Powered by Deep Web Technologies
Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Seven Mile Hole Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Seven Mile Hole Geothermal Area Seven Mile Hole Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Seven Mile Hole Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Wyoming Exploration Region: Yellowstone Caldera Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

2

Seven Mile Hole Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Seven Mile Hole Geothermal Area (Redirected from Seven Mile Hole Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Seven Mile Hole Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Wyoming Exploration Region: Yellowstone Caldera Geothermal Region GEA Development Phase:

3

Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009) | Open Energy  

Open Energy Info (EERE)

Seven Mile Hole Area (Larson, Et Al., 2009) Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009) Exploration Activity Details Location Seven Mile Hole Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The distribution of hydrothermally altered rocks was mapped over about 1 km2 in the Sevenmile Hole area. Two to four kilogram hand samples located by a handheld GPS were collected from many outcrops for laboratory analyses References Peter B. Larson, Allison Phillips, David John, Michael Cosca, Chad Pritchard, Allen Andersen, Jennifer Manion (2009) A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The

4

Field Mapping At Seven Mile Hole Area (Larson, Et Al., 2009) | Open Energy  

Open Energy Info (EERE)

Seven Mile Hole Area (Larson, Et Al., 2009) Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Seven Mile Hole Area (Larson, Et Al., 2009) Exploration Activity Details Location Seven Mile Hole Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown Notes The distribution of hydrothermally altered rocks was mapped over about 1 km2 in the Sevenmile Hole area. Two to four kilogram hand samples located by a handheld GPS were collected from many outcrops K735for laboratory analyses References Peter B. Larson, Allison Phillips, David John, Michael Cosca, Chad Pritchard, Allen Andersen, Jennifer Manion (2009) A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The

5

Isotopic Analysis At Seven Mile Hole Area (Larson, Et Al., 2009) | Open  

Open Energy Info (EERE)

2009) 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Seven Mile Hole Area (Larson, Et Al., 2009) Exploration Activity Details Location Seven Mile Hole Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes The 40Ar/39Ar data were collected from a single fragment of alunite from sample Y-05-25, approximately 0.5 cm3 in size. References Peter B. Larson, Allison Phillips, David John, Michael Cosca, Chad Pritchard, Allen Andersen, Jennifer Manion (2009) A Preliminary Study Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Seven_Mile_Hole_Area_(Larson,_Et_Al.,_2009)&oldid=68747

6

Miles Below the Earth: The Next-Generation of Geothermal Energy |  

Broader source: Energy.gov (indexed) [DOE]

Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy February 7, 2011 - 12:34pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What will the project do? Enhanced geothermal systems (EGS) essentially create man-made reservoirs that mimic naturally occurring pockets of steam- with the potential for use as a reliable, 24/7 source of renewable energy. For more than a century, traditional geothermal power plants have been generating electricity by extracting pockets of steam found miles below the Earth's surface. Until recently though, those plants could only be constructed in locations where pockets of steam had formed naturally. Enhanced geothermal systems (EGS) have been crafted to solve that problem

7

Compound and Elemental Analysis At Seven Mile Hole Area (Larson, Et Al.,  

Open Energy Info (EERE)

2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Seven Mile Hole Area (Larson, Et Al., 2009) Exploration Activity Details Location Seven Mile Hole Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Standard X-ray diffractometer (XRD) analyses were used in the laboratory to confirm the PIMA mineral identifications and to look for minerals that have poor SWIR response (e.g., quartz and feldspars) or were not present in great enough concentrations to be detected by the PIMA. Petrographic and electron microprobe analyses of selected samples were conducted in the laboratories of the GeoAnalytical Laboratory at Washington State

8

Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010)...  

Open Energy Info (EERE)

EERE, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010) Exploration Activity...

9

Core Holes At Long Valley Caldera Geothermal Area (Eichelberger...  

Open Energy Info (EERE)

Eichelberger, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Eichelberger, Et...

10

Core Holes At Long Valley Caldera Geothermal Area (Urban, Et...  

Open Energy Info (EERE)

Urban, Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Long Valley Caldera Geothermal Area (Urban, Et Al., 1987)...

11

Thermal Gradient Holes At Chena Geothermal Area (Erkan, Et Al...  

Open Energy Info (EERE)

Erkan, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Chena Geothermal Area (Erkan, Et Al., 2007)...

12

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network [OSTI]

Geothermal EnergyThe future of geothermal energy: Impact of enhanceddown-hole monitoring of geothermal energy systems. ASME 2011

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

13

Thermal Gradient Holes At Coso Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Thermal Gradient Holes At Coso Geothermal Area (1976) Thermal Gradient Holes At Coso Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Coso Geothermal Area (1976) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1976 Usefulness useful DOE-funding Unknown Notes Temperatures have been obtained to depths up to 133 m in 22 boreholes with measurements being made at least four times in each borehole. Geothermal gradients ranged from 240C/km to 450 0C/km. References Combs, J. (1 December 1976) Heat flow determinations and implied thermal regime of the Coso geothermal area, California Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Coso_Geothermal_Area_(1976)&oldid=511217"

14

Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration...

15

Geological and geophysical analysis of Coso Geothermal Exploration Hole No.  

Open Energy Info (EERE)

and geophysical analysis of Coso Geothermal Exploration Hole No. and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Details Activities (5) Areas (1) Regions (0) Abstract: The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a

16

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

17

Geothermal slim holes for small off-grid power projects  

Science Journals Connector (OSTI)

Economically viable, small (100 kWe to 1000 kWe), geothermal power generation units using slim holes are available for the production of electrical power in remote areas and for rural electrification in developing countries. Based on borehole data from geothermal fields in the United States and Japan, slim holes have been proven as adequate fuel sources for small-scale geothermal power plants (SSGPPs) and can deliver enough geothermal fluid to the wellhead in a baseload mode to be of practical interest for off-grid electrification projects. The electrical generating capacity of geothermal fluids which can be produced from typical slim holes (150-mm diameter or less), both by conventional, self-discharge, flash-steam methods for hotter geothermal reservoirs, and by binary-cycle technology with downhole pumps for low- to moderate-temperature reservoirs are estimated using a simplified theoretical approach. Depending mainly on reservoir temperature, the numerical simulations indicate that electrical capacities from a few hundred kilowatts to over one megawatt per slim hole are possible. In addition to the advantage of price per kilowatt-hour in off-grid applications, \\{SSGPPs\\} fueled by slim holes are far more environmentally benign than fossil-burning power plants, which is crucial in view of current worldwide climate-change concerns and burgeoning electricity demand in the less-developed and developing countries.

Jim Combs; Sabodh K Garg; John W Pritchett

1997-01-01T23:59:59.000Z

18

EIS-0266: Glass Mountain/Four Mile Hill Geothermal Project, California  

Broader source: Energy.gov [DOE]

The EIS analyzes BPA's proposed action to approve the Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project).

19

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

20

Thermal Gradient Holes At Coso Geothermal Area (1974) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1974) Coso Geothermal Area (1974) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1974 Usefulness useful DOE-funding Unknown Exploration Basis Use heat flow studies for the first time at Coso to indicate the presence or absence of abnormal heat Notes Located 10 sites for heat flow boreholes using available seismic ground noise and electrical resistivity data; data collected from 9 of 10; thermal conductivity measurements were completed using both the needle probe technique and the divided bar apparatus with a cell arrangement. In the upper few hundred meters of the subsurface heat is being transferred by a conductive heat transfer mechanism with a value of ~ 15 µcal/cm2sec; the background heat flow is ~ 3.5 HFU.

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Testing operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) |  

Open Energy Info (EERE)

operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Testing operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Details Activities (1) Areas (1) Regions (0) Abstract: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) was drilled to investigate the potential of the Coso Hot Springs Known Geothermal Resource Area (KGRA) in southeastern California. Detailed background information is contained in the drilling plan, Coso Geothermal Exploratory Hole No. 1 (CGEH-1), NVO-184, dated June 1977. The purpose of this supplement to NVO-184 is to establish a plan of operations for testing the resource after completion of well drilling activities. Major elements of this plan include

22

Core Holes At Kilauea East Rift Geothermal Area (Bargar, Et Al...  

Open Energy Info (EERE)

Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Core Holes Activity Date 1989 - 1991 Usefulness useful DOE-funding Unknown Exploration...

23

Core Hole Drilling And Testing At The Lake City, California Geothermal  

Open Energy Info (EERE)

Hole Drilling And Testing At The Lake City, California Geothermal Hole Drilling And Testing At The Lake City, California Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Core Hole Drilling And Testing At The Lake City, California Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: Unavailable Author(s): Dick Benoit, Joe Moore, Colin Goranson, David Blackwell Published: GRC, 2005 Document Number: Unavailable DOI: Unavailable Core Analysis At Lake City Hot Springs Area (Benoit Et Al., 2005) Core Holes At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Static Temperature Survey At Lake City Hot Springs Area (Benoit Et Al., 2005) Lake City Hot Springs Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Core_Hole_Drilling_And_Testing_At_The_Lake_City,_California_Geothermal_Field&oldid=389996

24

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report.  

Open Energy Info (EERE)

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Details Activities (1) Areas (1) Regions (0) Abstract: Coso Geothermal Exploratory Hole No. 1 (CGEH No. 1) is the first deep exploratory hole drilled in the Coso Hot Springs area of Southeastern California. CGEH No. 1 was drilled to a depth of 4,845 ft in the central area of a large thermal anomaly and was a continuation of investigative work in that locale to determine the existence of a geothermal resource. The drilling and completion of CGEH No. 1 is described. Also included are the daily drilling reports, drill bit records, descriptions of the casing,

25

Evaluation of Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot  

Open Energy Info (EERE)

Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Springs: KGRA, China Lake, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation of Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Springs: KGRA, China Lake, CA Details Activities (1) Areas (1) Regions (0) Abstract: The well, Coso Geothermal Exploratory Hole No. 1 (CGEH-1) was drilled at the China Lake Naval Weapons Center. Drilling was started on 2 September 1977, and the well completed on 1 December 1977 to 4845 ft. The well is an exploratory hole to determine geological and hydrothermal characteristics of the Coso Hot Springs KGRA (Known Geothermal Resource Area). During drilling, numerous geophysical and temperature surveys were performed to evaluate the geological characteristics of CGEH-1. LBL

26

Use of Slim Holes for Geothermal Reservoir Assessment: An Update  

SciTech Connect (OSTI)

Production and injection data from slim holes and large-diameter wells in three (3) geothermal fields (Oguni, Sumikawa, Steamboat Hills) were examined to determine the effect of borehole diameter (1) on the discharge rate and (2) on the productivity/injectivity indices. For boreholes with liquid feedzones, maximum discharge rates scale with diameter according to a relationship previously derived by Pritchett. The latter scaling rule does not apply to discharge data for boreholes with two-phase feedzones. Data from Oguni and Sumikawa geothermal fields indicate that the productivity (for boreholes with liquid feeds) and injectivity indices are more or less equal. The injectivity indices for Sumikawa boreholes are essentially independent of borehole diameter. The latter result is at variance with Oguni data; both the productivity and injectivity indices for Oguni boreholes display a strong variation with borehole diameter. Based on the discharge and injection data from these three geothermal fields, the flow rate of large-diameter production wells with liquid feedzones can be predicted using data from slim holes.

Garg, S.K.; Combs, J.; Goranson, C.

1995-01-01T23:59:59.000Z

27

Geology of Geothermal Test Hole GT-2 Fenton Hill Site, July 1974...  

Open Energy Info (EERE)

Test Hole GT-2 Fenton Hill Site, July 1974 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology of Geothermal Test Hole GT-2 Fenton Hill Site, July...

28

Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report |  

Open Energy Info (EERE)

Exploratory Hole No. 1 (RRGE-1). Completion report Exploratory Hole No. 1 (RRGE-1). Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; BOREHOLES; WELL DRILLING; GEOTHERMAL EXPLORATION; GEOTHERMAL WELLS; IDAHO; EQUIPMENT; GEOLOGICAL SURVEYS; WELL CASINGS; WELL LOGGING; CAVITIES; DRILLING; EXPLORATION; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA; WELLS Author(s): Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) Published: DOE Information Bridge, 10/1/1975 Document Number: Unavailable DOI: 10.2172/5091938 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Raft River Geothermal Area Retrieved from

29

Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report |  

Open Energy Info (EERE)

Hole No. 2, RRGE-2. Completion report Hole No. 2, RRGE-2. Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Geothermal Exploratory Hole No. 2 (RRGE-2) is the second exploratory hole drilled in the Raft River Valley location of the Idaho Geothermal R and D Project for the purpose of determining the existence of hot water in quantities suitable for commercial power generation and nonelectric applications. This well was drilled to a depth of 6,543 feet below ground level to obtain additional geological information for evaluation of the deep geothermal reservoir system. The drilling and completion of RRGE-2 are described. The daily drilling

30

Slim Holes At International Geothermal Area, Japan (Combs, Et Al., 1999) |  

Open Energy Info (EERE)

Japan (Combs, Et Al., 1999) Japan (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At International Geothermal Area, Japan (Combs, Et Al., 1999) Exploration Activity Details Location International Geothermal Area Japan Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes Based on personal relationships between Maxwell scientists and Japanese geothermal developers, production and injection data from 64 slim holes and 79 large-diameter wells (see table below) at four Japanese geothermal fields (Oguni, Sumikaw~ Takigarni, and Kirishirna) have been obtained. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And

31

Operations plan Coso geothermal exploratory hole No. 1 (CGEH-1) | Open  

Open Energy Info (EERE)

plan Coso geothermal exploratory hole No. 1 (CGEH-1) plan Coso geothermal exploratory hole No. 1 (CGEH-1) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Operations plan Coso geothermal exploratory hole No. 1 (CGEH-1) Details Activities (1) Areas (1) Regions (0) Abstract: An investigative program is described, involving the drilling and testing of an exploratory hole to a nominal depth of 4,000 feet with an option to drill to a depth of 6,000 feet. The following are covered: management and organizational concept; program elements--description, detailed drilling program; materials, services, and equipment provided by ERDA, NWC; site selection; site access and security; health and safety; permits and approvals; reporting; environmental impact; funding; schedule of activities; and public information. The license and reporting forms are

32

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Date 1978 - 1985 Usefulness useful DOE-funding Unknown Exploration Basis Thermal gradient drilling also continued during this period, consisting of several holes including: The...

33

Core Holes At Valles Caldera - Redondo Geothermal Area (Goff...  

Open Energy Info (EERE)

understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles caldera. Several authors have reported results from these core holes,...

34

Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...  

Open Energy Info (EERE)

understand the stratigraphy, structure, hydrothermal alteration, and subsurface architecture of the Valles caldera. Several authors have reported results from these core holes,...

35

Core Holes At Long Valley Caldera Geothermal Area (Benoit, 1984...  

Open Energy Info (EERE)

Basis Several core holes were also drilled in the caldera's west moat by Phillips Petroleum Company in 1982, including: PLV-1, drilled to approximately 711 m depth PLV-2,...

36

Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...  

Open Energy Info (EERE)

Dennis L. Nielson, Pisto Larry, C.W. Criswell, R. Gribble, K. Meeker, J.A. Musgrave, T. Smith, D. Wilson (1989) Scientific Core Hole Valles Caldera No. 2B (VC-2B), New Mexico:...

37

Geothermal pump down-hole energy regeneration system  

DOE Patents [OSTI]

Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

Matthews, Hugh B. (Boylston, MA)

1982-01-01T23:59:59.000Z

38

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energygeo (earth) + thermal (heat)is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

39

Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada  

SciTech Connect (OSTI)

Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

Denton, J.M.; Bell, E.J.; Jodry, R.L.

1980-11-01T23:59:59.000Z

40

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network [OSTI]

and operation of geothermal power plants. US DOE EEREpercentage of geothermal electric power generation systemLow-enthalpy geothermal resources for power generation.

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Microcracks, residual strain, velocity, and elastic properties of igneous rocks from a geothermal test-hole at Fenton Hill, New Mexico  

E-Print Network [OSTI]

MICROCRACKS, RESIDUAL STRAIN, VELOCITY, AND ELASTIC PROPERTIES OF IGNEOUS ROCKS FRCM A GEOTHERMAL TEST-HOLE AT FENTON HILL, NEW MEXICO A Thesis JOHN DAVID CIAMPA Submitted to the Graduate College of Texas A8M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1980 Major Subject: Geophysics MICROCRACKS, RESIDUAL STRAIN, VELOCITY, AND ELASTIC PROPERTIES OF IGNEOUS ROCKS FROM A GEOTHERMAL TEST-HOLE AT FENTON HILL, NEW MEXICO A Thesis by JOHN DAVID CIAMPA...

Ciampa, John David

2012-06-07T23:59:59.000Z

42

Geothermal Energy: A Glance Back and a Leap Forward | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Energy: A Glance Back and a Leap Forward Geothermal Energy: A Glance Back and a Leap Forward Geothermal Energy: A Glance Back and a Leap Forward October 23, 2013 - 1:31pm Addthis This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Lauren Boyd Lauren Boyd Program Manager, Enhanced Geothermal Systems (EGS) HOW EGS WORKS Imagine taking an elevator down 900 stories-over two and a half miles into the Earth, where temperatures are upwards of 350°F-hot enough to bake a cake. Deep below our feet, hot rocks in the Earth's crust compress and twist over thousands of years, causing fractures to form. Now imagine pumping cold water down that hole. In the same way an

43

Geothermal Energy: A Glance Back and a Leap Forward | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Energy: A Glance Back and a Leap Forward Geothermal Energy: A Glance Back and a Leap Forward Geothermal Energy: A Glance Back and a Leap Forward October 23, 2013 - 1:31pm Addthis This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Lauren Boyd Lauren Boyd Program Manager, Enhanced Geothermal Systems (EGS) HOW EGS WORKS Imagine taking an elevator down 900 stories-over two and a half miles into the Earth, where temperatures are upwards of 350°F-hot enough to bake a cake. Deep below our feet, hot rocks in the Earth's crust compress and twist over thousands of years, causing fractures to form. Now imagine pumping cold water down that hole. In the same way an

44

geothermal_test.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at an elevation of about 28 feet above sea level. The Salton Sea is approximately 40 miles northwest

45

Salt Wells, Eight Mile Flat | Open Energy Information  

Open Energy Info (EERE)

Salt Wells, Eight Mile Flat Salt Wells, Eight Mile Flat Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells, Eight Mile Flat Abstract Abstract unavailable. Author Nevada Bureau of Mines and Geology Published Online Nevada Encyclopedia, 2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells, Eight Mile Flat Citation Nevada Bureau of Mines and Geology. Salt Wells, Eight Mile Flat [Internet]. 2009. Online Nevada Encyclopedia. [updated 2009/03/24;cited 2013/08/07]. Available from: http://www.onlinenevada.org/articles/salt-wells-eight-mile-flat Related Geothermal Exploration Activities Activities (1) Areas (1) Regions (0) Development Wells At Salt Wells Area (Nevada Bureau of Mines and Geology, 2009) Salt Wells Geothermal Area

46

Preliminary study of discharge characteristics of slim holes compared to production wells in liquid-dominated geothermal reservoirs  

SciTech Connect (OSTI)

There is current interest in using slim holes for geothermal exploration and reservoir assessment. A major question that must be addressed is whether results from flow or injection testing of slim holes can be scaled to predict large diameter production well performance. This brief report describes a preliminary examination of this question from a purely theoretical point of view. The WELBOR computer program was used to perform a series of calculations of the steady flow of fluid up geothermal boreholes of various diameters at various discharge rates. Starting with prescribed bottomhole conditions (pressure, enthalpy), the WELBOR code integrates the equations expressing conservation of mass, momentum and energy (together with fluid constitutive properties obtained from the steam tables) upwards towards the wellhead using numerical techniques. This results in computed profiles of conditions (pressure, temperature, steam volume fraction, etc.) as functions of depth within the flowing well, and also in a forecast of wellhead conditions (pressure, temperature, enthalpy, etc.). From these results, scaling rules are developed and discussed.

Pritchett, J.W. [S-Cubed, La Jolla, CA (United States)

1993-06-01T23:59:59.000Z

47

A study of production/injection data from slim holes and large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan  

SciTech Connect (OSTI)

Production and injection data from nine slim holes and sixteen large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan were analyzed in order to establish relationships (1) between injectivity and productivity indices, (2) between productivity/injectivity index and borehole diameter, and (3) between discharge capacity of slim holes and large-diameter wells. Results are compared with those from the Oguni and Sumikawa fields. A numerical simulator (WELBOR) was used to model the available discharge rate from Takigami boreholes. The results of numerical modeling indicate that the flow rate of large-diameter geothermal production wells with liquid feedzones can be predicted using data from slim holes. These results also indicate the importance of proper well design.

Garg, S.K. [Maxwell Federal Div., Inc., San Diego, CA (United States)] [Maxwell Federal Div., Inc., San Diego, CA (United States); Combs, J. [Geo-Hills Associates, Los Altos Hills, CA (United States)] [Geo-Hills Associates, Los Altos Hills, CA (United States); Azawa, Fumio [Idemitsu Kosan Co. Ltd., Tokyo (Japan)] [Idemitsu Kosan Co. Ltd., Tokyo (Japan); Gotoh, Hiroki [Idemitsu Oita Geothermal Co. Ltd., Oita (Japan)] [Idemitsu Oita Geothermal Co. Ltd., Oita (Japan)

1996-11-01T23:59:59.000Z

48

geothermal_test.cdr  

Office of Legacy Management (LM)

The Bureau of Land Management (BLM) began studies The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at

49

Geothermal low-temperature reservoir assessment in Dona Ana County, New Mexico. Final report  

SciTech Connect (OSTI)

Sixty-four shallow temperature gradient holes were drilled on the Mesilla Valley East Mesa (east of Interstate Highways 10 and 25), stretching from US Highway 70 north of Las Cruces to NM Highway 404 adjacent to Anthony, New Mexico. Using these data as part of the site selection process, Chaffee Geothermal, Ltd. of Denver, Colorado, drilled two low-temperature geothermal production wells to the immediate north and south of Tortugas Mountain and encountered a significant low-temperature reservoir, with a temperature of about 150{sup 0}F and flow rates of 750 to 1500 gallons per minute at depths from 650 to 1250 feet. These joint exploration activities resulted in the discovery and confirmation of a 30-square-mile low-temperature geothermal anomaly just a few miles to the east of Las Cruces that has been newly named as the Las Cruces east Mesa Geothermal Field. Elevated temperature and heat flow data suggest that the thermal anomaly is fault controlled and extends southward to the Texas border covering a 100-square-mile area. With the exception of some localized perturbations, the anomaly appears to decrease in temperature from the north to the south. Deeper drilling is required in the southern part of the anomaly to confirm the existence of commercially-exploitable geothermal waters.

Icerman, L.; Lohse, R.L.

1983-04-01T23:59:59.000Z

50

Geopressured-geothermal testing of five dry holes during 1980 and 1981  

SciTech Connect (OSTI)

This paper summarizes the testing of five hot, geopressured aquifers in different geologic environments in Texas and Louisiana by Eaton Operating Company for the US Department of Energy. The results were encouraging. Natural gas-to-brine content ranged from 33.0 to 55.0 SCF/bbl. Gas production rates ranged from 93 to 600 MCFD. Sustained water production rates ranged from 1950 to 15,000 BWPD. Bottom-hole temperatures ranged from 260 to 327/sup 0/F. Reservoir pressures ranged from 6627 psia to 13,203 psia. A test near Beaumont resulted in discovery of oil and gas.

Klauzinski, R.Z.

1981-01-01T23:59:59.000Z

51

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Geothermal Power) (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy is heat extracted from the Earth [Geo (Earth) + thermal (heat)].The temperature of the Earth varies widely, and a wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from several sources, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located both near the Earth's surface as well as several miles deep into the Earth, even reaching the Earth's magma.[2][3] Geothermal

52

A Study of Production/Injection Data from Slim Holes and Large-Diameter Wells at the Okuaizu Geothermal Field, Tohoku, Japan  

SciTech Connect (OSTI)

Discharge from the Okuaizu boreholes is accompanied by in situ boiling. Analysis of cold-water injection and discharge data from the Okuaizu boreholes indicates that the two-phase productivity index is about an order of magnitude smaller than the injectivity index. The latter conclusion is in agreement with analyses of similar data from Oguni, Sumikawa, and Kirishima geothermal fields. A wellbore simulator was used to examine the effect of borehole diameter on the discharge capacity of geothermal boreholes with two-phase feedzones. Based on these analyses, it appears that it should be possible to deduce the discharge characteristics of largediameter wells using test data from slim holes with two-phase feeds.

Renner, Joel Lawrence; Garg, Sabodh K.; Combs, Jim

2002-06-01T23:59:59.000Z

53

Geothermal resources  

SciTech Connect (OSTI)

The United States uses geothermal energy for electrical power generation and for a variety of direct use applications. The most notable developments are The Geysers in northern California, with approximately 900 MWe, and the Imperial Valley of southern California, with 14 MWe being generated, and at Klamath Falls, Oregon and Boise, Idaho, where major district heating projects are under construction. Geothermal development is promoted and undertaken by private companies, public utilities, the federal government, and by state and local governments. Geothermal drilling activity showed an increase in exploratory and development work over the five previous years, from an average of 61 wells per year to 96 wells for 1980. These 96 wells accounted for 605,175 ft of hole. The completed wells included 18 geothermal wildcat discoveries, 15 wildcat failures, and 5 geopressured geothermal failures, a total of 38 exploratory attempts. Of the total of 58 geothermal development wells attempted, 55 were considered capable of production amounting to a success ratio of 94.8%. During 1980, two new power plants were put on line at The Geysers, increasing by 37% the total net generating capacity to over 900 MWe. Two power plants commenced production in the Imperial Valley in 1980. Southern California Edison started up a 10-MWe flash steam unit at the Brawley geothermal field in June. Steam is supplied by the Union Oil Company. After an intermittent beginning, Imperial Magma's pilot binary cycle, 11-MWe unit went on line on a continuous basis, producing 7 MWe of power. Hot water is supplied to the plant by Imperial Magma's wells.

Berge, C.W. (Phillips Petroleum Co., Sandy, UT); Lund, J.W.; Combs, J.; Anderson, D.N.

1981-10-01T23:59:59.000Z

54

Miles Hand Grenade  

DOE Patents [OSTI]

A simulated grenade for MILES-type simulations generates a unique RF signal and a unique audio signal. A detector utilizes the time between receipt of the RF signal and the slower-traveling audio signal to determine the distance between the detector and the simulated grenade.

Harrington, John J. (Albuquerque, NM); Buttz, James H. (Albuquerque, NM); Maish, Alex B. (Corrales, NM); Page, Ray R. (Albuquerque, NM); Metcalf, Herbert E. (Albuquerque, NM)

2005-11-15T23:59:59.000Z

55

Geothermal Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources and Technologies Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

56

Geothermal Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

57

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

58

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located several miles deep into the Earth.[2][3]

59

NREL: Learning - Geothermal Direct Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Use Direct Use Photo of alligators on a farm. Geothermally heated waters allow alligators to thrive on a farm in Colorado, where temperatures can drop below freezing. Geothermal reservoirs of hot water, which are found a few miles or more beneath the Earth's surface, can be used to provide heat directly. This is called the direct use of geothermal energy. Geothermal direct use has a long history, going back to when people began using hot springs for bathing, cooking food, and loosening feathers and skin from game. Today, hot springs are still used as spas. But there are now more sophisticated ways of using this geothermal resource. In modern direct-use systems, a well is drilled into a geothermal reservoir to provide a steady stream of hot water. The water is brought up through

60

miles-99.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vertical Velocity Statistics as Derived from 94-GHz Vertical Velocity Statistics as Derived from 94-GHz Radar Measurements N. L. Miles, D. M. Babb, and J. Verlinde The Pennsylvania State University University Park, Pennsylvania Introduction Profiles of millimeter-wavelength radar Doppler spectra contain information about both the mean vertical velocities and cloud microphysics. In order to obtain this information, it is necessary to remove the effects of turbulence. Stratocumulus clouds often contain various species of ice and liquid, including graupel, crystals, columns, plates, liquid droplets, and drizzle drops. Most of the previous work to remotely determine microphysics of stratus clouds has largely ignored the presence of drizzle and ice, restricting applicability to only liquid clouds with no drizzle, a relatively rare event. Since mixed phase

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

West Texas geothermal resource assessment. Part I. Geothermal exploration in Trans-Pecos, Texas. Final report  

SciTech Connect (OSTI)

All of the new drilling for geothermal gradient and heat flow studies have been concentrated in an area near Hueco Tanks State Park. Interest in the area was raised by the silica geothermometry map of Hoffer (1979) and its proximity to El Paso, which is less than 25 miles away and expanding rapidly toward the area of geothermal interest. Several industries in El Paso appear to be potential users of non-electrical grade hot waters. A total of 14 holes have been drilled for geothermal gradient and heat-flow measurements. Of these, 12 were 50 meters deep and all but two had gradients in excess of 100/sup 0/C/km, one having a gradient as high as 306/sup 0/C/km. Of the remaining two, one penetrated bedrock at about 50 meters and was drilled to a total depth of 125 meters. The gradient in the limestone bedrock is 170/sup 0/C/km and the heat flow is about 11 x 10/sup -6/cal/cm/sup 2/ sec. This is the highest heat flow thus far reported for a locality in the Rio Grande Rift. The last hole is 300 meters deep and has a gradient of 142/sup 0/C/km and a heat flow of 9 x 10/sup -6/cal/cm/sup 2/ sec. The Hueco Tanks site is very promising for at least space heating applications of hot water. Based on the 300 meter hole the potential for electricity grade temperatures still exist, but the tight limestone bedrock may require hot dry rock extraction technology.

Roy, R.F.; Taylor, B.

1980-01-01T23:59:59.000Z

62

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

63

Property:Geothermal/AboutArea | Open Energy Information  

Open Energy Info (EERE)

AboutArea AboutArea Jump to: navigation, search Property Name Geothermal/AboutArea Property Type Text Description About the Area Pages using the property "Geothermal/AboutArea" Showing 18 pages using this property. A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Churchill County, NV Alum Innovative Exploration Project Geothermal Project + Alum geothermal project is located in Nevada ~150 miles SE of Reno. It consists of federal geothermal leases that are 100% owned by SGP. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + Humboldt House-Rye Patch (HH-RP) geothermal resource area

64

Geothermal Literature Review At Long Valley Caldera Geothermal...  

Open Energy Info (EERE)

accompanying ongoing geothermal power production have resulted in land subsidence. The completion in 1998 of a 3000-m-deep drill hole on the resurgent dome has provided useful...

65

EA for Well Field Development at Patua Geothermal Area -  

Open Energy Info (EERE)

for Well Field Development at Patua Geothermal Area - for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: EA for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA EA at Patua Geothermal Area for Geothermal/Exploration, Geothermal/Well Field, Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Drilling Techniques, Thermal Gradient Holes Time Frame (days) NEPA Process Time 327 Participating Agencies Lead Agency BLM Funding Agency none provided

66

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

96 Geothermal Blog en Geothermal Blog http:energy.goveeregeothermal-blog Geothermal Blog

67

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

68

Advanced Geothermal Turbodrill  

SciTech Connect (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

69

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

SciTech Connect (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

70

Geothermal Tomorrow  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Eritrea, and Djibouti. Kenya was the first of these countries to develop geothermal energy and has the largest geothermal plant in Africa-near Naivasha (Olkaria), yield- ing...

71

Geothermal Energy Association Recognizes the National Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

72

Miles Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

Miles Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

73

Geothermal Literature Review At Coso Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis Compare multiple theories of the structural control of the geothermal system Notes The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. The identified producing fractures occur in zones which range from 10 - 100s of feet in extent, separated by regions of essentially unfractured rock of similar composition. Wells in the Devil's Kitchen area have encountered fluids in excess of 4500F and flow rates of 1 million lb/hr at depths less than 4000

74

Federal Energy Management Program: Geothermal Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

75

NREL: Learning - Geothermal Electricity Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Production Electricity Production Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's

76

San Andreas Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

San Andreas Geothermal Region San Andreas Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home San Andreas Geothermal Region Details Areas (4) Power Plants (0) Projects (0) Techniques (1) Map: {{{Name}}} The topographic texture of western California is controlled by the San Andreas fault system, the tectonic expression of the Pacific Plate sliding northwestward along the western margin of the North American Plate. Hundreds of miles long and in places up to a mile wide, the San Andreas Fault Zone has been active since its origin in the Tertiary. About 10 percent of the present plate motion is compressional, shortening and wrinkling the crust to create the parallel coastal northwest-southeast mountain ranges. USGS Physiographic Regions[1] References ↑ "USGS Physiographic Regions"

77

San Andreas Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

San Andreas Geothermal Region San Andreas Geothermal Region (Redirected from San Andreas) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home San Andreas Geothermal Region Details Areas (4) Power Plants (0) Projects (0) Techniques (1) Map: {{{Name}}} The topographic texture of western California is controlled by the San Andreas fault system, the tectonic expression of the Pacific Plate sliding northwestward along the western margin of the North American Plate. Hundreds of miles long and in places up to a mile wide, the San Andreas Fault Zone has been active since its origin in the Tertiary. About 10 percent of the present plate motion is compressional, shortening and wrinkling the crust to create the parallel coastal northwest-southeast mountain ranges. USGS Physiographic Regions[1]

78

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy can be used either to generate base- ... in buildings. Globally, the annual production of geothermal electricity is somewhat smaller than solar PV ... locations with adequate resources. For powe...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

79

Geothermal energy  

Science Journals Connector (OSTI)

Dry steam areas are probably rare. About 30 areas in the United States have been explored for geothermal energy, but dry steam has been proved only ... The Geysers . Extensive utilisation of geothermal energy ...

D. E. White

1966-01-01T23:59:59.000Z

80

Geothermal pipeline  

SciTech Connect (OSTI)

This article is a progress and development update of the Geothermal Progress Monitor which describes worldwide events and projects relating to the use of geothermal energy. Three topics are covered in this issue:(1) The proceedings at the 1995 World Geothermal Congress held in Florence, Italy. United States Energy Secretary Hazel O`Leary addressed the congress and later met with a group of mainly U.S. conferees to discuss competitiveness and the state of the geothermal industry, (2) A session at the World Geothermal Congress which dealt with the outlook and status of worldwide geothermal direct use including information on heat pumps and investment, and (3) An article about a redevelopment project in Klamath Falls, Oregon which involves a streetscape for the downtown area with brick crosswalks, antique-style light fixtures, park benches, and geothermally heated sidewalks and crosswalks.

NONE

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assessment of the geothermal resources of Kansas. Final report  

SciTech Connect (OSTI)

The following regional geological and geophysical studies are reported: establishment of a geothermal gradient data base from approximately 45,000 bottom hole temperatures recorded from well logs and interpretation of this data in terms of regional geology and establishment and interpretation of a second data base of geothermal gradients from thermal logging data from 144 holes of opportunity in the state. (MHR)

Steeples, D.W.; Stavnes, S.A.

1982-06-01T23:59:59.000Z

82

Geothermal Discovery Offers Hope for More Potential Across the Country  

Broader source: Energy.gov [DOE]

In summer 2012, a team of geoscientists from the Utah Geological Survey (UGS) in cooperation with the U.S. Geological Survey (USGS) drilled seven geothermal gradient holes in Utah's Black Rock Desert basin to test a new concept of high temperature geothermal resources in sedimentary basins. Seven drill holes were funded by the U.S. Department of Energy as part of a National Geothermal Data System project, managed by the Arizona Geological Survey.

83

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass  

Broader source: Energy.gov (indexed) [DOE]

EA-1925: Midnight Point and Mahogany Geothermal Exploration EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon SUMMARY This EA evaluates Ormat Nevada, Inc.'s (Ormat's) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on

84

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass  

Broader source: Energy.gov (indexed) [DOE]

5: Midnight Point and Mahogany Geothermal Exploration 5: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon SUMMARY This EA evaluates Ormat Nevada, Inc.'s (Ormat's) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on

85

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers [EERE]

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

86

Structural interpretation of Coso Geothermal field, Inyo County, California  

Open Energy Info (EERE)

Coso Geothermal field, Inyo County, California Coso Geothermal field, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural interpretation of Coso Geothermal field, Inyo County, California Details Activities (2) Areas (1) Regions (0) Abstract: The Coso Geothermal field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in southern California, is an excellent example of a structurally controlled geothermal resource. The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. Wells drilled along this feature have encountered production from distinct fractures in crystalline basement rocks. The identified producing fractures occur in zones which

87

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

88

Stanford Geothermal Workshop- Geothermal Technologies Office  

Broader source: Energy.gov [DOE]

Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

89

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events April 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

90

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events May 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

91

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events March 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

92

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events February 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

93

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events January 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

94

Exploratory Well At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

7) 7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Raft River Geothermal Exploratory Hole No. 4, RRGE-4 drilled. During this time Raft River geothermal exploration well sidetrack-C also completed. References Kunze, J. F.; Stoker, R. C.; Allen, C. A. (14 December 1977) Update on the Raft River Geothermal Reservoir Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Retrieved from "http://en.openei.org/w/index.php?title=Exploratory_Well_At_Raft_River_Geothermal_Area_(1977)&oldid=473847"

95

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

96

Geothermal News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

97

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

98

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy has been confirmed as being potentially a ... significant contributor to the Communitys supply of energy from indigenous resources. However, its expected... 1. ...

J. T. McMullan; A. S. Strub

1981-01-01T23:59:59.000Z

99

Geothermal energy for American Samoa  

SciTech Connect (OSTI)

The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

Not Available

1980-03-01T23:59:59.000Z

100

1982 geothermal well drilling summary  

SciTech Connect (OSTI)

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Exploratory Well At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

76) 76) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Second and third exploratory wells drilled Notes Raft River Geothermal Exploratory Hole No. 2, RRGE-2 drilled. During this period, a third well, RRGE-3 was also drilled and well production was tested. Down-hole data was obtained from RRGE-3. References Speake, J.L. (1 August 1976) Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Kunze, J.F. (1 October 1976) Geothermal R and D Project report for period April 1, 1976 to June 30, 1976

102

Geothermal Technologies Office: Geothermal Projects  

Energy Savers [EERE]

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search...

103

Exploratory Well At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis First exploratory well Notes Raft River Geothermal Exploratory Hole No. 1 (RRGE-1) is drilled. References Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) (1 October 1975) Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Kunze, J.F. (1 May 1977) Geothermal R and D project report, October 1, 1976--March 31, 1977 Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. (1 January 1978) Deep drilling data Raft River geothermal

104

Three Mile Island: then and now  

SciTech Connect (OSTI)

A review of the Three Mile Island Unit 2 accident is presented. Current activities to clean up the reactor are described.

Trauger, D.B.

1980-01-01T23:59:59.000Z

105

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

106

Geothermal: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

107

The Geothermal Technologies Office  

Energy Savers [EERE]

Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety...

108

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

109

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

110

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

111

The Humboldt House-Rye Patch Geothermal District: An Interim View | Open  

Open Energy Info (EERE)

The Humboldt House-Rye Patch Geothermal District: An Interim View The Humboldt House-Rye Patch Geothermal District: An Interim View Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: The Humboldt House-Rye Patch Geothermal District: An Interim View Abstract The Humboldt House - Rye Patch Geothermal District extends about 6 miles along the northwestern flank of the Humboldt Range in Pershing County, Nevada and is composed of a number of geothermal cells. The northern Humboldt House portion of the district hosts hot wells and silicic sinter deposits extending from within the Humboldt Range, westward for at least four miles, out into the Humboldt River Valley. The southern Rye Patch portion of the District has scant surface geothermal features, and is identified from well data. Exploration in the District in the mid to late

112

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration Activity...

113

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area...

114

Core Holes At Steamboat Springs Area (Warpinski, Et Al., 2004...  

Open Energy Info (EERE)

Steamboat Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Steamboat Springs Area (Warpinski,...

115

Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski,...  

Open Energy Info (EERE)

Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski, Et Al.,...

116

Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) |...  

Open Energy Info (EERE)

Blue Mountain Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Warpinski, Et Al.,...

117

Thermal Gradient Holes At Obsidian Cliff Area (Hulen, Et Al....  

Open Energy Info (EERE)

Obsidian Cliff Area (Hulen, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Obsidian Cliff Area (Hulen,...

118

Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...  

Open Energy Info (EERE)

Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not...

119

Geothermal energy  

Science Journals Connector (OSTI)

By virtue of its geographical distribution and the quantities of energy which could be tapped, the possible overall contribution of geothermal energy towards meeting Europes future energy requirements is much sm...

1977-01-01T23:59:59.000Z

120

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy is the natural heat of the earth....31 J. This quantity of energy is inexhaustible by any technical use (the present technical energy consumption of the world is of the...20 J).

O. Kappelmeyer

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Chapter 3. Vehicle-Miles Traveled  

U.S. Energy Information Administration (EIA) Indexed Site

3. Vehicle-Miles Traveled 3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important information collected by the Residential Transportation Energy Consumption Survey. Using the data on vehicle-miles traveled allows analysts to answer such questions as: "Are minivans driven more than passenger cars?" "Do people in the West drive more than people elsewhere?" "Do people conserve their new cars by driving them less?" "Who drives more--people in households with children, or other people?" "At what ages do people drive the most?" "How does growing income affect the amount of driving?" In addition to answering those kinds of questions, analysts also use the number of vehicle-miles traveled to compute estimated, on-road vehicle fuel consumption, economy, and expenditures, all of which have important implications for U.S. energy policy and national security (see Chapter 4).

122

Enhanced Geothermal Systems (EGS) - the Future of Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy October 28, 2013 - 12:00am Addthis While the...

123

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

124

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as...

125

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

126

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

127

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

128

The train problem assumes a circular track 101 miles in circumference. The track is labeled clockwise in miles starting at due north. ie. 0 through 100. Mile 101 would be at the same spot as mile 0.  

E-Print Network [OSTI]

A3: trains The train problem assumes a circular track 101 miles in circumference. The track as mile 0. Train1 starts at mile 0 going clockwise. Train2 starts at mile 50 also going clockwise. The program prompts for speeds of each train in mph. The output is the mile (or fraction) at which one train

Huth, Michael

129

Three Mile Canyon | Open Energy Information  

Open Energy Info (EERE)

Mile Canyon Mile Canyon Jump to: navigation, search Name Three Mile Canyon Facility Three Mile Canyon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Momentum RE Energy Purchaser PacifiCorp Location Morrow County OR Coordinates 45.717419°, -119.502258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.717419,"lon":-119.502258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Wireless Technology Leaps the Last Mile  

Science Journals Connector (OSTI)

Topics include "Wireless Technology Leaps the Last Mile," "Researcher Turns Computers into Better Listeners," and "IBM Puts Encryption in a Processor. Keywords: wireless technology, speech recognition technology, encryption, digital-content protection

Linda Dailey Paulson

2006-06-01T23:59:59.000Z

131

Core Holes | Open Energy Information  

Open Energy Info (EERE)

Core Holes Core Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Core Holes Details Activities (8) Areas (7) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Core holes are drilled to identify lithology and mineralization Stratigraphic/Structural: Retrieved samples can be used to identify fracture networks or faults Hydrological: Thermal: Thermal conductivity measurements can be done on retrieved samples. Dictionary.png Core Holes: A core hole is a well that is drilled using a hallow drill bit coated with synthetic diamonds for the purposes of extracting whole rock samples from

132

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Fenton Hill HDR Site References D. G. Brookins, A. W. Laughlin (1983) Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Brookins_%26_Laughlin,_1983)&oldid=511281"

133

Acoustic Logs At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Acoustic Logs At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Acoustic Logs Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Acoustic logs indicate fractured rock and potentially permeable zones. References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Goranson, C.; Schroeder, R. (1 June 1978) Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Retrieved from "http://en.openei.org/w/index.php?title=Acoustic_Logs_At_Coso_Geothermal_Area_(1977)&oldid=510216"

134

Gamma Log At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

Gamma Log At Coso Geothermal Area (1977) Gamma Log At Coso Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gamma Log At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Gamma Log Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes extensive geophysical logging surveys were conducted: natural gamma and neutron porosity logs indicate gross rock type References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Goranson, C.; Schroeder, R. (1 June 1978) Static downhole characteristics of well CGEH-1 at Coso Hot Springs, China Lake, California Retrieved from "http://en.openei.org/w/index.php?title=Gamma_Log_At_Coso_Geothermal_Area_(1977)&oldid=510780"

135

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

136

A Demonstration System for Capturing Geothermal Energy from Mine Waters  

Open Energy Info (EERE)

System for Capturing Geothermal Energy from Mine Waters System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by now-inactive water-filled mines. In Butte's case, over 10,000 miles of underground workings have been documented, but as in many other mining communities these waters are regarded as more of a liability than asset. Mine waters offer several advantages:

137

Overview Of The Lake City, California Geothermal System | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Overview Of The Lake City, California Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Overview Of The Lake City, California Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: Following a spectacular mud volcano eruption in 1951, the Lake City geothermal system has been intermittently explored for 44 years. A discovery well was drilled 30 years ago. The geothermal system is associated with a two mile-long, north-south trending, abnormally complex section of the active Surprise Valley fault zone that has uplifted the

138

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

139

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

140

Sierra Nevada Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sierra Nevada Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) Map: {{{Name}}} California's Sierra Nevada is a west-tilting 350-mile (560-km)-long block of granite. Extending from 14,494 feet (Mt. Whitney, the highest peak in the lower 48 states) in the east to near sea level in the west, it contains the spectacular Yosemite and Sequoia National Parks (not indicated on the map). The massive granite intruded the crust in Mesozoic time and was uplifted and faulted in the Tertiary during formation of the basin and range to the east. USGS[1] References ↑ "USGS" Geothermal Region Data State(s) California Area 56,363 km²56,363,000,000 m² 21,756.118 mi² 606,685,695,700 ft²

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

142

1st Mile | Open Energy Information  

Open Energy Info (EERE)

Mile Mile Jump to: navigation, search Name 1st Mile Place Lyngby, Denmark Zip 2800 Product Denmark-based company that provides research and screening for venture capitalists. Website http://www.1stmile.dk/ Coordinates 56.866669°, 8.31667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.866669,"lon":8.31667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir |  

Open Energy Info (EERE)

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Details Activities (3) Areas (1) Regions (0) Abstract: A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The

144

Stepout-Deepening Wells At Coso Geothermal Area (1986) | Open Energy  

Open Energy Info (EERE)

Stepout-Deepening Wells At Coso Geothermal Area (1986) Stepout-Deepening Wells At Coso Geothermal Area (1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Step-out Well At Coso Geothermal Area (1986) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Step-out Well Activity Date 1986 Usefulness not indicated DOE-funding Unknown Notes A step-out exploration/production well drilled in 1986 to a depth of 6553 ft located several miles south of the Devil's Kitchen region along the identified north-south feature produced fluids with a temperature greater than 640 F. References Austin, C.F.; Bishop, B.P.; Moore, J. (1 May 1987) Structural interpretation of Coso Geothermal field, Inyo County, California Retrieved from "http://en.openei.org/w/index.php?title=Stepout-Deepening_Wells_At_Coso_Geothermal_Area_(1986)&oldid=687864"

145

Fundamentals of Geothermics  

Science Journals Connector (OSTI)

The expression geothermics of the Earth is understood to be restricted to the solid Earth and is usually shortened to geothermics. Hence, the field of geothermics starts as soon as the solid Earth has been e...

R. Haenel; L. Rybach; L. Stegena

1988-01-01T23:59:59.000Z

146

Geothermal Power [and Discussion  

Science Journals Connector (OSTI)

...May 1974 research-article Geothermal Power [and...with the development of utilization...increase in geothermal production...electric energy generated...geothermoelectric energy costs ranged...The total geothermal capacity...remarkable development in this type...

1974-01-01T23:59:59.000Z

147

Geothermal Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Direct-Use Geothermal Technologies Geothermal Electricity Production Geothermal Heat Pumps Geothermal Resources Or read more about EERE's geothermal technologies...

148

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

their Application to Geothermal Well Testing, in Geothermalthe Performance of Geothermal Wells, Geothermal Res.of Production Data from Geothermal Wells, Geothermal Res.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

149

NREL: Geothermal Technologies - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

150

Geothermal Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

151

HDR geothermal energy  

Science Journals Connector (OSTI)

HDR geothermal energy, petrothermal geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

152

petrothermal geothermal energy  

Science Journals Connector (OSTI)

petrothermal geothermal energy, HDR geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

153

Geothermal Technologies Subject Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

154

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

155

Debate over waste imperils 3-mile cleanup  

Science Journals Connector (OSTI)

...solidification ofthe 560,000 gallons of high level waste left from the commercial fuel reprocessing plant that operated at West Valley, New York, from 1966 to 1972. But any suggestion that the new solidification facility also be used for Three Mile...

LJ Carter

1980-10-10T23:59:59.000Z

156

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

157

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

and microearthquake studies, Coso Geothermal Area, China Lake, and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Details Activities (2) Areas (1) Regions (0) Abstract: The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous,

158

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

159

Geothermal: Sponsored by OSTI -- NATIONAL GEOTHERMAL DATA SYSTEM...  

Office of Scientific and Technical Information (OSTI)

SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

160

Fairbanks Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Microsoft Word - Seven Mile CX.doc  

Broader source: Energy.gov (indexed) [DOE]

October 7, 2010 October 7, 2010 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearence Memorandum - Seven Mile Project Erich Orth Project Manager - TEP-TPP-3 Proposed Action: Seven Mile Project Budget Information: Work Order 00211600 Task 03 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021: B1.11 "Installation of fencing... that will not adversely affect wildlife of surface water flow." B4.6 "Additions or modifications to electric power transmission facilities that would not affect the environment beyond the previously developed facility area..." B4.11 "Construction or electric power substations (including switching stations and support facilities) with power delivery at 230-kV or below, or modification (other than voltage increases) of existing

162

square miles | OpenEI Community  

Open Energy Info (EERE)

0 0 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235190 Varnish cache server square miles Home Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land use solar land use square miles I'm happy to announce that a new report on Solar+Land+Use was just released by the National+Renewable+Energy+Laboratory. You can find a brief summary of the results at the Solar+Land+Use page on OpenEI.

163

Guidebook to Geothermal Power Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project...

164

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

165

Geothermal Tomorrow | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Tomorrow Geothermal Tomorrow This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of...

166

OHm Geothermal | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: OHm Geothermal Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: A Nevada-based geothermal energy development company....

167

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

168

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

169

Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area...

170

Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fort Bliss Area (DOE GTP) Exploration...

171

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

172

Calpine: America's largest geothermal energy producer | Department of  

Broader source: Energy.gov (indexed) [DOE]

Calpine: America's largest geothermal energy producer Calpine: America's largest geothermal energy producer Calpine: America's largest geothermal energy producer October 6, 2010 - 12:37pm Addthis Calpine operates 15 plants at The Geysers in northwest California, which generate enough clean energy daily to power a city the size of San Francisco.| Photo Courtesy of Calpine Calpine operates 15 plants at The Geysers in northwest California, which generate enough clean energy daily to power a city the size of San Francisco.| Photo Courtesy of Calpine Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Amid the Mayacamas Mountains in northwest California sits the world's largest geothermal field: The Geysers. Since 1960, steam from the 45 square mile field spanning Lake and Sonoma

173

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs,  

Open Energy Info (EERE)

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Details Activities (1) Areas (1) Regions (0) Abstract: Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of

174

Reflection Survey At Coso Geothermal Area (2001) | Open Energy Information  

Open Energy Info (EERE)

Exploration Activity: Reflection Survey At Coso Geothermal Area (2001) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Reflection Survey Activity Date 2001 Usefulness not indicated DOE-funding Unknown Exploration Basis Look for features that are characteristic of the geothermal producing region not originally seen by imaging the Coso Field using seismic Notes During December of 1999, approximately 32 miles of seismic data were acquired as part of a detailed seismic investigation undertaken by the US Navy Geothermal Program Office. Data acquisition was designed to make effective use of advanced data processing methods, which include Optim's proprietary nonlinear velocity optimization technique and pre-stack Kirchhoff migration. The velocity models from the 2-D lines were combined

175

Geothermal Power Generation  

SciTech Connect (OSTI)

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

176

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

178

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network [OSTI]

occurred during the nuclear accident, and probably noHEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT MILE ISLAND JacobENG-48 HEALTH EFFECTS OF THE NUCLEAR ACCIDENT A T THREE MILE

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

179

Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Miles Traveled Vehicle Miles Traveled Tax Feasibility Evaluation to someone by E-mail Share Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Facebook Tweet about Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Twitter Bookmark Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Google Bookmark Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Delicious Rank Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on Digg Find More places to share Alternative Fuels Data Center: Vehicle Miles Traveled Tax Feasibility Evaluation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

180

Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Oregon Celebrates 200 Oregon Celebrates 200 Miles of Electric Highways to someone by E-mail Share Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Facebook Tweet about Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Twitter Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Google Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Delicious Rank Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Digg Find More places to share Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on AddThis.com... April 18, 2012 Oregon Celebrates 200 Miles of Electric Highways " These [electric charging] stations will help create a corridor that, by the

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...  

Office of Scientific and Technical Information (OSTI)

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

182

Focus Series: Denver Energy Advisor Program Helps Homeowners Go the Extra Mile in Mile-High City  

Broader source: Energy.gov [DOE]

Focus Series: Denver Energy Advisor Program Helps Homeowners Go the Extra Mile in Mile-High City, a publication of the U.S. Department of Energy's Better Buildings Program.

183

Geothermal: Help  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

184

Geothermal Literature Review At Breitenbush Hot Springs Area (Ingebritsen,  

Open Energy Info (EERE)

Ingebritsen, Ingebritsen, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1996) Exploration Activity Details Location Breitenbush Hot Springs Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Defense of previous 1993 thermal gradient hole interpretations. References S. E. Ingebritsen, M. A. Scholl, D. R. Sherrod (1996) Reply To The Comment By D D Blackwell And G R Priest On Heat Flow From Four New Research Drill Holes In The Western Cascades, Oregon, Usa By S E Ingebritsen, M A Scholl And D R Sherrod Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Breitenbush_Hot_Springs_Area_(Ingebritsen,_Et_Al.,_1996)&oldid=510797"

185

Pilgrim Hot Springs, Alaska Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs, Alaska Geothermal Project Springs, Alaska Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Pilgrim Hot Springs, Alaska Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A combination of existing and innovative remote sensing and geophysical techniques will be used to site the two confirmation core holes. These include a suite of Landsat, Aster, and FLIR techniques using infrared radiation combined with a CSAMT/AMT resistivity survey, 4.5 m to 150 m temperature gradient holes, and 1980 convective heat loss calculations. These will be used in combination to determine the natural heat loss from the Pilgrim geothermal system and allow an order of magnitude estimate of the resource potential.

186

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

187

National Geothermal Resource Assessment and Classification |...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation...

188

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

189

Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Electricity Technology Evaluation Model (GETEM) aids the...

190

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

191

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

192

Doug Hollett, Director Geothermal Technologies Office Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The DOE Perspective International Forum on Geothermal Energy October 28-29, 2013 Mexico City Courtesy GRC Courtesy CPikeACEP Courtesy RAM Power 2 4 Renewable Electricity...

193

Geothermal: Sponsored by OSTI -- Geothermal Greenhouse Information...  

Office of Scientific and Technical Information (OSTI)

Greenhouse Information Package Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

194

Static Temperature Survey At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Static Temperature Survey At Coso Geothermal Area Static Temperature Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Temperature logs were taken during and after drilling: Results: Convective heat flow and temperatures greater than 350 F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA,

195

Rapid reconnaissance of geothermal prospects using shallow temperature  

Open Energy Info (EERE)

Semi-annual technical report Semi-annual technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report Details Activities (1) Areas (1) Regions (0) Abstract: Shallow (2-m) soil temperature data have been collected at 27 sites at Long Valley, California, and at 102 sites at Coso, California. These geothermal areas are locations where traditional deep reconnaissance geothermal survey bore holes have been emplaced, allowing us to compare directly our shallow temperature results with standard geothermal exploration techniques. The effects of surface roughness, albedo, soil thermal diffusivity, topography and elevation were considered in making the necessary corrections to our 2-m temperature data. The corrected data for

196

Exploratory Well At Coso Geothermal Area (1977-1978) | Open Energy  

Open Energy Info (EERE)

77-1978) 77-1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Coso Geothermal Area (1977-1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Exploratory Well Activity Date 1977 - 1978 Usefulness useful DOE-funding Unknown Notes 1477-m Coso Geothermal Exploration Hole (CGEH) No. 1 well drilled .The objective of well and future well testing is to determine the well productivity and geothermal reservoir parameters. References Energy Research and Development Administration, Las Vegas, NV (USA). Nevada Operations Office (1 June 1977) Operations plan Coso geothermal exploratory hole No. 1 (CGEH-1) Department of Energy, Las Vegas, Nev.. Nevada Operations Office; Naval Weapons Center, China Lake, Calif.; California Univ., Berkeley.

197

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

198

Imperial Valley Geothermal Area | Department of Energy  

Energy Savers [EERE]

Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource...

199

Nevada Geothermal Area | Department of Energy  

Energy Savers [EERE]

Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately...

200

The Geysers Geothermal Area | Department of Energy  

Energy Savers [EERE]

The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field....

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Italy Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

202

North Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Power Plants in North Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Dakota No areas listed....

203

Geothermal Energy Association Annual Industry Briefing: 2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

204

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Operational Geothermal Power Plants in Wisconsin No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wisconsin No areas listed....

205

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

206

Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

207

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT OCTOBER 1 ­ DECEMBER 31, 1996 #12;1 1 AN EXPERIMENTAL that in the vertical case. 1.2 INTRODUCTION The process of boiling in porous media is of significance in geothermal

Stanford University

208

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

1 STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT JANUARY 1 - MARCH 31, 1997 #12;2 1 AN EXPERIMENTAL in geothermal systems as well as in many other applications such as porous heat pipes, drying and nuclear waste

Stanford University

209

Honey Lake Geothermal Area  

Broader source: Energy.gov [DOE]

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

210

Applications of Geothermal Energy  

Science Journals Connector (OSTI)

The distinction between near surface and deep geothermal systems follows from the different depth levels of the geothermal reservoirs and different techniques of utilization (Fig ... smooth. Distinguishing the tw...

Ingrid Stober; Kurt Bucher

2013-01-01T23:59:59.000Z

211

Emerging geothermal energy technologies  

Science Journals Connector (OSTI)

Geothermal energy, whether as a source of electricity or ... , has an enormous potential as a renewable energy source. This paper presents a broad overview of geothermal energy, with a focus on the emerging techn...

I. W. Johnston; G. A. Narsilio; S. Colls

2011-04-01T23:59:59.000Z

212

Geothermal Energy on Mars  

Science Journals Connector (OSTI)

This contribution will concentrate on the implications of data from new studies of Mars during the past decade or so in terms of martian geothermal resources, and the potential differences in exploiting geothermal

Paul Morgan

2009-01-01T23:59:59.000Z

213

GEOTHERM Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

DeAngelo, Jacob

214

Geothermal Well Completion Tests | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Completion Tests Geothermal Well Completion Tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Completion Tests Abstract This paper reviews the measurements that are typically made in a well immediately after drilling is completed - the Completion Tests. The objective of these tests is to determine the properties of the reservoir, and of the reservoir fluid near the well. A significant amount of information that will add to the characterisation of the reservoir and the well, can only be obtained in the period during and immediately after drilling activities are completed. Author Hagen Hole Conference Petroleum Engineering Summer School; Dubrovnik, Croatia; 2008/06/09 Published N/A, 2008 DOI Not Provided Check for DOI availability: http://crossref.org

215

Fluid Inclusion Analysis At Coso Geothermal Area (2002) | Open Energy  

Open Energy Info (EERE)

) ) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (2002) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2002 Usefulness useful DOE-funding Unknown Notes Analyses were averaged and plotted verses depth (Figure 4). Fluid inclusion gas analyses done on vein minerals from drill hole 68-6 that we earlier analyzed (Adams 2000) were plotted for comparison in order to confirm that similar analyses are obtained from chips and vein minerals. This comparison is far from ideal. The drill holes are better than a kilometer apart, samples analyzed in the two bore holes are not from the same depths, and the chip analyses were performed on the new dual quadrupole system that

216

Geothermal Government Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

217

Other Geothermal Energy Publications  

Broader source: Energy.gov [DOE]

Here you'll find links to other organization's publications including technical reports, newsletters, brochures, and more about geothermal energy.

218

Geothermal energy development  

SciTech Connect (OSTI)

This book studies the impact of geothermal energy development in Imperial County, California. An integrated assessment model for public policy is presented. Geothermal energy resources in Imperial County are identified. Population and employment studies project the impact of geothermal on demography and population movement in the county. A public opinion, and a leadership opinion survey indicate support for well-regulated geothermal development. Actual development events are updated. Finally, research conclusions and policy recommendations are presented.

Butler, E.W.; Pick, J.B.

1983-01-01T23:59:59.000Z

219

Geothermal Industry Partnership Opportunities  

Broader source: Energy.gov [DOE]

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

220

South Dakota geothermal handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

Not Available

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal, Materials Science, News, News & Events, Partnership,...

222

Geothermal Photo Gallery  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office invests in 150 projects nationwide, leveraging more than $500 million in combined investments.

223

Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Engineered Geothermal Systems, Low Temperature and Exploration Demonstration Projects.

224

Geothermal status report  

SciTech Connect (OSTI)

This article examines the effects of competition of geothermal energy production with other technologies. The topics of the article include near-term market growth, cause for cautious optimism, limits to development of geothermal energy production, economic arguments for development of geothermal power plants, the effects of a competitive market on industry survival.

Short, W.P. III (Kidder, Peabody and Co. Inc., New York, NY (United States))

1992-10-01T23:59:59.000Z

225

Geothermal energy in Nevada  

SciTech Connect (OSTI)

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

Not Available

1980-01-01T23:59:59.000Z

226

A GEM Award (Going the Extra Mile)  

Broader source: Energy.gov (indexed) [DOE]

GEM Award GEM Award Going the Extra Mile A Gift Card Recognition Program Who may receive? All Headquarters Department of Energy Employees except Political Appointees (including Schedule C and non-career members of the SES). Any Employee may nominate. What is it? $25 or $50 Gift Cards from 100s Department Stores, Book Stores, Hotels and more. of nationally well known Movie Tickets, Restaurants, How do I do it? * Nominator fills out form. * Routes form through their organizational protocols. * Faxes or scans/emails to HQ Gift Card. * HQ Gift Card receives form, places order * Gift Certificate is sent to Recipient's Supervisor * Supervisor presents certificate to employee * Employee can redeem On-line or by phone for card their choice of When can I do this? HQ Gift Card is open for business now

227

square-mile Black Warrior Basin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

will inject CO will inject CO 2 into a coalbed methane (CBM) well in Tuscaloosa County, Alabama, to assess the capability of mature CBM reservoirs to receive and adsorb large volumes of CO 2 . Injection began at the test site on June 15; the site was selected because it is representative of the 23,000- square-mile Black Warrior Basin located in northwestern Alabama and northeastern Mississippi. It is estimated that this area has the potential to store in the range of 1.1 to 2.3 Gigatons of CO 2 , which is approximately the amount that Alabama's coal-fired power plants emit in two decades. The targeted coal seams range from 940 to 1,800 feet deep and are one to six feet thick. Approximately 240 tons of CO 2 will be injected over a 45- to 60-day period. More information

228

Three Mile Island: the financial fallout  

SciTech Connect (OSTI)

The nuclear accident at Three Mile Island raised serious questions about the financial ability of the electric utility company owners to clean up and repair the damaged reactor facilities while continuing to provide reliable electric service to customers. Financial insolvency of the companies is not imminent and power supplies are assured for the immediate future. However, the loss of earnings capability by the Metropolitan Edison Company makes it questionable whether it can fund its share of the clean-up costs and maintain system reliability without large rate increases or some external financial assistance. The accident has shown that the utilities and Federal and State regulatory agencies were not prepared to deal with recovery from such a large financial loss. The Department of Energy should move swiftly to assess the financial needs of the affected utilities and develop plans for meeting them.

Not Available

1980-07-07T23:59:59.000Z

229

Three Mile Island: meltdown of democracy  

SciTech Connect (OSTI)

Strong local opposition to a start-up of Unit 1 at Three Mile Island continues because citizen distrust of General Public Utilities was found in post-accident studies to have been justified. Several citizen groups have monitored the Unit 2 clean-up activities and have not been reassured by either the President's Commission or the Nuclear Regulatory Commission. Efforts to improve public relations by distributing radiation kits or other strategies have been outweighed by evidence of government manipulation of early bomb test data and poor industry planning. Arguments over who is responsible for the accident and who is liable for the cost have further undermined credibility. Area residents have received three recent legal signals that their position may prevail. (DCK)

Walsh, E.J.

1983-03-01T23:59:59.000Z

230

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2006) Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine field hydraulic conductivity using borehole impeller flowmeter data Notes A quantitative evaluation of borehole-impeller flowmeter data leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary and trolling calibrations of the flowmeter were made in the well. Methods were developed to adjust for variations in hole

231

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

232

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

233

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

234

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

235

Away from the Range Front: Intra-Basin Geothermal Exploration Geothermal  

Open Energy Info (EERE)

Away from the Range Front: Intra-Basin Geothermal Exploration Geothermal Away from the Range Front: Intra-Basin Geothermal Exploration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Away from the Range Front: Intra-Basin Geothermal Exploration Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project applies the known relationship between fault permeability and the mechanics of rocks under stress to reduce risks in exploration well targeting. Although the concept has been applied before, the project would innovate by dramatically increasing the detail and types of information on the mechanical state of the target area using a variety of low-cost measurements in advance of deep drilling. In addition to the mechanical data, holes into the shallow warm aquifer related to the thermal anomaly will allow analysis of chemical indicators of upflow as a more direct measure of the location of fault permeability.

236

Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County,  

Open Energy Info (EERE)

Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some

237

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Raft River Geothermal Area (1957-1961) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1957 - 1961 Usefulness not indicated DOE-funding Unknown Notes From 1957 to 1961 a regional gravity survey was made over the northern part of the Great Salt Lake Desert and adjacent areas in Utah, eastern Nevada, and southeastern Idaho. A total of 1040 stations were taken over an area of about 7000 square miles. The results were compiled as a Bouguer gravity anomaly map with a contour interval of 2 mgal. The Bouguer values ranged

238

The Snake River Geothermal Drilling Project - Innovative Approaches to  

Open Energy Info (EERE)

Snake River Geothermal Drilling Project - Innovative Approaches to Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This project will implement and test a series of innovative geothermal exploration strategies in two phases. Phase 1 studies will comprise surface mapping, shallow seismic surveys, potential field surveys (gravity and magnetics), compilation of existing well data, and the construction of three dimension structure sections. Phase 2 will comprise two intermediate depth (1.5-1.6 km) slim-hole exploration wells with a full suite of geophysical borehole logs and a vertical seismic profile to extrapolate stratigraphy encountered in the well into the surrounding terrain. Both of the exploration wells will be fully cored to preserve a complete record of the volcanic stratigraphy that can be used in complementary science projects. This project will function in tandem with Project Hotspot, a continental scientific drilling project that focuses on the origin and evolution of the Yellowstone hotspot.

239

Thermal Gradient Holes At Lightning Dock Area (Cunniff & Bowers, 2005) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Lightning Dock Area Thermal Gradient Holes At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The two gradient holes were sited on federal geothermal leases owned by Lightning Dock Geothermal, Inc. and both were drilled into lakebed sediments some distance from the intense shallow geothermal anomaly located in the eastern half of Section 7, Township 25 South, Range 19 West. References Roy A. Cunniff, Roger L. Bowers (2005) Final Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Lightning_Dock_Area_(Cunniff_%26_Bowers,_2005)&oldid=387460"

240

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

242

Overview of Geothermal Energy Development  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

243

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

244

The Future of Geothermal Energy  

E-Print Network [OSTI]

The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

Laughlin, Robert B.

245

Subscribe to Geothermal Technologies Office Updates | Department...  

Energy Savers [EERE]

Subscribe to Geothermal Technologies Office Updates Subscribe to Geothermal Technologies Office Updates...

246

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Coast geopressured-geothermal wells: Two studies, Pleasantinduced by geopressured-geothermal well development. In:

Majer, Ernest L.

2006-01-01T23:59:59.000Z

247

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

measurements in geothermal wells," Proceedings, Secondin Larderello Region geothermal wells for reconstruction of

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

248

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

249

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

250

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

251

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

252

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

253

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

254

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

255

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

256

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

257

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

258

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

259

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

260

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

262

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

263

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

264

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

265

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

266

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

267

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

268

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

269

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

270

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

271

CALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES  

E-Print Network [OSTI]

geothermal energy exploration and development are most important. Geothermal resources in Costa Rica have of energy development in Costa Rica. The Miravalles geothermCALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES MIRAVALLES GEOTHERMAL FIELD COSTA RICA

Stanford University

272

Reference book on geothermal direct use  

SciTech Connect (OSTI)

This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

1994-08-01T23:59:59.000Z

273

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

274

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal News Geothermal News RSS July 29, 2008 Tapping the Earth's geothermal energy During this oil crisis, we've been searching for alternatives like wind, solar and even...

275

Geothermal Literature Review At International Geothermal Area, New Zealand  

Open Energy Info (EERE)

Area, New Zealand Area, New Zealand (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area New Zealand (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Lake Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_New_Zealand_(Ranalli_%26_Rybach,_2005)&oldid=510814

276

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

277

Geothermal: Sponsored by OSTI -- National Geothermal Data System...  

Office of Scientific and Technical Information (OSTI)

System (NGDS) Geothermal Data: Community Requirements and Information Engineering Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

278

Geothermal: Sponsored by OSTI -- Sustaining the National Geothermal...  

Office of Scientific and Technical Information (OSTI)

Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada,...

279

Geothermal: Sponsored by OSTI -- National Geothermal Data System...  

Office of Scientific and Technical Information (OSTI)

System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

280

Geothermal: Sponsored by OSTI -- Hulin Geopressure-geothermal...  

Office of Scientific and Technical Information (OSTI)

Hulin Geopressure-geothermal test well: First order levels Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

literature and how it affects access to land and mineral rights for geothermal energy production References B. C. Farhar (2002) Geothermal Access to Federal and Tribal Lands: A...

282

Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...  

Office of Scientific and Technical Information (OSTI)

Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

283

Geothermal: Sponsored by OSTI -- Creation of an Enhanced Geothermal...  

Office of Scientific and Technical Information (OSTI)

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

284

Geothermal: Sponsored by OSTI -- Two-Stage, Integrated, Geothermal...  

Office of Scientific and Technical Information (OSTI)

Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk Geothermal...

285

Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled |  

Broader source: Energy.gov (indexed) [DOE]

Reduce Vehicle Miles Traveled Reduce Vehicle Miles Traveled Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled October 7, 2013 - 11:52am Addthis YOU ARE HERE: Step 3 For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy. Table 1. Determining When and How to Promote the Use of Strategies to Reduce Vehicle Miles Traveled Strategy When Applicable Best Practices Consolidate trips Applicable to all vehicles, regardless of ownership or vehicle and fuel type Target vehicle operators who take longer trips Seek vehicle operator input and collaboration to identify regular or occasional trips that involve similar routes. Determine whether trips on multiple days or times can be consolidated into a single trip.

286

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

gains with geothermal power. GeothermalResourcesgains with geothermal power. GeothermalResourcesofTables: Table1:GeothermalPowerPlantsOperatingat

Brophy, P.

2012-01-01T23:59:59.000Z

287

Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981  

SciTech Connect (OSTI)

The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

Not Available

1981-01-01T23:59:59.000Z

288

Debate over waste imperils 3-Mile cleanup  

SciTech Connect (OSTI)

The cleanup is a task of extraordinary proportions. Every step in the cleanup must be taken in a highly sensitive political and regulatory environment. A demineralizer or ion exchange filtration unit was installed in order that the fission products could be removed from the water spilled in the auxiliary and fuel handling buildings. GPU later vented krypton gas. Twice now engineers have made cautions entries into the containment building as part of the effort to size up the job. Cleanup will be costly, requiring many workers. Some wastes will require special packaging in hundreds of containers with shielded overpacks, plus bulky items of hardware and equipment that cannot be easily packaged. There will be the damaged fuel assemblies from the reactor core. Removing the fuel from the reactor may be difficult. A troublesome waste disposal question has to do with the material to be generated in cleaning up the containment building's sump water. GPU's man in charge of clean-up strategy is to collect the wastes in a form that permits maximum flexibility with respect to their stage, packaging, transport, and ultimate disposal. If plans for disposal of all the wastes from the cleanup are to be completed, an early commitment by Pennsylvania and other northeastern states to establish a burial ground for low level waste generated within the region is needed. Also a speedy commitment by NRC, DOE, and Congress to a plan for disposal of the first-stage zeolites is needed. Should there be a failure to cope with the wastes that Three Mile Island cleanup generates, the whole nuclear enterprise may suffer.

Carter, L.J.

1980-10-10T23:59:59.000Z

289

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

290

Results of the 1992-1993 low-temperature geothermal assessment program in Colorado  

SciTech Connect (OSTI)

Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid to late-1970s. The purpose of the 1992-1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the U.S. Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into databases. For the purpose of this report, a geothermal area is defined as a broad area, usually less than three square miles in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Duntton area, and Cottonwood Hot Springs.

Cappa, J.A.

1994-07-01T23:59:59.000Z

291

Sandia National Laboratories: Geothermal Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

292

Sandia National Laboratories: Geothermal Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

293

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(Kalina Cycle) * Gulf Coast Geothermal ("Green Machine") (ORC) * Deluge Inc. * Linear Power Ltd. * In a binary cycle, the heat from a geothermal fluid is transferred to another...

294

Geothermal FAQs | Department of Energy  

Office of Environmental Management (EM)

Back to Top 5. What is the visual impact of geothermal technologies? Answer: District heating systems and geothermal heat pumps are easily integrated into communities with almost...

295

Geothermal energy | Open Energy Information  

Open Energy Info (EERE)

energy: Geothermal energy is heat extracted from the Earth ( Geo (Earth) + thermal (heat) ) Other definitions:Wikipedia Reegle Geothermalpower.jpg Looking for the Geothermal...

296

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids...

297

Enhanced Geothermal Systems Subprogram Overview  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Systems Subprogram Overview May 18, 2010 Geothermal Technologies Program Peer Review Crystal City, VA Energy Efficiency & Renewable Energy eere.energy.gov Technology...

298

Geothermal Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

299

Geothermal Drilling Organization  

SciTech Connect (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

300

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Category:Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal Regions, click here. Category:Geothermal Regions Add.png Add a new Geothermal Region Pages in category "Geothermal Regions" The following 22 pages are in this category, out of 22 total. A Alaska Geothermal Region C Cascades Geothermal Region Central Nevada Seismic Zone Geothermal Region G Gulf of California Rift Zone Geothermal Region H Hawaii Geothermal Region Holocene Magmatic Geothermal Region I Idaho Batholith Geothermal Region N Northern Basin and Range Geothermal Region N cont. Northern Rockies Geothermal Region Northwest Basin and Range Geothermal Region O Outside a Geothermal Region R Rio Grande Rift Geothermal Region S San Andreas Geothermal Region San Andreas Split Geothermal Region

302

Slim Holes At Salt Wells Area (Combs, Et Al., 1999) | Open Energy  

Open Energy Info (EERE)

Slim Holes At Salt Wells Area (Combs, Et Al., 1999) Slim Holes At Salt Wells Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Salt Wells Area (Combs, Et Al., 1999) Exploration Activity Details Location Salt Wells Area Exploration Technique Slim Holes Activity Date 1980 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis The blind Salt Wells geothermal system was first identified when Anadarko Petroleum Corporation drilled slim hole and geothermal exploration wells at the site in 1980. Two reports detail the results of this drilling activity. This report details the well completion practices applied to the initial slim hole discovery well. Notes In 1980, Anadarko Petroleum Corporation drilled a slim hole discovery well near Simpson Pass. The hole was initially rotary-drilled to 161.5 m for

303

Engineered Geothermal Systems.  

E-Print Network [OSTI]

?? Different concepts for Enhanced Geothermal Systems (EGS) are presented and evaluated according to their potential for medium to large scale power production in Norwegian (more)

Drange, Lars Anders

2011-01-01T23:59:59.000Z

304

Geothermal Energy Program overview  

SciTech Connect (OSTI)

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

Not Available

1991-12-01T23:59:59.000Z

305

National Geothermal Student Competition  

Broader source: Energy.gov [DOE]

The EnergyDepartment's National Geothermal Student Competition (GSC) seeks students interested in building and showcasing scientific research, communication and leadership skills to convey the...

306

Energy 101: Geothermal Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface, through geothermal heat pumps.

307

Geothermal Case Study Challenge  

Broader source: Energy.gov [DOE]

The Energy Department's Geothermal Technologies Office hosts an annual student competition in exploration research to engage students pursuing STEM careers and, ultimately, to aid in the next...

308

South Dakota geothermal resources  

SciTech Connect (OSTI)

South Dakota is normally not thought of as a geothermal state. However, geothermal direct use is probably one of the best kept secrets outside the state. At present there are two geothermal district heating systems in place and operating successfully, a resort community using the water in a large swimming pool, a hospital being supplied with part of its heat, numerous geothermal heat pumps, and many individual uses by ranchers, especially in the winter months for heating residences, barns and other outbuildings, and for stock watering.

Lund, J.W.

1997-12-01T23:59:59.000Z

309

Geothermal: Related Links  

Office of Scientific and Technical Information (OSTI)

E-print Network Sign up for weekly E-print Alerts on a topic of interest Bonneville Power Administration California Energy Commission California Energy Commission (Geothermal...

310

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

311

Stanford Geothermal Workshop  

Energy Savers [EERE]

the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

312

Geothermal Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pressure, temperature, and directional measurement and telemetry. The rechargeable energy storage unit for geothermal applications can handle extreme, high-temperature downhole...

313

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

314

Geothermal Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Geothermal Success Stories en Iowa: West Union Green Transformation Project http:energy.goveeresuccess-storiesarticlesiowa-west-union-green-transformation-project

315

Tap Geothermal Heat  

Science Journals Connector (OSTI)

Central to the proposal is the detonation of an underground thermonuclear device to create a large subterranean cavity of crushed rock in an area of geothermal activity. ...

1969-12-15T23:59:59.000Z

316

Flow Test At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Coso Geothermal Area (1978) Flow Test At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Flow Test Activity Date 1978 Usefulness not indicated DOE-funding Unknown Notes Flow tests of well CGEH No. 1 were conducted. LBL performed eight temperature surveys after completion of the well to estimate equilibrium reservoir temperatures. Downhole fluid samples were obtained by the U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory (LBL), and a static pressure profile was obtained. The first test began September 5, 1978 using nitrogen stimulation to initiate flow; this procedure resulted in small flow and subsequent filling of the bottom hole with drill cuttings. The second test, on November 2, 1978, utilized a nitrogen-foam-water mixture to clean residual particles from bottom hole,

317

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

318

Compound and Elemental Analysis At Coso Geothermal Area (2004) | Open  

Open Energy Info (EERE)

Coso Geothermal Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date 2004 Usefulness useful DOE-funding Unknown Notes In order to test FIS for geothermal exploration, drill chips from Coso well 83-16 were analyzed, which were selected at 1000 ft intervals by Joseph Moore. Sequential crushes done by the CFS (crushfast-scan) method (Norman 1996) show that chips have a high density of homogeneous fluid inclusions. Analyses were averaged and plotted verses depth (Fig. 4), and interpreted. Fluid inclusion gas analyses done on vein minerals from drill hole 68-6 that were earlier analyzed (Adams 2000) were plotted for comparison in order to confirm that similar analyses are obtained from chips and vein

319

Understanding Fault Characteristics And Sediment Depth For Geothermal  

Open Energy Info (EERE)

Understanding Fault Characteristics And Sediment Depth For Geothermal Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Understanding Fault Characteristics And Sediment Depth For Geothermal Exploration Using 3D Gravity Inversion In Walker Valley, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Southern Walker Lake Basin, situated in the Walker Lake structural domain, consists of primarily E-W directed extension along N-NNW striking normal faults. Water well drilling on the eastern slopes of the Wassuk Range, west of the city of Hawthorne, Nevada showed elevated temperatures. Two recent drill holes reaching downhole depths of more than 4000 ft give some insight to the geologic picture, but more information

320

A Reconnaissance Geochemical Study Of La Primavera Geothermal Area,  

Open Energy Info (EERE)

Reconnaissance Geochemical Study Of La Primavera Geothermal Area, Reconnaissance Geochemical Study Of La Primavera Geothermal Area, Jalisco, Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Reconnaissance Geochemical Study Of La Primavera Geothermal Area, Jalisco, Mexico Details Activities (0) Areas (0) Regions (0) Abstract: The Sierra La Primavera, a late Pleistocene rhyolitic caldera complex in Jalisco, Mexico, contains fumaroles and large-discharge 65°C hot springs that are associated with faults related to caldera collapse and to later magma insurgence. The nearly-neutral, sodium bicarbonate, hot springs occur at low elevations at the margins of the complex, whereas the water-rich fumaroles are high and central. The Comision Federal de Electricidad de Mexico (CFE) has recently drilled two deep holes at the

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

322

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett,  

Open Energy Info (EERE)

Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Central Nevada Seismic Zone Region (Pritchett, 2004) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

323

Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt  

Open Energy Info (EERE)

1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The purpose of this paper is to provide a summary of the geology, drilling operations, and down-hole measurements obtained during the drilling of Deep Blue No.1. This well was sited on the basis of proximity to numerous gold exploration holes that indicated thermal water, high temperature gradients recorded in the 12 shallow gradient holes, and low resistivity values associated with certain interpreted major faults. The well was targeted to intersect fracture zones associated with the West and

324

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal  

Open Energy Info (EERE)

Temperature, High Pressure Devices for Zonal Isolation in Geothermal Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Zonal Isolation Project Description For Enhanced Geothermal Systems (EGS), high-temperature high-pressure zonal isolation tools capable of withstanding the downhole environment are needed. In these wells the packers must withstand differential pressures of 5,000 psi at more than 300°C, as well as pressures up to 20,000 psi at 200°C to 250°C. Furthermore, when deployed these packers and zonal isolation tools must form a reliable seal that eliminates fluid loss and mitigates short circuiting of flow from injectors to producers. At this time, general purpose open-hole packers do not exist for use in geothermal environments, with the primary technical limitation being the poor stability of existing elastomeric seals at high temperatures.

325

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

326

CE Geothermal | Open Energy Information  

Open Energy Info (EERE)

CE Geothermal CE Geothermal Jump to: navigation, search Name CE Geothermal Place California Sector Geothermal energy Product CE Geothermal previously owned the assets of Western States Geothermal Company, which owns the 10MW nameplate Desert Peak Geothermal Power Plant. References CE Geothermal[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CE Geothermal is a company located in California . References ↑ "CE Geothermal" Retrieved from "http://en.openei.org/w/index.php?title=CE_Geothermal&oldid=343310" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

327

Temperatures, heat flow, and water chemistry from drill holes in the Raft  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150 0C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 mucal/cm 2 sec or slightly higher and that temperature gradients range from 50 0 to 60

328

A Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand |  

Open Energy Info (EERE)

Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: Soil gases have been used as an exploration tool for minerals, oil and gas, and geothermal energy, through the detection of anomalous gas levels. This paper describes a soil gas survey conducted over a large part of the Rotorua geothermal field to supplement the sparse gas data from drillhole samples and to determine gas distribution patterns over the field. Data collected from a reference hole were used to observe the effect changing meteorological conditions had on soil gas levels. The results were

329

Chapter 12 - Geothermal Energy  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses where the earth's thermal energy is sufficiently concentrated for economic use, the various types of geothermal systems, the production and utilization of the resource, and the environmental benefits and costs of geothermal production. Earth scientists quantify the energy and temperature in the earth in terms of heat flow and temperature gradient. The heat of the earth is derived from two components: the heat generated by the formation of the earth, and heat generated by radioactive decay of elements in the upper parts of the earth. The word geothermal comes from the combination of the Greek words go, meaning earth, and thrm, meaning heat. Geothermal resources are concentrations of the earth's heat, or geothermal energy, that can be extracted and used economically now or in the reasonable future. The earth contains an immense amount of heat but the heat generally is too diffuse or deep for economic use. Hence, the search for geothermal resources focuses on those areas of the earth's crust where geological processes have raised temperatures near enough to the surface that the heat contained can be utilized. Currently, only concentrations of heat associated with water in permeable rocks can be exploited economically. These systems are known as hydrothermal geothermal systems. All commercial geothermal production is currently restricted to geothermal systems that are sufficiently hot for the use and that contain a reservoir with sufficient available water and productivity for economic development. Geothermal energy is one of the cleaner forms of energy now available in commercial quantities. Use of geothermal energy avoids the problems of acid rain and greatly reduces greenhouse gas emissions and other forms of air pollution.

Joel L. Renner

2008-01-01T23:59:59.000Z

330

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Colorado/Geothermal Colorado/Geothermal < Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Colorado Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Colorado No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Colorado No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Colorado Mean Capacity (MW) Number of Plants Owners Geothermal Region Flint Geothermal Geothermal Area Rio Grande Rift Geothermal Region Mt Princeton Hot Springs Geothermal Area 4.615 MW4,614.868 kW 4,614,868.309 W 4,614,868,309 mW 0.00461 GW 4.614868e-6 TW Rio Grande Rift Geothermal Region Poncha Hot Springs Geothermal Area 5.274 MW5,273.619 kW 5,273,618.589 W

331

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

332

Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop  

Broader source: Energy.gov [DOE]

General overview of Geothermal Technologies Program that includes information about subprograms and where each focuses.

333

Geothermal: Sponsored by OSTI -- DEVELOPING THE NATIONAL GEOTHERMAL...  

Office of Scientific and Technical Information (OSTI)

DEVELOPING THE NATIONAL GEOTHERMAL DATA SYSTEM ADOPTION OF CKAN FOR DOMESTIC & INTERNATIONAL DATA DEPLOYMENT...

334

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

335

Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Trough Geothermal Area (1984) Trough Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location Salton Trough Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

336

Geothermal Energy (5 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Geothermal energy is one of the components of the National Energy Policy: Reliable, Affordable, and Environmentally Sound Energy for Americas Future. This lesson includes five activities that will give your students information on the principles of heat transfer and the technology of using geothermal energy to generate electricity.

337

Property:Geothermal/TargetsMilestones | Open Energy Information  

Open Energy Info (EERE)

TargetsMilestones TargetsMilestones Jump to: navigation, search Property Name Geothermal/TargetsMilestones Property Type Text Description Targets / Milestones Pages using the property "Geothermal/TargetsMilestones" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + The basics of this technology were developed by the oil and gas industry to discern petrologic characteristics of hydrocarbon reservoirs, but the techniques have never been applied to definition and characterization of permeable zones associated with geothermal resources. There is a substantial amount of existing geophysical and wellbore data for the area, and these data will be complemented with modern, state-of-the-art reflection seismic data. Three-component geophones will record full-fold compressional p-wave, converted-wave, and shear-wave data over the 2.5 square miles of proven geothermal resource. The proposed 3D seismic survey involves the generation of ground vibration by "vibroseis" equipment along source points and the recording of reflected sound waves and patterns arising from the different underground geologic strata along receiver lines. The proposed source points are arranged into source lines that run northeast to southwest and are oriented perpendicular to the receiver lines, which run northwest to southeast within the boundary of the project area. The data will be processed first in a conventional way to identify anomalous zones, to which specialized attribute processing will be applied. The results of the processing will be made accessible in a GIS format to facilitate visualization of interrelationships among the data and to build conceptual geologic and/or geothermal reservoir models and define drilling targets.

338

Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with high productivity and low pressure drawdown. Developing geophysical and geologic techniques for identifying and precisely mapping LAFsin 3-D will greatly reduce dry hole risk and the overall number of wells required for reaching a particular geothermal field power capacity.

339

Geothermal: Distributed Search Help  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Help Search Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Distributed Search Help Table of Contents General Information Search More about Searching Browse the Geothermal Legacy Collection Obtaining Documents Contact Us General Information The Distributed Search provides a searchable gateway that integrates diverse geothermal resources into one location. It accesses databases of recent and archival technical reports in order to retrieve specific geothermal information - converting earth's energy into heat and electricity, and other related subjects. See About, Help/FAQ, Related Links, or the Site Map, for more information about the Geothermal Technologies Legacy Collection .

340

geothermal2.qxp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

N N M T R A P E D O F E N E R G Y E T A T S D E T I N U S O F A M E R I CA E GEOTHERMAL TESTING S ince 2006, several geothermal power production companies and the Department of Energy have expressed interest in demonstrating low- temperature geothermal power projects at the Rocky Mountain Oilfield Testing Center (RMOTC). Located at Teapot Dome Oilfield in Naval Petroleum Reserve No. 3 (NPR-3), RMOTC recently expanded its testing and demonstration of power production from low- temperature, co- produced oilfield geothermal waste water. With over 1,000 existing well- bores and its 10,000-acre oil field, RMOTC offers partners the unique opportunity to test their geot- hermal tech- nologies while using existing oilfield infra- structure. RMOTC's current low-temperature geothermal project uses 198°F water separated from Tensleep

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

342

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

of Proceedings that stand as one of the prominent literature sources in the field of geothermal energySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED

Stanford University

343

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

344

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on earlySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary

Stanford University

345

Odometer Versus Self-Reported Estimates of Vehicle Miles Traveled  

Reports and Publications (EIA)

The findings described here compare odometer readings with self-reported estimates of Vehicle Miles Traveled (VMT) to investigate to what extent self-reported VMT is a reliable surrogate for odometer-based VMT.

2000-01-01T23:59:59.000Z

346

Full Useful Life (120,000 miles) Exhaust Emission Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with...

347

Innovative Cell Materials and Designs for 300 Mile Range EVs  

Broader source: Energy.gov (indexed) [DOE]

300 Mile Range EVs Yimin Zhu, PDPI Nanosys, Inc Palo Alto, California May 13 17, 2013 DOE Vehicle Technologies AMR 2013 ES130zhu2013p This presentation does not contain any...

348

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network [OSTI]

within 50 miles of the nuclear power plant was estimated tothe radiation from the nuclear power plant accident. From anand the Peach Bottom nuclear power plants, like the general

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

349

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

350

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

351

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

352

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

353

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

354

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

355

International Partnership for Geothermal Technology - 2012 Peer...  

Broader source: Energy.gov (indexed) [DOE]

River Geothermal Drilling Project Canada The Snake River Geothermal Drilling Project GermanyEU Toward the Understanding of Induced Seismicity in Enhanced Geothermal Systems...

356

Germany Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Germany Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Germany Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0)...

357

Geothermal Technologies Office Releases 2012 Annual Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Office Releases 2012 Annual Report Geothermal Technologies Office Releases 2012 Annual Report January 7, 2013 - 3:56pm Addthis The Geothermal Technologies...

358

Federal Interagency Geothermal Activities 2011 | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Federal Interagency Geothermal Activities 2011 Federal Interagency Geothermal Activities 2011 This document is the federal interagency geothermal activities document for 2011,...

359

Geothermal Technologies Office Director Doug Hollett Keynotes...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Office Director Doug Hollett Keynotes at National Geothermal Summit, August 6 Geothermal Technologies Office Director Doug Hollett Keynotes at National Geothermal...

360

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.for Recovery of Energy from Geothermal Hot Brine Deposits."

Pope, W.L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Russia Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Russia Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0)...

362

Andean Geothermal Power | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Andean Geothermal Power Place: Texas Sector: Geothermal energy Product: Texas-based geothermal project developer company. References: Andean...

363

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

364

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems Place: Austin, Texas Sector: Geothermal energy Product: Installer of geothermal heating and cooling technologies, also has a patented water to air heat pump...

365

Potential of geothermal energy in China .  

E-Print Network [OSTI]

??This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in (more)

Sung, Peter On

2010-01-01T23:59:59.000Z

366

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from "http:...

367

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

368

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

Environmental Effects of Geothermal Power Production, 11the potential use of geothermal energy for power generationlargest producer of geothermal electric power in the world.

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

369

Geothermal Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Success Stories Geothermal Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in finding, accessing, and using U.S. geothermal...

370

Tribal Renewable Energy Foundational Course: Geothermal | Department...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Tribal Renewable Energy Foundational Course: Geothermal Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on geothermal renewable...

371

Iceland Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Iceland Geothermal Region Energy Generation Facilities within the Iceland Geothermal Region...

372

Analysis of Geothermal Reservoir Stimulation Using Geomechanics...  

Broader source: Energy.gov (indexed) [DOE]

System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

373

GETEM -Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

374

GETEM - Geothermal Electricity Technology Evaluation Model |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GETEM - Geothermal Electricity Technology Evaluation Model GETEM - Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal...

375

Enhanced Geothermal Systems | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Geothermal Technologies Office Enhanced Geothermal Systems Enhanced Geothermal Systems The Newberry Volcano near Bend, Oregon is one of five active Energy Department...

376

Geothermal Energy Photos | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Geothermal Energy Photos Geothermal Energy Photos Image of the Week: Energy Department investments are exploring for geothermal power from abundant natural...

377

Austria Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Austria Geothermal Region Energy Generation Facilities within the Austria Geothermal Region...

378

2012 Geothermal Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Webinar 2012 Geothermal Webinar January 10, 2012 - 12:47pm Addthis This Office of Indian Energy webinar provides information on developing geothermal resources on tribal...

379

NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977  

E-Print Network [OSTI]

an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theData Compilation Geothermal Energy Aspects o f Hydrogen

Phillips, Sidney L.

2012-01-01T23:59:59.000Z

380

Geothermal Play Fairway Analysis | Department of Energy  

Energy Savers [EERE]

Analysis Geothermal Play Fairway Analysis pfw-webinar.pptx More Documents & Publications Geothermal Play Fairway Analysis LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 0211...

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Technical Databook for Geothermal Energy Utilization  

E-Print Network [OSTI]

A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

Phillips, S.L.

1981-01-01T23:59:59.000Z

382

Geothermal Technologies Office Annual Report 2012 | Department...  

Office of Environmental Management (EM)

Geothermal Technologies Office Annual Report 2012 Geothermal Technologies Office Annual Report 2012 This annual report for the U.S. Department of Energys Geothermal Technologies...

383

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generationCoast Geopressure Geothermal Energy Conference, M.H. Dorfmanand Otte, C. , 1976, Geothermal energy-resources production,

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

384

Energy Department Forecasts Geothermal Achievements in 2015 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in...

385

Sound Geothermal Corporation | Open Energy Information  

Open Energy Info (EERE)

energy Product: Sound Geothermal coporation helps provide information into geothermal pumps. References: Sound Geothermal Corporation1 This article is a stub. You can help...

386

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

faults and wells, Cerro Prieto geothermal field, Mexico (faults and wells, Cerro Prieto geothermal field, Mexico (geothermal system in Mexico and the Pleasant Bayou exploratory geopressured well

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

387

Geothermal energy resource investigations at Mt. Spurr, Alaska  

SciTech Connect (OSTI)

Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

Turner, D.L.; Wescott, E.M. (eds.)

1986-12-01T23:59:59.000Z

388

NREL: Geothermal Technologies - Geothermal Policymakers' Guidebooks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map NREL's Policymakers' Guidebooks help guide state and local officials in developing effective policies that support geothermal electricity generation and geothermal heating and cooling technologies. Explore the guidebooks to learn about five key steps for creating useful policy and increasing the deployment of geothermal energy. Electricity Generation Electricity Generation Heating and Cooling Heating and Cooling Printable Version Electricity Generation Heating & Cooling NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

389

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal resources-the steam and water that lie below the earth's surface-have the Geothermal resources-the steam and water that lie below the earth's surface-have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power efficiently and inexpensively can require innovative adjustments to the technology used to process it. Located in the Mayacamas Mountains of northern California, The Geysers is the world's larg- est geothermal complex. Encompassing 45 square miles along the Sonoma and Lake County border, the complex harnesses natural steam reservoirs to create clean renewable energy that accounts for one-fifth of the green power produced in California. In the late 1990s, the pressure of geothermal steam at The Geysers was falling, reducing the output of its power plants. NREL teamed with Pacific

390

Texas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Texas/Geothermal Texas/Geothermal < Texas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Texas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Texas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Texas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Texas Mean Capacity (MW) Number of Plants Owners Geothermal Region Fort Bliss Geothermal Area Rio Grande Rift Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Texas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

391

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley

392

Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and  

Open Energy Info (EERE)

Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada Abstract N/A Author U.S. Geological Survey Published Publisher Not Provided, 2009 Report Number 2009-1022 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada Citation U.S. Geological Survey. 2009. Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect,

393

Slim Holes | Open Energy Information  

Open Energy Info (EERE)

Slim Holes Slim Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Slim Holes Details Activities (30) Areas (24) Regions (1) NEPA(6) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: If core is collected Stratigraphic/Structural: If core is collected Hydrological: Fluid flow and water chemistry Thermal: Thermal gradient or bottom hole temperature Cost Information Low-End Estimate (USD): 100.0010,000 centUSD 0.1 kUSD 1.0e-4 MUSD 1.0e-7 TUSD / foot Median Estimate (USD): 169.8916,989 centUSD 0.17 kUSD 1.6989e-4 MUSD 1.6989e-7 TUSD / foot High-End Estimate (USD): 200.0020,000 centUSD

394

Eighteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

1993-01-28T23:59:59.000Z

395

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

396

Geothermal Site Assessment Using the National Geothermal Data System  

Open Energy Info (EERE)

Geothermal Site Assessment Using the National Geothermal Data System Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Jump to: navigation, search Tool Summary Name: Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Agency/Company /Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studies/examples, Publications Website: www.unr.edu/geothermal/pdffiles/PenfieldGRC2010_GeothermalSiteAssessme Cost: Free Language: English References: Paper[1] "This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in

397

US geothermal database and Oregon cascade thermal studies: (Final report)  

SciTech Connect (OSTI)

This report describes two tasks of different nature. The first of these tasks was the preparation of a data base for heat flow and associated ancillary information for the United States. This data base is being used as the basis for preparation of the United States portion of a geothermal map of North America. The ''Geothermal Map of North America'' will be published as part of the Decade of North American Geology (DNAG) series of the Geological Society of America. The second of these tasks was to make a geothermal evaluation of holes drilled in the Cascade Range as part of a Department of Energy (DOE)/Industry co-sponsored deep drilling project. This second task involved field work, making temperature logs in the holes, and laboratory work, measuring thermal conductivity measurements on an extensive set of samples from these holes. The culmination of this task was an interpretation of heat flow values in terms of the regional thermal conditions; implications for geothermal systems in the Cascade Range; evaluation of the effect of groundwater flow on the depths that need to be drilled for successful measurements in the Cascade Range; and investigation of the nature of the surface groundwater effects on the temperature-depth curves. 40 refs., 7 figs., 7 tabs.

Blackwell, D.D.; Steele, J.L.; Carter, L.

1988-05-01T23:59:59.000Z

398

Geothermal Noise Control  

Science Journals Connector (OSTI)

In these times of growing need for new energy sources geothermal has shown great promise. Geothermal is a green relatively nonpolluting energy source that can provide power on a scale large enough to make a significant contribution to our needs. One of the challenges of geothermal development is noise emission. This occurs after a well encounters steam and before a plant is constructed. It also arises from the necessity of shutting down a power plant for periodic maintenance. While the power plant is down the steam and noise is vented to the atmosphere.

Marshall Long

2009-01-01T23:59:59.000Z

399

Arizona/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arizona/Geothermal Arizona/Geothermal < Arizona Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arizona Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arizona No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arizona No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arizona Mean Capacity (MW) Number of Plants Owners Geothermal Region Clifton Hot Springs Geothermal Area 14.453 MW14,453.335 kW 14,453,335.43 W 14,453,335,430 mW 0.0145 GW 1.445334e-5 TW Rio Grande Rift Geothermal Region Gillard Hot Springs Geothermal Area 11.796 MW11,796.115 kW 11,796,114.7 W 11,796,114,700 mW 0.0118 GW 1.179611e-5 TW Rio Grande Rift Geothermal Region

400

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Scien- Producing Geothermal Wells. (LA 6 5 5 3 x ) t i f i cSteam-Water Flow i n Geothermal Wells. Journal o f Petroleumo f a Hawaii Geothermal Well-- HGP-A. It Geothermal

Sudo!, G.A

2012-01-01T23:59:59.000Z

402

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

403

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

404

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Technologies Geothermal Technologies (Redirected from Geothermal Conversion Technologies) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal

405

Rural Cooperative Geothermal Development Electric & Agriculture...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy...

406

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

f the Mesa Geothermal Anomaly, Imperial Valley, California.Pioneering Geothermal Test Work i n the Imperial Valley o f

Sudo!, G.A

2012-01-01T23:59:59.000Z

407

Ionic Liquids for Utilization of Geothermal Energy  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

408

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration...

409

Indonesia Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Indonesia Geothermal Region Retrieved from "http:en.openei.orgwindex.php?titleIndonesiaGeothermalRegion&oldid706190...

410

China Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

China Geothermal Region Retrieved from "http:en.openei.orgwindex.php?titleChinaGeothermalRegion&oldid70619...

411

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

412

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

413

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

414

Developments in geothermal energy in Mexicopart thirty. Conclusion of the corrosion in mexican geothermal wells project  

Science Journals Connector (OSTI)

This paper is complementary to part 19 of this series, in which partial results from the joint IIE/CFE studies were presented. The objective was to define the specifications for steel used in geothermal well construction in Mexico and to characterize and control identifiable corrosion inducing factors. The complete results of corrosion testing in wellhead pressure chambers, down hole chambers and in an autoclave simulation system are included. Also shown are chemical, mechanical and metallographic studies on steels commonly used in Mexican geothermal wells, as well as the main conclusions.

J.A. Sampedro; N. Rosas; R. Daz; B. Dominguez

1990-01-01T23:59:59.000Z

415

Geothermal: Distributed Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Geothermal Collection (DOE) Energy Information Administration (EIA) Environmental Protection Agency (EPA) E-print Network (DOE) National Technical Information Service (NTIS) Geothermal Legacy Collection (DOE) NREL Publications U.S. Patent and Trademark Office (USPTO) Scientific and Technical Information Network (STINET) Select All Enter one or more search terms to search the following fields: [Searches for the following specific fields are available for the sites and databases as indicated below.] Author: (Geothermal Collections, NREL, STINET, and U.S. Patent Server) Title: (All sources except NTIS)

416

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewables » Geothermal Renewables » Geothermal Geothermal EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Photo of a geothermal power plant with a fumarole, or steam vent, in the foreground. The U.S. Department of Energy (DOE) develops innovative technologies to

417

RMOTC - Testing - Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Testing Geothermal Testing Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. With the existing geologic structure at RMOTC, promising potential exists for Enhanced Geothermal System (EGS) testing. The field also has two reliable water resources for supporting low-temperature geothermal testing.

418

Geothermal progress monitor  

SciTech Connect (OSTI)

The Geothermal Progress Monitor is sponsored by the Division of Geothermal Energy/Resource Applications, DOE, to assemble the important facts about geothermal development activities in the United States in order to assess the pace of the development of this alternative energy source. The initial emphasis for the monitoring effort has been placed on the detection and analysis of important and simple indicators of what the main participants in geothermal energy utilization - field developers, energy users, and governments - are doing to foster the discovery, confirmation, and especially the use of this resource. The major indicators currently considered to be both important and measurable, are leasing activites, drilling effort, feasibility studies, construction plans and progress, costs of installations, levels of investment, environmental study and regulatory and legislative status of events, and government monetary investments in projects and activities. Additional indicators may be pursued in the future, depending on specific needs for or opportunities to capture relevant data and facts.

Lopez, A.F.; Entingh, D.J.; Neham, E.A.

1980-09-01T23:59:59.000Z

419

Geothermal Electricity Production  

Science Journals Connector (OSTI)

...georef;1974029979 development economics geothermal energy global production...space heating and cooling and water desalination, and (for the long term) to...produLced in thermiial stations. Economics and Rate of Developnment The National...

Geoffrey R. Robson

1974-04-19T23:59:59.000Z

420

OIT geothermal system improvements  

SciTech Connect (OSTI)

The Oregon Institute of Technology campus has been heated by the direct use of geothermal fluids since 1964. The 11 building campus uses geothermal energy for space heating/cooling, domestic water heating, the swimming pool and sidewalk snow melt. The hydronic system was designed to use the geothermal fluids directly in heating units. In the 1970s, problems were experienced with the design and operation of the well pumps, buried piping and heating equipment. Beginning in the early 1980`s, many improvements were made to the system due to equipment performance problems and resource management requirements. This paper discusses those improvements that included the distribution system, cooling, well pumps, cascading of geothermal fluids, installation of isolation plate heat exchangers in each building and drilling of two injection wells. Plans for future improvements include better controls to manage energy use and data monitoring systems for individual buildings, and instrumentation to monitor well pump performance.

Lienau, P.J.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

geothermal_test.cdr  

Office of Legacy Management (LM)

Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility....

422

Geothermal Energy Resources  

Science Journals Connector (OSTI)

Geothermal energy, the heat in the interior of the Earth is an energy that is not related to the solar energy but ultimately has been created by gravitational energy and radioactive decay of unstable atoms. It .....

Ingrid Stober; Kurt Bucher

2013-01-01T23:59:59.000Z

423

Residential Geothermal Systems Credit  

Broader source: Energy.gov [DOE]

A resident individual taxpayer of Montana who installs a geothermal heating or cooling system in their principal dwelling can claim a tax credit based on the installation costs of the system, not...

424

Geothermal Energy: Current abstracts  

SciTech Connect (OSTI)

This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

Ringe, A.C. (ed.)

1988-02-01T23:59:59.000Z

425

Geothermal Case Studies  

SciTech Connect (OSTI)

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

426

Analysis of Low-Temperature Utilization of Geothermal Resources Geothermal  

Open Energy Info (EERE)

Temperature Utilization of Geothermal Resources Geothermal Temperature Utilization of Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Low-Temperature Utilization of Geothermal Resources Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. Full realization of the potential of what might be considered "low-grade" geothermal resources will require the examination many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source the project will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects.

427

Geothermal home heating facilities, Green Valley Estates, Fernley, Nevada  

SciTech Connect (OSTI)

A housing development to be located at Fernley, Nevada, about thirty miles east of Reno, is in an area of known geothermal water. The practicality of heating these homes with this water, as an alternative to heating with natural gas, has been investigated. A preliminary engineering design of a geothermal system was developed. This design permitted capital and operating cost to be estimated and a financial evaluation to be made. Two cases were investigated. The Base Case provides facilities for heating a tract of 371 houses. The Alternate Case adds another tract of 371 for a total of 742 houses. Geothermal water is to be provided by two wells and the used water reinjected into a third well. The Base Case has a rate of return on capital investment of 13.0 percent before taxes. The Alternate Case has a rate of return of 16.5 percent before taxes. The Alternate Case has a more favorable return due primarily to the assumption that each well has the capacity to produce 800 gpm of geothermal water. This is enough to provide for the additional 371 houses in the Alternate Case without an additional well. (MHR)

Not Available

1980-12-31T23:59:59.000Z

428

Assessment of the Geothermal Potential Within the BPA Marketing Area.  

SciTech Connect (OSTI)

The potential of geothermal energy is estimated that can be used for direct heat applications and electrical power generation within the Bonneville Power Administration (BPA) marketing area. The BPA marketing area includes three principal states of Oregon, Washington, and Idaho and portions of California, Montana, Wyoming, Nevada, and Utah bordering on these three states. This area covers approximately 384,000 square miles and has an estimated population of 6,760,000. The total electrical geothermal potential within this marketing area is 4077 MW/sub e/ from hydrothermal resources and 16,000 MW/sub e/ from igneous systems, whereas the total thermal (wellhead) potential is 16.15 x 10/sup 15/ Btu/y. Approximately 200 geothermal resource sites were initially identified within the BPA marketing area. This number was then reduced to about 100 sites thought to be the most promising for development by the year 2000. These 100 sites, due to load area overlap, were grouped into 53 composite sites; 21-3/4 within BPA preference customer areas and 31-1/4 within nonpreference customer areas. The geothermal resource potential was then estimated for high-temperature (> 302/sup 0/F = 150/sup 0/C), intermediate-temperature (194 to 302/sup 0/F = 90 to 150/sup 0/C), and low-temperature (< 194/sup 0/F = 90/sup 0/C) resources.

Lund, John W.; Allen, Eliot D.

1980-07-01T23:59:59.000Z

429

Turkerler Alasehir Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Turkerler Alasehir Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Turkerler Alasehir Geothermal Power Plant Project...

430

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismicity; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

431

Readily Available Data Help to Overcome Geothermal Deployment...  

Energy Savers [EERE]

Articles Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development The National Geothermal Data System deploys free,...

432

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

433

Geothermal Literature Review At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Coso Geothermal Area Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To characterize the magma beneath melt zones Notes The melt zones of volcanic clusters were analyzed with recent geological and geophysical data for five magma-hydrothermal systems. These were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1984)&oldid=510800"

434

SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157°, -106.7783374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

435

NREL: Financing Geothermal Power Projects - Guidebook to Geothermal Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance The Guidebook to Geothermal Power Finance (the Guidebook), funded by the U.S. Department of Energy's Geothermal Technologies Program, provides insights and conclusions related to past influences and recent trends in the geothermal power project financing market before and after the 2008 economic downturn. Using the information in the Guidebook, developers and investors can innovate in new ways and develop partnerships that match investors' risk tolerance with the capital requirements of geothermal power projects in a dynamic and evolving marketplace. The Guidebook relies heavily on interviews conducted with leaders in the field of geothermal project finance. It includes detailed information on

436

Geothermal Modeling of the Raft River Geothermal Field | Open Energy  

Open Energy Info (EERE)

Geothermal Modeling of the Raft River Geothermal Field Geothermal Modeling of the Raft River Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Modeling of the Raft River Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This interim report presents the results to date of chemical modeling of the Raft River KGRA. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. Recommendations

437

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal  

Broader source: Energy.gov [DOE]

The Geothermal Energy Association (GEA) is holding a State of the Geothermal Industry Briefingon Tuesday, February 24th at the Hyatt Regency Capitol Hill in Washington, DC. This program will...

438

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

439

Geothermal: Sponsored by OSTI -- Development of a Geothermal...  

Office of Scientific and Technical Information (OSTI)

Development of a Geothermal Well Database for Estimating In-Field EGS Potential in the State of Nevada...

440

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (1979) Flow Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Temperature and flowmeter logs provide evidence that these fractures and faults are conduits that conduct hot water to the wells. One of the intermediate depth core holes penetrated a hydrothermally altered zone that includes several fractures producing hot water. This altered production

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geological interpretation of Mount Ciremai geothermal system from remote sensing and magneto-teluric analysis  

E-Print Network [OSTI]

The exploration of geothermal system at Mount Ciremai has been started since the early 1980s and has just been studied carefully since the early 2000s. Previous studies have detected the potential of geothermal system and also the groundwater mechanism feeding the system. This paper will discuss the geothermal exploration based on regional scale surface temperature analysis with Landsat image to have a more detail interpretation of the geological setting and magneto-telluric or MT survey at prospect zones, which identified by the previous method, to have a more exact and in depth local scale structural interpretation. Both methods are directed to pin point appropriate locations for geothermal pilot hole drilling and testing. We used four scenes of Landsat Enhanced Thematic Mapper or ETM+ data to estimate the surface manifestation of a geothermal system. Temporal analysis of Land Surface Temperature or LST was applied and coupled with field temperature measurement at seven locations. By combining the TTM with ...

Sumintadireja, Prihadi; Irawan, Dasapta E; Irawan, Diky; Fadillah, Ahmad

2015-01-01T23:59:59.000Z

442

Pinpointing America's Geothermal Resources with Open Source Data  

Broader source: Energy.gov [DOE]

National Geothermal Data System addresses barriers to geothermal deployment by aggregating millions of geoscience datapoints and legacy geothermal research into a nationwide system that serves the geothermal community.

443

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

inducedseismicityandgeothermal energy. Geothermalinto sustainable geothermal energy: The S.E. Geysersinto sustainable geothermal energy: The S.E. Geysers

Brophy, P.

2012-01-01T23:59:59.000Z

444

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

geothermal area, Idaho, with the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER...

445

DOE and Partners Demonstrate Mobile Geothermal Power System at...  

Broader source: Energy.gov (indexed) [DOE]

Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo...

446

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

into sustainable geothermal energy: The S.E. Geysersseismicityandgeothermal energy. GeothermalResourcesinto sustainable geothermal energy: The S.E. Geysers

Brophy, P.

2012-01-01T23:59:59.000Z

447

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

Energy Authority Ente Nazionale dell'Energia Elettrica, Geothermal Center International Institute for Geothermal Research Geological.Survey of Japan Department of Geothermic

Bresee, J. C.

2011-01-01T23:59:59.000Z

448

Tracer Testing At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2012) Exploration Activity...

449

Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Neal Hot...

450

Slim Holes for Small Power Plants  

SciTech Connect (OSTI)

Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

Finger, John T.

1999-08-06T23:59:59.000Z

451

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

452

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal power) Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

453

Geothermal Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions of kWh):[1] United States: 14,637 Philippines: 12,080 Indonesia: 6,083 Mexico: 5,844 (Note: Select countries are listed; this is not an exhaustive list.) United States Geothermal Energy Generation U.S. geothermal energy generation remained relatively stable from 2000 to 2006, with more than 3% growth in 2007 and 2008.[1] U.S. geothermal electricity generation in 2008 was 14,859 GWh.[1] References ↑ 1.0 1.1 1.2 (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Generation&oldid=599391"

454

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal) Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

455

Geothermal energy: 1992 program overview  

SciTech Connect (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

456

The Future of Geothermal Energy  

Broader source: Energy.gov [DOE]

The Future of Geothermal Energy report is an evaluation of geothermal energy as a major supplier of energy in the United States. An 18-member assessment panel with broad experience and expertise...

457

Geothermal Maps | Department of Energy  

Energy Savers [EERE]

Office (GTO) carries out R&D and demonstration efforts to deploy 12 GWe of clean geothermal energy by 2020 and expand geothermal into new U.S. regions. Locating and...

458

Modern Geothermal Features | Open Energy Information  

Open Energy Info (EERE)

Modern Geothermal Features Modern Geothermal Features Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Modern Geothermal Features Dictionary.png Modern Geothermal Features: Active geothermal manifestations such as hot springs, fumaroles, steaming ground, mud pots, mud pools, mud volcanoes, or geysers. Other definitions:Wikipedia Reegle When geothermal systems have conduits available to the surface, they cause surface manifestations (or geothermal features). These features may vary between steam seeps (fumaroles) or pure fluid manifestations (geysers and hot springs) causing spectacular mineral formations (e.g. sinter terraces, tufa mounds). These types of manifestations are clear indications of an underlying geothermal system. Geothermal systems with no modern surface

459

Geothermal Properties Measurement Tool | Open Energy Information  

Open Energy Info (EERE)

Geothermal Properties Measurement Tool Geothermal Properties Measurement Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Properties Measurement Tool Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Geothermal Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.ornl.gov/sci/ees/etsd/btric/ground-source.shtml Cost: Free References: Geothermal Properties Measurement Tool [1] Logo: Geothermal Properties Measurement Tool The Geothermal Properties Measurement tool was developed at Oak Ridge National Laboratory for geothermal heat pump (GHP) designers and installers to better determine the geothermal properties of a certain location. The Geothermal Properties Measurement Excel tool was developed at Oak Ridge

460

Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt  

Open Energy Info (EERE)

No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Deep Blue No. 1-A Slimhole Geothermal Discovery at Blue Mountain, Humboldt County, Nevada Abstract The purpose of this paper is to provide a summary of the geology, drilling operations, and down-hole measurements obtained during the drilling of Deep Blue No.1. This well was sited on the basis of proximity to numerous gold exploration holes that indicated thermal water, high temperature gradients recorded in the 12 shallow gradient holes, and low resistivity values associated with certain interpreted major faults. The well was targeted to intersect fracture zones associated with the West and Central Faults, two

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Enhanced Geothermal Systems Subprogram Overview  

Broader source: Energy.gov [DOE]

This overview of GTP's Enhanced Geothermal Systems subprogram was given at the GTP Program Peer Review on May 18, 2010.

462

South Dakota Geothermal Energy Handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

Not Available

1980-06-01T23:59:59.000Z

463

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

464

Creating Efficiencies in Last Mile Delivery through Workforce  

E-Print Network [OSTI]

objectives · Extend the planning horizon to achieve more efficiency · Discuss general trends in workforceCreating Efficiencies in Last Mile Delivery through Workforce Management Maciek Nowak Associate workforce management and its advantages · Discuss new research looking to expand the customer service

Bustamante, Fabián E.

465

NASA maps volcano's 4000-mile-long SO2 cloud  

Science Journals Connector (OSTI)

NASA maps volcano's 4000-mile-long SO2 cloud ... The S02 was mapped on June 18 by the Total Ozone Mapping Spectrometer, an instrument aboard NASA's NIMBUS-7 satellite that has been measuring ozone levels and monitoring S02 since 1978. ...

1991-07-01T23:59:59.000Z

466

Equity Evaluation of Vehicle Miles Traveled Fees in Texas  

E-Print Network [OSTI]

to the infrastructure but the money needed to maintain and improve roadways is not being adequately generated. One proposed alternative to the gas tax is the creation of a vehicle miles traveled (VMT) fee; with equity being a crucial issue to consider. This research...

Larsen, Lisa Kay

2012-10-19T23:59:59.000Z

467

New York/Geothermal | Open Energy Information  

Open Energy Info (EERE)

New York/Geothermal New York/Geothermal < New York Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New York Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New York No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New York No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New York No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New York Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

468

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

469

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

470

North Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina/Geothermal Carolina/Geothermal < North Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF North Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in North Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in North Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for North Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

471

Iowa/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Iowa/Geothermal Iowa/Geothermal < Iowa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Iowa Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Iowa No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Iowa No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Iowa No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Iowa Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

472

New Jersey/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Jersey/Geothermal Jersey/Geothermal < New Jersey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Jersey Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Jersey No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Jersey No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Jersey No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New Jersey Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

473

Blind Geothermal System | Open Energy Information  

Open Energy Info (EERE)

Blind Geothermal System Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a geothermal heat source, but no modern surface manifestations. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Many geothermal areas show no signs of geothermal activity at the surface if the heated water is too far below or no conduits to the surface are available. An area of geothermal activity with no surface features is referred to as a "blind geothermal system." Examples Want to add an example to this list? Select a Geothermal Resource Area to

474

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

475

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office No. DE-AT03-80SF11459 Department of Energy Division of Geothermal Energy #12;#12;1 , .... TABLE n t e r e s t t o the geothermal energy community. The topic f o r panel analysis f o r the Sixth

Stanford University

476

Postgraduate Certificate in Geothermal Energy  

E-Print Network [OSTI]

Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University with this dynamic industry. Why this programme? The Postgraduate Certificate in Geothermal Energy Technology of developing geothermal energy fields. The course content draws on recent advances in technology and leading

Auckland, University of

477

Stanford Geothermal Program Tnterdisciplinary Research  

E-Print Network [OSTI]

Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

Stanford University

478

Stanford Geothermal Program Final Report  

E-Print Network [OSTI]

of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of PetroleumStanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

Stanford University

479

Recent Developments in Geothermal Drilling Fluids  

SciTech Connect (OSTI)

In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

1981-01-01T23:59:59.000Z

480

Geothermal Literature Review At Coso Geothermal Area (1985) | Open Energy  

Open Energy Info (EERE)

5) 5) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis Need to develop a reservoir model for Coso Notes Analysis of complex geothermal system was done by looking at the available data on the Coso Geothermal Field References Austin, C.F.; Durbin, W.F. (1 September 1985) Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1985)&oldid=510801" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers

Note: This page contains sample records for the topic "mile hole geothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Geothermal Literature Review At Geysers Geothermal Area (1984) | Open  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Geysers_Geothermal_Area_(1984)&oldid=510811

482

geothermal | OpenEI  

Open Energy Info (EERE)

geothermal geothermal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

483

Geothermal energy program summary  

SciTech Connect (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

484

Geothermal steam quality testing  

SciTech Connect (OSTI)

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

485

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network [OSTI]

January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

Scheel, David

486

Geothermal Energy; (USA)  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

Raridon, M.H.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

487

Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: April 25, 9: April 25, 2005 Medium-Truck Miles by Age to someone by E-mail Share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Facebook Tweet about Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Twitter Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Google Bookmark Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Delicious Rank Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on Digg Find More places to share Vehicle Technologies Office: Fact #369: April 25, 2005 Medium-Truck Miles by Age on AddThis.com... Fact #369: April 25, 2005 Medium-Truck Miles by Age Medium trucks (class 3-6) were driven an average of 14,439 miles in 2002.

488

2008 Geothermal Technologies Market Report  

Broader source: Energy.gov [DOE]

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

489

Geothermal Information Dissemination and Outreach  

SciTech Connect (OSTI)

Project Purpose To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and TV station interviews were conducted during the event. Technical Program included 136 technical papers. All were published in Volume 28 of the GRC Transactions. Volume 28, GRC Transactions Pblished as a high-quality, durable casebound volume, Volume 28 of the Transactions published 119 out of 136 technical papers (692 pp) presented at the GRC 2004 Annual Meeting. The papers were submitted by geothermal experts and professionals from around the world. The papers were reviewed over a 2-day period by 25 volunteer (in-kind) geothermal experts from the private sector and DOE National Laboratories. GRC staff received and cataloged the papers, and maintained interaction with authors for revisions and corrections. DOE Geothermal Technologies Newsletter The Office of Geothermal Technologies quarterly newsletter, Geothermal Technologies, is produced at the National Renewable Energy Laboratory (NREL). This 2-color, 4- to 16-page newsletter summarizes federal geothermal research and development projects and other DOE geothermal news. The GRC receives newsletter disk copy and color-key proof from NREL for each newsletter, then follows through with print production and distribution. Circulation is 1,000 per issue (plus 300 copies of the newsletter shipped to NREL for internal and public distribution). During the project period, the GRC printed, stitched and bound the Geothermal Technologies newsletter into the Sept/Oct 2003, Jan/Feb 2004, and May/June 2004 editions of the GRC Bulletin. Multiple copies (300) of the newsletter sans magazine were provided to NREL for internal DOE distribution. GRC Geothermal Research Library The GRC has built the largest and most comprehensive library in the world devoted to geothermal energy. The GRC Geothermal Library provides rapid accessibility to the majority of technical literature crafted over the past 30 years, and preserves hard copy and on-line databases for future use by geothermal researchers and developers. A bibliography for over half of the physical library's citations is available through keyword search on the GRC web site (www.geothe

Ted J. Clutter, Geothermal Resources Council Executive Director

2005-02-18T23:59:59.000Z

490

Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Regions Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Regions RegionsMap2012.jpg Geothermal regions were outlined for the western United States (including Alaska and Hawaii) to identify geothermal areas, projects, and exploration trends for each region. These regions were developed based on the USGS physiographic regions (U.S. Geological Survey), and then adjusted to fit geothermal exploration parameters such as differences in geologic regime, structure, heat source, surface effects (weather, vegetation patterns, groundwater flow), and other relevant factors. The 21 regions can be seen outlined in red and overlain on the 2008 USGS Geothermal Favorability Map in Figure 1.[1] Add a new Geothermal Region List of Regions Area (km2) Mean MW

491

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

492

Washington/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Washington/Geothermal < Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Washington Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Washington No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Washington No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Washington Mean Capacity (MW) Number of Plants Owners Geothermal Region Baker Hot Spring Geothermal Area 22.7 MW22,700 kW 22,700,000 W 22,700,000,000 mW 0.0227 GW 2.27e-5 TW Cascades Geothermal Region

493

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Enhanced Geothermal Systems (EGS) (Redirected from EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation)

494

GEOTHERMAL HEAT PUMPS Jack DiEnna  

E-Print Network [OSTI]

by DOE, "a Geothermal heat pump is a highly efficient RENEWABLE energy technology". #12;ArgumentGEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps

495

Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) |  

Open Energy Info (EERE)

Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

496

Slim Holes At Blue Mountain Area (Fairbank Engineering, 2009) | Open Energy  

Open Energy Info (EERE)

Fairbank Engineering, 2009) Fairbank Engineering, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Fairbank Engineering, 2009) Exploration Activity Details Location Blue Mountain Area Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes DEEP BLUE No.1, the first slim geothermal observation test hole at Blue Mountain, was drilled under a cost-share program between the DOE and Noramex, under the DOE's Geothermal Resource Exploration and Definition (GRED) program, (Noramex Corp., 2002). The hole was sited to test an area of projected high temperature at depth from gradients measured in shallow holes drilled in the central part of the lease area (Figure 3.1), and to test an area of low apparent resistivity interpreted to reflect possible

497

Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Twenty-Nine Palms Geothermal Area (Sabin, Et Al., 2010) Exploration Activity Details Location Twenty-Nine Palms Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes The first and only Seabee drilling project was the installation of five TGHs at the Camp Wilson region of the MCAGCC Marine base near Twenty-Nine Palms, CA. While the program was a success and GPO identified an anomaly where a deep, slim hole is to be drilled in June, 2010, the Seabee rig was sent oversees soon after drilling was completed. If/when another rig

498

Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes NOTE: These are theoretical/computer simulation tests of various methods on eight hypothetical 'model' basing-and-range geothermal systems. "The 300-meter heat flow holes are essentially useless for finding the "hidden" reservoirs. Clearly, the best results are obtained from the SP and MT surveys, with DC resistivity a close third. It is concluded that the best

499

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow accurate siting or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal

500

State Geothermal Resource Assessment and Data Collection Efforts  

Broader source: Energy.gov [DOE]

HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)