called Main Street. Bear left and stay on the freeway. The first traffic light on US 460 will be Virginia

Crawford, T. Daniel

297

Vehicle engine use when no longer in transit; exceptions -Vehicle idling gets zero miles per gallon; unnecessary idling wastes fuel and pollutes.  

E-Print Network [OSTI]

Vehicle engine use when no longer in transit; exceptions - Vehicle idling gets zero miles per, no University vehicle or piece of equipment is to be idled in a non-emergency situation. The operator of the vehicle/equipment is to turn-off the unit and the keys are to be removed from the ignition. EXEMPTIONS

Powers, Robert

298

WORD PROBLEMS 1. Suppose your car gets 25 miles per gallon of gasoline and the price of gas is $3.50 per gallon. Write  

E-Print Network [OSTI]

WORD PROBLEMS 1. Suppose your car gets 25 miles per gallon of gasoline and the price of gas is $3.50 per gallon. Write your monthly gasoline cost C in terms of the distance D that you travel each month

Koban, Nic

299

UMore Park Update October 2013 UMore Park. The University of Minnesota Outreach, Research and Education (UMore) Park is a 5,000-acre site 25 miles southeast  

E-Print Network [OSTI]

UMore Park Update ­ October 2013 UMore Park. The University of Minnesota Outreach, Research and Education (UMore) Park is a 5,000-acre site 25 miles southeast of the Twin Cities at the suburban presentation set for October 11 The UMore Development LLC will provide an update on UMore Park activities

Amin, S. Massoud

300

Heat removal aspects of Liquid Metal Fast Breeder Reactor safety in light of the Three Mile Island incident  

SciTech Connect (OSTI)

The safety aspects of the Liquid Metal Fast Breeder Reactor (LMFBR) loop design are compared with those of the Light Water Reactor (LWR), in light of the Three Mile Island (TMI) incident. The events at TMI are briefly described, the fundamental differences between the LWR water coolant and the LMFBR sodium coolant are presented, and the design of analogous LMFBR safety systems under similar events as those at TMI is discussed. A preliminary qualitative evaluation of a TMI-equivalent accident for an LMFBR indicates that there is likely to be: (1) negligible pressure transients in the primary loop, (2) no core damage, (3) isolation of the incident at the steam generator, and (4) no radiation release to the environment, except a negligible amount of tritium from the secondary sodium. Furthermore, with the absence of the ECCS (Emergency Core Cooling System), pressurizer, and other pressure-related components in the LMFBR design, operator action for a LMFBR should be much simpler in dealing with the coolant upset condition and the decay heat removal problems.

Victor, H.R.; Graf, D.G.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Barge loading facilities in conjunction with wood chipping and sawlog mill, Tennessee River Mile 145. 9R: Environmental assessment  

SciTech Connect (OSTI)

The purpose of this Environmental Assessment (EA) is to evaluate the environmental consequences of approving, denying, or adopting reasonable alternatives to a request for barge loading facilities. These facilities would serve a proposed wood chipping and sawlog products operation at Tennessee River Mile (TRM) 145.9, right descending bank, (Kentucky Lake), in Perry County, Tennessee. The site is located between Short Creek and Peters Landing. The applicant is Southeastern Forest Products, L.P. (SFP), Box 73, Linden, Tennessee and the proposed facilities would be constructed on or adjacent to company owned land. Portions of the barge terminal would be constructed on land over which flood easement rights are held by the United States of America and administered by the Tennessee Valley Authority (TVA). The US Army Corps of Engineers (CE) and TVA have regulatory control over the proposed barge terminal facilities since the action would involve construction in the Tennessee River which is a navigable water of the United States. The wood chipping and sawlog products facilities proposed on the upland property are not regulated by the CE or TVA. On the basis of the analysis which follows, it has been determined that a modified proposal (as described herein) would not significantly affect the quality of the human environment, and does not require the preparation of an environmental impact statement. 8 refs.

Not Available

1990-08-01T23:59:59.000Z

302

The legacy of Three Mile Island -- Implications for today`s U.S. Department of Energy challenges  

SciTech Connect (OSTI)

Over the course of the 16 year period following the accident at Three Mile Island-Unit-2, much has been learned and volumes have been written regarding the cause and massive cleanup activities of the incident. Because of these lessons learned, important changes have been made and the US commercial nuclear industry is safer and more reliable as a result. It is important to recognize that two major sources of information emerged from this event. First and foremost were the important safety issues that required immediate answers and the addition of the modifications to plants that these answers generated. Second and of considerable significance to the US Department of Energy (US DOE) in today`s post-cold war environment are the frequently hard-won lessons involved with the recovery, clean-up, and defueling of TMI-2 and its unprecedented transition into long-term, monitored storage. While the commercial industry, regulatory authorities, and the public saw an immediate need for instituting the important safety lessons from TMI-2, these new systems, improved training and operating practices have paid off in increased reliability and extended operations. However, there was no such immediate application for the second source of information, that being the application of the deactivation and long-term storage technology learned at TMI-2 to a current condition. The tasks and methods used in the TMI-2 recovery have strong parallels in the present-day DOE cleanup program.

Williams, M.S.; Conaway, W.T.; Coe, R.P. [General Public Utilities Nuclear, Parsippany, NJ (United States)

1996-11-01T23:59:59.000Z

303

The legacy of Three Mile Island: Implications for today`s U.S. Department of Energy challenges  

SciTech Connect (OSTI)

Over the course of the 16 year period following the accident at Three Mile Island-Unit-2, much has been learned and volumes have been written regarding the cause and massive cleanup activities of the incident. Because of these Lessons Learned, important changes have been made and the US commercial nuclear industry is safer and more reliable as a result. It is important to recognize that two major sources of information emerged from this event. First and foremost were the important safety issues that required immediate answers and the addition of the modifications to plants that these answers generated. Second and of considerable significance to the US Department of energy (US DOE) in today`s post-cold war environment are the frequently hard-won lessons involved with the recovery, clean-up, and defueling of TMI-2 and its unprecedented transition into long-term, monitored storage. While the commercial industry, regulatory authorities, and the public saw an immediate need for instituting the important safety lessons from TMI-2, these new systems, improved training and operating practices have paid off in increased reliability and extended operations. However, there was no such immediate application for the second source of information, that being the application of the deactivation and long-term storage technology learned at TMI-2 to a current condition. The tasks and methods used in the TMI-2 recovery have strong parallels in the present-day DOE cleanup program.

Coe, R.P.; Conaway, W.T.; Williams, M.S. [General Public Utilities Nuclear, Parsippany, NJ (United States)

1996-12-31T23:59:59.000Z

304

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor defueling and disassembly. Summary status report. Volume 3  

SciTech Connect (OSTI)

This document summarizes information relating to the preparations for defueling the Three Mile Island Unit 2 (TMI-2) reactor and disassembly activities being performed concurrently with decontamination of the facility. Data have been collected from activity reports, reactor containment entry records, and other sources and entered in a computerized data sysem which permits extraction/manipulation of specific data which can be used in planning for recovery from a loss of coolant event similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during the period of April 23, 1979 to April 16, 1985, in the completion of activities related to preparation for reactor defueling. Support activities conducted outside of radiation areas are not included within the scope of this report. Computerized reports included in this document are: A chronological summary listing work performed for the period; and summary reports for each major task undertaken in connection with the specific scope of this report. Presented in chronological order for the referenced time period. Manually-assembled table summaries are included for: Labor and exposures by department; and labor and exposures by major activity.

Doerge, D.H.; Miller, R.L.; Scotti, K.S.

1986-05-01T23:59:59.000Z

305

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor building decontamination. Summary status report. Volume 2  

SciTech Connect (OSTI)

This document summarizes information relating to decontamination of the Three Mile Island Unit 2 (TMI-2) reactor building. The report covers activities for the period of June 1, 1979 through March 29, 1985. The data collected from activity reports, reactor containment entry records, and other sources were entered into a computerized data system which permits extraction/manipulation of specific information which can be used in planning for recovery from an accident similar to that experienced at TMI-2 on March 28, 1979. This report contains summaries of man-hours, manpower, and radiation exposures incurred during decontamination of the reactor building. Support activities conducted outside of radiation areas are excluded from the scope of this report. Computerized reports included in this document are: a chronological summary listing work performed relating to reactor building decontamination for the period specified; and summary reports for each major task during the period. Each task summary is listed in chronological order for zone entry and subtotaled for the number of personnel entries, exposures, and man-hours. Manually-assembled table summaries are included for: labor and exposures by department and labor and exposures by major activity.

Doerge, D.H.; Miller, R.L.; Scotti, K.S.

1986-05-01T23:59:59.000Z

306

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2001-09-28T23:59:59.000Z

307

Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea  

E-Print Network [OSTI]

The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected...

Olson, Christopher Charles

2001-01-01T23:59:59.000Z

308

CRAD, Engineering - Office of River Protection K Basin Sludge...  

Broader source: Energy.gov (indexed) [DOE]

System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System...

309

CRAD, Conduct of Operations - Office of River Protection K Basin...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A...

310

CRAD, Management - Office of River Protection K Basin Sludge...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD,...

311

Refraction Survey At Northern Basin & Range Region (Heimgartner...  

Open Energy Info (EERE)

Northern Basin & Range Region (Heimgartner, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Northern Basin &...

312

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Activity: Geographic Information System At Northern Basin & Range Region (Nash & Johnson, 2003) Exploration Activity Details Location Northern Basin and Range Geothermal...

313

Geographic Information System At Nw Basin & Range Region (Nash...  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

314

Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

315

Independent Oversight Review, Hanford K Basin and Cold Vacuum...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

K Basin and Cold Vacuum Drying Facility - August 2012 Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility - August 2012 August 2012 Review of Hanford K...

316

CRAD, Emergency Management - Office of River Protection K Basin...  

Energy Savers [EERE]

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

317

Oil migration pattern in the Sirte Basin  

SciTech Connect (OSTI)

Sirte Basin is an asymmetrical cratonic basin, situated in the north-central part of Libya. It covers an area of over 350,000km{sup 2} and is one of the most prolific oil-producing basins in the world. Sirte Basin is divided into large NW-SE trending sub-parallel platforms and troughs bounded by deep seated syndepositional normal faults. A very unique combination of thick sediments with rich source rocks in the troughs vs. thinner sediments with prolific reservoir rocks on the platforms accounts for the productivity of the basin. Analysis of oil migration pattern in the Sirte Basin will certainly help to discover the remaining reserves, and this can only be achieved if the important parameter of structural configuration of the basin at the time of oil migration is known. The present paper is an attempt to analyse the time of oil migration, to define the structural picture of the 4 Basin during the time of migration and to delineate the most probable connecting routes between the hydrocarbon kitchens and the oil fields.

Roohi, M.; Aburawi, R.M. [Waha Oil Co., Tripoli (Libyan Arab Jamahiriya)

1995-08-01T23:59:59.000Z

318

6, 839877, 2006 Mexico City basin  

E-Print Network [OSTI]

emitters of air pollutants leading to negative health effects and environmental degradation. The rate altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale-dimensional wind patterns in25 the basin and found that the sea-breeze transports the polluted air mass up the moun

Boyer, Edmond

319

miles-99.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. NoremI Prepared by. ., .

320

Modal shifts in short-haul passenger travel and the consequent energy impacts. [Intercity travel under 500 miles  

SciTech Connect (OSTI)

A study was performed to evaluate the impacts of strategies to effect modal shifts in short-haul passenger travel (defined herein as intercity travel under 500 miles) from energy-intensive modes to those modes that are less energy-intensive. A series of individual strategies, ranging from incentives to the less energy-intensive modes (bus, rail) to penalties to the more energy-intensive modes (auto, air) was examined to determine energy saved and policy implications relative to strategy implementation. The most effective of the individual strategies were then combined in all permutations, and the analysis was repeated. As part of the analytical process, effects of factors other than energy (user cost and time, emissions, government subsidy, and travel fatailities) were examined in a benefit/cost analysis. Finally, energy savings, benefit/cost impacts, implementation considerations, and policy implications were evaluated to arrive at conclusions as to the effectiveness of the more-influential strategies and to the overall effectiveness of induced modal shifts. The principal conclusion of the study is that the maximum 1980 energy saving that might be realized by modal shifts, discounting the concurrent effects of demand suppression and improvement of mode efficiency, is approximately 83 x 10/sup 12/ Btu (46,500 bbl gasoline per day), 3.8% of the total projected 1980 energy consumption in the short-haul transportation sector and 0.23% of the total US petroleum use. It was also concluded that strategies to achieve these small savings by modal shifts would result in significant economic, social, and business disruptions.

Not Available

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Revisiting Insights from Three Mile Island Unit 2 Postaccident Examinations and Evaluations in View of the Fukushima Daiichi Accident  

SciTech Connect (OSTI)

The Three Mile Island Unit 2 (TMI-2) accident, which occurred on March 28, 1979, led industry and regulators to enhance strategies to protect against severe accidents in commercial nuclear power plants. Investigations in the years after the accident concluded that at least 45% of the core had melted and that nearly 19 tonnes of the core material had relocated to the lower head. Postaccident examinations indicate that about half of that material formed a solid layer near the lower head and above it was a layer of fragmented rubble. As discussed in this paper, numerous insights related to pressurized water reactor accident progression were gained from postaccident evaluations of debris, reactor pressure vessel (RPV) specimens, and nozzles taken from the RPV. In addition, information gleaned from TMI-2 specimen evaluations and available data from plant instrumentation were used to improve severe accident simulation models that form the technical basis for reactor safety evaluations. Finally, the TMI-2 accident led the nuclear community to dedicate considerable effort toward understanding severe accident phenomenology as well as the potential for containment failure. Because available data suggest that significant amounts of fuel heated to temperatures near melting, the events at Fukushima Daiichi Units 1, 2, and 3 offer an unexpected opportunity to gain similar understanding about boiling water reactor accident progression. To increase the international benefit from such an endeavor, we recommend that an international effort be initiated to (a) prioritize data needs; (b) identify techniques, samples, and sample evaluations needed to address each information need; and (c) help finance acquisition of the required data and conduct of the analyses.

Joy Rempe; Mitchell Farmer; Michael Corradini; Larry Ott; Randall Gauntt; Dana Powers

2012-11-01T23:59:59.000Z

322

Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, Annual Report 2003-2006.  

SciTech Connect (OSTI)

This report summarizes activities conducted by the Oregon Department of Fish and Wildlife's Juvenile Outmigration and Survival M&E project in the Umatilla River subbasin between 2004-2006. Information is used to make informed decisions on hatchery effectiveness, natural production success, passage improvement and flow enhancement strategies. Data collected includes annual estimates of smolt abundance, migration timing, and survival, life history characteristics and productivity status and trends for spring and fall Chinook salmon, coho salmon and summer steelhead. Productivity data provided is the key subbasin scale measure of the effectiveness of salmon and steelhead restoration actions in the Umatilla River. Information is also used for regional planning and recovery efforts of Mid-Columbia River (MCR) ESA-listed summer steelhead. Monitoring is conducted via smolt trapping and PIT-tag interrogation at Three Mile Falls Dam. The Umatilla Juvenile Outmigration and Survival Project was established in 1994 to evaluate the success of management actions and fisheries restoration efforts in the Umatilla River Basin. Project objectives for the 2004-2006 period were to: (1) operate the PIT tag detection system at Three Mile Falls Dam (TMFD), (2) enhance provisional PIT-tag interrogation equipment at the east bank adult fish ladder, (3) monitor the migration timing, abundance and survival of naturally-produced juvenile salmonids and trends in natural production, (4) determine migration parameters and survival of hatchery-produced fish representing various rearing, acclimation and release strategies, (5) evaluate the relative survival between transported and non-transported fish, (6) monitor juvenile life history characteristics and evaluate trends over time, (7) investigate the effects of river, canal, fishway operations and environmental conditions on smolt migration and survival, (8) document the temporal distribution and diversity of resident fish species, and (9) participate in planning and coordination activities within the basin and dissemination of results.

White, Tara

2007-02-01T23:59:59.000Z

323

Rate of deformation in the Pasco Basin during the Miocene as determined by distribution of Columbia River basalt flows  

SciTech Connect (OSTI)

Detailed mapping of over 8000 square kilometers and logs from 20 core holes were used to determine the distribution and thickness of basalt flows and interbeds in the Pasco Basin. The data indicate the high-MgO Grande Ronde Basalt and Wanapum Basalt thicken from the northeast to the southwest. Deformation began in late Frenchman Springs time in the Saddle Mountains along a northwest-southeast trend and in Roza time along an east-west trend. By late Wanapum time, basalt flows were more restricted on the east side. Saddle Mountains Basalt flows spread out in the basin from narrow channels to the east. The Umatilla Member entered from the southeast and is confined to the south-central basin, while the Wilbur Creek, Asotin, Esquatzel, Pomona, and Elephant Mountain Members entered from the east and northeast. The distribution of these members is controlled by flow volume, boundaries of other flows, and developing ridges. The Wilbur Creek, Asotin, and Esquatzel flows exited from the basin in a channel along the northern margin of the Umatilla flow, while the Pomona and Elephant Mountain flows exited between Umtanum Ridge and Wallula Gap. The thickness of sedimentary interbeds and basalt flows indicated subsidence and/or uplift began in post-Grande Ronde time (14.5 million years before present) and continued through Saddle Mountains time (10.5 million years before present). Maximum subsidence occurred 40 kilometers (24 miles) north of Richland, Washington with an approximate rate of 25 meters (81 feet) per million years during the eruption of the basalt. Maximum uplift along the developing ridges was 70 meters (230 feet) per million years.

Reidel, S.P.; Ledgerwood, R.K.; Myers, C.W.; Jones, M.G.; Landon, R.D.

1980-03-01T23:59:59.000Z

324

Detailed geochemical study of the Dan River-Danville Triassic Basin, North Carolina and Virginia. National Uranium Resource Evaluation Program  

SciTech Connect (OSTI)

This abbreviated data report presents results of surface geochemical reconnaissance in the Dan River-Danville Triassic Basin of north-central North Carolina and south-central Virginia. Unweathered rock samples were collected at 380 sites within the basin at a nominal sampling density of one site per square mile. Field measurements and observations are reported for each site; analytical data and field measurements are presented in tables and maps. A detailed four-channel spectrometric survey was conducted, and the results are presented as a series of symbol plot maps for eU, eTh, and eU/eTh. Data from rock sample sites (on microfiche in pocket) include rock type and color and elemental analyses for U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Na, Sc, Sm, Ti, V, and Yb. Elemental uranium in 362 sedimentary rock samples from the Dan River-Danville Basin ranges from a low of 0.1 to a maximum of 13.3 parts per million (ppM). The log mean uranium concentration for these same samples is 0.37 ppM, and the log standard deviation is 0.24 ppM. Elemental uranium in 10 diabase dike samples from within the basin is in the range 0.1 to 0.7 ppM. The log mean uranium concentration for diabase samples is -.65 ppM, and the log standard deviation is 0.27. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the NURE program.

Thayer, P. A.; Cook, J. R.

1982-08-01T23:59:59.000Z

325

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2003-09-30T23:59:59.000Z

326

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2000-09-28T23:59:59.000Z

327

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2002-09-21T23:59:59.000Z

328

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2005-09-30T23:59:59.000Z

329

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2004-09-30T23:59:59.000Z

330

K Basins isolation barriers summary report  

SciTech Connect (OSTI)

The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on final disposition of the material. The Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), also known as the Tri-Party Agreement, commits to the removal of all fuel and sludge from the 105-K Basins by the year 2002.

Strickland, G.C., Westinghouse Hanford

1996-07-31T23:59:59.000Z

331

Geological/geophysical study progresses  

SciTech Connect (OSTI)

Robertson Research (U.S.) Inc. of Houston is working on the second of a planned three-phase regional geological and geochemical study of Paleozoic rocks in the Williston Basin. The studies cover the entire Williston Basin in North Dakota, South Dakota, Montana, Saskatchewan and Manitoba. Each report is based largely on original petrographic, well log, and geochemical data that were developed by Robertson.

Savage, D.

1983-10-01T23:59:59.000Z

332

Scale-4 Analysis of Pressurized Water Reactor Critical Configurations: Volume 4-Three Mile Island Unit 1 Cycle 5  

SciTech Connect (OSTI)

The requirements of ANSI/ANS-8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original ''fresh'' composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using relevant and well-documented critical configurations from commercial pressurized water reactors. The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Isotopic densities for spent fuel assemblies in the core were calculated using the SCALE-4 SAS2H analytical sequence. The sources of data and the procedures for deriving SAS2H input parameters are described in detail. The SNIKR code family was used to extract the necessary isotopic densities from SAS2H results and to provide the data in the format required for SCALE criticality analysis modules. The CSASN analytical sequence in SCALE-4 was used to perform resonance processing of cross sections. The KENO V.a module of SCALE-4 was used to calculate the effective multiplication factor (k{sub eff}) for the critical configuration. The SCALE-4 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B-V (fission products) data was used for all calculations. This volume of the report documents a reactor critical calculation for GPU Nuclear Corporation's Three Mile Island Unit 1 (TMI-1) during hot, zero-power startup testing for the beginning of cycle 5. This unit and cycle were selected because of their relevance in spent fuel benchmark applications: (1) cycle 5 startup occurred after an especially long downtime of 6.6 years; and (2) the core consisted primarily (75%) of burned fuel, with all fresh fuel loaded on the core outer periphery. A k{sub eff} value of 0.9978 {+-} 0.0004 was obtained using two million neutron histories in the KENO V.a model. This result is close to the known critical k{sub eff} of 1.0 for the actual core and is consistent with other mixed-oxide criticality benchmarks. Thus this method is shown to be valid for spent fuel applications in burnup credit analyses.

DeHart, M.D.

1995-01-01T23:59:59.000Z

333

Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 Mark Person*1  

E-Print Network [OSTI]

: Mount Simon, Illinois Basin, CO2, earthquakes, pressure, brine transport69 #12;Page | 3 1. IntroductionPage | 1 Assessment of Basin-Scale Hydrologic Impacts of CO2 Sequestration, Illinois Basin1 2 3 4 sharp-interface models of CO2 injection were constructed for the Illinois49 Basin in which porosity

Gable, Carl W.

334

September 2012 BASIN RESEARCH AND ENERGY GEOLOGY  

E-Print Network [OSTI]

September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

Suzuki, Masatsugu

335

Petroleum potential of the Libyan sedimentary basins  

SciTech Connect (OSTI)

Contrary to prevailing opinion, all Libyan sedimentary basins and the Al-Jabal Al-Akhdar platform contain prolific petroleum accumulations with very high prospectivity. A systematic review of the types of traps and pays in this central part of the southern Mediterranean province reveals great variability in reservoir and source rock characteristics. The reservoir rocks are of almost all geologic ages. The thick source rock sequences also vary in nature and organic content. The organic-rich facies have accumulated in intracratonic and passive margin basins or in marginal seas. Most of the oil discovered thus far in these basins is found in large structural traps. Future discoveries of stratigraphic traps or small structural traps will require intensified efforts and detailed studies using up-to-date multidisciplinary techniques in sedimentary tectonics, biostratigraphic facies analysis, and geochemical prospecting in order to develop a better understanding of these basins, thus improving their prospectivity.

Hammuda, O.S.; Sbeta, A.M.

1988-08-01T23:59:59.000Z

336

Flathead Basin Commission Act of 1983 (Montana)  

Broader source: Energy.gov [DOE]

This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

337

River Basins Advisory Commissions (South Carolina)  

Broader source: Energy.gov [DOE]

The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

338

The Uinta Basin Case Robert J. Bayer  

E-Print Network [OSTI]

Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

Utah, University of

339

K-Basins S/RIDS  

SciTech Connect (OSTI)

The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

Watson, D.J.

1997-08-01T23:59:59.000Z

340

K-Basins S/RIDS  

SciTech Connect (OSTI)

The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

Watson, D.J.

1995-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Assessment of undiscovered carboniferous coal-bed gas resources of the Appalachian Basin and Black Warrior Basin Provinces, 2002  

SciTech Connect (OSTI)

Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the Appalachian basin, which extends almost continuously from New York to Alabama. In general, the basin includes three structural subbasins: the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and the Black Warrior basin in Alabama and Mississippi. For assessment purposes, the Appalachian basin was divided into two assessment provinces: the Appalachian Basin Province from New York to Alabama, and the Black Warrior Basin Province in Alabama and Mississippi. By far, most of the coalbed methane produced in the entire Appalachian basin has come from the Black Warrior Basin Province. 8 refs., 1 fig., 1 tab.

Milici, R.C.; Hatch, J.R.

2004-09-15T23:59:59.000Z

342

Mineralogy and organic petrology of oil shales in the Sangkarewang formation, Ombilin Basin, West Sumatra, Indonesia.  

E-Print Network [OSTI]

??The Ombilin Basin, which lies in Sumatra Island, is one of the Tertiary basins in Indonesia. This basin contains a wide variety of rock units,… (more)

Fatimah, Fatimah

2009-01-01T23:59:59.000Z

343

Late devonian carbon isotope stratigraphy and sea level fluctuations, Canning Basin, Western Australia  

E-Print Network [OSTI]

reef, Canning Basin, Western Australia. Palaeontology 43,the Canning Basin, Western Australia. In: Loucks, R.G. ,Canning Basin, Western Australia. Ph.D Thesis, University of

Stephens, N P; Sumner, Dawn Y.

2003-01-01T23:59:59.000Z

344

EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON  

SciTech Connect (OSTI)

K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel, sludge, debris and water. At present, almost all of the spent fuel has been removed from the basins and other activities to remove sludge, debris and water are scheduled to be completed in 2007. Developing environmental documentation and obtaining regulatory approvals for a project which was initiated outside CERCLA and came under CERCLA during execution, was a significant priority to the successful completion of the SNF retrieval, transfer, drying, transport and storage of fuel, within the purview of strong conduct-of-operations culture associated with nuclear facilities. Environmental requirements promulgated in the state regulations by Washington Department of Public Health for radiation were recognized as ''applicable or relevant and appropriate.'' Effective implementation of the environmental compliance strategy in a project that transitioned to CERCLA became a significant challenge involving multiple contractors. This paper provides an overview of the development and implementation of an environmental permitting and surveillance strategy that enabled us to achieve full compliance in a challenging environment, with milestones and cost constraints, while meeting the high safety standards. The details of the strategy as to how continuous rapport with the regulators, facility operators and surveillance groups helped to avoid impacts on the clean-up schedule are discussed. Highlighted are the role of engineered controls, surveillance protocols and triggers for monitoring and reporting, and active administrative controls that were established for the control of emissions, water loss and transport of waste shipments, during the different phases of the project.

AMBALAM, T.

2004-12-01T23:59:59.000Z

345

Funding for the food miles project was provided through Agriculture and Agri-Food Canada's Advancing Canadian Agriculture and Agri-Food (ACAAF) Program. In Nova Scotia the program is delivered by Agri-Futures Nova Scotia.  

E-Print Network [OSTI]

Funding for the food miles project was provided through Agriculture and Agri-Food Canada.................................................................... 7 Energy .................................................................................. 9 Self grown? With these two questions at the fore, combing through various statistics and reports

Peak, Derek

346

Rental rate includes liability insurance (LDW), vehicle licensing fees, unlimited roundtrip mileage; $0.25/mile for one-way rentals and no drop fees for vehicles that are picked up and returned in the  

E-Print Network [OSTI]

; $0.25/mile for one-way rentals and no drop fees for vehicles that are picked up and returned in setting up direct billing for your department, please click link below: http://www

Arnold, Jonathan

347

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin,  

E-Print Network [OSTI]

Basin evolution, diagenesis and uranium mineralization in the PaleoproterozicThelon Basin, Nunavut,Canada Eric E. Hiatt,n Sarah E. Palmer,w1 T. Kurt Kyserw and Terrence K. O'Connorz n Geology Department, University of Wisconsin Oshkosh, Oshkosh,Wisconsin, USA wDepartment of Geological Sciences and Engineering

Hiatt, Eric E.

348

Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.  

SciTech Connect (OSTI)

This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

A.G. Crook Company; United States. Bonneville Power Administration

1993-07-01T23:59:59.000Z

349

E-Print Network 3.0 - athabasca basin western Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thelon Basin Boomerang Lake Western Thelon Basin Eastern Thelon... to the world-class uranium-producing Athabasca basin. At present, the Thelon basin is only known to host......

350

RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA  

SciTech Connect (OSTI)

A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).

Blount, G.; Millings, M.

2011-08-01T23:59:59.000Z

351

Geochemical Prospecting of Hydrocarbons in Frontier Basins of India* By  

E-Print Network [OSTI]

India has 26 sedimentary basins with a basinal area of approximately 1.8x 10 6 km 2 (excluding deep waters), out of which seven are producing basins and two have proven potential. Exploration efforts in other basins, called “frontier basins ” are in progress. These basins are characterized by varied geology, age, tectonics, and depositional environments. Hydrocarbon shows in many of these basins are known, and in few basins oil and gas have flowed in commercial /non-commercial quantities. Within the framework of India Hydrocarbon Vision – 2025 and New Exploration Licensing Policy, there is a continuous increase in area under active exploration. The asset management concept with multi-disciplinary teams has created a demand for synergic application of risk-reduction technologies, including surface geochemical surveys. National Geophysical Research Institute (NGRI), Hyderabad, India has initiated/planned surface geochemical surveys composed of gas chromatographic and carbon isotopic analyses in few of the frontier basins of India. The adsorbed soil gas data in one of the basins (Saurashtra basin, Gujarat) has shown varied concentrations of CH4 to C4H10. The C1 concentration varies between 3 to 766 ppb and ??C2+, 1 to 543 ppb. This basin has thin soil cover and the Mesozoic sediments (probable source rocks) are overlain by thick cover of Deccan Traps. The scope and perspective of geochemical surveys in frontier basins of India are presented here.

B. Kumar; D. J. Patil; G. Kalpana; C. Vishnu Vardhan

352

Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle  

SciTech Connect (OSTI)

The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

Smith, D.A.

1985-01-01T23:59:59.000Z

353

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2 reactor coolant system and systems decontamination. Summary status report. Volume 1  

SciTech Connect (OSTI)

This document summarizes information relating to the decontamination and restoration of the Three Mile Island Unit 2 reactor coolant system and other plant systems. Data have been collected from activity reports, reactor containment entry records, and other sources and entered in a computerized data system which permits extraction/manipulation of specific data which can be used in planning for recovery from a loss of coolant event similar to that experienced by the Three Mile Island Unit 2 on March 28, 1979. This report contains a summary of radiation exposures, manpower, and time spent in radiation areas during the referenced period. Support activities conducted outside of radiation areas are not included. Computer reports included are: A chronological listing of all activities related to decomtamination and restoration of the reactor coolant system and other plant systems for the period of April 5, 1979, through December 19, 1984; a summary of labor and exposures by department for the same time period; and summary reports for each major task undertaken in connection with this specific work scope during the referenced time period.

Doerge, D.H.; Miller, R.L.; Scotti, K.S.

1986-05-01T23:59:59.000Z

354

annapolis basin area: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history Geosciences Websites Summary: ; and this was followed by an increase in the...

355

K West basin isolation barrier leak rate test  

SciTech Connect (OSTI)

This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.

Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

1994-10-31T23:59:59.000Z

356

Modeling thermal convection in supradetachment basins: example from western Norway  

E-Print Network [OSTI]

Modeling thermal convection in supradetachment basins: example from western Norway A. SOUCHE*, M. DABROWSKI AND T. B. ANDERSEN Physics of Geological Processes (PGP), University of Oslo, Oslo, Norway basins of western Norway are examples of supradetachment basins that formed in the hanging wall

Andersen, Torgeir Bjørge

357

NE Pacific Basin --Tagging Data Kate Myers, Ph.D.  

E-Print Network [OSTI]

Ocean B: NE Pacific Basin --Tagging Data Kate Myers, Ph.D. Principal Investigator, High Seas Salmon ocean tagging research on Columbia River salmon and steelhead migrating in the NE Pacific Basin R. Basin in 1995-2004. Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, B

358

The State of the Columbia River Basin  

E-Print Network [OSTI]

, and Washington. The Act authorized the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish Overview 11 Sixth Northwest Power Plan boosts energy efficiency, renewable energy, Energy efficiency

359

GUNNISON BASIN CLIMATE CHANGE VULNERABILITY ASSESSMENT  

E-Print Network [OSTI]

Climate change is already changing ecosystems and affecting people in the southwestern United States, as well as ecosystem services, e.g., water supply. The climate of the Gunnison Basin, Colorado Fish and Wildlife Service, US Forest Service, Upper Gunnison River Water Conservancy District, Western

Neff, Jason

360

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Atmospheric dispersion in mountain valleys and basins  

SciTech Connect (OSTI)

The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

Allwine, K.J.

1992-01-01T23:59:59.000Z

362

Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.  

SciTech Connect (OSTI)

This document contains summary reports of stream habitat surveys, conducted in the Yakima River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

1996-01-01T23:59:59.000Z

363

Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.  

SciTech Connect (OSTI)

This document contains summary reports of stream habitat-surveys, conducted in the Willamette River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1934-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al., 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the basis to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

1995-01-01T23:59:59.000Z

364

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Miller, R. L.; Scotti, K. S.

1986-05-01T23:59:59.000Z

365

Geological Modeling of Dahomey and Liberian Basins  

E-Print Network [OSTI]

eastern Ivory Coast, off Benin and western Nigeria, and off the Brazilian conjugates of these areas), while large areas were subjected to transform rifting (northern Sierra Leone, southern Liberia, Ghana and the Brazilian conjugates of these areas...). The future Demerara-Guinea marginal plateaus were also progressively subjected to this new rifting event. Stage 2: In Aptian times, the progress of rifting resulted in the creation of small divergent Basins (off northern Liberia, eastern Ivory Coast, Benin...

Gbadamosi, Hakeem B.

2010-01-16T23:59:59.000Z

366

The Climate of the South Platte Basin  

E-Print Network [OSTI]

://climate.atmos.colostate.edu #12;Key Features of the Climate of the South Platte Basin #12;Temperature Cold winters Hot summers of Rockies Daily Temperatures - Denver, CO Water Year 2001 -20 0 20 40 60 80 100 120 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Temperature(degF) High Low Ave High Ave Low #12;Humidity Low humidity

367

K Basin sludge treatment process description  

SciTech Connect (OSTI)

The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

Westra, A.G.

1998-08-28T23:59:59.000Z

368

Exploration trends of the Sirte Basin  

SciTech Connect (OSTI)

A wave of intense exploration activity in the Sirte Basin began after the discovery of oil in 1958, and an enormous quantity of hydrocarbon was found in less than ten years. The oil discovery rate has been gradually declining since its peak in the 1960`s, and it is now becoming increasingly difficult and more expensive to find a new reserve. This paper is an attempt to discuss briefly the past exploration cycle, to indicate the present position and to predict the future trend of our activities in the Sirte Basin. The past exploration activities in the Sirte Basin were concentrated along the particular geological trends where the possibilities of finding more reserves are now drastically reduced. Therefore, for the future healthy exploration activities, new ideas are needed to bring about some new favourable areas under further investigation. A new cycle of exploration success will emerge if our exploratory efforts are purposely directed towards the stratigraphic, stratrigraphic/structural traps and subtle type traps, along the migrational pathways and deep plays in the potential oil generative areas.

Aburawi, R.M. [Waha Oil Co., Tripoli (Libyan Arab Jamahiriya)

1995-08-01T23:59:59.000Z

369

Geothermal fluid genesis in the Great Basin  

SciTech Connect (OSTI)

Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

Flynn, T.; Buchanan, P.K.

1990-01-01T23:59:59.000Z

370

NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS  

SciTech Connect (OSTI)

From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

2002-02-05T23:59:59.000Z

371

CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.  

SciTech Connect (OSTI)

The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of the most effective site-specific habitat restoration plan, taking into consideration the unique characteristics of each project site, and conducted in cooperation with landowners and project partners, was of paramount importance to ensure each project's success. An Aquatic Habitat Inventory was conducted from river mile 0-8 on Isquulktpe Creek and the data collected was compared with data collected in 1994. Monitoring plans will continue throughout the duration of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety of fisheries monitoring techniques and habitat assessments used to determine existing conditions and identify factors limiting anadromous salmonid abundance in accordance with the Umatilla River Subbasin Salmon and Steelhead Production Plan (NPPC 1990) and the Final Umatilla Willow Subbasin Plan (Umatilla/Willow Subbasin Planning Team 2005).

Hoverson, Eric D.; Amonette, Alexandra

2009-02-09T23:59:59.000Z

372

Seismic stratigraphy and structure of the Progreso Basin, Ecuador  

E-Print Network [OSTI]

Background Geologic Setting and Location Previous Work Stratigraphy of the Progreso Basin and Vicinity . . II METHODS Seismic Stratigraphic Analysis Magnetic Source Depth Determination III SEISMIC STRATIGRAPHY . Seismic Depositional Sequences Seismic... proliferation of names and e. ges for the same rocks and formations complicates correlation between basins. The origin of the basins is not clear and the previous concepts of the evolution of the region h''s tsesis ol ows the style and format of the Bulletin...

Goyes Arroyo, Patricio

1987-01-01T23:59:59.000Z

373

The geochemistry of uranium in the Orca Basin  

E-Print Network [OSTI]

no uranium enrichment, with concentrations ranging from 2. 1 to 4. gppm, reflective of normal Gulf of Mexico sediments. This is the result of two dominant processes operating within the basin. First, the sharp pycnocline at the brine/seawater interface... . . . . . . . . , . . . , 37 xi Figure Page 16 Ores Basin Seismic Reflection Profile A 40 17 Ores Basin Seismic Reflection Profile B 42 18 Proposed Mechanism of Uranium Uptake in the Atlantis II Deep 59 INTRODUCTION Economic Status of Uranium in the United States...

Weber, Frederick Fewell

1979-01-01T23:59:59.000Z

374

Water Clarity Simulant for K East Basin Filtration Testing  

SciTech Connect (OSTI)

This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

Schmidt, Andrew J.

2006-01-20T23:59:59.000Z

375

Lithium In Tufas Of The Great Basin- Exploration Implications...  

Open Energy Info (EERE)

Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

376

Data Acquisition-Manipulation At Northern Basin & Range Region...  

Open Energy Info (EERE)

- 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2)...

377

Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh...  

Open Energy Info (EERE)

- 2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh, Et Al., 2005 - 2)...

378

atacama basin northern: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tucker 2007-02-02 44 BIOSTRATIGRAPHY, EASTERN ROCK SPRINGS UPLIFT, GREATER GREEN RIVER BASIN Environmental Sciences and Ecology Websites Summary: of selected Tertiary coal beds...

379

Regional And Local Trends In Helium Isotopes, Basin And Range...  

Open Energy Info (EERE)

Range Province, Western North America- Evidence For Deep Permeable Pathways Abstract Fluids from the western margin of the Basin and Range have helium isotope ratios as high as...

380

Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding...

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration...

382

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References J. W. Pritchett...

383

Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details...

384

Teleseismic-Seismic Monitoring At Northern Basin & Range Region...  

Open Energy Info (EERE)

Location Northern Basin and Range Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding...

385

ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN  

E-Print Network [OSTI]

ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN A THESISSUBMITTEDTO THE GRADUATE Section(1994)cruiseswere analyzed for their aluminum (Al) content; these two data setswere then combined

Luther, Douglas S.

386

Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell...  

Open Energy Info (EERE)

References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

387

Data Acquisition-Manipulation At Northern Basin & Range Region...  

Open Energy Info (EERE)

References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

388

M-Area basin closure, Savannah River Site  

SciTech Connect (OSTI)

M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

McMullin, S.R.; Horvath, J.G.

1991-12-31T23:59:59.000Z

389

M-Area basin closure, Savannah River Site  

SciTech Connect (OSTI)

M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

McMullin, S.R.; Horvath, J.G.

1991-01-01T23:59:59.000Z

390

The dynamics and physical processes of the Comoros Basin.  

E-Print Network [OSTI]

??Includes abstract. The main objective of this thesis was to investigate the circulation in the ComorosBasin using observed and model datasets. These data were used… (more)

Collins, Charine

2013-01-01T23:59:59.000Z

391

Cold test data for equipment acceptance into 105-KE Basin  

SciTech Connect (OSTI)

This document provides acceptance testing of equipment to be installed in the 105-KE Basin for pumping sludge to support the discharge chute barrier doors installation.

Packer, M.J.

1994-11-09T23:59:59.000Z

392

atlantic basin etude: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rifian Corridor Utrecht, Universiteit 7 Prediction of Seasonal Atlantic Basin Accumulated Cyclone Energy from 1 July PHILIP J. KLOTZBACH Geosciences Websites Summary: Prediction of...

393

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network [OSTI]

in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

394

Teleseismic-Seismic Monitoring At Northern Basin & Range Region...  

Open Energy Info (EERE)

Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin...

395

Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...  

Open Energy Info (EERE)

Unknown References Glenn Biasi, Leiph Preston, Ileana Tibuleac (2009) Body Wave Tomography For Regional Scale Assessment Of Geothermal Indicators In The Western Great Basin...

396

GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY  

SciTech Connect (OSTI)

From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

Millings, M.; Denham, M.; Looney, B.

2012-05-08T23:59:59.000Z

397

E-Print Network 3.0 - austrian molasse basin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

basin Page: << < 1 2 3 4 5 > >> 1 The El Mayah molasse basin in the Eastern Desert of Egypt A. Shalaby a,b,*, K. Stuwe a,*, H. Fritz a Summary: The El Mayah molasse basin in the...

398

Seismic interpretation, distribution, and basin modelling of natural gas leakage in block 2 of the Orange Basin, offshore South Africa.  

E-Print Network [OSTI]

??Includes abstract. The aims of this study are to: (1) characterize different natural gas leakage features present throughout the basin, and (2) understand the relationship… (more)

Boyd, Donna Louise.

2010-01-01T23:59:59.000Z

399

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect (OSTI)

The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-02-28T23:59:59.000Z

400

8 River Basin Closure and Institutional Change in Mexico's LermaChapala Basin  

E-Print Network [OSTI]

for irrigation expansion, and the drilling of new wells and the construction of new dams has been prohibited. Moreover, water pollution is serious, with significant wastewater reuse for irrigation within the basin. Lastly, water is being transferred from agriculture to the urban and industrial sectors, without due

Scott, Christopher

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins  

E-Print Network [OSTI]

…………………………………………………. 7.2 Conclusions ………………………………………………. 7.3 Recommendations ………………………………………... REFERENCES …………………………………………………………………… APPENDICES A DATABASE TABLES AND FIELDS AND THEIR DEFINITIONS…… B ANALOG PARAMETERS AND THEIR CLASSES ……..…………….. C VALIDATION... ………………………………………………………… LIST OF FIGURES ……………………………………………………………… LIST OF TABLES ……………………………………………………………….. CHAPTER I INTRODUCTION ……………………………………………….. 1.1 Unconventional Resources ……………………………….. 1.2 The Basin Analog Method of Evaluation ……….……….. 1.3...

Singh, Kalwant

2007-04-25T23:59:59.000Z

402

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r{sup 2}=0.95) and gas content (r{sup 2}=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. [Discovery Group, Inc., Denver, CO (United States)

1996-12-31T23:59:59.000Z

403

Devonian shale gas resource assessment, Illinois basin  

SciTech Connect (OSTI)

In 1980 the National Petroleum Council published a resource appraisal for Devonian shales in the Appalachian, Michigan, and Illinois basins. Their Illinois basin estimate of 86 TCFG in-place has been widely cited but never verified nor revised. The NPC estimate was based on extremely limited canister off-gas data, used a highly simplified volumetric computation, and is not useful for targeting specific areas for gas exploration. In 1994 we collected, digitized, and normalized 187 representative gamma ray-bulk density logs through the New Albany across the entire basin. Formulas were derived from core analyses and methane adsorption isotherms to estimate total organic carbon (r[sup 2]=0.95) and gas content (r[sup 2]=0.79-0.91) from shale bulk density. Total gas in place was then calculated foot-by-foot through each well, assuming normal hydrostatic pressures and assuming the shale is gas saturated at reservoir conditions. The values thus determined are similar to peak gas contents determined by canister off-gassing of fresh cores but are substantially greater than average off-gas values. Greatest error in the methodology is at low reservoir pressures (or at shallow depths), however, the shale is generally thinner in these areas so the impact on the total resource estimate is small. The total New Albany gas in place was determined by integration to be 323 TCFG. Of this, 210 TCF (67%) is in the upper black Grassy Creek Shale, 72 TCF (23%) in the middle black and gray Selmier Shale, and 31 TCF (10%) in the basal black Blocher Shale. Water production concerns suggest that only the Grassy Creek Shale is likely to be commercially exploitable.

Cluff, R.M.; Cluff, S.G.; Murphy, C.M. (Discovery Group, Inc., Denver, CO (United States))

1996-01-01T23:59:59.000Z

404

Stratigraphic and diagenetic controls on the occurrence of porosity in the Mississippian Mission Canyon Formation in the Billings Nose Area, North Dakota  

E-Print Network [OSTI]

AND INTERPRETATION. CONCLUSIONS REFERENCES CITED APPENDICES. 70 72 74 77 VITA 86 Figure 1 LIST OF FIGURES Index map of the Williston Basin showing structure on top of the Mission Canyon Formation. Also shown are the major oil fields and structures... DAKOTA I SOUTH DAKOTA A l I I I I I I I I Figure 1. Index map of the Williston Basin showing structure on top of the Mission Canyon Formation. Also shown are the major oil fields and structures in the basin. Contour interval is 500 feet (152 m...

Beaber, Daniel Edward

1989-01-01T23:59:59.000Z

405

Baroclinic tides in an axially symmetric basin  

E-Print Network [OSTI]

Energetics Returning to the governing equations (66) through (6&7) and multiplving (66) by phu?, (66) by phv?, and (67) by php?gives the result; phu?? f v?~ ? ~ ~ p S? m=O 0(, = phu?g h?o, c3 T f&hv?g o'j r SH (96) (96) aud ap? 1 a I au? I ~ ah.... Rowe (Head of Department) December 1989 ABSTRACT Baroclinic Tides in an Axially Symmetric Basin. (December 1989) Edward Paul Dever. B. S. , Texas Ag-XI University Chair ol' Advisory Committee: Prof. Robert 0. Reid A. coupled normal mode model...

Dever, Edward Paul

2012-06-07T23:59:59.000Z

406

Hinsdale Wave Basin 1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to:County,1143807°,Hilltop,Hinsdale Wave Basin 1

407

Hinsdale Wave Basin 2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to:County,1143807°,Hilltop,Hinsdale Wave Basin 1

408

Sediment Basin Flume | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyA JumpSeagoville,Secret EnergySediment Basin

409

Sheets Wave Basin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search|Sewaren,ShanghaiSheets Wave Basin Jump to:

410

Great Basin Consortium | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysisTweet us! | Department ofas a FeedstockGreat Basin

411

Basin Scale Opportunity Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid-Basic Energy SciencesBasicBasin

412

Summary - K Basins Sludge Treatment Process  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommittee onGASRainey STAR Center | ETR-19 UnitedK Basin

413

Hydrological cycle in the Danube basin in present-day and XXII century simulations by IPCCAR4 global climate models  

E-Print Network [OSTI]

the highest annual precipitation (1000­3200 mm per year) while the Vienna basin, the Pannonian basin, Romanian

Lucarini, Valerio

414

E-Print Network 3.0 - araripe basin north-eastern Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- cantly to our understanding of the structural geology, basin evolution, and tectonic history... our structural and tectonic database. It is now clear that these basins are...

415

Famennian microbial reef facies, Napier and Oscar Ranges, Canning Basin, western Australia  

E-Print Network [OSTI]

Geol. Rundsch. , Western Australia: Geologic Maps of theof the Canning basin, Western Australia. West. Aust. Geol.the Canning Basin, Western Australia. In: Stromatolites (Ed.

Stephens, N P; Sumner, Dawn Y.

2003-01-01T23:59:59.000Z

416

Screening model optimization for Panay River Basin planning in the Philippines .  

E-Print Network [OSTI]

??The state of the water resources of the Panay River Basin have motivated studies and initial basin planning to mitigate flood damages, to produce hydroelectricity,… (more)

Millspaugh, John Henry

2010-01-01T23:59:59.000Z

417

E-Print Network 3.0 - area tarim basin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and evolution of the basin. Xinjiang... the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0 (ISEA... of shortening taken up...

418

E-Print Network 3.0 - artesian basins Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Station 3 - The Fall Line... . open space mineral resource operations (flooded quarries or pits) ost recharge area groundwater basins... , interbasin, groundwater basins VI....

419

E-Print Network 3.0 - active single basin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

basins... ) existed during the Late Oligocene and Miocene when the rift basins of Thailand were active because active... into three main areas and tec- tonic provinces: 1)...

420

File:EIA-Williston-NE-BOE.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyoming Thrust Belt ByBOE

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

File:EIA-Williston-NE-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyoming Thrust Belt

422

File:EIA-Williston-NE-Liquids.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyoming Thrust

423

File:EIA-Williston-NW-Gas.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December 20100UP-LIQ.pdfWyoming

424

File:EIA-Williston-S-Liquids.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdf JumpApschem.pdf Jump to:December

425

City of Williston, Florida (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy NebraskaStanhope, Iowa (UtilityWaseca,Westerville,

426

PALEOZOIC TRACE FOSSILS FROM THE KUFRA BASIN, LIBYA  

E-Print Network [OSTI]

PALEOZOIC TRACE FOSSILS FROM THE KUFRA BASIN, LIBYA BRIAN R. TURNER AND MICHAEL J. BENTONPaleozoicsuccessionin the southeastern part ofthe Kufra Basin, Libya, comprises a sequence of sedimentary facies up to 250 m thick THEK u m BASINin southeast Libya (Figure 1)occupiesan area of about 400,000km2and is filled

Benton, Michael

427

Economic Impact PermianBasin'sOil&GasIndustry  

E-Print Network [OSTI]

of Petroleum Evaluation Engineers (SPEE) parameters for evaluating Resource Plays 53 Appendix C: Detailed Play to traditional economic impacts, this report includes a petroleum engineering-based analysis that providesEconomic Impact PermianBasin'sOil&GasIndustry #12;The Economic Impact of the Permian Basin's Oil

Zhang, Yuanlin

428

Origin Basin Destination State STB EIA STB EIA Northern Appalachian...  

Gasoline and Diesel Fuel Update (EIA)

- W - W W W - W Central Appalachian Basin Alabama 26.18 26.10 -0.3% 118.06 22.1% 930 37.4% 100.0% Central Appalachian Basin Delaware 23.73 15.12 -36.3% 88.59 17.1%...

429

Structural evolution and petroleum productivity of the Baltic basin  

SciTech Connect (OSTI)

The Baltic basin is an oval depression located in the western part of the Russian craton; it occupies the eastern Baltic Sea and adjacent onshore areas. The basin contains more than 5,000 m of sedimentary rocks ranging from latest Proterozoic to Tertiary in age. These rocks consist of four tectonostratigraphic sequences deposited during major tectonic episodes of basin evolution. Principal unconformities separate the sequences. The basin is underlain by a rift probably filled with Upper Proterozoic rocks. Vendian and Lower Cambrian rocks (Baikalian sequence) form two northeast-trending depressions. The principal stage of the basin development was during deposition of a thick Middle Cambrian-Lower Devonian (Caledonian) sequence. This stage was terminated by the most intense deformations in the basin history. The Middle Devonian-Carboniferous (Hercynian) and Permian-Tertiary (Kimmerian-Alpine) tectonic and depositional cycles only slightly modified the basin geometry and left intact the main structural framework of underlying rocks. The petroleum productivity of the basin is related to the Caledonian tectonostratigraphic sequence that contains both source rocks and reservoirs. However, maturation of source rocks, migration of oil, and formation of fields took place mostly during deposition of the Hercynian sequence.

Ulmishek, G.F. (Geological Survey, Denver, CO (United States))

1991-08-01T23:59:59.000Z

430

THE HISTORICAL YOLO BASIN What parts make the whole?  

E-Print Network [OSTI]

THE HISTORICAL YOLO BASIN LANDSCAPE What parts make the whole? Alison Whipple San Francisco Estuary The spatial and temporal variability of the Delta reflected fluvial-tidal interaction #12;YOLO BASIN NORTHEAST prevalent at the north end and along Miner Slough..." - Mellin 1918 North End Liberty Island Yolo By Pass

431

Dynamic management of water transfer between two interconnected river basins  

E-Print Network [OSTI]

Dynamic management of water transfer between two interconnected river basins Francisco Cabo Katrin cause environmental damage in the donor basin. The recipient faces a trade-off between paying the price of the irrigated soil, or demand for water for highly productive activities like tourism), then the existence

Boyer, Edmond

432

Corridor Information Corridor Length (miles)  

E-Print Network [OSTI]

Expy/I-290 WB I-290 WB Stevenson Expy/I-55 NB S Ashland Ave/Exit 28B I-88/Exit 15A US-20/US-45/US-12

433

Travis Miles ALL RIGHTS RESERVED  

E-Print Network [OSTI]

. These storms also cause extensive coastal damage through direct wind forcing, storm surge and precipitation sampling conditions. In my thesis I present data from Teledyne-Webb Slocum autonomous underwater vehicles

434

Corrosion of aluminum alloys in a reactor disassembly basin  

SciTech Connect (OSTI)

This document discusses storage of aluminum clad fuel and target tubes of the Mark 22 assembly takes place in the concrete-lined, light-water-filled, disassembly basins located within each reactor area at the Savannah River Site (SRS). A corrosion test program has been conducted in the K-Reactor disassembly basin to assess the storage performance of the assemblies and other aluminum clad components in the current basin environment. Aluminum clad alloys cut from the ends of actual fuel and target tubes were originally placed in the disassembly water basin in December 1991. After time intervals varying from 45--182 days, the components were removed from the basin, photographed, and evaluated metallographically for corrosion performance. Results indicated that pitting of the 8001 aluminum fuel clad alloy exceeded the 30-mil (0.076 cm) cladding thickness within the 45-day exposure period. Pitting of the 1100 aluminum target clad alloy exceeded the 30-mil (0.076 cm) clad thickness in 107--182 days exposure. The existing basin water chemistry is within limits established during early site operations. Impurities such as Cl{sup {minus}}, NO{sub 3}{sup {minus}} and SO{sub 4}{sup {minus}} are controlled to the parts per million level and basin water conductivity is currently 170--190 {mu}mho/cm. The test program has demonstrated that the basin water is aggressive to the aluminum components at these levels. Other storage basins at SRS and around the US have successfully stored aluminum components for greater than ten years without pitting corrosion. These basins have impurity levels controlled to the parts per billion level (1000X lower) and conductivity less than 1.0 {mu}mho/cm.

Howell, J.P.; Zapp, P.E.; Nelson, D.Z.

1992-12-01T23:59:59.000Z

435

Final Environmental Assessment for the Proposed Consolidation of Certain Dynamic Experimentation Activities at the Two-Mile Mesa Complex Los Alamos National Laboratory, Los Alamos, New Mexico  

SciTech Connect (OSTI)

The National Environmental Policy Act of 1969 (NEPA) requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the United States (U.S.) Department of Energy (DOE), National Nuclear Security Administration (NNSA), follows the Council on Environmental Quality regulations (40 CFR 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an environmental assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an environmental impact statement (EIS) or issue a Finding of No Significant Impact. Los Alamos National Laboratory (LANL) is a national security laboratory located at Los Alamos, New Mexico, that comprises about 40 square miles (mi{sup 2}) (103.6 square kilometers [km{sup 2}]) of buildings, structures, and forested land (Figure 1). It is administered by NNSA for the Federal government and is managed and operated under contract by the University of California (UC). The NNSA must make a decision whether to consolidate and construct new facilities for the Dynamic Experimentation Division (DX) to create a central core area of facilities, including offices, laboratories, and other support structures, at LANL's Two-Mile Mesa Complex, which comprises portions of Technical Area (TA) 6, TA-22, and TA-40. This Proposed Action would involve constructing new buildings; consolidating existing operations and offices; enhancing utilities, roads, and security infrastructure; and demolishing or removing older buildings, structures, and transportables at various technical areas used by DX (Figure 2). This EA has been prepared to assess the potential environmental consequences of this proposed construction, operational consolidation, and demolition project. The objectives of this EA are to (1) describe the underlying purpose and need for NNSA action; (2) describe the Proposed Action and identify and describe any reasonable alternatives that satisfy the purpose and need for agency action; (3) describe baseline environmental conditions at LANL; (4) analyze the potential indirect, direct, and cumulative effects to the existing environment from implementation of the Proposed Action, and (5) compare the effects of the Proposed Action with the No Action Alternative and other reasonable alternatives. For the purposes of compliance with NEPA, reasonable alternatives are identified as being those that meet NNSA's purpose and need for action by virtue of timeliness, appropriate technology, and applicability to LANL. The EA process provides NNSA with environmental information that can be used in developing mitigative actions, if necessary, to minimize or avoid adverse effects to the quality of the human environment and natural ecosystems should NNSA decide to proceed with implementing the Proposed Action at LANL. Ultimately, the goal of NEPA, and this EA, is to aid NNSA officials in making decisions based on an understanding of environmental consequences and in taking actions that protect, restore, and enhance the environment.

N /A

2003-11-03T23:59:59.000Z

436

Three Mile Island Unit 1 Main Steam Line Break Three-Dimensional Neutronics/Thermal-Hydraulics Analysis: Application of Different Coupled Codes  

SciTech Connect (OSTI)

A comprehensive analysis of the double ended main steam line break (MSLB) accident assumed to occur in the Babcock and Wilcox Three Mile Island Unit 1 (TMI-1) has been carried out at the Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione of the University of Pisa, Italy, in cooperation with the University of Zagreb, Croatia. The overall activity has been completed within the framework of the participation in the Organization for Economic Cooperation and Development-Committee on the Safety of Nuclear Installations-Nuclear Science Committee pressurized water reactor MSLB benchmark.Thermal-hydraulic system codes (various versions of Relap5), three-dimensional (3-D) neutronics codes (Parcs, Quabbox, and Nestle), and one subchannel code (Cobra) have been adopted for the analysis. Results from the following codes (or code versions) are assumed as reference:1. Relap5/mod3.2.2, beta version, coupled with the 3-D neutron kinetics Parcs code parallel virtual machine (PVM) coupling2. Relap5/mod3.2.2, gamma version, coupled with the 3-D neutron kinetics Quabbox code (direct coupling)3. Relap5/3D code coupled with the 3-D neutron kinetics Nestle code.The influence of PVM and of direct coupling is also discussed.Boundary and initial conditions of the system, including those relevant to the fuel status, have been supplied by Pennsylvania State University in cooperation with GPU Nuclear Corporation (the utility, owner of TMI) and the U.S. Nuclear Regulatory Commission. The comparison among the results obtained by adopting the same thermal-hydraulic nodalization and the coupled code version is discussed in this paper.The capability of the control rods to recover the accident has been demonstrated in all the cases as well as the capability of all the codes to predict the time evolution of the assigned transient. However, one stuck control rod caused some 'recriticality' or 'return to power' whose magnitude is largely affected by boundary and initial conditions.

D'Auria, Francesco [Universita di Pisa (Italy); Moreno, Jose Luis Gago [Universidad Politecnica de Barcelona (Spain); Galassi, Giorgio Maria [Universita di Pisa (Italy); Grgic, Davor [University of Zagreb (Croatia); Spadoni, Antonino [Universita di Pisa (Italy)

2003-05-15T23:59:59.000Z

437

Morphology, function, and evolution of the gills of high- performance fishes  

E-Print Network [OSTI]

Mercox, Ladd Research, Williston, VT) according to methodsor Mercox, Ladd Research, Williston, VT). Euthanized sharks

Wegner, Nicholas Craig

2009-01-01T23:59:59.000Z

438

J. Great Lakes Res. 32:227241 Internat. Assoc. Great Lakes Res., 2006  

E-Print Network [OSTI]

), and Crayfish (Orconectes propinquus) John Fitzsimons1,*, Bill Williston1, Georgina Williston1, Gale Bravener1

Marsden, Ellen

439

Micro-analysis of infant looking in a naturalistic social setting: insights from biologically based models of attention  

E-Print Network [OSTI]

Clifford, J. , Jr. , & Williston, J. (1993). The effects oftheory (Clifford & Williston, 1993; Solokov, 1963), which

de Barbaro, Kaya; Chiba, Andrea; Deák, Gedeon O

2011-01-01T23:59:59.000Z

440

These Separate Schools: Black Politics and Education in Washington, D.C., 1900-1930  

E-Print Network [OSTI]

University, 1997. Lofton, Williston H. “The Development ofcited as Man. Div. MSRC]; Williston Lofton, “The Development

Bernard, Rachel Deborah

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Morphology, Function, and Evolution of the Gills of High-Performance Fishes  

E-Print Network [OSTI]

Mercox, Ladd Research, Williston, VT) according to methodsor Mercox, Ladd Research, Williston, VT). Euthanized sharks

Wegner, Nicholas C.

2009-01-01T23:59:59.000Z

442

BASIN-CENTERED GAS SYSTEMS OF THE U.S.  

SciTech Connect (OSTI)

The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

2000-11-01T23:59:59.000Z

443

Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico  

SciTech Connect (OSTI)

The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.

Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

2006-05-26T23:59:59.000Z

444

Rocky Mountain Basins Produced Water Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

445

Petroleum systems of the Southwest Caspian Basin  

SciTech Connect (OSTI)

The Southwest Caspian Basin, located in offshore Azerbaijan, contains significant accumulations of oil and gas in Upper Tertiary siliciclastic sediments. The central basin contains up to 25 km of sediments. The relatively low geothermal gradients and low degree of compaction from rapid burial provide favorable conditions or the retention of hydrocarbons at relatively great depths. A variety of structural styles occur, ranging from anticlinal folds to monoclines, with various degrees of reverse faulting and brecciation. Molecular characterization of selected oil samples indicate most of the oils have been sourced form the same or similar facies; a Tertiary Type II, slightly calcareous, marine clastic facies. Insufficient organic-rich rocks are available for a reliable oil-source correlation. Examination of oil molecular characteristics, oil-oil correlations, molecular characteristics of key stratigraphic horizons, paleofacies maps, maturation, and potential migration pathways suggest the oil was not syngenetic but most likely sourced from deeper Oligo-Miocene or older marine shales. Compositional data for a single offshore gas sample suggest the gas is a mixture of low maturity Type III and biogenic. A multi-stage model of hydrocarbon emplacement for evolving structural traps has been postulated. The first phase of emplacement occurred in the Middle Pliocene when tectonic movement and significant subsidence initiated early trap/reservoir formation, migration, and hydrocarbon generation. Late Quaternary tectonic activity lead to the replenishment of older depleted traps, additional hydrocarbons for enhanced traps, and charging of new traps. In addition, late tectonic activity caused extensive redistribution of hydrocarbon accumulations, degassing due to breached faults, and destruction of selected oil pools.

Abrams, M.A.; Narimanov, A.A. [State Oil Company of Azerbaijan, Baku (Azerbaijan)

1995-08-01T23:59:59.000Z

446

Negligent Misrepresentation as Contract  

E-Print Network [OSTI]

393. Arthur L. Harding, Williston’s Fundamental Conceptions1920), Vol 1 at 3-5. Williston’s view that contract strictlytouchstone for this. Williston, Contracts (1 st ed. 1920),

Gergen, Mark P

2011-01-01T23:59:59.000Z

447

BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structure and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring mainly during the Late Cretaceous.

Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

2005-05-10T23:59:59.000Z

448

Coal Pile Basin Project (4595), 5/31/2012  

Broader source: Energy.gov (indexed) [DOE]

Coal Pile Basin Project (4595) Program or Field Office: Y-12 Site Office Location(s) (CityCountyState): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit...

449

Cenozoic volcanic geology of the Basin and Range province in...  

Open Energy Info (EERE)

volcanic geology of the Basin and Range province in Hidalgo County, southwestern New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

450

Negotiating nature : expertise and environment in the Klamath River Basin  

E-Print Network [OSTI]

"Negotiating Nature" explores resource management in action and the intertwined roles of law and science in environmental conflicts in the Upper Klamath River Basin in southern Oregon. I follow disputes over the management ...

Buchanan, Nicholas Seong Chul

2010-01-01T23:59:59.000Z

451

Gravity modeling of Cenozoic extensional basins, offshore Vietnam  

E-Print Network [OSTI]

(Yinggehai) basins. Gravity modeling results provide important clues to the controversial tectonic development of Southeast Asia during the Tertiary. Combined Bouguer and free-air gravity maps and residual gravity anomaly maps were generated for the study...

Mauri, Steven Joseph

1993-01-01T23:59:59.000Z

452

Improved Basin Analog System to Characterize Unconventional Gas Resource  

E-Print Network [OSTI]

they have yet to serve as a major contributor to the energy supply, partly due to the scarcity of information about the exploration and development technologies required to produce them. Basin analogy can be used to estimate the undiscovered petroleum...

Wu, Wenyan 1983-

2012-10-02T23:59:59.000Z

453

Exploration limited since '70s in Libya's Sirte basin  

SciTech Connect (OSTI)

Esso Standard made the first Libyan oil discovery in the western Ghadames basin in 1957. The Atshan-2 well tested oil from Devonian sandstones, and the play was a continuation of the Paleozoic trend found productive in the neighboring Edjeleh region of eastern Algeria. Exploration in the Sirte basin began in earnest in 1958. Within the next 10 years, 16 major oil fields had been discovered, each with recoverable reserves greater than 500 million bbl of oil. Libya currently produces under OPEC quota approximately 1.4 million b/d of oil, with discovered in-place reserves of 130 billion bbl of oil. The paper describes the structural framework, sedimentary basins of Libya, the Sirte basin, petroleum geology, play types, source rocks, generation and migration of hydrocarbons, oil reserves, potential, and acreage availability.

Thomas, D. (Thomas and Associates, Hastings (United Kingdom))

1995-03-13T23:59:59.000Z

454

Hydrology and Glaciers in the Upper Indus Basin  

E-Print Network [OSTI]

Examines the state of the science associated with the snow and ice hydrology in the Upper Indus Basin (IUB), reviewing the literature and data available on the present and projected role of glaciers, snow fields, and stream ...

Yu, Winston

455

Hydrologic and Institutional Water Availability in the Brazos River Basin  

E-Print Network [OSTI]

been constructed to facilitate management of the water resources of the various river basins of the state. Effective control and utilization of the water resource supplied by a stream/reservoir system requires an understanding of the amount of water...

Wurbs, Ralph A.; Bergman, Carla E.; Carriere, Patrick E.; Walls, W. Brian

456

amazon river basin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Postal 70-153, CP 04510, Mexico D. F Mercado-Silva, Norman 149 Instream Flows in the San Antonio River Basin From Science to Environmental flow Standards Geosciences Websites...

457

arkansas river basin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Postal 70-153, CP 04510, Mexico D. F Mercado-Silva, Norman 191 Instream Flows in the San Antonio River Basin From Science to Environmental flow Standards Geosciences Websites...

458

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin  

E-Print Network [OSTI]

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin: alternative approaches to deal hydropower generation and potentially irreversible negative impacts on the ecosystems that provide hydropower generation and potentially irreversible negative impacts on the ecosystems that provide

Vermont, University of

459

Interstate Commission on the Potomac River Basin (Multiple States)  

Broader source: Energy.gov [DOE]

The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through...

460

Roanoke River Basin Bi-State Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Roanoke River Basin Bi-State Commission was established as a bi-state commission composed of members from the Commonwealth of Virginia and the State of North Carolina. The purpose of the...

Note: This page contains sample records for the topic "miles williston basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

EIA - Natural Gas Pipeline Network - Natural Gas Supply Basins...  

Gasoline and Diesel Fuel Update (EIA)

with selected updates U.S. Natural Gas Supply Basins Relative to Major Natural Gas Pipeline Transportation Corridors, 2008 U.S. Natural Gas Transporation Corridors out of Major...

462

Modeling-Computer Simulations At Northern Basin & Range Region...  

Open Energy Info (EERE)

systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

463

Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell...  

Open Energy Info (EERE)

systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

464

A systematic approach for characterizing waves in a model basin  

E-Print Network [OSTI]

This research study focused upon the development of a general methodology to characterize regular and random waves in a large model basin. The objectives of the study were to both identify and quantify the various nonlinearities associated with wave...

Sarat, Andrew Charles

1994-01-01T23:59:59.000Z

465

The Nile Basin Initiative in Ethiopia: Voices from Addis Ababa  

E-Print Network [OSTI]

agreements will give Ethiopia more negotiating power. Egypt,WaterAid, and PANOS Ethiopia. 7 I interviewed stafT at theNUe Basin Initiative in Ethiopia: Voices from Addis Ababa'

Foulds, Kim

2006-01-01T23:59:59.000Z

466

INTER-MOUNTAIN BASINS SHALE BADLAND extent exaggerated for display  

E-Print Network [OSTI]

INTER-MOUNTAIN BASINS SHALE BADLAND R.Rondeau extent exaggerated for display ACHNATHERUM HYMENOIDES HERBACEOUS ALLIANCE Achnatherum hymenoides Shale Barren Herbaceous Vegetation ARTEMISIA BIGELOVII SHRUBLAND ALLIANCE Leymus salinus Shale Sparse Vegetation Overview: This widespread ecological system

467

Oil shale and coal in intermontane basins of Thailand  

SciTech Connect (OSTI)

The Mae Tip intermontane basin contains Cenozoic oil shales in beds up to 1 m (3.3 ft) thick interbedded with coal and mudstone. The oil shales contain lamosite-type alginite, and give a maximum oil yield of 122 L/MT (29.3 gal/ton). The beds are laterally continuous for at least 1.5 km (1.0 mi), but pass into mudstones toward the basin margin. The oil shales originated when peat swamps close to a steep basin margin were flooded by shallow lakes, allowing algae to replace rooted vegetation. This distinctive oil shale-coal assemblage is known from many small intermontane basins in Thailand, where locally high geothermal gradients suggest potential for hydrocarbons.

Gibling, M.R.; Srisuk, S.; Ukakimaphan, Y.

1985-05-01T23:59:59.000Z

468

alfonso basin gulf: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Louann Salt and overlying sediments, De Soto Canyon Salt Basin, northeastern Gulf of Mexico Texas A&M University - TxSpace Summary: diapirs in the De Soto Canyon area, and a...

469

Basin-Scale Opportunity Assessment Initiative Background Literature Review  

SciTech Connect (OSTI)

As called for in the March 24, 2010, Memorandum of Understanding (MOU) for Hydropower, the U.S. Department of Energy (DOE), the U.S. Department of the Interior (DOI), the U.S. Army Corps of Engineers (USACE), environmental stakeholders, and the hydropower industry are collaborating to identify opportunities to simultaneously increase electricity generation and improve environmental services in river basins of the United States. New analytical tools provide an improved ability to understand, model, and visualize environmental and hydropower systems. Efficiencies and opportunities that might not be apparent in site-by-site analyses can be revealed through assessments at the river-basin scale. Information from basin-scale assessments could lead to better coordination of existing hydropower projects, or to inform siting decisions (e.g., balancing the removal of some dams with the construction of others), in order to meet renewable energy production and environmental goals. Basin-scale opportunity assessments would inform energy and environmental planning and address the cumulative effects of hydropower development and operations on river basin environmental quality in a way that quantifies energy-environment tradeoffs. Opportunity assessments would create information products, develop scenarios, and identify specific actions that agencies, developers, and stakeholders can take to locate new sustainable hydropower projects, increase the efficiency and environmental performance of existing projects, and restore and protect environmental quality in our nation's river basins. Government agencies and non-governmental organizations (NGO) have done significant work to understand and assess opportunities for both hydropower and environmental protection at the basin scale. Some initiatives have been successful, others less so, and there is a need to better understand the legacy of work on which this current project can build. This background literature review is intended to promote that understanding. The literature review begins with a discussion in Section 2.0 of the Federal regulatory processes and mission areas pertaining to hydropower siting and licensing at the basin scale. This discussion of regulatory processes and mission areas sets the context for the next topic in Section 3.0, past and ongoing basin-scale hydropower planning and assessment activities. The final sections of the literature review provide some conclusions about past and ongoing basin-scale activities and their relevance to the current basin-scale opportunity assessment (Section 4.0), and a bibliography of existing planning and assessment documents (Section 5.0).

Saulsbury, Bo [ORNL; Geerlofs, Simon H. [Pacific Northwest National Laboratory (PNNL); Cada, Glenn F [ORNL; Bevelhimer, Mark S [ORNL

2010-10-01T23:59:59.000Z

470

SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING  

SciTech Connect (OSTI)

The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

2009-12-03T23:59:59.000Z

471

Structural analysis of the Sheep Mountain anticline, Bighorn Basin, Wyoming  

E-Print Network [OSTI]

STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Submitted to the Graduate College of Texas AIIM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1984 Major Subject: Geology STRUCTURAL ANALYSIS OF THE SHEEP MOUNTAIN ANTICLINE, BIGHORN BASIN, WYOMING A Thesis by JEFFREY HUGH HENNIER Approved as to style and content by: o n . pan (Chairman of Committee) Ear R. os sn (Member...

Hennier, Jeffrey Hugh

1984-01-01T23:59:59.000Z

472