Powered by Deep Web Technologies
Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High efficiency photoionization detector  

DOE Patents (OSTI)

A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

Anderson, D.F.

1984-01-31T23:59:59.000Z

2

High efficiency photoionization detector  

DOE Patents (OSTI)

A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

Anderson, David F. (3055 Trinity, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

3

3TIER | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Logo: 3TIER Name 3TIER Address 2001 Sixth Avenue Place Seattle, Washington Zip 98121 Sector Services Product Assessment and forecasting products for...

4

High Efficiency, Clean Combustion  

DOE Green Energy (OSTI)

Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

Donald Stanton

2010-03-31T23:59:59.000Z

5

High Efficiency Steam Electrolyzer  

SciTech Connect

A novel steam electrolyzer has been developed. In conventional electrolyzers, oxygen produced from electrolysis is usually released in the air stream. In their novel design, natural gas is used to replace air in order to reduce the chemical potential difference across the electrolyzer, thus minimizing the electrical consumption. The oxygen from the electrolysis is consumed in either a total oxidation or a partial oxidation reaction with natural gas. Experiments performed on single cells shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. Using thin film materials and high performance cathode and anode, electrolysis could be done at temperatures as low as 700 C with electrolytic current as high as 1 A/cm{sup 2} at a voltage of 0.5 V only. The 700 C operating temperature is favorable to the total oxidation of natural gas while minimizing the need for steam that is otherwise necessary to avoid carbon deposition. A novel tubular electrolyzer stack has been developed. The system was designed to produce hydrogen at high pressures, taking advantage of the simplicity and high efficiency of the electrochemical compressors. A complete fabrication process was developed for making electrolyzer tubes with thin film coatings. A 100 W stack is being built.

Pham, A.Q.

2000-06-19T23:59:59.000Z

6

HIGH EFFICIENCY SYNGAS GENERATION  

DOE Green Energy (OSTI)

This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

2005-02-01T23:59:59.000Z

7

High Efficiency Particulate Air Filters  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Particulate Air (HEPA) Filters High Efficiency Particulate Air (HEPA) Filters Home Standards DOE Workshops Nuclear Air Cleaning Conference Proceedings Qualified Filter List News Items Related Sites HEPA Related Lessons Learned Contact Us HSS Logo High Efficiency Particulate Air Filters The HEPA Filter web site provides a forum for informing and reporting department-wide activities related to filtration and ventilation issues with special reference to the High Efficiency Particulate Air (HEPA) Filters' use, inspection, and testing. This site contains essentials of DOE HEPA filter test program, procedures, requirements and quality assurance aspects applicable to HEPA filters used in DOE facilities. This site contains information about the DOE-accepted Filter Test Facility and its management, operation and quality assuranceprogram.

8

Advanced high efficiency concentrator cells  

DOE Green Energy (OSTI)

This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the reverse'' side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

Gale, R. (Varian Associates, Inc., Palo Alto, CA (United States). Varian Research Center)

1992-06-01T23:59:59.000Z

9

tiers | OpenEI Community  

Open Energy Info (EERE)

tiers tiers Home Ewilson's picture Submitted by Ewilson(53) Contributor 4 January, 2013 - 08:42 Rates with tier problems max kwh tiers I've detected that the following rates all have the improper number of "Max kWh" values (should be one less than the number of charges, since the highest tier is always "all remaining"). This is likely due to users not understanding the meaning of "Max kWh"--often I see things like: "300, 700, 1000" (derived from "first 300, next 700, greater than 1000") which should be entered as "300, 1000". This is why we need checks on input that prevent users from entering this incorrectly. Here is the list (my script only checked residential rates): Syndicate content 429 Throttled (bot load)

10

3TIER | Open Energy Information  

Open Energy Info (EERE)

TIER TIER Jump to: navigation, search Logo: 3TIER Name 3TIER Address 2001 Sixth Avenue Place Seattle, Washington Zip 98121 Sector Services Product Assessment and forecasting products for wind, solar, and hydro Number of employees 51-200 Website http://www.3tier.com/ Coordinates 47.6144077°, -122.3383877° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6144077,"lon":-122.3383877,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Evaluating High Efficiency Motor Retrofit  

E-Print Network (OSTI)

In the petrochemical and refining Industries, and most manufacturing plants, the reliable operation of AC motors always has been crucial to the continuous operation of the process. Now, the cost of operating these motors has also become a significant factor. Engineers Involved In motor specification can help lower plant operating costs and reduce electrical energy consumption dramatically by a relatively simple technique: retrofit of existing, standard-efficiency motors with new, high efficiency models. This article demonstrates strong reasons for motor retrofit, and explains step-by step how process and manufacturing engineering personnel can fully evaluate a retrofit decision.

Evans, T. A.

1984-01-01T23:59:59.000Z

12

High-efficiency photoionization detector  

DOE Patents (OSTI)

A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 +- 0.02 eV, and a vapor pressure of 0.35 torr at 20/sup 0/C.

Anderson, D.F.

1981-05-12T23:59:59.000Z

13

Atlas Tier 3  

E-Print Network (OSTI)

ATLAS has built a powerful system for computing activities on top of three major grid infrastructures. As expected, with data finally arriving physicists need dedicated resources for analysis activities. In contrast to the existing grid infrastructure, there is a strong need to provide users with data control and high-performance (quasi) interactive data access. The ATLAS Tier3 solution is targeted to provide efficient and manageable analysis computing at each member institution. For most of sites only a small fraction of a physicist or student can be diverted for computing support. Transformative technologies have been chosen and integrated with the existing ATLAS tools. The result is a site which is substantially simpler to maintain and which is essentially operated by client tools and extensive use of caching technologies. Most promising new technologies we are using are: xroot and Lustre (distributed storage); CVMFS (experiment software distribution and condition files). We believe that this experience ha...

Benjamin, D; The ATLAS collaboration

2010-01-01T23:59:59.000Z

14

High Efficiency Engine Technologies Program  

Science Conference Proceedings (OSTI)

Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

Rich Kruiswyk

2010-07-13T23:59:59.000Z

15

Building Technologies Office: Performance Metrics Tiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance Metrics Performance Metrics Tiers to someone by E-mail Share Building Technologies Office: Performance Metrics Tiers on Facebook Tweet about Building Technologies Office: Performance Metrics Tiers on Twitter Bookmark Building Technologies Office: Performance Metrics Tiers on Google Bookmark Building Technologies Office: Performance Metrics Tiers on Delicious Rank Building Technologies Office: Performance Metrics Tiers on Digg Find More places to share Building Technologies Office: Performance Metrics Tiers on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software

16

High-Efficiency Steam Electrolyzer  

SciTech Connect

We are developing a novel high-efficiency, high-temperature steam electrolyzer. Although water or steam electrolysis is well known to be one of the cleanest ways to produce hydrogen, widespread utilization is hindered by high operational costs because of high electricity consumption. To decrease the electrical power input requirements in electrolysis, our approach uses natural gas as an anode depolarizer. This approach essentially replaces one unit of electricity with one equivalent-energy unit of natural gas at much lower cost. The direct use of natural gas on the electrolyzer enables very high system efficiency with respect to primary energy. Experiments performed on single cells have shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. System efficiency has been estimated to be 50 to 80%, depending on the electrolytic current. A 200-W prototype unit is being developed.

Pham, A Q

2001-06-20T23:59:59.000Z

17

Tier-2 Networking Workshop PMG  

NLE Websites -- All DOE Office Websites (Extended Search)

for US CMS Tier-2 sites: Follow-up to October 2005 meeting at FNAL sponsored by ESNet and I2, attended by representatives from US CMS and US ATLAS T2 sites. Proposed by...

18

High-efficiency photovoltaic cells  

DOE Patents (OSTI)

High efficiency solar converters comprised of a two cell, non-lattice matched, monolithic stacked semiconductor configuration using optimum pairs of cells having bandgaps in the range 1.6 to 1.7 eV and 0.95 to 1.1 eV, and a method of fabrication thereof, are disclosed. The high band gap subcells are fabricated using metal organic chemical vapor deposition (MOCVD), liquid phase epitaxy (LPE) or molecular beam epitaxy (MBE) to produce the required AlGaAs layers of optimized composition, thickness and doping to produce high performance, heteroface homojunction devices. The low bandgap subcells are similarly fabricated from AlGa(As)Sb compositions by LPE, MBE or MOCVD. These subcells are then coupled to form a monolithic structure by an appropriate bonding technique which also forms the required transparent intercell ohmic contact (IOC) between the two subcells. Improved ohmic contacts to the high bandgap semiconductor structure can be formed by vacuum evaporating to suitable metal or semiconductor materials which react during laser annealing to form a low bandgap semiconductor which provides a low contact resistance structure.

Yang, H.T.; Zehr, S.W.

1982-06-21T23:59:59.000Z

19

High-Efficiency Steam Electrolyzer  

SciTech Connect

We are developing a novel high-efficiency, high-temperature steam electrolyzer. Although water or steam electrolysis is well known to be one of the cleanest ways to produce hydrogen, widespread utilization is hindered by high operational costs because of high electricity consumption. To decrease the electrical power input requirements in electrolysis, our approach uses natural gas as an anode depolarizer. This approach essentially replaces one unit of electricity with one equivalent-energy unit of natural gas at much lower cost. The direct use of natural gas on the electrolyzer enables very high system efficiency with respect to primary energy. Experiments performed on single cells have shown a voltage reduction as much as 1 V when compared to conventional electrolyzers. System efficiency has been estimated to be 50 to 80%, depending on the electrolytic current density. During FY02, we have accomplished several major milestones, including the development of a metal-to-ceramic seal that withstands 150 psi differential, the fabrication of the electrolyzer tubes of up to 16 inches in length, the improvement of single tube performance and the demonstration of the first electrolyzer stack.

Pham, A Q; See, E; Lenz, D; Martin, P; Glass, R

2002-07-03T23:59:59.000Z

20

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

Adams, D.C.

1993-04-22T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

Adams, D.C.

1992-01-01T23:59:59.000Z

22

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

Adams, D.C.

1992-01-01T23:59:59.000Z

23

High-Efficiency Neutron Detection and Spectroscopy ...  

Science Conference Proceedings (OSTI)

... are also working on a large volume detector to use in the underground environment where high efficiency is more important that energy resolution. ...

2013-07-22T23:59:59.000Z

24

High-Efficiency Neutron Detection and Spectroscopy  

Science Conference Proceedings (OSTI)

High-Efficiency Neutron Detection and Spectroscopy. ... such as searches for WIMP dark matter, neutrinoless double beta decay, and solar neutrinos. ...

2013-07-22T23:59:59.000Z

25

STATEMENT OF CONSIDERATIONS REQUEST BY ARTHUR D. LITTLE, INC. (ADL) AND ITS LOWER-TIER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARTHUR D. LITTLE, INC. (ADL) AND ITS LOWER-TIER ARTHUR D. LITTLE, INC. (ADL) AND ITS LOWER-TIER SUBCONTRACTORS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE SOLICITATION NO. DE-PS07-991D13788; W(A)-00-009; CH1028 The Petitioner, Arthur D. Little, Inc. (ADL), and its lower-tier Subcontractors, ExxonMobile and Callidus Technologies, have requested a waiver of domestic and foreign patent rights for all subject inventions arising under the above referenced solicitation and proposed awards and subcontracts entered thereunder. Gas Research Institute (GRI) is also a subcontractor under this proposed award. However, GRI is a nonprofit organization falling under Public Law 96-517. The solicitation is entitled, "High Efficiency, Ultra Low Emission Integrated Process Heater System."

26

Measure Guideline: High Efficiency Natural Gas Furnaces  

SciTech Connect

This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

Brand, L.; Rose, W.

2012-10-01T23:59:59.000Z

27

Performance Metrics Tiers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance Metrics Tiers Performance Metrics Tiers Performance Metrics Tiers The performance metrics defined by the Commercial Buildings Integration Program offer different tiers of information to address the needs of various users. On this page you will find information about the various goals users are trying to achieve by using performance metrics and the tiers of metrics. Goals in Measuring Performance Many individuals and groups are involved with a building over its lifetime, and all have different interests in and requirements for the building. Although these interests differ, the value in using metrics reflects a small number of driving factors: Controlling energy costs and energy consumption Minimizing environmental impacts Enhancing the image through marketing Improving load forecasting, energy management, and reliability.

28

Vehicle Technologies Office: Materials for High Efficiency Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Materials for High Efficiency Combustion Engines on Facebook Tweet about Vehicle...

29

3TIER Environmental Forecast Group Inc 3TIER | Open Energy Information  

Open Energy Info (EERE)

TIER Environmental Forecast Group Inc 3TIER TIER Environmental Forecast Group Inc 3TIER Jump to: navigation, search Name 3TIER Environmental Forecast Group Inc (3TIER) Place Seattle, Washington Zip 98121 Sector Renewable Energy Product Seattle-based, renewable energy assessment and forecasting company. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

High efficiency compressor uses direct drive  

Science Conference Proceedings (OSTI)

This article focuses on the high efficiency of a compressor which uses only direct drive. This compressor was evaluated by judges and won Top Honors in the 1982 Chemical Processing magazine Vaaler Awards category of compressors, blowers and fans. Applications for the compressor include combustion air, process air and gas booster, incineration, fermentation, and vacuum filtration systems. In addition to a 50% reduction in power comsumption, the use of the compressor eliminated the need for a water seal, thus saving 200 gpm of water. And, since the elimination of the water seal reduced the necessary downtime for seal maintenance, on stream time was increased by 5%.

Not Available

1982-11-01T23:59:59.000Z

31

High Efficiency Solar Integrated Roof Membrane Product  

SciTech Connect

This project was designed to address the Solar Energy Technology Program objective, to develop new methods to integrate photovoltaic (PV) cells or modules within a building-integrated photovoltaic (BIPV) application that will result in lower installed cost as well as higher efficiencies of the encapsulated/embedded PV module. The technology assessment and development focused on the evaluation and identification of manufacturing technologies and equipment capable of producing such low-cost, high-efficiency, flexible BIPV solar cells on single-ply roofing membranes.

Partyka, Eric; Shenoy, Anil

2013-05-15T23:59:59.000Z

32

High efficiency inverter and ballast circuits  

SciTech Connect

A high efficiency push-pull inverter circuit employing a pair of relatively high power switching transistors is described. The switching on and off of the transistors is precisely controlled to minimize power losses due to common-mode conduction or due to transient conditions that occur in the process of turning a transistor on or off. Two current feed-back transformers are employed in the transistor base drives; one being saturable for providing a positive feedback, and the other being non-saturable for providing a subtractive feedback.

Nilssen, O.K.

1984-02-07T23:59:59.000Z

33

Building Technologies Office: High Efficiency, Low Emission Supermarket  

NLE Websites -- All DOE Office Websites (Extended Search)

High Efficiency, Low High Efficiency, Low Emission Supermarket Refrigeration Research Project to someone by E-mail Share Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Facebook Tweet about Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Twitter Bookmark Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Google Bookmark Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Delicious Rank Building Technologies Office: High Efficiency, Low Emission Supermarket Refrigeration Research Project on Digg Find More places to share Building Technologies Office: High

34

Highly Efficient Modeling of Dynamic Coronal Loops  

E-Print Network (OSTI)

Observational and theoretical evidence suggests that coronal heating is impulsive and occurs on very small cross-field spatial scales. A single coronal loop could contain a hundred or more individual strands that are heated quasi-independently by nanoflares. It is therefore an enormous undertaking to model an entire active region or the global corona. Three-dimensional MHD codes have inadequate spatial resolution, and 1D hydro codes are too slow to simulate the many thousands of elemental strands that must be treated in a reasonable representation. Fortunately, thermal conduction and flows tend to smooth out plasma gradients along the magnetic field, so "0D models" are an acceptable alternative. We have developed a highly efficient model called Enthalpy-Based Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of the average temperature, pressure, and density along a coronal strand. It improves significantly upon earlier models of this type--in accuracy, flexibility, and capability. It ...

Klimchuk, J A; Cargill, P J

2007-01-01T23:59:59.000Z

35

High-efficiency silicon concentrator cell commercialization  

SciTech Connect

This report summarizes the first phase of a forty-one month program to develop a commercial, high-efficiency concentrator solar cell and facility for manufacturing it. The period covered is November 1, 1990 to December 31, 1991. This is a joint program between the Electric Power Research Institute (EPRI) and Sandia National Laboratories. (This report is also published by EPRI as EPRI report number TR-102035.) During the first year of the program, SunPower accomplished the following major objectives: (1) a new solar cell fabrication facility, which is called the Cell Pilot Line (CPL), (2) a baseline concentrator cell process has been developed, and (3) a cell testing facility has been completed. Initial cell efficiencies are about 23% for the baseline process. The long-range goal is to improve this efficiency to 27%.

Sinton, R.A.; Swanson, R.M. [SunPower Corp., Sunnyvale, CA (US)

1993-05-01T23:59:59.000Z

36

LEDS Tier I Activities | Open Energy Information  

Open Energy Info (EERE)

Tier I Activities Tier I Activities Jump to: navigation, search Name LEDS Tier I Activities Agency/Company /Organization United States Department of State, United States Department of Agriculture Partner Multiple Ministries of Agriculture Sector Climate, Land Focus Area Agriculture, Land Use Topics Co-benefits assessment, Low emission development planning, -LEDS Website http://transition.usaid.gov/ou Program Start 2011 Program End 2014 Country Costa Rica, Kenya Central America, Eastern Africa References Enhancing Capacity for Low Emission Development Strategies Program[1] Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable,

37

A Tiered Security System for Mobile Devices  

E-Print Network (OSTI)

We have designed a tiered security system for mobile devices where each security tier holds user-defined security triggers and actions. It has a friendly interface that allows users to easily define and configure the different circumstances and actions they need according to context. The system can be set up and activated from any browser or directly on the mobile device itself. When the security system is operated from a Web site or server, its configuration can be readily shared across multiple devices. When operated directly from the mobile device, no server is needed for activation. Many different types of security circumstances and actions can be set up and employed from its tiers. Security circumstances can range from temporary misplacement of a mobile device at home to malicious theft in a hostile region. Security actions can range from ringing a simple alarm to automatically erasing, overwriting, and re-erasing drives.

Bardsley, Scott; Morris, R Paul

2008-01-01T23:59:59.000Z

38

High Efficiency Organic Light Emitting Devices for Lighting  

SciTech Connect

Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

So, Franky; Tansu, Nelson; Gilchrist, James

2013-06-30T23:59:59.000Z

39

High Efficiency Electrical Energy Storage Using Reversible Solid ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Storage III: Materials, Systems and Applications Symposium. Presentation Title, High Efficiency Electrical Energy Storage Using Reversible...

40

High Efficiency Low Emission Supermarket Refrigeration Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies.

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High-efficiency concentrator silicon solar cells  

DOE Green Energy (OSTI)

This report presents results from extensive process development in high-efficiency Si solar cells. An advanced design for a 1.56-cm{sup 2} cell with front grids achieved 26% efficiency at 90 suns. This is especially significant since this cell does not require a prismatic cover glass. New designs for simplified backside-contact solar cells were advanced from a status of near-nonfunctionality to demonstrated 21--22% for one-sun cells in sizes up to 37.5 cm{sup 2}. An efficiency of 26% was achieved for similar 0.64-cm{sup 2} concentrator cells at 150 suns. More fundamental work on dopant-diffused regions is also presented here. The recombination vs. various process and physical parameters was studied in detail for boron and phosphorous diffusions. Emitter-design studies based solidly upon these new data indicate the performance vs design parameters for a variety of the cases of most interest to solar cell designers. Extractions of p-type bandgap narrowing and the surface recombination for p- and n-type regions from these studies have a generality that extends beyond solar cells into basic device modeling. 68 refs., 50 figs.

Sinton, R.A.; Cuevas, A.; King, R.R.; Swanson, R.M. (Stanford Univ., CA (USA). Solid-State Electronics Lab.)

1990-11-01T23:59:59.000Z

42

Highly Efficient Modeling of Dynamic Coronal Loops  

E-Print Network (OSTI)

Observational and theoretical evidence suggests that coronal heating is impulsive and occurs on very small cross-field spatial scales. A single coronal loop could contain a hundred or more individual strands that are heated quasi-independently by nanoflares. It is therefore an enormous undertaking to model an entire active region or the global corona. Three-dimensional MHD codes have inadequate spatial resolution, and 1D hydro codes are too slow to simulate the many thousands of elemental strands that must be treated in a reasonable representation. Fortunately, thermal conduction and flows tend to smooth out plasma gradients along the magnetic field, so "0D models" are an acceptable alternative. We have developed a highly efficient model called Enthalpy-Based Thermal Evolution of Loops (EBTEL) that accurately describes the evolution of the average temperature, pressure, and density along a coronal strand. It improves significantly upon earlier models of this type--in accuracy, flexibility, and capability. It treats both slowly varying and highly impulsive coronal heating; it provides the differential emission measure distribution, DEM(T), at the transition region footpoints; and there are options for heat flux saturation and nonthermal electron beam heating. EBTEL gives excellent agreement with far more sophisticated 1D hydro simulations despite using four orders of magnitude less computing time. It promises to be a powerful new tool for solar and stellar studies.

J. A. Klimchuk; S. Patsourakos; P. J. Cargill

2007-10-01T23:59:59.000Z

43

High efficiency, radiation-hard solar cells  

DOE Green Energy (OSTI)

The direct gap of the In{sub 1-x}Ga{sub x}N alloy system extends continuously from InN (0.7 eV, in the near IR) to GaN (3.4 eV, in the mid-ultraviolet). This opens the intriguing possibility of using this single ternary alloy system in single or multi-junction (MJ) solar cells of the type used for space-based surveillance satellites. To evaluate the suitability of In{sub 1-x}Ga{sub x}N as a material for space applications, high quality thin films were grown with molecular beam epitaxy and extensive damage testing with electron, proton, and alpha particle radiation was performed. Using the room temperature photoluminescence intensity as a indirect measure of minority carrier lifetime, it is shown that In{sub 1-x}Ga{sub x}N retains its optoelectronic properties at radiation damage doses at least 2 orders of magnitude higher than the damage thresholds of the materials (GaAs and GaInP) currently used in high efficiency MJ cells. This indicates that the In{sub 1-x}Ga{sub x}N is well-suited for the future development of ultra radiation-hard optoelectronics. Critical issues affecting development of solar cells using this material system were addressed. The presence of an electron-rich surface layer in InN and In{sub 1-x}Ga{sub x}N (0 < x < 0.63) was investigated; it was shown that this is a less significant effect at large x. Evidence of p-type activity below the surface in Mg-doped InN was obtained; this is a significant step toward achieving photovoltaic action and, ultimately, a solar cell using this material.

Ager III, J.W.; Walukiewicz, W.

2004-10-22T23:59:59.000Z

44

Tailored Materials for High Efficiency CIDI Engines  

DOE Green Energy (OSTI)

The overall goal of the project, Tailored Materials for High Efficiency Compression Ignition Direct Injection (CIDI) Engines, is to enable the implementation of new combustion strategies, such as homogeneous charge compression ignition (HCCI), that have the potential to significantly increase the energy efficiency of current diesel engines and decrease fuel consumption and environmental emissions. These strategies, however, are increasing the demands on conventional engine materials, either from increases in peak cylinder pressure (PCP) or from increases in the temperature of operation. The specific objective of this project is to investigate the application of a new material processing technology, friction stir processing (FSP), to improve the thermal and mechanical properties of engine components. The concept is to modify the surfaces of conventional, low-cost engine materials. The project focused primarily on FSP in aluminum materials that are compositional analogs to the typical piston and head alloys seen in small- to mid-sized CIDI engines. Investigations have been primarily of two types over the duration of this project: (1) FSP of a cast hypoeutectic Al-Si-Mg (A356/357) alloy with no introduction of any new components, and (2) FSP of Al-Cu-Ni alloys (Alloy 339) by physically stirring-in various quantities of carbon nanotubes/nanofibers or carbon fibers. Experimental work to date on aluminum systems has shown significant increases in fatigue lifetime and stress-level performance in aluminum-silicon alloys using friction processing alone, but work to demonstrate the addition of carbon nanotubes and fibers into aluminum substrates has shown mixed results due primarily to the difficulty in achieving porosity-free, homogeneous distributions of the particulate. A limited effort to understand the effects of FSP on steel materials was also undertaken during the course of this project. Processed regions were created in high-strength, low-alloyed steels up to 0.5 in. deep that showed significant grain refinement and homogeneous microstructures favorable to increased fracture toughness and fatigue performance. The final tasks of the project demonstrated that the FSP concept can be applied to a relevant part geometry by fabricating diesel piston crowns with FSP regions applied selectively to the edge of the bowl rim. This area of the piston typically suffers from conditions at high PCP that cause severe thermal fatigue issues. It is expected that, given the data from coupon testing, the durability of pistons modified by FSP will allow much higher fatigue lifetime and potentially also greater resistance to elevated stress-level effects on fatigue.

Grant, G.J.; Jana, S.

2012-03-30T23:59:59.000Z

45

Novel Nanophosphors for High Efficiency Fluorescent Lamps  

SciTech Connect

This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation, which are detailed in this report. Within the program we have carried out fundamental investigations into the physical processes that determine the quantum splitting behavior of the Pr{sup 3+} ion in solids. Specifically, we have investigated the quantum splitting luminescence of this ion in the LaPO{sub 4}, SrAl{sub 12}O{sub 19} and LiLaP{sub 4}O{sub 12} host lattices. In this final report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

Alok Srivatava

2007-03-31T23:59:59.000Z

46

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

47

High Efficiency Low Emission Supermarket Refrigeration Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Low Emission Supermarket High Efficiency Low Emission Supermarket Refrigeration Research Project High Efficiency Low Emission Supermarket Refrigeration Research Project The U.S. Department of Energy (DOE) is currently conducting research into high efficiency, low emission supermarket refrigeration technologies. Project Description The project involves the development of a supermarket refrigeration system that can reduce greenhouse gas emissions and energy consumption when compared to existing systems. The challenge is to design a system that is capable of achieving low refrigerant leak rates while significantly reducing both the energy consumption and the refrigerant charge size. Project Partners Research is being undertaken between DOE and Oak Ridge National Laboratory. Project Goals

48

High-Efficiency Photovoltaics at Thin Film Costs  

Time (Years) 0-+ 5. 10. 15. 20. 25. Opportunity. Technology. ... 15 years renewable energy business development ... High-Efficiency Photovoltaics at ...

49

Low Cost, High Efficiency Tandem Silicon Solar Cells and LEDs  

Wladek Walukiewicz, Joel Ager, and Kin Man Yu of Berkeley Lab have developed high-efficiency solar cells that leverage the well-established design and ...

50

Complex Oxides for Highly Efficient Solid-State Energy ...  

Complex Oxides for Highly Efficient Solid-State Energy ... Using complex oxides to directly convert thermal to electrical energy is both ... Thermal P ...

51

High efficiency pulse motor drive for robotic propulsion  

E-Print Network (OSTI)

The goal of this research is to improve the power efficiency of robotic locomotion through the use of series elastic actuation, with a focus on swimming motion. To achieve high efficiency, electromechanical drives need to ...

Sun, Zhen, M.S. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

52

Techniques for high-efficiency outphasing power amplifiers  

E-Print Network (OSTI)

A trade-off between linearity and efficiency exists in conventional power amplifiers (PAs). The outphase amplifying concept overcomes this trade-off by enabling the use of high efficiency, non-linear power amplifiers for ...

Godoy, Philip (Philip Andrew)

2011-01-01T23:59:59.000Z

53

III-V High-Efficiency Multijunction Photovoltaics (Fact Sheet)  

Science Conference Proceedings (OSTI)

Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for III-V High-Efficiency Multijunction Photovoltaics at the National Center for Photovoltaics.

Not Available

2011-06-01T23:59:59.000Z

54

Durable and Highly Efficient Energy-harvesting Electrochromic ...  

Science Conference Proceedings (OSTI)

The resulting device performed three states: solar cell, transparent, and dark, and ... Anatase Nanostructures for High Efficiency Photocatalysis Application ... EBSD Study of Electromigration Damage in Idealized SnAgCu 305 Interconnects.

55

Highly efficient blue polyfluorene-based polymer light-emitting...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Physics Volume 42 Pagination 5 Abstract A highly efficient blue polymer light-emitting diode based on poly(9,9-di(2-(2-(2-methoxy-ethoxy)ethoxy)ethyl)fluorenyl-2,7-diyl)...

56

Design of high efficiency Mid IR QCL lasers  

E-Print Network (OSTI)

The proposed research is a study of designing high-efficiency Mid-IR quantum cascade lasers (QCL). This thesis explores "injector-less" designs for achieving lower voltage defects and improving wall plug efficiencies through ...

Hsu, Allen Long

2008-01-01T23:59:59.000Z

57

Synthetic aperture radar processing with tiered subapertures  

SciTech Connect

Synthetic Aperture Radar (SAR) is used to form images that are maps of radar reflectivity of some scene of interest, from range soundings taken over some spatial aperture. Additionally, the range soundings are typically synthesized from a sampled frequency aperture. Efficient processing of the collected data necessitates using efficient digital signal processing techniques such as vector multiplies and fast implementations of the Discrete Fourier Transform. Inherent in image formation algorithms that use these is a trade-off between the size of the scene that can be acceptably imaged, and the resolution with which the image can be made. These limits arise from migration errors and spatially variant phase errors, and different algorithms mitigate these to varying degrees. Two fairly successful algorithms for airborne SARs are Polar Format processing, and Overlapped Subaperture (OSA) processing. This report introduces and summarizes the analysis of generalized Tiered Subaperture (TSA) techniques that are a superset of both Polar Format processing and OSA processing. It is shown how tiers of subapertures in both azimuth and range can effectively mitigate both migration errors and spatially variant phase errors to allow virtually arbitrary scene sizes, even in a dynamic motion environment.

Doerry, A.W. [Sandia National Labs., Albuquerque, NM (United States). Synthetic Aperture Radar Dept.

1994-06-01T23:59:59.000Z

58

High Efficiency Solar Power via Separated Photo and Voltaic Pathways  

DOE Green Energy (OSTI)

This project demonstrates a novel nanostructured solar cell architecture capable of achieving high efficiency levels that is relatively simple and inexpensive to manufacture. The high efficiency will be achieved by the novel structure that separates the path of the photons from the path of the generated charge carriers. In this way, the photon path can be long for maximum light absorption, while the path for carriers can be short for maximum electronic energy harvesting. The combination of maximum light absorption coupled with maximum carrier harvesting is the basis for the expected high efficiency. The project will develop high efficiency solar cell prototypes utilizing this unique nanostructured architecture. The project addresses the fundamental limitation inherent in all current solar cell designs, and which opens a pathway to development for high efficiency solar cells at low cost. Realizing this goal will result in a levelized cost of electricity in the range of 10/kWh, which would achieve the long-sought goal of making photovoltaic electricity cost competitive with fossil-fuel generated electricity without any governmental subsidies. This breakthrough would spur the already rapid growth in the photovoltaic industry to an explosive pace, with significant, widespread benefit to the national economy and the nations energy security. The initial target of the program is to develop single-junction solar cells using ultrathin amorphous silicon with the performance approaching that of single crystal silicon cells.

Michael J. Naughton

2009-02-17T23:59:59.000Z

59

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

60

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauds Highly Efficient Industrial Technology Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Gas Corporation - Commercial High-Efficiency Equipment Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate Program Southwest Gas Corporation - Commercial High-Efficiency Equipment Rebate Program < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Weatherization Commercial Heating & Cooling Water Heating Maximum Rebate General: 50% of price Boiler Steam Trap: 25% of price Program Info State Arizona Program Type Utility Rebate Program Rebate Amount Modulating Burner Control: $10,000 Boiler O2 Trim Control Pad: $10,000 Boiler Steam Trap: $250 Non-condensing Boiler: $1/MBtuh Condensing Boiler: $1.25/MBtuh Storage Water Heater: 50% of cost, up to $1,100 Tankless Water Heater: 50% of cost, up to $450 Griddle: 50% of cost, up to $600 Fryer: 50% of cost, up to $1,350

62

Home Performance with Energy Star High Efficiency Measure Incentive (HEMI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Performance with Energy Star High Efficiency Measure Incentive Home Performance with Energy Star High Efficiency Measure Incentive (HEMI) Home Performance with Energy Star High Efficiency Measure Incentive (HEMI) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Ventilation Manufacturing Commercial Lighting Lighting Water Heating Maximum Rebate $3,000 Program Info State New York Program Type State Rebate Program Rebate Amount 10% of project costs Provider New York State Energy Research and Development Authority The New York State Research and Development Authority (NYSERDA) offers an incentive for homeowners of 1-4 homes that participate in the Home Performance with Energy Star program. The program entitles the participant

63

Laclede Gas Company - Residential High Efficiency Heating Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential High Efficiency Heating Rebate Residential High Efficiency Heating Rebate Program Laclede Gas Company - Residential High Efficiency Heating Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Heating System: 2 maximum Programmable Thermostats: 2 maximum Multi-Family Property Owners: 50 thermostat rebates, 50 furnace rebates over the life of the program Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Gas Furnace: $150 - $200 Gas Boiler: $150 Programmable Setback Thermostat: $25 Gas Water Heater: $50 - $200 Provider Laclede Gas Company Laclede Gas Company offers various rebates to residential customers for investing in energy efficient equipment and appliances. Residential

64

Tiered time-of-use rates | OpenEI Community  

Open Energy Info (EERE)

Tiered time-of-use rates Tiered time-of-use rates Home > Groups > Utility Rate Hello! Last year, I found OpenEI via NREL's System Advisor Model, when I was considering a PV system for my home in PG&E's northern California. I also drive an EV (Volt), so there are at least three relevant rate structures to consider: E1 is the standard residental tiered rate, E6 is a tiered time of use plan intended for PV customers, and E9A is a tiered time of use plan for EV customers. As I recall, the E1 data was already in the database, but I had to attempt to create the entries for E6 and E9A. I understand how to enter TOU rates, and I understand how to enter tiered rates, but I can't understand how to enter TOU rates that ALSO have tiers. At the time, I just entered the "baseline" rates, and they don't appear to

65

Tiered time-of-use rates | OpenEI Community  

Open Energy Info (EERE)

Tiered time-of-use rates Tiered time-of-use rates Home > Groups > Utility Rate Hello! Last year, I found OpenEI via NREL's System Advisor Model, when I was considering a PV system for my home in PG&E's northern California. I also drive an EV (Volt), so there are at least three relevant rate structures to consider: E1 is the standard residental tiered rate, E6 is a tiered time of use plan intended for PV customers, and E9A is a tiered time of use plan for EV customers. As I recall, the E1 data was already in the database, but I had to attempt to create the entries for E6 and E9A. I understand how to enter TOU rates, and I understand how to enter tiered rates, but I can't understand how to enter TOU rates that ALSO have tiers. At the time, I just entered the "baseline" rates, and they don't appear to

66

Flash2007-33RevenueTierDiscounts.rtf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REVENUE TIER DISCOUNT REVENUE TIER DISCOUNT S* Service Category Baseline $0-$9M Tier 1 $10-34M Tier 2 $ 35-74M Tier 3 $75-149M Tier 4 $150-199M Tier 5 $200M+ Express Next Day First AM MAS MAS MAS MAS MAS MAS Express Next Day Mid-Morning MAS 21.9% 24.0% 26.9% 29.2% 30.2% Express Next Day Afternoon MAS 21.9% 24.0% 26.9% 29.2% 30.2% Express Second Day MAS 21.9% 24.0% 26.9% 29.2% 30.2% Express Third Day MAS 21.9% 24.0% 26.9% 29.2% 30.2% Intl Priority - Puerto Rico MAS MAS MAS MAS MAS MAS Intl Economy - Puerto Rico MAS MAS MAS MAS MAS MAS Same Day Service MAS MAS MAS MAS MAS MAS Standard Ground** MAS 1.7% 4.8% 13.2% 15.2% 17.3% Ground $4,000 - $40,000** Not Offered 4.8% 11.1% 15.2% 17.3% 27.9% Ground $40,000+" Not Offered 39.2% 39.2% 39.2% 39.2% 39.2% *Discounts shown EXCLUDE the waiver of fuel surcharges and are thus understated

67

Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production  

E-Print Network (OSTI)

it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, currentSecond Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production Peer M. Schenk that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable

Kudela, Raphael M.

68

Rates with tier problems | OpenEI Community  

Open Energy Info (EERE)

Rates with tier problems Rates with tier problems Home > Groups > Utility Rate Ewilson's picture Submitted by Ewilson(51) Contributor 4 January, 2013 - 08:42 max kwh tiers I've detected that the following rates all have the improper number of "Max kWh" values (should be one less than the number of charges, since the highest tier is always "all remaining"). This is likely due to users not understanding the meaning of "Max kWh"--often I see things like: "300, 700, 1000" (derived from "first 300, next 700, greater than 1000") which should be entered as "300, 1000". This is why we need checks on input that prevent users from entering this incorrectly. Here is the list (my script only checked residential rates): Data:0204a5dc-410c-4edf-88b3-80ac1834e924

69

Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials |  

Office of Science (SC) Website

Design of Bulk Nanocomposites as High Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications Contact BES Home 04.27.12 Design of Bulk Nanocomposites as High Efficiency Thermoelectric Materials Print Text Size: A A A RSS Feeds FeedbackShare Page Scientific Achievement A newly synthesized bulk thermoelectric material that contains nanocrystals with the same orientation and structure as the host material breaks thermoelectric efficiency records by blocking thermal, but not electrical, conductivity. Significance and Impact A new strategy to design inexpensive materials that more efficiently convert heat to electricity. Research Details Thermoelectric materials directly generate electrical power from heat, but

70

A Perspective on the Future of High Efficiency Engines  

SciTech Connect

New fuel economy standards and emissions regulations are accelerating the development of new engine technologies, sensors, and on-board computing. These developments will enable unprecedented engine control, which will in turn enable real-world implementations of low temperature combustion, high-speed controls, and other high efficiency engine technologies. With this expanded flexibility in engine design and control, the challenge will now be the exponential increase in the design and calibration space and the need for the development of new simulations, optimization methods, and self-learning control methodologies. This manuscript provides historical and future perspectives on the opportunities and challenges of this unparalleled technology growth on the next generation of high efficiency engines.

Wagner, Robert M [ORNL; Curran, Scott [ORNL; Green Jr, Johney Boyd [ORNL

2013-01-01T23:59:59.000Z

71

High-Efficiency Solar Cell Concepts: Physics, Materials, and Devices  

DOE Green Energy (OSTI)

Over the past three decades, significant progress has been made in the area of high-efficiency multijunction solar cells, with the effort primarily directed at current-matched solar cells in tandem. The key materials issues here have been obtaining semiconductors with the required bandgaps for sequential absorption of light in the solar spectrum and that are lattice matched to readily available substrates. The GaInP/GaAs/Ge cell is a striking example of success achieved in this area. Recently, several new approaches for high-efficiency solar cell design have emerged, that involve novel methods for tailoring alloy bandgaps, as well as alternate technologies for hetero-epitaxy of III-V's on Si. The advantages and difficulties expected to be encountered with each approach will be discussed, addressing both the materials issues and device physics whilst contrasting them with other fourth-generation solar cell concepts.

Mascarenhas, A.; Francoeur, S.; Seong, M. J.; Fluegel, B.; Zhang, Y.; Wanlass, M. W.

2005-01-01T23:59:59.000Z

72

Modelling and fabrication of high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

This report covers the research conducted on modelling and development of high-efficiency silicon solar cells during the period May 1989 to August 1990. First, considerable effort was devoted toward developing a ray-tracing program for the photovoltaic community to quantify and optimize surface texturing for solar cells. Second, attempts were made to develop a hydrodynamic model for device simulation. Such a model is somewhat slower than drift-diffusion type models like PC-1D, but it can account for more physical phenomena in the device, such as hot carrier effects, temperature gradients, thermal diffusion, and lattice heat flow. In addition, Fermi-Dirac statistics have been incorporated into the model to deal with heavy doping effects more accurately. Third and final component of the research includes development of silicon cell fabrication capabilities and fabrication of high-efficiency silicon cells. 84 refs., 46 figs., 10 tabs.

Rohatgi, A.; Smith, A.W.; Salami, J. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering] [Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering

1991-10-01T23:59:59.000Z

73

Basic studies of 3-5 high efficiency cell components  

DOE Green Energy (OSTI)

This project's objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell building blocks'' such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project's goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we've teamed a great deal about heavy doping effects in p[sup +] and n[sup +] GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We've learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we've demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. (Purdue Univ., Lafayette, IN (United States))

1993-01-01T23:59:59.000Z

74

U-247: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass 7: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass Authentication and Gain Administrative Access U-247: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass Authentication and Gain Administrative Access August 29, 2012 - 6:00am Addthis PROBLEM: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass Authentication and Gain Administrative Access PLATFORM: EMC Cloud Tiering Appliance (CTA) 7.4 and prior EMC Cloud Tiering Appliance Virtual Edition (CTA/VE) 7.4 and prior EMC Cloud Tiering Appliance (CTA) 9.0 and prior EMC Cloud Tiering Appliance Virtual Edition (CTA/VE) 9.0 and prior ABSTRACT: A vulnerability was reported in EMC Cloud Tiering Appliance. reference LINKS: SecurityTracker Alert ID: 1027448 Bugtraq ID: 55250 EMC.com CVE-2012-2285 IMPACT ASSESSMENT:

75

Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tier 2 Vehicle and Tier 2 Vehicle and Gasoline Sulfur Program to someone by E-mail Share Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Facebook Tweet about Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Twitter Bookmark Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Google Bookmark Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Delicious Rank Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on Digg Find More places to share Alternative Fuels Data Center: Tier 2 Vehicle and Gasoline Sulfur Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tier 2 Vehicle and Gasoline Sulfur Program

76

High-efficiency multidetector system for tumor scanning  

SciTech Connect

A high-efficiency detector system developed especially for medical imaging has three specially cut Ge(Li) coaxial detectors (total volume 249 cm$sup 3$). At 122 keV, the peak efficiency is 93 percent of that of a 7.6 x 7.6 cm NaI (Tl) detector. Degradation of the paralleled energy resolution is avoided and resolution is improved by 35 percent over that of conventional output-summing techniques by gating the detector outputs. In effect this multiplexes them to a single line output. (auth)

Kirby, J.A.; Phelps, P.L.; Armantrout, G.A.; Sawyer, D.; Beck, R.N.

1975-11-18T23:59:59.000Z

77

Fuel Cell/Turbine Ultra High Efficiency Power System  

DOE Green Energy (OSTI)

FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will be utilized in the design of a 40-MW high efficiency Vision 21 power plant. Additionally, these tests are providing the valuable insight for DFC/Turbine power plant potential for load following, increased reliability, and enhanced operability.

Hossein, Ghezel-Ayagh

2001-11-06T23:59:59.000Z

78

Kenya-LEDS Tier I Activities | Open Energy Information  

Open Energy Info (EERE)

Kenya-LEDS Tier I Activities Kenya-LEDS Tier I Activities Jump to: navigation, search Name Kenya-LEDS Tier I Activities Agency/Company /Organization United States Department of State, United States Department of Agriculture Partner Multiple Ministries of Agriculture Sector Climate, Land Focus Area Agriculture, Land Use Topics Co-benefits assessment, Low emission development planning, -LEDS Website http://transition.usaid.gov/ou Program Start 2011 Program End 2014 Country Kenya Eastern Africa References Enhancing Capacity for Low Emission Development Strategies Program[1] Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable,

79

Costa Rica-LEDS Tier I Activities | Open Energy Information  

Open Energy Info (EERE)

Costa Rica-LEDS Tier I Activities Costa Rica-LEDS Tier I Activities Jump to: navigation, search Name Costa Rica-LEDS Tier I Activities Agency/Company /Organization United States Department of State, United States Department of Agriculture Partner Multiple Ministries of Agriculture Sector Climate, Land Focus Area Agriculture, Land Use Topics Co-benefits assessment, Low emission development planning, -LEDS Website http://transition.usaid.gov/ou Program Start 2011 Program End 2014 Country Costa Rica Central America References Enhancing Capacity for Low Emission Development Strategies Program[1] Overview "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable,

80

RPS Customer-Sited Tier Regional Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RPS Customer-Sited Tier Regional Program RPS Customer-Sited Tier Regional Program RPS Customer-Sited Tier Regional Program < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Bioenergy Solar Buying & Making Electricity Maximum Rebate 50% of installed costs; $6 million per applicant per round; and $3 million per individual project Program Info Funding Source RPS Surcharge Start Date 2011 Expiration Date 08/29/2013 State New York Program Type Performance-Based Incentive Rebate Amount Varies; applicants propose incentive levels (up to a 15% bonus for facilities located in Strategic Locations); up-front and performance payments available Provider New York State Energy Research and Development Authority

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Retrospective on the Seniors' Council Tier 1 LDRD portfolio.  

DOE Green Energy (OSTI)

This report describes the Tier 1 LDRD portfolio, administered by the Seniors Council between 2003 and 2011. 73 projects were sponsored over the 9 years of the portfolio at a cost of $10.5 million which includes $1.9M of a special effort in directed innovation targeted at climate change and cyber security. Two of these Tier 1 efforts were the seeds for the Grand Challenge LDRDs in Quantum Computing and Next Generation Photovoltaic conversion. A few LDRDs were terminated early when it appeared clear that the research was not going to succeed. A great many more were successful and led to full Tier 2 LDRDs or direct customer sponsorship. Over a dozen patents are in various stages of prosecution from this work, and one project is being submitted for an R and D 100 award.

Ballard, William Parker

2012-04-01T23:59:59.000Z

82

High Efficiency LED Lamp for Solid-State Lighting  

SciTech Connect

This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

James Ibbetson

2006-12-31T23:59:59.000Z

83

High-efficiency solar cell and method for fabrication  

DOE Patents (OSTI)

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD). 4 figs.

Hou, H.Q.; Reinhardt, K.C.

1999-08-31T23:59:59.000Z

84

High-efficiency solar cell and method for fabrication  

DOE Patents (OSTI)

A high-efficiency 3- or 4-junction solar cell is disclosed with a theoretical AM0 energy conversion efficiency of about 40%. The solar cell includes p-n junctions formed from indium gallium arsenide nitride (InGaAsN), gallium arsenide (GaAs) and indium gallium aluminum phosphide (InGaAlP) separated by n-p tunnel junctions. An optional germanium (Ge) p-n junction can be formed in the substrate upon which the other p-n junctions are grown. The bandgap energies for each p-n junction are tailored to provide substantially equal short-circuit currents for each p-n junction, thereby eliminating current bottlenecks and improving the overall energy conversion efficiency of the solar cell. Additionally, the use of an InGaAsN p-n junction overcomes super-bandgap energy losses that are present in conventional multi-junction solar cells. A method is also disclosed for fabricating the high-efficiency 3- or 4-junction solar cell by metal-organic chemical vapor deposition (MOCVD).

Hou, Hong Q. (Albuquerque, NM); Reinhardt, Kitt C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

85

Low Cost, High Efficiency, High Pressure Hydrogen Storage  

DOE Green Energy (OSTI)

A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantums then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel systems performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of smart tanks that could monitor health of tank thus allowing for lower design safety factor, and the development of Cool Fuel technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

Mark Leavitt

2010-03-31T23:59:59.000Z

86

System Effects of High Efficiency Filters in Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

System Effects of High Efficiency Filters in Homes System Effects of High Efficiency Filters in Homes Title System Effects of High Efficiency Filters in Homes Publication Type Conference Paper LBNL Report Number LBNL-6144E Year of Publication 2013 Authors Walker, Iain S., Darryl J. Dickerhoff, David Faulkner, and William J. N. Turner Conference Name ASHRAE Annual Conference Date Published 03/2013 Abstract Occupant concern about indoor air quality (IAQ) issues has led to the increased use of more effective air filters in residential heating and cooling systems. A drawback of improved filtration is that better filters tend to have more flow resistance. This can lead to lower system airflows that reduce heat exchanger efficiency, increase duct pressure that leads to increased air leakage for ducts and, in some case s, increased blower power consumption. There is currently little knowledge on the magnitude of these effects. In this study, the performance of ten central forced air systems was monitored for a year. The systems used either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) blower. Each system was operated with a range of filter efficiencies ranging from MERV 6 (the lowest currently permitted in ASHRAE Standard 62.2) up to MERV 16. Measurements were recorded every ten seconds for blower power, filter pressure drop, supply and return plenum pressures together with plenum and indoor temperatures. These detailed continuous measurements allowed observation of filter loading effects as well as the initial change in system performance when filters were swapped. The results of the field measurements were used in simulations to examine more general system performance effects for a wider range of climates. The field tests showed that system static pressures were highly influenced by filter selection, filter loading rates varied more from house to house than by MERV rating and overall were quite low in many of the homes. PSC motors showed reduced power and airflow as the filters loaded, but BPM motors attempted to maintain a constant airflow and increased their power to do so. The combined field test and simulation results from this study indicate that for MERV 10-13 filters the effects on energy use are small (5%) and usability. In systems using low MERV filters that are already close to blower performance limits the addition of a MERV 16 filter pushed the blowers to their performance limits.

87

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

88

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

89

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

Science Conference Proceedings (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

1997-12-01T23:59:59.000Z

90

Properties of High Efficiency CIGS Thin Film Solar Cells  

DOE Green Energy (OSTI)

We present experimental results in three areas. Solar cells with an efficiency of 19% have been fabricated with an absorber bandgap in the range of 1.1-1.2 eV. Properties of solar cells fabricated with and without an undoped ZnO layer were compared. The data show that high efficiency cells can be fabricated without using the high-resistivity or undoped ZnO layer. Properties of CIGS solar cells were fabricated from thin absorbers (1 {micro}m) deposited by the three-stage process and simultaneous co-deposition of all the elements. In both cases, solar cells with efficiencies of 16%-17% are obtained.

Ramanathan, K.; Keane, J.; Noufi, R.

2005-02-01T23:59:59.000Z

91

Implications of high efficiency power cycles for fusion reactor design  

SciTech Connect

The implications of the High Efficiency Power Cycle for fusion reactors are examined. The proposed cycle converts most all of the high grade CTR heat input to electricity. A low grade thermal input (T approximately 100$sup 0$C) is also required, and this can be supplied at low cost geothermal energy at many locations in the U. S. Approximately 3 KW of low grade heat is required per KW of electrical output. The thermodynamics and process features of the proposed cycle are discussed. Its advantages for CTR's are that low Q machines (e.g. driven Tokamaks, mirrors) can operate with a high (approximately 80 percent) conversion of CTR fusion energy to electricity, where with conventional power cycles no plant output could be achieved with such low Q operation. (auth)

Powell, J.R.; Usher, J.; Salzano, F.J.

1975-01-01T23:59:59.000Z

92

Desalination of seawater using a high-efficiency jet ejector  

E-Print Network (OSTI)

The ability to produce potable water economically is the primary focus of seawater desalination research. There are numerous methods to desalinate water, including reverse osmosis, multi-stage flash distillation, and multi-effect evaporation. These methods cost more than potable water produced from natural resources; hence an attempt is made in this research project to produce potable water using a modified high-efficiency jet ejector in vapor-compression distillation. The greater efficiency of the jet ejector is achieved by properly mixing propelled and motive streams. From experiments conducted using air, the pressure rise across the jet ejector is better in case of one or two mixing vanes and the highest back pressure (pinch valve closed 83.33%). At other pinch valve closings, the air velocity through the jet ejector was high, so the extra surface area from the mixing vanes caused excessive friction and lowered the efficiency.

Vishwanathappa, Manohar D.

2003-05-01T23:59:59.000Z

93

Thin Film Packaging Solutions for High Efficiency OLED Lighting Products  

Science Conference Proceedings (OSTI)

The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

None

2008-06-30T23:59:59.000Z

94

HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM  

SciTech Connect

This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

J.L. Justice

1999-03-25T23:59:59.000Z

95

High efficiency carbonate fuel cell/turbine hybrid power cycle  

Science Conference Proceedings (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

96

High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application  

DOE Green Energy (OSTI)

The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

Hubbard, Seth

2012-09-12T23:59:59.000Z

97

Property:NEPA TieredDoc | Open Energy Information  

Open Energy Info (EERE)

TieredDoc TieredDoc Jump to: navigation, search Property Name NEPA TieredDoc Property Type Page This is a property of type Page. Pages using the property "NEPA TieredDoc" Showing 23 pages using this property. C CA-670-2010-CX + California Desert Conservation Area (CDCA) Plan (1980) and Eastern San Diego County Resource Management Plan (2008) + D DOI-BLM-NV-C010-2011-0016-EA + DOI-BLM-NV-C010-2010-0016-EA + DOI-BLM-NV-C010-2012-0005-DNA + DOI-BLM-NV-C010-2010-0514-EA- McCoy II Geothermal Exploration Project + DOI-BLM-NV-C010-2012-0016-DNA + BLM/NV/CC/ES/11-10-1793 + DOI-BLM-NV-C010-2012-0019-DNA + BLM/NV/CC/ES/11-10-1793 + DOI-BLM-NV-C010-2012-0020-DNA + BLM/NV/CC/ES/11-10-1793 + DOI-BLM-NV-C010-2012-0028-DNA + DOI-BLM-NV-C010-2010-0006-EA + DOI-BLM-NV-C010-2012-0035-DNA + DOI-BLM-NV-C010-2010-0006-EA +

98

Canada Research Chair (Tier 2) Renewable Energy Systems  

E-Print Network (OSTI)

Canada Research Chair (Tier 2) Renewable Energy Systems Rapidly increasing energy demands coupled is providing firm energy from multiple non-firm renewable energy inputs. As Canada's Green UniversityTM, UNBC intends to take a leadership role in developing research to support local renewable energy systems

Northern British Columbia, University of

99

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

100

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

DOE Green Energy (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

HIGH EFFICIENCY BIFACIAL BACK SURFACE FIELD SOLAR CELLS  

E-Print Network (OSTI)

The first high efficiency p-n-n + bifacial solar cells are presented. Efficiencies of 15.7 % and 13.6 % were measured under front and back air mass one illumination respectively at 28 C. At 7 air mass one illumination and 28 C the front efficiency increases to 16.5%. A pilot production of 200 cells was made following a fabrication process as simple as that for conventional back surface field cells. Mean efficiencies of 13.4 % and 10.7 % were obtained under front and back illumination respectively. The production yield is higher than 80%. The advantages that bifacial cells present in some applications, compared with conventional cells, have been pointed out for static [1] and quasi-static [2] concentrating systems, for luminescent concentrators [3] and also for flat panels. A transistor-like structure (n+-p-n +) has already been developed as a bifacial cell [4]. We have also suggested [5] and theoretically analysed [6] the use of a back surface field (BSF) structure (n+-p-p or p+-n-n +) as a bifacial cell. The purpose here is to demonstrate the feasibility of high efficiency bifacial BSF solar cells. p+-n-n bifacial cells with a 5 cm 2 area were made on float-zone silicon wafers. The resistivity of the n-type base region was 10 ~2 cm and the thickness was 260 pm. The p and n + regions were formed by open-tube diffusions using BBr3 and POC13 sources, the resulting sheet resistance being 45- 60 ~2/[:] for the p layer and 20- 30 ~2/[:] for the n layer. A TiOx antireflection (AR) coating was spun onto both sides of the cell; Ti-Pd-Ag grids were sputtered and lift-off defined also on both faces. The metallization pattern was designed for the cells to operate inside static compound parabolic mirrors with a concentration factor of 5 and a non-uniform distribution of light intensity on the cell surface. The optimum grid has ten fingers per centimetre (each finger is 50- 70 pm wide) and produces a coverage factor in the illuminated area of about 5.5%.

A. Cuevas; A. Luque; J. Eguren; J. Del Alamo

1980-01-01T23:59:59.000Z

102

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Efficiency Thermal Energy High-Efficiency Thermal Energy Storage System for CSP to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Facebook Tweet about SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Twitter Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Google Bookmark SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Delicious Rank SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on Digg Find More places to share SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act

103

HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING  

SciTech Connect

In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

Paul T. Fini; Shuji Nakamura

2003-10-30T23:59:59.000Z

104

Processes for producing low cost, high efficiency silicon solar cells  

SciTech Connect

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.

Rohatgi, Ajeet (Marietta, GA); Chen, Zhizhang (Duluth, GA); Doshi, Parag (Atlanta, GA)

1996-01-01T23:59:59.000Z

105

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents (OSTI)

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.

Rohatgi, Ajeet (Marietta, GA); Doshi, Parag (Altanta, GA); Tate, John Keith (Lawrenceville, GA); Mejia, Jose (Atlanta, GA); Chen, Zhizhang (Duluth, GA)

1998-06-16T23:59:59.000Z

106

Processes for producing low cost, high efficiency silicon solar cells  

DOE Patents (OSTI)

Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime {tau} and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime {tau} and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO{sub x}. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure. 28 figs.

Rohatgi, A.; Doshi, P.; Tate, J.K.; Mejia, J.; Chen, Z.

1998-06-16T23:59:59.000Z

107

Highly Efficient Small Form Factor LED Retrofit Lamp  

SciTech Connect

This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

Steven Allen; Fred Palmer; Ming Li

2011-09-11T23:59:59.000Z

108

Analysis of highly-efficient electric residential HPWHs  

DOE Green Energy (OSTI)

A scoping level analysis was conducted to identify electric HPWH concepts that have the potential to achieve or exceed 30% source energy savings compared to a gas tankless water heater (GTWH) representative of the type represented in version 0.9.5.2 beta of the BEopt software developed by the National Renewable Energy Laboratory. The analysis was limited to evaluation of options to improve the energy efficiency of electric HPWH product designs currently on the market in the US. The report first defines the baseline GTWH system and determines its efficiency (source-energy-based adjusted or derated EF of ~0.71). High efficiency components (compressors, pumps, fans, heat exchangers, etc.) were identified and applied to current US HPWH products and analyzed to determine the viability of reaching the target EF. The target site-based energy factor (EF) required for an electric HPWH necessary to provide 30% source energy savings compared to the GTWH baseline unit is then determined to be ~3.19.

Baxter, Van D [ORNL; Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Shen, Bo [ORNL; Gao, Zhiming [ORNL

2011-09-01T23:59:59.000Z

109

In-Plant Testing of High-Efficiency Hydraulic Separators  

SciTech Connect

Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

G. H. Luttrell; R. Q. Honaker; R. C. Bratton; T. C. Westerfield; J. N. Kohmuench

2006-06-30T23:59:59.000Z

110

IN-PLANT TESTING OF HIGH-EFFICIENCY HYDRAULIC SEPARATORS  

SciTech Connect

Hydraulic separators are commonly used for particle size classification and gravity concentration of minerals and coal. Unfortunately, the efficiency of these processes can be quite low due to poor equipment design and variations in feed consistency. To help alleviate these problems, an industry-driven R&D program has been undertaken to develop a new generation of hydraulic separators that are more efficient and less costly to operate and maintain. These units, which are commercially called the CrossFlow separator and HydroFloat separator, have the potential to improve performance (separation efficiency and throughput) and reduce operating costs (power consumption, water and reagent usage). In Phase I of this project, laboratory and pilot-scale test units were evaluated at various industrial sites in both the coal and mineral industries. Based on promising results obtained from Phase I, full-scale prototypes were purchased and installed by a major U.S. phosphate producer and a large eastern U.S. coal company. The test data obtained from these sites demonstrate that significant performance improvements can be realized through the application of these high-efficiency separators.

G.H. Luttrell; R.Q. Honaker; R.C. Bratton; T.C. Westerfield; J.N. Kohmuench

2006-05-22T23:59:59.000Z

111

A High Efficiency PSOFC/ATS-Gas Turbine Power System  

DOE Green Energy (OSTI)

A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2001-02-01T23:59:59.000Z

112

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

Guha, S. (United Solar Systems Corp., Troy, MI (United States))

1991-12-01T23:59:59.000Z

113

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

1992-04-01T23:59:59.000Z

114

Research on stable, high-efficiency amorphous silicon multijunction modules  

DOE Green Energy (OSTI)

This report describes research on semiconductor and non-semiconductor materials to enhance the performance of multi-band-gap, multijunction panel with an area greater than 900 cm[sup 2] by 1992. Double-junction and triple-junction cells are mode on a Ag/ZnO back reflector deposited on stainless steel substrates. An a-SiGe alloy is used for the i-layer in the bottom and the middle cells; the top cell uses an amorphous silicon alloy. After the evaporation of an antireflection coating, silver grids and bus bars are put on the top surface and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a 1-ft[sup 2] monolithic module.

Guha, S. (United Solar Systems Corp., Troy, MI (United States))

1992-09-01T23:59:59.000Z

115

Design of high efficiency blowers for future aerosol applications  

E-Print Network (OSTI)

High efficiency air blowers to meet future portable aerosol sampling applications were designed, fabricated, and evaluated. A Centrifugal blower was designed to achieve a flow rate of 100 L/min (1.67 x 10^-3 m^3/s) and a pressure rise of WC " 4 (1000 PA). Commercial computational fluid dynamics (CFD) software, FLUENT 6.1.22, was used extensively throughout the entire design cycle. The machine, Reynolds number (Re) , was around 10^5 suggesting a turbulent flow field. Renormalization Group (RNG) ?ºâ???µ turbulent model was used for FLUENT simulations. An existing design was scaled down to meet the design needs. Characteristic curves showing static pressure rise as a function of flow rate through the impeller were generated using FLUENT and these were validated through experiments. Experimentally measured efficiency (?·EXP) for the base-design was around 10%. This was attributed to the low efficiency of the D.C. motor used. CFD simulations, using the ?ºâ???µ turbulent model and standard wall function approach, over-predicted the pressure rise values and the percentage error was large. Enhanced wall function under-predicted the pressure rise but gave better agreement (less than 6% error) with experimental results. CFD predicted a blower scaled 70% in planar direction (XZ) and 28% in axial direction (Y) and running at 19200 rpm (70xz_28y@19.2k) as the most appropriate choice. The pressure rise is 1021 Pa at the design flow rate of 100 L/min. FLUENT predicts an efficiency value based on static head (?·FLU) as 53.3%. Efficiency value based on measured static pressure rise value and the electrical energy input to the motor (?·EXP) is 27.4%. This is almost a 2X improvement over the value that one gets with the hand held vacuum system blower.

Chadha, Raman

2005-12-01T23:59:59.000Z

116

High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines  

SciTech Connect

This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.

None

2011-01-31T23:59:59.000Z

117

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion  

SciTech Connect

The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally, the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

Ojeda, William de

2010-07-31T23:59:59.000Z

118

High Efficiency, Ultra-Low Emission, Integrated Process Heater System  

Science Conference Proceedings (OSTI)

The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution relied heavily on computational fluid dynamic predictions of design alternatives. The final design features modular separate radiant cells, each with one and two-side fired vertical tubes. The convection section configuration is vertical tube banks enclosed in the radiant channels. Commercial modular plate air preheaters are used. The predicted performance for the integrated advanced heater and Callidus burner is 95 percent efficiency with 9 ppm NOx emissions firing natural gas, and 12 ppm firing refinery gas. The total erected cost is less than a conventional heater with combustion air preheat.

Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

2006-06-19T23:59:59.000Z

119

GRR/Section 15-ID-b - Air Quality Permit - Tier II Operating Permit | Open  

Open Energy Info (EERE)

GRR/Section 15-ID-b - Air Quality Permit - Tier II Operating Permit GRR/Section 15-ID-b - Air Quality Permit - Tier II Operating Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-ID-b - Air Quality Permit - Tier II Operating Permit 15IDBAirQualityPermitTierIIOperatingPermit.pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality Regulations & Policies IDAPA 58.01.01 Triggers None specified Click "Edit With Form" above to add content 15IDBAirQualityPermitTierIIOperatingPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Tier II Operating Permits are issued to facilities or stationary sources

120

High-Efficiency Nitride-Based Solid-State Lighting  

SciTech Connect

In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light fixture. During the third and final year of the project, the LRC team investigated alternate packaging methods for the white LED device to achieve at least 25 percent more luminous efficacy than traditional white LEDs; conducted optical ray-tracing analyses and human factors studies to determine the best form factor for the white light source under development, in terms of high luminous efficacy and greater acceptance by subjects; and developed a new die encapsulant using silicone-epoxy resins that showed less yellowing and slower degradation. At the conclusion of this project, the LRC demonstrated a new packaging method, called scattered photon extraction (SPE), that produced an average luminous flux and corresponding average efficacy of 90.7 lm and 36.3 lm/W, respectively, compared with 56.5 lm and 22.6 lm/W for a similar commercial white LED package. At low currents, the SPE package emitted white light with an efficacy of over 80 lm/W and had chromaticity values very close to the blackbody locus. The SPE package showed an overall improvement of 61% for this particular comparison, exceeding the LRC's third-year goal of 25% improvement.

Paul T. Fini; Shuji Nakamura

2005-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE  

SciTech Connect

This Low Friction (High Efficiency Roller Bearing) Engine (LFE) report presents the work done by The Timken Company to conduct a technology demonstration of the benefits of replacing hydrodynamic bearings with roller bearings in the crankshaft and camshaft assemblies of an internal combustion engine for the purpose of collecting data sufficient to prove merit. The engines in the present study have been more extensively converted to roller bearings than any previous studies (40 needle roller bearings per engine) to gain understanding of the full potential of application of bearing technology. The project plan called for comparative testing of a production vehicle which was already respected for having demonstrated low engine friction levels with a rollerized version of that engine. Testing was to include industry standard tests for friction, emissions and fuel efficiency conducted on instrumented dynamometers. Additional tests for fuel efficiency, cold start resistance and other measures of performance were to be made in the actual vehicle. Comparative measurements of noise, vibration and harshness (NVH), were planned, although any work to mitigate the suspected higher NVH level in the rollerized engine was beyond the scope of this project. Timken selected the Toyota Avalon with a 3.5L V-6 engine as the test vehicle. In an attempt to minimize cost and fabrication time, a made-from approach was proposed in which as many parts as possible would be used or modified from production parts to create the rollerized engine. Timken commissioned its test partner, FEV Engine Technology, to do a feasibility study in which they confirmed that using such an approach was possible to meet the required dimensional restrictions and tolerances. In designing the roller bearing systems for the crank and cam trains, Timken utilized as many production engine parts as possible. The crankshafts were produced from production line forgings, which use Timken steel, modified with special machining and heat treatment. Timken designed and manufactured all of the roller bearing related components such as the thrust bearing package. The production connecting rods and camshafts could not be used for the roller bearing engine, so new ones were produced according to the teams designs using Timken steel. The remaining miscellaneous components were designed and procured by FEV. Timken prepared a display version of the crankshaft portion of the production engine without connecting rods which could be driven by a motor through a cogged-belt and electrically actuated clutch arrangement. A modified version was also made in which the engine was outfitted with roller bearings on the main bearing positions. Preliminary tests showed that the rollerized engine was running with 1/3 less friction than the standard display engine. Additional friction testing and noise characterization was cut short because of shipping damage to the rollerized engine display and because of other project priorities. The team did successfully demonstrate the ability to package roller bearings satisfactorily in numerous locations in a typical automotive engine. The scope of this project did not include durability demonstration and that subject would have to be addressed in any follow-on work. In the actual test phase, the rollerized engine did show significantly less friction in motored dynamometer tests compared to its production equivalent. The 5-10% improvement measured in this study was about half that seen in other studies. However, the fired test results did not show a reduction in friction which did not match prior experience or expectations. Subsequent teardown and inspection of the rollerized engine revealed potential sources of excessive friction in the experimental application. These features would be eliminated in a design not based on modification of production parts. The team is confident (based on experience) that friction reduction would be realized with proper modifications.

Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

2009-06-30T23:59:59.000Z

122

Accelerating the Adoption of Second-Tier Reach Standards for Applicable Appliance Products in China  

E-Print Network (OSTI)

of Second- Tier Reach Standards for Applicable ApplianceSavings Potential from Application of Reach Standard inof Reach Standard in Shanghai 8

Lin, Jiang; Fridley, David

2008-01-01T23:59:59.000Z

123

"Tier","PRIORITY","Total Tickets Logged","Tickets Closed","Currently...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"SCR",,421,404,17 ,,0.9952494062,0.3819951338 "Total Issues Report - STRIPES",,,,"20120101 - 20120418" "Tier","PRIORITY","Total Tickets Logged","Tickets...

124

Novel Morphology of Highly Efficient Two-phase Ferrite Cores for ...  

Science Conference Proceedings (OSTI)

This discovery may very well usher in a new chapter in high efficiency power cores for high frequency inductors, transformers, power supplies, converters, and

125

The Importance of Domain Size and Purity in High-Efficiency Organic...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymerorganic photovoltaic cells hinges on excitons-electronhole pairs...

126

Alloy Design of 9% Cr Steel for High Efficiency Ultra-Supercritical ...  

Science Conference Proceedings (OSTI)

Presentation Title, Alloy Design of 9% Cr Steel for High Efficiency Ultra- Supercritical Power Plants. Author(s), Fujio Abe. On-Site Speaker (Planned), Fujio Abe.

127

Scientists Confirm Robustness of Key Component in Ultra-High-Efficiency Solar Cell (Fact Sheet)  

DOE Green Energy (OSTI)

Scientists developed and tested a new, stable 1-eV metamorphic junction for a high efficiency multijunction III-V solar cell for CPV application.

Not Available

2011-05-01T23:59:59.000Z

128

Integration of High Efficiency Solar Cells on Carriers for Concentrating System Applications .  

E-Print Network (OSTI)

??High efficiency multi-junction (MJ) solar cells were packaged onto receiver systems. The efficiency change of concentrator cells under continuous high intensity illumination was done. Also, (more)

Chow, Simon Ka Ming

2011-01-01T23:59:59.000Z

129

Program on Technology Innovation: Very High Efficiency Photovoltaics Research, 2009 Update  

Science Conference Proceedings (OSTI)

This is the second interim annual summary report on the collaborative activities of CNRS and EDF RD to advance the state of high-efficiency photovoltaics (PV). This activity is principally concerned with basic research to enhance longer-term prospects of very high efficiency PV, but it also includes possible nearer-term outcomes of improved conversion efficiency for existing technologies.

2010-02-19T23:59:59.000Z

130

Response to Intervention Within Restrictive Settings: A Multi-Tiered Behavioral Intervention System for Addressing Behavior Problems Within the Top Tier  

E-Print Network (OSTI)

Caption F igure 1. Recycled RtI model. Tier III: IntensifiedL. , & McGraw, K. (2009). RTI in the classroom: Guidelinessuch as Response to Intervention (RtI) and Positive Behavior

Thornton, Sage

2011-01-01T23:59:59.000Z

131

The Joint Sales Impact of Frequency Reward and Customer Tier Components of Loyalty Programs  

Science Conference Proceedings (OSTI)

We estimate the joint impact of the frequency reward and customer tier components of a loyalty program on customer behavior and resultant sales. We provide an integrated analysis of a loyalty program incorporating customers' purchase and cash-in decisions, ... Keywords: customer tier programs, database marketing, frequency reward, loyalty program, segmentation

Praveen K. Kopalle; Yacheng Sun; Scott A. Neslin; Baohong Sun; Vanitha Swaminathan

2012-03-01T23:59:59.000Z

132

Highly-efficient noise-assisted energy transport in classical oscillator systems  

E-Print Network (OSTI)

Photosynthesis is a biological process that involves the highly-efficient transport of energy captured from the sun to a reaction center, where conversion into useful biochemical energy takes place. Even though one can always use a quantum perspective to describe any physical process, since everything follows the laws of Quantum Mechanics, is the use of quantum theory imperative to explain this high efficiency? Several theoretical studies suggest that the high efficiency can only be understood as a result of the interplay between the quantum coherent evolution of the photosynthetic system, and noise introduced by its surrounding environment. Notwithstanding, we show here that noise-assisted highly-efficient energy transport can be found as well in purely classical systems; therefore, we might conclude that high efficiency energy transfer in photosynthetic systems could also be anticipated by classical models, without the need to resorting to quantum effects. Strikingly, the wider scope of applicability of the...

Len-Montiel, R de J

2013-01-01T23:59:59.000Z

133

Development of Diesel Exhaust Aftertreatment System for Tier II Emissions  

Science Conference Proceedings (OSTI)

Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C. (Cummins, Inc.); Howden, Kenneth C.; Chalk, Steven (U.S. Dept. of Energy)

2002-06-01T23:59:59.000Z

134

SunShot Initiative: Development and Productization of High-Efficiency,  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Productization of Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells to someone by E-mail Share SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Facebook Tweet about SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Twitter Bookmark SunShot Initiative: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells on Google Bookmark SunShot Initiative: Development and Productization of

135

High-efficiency second-harmonic generation in doubly-resonant ?[superscript (2)] microring resonators  

E-Print Network (OSTI)

By directly simulating Maxwells equations via the finite-difference time-domain (FDTD) method, we numerically demonstrate the possibility of achieving high-efficiency second harmonic generation (SHG) in a structure ...

Bi, Zhuan-Fang

136

High efficiency resonant dc/dc converter for solar power applications  

E-Print Network (OSTI)

This thesis presents a new topology for a high efficiency dc/dc resonant power converter that utilizes a resistance compression network to provide simultaneous zero voltage switching and near zero current switching across ...

Inam, Wardah

2013-01-01T23:59:59.000Z

137

Full-Spectrum Semiconducting Material for Affordable, Highly Efficient Solar Cells  

Wladyslaw Walukiewicz and Kin Man Yu of Berkeley Lab have designed a new semiconducting material that will enable the fabrication of high efficiency solar cells at a fraction of the price of other technologies.

138

SunShot Initiative: High-Efficiency Thermal Storage System for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency Thermal Storage System for Solar Plants to someone by E-mail Share SunShot Initiative: High-Efficiency Thermal Storage System for Solar Plants on Facebook Tweet about...

139

Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics  

E-Print Network (OSTI)

The challenging problem of ultra-high-energy-density, high-efficiency, and small-scale portable power generation is addressed here using a distinctive thermophotovoltaic energy conversion mechanism and chip-based system ...

Pilawa-Podgurski, R. C. N.

140

Program on Technology Innovation: Very High Efficiency Photovoltaics Research at IRDEP  

Science Conference Proceedings (OSTI)

This is an interim report on the collaborative activities of Centre National de la Recherche Scientifique (CNRS) and Electricit de France (EDF) R&D to advance the state of high-efficiency photovoltaics (PV). These efforts are principally concerned with basic research to enhance the longer-term prospects of very high-efficiency PV, but they may also produce nearer-term outcomes in the shape of improved conversion efficiency for existing technologies.

2009-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U-247: EMC Cloud Tiering Appliance Flaw Lets Remote Users Bypass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

access on the target system. Solution: The vendor has issued a fix Cloud Tiering Appliance (CTA) 7.5 and 9.0 with Hotfix ESA-2012-034 CTA 7.3.1 and later with Hotfix...

142

A Two-Tier Statistical Forecast Method for Agricultural and Resource Management Simulations  

Science Conference Proceedings (OSTI)

Simple phase schemes to predict seasonal climate based on leading ENSO indicators can be used to estimate the value of forecast information in agriculture and watershed management, but may be limited in predictive skill. Here, a simple two-tier ...

Steven A. Mauget; Jonghan Ko

2008-06-01T23:59:59.000Z

143

New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000  

NLE Websites -- All DOE Office Websites (Extended Search)

New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 Global Above- and Below-ground Living Biomass Carbon Density Submitted to ORNL-CDIAC by Aaron Ruesch and Holly K. Gibbs*...

144

Second-Tier Database for Ecosystem Focus, 2000-2001 Annual Report.  

DOE Green Energy (OSTI)

The Second-Tier Database for Ecosystem Focus (Contract 00004124) provides direct and timely public access to Columbia Basin environmental, operational, fishery and riverine data resources for federal, state, public and private entities. The Second-Tier Database known as Data Access in Realtime (DART) does not duplicate services provided by other government entities in the region. Rather, it integrates public data for effective access, consideration and application.

Van Holmes, Chris; Muongchanh, Christine; Anderson, James J. (University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA)

2001-11-01T23:59:59.000Z

145

Second-Tier Database for Ecosystem Focus, 2001-2002 Annual Report.  

DOE Green Energy (OSTI)

The Second-Tier Database for Ecosystem Focus (Contract 00004124) provides direct and timely public access to Columbia Basin environmental, operational, fishery and riverine data resources for federal, state, public and private entities. The Second-Tier Database known as Data Access in Realtime (DART) integrates public data for effective access, consideration and application. DART also provides analysis tools and performance measures helpful in evaluating the condition of Columbia Basin salmonid stocks.

Van Holmes, Chris; Muongchanh, Christine; Anderson, James J. (University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA)

2002-11-01T23:59:59.000Z

146

Second-Tier Database for Ecosystem Focus, 1999-2000 Annual Report.  

DOE Green Energy (OSTI)

The Second-Tier Database for Ecosystem Focus (Contract 19601900) provides direct and timely public access to Columbia Basin environmental, operational, fishery and riverine data resources for federal, state, public and private entities. The Second-Tier Database known as Data Access in Realtime (DART) does not duplicate services provided by other government entities in the region. Rather, it integrates public data for effective access, consideration and application.

Van Holmes, Chris; Muongchanh, Christine; Anderson, James J. (University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA)

2000-11-01T23:59:59.000Z

147

Second-Tier Database for Ecosystem Focus, 2002-2003 Annual Report.  

DOE Green Energy (OSTI)

The Second-Tier Database for Ecosystem Focus (Contract 00004124) provides direct and timely public access to Columbia Basin environmental, operational, fishery and riverine data resources for federal, state, public and private entities. The Second-Tier Database known as Data Access in Realtime (DART) integrates public data for effective access, consideration and application. DART also provides analysis tools and performance measures helpful in evaluating the condition of Columbia Basin salmonid stocks.

Van Holmes, Chris; Muongchanh, Christine; Anderson, James J. (University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA)

2003-11-01T23:59:59.000Z

148

The Herschel Multi-tiered Extragalactic Survey: HerMES  

E-Print Network (OSTI)

The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \\mu m), and Herschel-PACS (at 100 and 160 \\mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identi...

Oliver, S J; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Beelen, A; Bthermin, M; Blain, A; Boselli, A; Bridge, C; Brisbin, D; Buat, V; Burgarella, D; Castro-Rodrguez, N; Cava, A; Chanial, P; Cirasuolo, M; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dubois, E N; Dwek, E; Dye, S; Eales, S; Elbaz, D; Farrah, D; Feltre, A; Ferrero, P; Fiolet, N; Fox, M; Franceschini, A; Gear, W; Giovannoli, E; Glenn, J; Gong, Y; Solares, E A Gonzlez; Griffin, M; Halpern, M; Harwit, M; Hatziminaoglou, E; Heinis, S; Hurley, P; Hwang, H S; Hyde, A; Ibar, E; Ilbert, O; Isaak, K; Ivison, R J; Lagache, G; Floc'h, E Le; Levenson, L; Faro, B Lo; Lu, N; Madden, S; Maffei, B; Magdis, G; Mainetti, G; Marchetti, L; Marsden, G; Marshall, J; Mortier, A M J; Nguyen, H T; O'Halloran, B; Omont, A; Page, M J; Panuzzo, P; Papageorgiou, A; Patel, H; Pearson, C P; Prez-Fournon, I; Pohlen, M; Rawlings, J I; Raymond, G; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Portal, M Snchez; Schulz, B; Scott, Douglas; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Symeonidis, M; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Vieira, J D; Viero, M; Vigroux, L; Wang, L; Ward, R; Wardlow, J; Wright, G; Xu, C K; Zemcov, M

2012-01-01T23:59:59.000Z

149

L&E: Participate in a field test for high-efficiency troffer lighting. |  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting & Electrical » Participate Lighting & Electrical » Participate in a field test for high efficiency troffer lighting Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Participate in a field test for high-efficiency troffer lighting 50% of all commercial fluorescent lighting fixtures are recessed troffers in 1'x4', 2'x2' and 2'x4' configurations, in operation for more than 10 hours a day on average and collectively consuming more than 87 TWh of electricity annually. The Lighting & Electrical team supported the market introduction of high-efficiency troffers by developing a specification that allows for

150

Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opening New Avenues for High-Efficiency, Low-Emission Coal Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification Opening New Avenues for High-Efficiency, Low-Emission Coal Gasification April 10, 2012 - 1:00pm Addthis A rendering of the Pratt & Whitney Rocketdyne high pressure, dry-solids feed pump. A rendering of the Pratt & Whitney Rocketdyne high pressure, dry-solids feed pump. Washington, DC - Gasification. It's a versatile technology that uses coal to produce power, chemicals, and fuels. Inherently low in air emissions, solid byproducts, and wastewater, commercial gasification plants have proven capable of exceeding the most stringent regulations for air- and solids-emissions. However, capital and operational costs have prohibited the widespread adoption of gasification, especially for power

151

Distillation: Energy Savings and Other Benefits From the Use of High Efficiency Packings  

E-Print Network (OSTI)

A great deal of attention has been focused lately on the use of high-efficiency packings for distillation applications. This paper discusses benefits that can be derived from the use of these devices. In particular, the reduction in energy requirements for a given separation is addressed for both new and retrofit applications. Pressure loss and product decomposition are also considered, and the basis for an alternative analysis is established. An example is shown in which an existing distillation tray column is retrofitted with a high-efficiency packing. The process advantages achieved, including energy savings, are discussed, as well as the factors governing the selection of the packing. The current limitations on design models for high-efficiency packings with respect to mass transfer efficiency, pressure drop, and capacity in distillation are mentioned briefly. Finally, the applications of these devices to alternative technologies such as liquid-liquid extraction are discussed.

Bravo, J. L.; Fair, J. R.; Humphrey, J. L.

1985-05-01T23:59:59.000Z

152

Measured impacts of high efficiency domestic clothes washers in a community  

SciTech Connect

The US market for domestic clothes washers is currently dominated by conventional vertical-axis washers that typically require approximately 40 gallons of water for each wash load. Although the current market for high efficiency clothes washers that use much less water and energy is quite small, it is growing slowly as manufacturers make machines based on tumble action, horizontal-axis designs available and as information about the performance and benefits of such machines is developed and made available to consumers. To help build awareness of these benefits and to accelerate markets for high efficiency washers, the Department of Energy (DOE), under its ENERGY STAR{reg_sign} Program and in cooperation with a major manufacturers of high efficiency washers, conducted a field evaluation of high efficiency washers using Bern, Kansas as a test bed. Baseline washing machine performance data as well as consumer washing behavior were obtained from data collected on the existing machines of more than 100 participants in this instrumented study. Following a 2-month initial study period, all conventional machines were replaced by high efficiency, tumble-action washers, and the study continued for 3 months. Based on measured data from over 20,000 loads of laundry, the impact of the washer replacement on (1) individual customers` energy and water consumption, (2) customers` laundry habits and perceptions, and (3) the community`s water supply and waste water systems were determined. The study, its findings, and how information from the experiment was used to improve national awareness of high efficiency clothes washer benefits are described in this paper.

Tomlinson, J.; Rizy, T.

1998-07-01T23:59:59.000Z

153

L&E - high efficiency lighting for parking structure | The Better Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

structure structure Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Adopt high-efficiency lighting for your parking structure Parking structures and garages are typically lighted by older HID lighting technology without any energy-saving controls. The latest high-efficiency alternatives with energy-saving controls-including light-emitting diode (LED), induction, and fluorescent technology options-can save building owners over 40% on their parking lot lighting bills while delivering additional benefits such as better-lighted spaces. The Lighting & Electrical team developed a performance specification that

154

Fundamental understanding and development of low-cost, high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

The overall objectives of this program are (1) to develop rapid and low-cost processes for manufacturing that can improve yield, throughput, and performance of silicon photovoltaic devices, (2) to design and fabricate high-efficiency solar cells on promising low-cost materials, and (3) to improve the fundamental understanding of advanced photovoltaic devices. Several rapid and potentially low-cost technologies are described in this report that were developed and applied toward the fabrication of high-efficiency silicon solar cells.

ROHATGI,A.; NARASIMHA,S.; MOSCHER,J.; EBONG,A.; KAMRA,S.; KRYGOWSKI,T.; DOSHI,P.; RISTOW,A.; YELUNDUR,V.; RUBY,DOUGLAS S.

2000-05-01T23:59:59.000Z

155

High efficiency coaxial klystron-like relativistic backward wave oscillator with a premodulation cavity  

SciTech Connect

The klystron-like relativistic backward wave oscillator (RBWO) combines the transition radiation with Cerenkov radiation and has demonstrated microwave output of high power and high efficiency. The coaxial slow wave structure device can produce microwave with a lower frequency in a smaller cross section. For the purpose of high efficiency, low frequency, and miniaturization, a coaxial klystron-like RBWO with a premodulation cavity is presented. Particle-in-cell simulations show that a microwave with power of 1.15 GW and frequency of 2.1 GHz is generated with conversion efficiency of 48%, whereas for the device with a reflector, the efficiency is 38%.

Xiao Renzhen; Teng Yan; Chen Changhua; Sun Jun [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024 (China)

2011-11-15T23:59:59.000Z

156

A retrospective tiered environmental assessment of the Mount Storm Wind Energy Facility, West Virginia,USA  

SciTech Connect

Bird and bat fatalities from wind energy projects are an environmental and public concern, with post-construction fatalities sometimes differing from predictions. Siting facilities in this context can be a challenge. In March 2012 the U.S. Fish and Wildlife Service (USFWS) released Land-based Wind Energy Guidelines to assess collision fatalities and other potential impacts to species of concern and their habitats to aid in siting and management. The Guidelines recommend a tiered approach for assessing risk to wildlife, including a preliminary site evaluation that may evaluate alternative sites, a site characterization, field studies to document wildlife and habitat and to predict project impacts, post construction studies to estimate impacts, and other post construction studies. We applied the tiered assessment framework to a case study site, the Mount Storm Wind Energy Facility in Grant County, West Virginia, USA, to demonstrate the use of the USFWS assessment approach, to indicate how the use of a tiered assessment framework might have altered outputs of wildlife assessments previously undertaken for the case study site, and to assess benefits of a tiered ecological assessment framework for siting wind energy facilities. The conclusions of this tiered assessment for birds are similar to those of previous environmental assessments for Mount Storm. This assessment found risk to individual migratory tree-roosting bats that was not emphasized in previous preconstruction assessments. Differences compared to previous environmental assessments are more related to knowledge accrued in the past 10 years rather than to the tiered structure of the Guidelines. Benefits of the tiered assessment framework include good communication among stakeholders, clear decision points, a standard assessment trajectory, narrowing the list of species of concern, improving study protocols, promoting consideration of population-level effects, promoting adaptive management through post-construction assessment and mitigation, and sharing information that can be used in other assessments.

Efroymson, Rebecca Ann [ORNL; Day, Robin [No Affiliation; Strickland, M. Dale [Western EcoSystems Technology

2012-11-01T23:59:59.000Z

157

Effect of High Efficiency Lighting on Power Quality in Public Buildings  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study investigates the effect of high efficiency lighting on PQ in public buildings. The buildings scheduled for lighting retrofits that were involved in this study include a graduate center, a hospital facility, and a social services building.

2003-12-31T23:59:59.000Z

158

Nano Sensor Networks for Tailored Operation of Highly Efficient Gas-To-Liquid Fuels Catalysts  

E-Print Network (OSTI)

Nano Sensor Networks for Tailored Operation of Highly Efficient Gas-To-Liquid Fuels Catalysts Eisa Engineering at University of New South Wales. #12;1 Introduction Gas-to-liquid (GTL) compounds are clean fuels for converting natural gas to the liquid hydrocarbons [1]. However, the reaction is a complex network of many

New South Wales, University of

159

The design of a high efficiency RF power amplifier for an MCM process  

E-Print Network (OSTI)

In this thesis, I addressed issues arising in the design of a high efficiency RF power amplifier for the Draper Laboratory multi-chip module (MCM) process. A design for a 2.3 GHz PCB amplifier using an enhancement-mode ...

Noonan, James (James Keating)

2005-01-01T23:59:59.000Z

160

High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells  

E-Print Network (OSTI)

of a triple cell showing 10.7% stable efficiency. Figure 4-1 Schematic diagram of the Hot Wire CVD deposition. Task 7: High-rate deposition of a-Si based solar cells We have conducted extensive research using a hot1 High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells PHASE I Annual

Deng, Xunming

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

2004 ASHRAE. 3 Standing column wells can be used as highly efficient  

E-Print Network (OSTI)

©2004 ASHRAE. 3 ABSTRACT Standing column wells can be used as highly efficient ground heat Performance Simon J. Rees, Ph.D. Jeffrey D. Spitler, Ph.D., P.E. Zheng Deng Member ASHRAE Member ASHRAE Student Member ASHRAE Carl D. Orio Carl N. Johnson, Ph.D. Member ASHRAE Member ASHRAE Simon J. Rees

162

High efficiency light emitting diode with anisotropically etched GaN-sapphire interface  

E-Print Network (OSTI)

High efficiency light emitting diode with anisotropically etched GaN- sapphire interface M. H. Lo and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturingGaN micro-light emitting diodes Appl. Phys. Lett. 101, 231110 (2012) A bright cadmium-free, hybrid organic

163

High efficient numerical techniques for the earthing design and the analysis of grounded phenomena  

E-Print Network (OSTI)

" or "earthing" system of an electrical substation comprises all interconnected grounding fa- cilitiesHigh efficient numerical techniques for the earthing design and the analysis of grounded phenomena for the computational design of grounding systems of electrical installations in uniform and layered soils

Colominas, Ignasi

164

High-Efficiency Solar Cells for Large-Scale Electricity Generation  

DOE Green Energy (OSTI)

One strategy for helping the solar industry to grow faster is to use very high efficiency cells under concentrating optics. By using lenses or mirrors to concentrate the light, very small solar cells can be used, reducing the amount of semiconductor material and allowing use of higher efficiency cells, which are now >40% efficient.

Kurtz, S.; Olson, J.; Geisz, J.; Friedman, D.; McMahon, W.; Ptak, A.; Wanlass, M.; Kibbler, A.; Kramer, C.; Bertness, K.; Ward, S.; Duda, A.; Young, M.; Carapella, J.; Steiner, M.

2008-09-26T23:59:59.000Z

165

ATLAS Great Lakes Tier-2 Computing and Muon Calibration Center Commissioning  

E-Print Network (OSTI)

Large-scale computing in ATLAS is based on a grid-linked system of tiered computing centers. The ATLAS Great Lakes Tier-2 came online in September 2006 and now is commissioning with full capacity to provide significant computing power and services to the USATLAS community. Our Tier-2 Center also host the Michigan Muon Calibration Center which is responsible for daily calibrations of the ATLAS Monitored Drift Tubes for ATLAS endcap muon system. During the first LHC beam period in 2008 and following ATLAS global cosmic ray data taking period, the Calibration Center received a large data stream from the muon detector to derive the drift tube timing offsets and time-to-space functions with a turn-around time of 24 hours. We will present the Calibration Center commissioning status and our plan for the first LHC beam collisions in 2009.

Shawn McKee

2009-10-15T23:59:59.000Z

166

The Importance of Domain Size and Purity in High-Efficiency Organic Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy (interfaces are everywhere) but the charges' journey as precarious (interfaces are everywhere). Instead, using a combination of x-ray scattering and microscopy techniques, researchers have found that excitons may actually not fare so well in mixed domains but need access to pure aggregates to efficiently convert into charges. The smaller the aggregates, the better, allowing increased interfacial area and dramatic increases in device performance.

167

The Importance of Domain Size and Purity in High-Efficiency Organic Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy (interfaces are everywhere) but the charges' journey as precarious (interfaces are everywhere). Instead, using a combination of x-ray scattering and microscopy techniques, researchers have found that excitons may actually not fare so well in mixed domains but need access to pure aggregates to efficiently convert into charges. The smaller the aggregates, the better, allowing increased interfacial area and dramatic increases in device performance.

168

The Importance of Domain Size and Purity in High-Efficiency Organic Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy (interfaces are everywhere) but the charges' journey as precarious (interfaces are everywhere). Instead, using a combination of x-ray scattering and microscopy techniques, researchers have found that excitons may actually not fare so well in mixed domains but need access to pure aggregates to efficiently convert into charges. The smaller the aggregates, the better, allowing increased interfacial area and dramatic increases in device performance.

169

Highly-Efficient Thermoelectronic Conversion of Solar Energy and Heat into Electric Power  

E-Print Network (OSTI)

Electric power may, in principle, be generated in a highly efficient manner from heat created by focused solar irradiation, chemical combustion, or nuclear decay by means of thermionic energy conversion. As the conversion efficiency of the thermionic process tends to be degraded by electron space charges, the efficiencies of thermionic generators have amounted to only a fraction of those fundamentally possible. We show that this space-charge problem can be resolved by shaping the electric potential distribution of the converter such that the static electron space-charge clouds are transformed into an output current. Although the technical development of practical generators will require further substantial efforts, we conclude that a highly efficient transformation of heat to electric power may well be achieved.

Meir, S; Geballe, T H; Mannhart, J

2013-01-01T23:59:59.000Z

170

Light Trapping for High Efficiency Heterojunction Crystalline Si Solar Cells: Preprint  

DOE Green Energy (OSTI)

Light trapping plays an important role to achieve high short circuit current density (Jsc) and high efficiency for amorphous/crystalline Si heterojunction solar cells. Si heterojunction uses hydrogenated amorphous Si for emitter and back contact. This structure of solar cell posses highest open circuit voltage of 0.747 V at one sun for c-Si based solar cells. It also suggests that over 25% record-high efficiency is possible with further improvement of Jsc. Light trapping has two important tasks. The first one is to reduce the surface reflectance of light to zero for the solar spectrum that Si has a response. The second one is to increase the effective absorption length to capture all the photon. For Si heterojunction solar cell, surface texturing, anti-reflectance indium tin oxides (ITO) layer at the front and back are the key area to improve the light trapping.

Wang, Q.; Xu, Y.; Iwaniczko, E.; Page, M.

2011-04-01T23:59:59.000Z

171

Developing a Highly Efficient Multi-use Special Economic Zone in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing a Highly Efficient Multi-use Special Economic Zone in India Developing a Highly Efficient Multi-use Special Economic Zone in India Speaker(s): Jagadeesh Taluri Kushboo Modgil Date: June 3, 2010 - 12:00pm Location: 90-3122 LBNL is collaborating with Metro Valley to create the most energy efficient built environment in India. The proposed project is an ITES (Information Technology Enabled Services) Special Economic Zone which is a multi-tenanted campus consisting of work and support spaces for companies involved in research or knowledge processing. The goal of the project reaches beyond an energy efficient built environment for the Knowledge Industry to sustainability in the broadest sense: a sustainable environment, not just from the point of view of energy consumption, but also relative to the people who use it, the organizations that inhabit it,

172

Highly Efficient 32.3% Monolithic GaInP/GaAs/Ge Triple Junction Concentrator Solar Cells  

DOE Green Energy (OSTI)

Based on recent cell improvements for space applications, multijunction cells apear to be ideal candidates for high efficiency, cost effective, PV concentrator systems.

Cotal, H. L.; Lillington, D. R.; Ermer, J. H.; King, R. R.; Karam, N. H.; Kurtz, S. R.; Friedman, D. J.; Olson, J. M.; Ward, S.; Duda, A.; Emery, K. A.; Moriarty, T.

2000-01-01T23:59:59.000Z

173

Regulated Emissions from a High Efficiency Spark-Ignition with Maximum Engine Power at or Below 19 KW.  

E-Print Network (OSTI)

??Previous research has developed a set of high efficiency generator engines converted from a stock automobile engine. These all employed different variations of squish and (more)

Mackey, Travis J

2013-01-01T23:59:59.000Z

174

Program on Technology Innovation: High- Efficiency Photovoltaic Research at IRDEP, 2011  

Science Conference Proceedings (OSTI)

This report describes the advances of the High-Efficiency Photovoltaic (HEPV) program during 2011. The report focuses on the technical advances in the "up-conversion" program, addressing compounds with improved PV energy-conversion potential. Up-conversion uses materials with special optical properties to convert infrared light that cannot be used by standard PV cells into visible light that the cells can efficiently convert to electricity. Results of experiments on up-conversion ...

2012-08-24T23:59:59.000Z

175

SunShot Initiative: High-Efficiency Thermal Energy Storage System for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Efficiency Thermal Energy Storage System for CSP High-Efficiency Thermal Energy Storage System for CSP ANL logo Photo of a black and white porous material magnified 50 times by a microscope. Microstructure of the highly thermal conductive foam that will be used for the prototype TES system. Image from ANL Argonne National Laboratory and project partner Ohio Aerospace Institute, under the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system with rapid charging and discharging times. By increasing the efficiency of TES systems, this project aims to lower the capital costs of concentrating solar power (CSP) systems. Approach The research team is developing and evaluating a novel approach for TES at temperatures greater than 700˚C for CSP systems. The approach uses high thermal conductivity and high-porosity graphite foams infiltrated with a phase change material (PCM) to provide TES in the form of latent heat.

176

Advanced high efficiency concentrator cells. Final subcontractor report, 1 October 1988--31 March 1990  

DOE Green Energy (OSTI)

This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the ``reverse`` side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

Gale, R. [Varian Associates, Inc., Palo Alto, CA (United States). Varian Research Center

1992-06-01T23:59:59.000Z

177

Highly-efficient noise-assisted energy transport in classical oscillator systems  

E-Print Network (OSTI)

Photosynthesis is a biological process that involves the highly-efficient transport of energy captured from the sun to a reaction center, where conversion into useful biochemical energy takes place. Even though one can always use a quantum perspective to describe any physical process, since everything follows the laws of Quantum Mechanics, is the use of quantum theory imperative to explain this high efficiency? Making use of the quantum-classical correspondence of electronic energy transfer recently introduced by Eisfeld and Briggs [Phys. Rev. E 85, 046118 (2012)], we show here that the highly-efficient noise-assisted energy transport described by Rebentrost et al. [New J. Phys. 11, 033003 (2009)], and Plenio and Huelga [New J. Phys. 10, 113019 (2008)], as the result of the interplay between the quantum coherent evolution of the photosynthetic system and noise introduced by its surrounding environment, it can be found as well in purely classical systems. The wider scope of applicability of the enhancement of energy transfer assisted by noise might open new ways for developing new technologies aimed at enhancing the efficiency of a myriad of energy transfer systems, from information channels in micro-electronic circuits to long-distance high-voltage electrical lines.

R. de J. Len-Montiel; Juan P. Torres

2013-01-08T23:59:59.000Z

178

Kieffer Paper Mill's Recycled Fiber Mill and PSI Energy's High Efficiency Motors Plan  

E-Print Network (OSTI)

The needs of electricity consumers along with the utility industry are rapidly changing. Consumers want electricity to perform more functions, improve efficiencies and help lower the cost of production, all in an environmentally responsible manner. In 1991, PSI Energy developed a comprehensive Demand-Side Management program, called Energy Matters, aimed at improving the overall end-use efficiency of its customers. Its goal is to reduce summer peak demand 120 megawatts by the summer of 1995. Kieffer Paper Mills in Brownstown, IN had a need to address the efficiency of its new, state-of-the-art pulp processing mill that it was building. With over 4,000 horsepower of process motors going into the new plant, even a modest improvement in motor efficiency would yield significant energy savings. PSI Energy was able to help Kieffer examine the economics of high efficiency motors, and through the PSI Energy High Efficiency Motors Plan encouraged Kieffer Paper Mills to purchase energy efficient motors by helping pay part of the cost differential between high efficiency and standard efficiency models.

Myers, J. A.

1993-03-01T23:59:59.000Z

179

Hierarchically Blocked Algorithms and Optimized Kernels for Dense Matrix Computations on Memory-Tiered  

E-Print Network (OSTI)

Data Structures [1] E. Elmroth, F. Gustavson, I. Jonsson, and B. Kågström. Recursive Blocked Algorithms and Hybrid Data Structures for Dense Matrix Library Software. SIAM Review, 46(1):3­45, 2004. [2] R. Granat, I-Tiered High-Performance Computing Systems Publications 2002­2009 within the VR project This version: 2010

Kågström, Bo

180

Tier-Based Underwater Acoustic Routing for Applications with Reliability and Delay Constraints  

E-Print Network (OSTI)

Tier-Based Underwater Acoustic Routing for Applications with Reliability and Delay Constraints Li for underwater sensor networks is still an open research problem because of the unique charac- teristics of the underwater acoustic communication channel such as limited bandwidth, high and variable propagation delays

Melodia, Tommaso

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Clustering strategies for improving the lifetime of two-tiered sensor networks  

Science Conference Proceedings (OSTI)

In hierarchical sensor networks, sensor nodes are arranged in clusters, and higher-powered relay nodes can be used as cluster heads. Due to the limited transmission range and battery power of the nodes, it is important to develop techniques that minimize ... Keywords: Clustering, Energy-efficient, Relay nodes, Sensor networks, Two-tiered sensor networks

Ataul Bari; Arunita Jaekel; Subir Bandyopadhyay

2008-09-01T23:59:59.000Z

182

Rail Focused US DOTRITA Tier I University Transportation Center University of Illinois at Urbana-Champaign  

E-Print Network (OSTI)

centuries. The efficiency of North American freight rail transport is a world leader, providing the nationRail Focused US DOT­RITA Tier I University Transportation Center University of Illinois at Urbana University Transportation Center (UTC) focused on rail transportation and funded by the U.S. Department

Entekhabi, Dara

183

The Middle East  

Science Conference Proceedings (OSTI)

The Middle East currently produces more than a fifth of the world's oil output, yet still holds two-thirds of world published proved liquid oil reserves. The first part of the book reviews the structural evolution and stratigraphic development of the Middle East region, between Pre-Cambrian-Infra Cambrian and the Cenozoic. The second part provides a country-by-country survey of producing fields, unproduced discoveries, and future reserves as well as a summary of the main producing basins and formations in the region.

Beydoun, Z.R. (American Univ., Beirut (LB))

1988-01-01T23:59:59.000Z

184

High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers  

DOE Green Energy (OSTI)

Reported are the development and demonstration of a 17% efficient 25mm x 25mm crystalline Silicon solar cell and a 16% efficient 125mm x 125mm crystalline Silicon solar cell, both produced by Ink-jet printing Silicon Ink on a thin crystalline Silicon wafer. To achieve these objectives, processing approaches were developed to print the Silicon Ink in a predetermined pattern to form a high efficiency selective emitter, remove the solvents in the Silicon Ink and fuse the deposited particle Silicon films. Additionally, standard solar cell manufacturing equipment with slightly modified processes were used to complete the fabrication of the Silicon Ink high efficiency solar cells. Also reported are the development and demonstration of a 18.5% efficient 125mm x 125mm monocrystalline Silicon cell, and a 17% efficient 125mm x 125mm multicrystalline Silicon cell, by utilizing high throughput Ink-jet and screen printing technologies. To achieve these objectives, Innovalight developed new high throughput processing tools to print and fuse both p and n type particle Silicon Inks in a predetermined pat-tern applied either on the front or the back of the cell. Additionally, a customized Ink-jet and screen printing systems, coupled with customized substrate handling solution, customized printing algorithms, and a customized ink drying process, in combination with a purchased turn-key line, were used to complete the high efficiency solar cells. This development work delivered a process capable of high volume producing 18.5% efficient crystalline Silicon solar cells and enabled the Innovalight to commercialize its technology by the summer of 2010.

Antoniadis, H.

2011-03-01T23:59:59.000Z

185

High efficiency shale oil recovery. Final report, January 1, 1992--June 30, 1993  

SciTech Connect

The Adams Counter-current shale oil recovery process is an improved retorting technology enabling highly efficient oil recovery from oil shale. The high efficiency results primarily from the following facts: it (1) recovers the ash heat to preheat the feed ore; (2) burns and uses the coke energy and (3) operates without using hot ash recycling as a heat carrier. This latter feature is doubly important, contributing to high oil yield and to the generation of highly reactive coke which can be burned below 1000{degree}F, avoiding the endothermal calcination of the mineral carbonates and helping to clean the ash of contaminants. This project demonstrates that oil shale can be retorted under the specified conditions and achieve the objectives of very high efficiency. The project accomplished the following: 51 quartz sand rotary kiln runs provided significant engineering data. A heat transfer value of 107 Btu/hr/ft{sup 2}/{degree}F was obtained at optimum RPM; eight oil shale samples were obtained and preliminary shakedown runs were made. Five of the samples were selected for kiln processing and twelve pyrolysis runs were made on the five different oil shales;average off recovery was 109% of Fisher Assay; retorted residue from all five samples was oxidized at approximately 1000{degree}F. The ash from these runs was oxidized to varying extents, depending on the oil shale and oxidizing temperatures. While 1000{degree}F is adequately hot to provide process heat from coke combustion for these ores, some Eastern oil shales, without mineral carbonates, may be oxidized at higher temperatures, perhaps 100--300 degrees hotter, to obtain a more complete oxidation and utilization of the coke.

Adams, D.C.

1993-09-29T23:59:59.000Z

186

Expert Meeting Report: Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieving the Best Installed Performance from High- Efficiency Residential Gas Furnaces Larry Brand Partnership for Advanced Residential Retrofit (PARR) March 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade

187

L&E: Adopt high-efficiency lighting for your parking lot | The Better  

NLE Websites -- All DOE Office Websites (Extended Search)

lot lot Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Adopt high-efficiency lighting for your parking lot Most parking lots are illuminated by older high-intensity discharge (HID) lighting technology without any energy-saving controls. New light-emitting diode (LED) technology can cut parking lot lighting energy bills by 40%, or much more with controls, while delivering additional benefits including long life, reduced maintenance costs, and improved lighting uniformity. The Lighting & Electrical team developed a performance specification to help building owners take advantage of these improved lighting

188

Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report  

Science Conference Proceedings (OSTI)

The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

1990-04-01T23:59:59.000Z

189

Development of an advanced high efficiency coal combustor for boiler retrofit  

Science Conference Proceedings (OSTI)

The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

1990-04-01T23:59:59.000Z

190

Highly efficient coupling of photons from nanoemitters into single-mode optical fibers  

E-Print Network (OSTI)

Highly efficient coupling of photons from nanoemitters into single-mode optical fibers is demonstrated using tapered fibers. 7.4 +/- 1.2 % of the total emitted photons from single CdSe/ZnS nanocrystals were coupled into a 300-nm-diameter tapered fiber. The dependence of the coupling efficiency on the taper diameter was investigated and the coupling efficiency was found to increase exponentially with decreasing diameter. This method is very promising for nanoparticle sensing and single-photon sources.

Masazumi Fujiwara; Kiyota Toubaru; Tetsuya Noda; Hong-Quan Zhao; Shigeki Takeuchi

2012-09-12T23:59:59.000Z

191

High Efficient Secret Key Distillation for Long Distance Continuous Variable Quantum Key Distribution  

E-Print Network (OSTI)

The continuous variable quantum key distribution is expected to provide high secret key rate without single photon source and detector, but the lack of the secure and effective key distillation method makes it unpractical. Here, we present a secure single-bit-reverse-reconciliation protocol combined with secret information concentration and post-selection, which can distill the secret key with high efficiency and low computational complexity. The simulation results show that this protocol can provide high secret key rate even when the transmission fiber is longer than 150km, which may make the continuous variable scheme to outvie the single photon one.

Yi-bo Zhao; Zheng-fu Han; Jin-jian Chen; You-zhen Gui; Guang-can Guo

2006-03-08T23:59:59.000Z

192

Setting up a STAR Tier 2 Site at Golias/Prague Farm  

Science Conference Proceedings (OSTI)

High Energy Nuclear Physics (HENP) collaborations experience show that the computing resources available at a single site are often neither sufficient nor satisfy the need of remote collaborators eager to carry their analysis in the fastest and most convenient way. From latencies in the network connectivity to the lack of interactivity, work at distant computing centers is often inefficient. Having fully functional software stack on local resources is a strong enabler of science opportunities for any local group who can afford the time investment. The situation becomes more complex as vast amount of data are often needed to perform meaningful analysis. Prague's heavy-ions group participating in STAR experiment at RHIC has been a strong advocate of local computing as the most efficient means of data processing and physics analyses. To create an environment where science can freely thrive, a Tier 2 computing center was set up at a Regional Computing Center for Particle Physics called 'Golias'. It is the biggest farm in the Czech Republic fully dedicated for particle physics experiments. We report on our experience in setting up a fully functional Tier 2 center leveraging the minimal locally available human and financial resources. We discuss the solutions chosen to address storage space and analysis issues and the impact on the farms overall functionality. This includes a locally built STAR analysis framework, integration with a local DPM system (a cost effective storage solution), the influence of the availability and quality of the network connection to Tier 0 via a dedicated CESNET/ESnet link and the development of light-weight yet fully automated data transfer tools allowing the movement of entire datasets from BNL (Tier 0) to Golias (Tier 2). We will summarize the impact of the gained computing performance on the efficiency of the local physics group at offline physics analysis and show the feasibility of such a solution that can used by other groups as well.

Lauret, J.; Lauret, J.; Chaloupka, P.; Jakl, P.; Kapitan, J.; Zerola, M.

2010-05-28T23:59:59.000Z

193

The Importance of Domain Size and Purity in High-Efficiency Organic Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

The Importance of Domain Size The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print Wednesday, 27 March 2013 00:00 The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy (interfaces are everywhere) but the charges' journey as precarious (interfaces are everywhere). Instead, using a combination of x-ray scattering and microscopy techniques, researchers have found that excitons may actually not fare so well in mixed domains but need access to pure aggregates to efficiently convert into charges. The smaller the aggregates, the better, allowing increased interfacial area and dramatic increases in device performance.

194

Low cost, single crystal-like substrates for practical, high efficiency solar cells  

Science Conference Proceedings (OSTI)

It is well established that high efficiency (20%) solar cells can be routinely fabricated using single crystal photovoltaic (PV) materials with low defect densities. Polycrystalline materials with small grain sizes and no crystallographic texture typically result in reduced efficiences. This has been ascribed primarily to the presence of grain boundaries and their effect on recombination processes. Furthermore, lack of crystallographic texture can result in a large variation in dopant concentrations which critically control the electronic properties of the material. Hence in order to reproducibly fabricate high efficiency solar cells a method which results in near single crystal material is desirable. Bulk single crystal growth of PV materials is cumbersome, expensive and difficult to scale up. We present here a possible route to achieve this if epitaxial growth of photovoltaic materials on rolling-assisted-biaxially textured-substrates (RABiTS) can be achieved. The RABiTS process uses well-established, industrially scaleable, thermomechanical processing to produce a biaxially textured or single-crystal-like metal substrate with large grains (50-100 {mu}m). This is followed by epitaxial growth of suitable buffer layers to yield chemically and structurally compatible surfaces for epitaxial growth of device materials. Using the RABiTS process it should be possible to economically fabricate single-crystal-like substrates of desired sizes. Epitaxial growth of photovoltaic devices on such substrates presents a possible route to obtaining low-cost, high performance solar cells.

Goyal, A.; Specht, E.D.; List, F.A. [and others

1997-09-01T23:59:59.000Z

195

Cost Effective, High Efficiency Integrated Systems Approach to Auxilliary Electric Motors  

DOE Green Energy (OSTI)

The CARAT program, carried out by Kinetic Art & Technology Corporation (KAT), has been one of the most commercially successful KAT R&D programs to date. Based on previous development of its technology, KAT designed, constructed and tested a highly efficient motor and controller system under this CARAT program with supplemental commercial funding. Throughout this CARAT effort, the technical objectives have been refined and refocused. Some objectives have been greatly expanded, while others have been minimized. The determining factor in all decisions to refocus the objectives was the commercial need, primarily the needs of KAT manufacturing partners. Several companies are employing the resulting CARAT motor and controller designs in prototypes for commercial products. Two of these companies have committed to providing cost share in order to facilitate the development. One of these companies is a major manufacturing company developing a revolutionary new family of products requiring the ultra-high system efficiency achievable by the KAT motor and controller technologies (known as Segmented ElectroMagnetic Array, or SEMA technology). Another company requires the high efficiency, quiet operation, and control characteristics afforded by the same basic motor and controller for an advanced air filtration product. The combined annual production requirement projected by these two companies exceeds one million units by 2005.

Roy Kessinger Jr.; Keith Seymour; Kanchan Angal; Jason Wolf; Steve Brewer; Leonard Schrank

2003-09-26T23:59:59.000Z

196

Interfacial Engineering for Highly Efficient-Conjugated Polymer-Based Bulk Heterojunction Photovoltaic Devices  

Science Conference Proceedings (OSTI)

The aim of our proposal is to apply interface engineering approach to improve charge extraction, guide active layer morphology, improve materials compatibility, and ultimately allow the fabrication of high efficiency tandem cells. Specifically, we aim at developing: i. Interfacial engineering using small molecule self-assembled monolayers ii. Nanostructure engineering in OPVs using polymer brushes iii. Development of efficient light harvesting and high mobility materials for OPVs iv. Physical characterization of the nanostructured systems using electrostatic force microscopy, and conducting atomic force microscopy v. All-solution processed organic-based tandem cells using interfacial engineering to optimize the recombination layer currents vi. Theoretical modeling of charge transport in the active semiconducting layer The material development effort is guided by advanced computer modeling and surface/ interface engineering tools to allow us to obtain better understanding of the effect of electrode modifications on OPV performance for the investigation of more elaborate device structures. The materials and devices developed within this program represent a major conceptual advancement using an integrated approach combining rational molecular design, material, interface, process, and device engineering to achieve solar cells with high efficiency, stability, and the potential to be used for large-area roll-to-roll printing. This may create significant impact in lowering manufacturing cost of polymer solar cells for promoting clean renewable energy use and preventing the side effects from using fossil fuels to impact environment.

Alex Jen; David Ginger; Christine Luscombe; Hong Ma

2012-04-02T23:59:59.000Z

197

The high-efficiency ?-ray spectroscopy setup ?3 at HI?S  

E-Print Network (OSTI)

The existing Nuclear Resonance Fluorescence (NRF) setup at the HI{\\gamma}S facility at the Triangle Universities Nuclear Laboratory at Duke University has been extended in order to perform {\\gamma}-{\\gamma} coincidence experiments. The new setup combines large volume LaBr3:Ce detectors and high resolution HPGe detectors in a very close geometry to offer high efficiency, high energy resolution as well as high count rate capabilities at the same time. The combination of a highly efficient {\\gamma}-ray spectroscopy setup with the mono-energetic high-intensity photon beam of HI{\\gamma}S provides a worldwide unique experimental facility to investigate the {\\gamma}-decay pattern of dipole excitations in atomic nuclei. The performance of the new setup has been assessed by studying the nucleus \\sulfur at 8.125 MeV beam energy. The {\\gamma}-decay branching ratio from the $1^+$ level at 8125.4 keV to the first excited $2^+$ state was determined to 15.7(3)%.

Bastian Lher; Vera Derya; Thomas Aumann; Jacob Beller; Nathan Cooper; Marc Duchene; Janis Endres; Enrico Fiori; Johann Isaak; John Kelley; Michael Knrzer; Norbert Pietralla; Christopher Romig; Marcus Scheck; Heiko Scheit; Joel Silva; Anton P. Tonchev; Werner Tornow; Henry Weller; Volker Werner; Andreas Zilges

2013-04-23T23:59:59.000Z

198

ENGINEERED ELECTRODES AND ELECTRODE-ORGANIC INTERFACES FOR HIGH-EFFICIENCY ORGANIC PHOTOVOLTAICS  

DOE Green Energy (OSTI)

Organic photovoltaic (OPV) cells offer the ultimate promise of low cost, readily manufacturable, and durable solar power. While recent advances have led to cells with impressive performance levels, OPV cells have yet to break the double-digit efficiency barrier. Further gains in efficiency and durability, to that competitive with high-performance inorganic photovoltaics will require breakthroughs in transparent electrode and interfacial materials science and engineering. This project involved an integrated basic research effort carried out by an experienced and highly collaborative interdisciplinary team to address in unconventional ways, critical electrode-interfacial issues underlying OPV performance--controlling band offsets between transparent electrodes and organics, addressing current loss/leakage problems at interfaces, enhancing adhesion, interfacial stability, and device durability while minimizing cost. It synergistically combined materials and interfacial reagent synthesis, nanostructural and photovoltaic characterization, and high level quantum theory. The research foci were: 1) understanding of/development of superior transparent electrode materials and materials morphologies--i.e., better matched electronically and chemically to organic active layers, 2) understanding-based development of inorganic interfacial current-collecting/charge-blocking layers, and 3) understanding-based development of self-assembled adhesion/current-collecting/charge-blocking/cross-linking layers for high-efficiency OPV interfaces. Pursing the goal of developing the fundamental scientific understanding needed to design, fabricate, prototype and ultimately test high-efficiency OPV cells incorporating these new concepts, we achieved a record power conversion efficiency of 5.2% for an organic bulk-heterjunction solar cell.

Tobin J. Marks; R.P.H. Chang; Tom Mason; Ken Poeppelmeier; Arthur J. Freeman

2008-11-13T23:59:59.000Z

199

MIDDLE PARK Conservation Action Plan  

E-Print Network (OSTI)

MIDDLE PARK Conservation Action Plan 2011 Update Plant Species of Focus: Kremmling milkvetch Conservation Initiative Workshop dates: June 26, 2008 and July 6, 2010 Report date: August 25, 2011 Middle Park................................................................................................................... 6 A. Conservation Targets

200

Deep Burn Fuel Cycle Integration: Evaluation of Two-Tier Scenarios  

Science Conference Proceedings (OSTI)

The use of a deep burn strategy using VHTRs (or DB-MHR), as a means of burning transuranics produced by LWRs, was compared to performing this task with LWR MOX. The spent DB-MHR fuel was recycled for ultimate final recycle in fast reactors (ARRs). This report summarizes the preliminary findings of the support ratio (in terms of MWth installed) between LWRs, DB-MHRs and ARRs in an equilibrium two-tier fuel cycle scenario. Values from literature were used to represent the LWR and DB-MHR isotopic compositions. A reactor physics simulation of the ARR was analyzed to determine the effect that the DB-MHR spent fuel cooling time on the ARR transuranic consumption rate. These results suggest that the cooling time has some but not a significant impact on the ARRs conversion ratio and transuranic consumption rate. This is attributed to fissile worth being derived from non-fissile or threshold-fissioning isotopes in the ARRs fast spectrum. The fraction of installed thermal capacity of each reactor in the DB-MHR 2-tier fuel cycle was compared with that of an equivalent MOX 2-tier fuel cycle, assuming fuel supply and demand are in equilibrium. The use of DB-MHRs in the 1st-tier allows for a 10% increase in the fraction of fleet installed capacity of UO2-fueled LWRs compared to using a MOX 1st-tier. Also, it was found that because the DB-MHR derives more power per unit mass of transuranics charged to the fresh fuel, the front-end reprocessing demand is less than MOX. Therefore, more fleet installed capacity of DB-MHR would be required to support a given fleet of UO2 LWRs than would be required of MOX plants. However, the transuranic deep burn achieved by DB-MHRs reduces the number of fast reactors in the 2nd-tier to support the DB-MHRs back-end transuranic output than if MOX plants were used. Further analysis of the relative costs of these various types of reactors is required before a comparative study of these options could be considered complete.

S. Bays; H. Zhang; M. Pope

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Development of high-efficiency silicon solar cells and modeling the impact of system parameters on levelized cost of electricity .  

E-Print Network (OSTI)

??The objective of this thesis is to develop low-cost high-efficiency crystalline silicon solar cells which are at the right intersection of cost and performance to (more)

Kang, Moon Hee

2013-01-01T23:59:59.000Z

202

Extreme Chromatography: Faster, Hotter, SmallerChapter 5 High-efficiency Liquid Chromatography Separations Achieved by Monolithic Silica Columns  

Science Conference Proceedings (OSTI)

Extreme Chromatography: Faster, Hotter, Smaller Chapter 5 High-efficiency Liquid Chromatography Separations Achieved by Monolithic Silica Columns Methods and Analyses eChapters Methods - Analyses Books AOCS Press Downloada

203

Electrical heating of soils using high efficiency electrode patterns and power phases  

DOE Patents (OSTI)

Powerline-frequency electrical (joule) heating of soils using a high efficiency electrode configuration and power phase arrangement. The electrode configuration consists of several heating or current injection electrodes around the periphery of a volume of soil to be heated, all electrodes being connected to one phase of a multi-phase or a single-phase power system, and a return or extraction electrode or electrodes located inside the volume to be heated being connected to the remaining phases of the multi-phase power system or to the neutral side of the single-phase power source. This electrode configuration and power phase arrangement can be utilized anywhere where powerline frequency soil heating is applicable and thus has many potential uses including removal of volatile organic compounds such as gasoline and tricholorethylene (TCE) from contaminated areas.

Buettner, Harley M. (Livermore, CA)

1999-01-01T23:59:59.000Z

204

High-efficiency silicon solar cells for use with a prismatic cover at 160 suns  

DOE Green Energy (OSTI)

For this program, Solarex developed a process sequence that could be used in a manufacturing environment to produce high-efficiency silicon concentrator cells. The cells had large gridlines to minimize series resistance losses and a prismatic cover to minimize shadowing. The front surface of the cell was textured to improve absorption of light and passivated to reduce front-surface recombination. Two separate diffusions steps were used: a deep emitter with a light surface concentration and a heavy diffusion to reduce recombination under the front contacts. Cell efficiencies as high as 22.25% were demonstrated at 75 suns and over 21.5% at 150 suns air mass 1.5 illumination. 16 refs., 31 figs., 10 tabs.

Silver, J.R.; Patel, B. (Solarex Corp., Rockville, MD (USA))

1990-08-01T23:59:59.000Z

205

Simulation of a High Efficiency Multi-bed Adsorption Heat Pump  

Science Conference Proceedings (OSTI)

Attaining high energy efficiency with adsorption heat pumps is challenging due to thermodynamic losses that occur when the sorbent beds are thermally cycled without effective heat recuperation. The multi-bed concept described here effectively transfers heat from beds being cooled to beds being heated, which enables high efficiency in thermally driven heat pumps. A simplified lumped-parameter model and detailed finite element analysis are used to simulate the performance of an ammonia-carbon sorption compressor, which is used to project the overall heat pump coefficient of performance. The effects of bed geometry and number of beds on system performance are explored, and the majority of the performance benefit is obtained with four beds. Results indicate that a COP of 1.24 based on heat input is feasible at AHRI standard test conditions for residential HVAC equipment. When compared on a basis of primary energy input, performance equivalent to SEER 13 or 14 are theoretically attainable with this system.

TeGrotenhuis, Ward E.; Humble, Paul H.; Sweeney, J. B.

2012-05-01T23:59:59.000Z

206

Very High Efficiency Reactor (VHER) Concepts for Electrical Power Generation and Hydrogen Production  

DOE Green Energy (OSTI)

The goal of the Very High Efficiency Reactor study was to develop and analyze concepts for the next generation of nuclear power reactors. The next generation power reactor should be cost effective compared to current power generation plant, passively safe, and proliferation-resistant. High-temperature reactor systems allow higher electrical generating efficiencies and high-temperature process heat applications, such as thermo-chemical hydrogen production. The study focused on three concepts; one using molten salt coolant with a prismatic fuel-element geometry, the other two using high-pressure helium coolant with a prismatic fuel-element geometry and a fuel-pebble element design. Peak operating temperatures, passive-safety, decay heat removal, criticality, burnup, reactivity coefficients, and material issues were analyzed to determine the technical feasibility of each concept.

PARMA JR.,EDWARD J.; PICKARD,PAUL S.; SUO-ANTTILA,AHTI JORMA

2003-06-01T23:59:59.000Z

207

New III-V cell design approaches for very high efficiency  

DOE Green Energy (OSTI)

This report describes progress during the first year of a three-year project. The objective of the research is to examine new design approaches for achieving very high conversion efficiencies. The program is divided into two areas. The first centers on exploring new thin-film approaches specifically designed for III-V semiconductors. The second area centers on exploring design approaches for achieving high conversion efficiencies without requiring extremely high quality material. Research activities consisted of an experimental study of minority carrier recombination in n-type, metal-organic chemical vapor deposition (MOCVD)-deposited GaAs, an assessment of the minority carrier lifetimes in n-GaAs grown by molecular beam epitaxy, and developing a high-efficiency cell fabrication process.

Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; O'Bradovich, G.J.; Young, M.P. (Purdue Univ., Lafayette, IN (United States))

1993-01-01T23:59:59.000Z

208

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

Science Conference Proceedings (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

209

New III-V cell design approaches for very high efficiency  

DOE Green Energy (OSTI)

This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell's efficiency less dependent on materialquality.

Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P. (Purdue Univ., Lafayette, IN (United States))

1993-04-01T23:59:59.000Z

210

Stabilization of High Efficiency CdTe Photovoltaic Modules in Controlled Indoor Light Soaking  

Science Conference Proceedings (OSTI)

The performance and stabilization of large-area, high-efficiency 9%, CdTe photovoltaic (PV) modules maintained under controlled light-soaking nominally at 800 Watts/m2 irradiance and 65C module temperature are investigated. Degradation of module performance occurs predominantly in the first few hundred hours of exposure under these conditions; these symptoms included losses in fill factor (FF), open-circuit voltage (Voc), and short-circuit current (Isc), which amount to between 7% and 15% total loss in performance. Higher stabilized performance was achieved with lower copper content in the back contact. Transient effects in module Voc and Isc were observed, suggesting partial annealing thereof when stored under low-light levels. Performance changes are analyzed, aided by monitoring the current-voltage characteristics in situ during exposure.

del Cueto, J. A.; Pruett, J.; Cunningham, D.

2003-05-01T23:59:59.000Z

211

New concepts for high efficiency energy conversion: The avalanche heterostructure and superlattice solar cells  

DOE Green Energy (OSTI)

This report describes investigation into the theory and technology of a novel heterojunction or superlattice, single-junction solar cell, which injects electrons across the heterointerface to produce highly efficient impact ionization of carriers in the lowband-gap side of the junction, thereby conserving their total energy. Also, the superlattice structure has the advantage of relaxing the need for perfect lattice matching at the p-n interface and will inhibit the cross diffusion of dopant atoms that typically occurs in heavy doping. This structure avoids the use of tunnel junctions that make it very difficult to achieve the predicted efficiencies in cascade cells, thus making it possible to obtain energy efficiencies that are competitive with those predicted for cascade solar cells with reduced complexity and cost. This cell structure could also be incorporated into other solar cell structures designed for wider spectral coverage.

Summers, C.J.; Rohatgi, A.; Torabi, A.; Harris, H.M. (Georgia Tech Research Inst., Atlanta, GA (United States))

1993-01-01T23:59:59.000Z

212

Workload-driven Analysis of File Systems in Multi-Tier Data-Centers over InfiniBand  

E-Print Network (OSTI)

The phenomenal growth and popularity of cluster-based multi-tier data-centers has not been accompanied by a system-wide understanding of the various resources and their deployment strategies. Each tier in a multi-tier datacenter has different requirements and behavior. Accordingly, it is a non-trivial problem to analyze the impact of various system resources and their influence on each tier. In addition, typical data-center workloads have a wide range of characteristics. They vary from high to low temporal locality, large documents to small documents, the number of documents and several others. The different characteristics of each kind of workload makes this problem quite challenging. Further, in the past few years several researchers have proposed and configured data-centers providing multiple

K. Vaidyanathan; P. Balaji; H. -w. Jin; D. K. Panda

2005-01-01T23:59:59.000Z

213

Application of Advanced Particle Swarm Optimization Algorithm Based on SA in Multi-tiers Hydropower Stations Optimization  

Science Conference Proceedings (OSTI)

Optimal operation of multi-tiers hydropower stations is a kind of nonlinear optimization problem. An advanced PSO algorithm based on simulated annealing is put forward to promote the solution accuracy and to avoid falling into local optimal solutions ...

Kong Ke; Wang Shao-bo; Xie Jian-cang; Sun Fan

2009-08-01T23:59:59.000Z

214

Demonstration of High Efficiency Elastocaloric Cooling with Large Delta- T Using NiTi Wires  

Science Conference Proceedings (OSTI)

Vapor compression (VC) is by far the most dominant technology for meeting all cooling and refrigeration needs around the world. It is a mature technology with the efficiency of modern compressors approaching the theoretical limit, but its envi-ronmental footprint remains a global problem. VC refrigerants such as hydrochlo-roflurocarbons (HCFCs) and hydrofluorocarbons (HFCs) are a significant source of green house gas (GHG) emissions, and their global warming potential (GWP) is as high as 1000 times that of CO2. It is expected that building space cooling and re-frigeration alone will amount to {approx} 5% of primary energy consumption and {approx}5% of all CO2 emission in U.S. in 2030 . As such, there is an urgent need to develop an al-ternative high-efficiency cooling technology that is affordable and environmentally friendly. Among the proposed candidates, magnetocaloric cooling (MC) is currently received a lot of attention because of its high efficiency. However, MC is inherently expensive because of the requirement of large magnetic field and rare earth materi-als. Here, we demonstrate an entirely new type of solid-state cooling mechanism based on the latent heat of reversible martensitic transformation. We call it elasto-caloric cooling (EC) after the superelastic transformation of austenite it utilizes. The solid-state refrigerant of EC is cost-effective, and it completely eliminates the use of any refrigerants including HCFCs/HFCs. We show that the COP (coefficient of per-formance) of a jugular EC with optimized materials can be as high as > 10 with measured {Delta}T of 17 C.

Cui, Jun; Wu, Yiming; Muehlbauer, Jan; Hwang, Yunho; Radermacher, Reinhard; Fackler, Sean; Wuttig, Manfred; Takeuchi, Ichiro

2012-08-01T23:59:59.000Z

215

Dynamic or Tiered Rates? Utility or Customer-Controlled Event Automation?  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic or Tiered Rates? Utility or Customer-Controlled Event Automation? Dynamic or Tiered Rates? Utility or Customer-Controlled Event Automation? Speaker(s): Karen Herter Date: September 27, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page SMUD's 2011-2012 Residential Summer Solutions Study investigated the effects of real-time energy data and TOU-CPP rates in the presence of utility or customer controlled thermostat automation. Of the four rate and automation options offered, the TOU-CPP rate + customer-controlled automation provided the greatest savings, with 4% energy savings, daily weekday peak savings of more than 30%, and an average event peak load shed of nearly 60%. Effects of real-time information on these impacts were modest (1-7%), but in many cases statistically significant. On average,

216

Puerto Rico - Green Energy Fund Tier II Incentive Program (Puerto Rico) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

II Incentive Program (Puerto II Incentive Program (Puerto Rico) Puerto Rico - Green Energy Fund Tier II Incentive Program (Puerto Rico) < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit State Government Savings Category Solar Buying & Making Electricity Wind Program Info Funding Source Puerto Rico Green Energy Fund Start Date 07/01/2011 Expiration Date 06/30/2020 Program Type State Grant Program Rebate Amount Up to 50% of eligible costs Provider Puerto Rico Energy Affairs Administration Note: There is one application period per quarter. Applications must be submitted by the fifth day of each quarter (July 5, October 5, January 5, and April 5). With funding from Puerto Rico's Green Energy Fund, Tier II competitive grants are available for photovoltaic (PV) and wind systems over 100

217

Second-Tier Database for Ecosystem Focus, 2003-2004 Annual Report.  

SciTech Connect

The Second-Tier Database for Ecosystem Focus (Contract 00004124) provides direct and timely public access to Columbia Basin environmental, operational, fishery and riverine data resources for federal, state, public and private entities essential to sound operational and resource management. The database also assists with juvenile and adult mainstem passage modeling supporting federal decisions affecting the operation of the FCRPS. The Second-Tier Database known as Data Access in Real Time (DART) integrates public data for effective access, consideration and application. DART also provides analysis tools and performance measures for evaluating the condition of Columbia Basin salmonid stocks. These services are critical to BPA's implementation of its fish and wildlife responsibilities under the Endangered Species Act (ESA).

University of Washington, Columbia Basin Research, DART Project Staff, (University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA)

2004-12-01T23:59:59.000Z

218

Second-Tier Database for Ecosystem Focus, 2003-2004 Annual Report.  

DOE Green Energy (OSTI)

The Second-Tier Database for Ecosystem Focus (Contract 00004124) provides direct and timely public access to Columbia Basin environmental, operational, fishery and riverine data resources for federal, state, public and private entities essential to sound operational and resource management. The database also assists with juvenile and adult mainstem passage modeling supporting federal decisions affecting the operation of the FCRPS. The Second-Tier Database known as Data Access in Real Time (DART) integrates public data for effective access, consideration and application. DART also provides analysis tools and performance measures for evaluating the condition of Columbia Basin salmonid stocks. These services are critical to BPA's implementation of its fish and wildlife responsibilities under the Endangered Species Act (ESA).

University of Washington, Columbia Basin Research, DART Project Staff, (University of Washington, School of Aquatic and Fishery Sciences, Seattle, WA)

2004-12-01T23:59:59.000Z

219

Attaining Tier 2 Emissions Through Diesel Engine and Aftertreatment Integration - Strategy and Experimental Results  

DOE Green Energy (OSTI)

The feasibility of diesel engines to meet the stringent emissions regulations of 2007 and beyond is an important consideration for light trucks and other personal transportation vehicles. Integrated engine and aftertreatment systems have been developed at Detroit Diesel Corporation for multiple engine and vehicle platforms. Tier 2 emissions technologies have been demonstrated with significant fuel economy advantage compared to the respective production gasoline engines while maintaining excellent drivability.

Aneja, R.; Bolton, B.; Hakim, N.; Pavlova-MacKinnon, Z.

2002-08-25T23:59:59.000Z

220

Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines  

DOE Green Energy (OSTI)

The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a novel valve material was evaluated to assess high temperature performance and durability. A series of prototype valves, composed of a unique nickel-alloy was placed in the engine head. The engine was aggressively operated using a transient test cycle for 200 hours. The valve recession was periodically measured to determine valve performance. Upon completion of the test the valves were removed and returned to Caterpillar for additional assessment. Industrial in-kind support was available throughout the project period. Review of the status and research results were carried out on a regular basis (meetings and telecons) which included direction for future work activities. A significant portion of the industrial support was in the form of information exchange and technical consultation.

Kass, M.; Veliz, M. (Caterpillar, Inc.)

2011-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Research on stable, high-efficiency, large-area amorphous silicon based modules -- Task B  

DOE Green Energy (OSTI)

This report documents progress in developing a stable, high- efficiency, four-terminal hybrid tandem module. The module consists of a semi-transparent, thin-film silicon:hydrogen alloy (TFS) top circuit and a copper indium diselenide (CuInSe{sub 2}) bottom circuit. Film deposition and patterning processes were successfully extended to 0.4-m{sup 2} substrates. A 33.2-W (8.4% efficient) module with a 3970-cm{sup 2} aperture area and a white back reflector was demonstrated; without the back reflector, the module produced 30.2 W (7.6% efficient). Placing a laminated, 31.6-W, 8.1%-efficient CuInSe{sub 2} module underneath this TFS module, with an air gap between the two, produces 11.2 W (2.9% efficient) over a 3883-cm{sup 2} aperture area. Therefore, the four-terminal tandem power output is 41.4 W, translating to a 10.5% aperture-area efficiency. Subsequently, a 37.8-W (9.7% aperture-area efficiency) CuInSe{sub 2} module was demonstrated with a 3905-cm{sup 2} aperture area. Future performances of single-junction and tandem modules of this size were modeled, and predicted power outputs exceed 50 W (13% efficient) for CuInSe{sub 2} and 65 W (17% efficient) for TFS/CuInSe{sub 2} tandem modules.

Mitchell, K.W.; Willet, D.R. (Siemens Solar Industries, Camarillo, CA (USA))

1990-10-01T23:59:59.000Z

222

Simulation of Device Parameters of High Efficiency Multicrystalline Silicon Solar Cells  

Science Conference Proceedings (OSTI)

The results of the simulation of the reported experimental results of high efficiency multicrystalline silicon (mc-Si) solar cells, using PC1D software, are reported in this study. Results obtained by various groups have been incorporated and compared in this study. The highest efficiency reported so far for mc-Si solar cells is 20{center_dot}4% and 17-18% by research laboratories and commercial houses, respectively. The efficiency can be further enhanced if passivation characteristics on both the front and back surface are improved. The role of back surface recombination has become more significant in light of the use of thin mc-Si wafers by the solar cell industry. Based on the passivation characteristics and considering the understanding of the past three decades of studies, the authors have proposed and simulated a structure for mc-Si solar cells to improve the performance of the same. The results of our modeled structure of mc-Si solar cell show an efficiency of 21{center_dot}88% with short-circuit current density, J{sub sc} = 39{center_dot}39 mA/cm2, and open circuit voltage, V{sub oc} = 0{center_dot}666 V.

Budhraja, V.; Misra, D.; Ravindra, N. M.

2011-11-01T23:59:59.000Z

223

Development of high efficiency (14%) solar cell array module. Final report, November 1979-June 1980  

DOE Green Energy (OSTI)

More effort was concentrated on development of procedures to provide large area (3 in. dia) high efficiency (16.5% AM1, 28/sup 0/C) P+NN+ solar cells. Intensive tests with 3 in. slices gave consistently lower efficiency (13.5%). The problems were identified as incomplete formation of an optimum back surface field (BSF), and interaction of the BSF process and the shallow P+ junction. The problem was shown not to be caused by reduced quality of silicon near the edges of the larger slices. A promising process sequence was identified. A reasonably large number of fairly efficient (13.5% average) 3 in. P+NN+ cells were made and combined with no problems with the module design developed for this project. In the module, one hundred and twenty (120) cells were connected, eight (8) in parallel and fifteen (15) in series. Six (6) modules were delivered with an average power output (per total module area of 6890 cm/sup 2/) of 75.3 watts and a module overall average efficiency of 10.9%.

Iles, P.A.; Khemthong, S.; Olah, S.; Sampson, W.J.; Ling, K.S.

1980-01-01T23:59:59.000Z

224

Mobile Source Air Toxics (MSATs) from High Efficiency Clean Combustion: Catalytic Exhaust Treatment Effects  

Science Conference Proceedings (OSTI)

High Efficiency Clean Combustion (HECC) strategies such as homogenous charge compression ignition (HCCI) and pre-mixed charge compression ignition (PCCI) offer much promise for the reduction of NOx and PM from diesel engines. While delivering low PM and low NOx, these combustion modes often produce much higher levels of CO and HC than conventional diesel combustion modes. In addition, partially oxygenated species such as formaldehyde (an MSAT) and other aldehydes increase with HECC modes. The higher levels of CO and HCs have the potential to compromise the performance of the catalytic aftertreatment, specifically at low load operating points. As HECC strategies become incorporated into vehicle calibrations, manufacturers need to avoid producing MSATs in higher quantities than found in conventional combustion modes. This paper describes research on two different HECC strategies, HCCI and PCCI. Engine-out data for several MSAT species (formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, xylenes, naphthalene, PAHs, diesel PM) as well as other HC species are presented and compared when possible with conventional operation. In addition, catalyst-out values were measured to assess the destruction of individual MSATs over the catalyst. At low engine loads, MSATs were higher and catalyst performance was poorer. Particle sizing results identify large differences between PM from conventional and HECC operation.

Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL; Barone, Teresa L [ORNL; Prikhodko, Vitaly Y [ORNL

2008-01-01T23:59:59.000Z

225

Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells  

DOE Green Energy (OSTI)

This document describes the progress made in obtaining stable, a-Si-based submodules that have a large area and high efficiency. Conversion efficiencies of up to 11.95% were obtained in small-area, single-junction a-Si solar cells using textured TiO{sub 2}, superlattice p-layers, graded carbon concentrations near the p/i interface, and highly reflective ITO/silver back contacts. Single- junction a-SiC and a-SiGe p-i-n cells were also fabricated that had conversion efficiencies of 9%--11%, and some recently fabricated stacked-junction cells had conversion efficiencies of about 10%. In materials research boron-doped microcrystalline SiC films were recently developed containing up to 6 at. % carbon with conductivities of 3 {times} 10{sup {minus}3}/{Omega}-cm at room temperature and activation energies of 0.11 eV. Microcrystalline film growth was shown to be strongly influenced by the nature of the substrate, with nucleation occurring more readily on a-Si substrates than on TiO{sub 2}. Stability studies show that light-induced degradation is usually enhanced by the presence of carbon grading near the p/i interface. In general, adding either germanium (from GeH{sub 4}) or carbon (from CH{sub 4}) to the i-layer of a p-i-n cell leads to enhanced light-induced degradation. 13 refs., 80 figs., 17 tabs.

Catalano, A.W.; Carlson, D.E.; Ayra, R.R.; Bennett, M.S.; D'Aiello, R.V.; Dickson, C.R.; Fortmann, C.M.; Goldstein, B.; McVeigh, J.; Morris, J.; Newton, J.L.; Wiedeman, S. (Solarex Corp., Newtown, PA (USA). Thin Film Div.)

1989-10-01T23:59:59.000Z

226

Implications of Low Particulate Matter Emissions on System Fuel Efficiency for High Efficiency Clean Combustion  

DOE Green Energy (OSTI)

Advanced diesel combustion regimes such as High Efficiency Clean Combustion (HECC) offer the benefits of reduced engine out NOX and particulate matter (PM) emissions. Lower PM emissions during advanced combustion reduce the demand on diesel particulate filters (DPFs) and can, thereby, reduce the fuel penalty associated with DPF regeneration. In this study, a SiC DPF was loaded and regenerated on a 1.7-liter 4-cylinder diesel engine operated in conventional and advanced combustion modes at different speed and load conditions. A diesel oxidation catalyst (DOC) and a lean NOX trap (LNT) were also installed in the exhaust stream. Five steady-state speed and load conditions were weighted to estimate Federal Test Procedure (FTP) fuel efficiency. The DPF was loaded using lean-rich cycling with frequencies that resulted in similar levels of NOX emissions downstream of the LNT. The pressure drop across the DPF was measured at a standard point (1500 rpm, 5.0 bar) before and after loading, and a P rise rate was determined for comparison between conventional and advanced combustion modes. Higher PM emissions in conventional combustion resulted in a higher rate of backpressure rise across the DPF at all of the load points leading to more frequent DPF regenerations and higher fuel penalty. The fuel penalty during conventional combustion was 4.2% compared with 3.1% for a mixture of conventional and advanced modes.

Parks, II, James E [ORNL; Prikhodko, Vitaly Y [ORNL

2009-01-01T23:59:59.000Z

227

Indium-Tin-Oxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices  

Science Conference Proceedings (OSTI)

Additional hydrogen (H{sub 2}) annealing and subsequent electrochemical treatment are found to make tin-doped indium oxide (ITO)-based photoelectrodes suitable for highly efficient dye sensitized solar cells. The additional H{sub 2} annealing process recovered the electrical conductivity of the ITO film the same as its initial high conductivity, which enhanced the charge collecting property. Moreover, the employment of electrochemical oxidation of TiO{sub 2}/ITO photoelectrode improved the energy conversion efficiency of the ITO-based dye-sensitized solar cells (DSSC), higher than that of a conventional FTO-based DSSC. Electrochemical impedance analysis showed that the H2 annealing process reduced the internal resistance of the cell, i.e., the resistance of the ITO and the Schottky barrier at the TiO{sub 2}/ITO interface were reduced, and that the electrochemical treatment recovered the diodelike characteristics of the DSSC by retarding back electron transfer from the photoelectrode to the electrolyte. The present work demonstrates that thermally and electrochemically modified ITO-based photoelectrode is another alternative to the conventionally used FTO-based photoelectrode.

Lee, S.; Noh, J. H.; Bae, S. T.; Cho, I. S.; Kim, J. Y.; Shin, H.; Lee, J. K.; Jung, H. S.; Hong, K. S.

2009-01-01T23:59:59.000Z

228

Rapid thermal processing of high-efficiency silicon solar cells with controlled in-situ annealing  

DOE Green Energy (OSTI)

Silicon solar cell efficiencies of 17.1%, 16.4%, 14.8%, and 14.9% have been achieved on FZ, Cz, multicrystalline (mc-Si), and dendritic web (DW) silicon, respectively, using simplified, cost-effective rapid thermal processing (RTP). These represent the highest reported efficiencies for solar cells processed with simultaneous front and back diffusion with no conventional high-temperature furnace steps. Appropriate diffusion temperature coupled with the added in-situ anneal resulted in suitable minority-carrier lifetime and diffusion profiles for high-efficiency cells. The cooling rate associated with the in-situ anneal can improve the lifetime and lower the reverse saturation current density (J{sub 0}), however, this effect is material and base resistivity specific. PECVD antireflection (AR) coatings provided low reflectance and efficient front surface and bulk defect passivation. Conventional cells fabricated on FZ silicon by furnace diffusions and oxidations gave an efficiency of 18.8% due to greater short wavelength response and lower J{sub 0}.

Doshi, P.; Rohatgi, A.; Ropp, M.; Chen, Z. [Georgia Institute of Technology, Atlanta, GA (United States). Univ. Center of Excellence for Photovoltaics Research and Education; Ruby, D. [Sandia National Labs., Albuquerque, NM (United States); Meier, D.L. [EBARA Solar, Inc., Large, PA (United States)

1995-01-01T23:59:59.000Z

229

Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater  

Science Conference Proceedings (OSTI)

Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is to achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.

Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL; Pega HRNJAK

2012-07-01T23:59:59.000Z

230

Development of manufacturing capability for high-concentration, high-efficiency silicon solar cells  

DOE Green Energy (OSTI)

This report presents a summary of the major results from a program to develop a manufacturable, high-efficiency silicon concentrator solar cell and a cost-effective manufacturing facility. The program was jointly funded by the Electric Power Research Institute, Sandia National Laboratories through the Concentrator Initiative, and SunPower Corporation. The key achievements of the program include the demonstration of 26%-efficient silicon concentrator solar cells with design-point (20 W/cm{sup 2}) efficiencies over 25%. High-performance front-surface passivations; that were developed to achieve this result were verified to be absolutely stable against degradation by 475 days of field exposure at twice the design concentration. SunPower demonstrated pilot production of more than 1500 of these cells. This cell technology was also applied to pilot production to supply 7000 17.7-cm{sup 2} one-sun cells (3500 yielded wafers) that demonstrated exceptional quality control. The average efficiency of 21.3% for these cells approaches the peak efficiency ever demonstrated for a single small laboratory cell within 2% (absolute). Extensive cost models were developed through this program and calibrated by the pilot-production project. The production levels achieved indicate that SunPower could produce 7-10 MW of concentrator cells per year in the current facility based upon the cell performance demonstrated during the program.

Sinton, R.A.; Verlinden, P.J.; Crane, R.A.; Swanson, R.N. [SunPower Corp., Sunnyvale, CA (United States)

1996-10-01T23:59:59.000Z

231

High-efficiency dc electromagnetic pumps and flow couplers for LMFBRs. Final report  

SciTech Connect

The objective for the study reported here was to evaluate high efficiency direct current electromagnetic pump concepts for use in pool-type liquid metal cooled fast breeder reactors. It was concluded that the conventional direct current pump would not be practical for the high flow rates required, primarily because of the adverse high-current low-voltage supply requirements. However, a relatively new concept - the flow coupler - appears to be much more promising. In this concept, the primary and intermediate fluid flows are linked magnetically - with the intermediate fluid acting as a generator of the current that is used in a pump to drive the primary fluid. In this way the requirement for an external direct current supply and associated busbars is eliminated. Techniques to analyze such flow couplers have been developed and show that overall efficiencies in excess of 60% are attainable in relatively small volumes (3.5m in length, 2.5m in dia). This may permit a reduction in the size of the reactor vessel. Several flow coupler concepts are described which require further evaluation.

McNab, I.R.; Alexion, C.C.

1981-01-01T23:59:59.000Z

232

Low temperature metal-organic chemical vapor deposition growth processes for high-efficiency solar cells  

DOE Green Energy (OSTI)

This report describes the results of a program to develop a more complete understanding of the physical and chemical processes involved in low-temperature growth of III-V compounds by metal-organic chemical vapor deposition (MOCVD) and to develop a low-temperature process that is suitable for the growth of high-efficiency solar cells. The program was structured to develop a better understanding of the chemical reactions involved in MOCVD growth, to develop a model of the processes occurring in the gas phase, to understand the physical kinetics and reactions operative on the surface of the growing crystal, and to develop an understanding of the means by which these processes may be altered to reduce the temperature of growth and the utilization of toxic hydrides. The basic approach was to develop the required information about the chemical and physical kinetics operative in the gas phase and on the surface by the direct physical measurement of the processes whenever possible. The program included five tasks: (1) MOCVD growth process characterization, (2) photoenhanced MOCVD studies, (3) materials characterization, (4) device fabrication and characterization, and (5) photovoltaic training. Most of the goals of the program were met and significant progress was made in defining an approach that would allow both high throughput and high uniformity growth of compound semiconductors at low temperatures. The technical activity was focused on determining the rates of thermal decomposition of trimethyl gallium, exploring alternate arsenic sources for use MOCVD, and empirical studies of atomic layer epitaxy as an approach.

Dapkus, P.D. (University of Southern California, Los Angeles, CA (United States))

1993-02-01T23:59:59.000Z

233

NREL: Education Programs - Middle School  

NLE Websites -- All DOE Office Websites (Extended Search)

that will put student's science and math skills to the test. National Middle School Science Bowl NREL Model Car Competitions Kit and Component Supplier List Printable Version...

234

Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)  

E-Print Network (OSTI)

Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high efficiency hydraulic pump system. Significant energy usage and demand savings are verified for the retrofitted injection molding machine. The savings are realized by electronically attenuating the torque of a positive displacement pump irrespective of the volumetric flow required by the cycle. With help of a power analyzer, power quality issues are addressed. Some voltage distortion was observed due to the harmonic currents introduced by the control algorithm of the high efficiency hydraulic system. A comparative study of electrical energy and demand savings between an injection molding machine retrofitted with the high efficiency hydraulic pump system or variable frequency drive will also be presented.

Sfeir, R. A.; Kanungo, A.; Liou, S.

2005-01-01T23:59:59.000Z

235

Second Generation Advanced Reburning for High Efficiency N0x Control  

Science Conference Proceedings (OSTI)

Energy and Environmental Research Corporation is developing a family of high efficiency and low cost NO{sub x} control technologies for coal fired utility boilers based on Advanced Reburning (AR), a synergistic integration of basic reburning with injection of an N-agent. In conventional AR, injection of the reburn fuel is followed by simultaneous N-agent and overfire air injection. The second generation AR systems incorporate several components which can be used in different combinations. These components include: (1) Reburning Injection of the reburn fuel and overfire air. (2) N-agent Injection The N-agent (ammonia or urea) can be injected at different locations: into the reburning zone, along with the overfire air, and downstream of the overfire air injection. (3) N-agent Promotion Several sodium compounds can considerably enhance the NO{sub x} control from N-agent injection. These ''promoters'' can be added to aqueous N-agents. (4) Two Stages of N-agent Injection and Promotion Two N-agents with or without promoters can be injected at different locations for deeper NO{sub x} control. AR systems are intended for post-RACT applications in ozone non-attainment areas where NO{sub x} control in excess of 80% is required. AR will provide flexible installations that allow NO{sub x} levels to be lowered when regulations become more stringent. The total cost of NO{sub x} control for AR systems is approximately half of that for SCR. Experimental and kinetic modeling results for development of these novel AR systems are presented. Tests have been conducted in a 1.0 MMBtu/hr Boiler Simulator Facility with coal as the main fuel and natural gas as the reburning fuel. The results show that high efficiency NO{sub x} control, in the range 84-95%, can be achieved with various elements of AR. A comparative byproduct emission study was performed to compare the emissions from different variants of AR with commercial technologies (reburning and SNCR). For each technology sampling included: CO, SO{sub 2}, N{sub 2}O, total hydrocarbons, NH{sub 3}, HCN, SO{sub 3}, fly ash mass loading and size distribution, PM10, and carbon in ash. AR technologies do not generate significant byproduct emissions in comparison with basic reburning and SNCR processes under similar conditions. In most cases, byproduct emissions were found to be lower for the AR technologies. Kinetic modeling predictions qualitatively explain the experimental trends observed in the combustion tests. The detailed reaction mechanism can describe the interaction of NO and ammonia in the reburning and overfire air zones, the effect of mixing times, and the sodium promotion effect.

Zamansky, Vladimir M.; Maly, Peter, M.; Sheldon, Mark; Seeker, W. Randall; Folsom, Blair A.

1997-12-31T23:59:59.000Z

236

High Efficiency Thermionics (HET-IV) and Converter Advancement (CAP) programs. Final reports  

DOE Green Energy (OSTI)

This report contains the final report of the High Efficiency Thermionics (HET-IV) Program, Attachment A, performed at Rasor Associates, Inc. (RAI); and the final report of the Converter Advancement Program (CAP), performed at the Bettis Atomic Power Laboratory, Attachment B. The phenomenology of cesium-oxygen thermionic converters was elucidated in these programs, and the factors that had prevented the achievement of stable, enhanced cesium-oxygen converter performance for the previous thirty years were identified. Based on these discoveries, cesium-oxygen vapor sources were developed that achieved stable performance with factor-of-two improvements in power density and thermal efficiency, relative to conventional, cesium-only ignited mode thermionic converters. Key achievements of the HET-IV/CAP programs are as follows: a new technique for measuring minute traces of oxygen in cesium atmospheres; the determination of the proper range of oxygen partial pressures for optimum converter performance--10{sup {minus}7} to 10{sup {minus}9} torr; the discovery, and analysis of the cesium-oxygen liquid migration and compositional segregation phenomena; the successful use of capillary forces to contain the migration phenomenon; the use of differential heating to control compositional segregation, and induce vapor circulation; the development of mechanically and chemically stable, porous reservoir structures; the development of precise, in situ oxygen charging methods; stable improvements in emitter performance, up to effective emitter bare work functions of 5.4 eV; stable improvements in barrier index, to value below 1.8 Volts; the development of detailed microscopic models for cesium-oxygen reservoir dynamics and collector work function behavior; and the discovery of new relationships between electrode geometry and Schock Instability.

Geller, C.B.; Murray, C.S.; Riley, D.R. [Bettis Atomic Power Lab., West Mifflin, PA (United States)] [Bettis Atomic Power Lab., West Mifflin, PA (United States); Desplat, J.L.; Hansen, L.K.; Hatch, G.L.; McVey, J.B.; Rasor, N.S. [Rasor Associates, Inc., Sunnyvale, CA (United States)] [Rasor Associates, Inc., Sunnyvale, CA (United States)

1996-04-01T23:59:59.000Z

237

High Efficiency Single Crystal CdTe Solar Cells: November 19, 2009 - January 31, 2011  

DOE Green Energy (OSTI)

The goal of the program was to develop single crystal CdTe-based top cells grown on Si solar cells as a platform for the subsequent manufacture of high efficiency tandem cells for CPV applications. The keys to both the single junction and the tandem junction cell architectures are the ability to grow high quality single-crystal CdTe and CdZnTe layers on p-type Si substrates, to dope the CdTe and CdZnTe controllably, both n and p-type, and to make low resistance ohmic front and back contacts. EPIR demonstrated the consistent MBE growth of CdTe/Si and CdZnTe/Si having high crystalline quality despite very large lattice mismatches; epitaxial CdTe/Si and CdZnTe/Si consistently showed state-of-the-art electron mobilities and good hole mobilities; bulk minority carrier recombination lifetimes of unintentionally p-doped CdTe and CdZnTe grown by MBE on Si were demonstrated to be consistently of order 100 ns or longer; desired n- and p-doping levels were achieved; solar cell series specific resistances <10 ?-cm2 were achieved; A single-junction solar cell having a state-of-the-art value of Voc and a unverified 16.4% efficiency was fabricated from CdZnTe having a 1.80 eV bandgap, ideal for the top junction in a tandem cell with a Si bottom junction.

Carmody, M.; Gilmore, A.

2011-05-01T23:59:59.000Z

238

High efficiency shale oil recovery. Fifth quarterly report, January 1, 1993--March 31, 1993  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft{sup 2}/{degrees}F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000{degrees}F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

Adams, D.C.

1993-04-22T23:59:59.000Z

239

High efficiency shale oil recovery. First quarter report, January 1, 1992--March 31, 1992  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

Adams, D.C.

1992-12-01T23:59:59.000Z

240

High efficiency shale oil recovery. Fourth quarterly report, October 1, 1992--December 31, 1992  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

Adams, D.C.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High efficiency vapor-fed AMTEC system for direct conversion. Final report  

DOE Green Energy (OSTI)

The Alkali Metal Thermal to Electric Converter (AMTEC) is a high temperature, high efficiency system for converting thermal to electrical energy, with no moving parts. It is based on the unique properties of {beta}{double_prime}-alumina solid electrolyte (BASE), which is an excellent conductor of sodium ions, but an extremely poor conductor of electrons. When the inside of the BASE is maintained at a higher temperature and pressure, a concentration gradient is created across the BASE. Electrons and sodium atoms cannot pass through the BASE. However, the sodium atoms are ionized, and the sodium ions move through the BASE to the lower potential (temperature) region. The electrons travel externally to the AMTEC cell, providing power. There are a number of potential advantages to a wick-pumped, vapor-fed AMTEC system when compared with other designs. A wick-pumped system uses capillary forces to passively return liquid to the evaporator, and to distribute the liquid in the evaporator. Since the fluid return is self-regulating, multiple BASE tubes can use a single remote condenser, potentially improving efficiency in advanced AMTEC designs. Since the system is vapor-fed, sodium vapor is supplied at a uniform temperature and flux to the BASE tube, even with non-uniform heat fluxes and temperatures at the evaporator. The primary objective of the Phase 2 program was to develop wick-pumped AMTEC cells. During the program, procedures to fabricate wicks with smaller pore sizes were developed, to allow operation of an AMTEC cell at 800 C. A revised design was made for a High-Temperature, Wick-Fed AMTEC cell. In addition to the smaller wick pore size, several other changes were made to increase the cell efficiency: (1) internal artery return of condensate; (2) high temperature electrical feedthrough; and (3) separate heat pipe for providing heat to the BASE.

Anderson, W.G.; Bland, J.J.

1997-05-23T23:59:59.000Z

242

2003 National Middle School Science Bowl  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Middle School Science Bowl National Middle School Science Bowl Participating Teams and Sponsoring Sites School Location Sponsoring Site Albuquerque Academy Albuquerque, NM Sandia National Laboratories Andrew Jackson Middle School Titusville, FL Florida Solar Energy Center Auburn Junior High School Auburn, AL Alabama School of Math & Science Bell / North Valley Middle Schools Golden, CO Natl. Renewable Energy Laboratory College Station Middle School College Station, TX Texas A&M University Crockett Middle School Amarillo, TX Pantex Plant Excel Academic League Vancouver, WA Bonneville Power Administration Halstead Middle School Newton, NJ TransOptions, Inc. Inza R. Wood Middle School Wilsonville, OR Bonneville Power Administration Jordan Middle School San Antonio, TX San Antonio

243

Accelerating the Adoption of Second-Tier Reach Standards forApplicable Appliance Products in China  

Science Conference Proceedings (OSTI)

The minimum energy efficiency standards program for household appliances in China was initiated in 1989. Since 1996, CLASP and its implementing partner, LBNL, have assisted China in developing 11 minimum energy performance standards (MEPS) for 9 products and endorsement labels for 11 products including: refrigerators; air conditioners; clothes washers; televisions; printers; computers; monitors; fax machines; copiers; DVD/VCD players; external power supplies; and set-top boxes (under development). Before 2003, China's traditional approach to standards development involved small increases in efficiency requirements for implementation within 6 months of a standard's approval. Since 2003, China has adopted a new approach in setting MEPS. This new approach involves the development of two tiers of standards--one for initial implementation and a second tier at a more aggressive level of energy efficiency for implementation three to five years later. The second-tier standard is also referred to as a 'reach standard'. Reach standards have now been developed in China for: color TVs; refrigerators; air conditioners; and external power supplies. This report is presented in five sections. After the introduction in Section 1, Section 2 analyzes the distribution of the efficiency of refrigerators and air-conditioners in China based on data collected by the China Energy Label Center for the mandatory energy information label program. The results provide an assessment of the adoption of reach standards for these two products. Section 3 summarizes on-going collaborations with Shanghai related to early local adoption of reach standards, and presents both the impact and an analysis of barriers to the local adoption of reach standard for air-conditioners. Section 4 offers suggestions for local governments on how to move forward in adopting reach standards in their localities and concludes with a summary of the results and a plan for developing local capacity in order to achieve success in adopting reach standards.

Lin, Jiang; Fridley, David

2007-03-01T23:59:59.000Z

244

Scratching middle schoolers' creative itch  

Science Conference Proceedings (OSTI)

Each July since 2003, the author has directed summer camps that introduce middle school boys and girls to the basic ideas of computer programming. Prior to 2009, the author used Alice 2.0 to introduce object-based computing. In 2009, the author decided ... Keywords: 2-d animation, alice, computer science, games, gender, middle school, music, programming, scratch, summer camps, videos

Joel C. Adams

2010-03-01T23:59:59.000Z

245

Fast mode assignment for quality scalable extension of the high efficiency video coding (HEVC) standard: a Bayesian approach  

Science Conference Proceedings (OSTI)

The new compression standard, known as the High Efficiency Video Coding (HEVC), aims at significantly improving the compression efficiency compared to previous standards. There has been significant interest in developing a scalable version of this standard. ... Keywords: low complexity compression, machine learning, scalable HEVC, video compression

H. R. Tohidypour, H. Bashashati, M. T. Pourazad, P. Nasiopoulos

2013-09-01T23:59:59.000Z

246

Low-cost, highly efficient, and tunable ultrafast laser technology based on directly diode-pumped Cr:Colquiriites  

E-Print Network (OSTI)

This doctoral project aims to develop robust, ultra low-cost ($5,000-20,000), highly-efficient, and tunable femtosecond laser technology based on diode-pumped Cr:Colquiriite gain media (Cr:LiCAF, Cr3+:LiSAF and Cr:LiSGaF). ...

Demirbas, Umit

2010-01-01T23:59:59.000Z

247

Analysis on Feasibility of Engineering Application of High Efficiently Using Straw Stem Technology in North Rural Area of China  

Science Conference Proceedings (OSTI)

This paper presented the research results on the feasibility of the engineering application of high-efficient using straw technologies in the north rural areas of China. The biochemical conversion, the thermo-chemical conversion and the straw briquette ... Keywords: Bio-energy, Renewable energy, Straw stem, Biomass energy

Tongli Chang; Shuyang Wang

2011-02-01T23:59:59.000Z

248

HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS  

DOE Green Energy (OSTI)

Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

Sara Ward; Michael A. Petrik

2004-07-28T23:59:59.000Z

249

Hydrogen Production via a High-Efficiency Low-Temperature Reformer  

Science Conference Proceedings (OSTI)

Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400C with our invention, as opposed to >800C of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of the packed bed and an adsorptive reactor respectively. In addition CO contamination with energy savings and ~50% capital savings over conventional reforming for fuel cell applications. The pollution abatement potential associated with the implementation of fuel cells, including the elimination of nitrogen oxides and CO, and the reduction in volatile organics and CO2, can thus be realized with the implementation of this invented process. The projected total market size for equipment sale for the proposed process in US is $1.5 billion annually.

Paul KT Liu; Theo T. Tsotsis

2006-05-31T23:59:59.000Z

250

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

251

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

252

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

SciTech Connect

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

253

Oklahoma Regional Science Bowl - Middle School Edition | U.S...  

Office of Science (SC) Website

Oklahoma Regions Oklahoma Regional Science Bowl - Middle School Edition National Science Bowl (NSB) NSB Home About NSB High School Middle School Middle School Students Middle...

254

California South/West Bay Area Regional Middle School Science...  

Office of Science (SC) Website

California SouthWest Bay Area Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School...

255

Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Adjustment | Open  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Adjustment Jump to: navigation, search This is a property of type Number. Pages using the property "OpenEI/UtilityRate/DemandRateStructure/Tier6Adjustment" Showing 13 pages using this property. 4 4b524791-bef2-49b1-850b-458730755203 + 8 + 4b524791-bef2-49b1-850b-458730755203 + 8 +, 9 +, 67 +, ... 4b524791-bef2-49b1-850b-458730755203 + 9 + 4b524791-bef2-49b1-850b-458730755203 + 2 + 4b524791-bef2-49b1-850b-458730755203 + 67 + 4b524791-bef2-49b1-850b-458730755203 + 2 + 4b524791-bef2-49b1-850b-458730755203 + 89 + 4b524791-bef2-49b1-850b-458730755203 + 3 + 4b524791-bef2-49b1-850b-458730755203 + 3 + 4b524791-bef2-49b1-850b-458730755203 + 3 +

256

Middle Georgia Biofuels | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Middle Georgia Biofuels Jump to: navigation, search Name Middle Georgia Biofuels Place East Dublin, Georgia Zip 31027...

257

Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries  

SciTech Connect

The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

Atreya, Arvind

2013-04-15T23:59:59.000Z

258

Hydrogen Production via a High-Efficiency Low-Temperature Reformer  

DOE Green Energy (OSTI)

Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400C with our invention, as opposed to >800C of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of the packed bed and an adsorptive reactor respectively. In addition CO contamination with <10 to 120 ppm is predicted for the invented process depending upon the cycle time for the PSA type operation. In comparison, the adsorption reactor can also deliver a similar CO contaminant at the low end; however, its high end reaches as high as 300 ppm based upon the simulation of our proposed operating condition. Our experimental results for the packed bed and the membrane reactor deliver 12 and 18% conversion at 400C, approaching the conversion by the mathematical simulation. Due to the time constraint, the experimental study on the conversion of the invented process has not been complete. However, our in-house study using a similar process concept for the water gas shift reaction has demonstrated the reliability of our mathematical simulation for the invented process. In summary, we are confident that the invented process can deliver efficiently high purity hydrogen at a low temperature (~400C). According to our projection, the invented process can further achieve 5% energy savings and ~50% capital savings over conventional reforming for fuel cell applications. The pollution abatement potential associated with the implementation of fuel cells, including the elimination of nitrogen oxides and CO, and the reduction in volatile organics and CO2, can thus be realized with the implementation of this invented process. The projected total market size for equipment sale for the proposed process in US is $1.5 billion annually.

Paul KT Liu; Theo T. Tsotsis

2006-05-31T23:59:59.000Z

259

Reducing Barriers To The Use of High-Efficiency Lighting Systems  

Science Conference Proceedings (OSTI)

With funding from the U.S. Department of Energy (DOE), the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute completed the four-year research project, Reducing Barriers to the Use of High-Efficiency Lighting Systems. The initial objectives were: (1) identifying barriers to widespread penetration of lighting controls in commercial/industrial (C/I) applications that employ fluorescent lamp technologies, and (2) making recommendations to overcome these barriers. The addition of a fourth year expanded the original project objectives to include an examination of the impact on fluorescent lamps from dimming utilizing different lamp electrode heating and dimming ratios. The scope of the project was narrowed to identify barriers to the penetration of lighting controls into commercial-industrial (C/I) applications that employ fluorescent lamp technologies, and to recommend means for overcoming these barriers. Working with lighting manufacturers, specifiers, and installers, the project identified technological and marketing barriers to the widespread use of lighting controls, specifically automatic-off controls, occupancy sensors, photosensors, dimming systems, communication protocols and load-shedding ballasts. The primary barriers identified include cost effectiveness of lighting controls to the building owner, lack of standard communication protocols to allow different part of the control system to communicate effectively, and installation and commissioning issues. Overcoming the identified barriers requires lighting control products on the market to achieve three main goals: (1) Achieve sufficient functionality to meet the key requirements of their main market. (2) Allow significant cost reduction compared to current market standard systems. Cost should consider: hardware capital cost including wiring, design time required by the specifier and the control system manufacturer, installation time required by the electrician, and commissioning time and remedial time required by the electrician and end user. (3) Minimize ongoing perceived overhead costs and inconvenience to the end user, or in other words, systems should be simple to understand and use. In addition, we believe that no lighting controls solution is effective or acceptable unless it contributes to, or does not compromise, the following goals: (1) Productivity--Planning, installation, commissioning, maintenance, and use of controls should not decrease business productivity; (2) Energy savings--Lighting controls should save significant amounts of energy and money in relation to the expense involved in using them (acceptable payback period); and/or (3) Reduced power demand--Society as a whole should benefit from the lowered demand for expensive power and for more natural resources. Discussions of technology barriers and developments are insufficient by themselves to achieve higher penetration of lighting controls in the market place. Technology transfer efforts must play a key role in gaining market acceptance. The LRC developed a technology transfer model to better understand what actions are required and by whom to move any technology toward full market acceptance.

Peter Morante

2005-12-31T23:59:59.000Z

260

Middle school teacher Aaron Muel  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle school teacher Aaron Muel- Middle school teacher Aaron Muel- ler selected a few of his 8th grade stu- dents who had finished the Beauty and Charm unit (about Fermilab and discovering the building blocks of na- ture) to come as his guests. He reports that, "They loved it. They loved seeing the facilities and learn- ing about what scientists feel and use. The B&C unit was good preparation, but once they saw the equipment, the

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Microsoft PowerPoint - 15.1130_Jeff Baker_Final Ultra-High Efficiency Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Efficiency Commercial Buildings High Efficiency Commercial Buildings Office of Energy Efficiency and Renewable Energy's Research Support Facility Research Support Facility Defining a New National Building Energy Performance Standard Defining a New National Building Energy Performance Standard Using Performance-Based Design-Build Acquisition Jeffrey M. Baker Office of Energy Efficiency and Renewable Energy U.S. Department of Energy March 15, 2011 March 15, 2011 Energy Drives National Security, Economic C titi d E i t l Q lit Competitiveness, and Environmental Quality U.S. Energy Consumption U.S. Energy Supply U.S. Energy Consumption U.S. Energy Supply Two Key Components to Achieving Our National Energy Strategy: 2 Two Key Components to Achieving Our National Energy Strategy: * Increase Energy Efficiency Across All Sectors * Increase Contribution of Renewable Energy Supply

262

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant  

E-Print Network (OSTI)

A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

2001-01-01T23:59:59.000Z

263

Evaluation of Lifetime of High Efficiency Organic Photovoltaic Devices: Cooperative Research and Development Final Report, CRADA Number CRD-10-379  

DOE Green Energy (OSTI)

As a part of this joint work, Solarmer and NREL will investigate the lifetime and stability of Organic Photovoltaic Devices based on Solarmer high efficiency active layer materials.

Olson, D.

2013-04-01T23:59:59.000Z

264

High Efficiency Generation of Hydrogen Fuels Using Nuclear Power - for the period August 1, 1999 through October 31, 1999  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power - for the period August 1, 1999 through October 31, 1999. The highlights for this period are: (1) The methodologies for searching the literature for potentially attractive thermochemical water-splitting cycles, storing cycle and reference data, and screening the cycles have been established; and (2) The water-splitting cycle screening criteria were established on schedule.

L. C. Brown

2000-01-01T23:59:59.000Z

265

Information Products Laboratory for Emergency Response The three-tiered disaster management approach, disaster planning, disaster response and disaster  

E-Print Network (OSTI)

IPLER Information Products Laboratory for Emergency Response 1 The three-tiered disaster management approach, disaster planning, disaster response and disaster recovery, is ripe for innovation through on understanding user needs in terms of disaster management and response, defining the range of possible solutions

Zanibbi, Richard

266

Proposed Fidelity Option Line-Up Tier Fund Type Fund Category/Asset Class Proposed Investment Option  

E-Print Network (OSTI)

Fidelity BrokerageLink 3/1/11 #12;Proposed TIAA-CREF Option Line-Up Tier Fund Type Fund Category Fund TIAA-CREF Money Market Fund Fixed Income Fixed Annuity TIAA Traditional Annuity Intermediate Bond Stock Fund CREF Stock Variable Annuity Real Estate Real Estate Fund TIAA-CREF Real Estate Annuity IV

267

Basic studies of 3-5 high efficiency cell components. Annual subcontract report, 15 August 1989--14 August 1990  

DOE Green Energy (OSTI)

This project`s objective is to improve our understanding of the generation, recombination, and transport of carriers within III-V homo- and heterostructures. The research itself consists of fabricating and characterizing solar cell ``building blocks`` such as junctions and heterojunctions as well as basic measurements of material parameters. A significant effort is also being directed at characterizing loss mechanisms in high-quality, III-V solar cells fabricated in industrial research laboratories throughout the United States. The project`s goal is to use our understanding of the device physics of high-efficiency cell components to maximize cell efficiency. A related goal is the demonstration of new cell structures fabricated by molecular beam epitaxy (MBE). The development of measurement techniques and characterization methodologies is also a project objective. This report describes our progress during the fifth and final year of the project. During the past five years, we`ve teamed a great deal about heavy doping effects in p{sup +} and n{sup +} GaAs and have explored their implications for solar cells. We have developed an understanding of the dominant recombination losses in present-day, high-efficiency cells. We`ve learned to appreciated the importance of recombination at the perimeter of the cell and have developed techniques for chemically passivating such edges. Finally, we`ve demonstrated that films grown by molecular beam epitaxy are suitable for high-efficiency cell research.

Lundstrom, M.S.; Melloch, M.R.; Pierret, R.F.; Carpenter, M.S.; Chuang, H.L.; Dodd, P.E.; Keshavarzi, A.; Klausmeier-Brown, M.E.; Lush, G.B.; Stellwag, T.B. [Purdue Univ., Lafayette, IN (United States)

1993-01-01T23:59:59.000Z

268

ADVANCED DIESEL ENGINE AND AFTERTREATMENT TECHNOLOGY DEVELOPMENT FOR TIER 2 EMISSIONS  

DOE Green Energy (OSTI)

Advanced diesel engine and aftertreatment technologies have been developed for multiple engine and vehicle platforms. Tier 2 (2007 and beyond) emissions levels have been demonstrated for a light truck vehicle over a FTP-75 test cycle on a vehicle chassis dynamometer. These low emissions levels are obtained while retaining the fuel economy advantage characteristic of diesel engines. The performance and emissions results were achieved by integrating advanced combustion strategies (CLEAN Combustion{copyright}) with prototype aftertreatment systems. CLEAN Combustion{copyright} allows partial control of exhaust species for aftertreatment integration in addition to simultaneous NOx and PM reduction. Analytical tools enabled the engine and aftertreatment sub-systems development and system integration. The experimental technology development methodology utilized a range of facilities to streamline development of the eventual solution including utilization of steady state and transient dynamometer test-beds to simulate chassis dynamometer test cycles.

Aneja, R.; Bolton, B; Oladipo, A; Pavlova-MacKinnon, Z; Radwan, A

2003-08-24T23:59:59.000Z

269

Puerto Rico - Green Energy Fund Tier I Incentive Program (Puerto Rico) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I Incentive Program (Puerto I Incentive Program (Puerto Rico) Puerto Rico - Green Energy Fund Tier I Incentive Program (Puerto Rico) < Back Eligibility Commercial Industrial Nonprofit Residential Savings Category Solar Buying & Making Electricity Wind Program Info Funding Source Puerto Rico Green Energy Fund Start Date 07/01/2011 Expiration Date 06/30/2020 Program Type State Rebate Program Rebate Amount If the Installed Cost ($/W) is less than the applicable Reference Cost ($/W) set by the Energy Affairs Administration: 40% of Eligible Project Costs If the Installed Cost ($/W) is greater than the applicable Reference Cost ($/W) set by then Energy Affairs Administration: System size (W) multiplied by 40% multiplied by applicable Reference Cost ($/W) Provider Puerto Rico Energy Affairs Administration

270

On wormhole attacks in underwater sensor networks: A two-tier localization approach  

E-Print Network (OSTI)

Under-Water Sensor Network (UWSN) is a novel networking paradigm to explore the uninhabited oceans. However, the characteristics of this new network, such as huge propagation delay, floating node mobility, and limited acoustic link capacity, are significantly different from land-based sensor networks. In this paper we show that underwater denial-of-service attack imposes great threats to any UWSN. Without proper countermeasures, underwater sensor networking is a mission impossible. We propose a localization based approach to answer the challenge. In our design, DUB and DDB, a pair of efficient single-round distance measuring schemes, are critical building blocks to realize our approach inspite of constrained node capability and floating node mobility. In addition, to cope with low/medium node mobiltiy, we propose a two-tier localization scheme to identify short-range wormholes instantly, and long-haul wormholes within a limited latency. Our simulation and implementation confirm the effectiveness of our design. I.

Jiejun Kong; Zhengrong Ji; Weichao Wang; Mario Gerla; Rajive Bagrodia

2004-01-01T23:59:59.000Z

271

middle atlantic | OpenEI  

Open Energy Info (EERE)

middle atlantic middle atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 2, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA middle atlantic Data Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

272

Security in the Middle East  

Science Conference Proceedings (OSTI)

The full range of U.S. security interests in the Middle East is covered in this volume of original contributions from prominent international scholars. Case studies of key countries emphasize the prospects for peaceful political, economic, and cultural change in the region. The Arab-Israeli conflict is examined with particular attention to the ''Palestine problem,'' U.S. policy and diplomacy, and the peace process. Finally, the involvement of the U.S. and the USSR and the policy options open to them are considered. Includes chapters on oil and its role in Middle-East security issues.

Wells, S.F. Jr.; Bruzonsky, M.A.

1986-01-01T23:59:59.000Z

273

Simulation of Dehumidification Characteristics of High Efficiency Residential Central Air-Conditioners in Hot and Humid Climates  

E-Print Network (OSTI)

This study assesses the dehumidifying performance of the high efficiency residential central air conditioners (CAC) in hot/humid climates typified by that of Houston and Galveston. The performance study is based on such factors as: (i) weather (ii) thermostat set point and dead band, and (ill) sizing of unit relative to the design load of the residence. The units are evaluated on their ability to maintain conditions in the ASHRAE comfort zone in a typical residence in Houston area. The units, the thermostat, and the residence are simulated on a minute-by-minute basis using a commercial software (TRNSYS) after making certain modifications to it.

Katipamula, S.; O'Neal, D.; Somasundram, S.

1988-01-01T23:59:59.000Z

274

Program on Technology Innovation: High Efficiency Photovoltaic Research at the Institute of Research and Development on Photovoltaic Energy (IRDEP), 2012  

Science Conference Proceedings (OSTI)

This report describes the advances of the High-Efficiency Photovoltaic (HEPV) Program during 2012. The report focuses on technical advances in the hot-carrier solar-cell program that address compounds with improved photovoltaic (PV) energy-conversion potential. The basic idea of hot-carrier devices is to use a combination of materials and device structures that can tap the thermal power co-generated with the usual PV power harvested in conventional devices. A part of this thermal power, all lost in ...

2013-11-04T23:59:59.000Z

275

Novel InGaAsN pn Junction for High-Efficiency Multiple-Junction Solar Cells  

DOE Green Energy (OSTI)

We report the application of a novel material, InGaAsN, with bandgap energy of 1.05 eV as a junction in an InGaP/GaAs/InGaAsN/Ge 4-junction design. Results of the growth and structural, optical, and electrical properties were demonstrated, showing the promising perspective of this material for ultra high efficiency solar cells. Photovoltaic properties of an as-grown pn diode structure and improvement through post growth annealing were also discussed.

Allerman, A.A.; Chang, P.C.; Gee, J.M.; Hammons, B.E.; Hou, H.Q.; Jones, E.D.; Kurtz, S.R.; Reinhardt, K.C.

1999-03-26T23:59:59.000Z

276

TANK 18 AND 19-F TIER 1A EQUIPMENT FILL MOCK UP TEST SUMMARY  

SciTech Connect

The United States Department of Energy (US DOE) has determined that Tanks 18-F and 19-F have met the F-Tank Farm (FTF) General Closure Plan Requirements and are ready to be permanently closed. The high-level waste (HLW) tanks have been isolated from FTF facilities. To complete operational closure they will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) discouraging future intrusion, and (4) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. Bulk waste removal and heel removal equipment remain in Tanks 18-F and 19-F. This equipment includes the Advance Design Mixer Pump (ADMP), transfer pumps, transfer jets, standard slurry mixer pumps, equipment-support masts, sampling masts, dip tube assemblies and robotic crawlers. The present Tank 18 and 19-F closure strategy is to grout the equipment in place and eliminate vertical pathways by filling voids in the equipment to vertical fast pathways and water infiltration. The mock-up tests described in this report were intended to address placement issues identified for grouting the equipment that will be left in Tank 18-F and Tank 19-F. The Tank 18-F and 19-F closure strategy document states that one of the Performance Assessment (PA) requirements for a closed tank is that equipment remaining in the tank be filled to the extent practical and that vertical flow paths 1 inch and larger be grouted. The specific objectives of the Tier 1A equipment grout mock-up testing include: (1) Identifying the most limiting equipment configurations with respect to internal void space filling; (2) Specifying and constructing initial test geometries and forms that represent scaled boundary conditions; (3) Identifying a target grout rheology for evaluation in the scaled mock-up configurations; (4) Scaling-up production of a grout mix with the target rheology (16 second flow cone value) from 0.25 cubic feet to 4.3 cubic feet. (Ten 0.43 cubic batches were produced because full-scale equipment was not available for the Tier 1A test.); (5) Demonstrating continuous gravity filling of the ADMP mock up test form; (6) Demonstrating continuous gravity filling of 1 inch and 2 inch schedule 40 pipe; and (7) Demonstrating filling of 1 inch and 2 inch schedule 40 pipe from the bottom up by discharging through a tube inserted into the pipes. The Tier 1A mock-up test focused on the ADMP and pipes at least one inch in diameter. The ADMP which is located in center riser of Tank 18-F is a concern because the column for this long-shaft (55 ft) pump is unique and modification to the pump prior to placing it in service limited the flow path options for filling by creating a single flow path for filling and venting the ADMP support column. The large size, vertical orientation, and complicated flow path in the ADMP warrants a detailed description of this piece of ancillary equipment.

Stefanko, D.; Langton, C.

2011-11-04T23:59:59.000Z

277

"Tier","PRIORITY","Total Tickets Logged","Tickets Closed","Currently Open"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix 4 - iManage Help Desk Ticket - Select Systems - Total Issues Report",,,,"2012/01/01 - 2012/04/18" Appendix 4 - iManage Help Desk Ticket - Select Systems - Total Issues Report",,,,"2012/01/01 - 2012/04/18" "Tier","PRIORITY","Total Tickets Logged","Tickets Closed","Currently Open" "Others" ,"Critical" ,"High",5,8,1 ,"Medium",3,,1 ,"Low",,1 "CSC Helpdesk" ,"Critical" ,"High" ,"Medium" ,"Low" "Tier 1" ,"Critical",3 ,"High",819,288 ,"Medium",6669,3930,10 ,"Low",368,270,1 "Tier 2" ,"Critical",,3 ,"High",28,469,24 ,"Medium",721,3061,116 ,"Low",51,147,2 "Tier 3" ,"Critical"

278

Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation  

SciTech Connect

Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

2012-05-01T23:59:59.000Z

279

Application of CIS of high-efficiency PV module fabrication. Annual technical progress report, April 1, 1996--March 31, 1997  

DOE Green Energy (OSTI)

This is the Phase II Annual Technical Report of the subcontract titled {open_quotes}Application of CIS to High Efficiency PV Module fabrication.{close_quotes} The general objectives of the program are the development of a novel, non-vacuum process for CIS film deposition, optimization of the various layers forming the CIS device structure, and fabrication of high efficiency submodules. The specific goals of the project are the development of 13% efficient small area cells and 10% efficient submodules using a novel, low-cost CIS deposition approach. During this research period, the authors concentrated their efforts on three different areas of research. Within the National CIS Partnership Program, they participated in the {open_quotes}substrate/Mo interactions{close_quotes} working group and investigated issues such as Na diffusion from the soda-lime glass substrate into the Mo layers and CIS films. It was determined that the Na content within the Mo layers was not a strong function of the nature of the Mo film. However, diffusion through the Mo layers was found to be a function of the Mo film characteristics as well as a very strong function of the CIS growth process. Na was found to be on the grain boundaries in Mo and CIS layers.

Basol, B.; Kapur, V.; Leidholm, C. [International Solar Electric Technology, Inglewood, CA (United States)] [and others

1997-08-01T23:59:59.000Z

280

High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period February 01, 2001- April 30, 2002  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period February 01, 2001-April 30, 2002. Future nuclear reactors will operate at higher efficiencies and, therefore, at higher temperature than current reactors. High temperatures present the potential for generating hydrogen at high efficiency using a thermochemical process. Thermochemical cycles for the generation of hydrogen from water were extensively studied in the 1970s and early 1980s both in the U.S. and abroad. Since that time, thermochemical water-splitting has not been pursued in the U.S. at any significant level. In Phase 1, we reviewed and analyzed all available data to determine the process best suited to hydrogen production from the advanced nuclear reactors expected to be available in the next 20 to 30 years. The Sulfur-Iodine Cycle was selected for detailed study in Phases 2 and 3. In Phase 2, we investigated means of adapting this cycle to the heat output characteristics of an advanced high temperature nuclear reactor. In Phase 3, we are integrating the cycle and reactor into a unified hydrogen production plant. The highlight of this period was that the scheme of processing the HI/I{sub 2}/H{sub 2}O phase with phosphoric acid is being considered in addition to the reactive distillation scheme.

Brown, L. C.

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period November 1, 2001- January 31, 2001  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period November 1, 2001-January 31, 2001. Future nuclear reactors will operate at higher efficiencies and, therefore, at higher temperature than current reactors. High temperatures present the potential for generating hydrogen at high efficiency using a thermochemical process. Thermochemical cycles for the generation of hydrogen from water were extensively studied in the 1970s and early 1980s both in the U.S. and abroad. Since that time, thermochemical water-splitting has not been pursued in the U.S. at any significant level. In Phase 1, we reviewed and analyzed all available data to determine the process best suited to hydrogen production from the advanced nuclear reactors expected to be available in the next 20 to 30 years. The Sulfur-Iodine Cycle was selected for detailed study in Phases 2 and 3. In Phase 2, we investigated means of adapting this cycle to the heat output characteristics of an advanced high temperature nuclear reactor. In Phase 3, we are integrating the cycle and reactor into a unified hydrogen production plant. The highlight of this period was the size of the nuclear reactor used in the matching has been assumed to be 2400 MWt.

Brown, L. C.

2002-09-01T23:59:59.000Z

282

High Efficiency Generation of Hydrogen Fuels using Nuclear Power for the period May 1, 2002- July 31, 2002  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power for the period May 1, 2002-July 31, 2002. Future nuclear reactors will operate at higher efficiencies and, therefore, at higher temperature than current reactors. High temperatures present the potential for generating hydrogen at high efficiency using a thermochemical process. Thermochemical cycles for the generation of hydrogen from water were extensively studied in the 1970s and early 1980s both in the U.S. and abroad. Since that time, thermochemical water-splitting has not been pursued in the U.S. at any significant level. In Phase 1, we reviewed and analyzed all available data to determine the process best suited to hydrogen production from the advanced nuclear reactors expected to be available in the next 20 to 30 years. The Sulfur-Iodine Cycle was selected for detailed study in Phases 2 and 3. In Phase 2, we investigated means of adapting this cycle to the heat output characteristics of an advanced high temperature nuclear reactor. In Phase 3, we are integrating the cycle and reactor into a unified hydrogen production plant. The highlight of this period was that the sulfuric acid processing portion of the flowsheet was completed.

Brown, L.C.

2002-09-01T23:59:59.000Z

283

High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period August 1, 2001-October 31, 2001  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels Using Nuclear Power for the period August 1, 2001-October 31, 2001. Future nuclear reactors will operate at higher efficiencies and, therefore, at higher temperature than current reactors. High temperatures present the potential for generating hydrogen at high efficiency using a thermochemical process. Thermochemical cycles for the generation of hydrogen from water were extensively studied in the 1970s and early 1980s both in the U.S. and abroad. Since that time, thermochemical water-splitting has not been pursued in the U.S. at any significant level. In Phase 1, we reviewed and analyzed all available data to determine the process best suited to hydrogen production from the advanced nuclear reactors expected to be available in the next 20 to 30 years. The Sulfur-Iodine Cycle was selected for detailed study in Phases 2 and 3. In Phase 2, we investigated means of adapting this cycle to the heat output characteristics of an advanced high temperature nuclear reactor. In Phase 3, we are integrating the cycle and reactor into a unified hydrogen production plant. The highlight of this period is that a project coordination meeting was held with Sandia on October 9, 2001.

Brown, L. C.

2002-09-01T23:59:59.000Z

284

Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Adjustment | Open  

Open Energy Info (EERE)

Tier3Adjustment" Tier3Adjustment" Showing 25 pages using this property. (previous 25) (next 25) 0 0026b4d3-dd02-4423-95e1-56430d887b28 + 0.0254 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 0.0254 + 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.0794 + 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.0794 + 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.0794 + 019e4d28-ad53-4561-8339-bc94b8f9da6c + 0.0162 + 019e4d28-ad53-4561-8339-bc94b8f9da6c + 0.0162 +, 0.0162 + 019e4d28-ad53-4561-8339-bc94b8f9da6c + 0.0162 + 01c9047f-8755-4b5a-a8e3-05b1c46f63ba + 0.00347 + 01c9047f-8755-4b5a-a8e3-05b1c46f63ba + 0.00347 + 0204a5dc-410c-4edf-88b3-80ac1834e924 + 0.0211 + 0204a5dc-410c-4edf-88b3-80ac1834e924 + 0.0211 + 0237ac64-b733-4755-a67b-0126dfc27f8b + 0.0575 + 0237ac64-b733-4755-a67b-0126dfc27f8b + 0.0575 +

285

Property:OpenEI/UtilityRate/EnergyRateStructure/Tier2Adjustment | Open  

Open Energy Info (EERE)

Tier2Adjustment" Tier2Adjustment" Showing 25 pages using this property. (previous 25) (next 25) 0 0026b4d3-dd02-4423-95e1-56430d887b28 + 0.026 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 0.026 + 005281e3-d52e-42dd-a84d-855a96e7e0e9 + 0.0212 + 005281e3-d52e-42dd-a84d-855a96e7e0e9 + 0.0212 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 0.0133 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 0.0133 + 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.0794 + 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.0794 + 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.0794 + 019e4d28-ad53-4561-8339-bc94b8f9da6c + 0.0162 + 019e4d28-ad53-4561-8339-bc94b8f9da6c + 0.0162 +, 0.0162 + 019e4d28-ad53-4561-8339-bc94b8f9da6c + 0.0162 + 01bb7be0-ae81-499d-a24f-04532333b340 + 0.0305 + 01bb7be0-ae81-499d-a24f-04532333b340 + 0.0305 +

286

Minnesota Regional Science Bowl for Middle School Students |...  

Office of Science (SC) Website

Minnesota Regions Minnesota Regional Science Bowl for Middle School Students National Science Bowl (NSB) NSB Home About NSB High School Middle School Middle School Students...

287

Coal Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Middle School Coal Study Guide - Middle School Coal Study Guide - Middle School More Documents & Publications Coal Study Guide for Elementary School Coal Study Guide - High...

288

Oil Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Guide - Middle School Oil Study Guide - Middle School More Documents & Publications Oil Study Guide - High School How is shale gas produced? Coal Study Guide - Middle School...

289

Natural Gas Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Study Guide - Middle School Natural Gas Study Guide - Middle School More Documents & Publications Shale Gas Glossary Oil Study Guide - Middle School What is shale gas?...

290

Natural Gas Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Middle School Natural Gas Study Guide - Middle School More Documents & Publications Oil Study Guide - Middle School Fossil Fuels Study Guide - High School Oil Study Guide - High...

291

2003 National Middle School Science Bowl | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 National Middle School Science Bowl 2003 National Middle School Science Bowl 2003 National Middle School Science Bowl More Documents & Publications Diversity Employment and...

292

Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Rate | Open Energy  

Open Energy Info (EERE)

Rate" Rate" Showing 13 pages using this property. 4 4b524791-bef2-49b1-850b-458730755203 + 5 +, 6 +, 3 +, ... 4b524791-bef2-49b1-850b-458730755203 + 6 + 4b524791-bef2-49b1-850b-458730755203 + 3 + 4b524791-bef2-49b1-850b-458730755203 + 7 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 8 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 6 + 4b524791-bef2-49b1-850b-458730755203 + 6 + E E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 1 + E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 1 + E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 1 + Retrieved from "http://en.openei.org/w/index.php?title=Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Rate&oldid=53975

293

Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Max | Open Energy  

Open Energy Info (EERE)

Max" Max" Showing 13 pages using this property. 4 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 6 + 4b524791-bef2-49b1-850b-458730755203 + 7 + 4b524791-bef2-49b1-850b-458730755203 + 3 +, 4 +, 5 +, ... 4b524791-bef2-49b1-850b-458730755203 + 9 + 4b524791-bef2-49b1-850b-458730755203 + 3 + 4b524791-bef2-49b1-850b-458730755203 + 30 + 4b524791-bef2-49b1-850b-458730755203 + 4 + 4b524791-bef2-49b1-850b-458730755203 + 36 + E E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 200 + E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 200 + E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 200 + Retrieved from "http://en.openei.org/w/index.php?title=Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Max&oldid=539747

294

Novel High Efficiency Photovoltaic Devices Based on the III-N Material System: Final Technical Report, 7 December 2005 - 29 August 2008  

DOE Green Energy (OSTI)

The research shows that InGaN material system can be used to realize high-efficiency solar cells, making contributions to growth, modeling, understanding of loss mechanisms, and process optimization.

Hornsberg, C.; Doolittle, W. A.; Ferguson, I.

2008-10-01T23:59:59.000Z

295

Green Light-Emitting Diode Makes Highly Efficient White Light, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrum of Spectrum of Clean Energy Innovation innovati n Green Light-Emitting Diode Makes Highly Efficient White Light Scientists at the National Renewable Energy Laboratory (NREL) have invented a deep green light-emitting diode (LED) that can lead to higher efficiency white light, which is of prime value in the indoor lighting world. LEDs are fundamentally solar cells operating in reverse-that is, when an electrical current is applied to a thin-film semiconductor, the result is the emission of light. These devices are a key technology for producing a new generation of efficient lighting, in which the amount of light generated far outweighs the amount of heat produced. But at the moment, LEDs that emit white light are produced using an inefficient process known as phosphor conversion. In this process, light from a blue- or ultraviolet-emitting LED energizes

296

Development of high efficiency (14%) solar cell array module. Third quarterly report, July 15, 1979-November 15, 1979  

DOE Green Energy (OSTI)

Most effort was concentrated on development of procedures to provide large area (3'' diameter) high efficiency (approx. 15.5% AM1, 28/sup 0/C) P/N solar cells. These efficiencies had been obtained for 2 x 2 cm area cells, but tests showed that the problem was not reduced silicon quality near the edges of the larger slices. The problems were in optimizing the back-surface field (BSF) process, and its possible interaction with the shallow P+ layer formation. Towards the end of this reporting period a promising process sequence had been identified and is being tested. The module design has been finalized. One hundred and twenty (120) cells will be connected eight (8) in parallel and fifteen (15) in series. The designs and tooling phases have been completed and are awaiting completion of the cells.

Iles, P.A.; Khemthong, S.; Olah, S.; Sampson, W.J.; Ling, K.S.

1980-01-01T23:59:59.000Z

297

Development of a high efficiency proton source for the Frankfurter-Neutronen-Quelle am Stern-Gerlach-Zentrum  

SciTech Connect

A new version of high efficiency proton source is being developed for Frankfurter-Neutronen-Quelle am Stern-Gerlach-Zentrum, a worldwide unique pulsed neutron source. The injector will provide dc proton beam currents of 200 mA at 120 keV with a beam divergence angle of less than 50 mrad. The new design consists of a plasma generator with a multiple filament arrangement and a compact pentode extraction system. The beam will be extracted from a seven hole outlet electrode. Great efforts are made to achieve an adequate operation time ({approx}3 days) of the source as well as to obtain high reliability during that operation period with less than 1 V breakdowns per hour. The following article will present the current status of the proton source development including beam formation simulations with IGUN.

Noerenberg, R.; Ratzinger, U.; Sun, J.; Volk, K. [Institute of Applied Physics, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt am Main (Germany)

2008-02-15T23:59:59.000Z

298

Research on stable, high-efficiency amorphous silicon multijunction modules. Annual subcontract report, 1 January 1992--28 February 1993  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 2 of the R&D program to obtain high-efficiency amorphous alloy multijunction PV (photovoltaic) modules. The highlight of the work includes: (1) demonstration of world-record small-area efficiency of 11.2% after one-sun light-soaking at 50{degrees}C for 600 h using a dual band gap, double-junction structure; and (2) demonstration of initial module efficiency of 10.6% over 0.09-m{sup 2} (1-ft{sup 2}) area using the same double-junction approach. In addition, fundamental studies on material properties and cell performance have shown an interesting correlation between microstructure in the material and cell efficiency both in the initial and light-degraded conditions.

Guha, S. [United Solar Systems Corp., Troy, MI (US)

1993-07-01T23:59:59.000Z

299

Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power  

DOE Green Energy (OSTI)

OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

Brown, L.C.; Funk, J.F.; Showalter, S.K.

1999-12-15T23:59:59.000Z

300

High efficiency photovoltaic device  

DOE Patents (OSTI)

An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

Guha, Subhendu (Troy, MI); Yang, Chi C. (Troy, MI); Xu, Xi Xiang (Findlay, OH)

1999-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

High efficiency solar heater  

SciTech Connect

This patent describes a solar oven comprising canted side-walls defining a heating chamber of inverted pyramidal configuration having a rectangular upper aperture for admitting solar radiation into the chamber, and a closed bottom, the side walls having four blackened non-reflective interior surfaces and translucent means closing the upper aperture for containing heated air with the chamber. The four interior surfaces are exposed to radiation entering the chamber through the translucent means. A frusto-pyramidal reflector is removably mounted externally of the heating chamber and including four reflector surfaces diverging from each other at a somewhat greater angle than the interior surfaces such that light falling onto the external reflector substantially normally to the translucent means is reflected onto an opposite one of the interior surfaces substantially at right angles thereto; and temperature responsive means arranged for opening a vent into the chamber in response to temperature rising in the chamber beyond a predetermined level. The temperature responsive means comprises spring means retained in a compressed state by structural means selected to lose structural integrity near the predetermined level. The spring means is released upon the structural means losing structural integrity near the predetermined level and failing under load imposed by the spring means, whereby the spring means is free to operate to open the vent.

Varney, J.A.; Varney, F.M.

1987-01-20T23:59:59.000Z

302

High efficiency virtual impactor  

DOE Patents (OSTI)

Environmental monitoring of atmospheric air is facilitated by a single stage virtual impactor for separating an inlet flow (Q/sub 0/) having particulate contaminants into a coarse particle flow (Q/sub 1/) and a fine particle flow (Q/sub 2/) to enable collection of such particles on different filters for separate analysis. An inlet particle acceleration nozzle and coarse particle collection probe member having a virtual impaction opening are aligned along a single axis and spaced apart to define a flow separation region at which the fine particle flow (Q/sub 2/) is drawn radially outward into a chamber while the coarse particle flow (Q/sub 1/) enters the virtual impaction opening.

Loo, B.W.

1980-03-27T23:59:59.000Z

303

Eastern Idaho Regional Middle School Science Bowl | U.S. DOE...  

Office of Science (SC) Website

Eastern Idaho Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School...

304

Western Idaho Regional Middle School Science Bowl | U.S. DOE...  

Office of Science (SC) Website

Western Idaho Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School...

305

Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications  

SciTech Connect

We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers whole years of the three-year program 'Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications'. The research activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda}{approx}540nm green LEDs. We have also studied (1) the thermal annealing effect on blue and green LED active region during the p-type layer growth; (2) the effect of growth parameters and structural factors for LED active region on electroluminescence properties; (3) the effect of substrates and orientation on electrical and electro-optical properties of green LEDs. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {omega}-cm) and improved optical quality green LED active region emitting at {approx}540nm by electroluminescence. The LEDs with p-InGaN layer can act as a quantum-confined Stark effect mitigation layer by reducing strain in the QW. We also have achieved (projected) peak IQE of {approx}25% at {lambda}{approx}530 nm and of {approx}13% at {lambda}{approx}545 nm. Visible LEDs on a non-polar substrate using (11-20) {alpha}-plane bulk substrates. The absence of quantum-confined Stark effect was confirmed but further improvement in electrical and optical properties is required.

Russell Dupuis

2007-06-30T23:59:59.000Z

306

Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications  

SciTech Connect

We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers the second year of the three-year program ''Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications''. The second year activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on green LED active region as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda} {approx}540nm green LEDs. We have also studied the thermal annealing effect on blue and green LED active region during the p-type layer growth. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {Omega}-cm) and improved optical quality green LED active region emitting at {lambda} {approx}540nm by electroluminescence. The active region of the green LEDs was found to be much more sensitive to the thermal annealing effect during the p-type layer growth than that of the blue LEDs. We have designed grown, fabricated green LED structures for both 520 nm and 540 nm for the evaluation of second year green LED development.

Russell D. Dupuis

2006-01-01T23:59:59.000Z

307

Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications  

SciTech Connect

We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers whole years of the three-year program 'Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications'. The research activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda}{approx}540nm green LEDs. We have also studied (1) the thermal annealing effect on blue and green LED active region during the p-type layer growth; (2) the effect of growth parameters and structural factors for LED active region on electroluminescence properties; (3) the effect of substrates and orientation on electrical and electro-optical properties of green LEDs. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {omega}-cm) and improved optical quality green LED active region emitting at {approx}540nm by electroluminescence. The LEDs with p-InGaN layer can act as a quantum-confined Stark effect mitigation layer by reducing strain in the QW. We also have achieved (projected) peak IQE of {approx}25% at {lambda}{approx}530 nm and of {approx}13% at {lambda}{approx}545 nm. Visible LEDs on a non-polar substrate using (11-20) {alpha}-plane bulk substrates. The absence of quantum-confined Stark effect was confirmed but further improvement in electrical and optical properties is required.

Russell Dupuis

2007-06-30T23:59:59.000Z

308

Program on Technology Innovation: 2006-2010 Very High-Efficiency Photovoltaics Research at IRDEPAn EDF R&D and CNRS Joint Pro gram  

Science Conference Proceedings (OSTI)

This report covers the collaborative activities of Centre National de la Recherche Scientifique (CNRS) and Electricit de France (EDF) research and development (R&D) to advance the state of high-efficiency photovoltaics (PV) for the period of 2006-2010. This activity is principally concerned with basic research to enhance the long-term prospects of very high-efficiency PV, but it also includes possible near-term outcomes of improved conversion efficiency for existing technologies. The project has develope...

2011-08-31T23:59:59.000Z

309

Clean Cities: Middle Tennessee Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Middle Tennessee Clean Cities Coalition Middle Tennessee Clean Cities Coalition The Middle Tennessee Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Middle Tennessee Clean Cities coalition Contact Information Atha Comiskey 615-884-4908 mtcf@comcast.net Coalition Website Clean Cities Coordinator Atha Comiskey Photo of Atha Comiskey Atha Comiskey has been with Middle Tennessee Clean Fuels since June 2009. Her history with alternative fuel began in 2001 when the Comiskey¿s began their C & E Biodiesel Business as distributors of Green Fuels American Biodiesel Processors. Since June of 2009, Atha has been leading force behind Middle Tennessee Clean Fuels (MTCF), covering 40 middle Tennessee counties. Atha has

310

Multi-tiered sensing and data processing for monitoring ship structures  

SciTech Connect

A comprehensive structural health monitoring (SHM) system is a critical mechanism to ensure hull integrity and evaluate structural performance over the life of a ship, especially for lightweight high-speed ships. One of the most important functions of a SHM system is to provide real-time performance guidance and reduce the risk of structural damage during operations at sea. This is done by continuous feedback from onboard sensors providing measurements of seaway loads and structural responses. Applications of SHM should also include diagnostic capabilities such as identifying the presence of damage, assessing the location and extent of damage when it does occur in order to plan for future inspection and maintenance. The development of such SHM systems is extremely challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with the missions of high performance ships, the lack of data from known damage conditions, the limited sensing that was not designed specifically for SHM, the management of the vast amounts of data, and the need for continued, real-time data processing. This paper will discuss some of these challenges and several outstanding issues that need to be addressed in the context of applying various SHM approaches to sea trials data measured on an aluminum high-speed catamaran, the HSV-2 Swift. A multi-tiered approach for sensing and data processing will be discussed as potential SHM architecture for future shipboard application. This approach will involve application of low cost and dense sensor arrays such as wireless communications in selected areas of the ship hull in addition to conventional sensors measuring global structural response of the ship. A recent wireless hull monitoring demo on FSF-I SeaFighter will be discussed as an example to show how this proposed architecture is a viable approach for long-term and real-time hull monitoring.

Farrar, Charles [Los Alamos National Laboratory; Salvino, Liming [NSWCCD; Lynch, Jerome [UNIV. OF MICHIGAN; Brady, Thomas [NSWCCD

2009-01-01T23:59:59.000Z

311

Catalytic dewaxing of middle distillates  

SciTech Connect

The fractionation and stripping equipment of a middle distillate catalytic dewaxing unit may be eliminated by integrating the catalytic dewaxing unit with a catalytic cracking unit. The light cycle oil sidestream from the cat cracker fractionator, bypasses the sidestream stripper and serves as the feed to the catalytic dewaxing unit. The dewaxed product is separated into a gasoline fraction which is recycled for fractionation in the cat cracker fractionator and a fuel oil fraction which is recycled to the cat cracker sidestream stripper for removal of light materials to produce a low pour fuel oil meeting product specifications.

Antal, M.J.

1982-06-01T23:59:59.000Z

312

Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA  

Science Conference Proceedings (OSTI)

As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-side instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed to drop as sales increase to $4674.50 for a 10-ton unit (i.e. the original cost difference is halved), the life-cycle costs improve. A grid of first cost, annual maintenance cost and electricity price is enumerated and the results presented in the report show the sensitivity of life cycle cost to these three financial parameters in each of eight different climates.

Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

2006-03-31T23:59:59.000Z

313

Development of high-efficiency solar cells on silicon web. First quarterly progress report, April 20-July 15, 1984  

DOE Green Energy (OSTI)

The major objective of the work reported is to improve web base material with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). The program consists of the investigation of carrier loss mechanisms in web silicon, development of techniques to reduce carrier recombination in web, and web cell fabrication using effective surface passivation. Web surfaces have been bevelled with the intention of measuring the electrical activity of the twin plane. Web crystals have been intentionally contaminated with vanadium and titanium to examine the twin-plane-assisted internal gettering by DLTS. Model calculations were done to see the effect of twin-plane activity on V/sub oc/ as a function of resistivity of the web material. Experiments were initiated to study the effect of heat treatment and gettering on the minority carrier diffusion length in webs. Fabrication of high-efficiency web cells using several web crystals was initiated. These cells will include surface passivation and double-layer antireflection coating. (LEW)

Rohatgi, A.; Meier, D.L.; Campbell, R.B.; Rai-Choudhury, P.

1984-08-09T23:59:59.000Z

314

Silicon sheet with molecular beam epitaxy for high efficiency solar cells. Final technical report, March 22, 1982-April 30, 1984  

DOE Green Energy (OSTI)

A two-year program has been carried out for the Jet Propulsion Laboratory in which the UCLA silicon MBE facility has been used to attempt to grow silicon solar cells of high efficiency. MBE ofers the potential of growing complex and arbitrary doping profiles with 10 A depth resolution. It is the only technique taht can readily grow built-in front and back surface fields of any desired depth and value in silicon solar cells, or the more complicated profiles needed for a double junction cascade cell, all in silicon, connected in series by a tunnel junction. Although the dopant control required for such structures has been demonstrated in silicon by UCLA, crystal quality at the p-n junctions is still too poor to allow the other advantages to be exploited. Results from other laboratories indicate that this problem will soon be overcome. A computer analysis of the double cascade all in silicon shows that efficiencies can be raised over that of any single silicon cell by 1 or 2%, and that open circuit voltage of almost twice that of a single cell should be possible.

Not Available

1984-01-01T23:59:59.000Z

315

High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams  

SciTech Connect

High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.

Seo, P. -N. [Los Alamos National Laboratory (LANL); Barron-Palos, L. [Arizona State University; Bowman, J. D. [Los Alamos National Laboratory (LANL); Chupp, T. E. [University of Michigan; Crawford, C. [University of Tennessee, Knoxville (UTK); Dabaghyan, M. [University of New Hampshire; Dawkins, M. [Indiana University; Freedman, S. J. [University of California; Gentile, T. R. [National Institute of Standards and Technology (NIST); Gericke, M. T. [University of Manitoba, Canada; Gillis, R. C. [University of Manitoba, Canada; Greene, G. L. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Hersman, F. W. [University of New Hampshire; Jones, G. L. [Hamilton College, New York; Kandes, M. [University of Michigan; Lamoreaux, S. [Los Alamos National Laboratory (LANL); Lauss, B. [University of California, Berkeley; Leuschner, M. B. [Indiana University; Mahurin, R. [University of Tennessee, Knoxville (UTK); Mason, M. [University of New Hampshire; Mei, J. [Indiana University; Mitchell, G. S. [Los Alamos National Laboratory (LANL); Nann, H. [Indiana University; Page, S. A. [University of Manitoba, Canada; Penttila, S. I. [Los Alamos National Laboratory (LANL); Ramsay, W. D. [University of Manitoba & TRIUMF, Canada; Salas Bacci, A. [Los Alamos National Laboratory (LANL); Santra, S. [Indiana University; Sharma, M. [University of Michigan; Smith, T. B. [University of Dayton, Ohio; Snow, W. [Indiana University; Wilburn, W. S. [Los Alamos National Laboratory (LANL); Zhu, H. [University of New Hampshire

2008-01-01T23:59:59.000Z

316

Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide  

SciTech Connect

Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction.

Schilling, J.B.

1997-09-01T23:59:59.000Z

317

Flow-Through Microfluidic Device for High-Efficiency Transfection of Mammalian Cells through Combined Microelectroporation and Sonoporation  

E-Print Network (OSTI)

In this study we are presenting a proof-of-concept microfluidic device that simultaneously applies the conditions required for microelectroporation and micro-sonoporation in a flow-through fashion that allows for high throughput, high efficiency transfection of mammalian cells. During the design stage, we developed a low-cost, high-resolution polymer microfabrication technique termed laser stenciling. While few other electro-sonoporation protocols have been reported, to the best of our knowledge, we are the first to incorporate microelectroporation, which has been well established in literature to be advantageous to conventional electroporation, with flow-through micro-sonoporation. When comparing transfection efficiency for our electro-sonoporation method to that of sonoporation or microelectroporation alone, we observed single batch improvements up to 20 percent and 17 percent, respectively. The average improvement in efficiency was approximately 15 percent greater than achieved with sonoporation and 10 percent greater than that of electroporation. Importantly, there was little difference in short term cell viability between the three methods (maintained at > 90 percent). The average transfection efficiency for electro-sonoporation was 81.25 percent and cell viability was 91.56 percent. Overall, we have presented a device and electro-sonoporation method that meets or outperforms the transfection efficiency and cell viability standards for HeLa cells set by other reported electroporation and sonoporation methods.

Longsine, Whitney Leigh

2011-05-01T23:59:59.000Z

318

High efficiency epitaxial optical reflector solar cells. Final subcontract report, 1 January 1990--31 October 1992  

DOE Green Energy (OSTI)

This report describes work to test the feasibility of a new solar cell concept -- the epitaxial optical reflector (EOR) solar cell. This cell concept alters current designs for high efficiency cells by changing the optical absorption efficiency of single cells. The change is introduced by the use an epitaxial multilayer reflector as an integral part of the cell to increase the optical path length of certain wavelengths of light in the cell. These changes are expected to increase the open circuit voltage at which power is extracted from the cell. The program is designed to test the feasibility of the use of a broad band epitaxial multilayer reflector grown as an integral part of the device structure to reflect the near-band-edge light back through the device for a second absorption pass. This second pass allows the design of a solar cell with a thinner base, and the use of the epitaxial reflector as a heterojunction carrier-reflecting barrier at the rear of the device. The thinner cell design and altered carrier profile that results from the light- and carrier-reflecting barrier will decrease the carrier concentration gradient and increase the open circuit voltage. The program is structured to have three tasks: (1) Solar Cell and Reflector Modeling, (2) Materials Growth and Optimization, and (3) Solar Cell Fabrication and Characterization.

Dapkus, P.D.; Hummel, S.G. [University of Southern California, Los Angeles, CA (United States)

1993-08-01T23:59:59.000Z

319

Research on stable, high-efficiency amorphous silicon multijunction modules. Semiannual subcontract report, 1 January 1990--30 June 1991  

DOE Green Energy (OSTI)

This report describes research to improve the understanding of amorphous silicon alloys and other relevant non-semiconductor materials for use in high-efficiency, large-area multijunction modules. The research produced an average subcell initial efficiency of 8.8% over a 1-ft{sup 2} area using same-band-gap, dual-junction cells deposited over a ZnO/AlSi back reflector. An initial efficiency of 9.6% was achieved using a ZnO/Ag back reflector over smaller substrates. A sputtering machine will be built to deposit a ZnO/Ag back reflector over a 1-ft{sup 2} area so that a higher efficiency can also be obtained on larger substrates. Calculations have been performed to optimize the grid pattern, bus bars, and cell interconnects on modules. With our present state of technology, we expect a difference of about 6% between the aperture-area and active-area efficiencies of modules. Preliminary experiments show a difference of about 8%. We can now predict the performance of single-junction cells after long-term light exposure at 50{degree}C by exposing cells to short-term intense light at different temperatures. We find that single-junction cells deposited on a ZnO/Ag back reflector show the highest stabilized efficiency when the thickness of the intrinsic layers is about 2000 {angstrom}. 8 refs.

Guha, S. [United Solar Systems Corp., Troy, MI (United States)

1991-12-01T23:59:59.000Z

320

Research on stable, high-efficiency amorphous silicon multijunction modules. Annual subcontract report, 1 January 1991--31 December 1991  

DOE Green Energy (OSTI)

This report describes the progress made during Phase 1 of research and development program to obtain high-efficiency amorphous silicon alloy multijunction modules. Using a large-area deposition system, double-and triple-junction cells were made on stainless steel substrates of over 1 ft{sup 2} area with Ag and ZnO predeposited back reflector. Modules of over 1 ft{sup 2} were produced with between 9.2% and 9.9 initial aperture-area efficiencies as measured under a USSC Spire solar simulator. Efficiencies as measured under the NREL Spire solar simulator were found to be typically 15% to 18% lower. The causes for this discrepancy are now being investigated. The modules show about 15% degradation after 600 hours of one-sun illumination at 50{degrees}C. To optimize devices for higher stabilized efficiency, a new method was developed by which the performance of single-junction cells after long-term, one-sun exposure at 50{degrees}C can be predicted by exposing cells to short-term intense light at different temperatures. This method is being used to optimize the component cells of the multijunction structure to obtain the highest light-degraded efficiency.

Banerjee, A.; Chen, E.; Clough, R.; Glatfelter, T.; Guha, S.; Hammond, G.; Hopson, M.; Jackett, N.; Lycette, M.; Noch, J.; Palmer, T.; Pawlikiewicz, A.; Rosenstein, I.; Ross, R.; Wolf, D.; Xu, X.; Yang, J.; Younan, K.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High-efficiency one-sun photovoltaic module demonstration using solar-grade CZ silicon. Final report  

DOE Green Energy (OSTI)

This work was performed jointly by Sandia National Laboratories (Albuquerque, NM) and Siemens Solar Industries (Camarillo, CA) under a Cooperative Research and Development Agreement (CRADA 1248). The work covers the period May 1994 to March 1996. The purpose of the work was to explore the performance potential of commercial, photovoltaic-grade Czochralski (Cz) silicon, and to demonstrate this potential through fabrication of high-efficiency cells and a module. Fabrication of the module was omitted in order to pursue further development of advanced device structures. The work included investigation of response of the material to various fabrication processes, development of advanced cell structures using the commercial material, and investigation of the stability of Cz silicon solar cells. Some important achievements of this work include the following: post-diffusion oxidations were found to be a possible source of material contamination; bulk lifetimes around 75 pts were achieved; efficiencies of 17.6% and 15.7% were achieved for large-area cells using advanced cell structures (back-surface fields and emitter wrap-through); and preliminary investigations into photodegradation in Cz silicon solar cells found that oxygen thermal donors might be involved. Efficiencies around 20% should be possible with commercial, photovoltaic-grade silicon using properly optimized processes and device structures.

Gee, J.M.

1996-10-01T23:59:59.000Z

322

Response of the Middle Atmosphere to CO2 Doubling: Results from the Canadian Middle Atmosphere Model  

Science Conference Proceedings (OSTI)

The Canadian Middle Atmosphere Model (CMAM) has been used to examine the middle atmosphere response to CO2 doubling. The radiative-photochemical response induced by doubling CO2 alone and the response produced by changes in prescribed SSTs are ...

V. I. Fomichev; A. I. Jonsson; J. de Grandpr; S. R. Beagley; C. McLandress; K. Semeniuk; T. G. Shepherd

2007-04-01T23:59:59.000Z

323

Research on stable, high-efficiency amorphous silicon multijunction modules. Semiannual subcontract report, 1 January 1992--30 June 1992  

DOE Green Energy (OSTI)

This report describes research on semiconductor and non-semiconductor materials to enhance the performance of multi-band-gap, multijunction panel with an area greater than 900 cm{sup 2} by 1992. Double-junction and triple-junction cells are mode on a Ag/ZnO back reflector deposited on stainless steel substrates. An a-SiGe alloy is used for the i-layer in the bottom and the middle cells; the top cell uses an amorphous silicon alloy. After the evaporation of an antireflection coating, silver grids and bus bars are put on the top surface and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a 1-ft{sup 2} monolithic module.

Guha, S. [United Solar Systems Corp., Troy, MI (United States)

1992-09-01T23:59:59.000Z

324

Research on stable, high-efficiency amorphous silicon multijunction modules. Final subcontract report, 1 January 1991--31 August 1994  

DOE Green Energy (OSTI)

The principal objective of this program is to conduct research on semiconductor materials and non-semiconductor materials to enhance the performance of multibandgap, multijunction, large-area amorphous silicon-based alloy modules. The goal for this program is to demonstrate stabilized module efficiency of 12% for multijunction modules of area greater than 900 cm{sup 2}. Double-junction and triple-junction cells are made on Ag/ZnO back reflector deposited on stainless steel substrates. The top cell uses a-Si alloy; a-SiGe alloy is used for the i layer in the middle and the bottom cells. After evaporation of antireflection coating, silver grids and bus bars are put on the top surface, and the panel is encapsulated in an ethylene vinyl acetate (EVA)/Tefzel structure to make a one-square-foot monolithic module.

Guha, S. [United Solar Systems Corp., Troy, MI (United States)

1994-10-01T23:59:59.000Z

325

High Efficiency Thin Film CdTe and a-Si Based Solar Cells: Final Technical Report, 4 March 1998--15 October 2001  

DOE Green Energy (OSTI)

This is the final report covering about 42 months of this subcontract for research on high-efficiency CdTe-based thin-film solar cells and on high-efficiency a-Si-based thin-film solar cells. Phases I and II have been extensively covered in two Annual Reports. For this Final Report, highlights of the first two Phases will be provided and then detail will be given on the last year and a half of Phase III. The effort on CdTe-based materials is led by Prof. Compaan and emphasizes the use of sputter deposition of the semiconductor layers in the fabrication of CdS/CdTe cells. The effort on high-efficiency a-Si materials is led by Prof. Deng and emphasizes plasma-enhanced chemical vapor deposition for cell fabrication with major efforts on triple-junction devices.

Compaan, A. D.; Deng, X.; Bohn, R. G.

2003-10-01T23:59:59.000Z

326

Final Technical Progress Report: High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program; July 14, 2010 - January 13, 2012  

DOE Green Energy (OSTI)

This is the final technical progress report of the High-Efficiency Low-Cost Thin-Film GaAs Photovoltaic Module Development Program. Alta Devices has successfully completed all milestones and deliverables established as part of the NREL PV incubator program. During the 18 months of this program, Alta has proven all key processes required to commercialize its solar module product. The incubator focus was on back end process steps directed at conversion of Alta's high quality solar film into high efficiency 1-sun PV modules. This report describes all program deliverables and the work behind each accomplishment.

Mattos, L.

2012-03-01T23:59:59.000Z

327

Research on the basic understanding of high efficiency in silicon solar cells. Annual report, 1 December 1982-30 November 1983  

DOE Green Energy (OSTI)

This report presents results of research designed to develop a basic understanding of high-efficiency silicon solar cells and achieve cell efficiencies greater than 17% by employing innovative concepts of material preparation, cell design, and fabrication technology. The research program consisted of a theoretical effort to develop models for very high-efficiency cell designs, experimental verification of the designs, and improved understanding of efficiency-limiting mechanisms such as heavy doping effects and bulk and surface recombination. Research was performed on high-lifetime float-zone silicon, the baseline materials, low-resistivity gallium-doped czochralski silicon, and boron-doped float-zone silicon.

Rohatgi, A.; Rai-Choudhury, P.

1984-09-01T23:59:59.000Z

328

Final LDRD report : design and fabrication of advanced device structures for ultra high efficiency solid state lighting.  

SciTech Connect

The goal of this one year LDRD was to improve the overall efficiency of InGaN LEDs by improving the extraction of light from the semiconductor chip. InGaN LEDs are currently the most promising technology for producing high efficiency blue and green semiconductor light emitters. Improving the efficiency of InGaN LEDs will enable a more rapid adoption of semiconductor based lighting. In this LDRD, we proposed to develop photonic structures to improve light extraction from nitride-based light emitting diodes (LEDs). While many advanced device geometries were considered for this work, we focused on the use of a photonic crystal for improved light extraction. Although resonant cavity LEDs and other advanced structures certainly have the potential to improve light extraction, the photonic crystal approach showed the most promise in the early stages of this short program. The photonic crystal (PX)-LED developed here incorporates a two dimensional photonic crystal, or photonic lattice, into a nitride-based LED. The dimensions of the photonic crystal are selected such that there are very few or no optical modes in the plane of the LED ('lateral' modes). This will reduce or eliminate any radiation in the lateral direction so that the majority of the LED radiation will be in vertical modes that escape the semiconductor, which will improve the light-extraction efficiency. PX-LEDs were fabricated using a range of hole diameters and lattice constants and compared to control LEDs without a photonic crystal. The far field patterns from the PX-LEDs were dramatically modified by the presence of the photonic crystal. An increase in LED brightness of 1.75X was observed for light measured into a 40 degree emission cone with a total increase in power of 1.5X for an unencapsulated LED.

Koleske, Daniel David; Bogart, Katherine Huderle Andersen; Shul, Randy John; Wendt, Joel Robert; Crawford, Mary Hagerott; Allerman, Andrew Alan; Fischer, Arthur Joseph

2005-04-01T23:59:59.000Z

329

A high efficiency, soft switching dc-dc converter with adaptive current-ripple control for portable applications  

E-Print Network (OSTI)

AbstractA novel control scheme for improving the power efficiency of low-voltage dcdc converters for battery-powered, portable applications is presented. In such applications, light-load efficiency is crucial for extending battery life, since mobile devices operate in stand-by mode for most of the time. The proposed technique adaptively reduces the inductor current ripple with decreasing load current while soft switching the converter to also reduce switching losses, thereby significantly improving light-load efficiency and therefore extending the operation life of battery-powered devices. A load-dependent, mode-hopping strategy is employed to maintain high efficiency over a wide load range. Hysteretic (sliding-mode) control with user programmable hysteresis is implemented to adaptively regulate the current ripple and therefore optimize conduction and switching losses. Experimental results show that for a 1-A, 5- to 1.8-V buck regulator, the proposed technique achieved 5 % power efficiency improvement (from 72 % to 77%) at 100 mA of load current and a 1.5% improvement (from 84 % to 85.5%) at 300 mA, which constitute light-load efficiency improvements, when compared to the best reported, state-of-the-art techniques. As a result, the battery life in a typical digital signalr processing microprocessor application is improved by 7%, which demonstrates the effectiveness of the proposed solution. Index TermsBattery life, buck converter, dcdc converter, efficiency, hysteretic control, sliding-mode control, soft switching, switching regulator.

Siyuan Zhou; Student Member; Gabriel A. Rincn-mora; Senior Member

2006-01-01T23:59:59.000Z

330

Technology Development for High-Efficiency Solar Cells and Modules Using Thin (<80 um) Single-Crystal Silicon Wafers Produced by Epitaxy: June 11, 2011 - April 30, 2013  

DOE Green Energy (OSTI)

Final technical progress report of Crystal Solar subcontract NEU-31-40054-01. The objective of this 18-month program was to demonstrate the viability of high-efficiency thin (less than 80 um) monocrystalline silicon (Si) solar cells and modules with a low-cost epitaxial growth process.

Ravi, T. S.

2013-05-01T23:59:59.000Z

331

High efficiency thin-film GaAs solar cells. First interim report, March 1--August 30, 1977  

DOE Green Energy (OSTI)

The objective is to demonstrate the feasibility of producing high-efficiency (15% or greater) thin-film GaAs solar cells with costs suitable for terrestrial solar electric power generation. The approach is that of growing GaAs by organio-metallic chemical vapor deposition on recrystallized germanium (Ge) films previously deposited on metal substrates and fabricating AMOS (Antireflecting Metal-Oxide-Semiconductor) solar cells on the GaAs. Previously it had been determined that a water vapor-grown native oxide (temperature = 25/sup 0/C) was the most useful native oxide for AMOS cells. A new chemical surface preparation prior to oxide growth led to more uniform oxides and reduced interface contamination, yielding lower reverse saturation current densities, a near-unity diode ideality factor, and better reproducibility. Substituting silver (Ag) for gold metallization showed no change in starting cell efficiency, but did greatly improve high temperature stability of the AMOS solar cell. A new study was completed on antireflection coatings on AMOS GaAs solar cells, taking into account the spectral response of the cell and nature of the solar spectra, and the results submitted for publication. XPS (X-ray Photoelectron Spectroscopy) studies had found earlier that the more efficient native oxides had primarily As/sub 2/O/sub 3/ and Ga/sub 2/O/sub 3/ with little GaAsO/sub 4/. A new chemical step etching was developed which can be used to profile the oxide in 5- to 7-A/sup 0/ steps without modifying the oxide chemistry as does ion sputtering. A new Schottky barrier structure is described which can give cell efficiencies up to 16% without oxide interfacial layer effects and 20 to 22% with a moderate interfacial layer effect. AMOS solar cells fabricated on sliced polycrystalline GaAs wafers with 100- to 500-..mu..m grains using Sb/sub 2/O/sub 3/ deposited oxides showed 14% cell efficiency compared to 16.2% in a region with few grains.

Stirn, R.J.

1977-12-01T23:59:59.000Z

332

InGaAsN: A Novel Material for High-Efficiency Solar Cells and Advanced Photonic Devices  

DOE Green Energy (OSTI)

This report represents the completion of a 6 month Laboratory-Directed Research and Development (LDRD) program that focused on research and development of novel compound semiconductor, InGaAsN. This project seeks to rapidly assess the potential of InGaAsN for improved high-efficiency photovoltaic. Due to the short time scale, the project focused on quickly investigating the range of attainable compositions and bandgaps while identifying possible material limitations for photovoltaic devices. InGaAsN is a new semiconductor alloy system with the remarkable property that the inclusion of only 2% nitrogen reduces the bandgap by more than 30%. In order to help understand the physical origin of this extreme deviation from the typically observed nearly linear dependence of alloy properties on concentration, we have investigated the pressure dependence of the excited state energies using both experimental and theoretical methods. We report measurements of the low temperature photoluminescence energy of the material for pressures between ambient and 110 kbar. We describe a simple, density-functional-theory-based approach to calculating the pressure dependence of low lying excitation energies for low concentration alloys. The theoretically predicted pressure dependence of the bandgap is in excellent agreement with the experimental data. Based on the results of our calculations, we suggest an explanation for the strongly non-linear pressure dependence of the bandgap that, surprisingly, does not involve a nitrogen impurity band. Additionally, conduction-band mass measurements, measured by three different techniques, will be described and finally, the magnetoluminescence determined pressure coefficient for the conduction-band mass is measured. The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar cell, with 1.0 eV bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies >70% are obtained. Optical studies indicate that defects or impurities, from doping and nitrogen incorporation, limit cell performance.

Allerman, Andrew A.; Follstaedt, David M.; Gee, James M.; Jones, Eric D.; Kurtz, Steven R.; Modine, Norman A.

1999-07-01T23:59:59.000Z

333

Manufacturing of High-Efficiency Bi-Facial Tandem Concentrator Solar Cells: February 20, 2009--August 20, 2010  

DOE Green Energy (OSTI)

Spire Semiconductor made concentrator photovoltaic (CPV) cells using a new bi-facial growth process and met both main program goals: a) 42.5% efficiency 500X (AM1.5D, 25C, 100mW/cm2); and b) Ready to supply at least 3MW/year of such cells at end of program. We explored a unique simple fabrication process to make a N/P 3-junction InGaP/GaAs/InGaAs tandem cells . First, the InGaAs bottom cell is grown on the back of a GaAs wafer. The wafers are then loaded into a cassette, spin-rinsed to remove particles, dipped in dilute NH4OH and spin-dried. The wafers are then removed from the cassette loaded the reactor for GaAs middle and InGaP top cell growth on the opposite wafer face (bi-facial growth). By making the epitaxial growth process a bit more complex, we are able to avoid more complex processing (such as large area wafer bonding or epitaxial liftoff) used in the inverted metamorphic (IMM) approach to make similar tandem stacks. We believe the yield is improved compared to an IMM process. After bi-facial epigrowth, standard III-V cell steps (back metal, photolithography for front grid, cap etch, AR coat, dice) are used in the remainder of the process.

Wojtczuk , S.

2011-06-01T23:59:59.000Z

334

Research on stable, high efficiency amorphous silicon multijunction modules. Semiannual technical progress report, 1 May 1991--31 October 1991  

DOE Green Energy (OSTI)

Improvements towards a goal of a 12.5% initial triple-junction module efficiency require the use of a wide gap top-layer for improved open circuit voltage, higher transmission from the transparent front contact and more highly transmitting doped layers. To address the first issue, there has been continued development of a-SiC:H with the utilization of several novel feedstocks to control the atomic structure of the solid. These films have transport properties superior to the best results reported for a-SiC:H. Preliminary results with devices exhibits a stability comparable to a-Si:H, while previous results with a-SiC:H have generally shown for higher rates of degradation. Module fabrication has been refined to the extent that comparable module and small area device efficiencies are readily obtained. Despite the high initial efficiencies (9%--10%) obtained in 935 cm{sup 2} modules employing devices with 4000{Angstrom} thick middle junctions, higher than expected rates of degradation were found. The cause of the anomalous degradation was traced to shunts present in the device arising from defects in the tin oxide coating. NREL degradation results of triple-junction modules showed stabilized performance of the initial efficiency for modules prepared during the period in which shunts were a problem. 20 refs.

Catalano, A.; Arya, R.R.; Bennett, M.; Chen, L.; D`Aiello, R.; Fieselmann, B.; Li, Y.; Newton, J.; Podlesny, R.; Wiedeman, S.; Yang, L. [Solarex Corp., Newtown, PA (United States). Thin Film Div.

1992-02-01T23:59:59.000Z

335

DC Regional Middle School Science Bowl | U.S. DOE Office of Science...  

Office of Science (SC) Website

Washington DC Regions DC Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches...

336

Chicago Regional Middle School Science Bowl | U.S. DOE Office...  

Office of Science (SC) Website

Illinois Regions Chicago Regional Middle School Science Bowl National Science Bowl (NSB) NSB Home About NSB High School Middle School Middle School Students Middle School...

337

High Efficiency Triple-Junction Amorphous Silicon Alloy Photovoltaic Technology, Final Technical Report, 6 March 1998 - 15 October 2001  

DOE Green Energy (OSTI)

This report describes the research program intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous silicon (a-Si) alloy cells, and modules with low manufacturing cost and high reliability. United Solar uses a spectrum-splitting, triple-junction cell structure. The top cell uses an amorphous silicon alloy of {approx}1.8-eV bandgap to absorb blue photons. The middle cell uses an amorphous silicon germanium alloy ({approx}20% germanium) of {approx}1.6-eV bandgap to capture green photons. The bottom cell has {approx}40% germanium to reduce the bandgap to {approx}1.4-eV to capture red photons. The cells are deposited on a stainless-steel substrate with a predeposited silver/zinc oxide back reflector to facilitate light-trapping. A thin layer of antireflection coating is applied to the top of the cell to reduce reflection loss. The major research activities conducted under this program were: (1) Fundamental studies to improve our understanding of materials and devices; the work included developing and analyzing a-Si alloy and a-SiGe alloy materials prepared near the threshold of amorphous-to-microcrystalline transition and studying solar cells fabricated using these materials. (2) Deposition of small-area cells using a radio-frequency technique to obtain higher deposition rates. (3) Deposition of small-area cells using a modified very high frequency technique to obtain higher deposition rates. (4) Large-area cell research to obtain the highest module efficiency. (5) Optimization of solar cells and modules fabricated using production parameters in a large-area reactor.

Guha, S.

2001-11-08T23:59:59.000Z

338

National Science Bowl Update: Middle School Teams from Maryland...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Bowl Update: Middle School Teams from Maryland and Indiana to Compete for National Championship on Monday National Science Bowl Update: Middle School Teams from Maryland...

339

Oil Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Middle School More Documents & Publications Oil Study Guide - High School Natural Gas Study Guide - Middle School Secure Fuels from Domestic Resources - Oil Shale and Tar Sands...

340

Photo of the Week: Students from Roosevelt Middle School win...  

NLE Websites -- All DOE Office Websites (Extended Search)

Students from Roosevelt Middle School win Argonne's 2013 Regional Science Bowl Photo of the Week: Students from Roosevelt Middle School win Argonne's 2013 Regional Science Bowl...

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ADVANCED BIOMASS REBURNING FOR HIGH EFFICIENCY NOx CONTROL AND BIOMASS REBURNING - MODELING/ENGINEERING STUDIES JOINT FINAL REPORT  

DOE Green Energy (OSTI)

This report presents results of studies under a Phase II SBIR program funded by the U. S. Department of Agriculture, and a closely coordinated project sponsored by the DOE National Energy Technology Laboratory (NETL, formerly FETC). The overall Phase II objective of the SBIR project is to experimentally optimize the biomass reburning technologies and conduct engineering design studies needed for process demonstration at full scale. The DOE project addresses supporting issues for the process design including modeling activities, economic studies of biomass handling, and experimental evaluation of slagging and fouling. The performance of biomass has been examined in a 300 kW (1 x 10{sup 6} Btu/hr) Boiler Simulator Facility under different experimental conditions. Fuels under investigation include furniture waste, willow wood and walnut shells. Tests showed that furniture pellets and walnut shells provided similar NO{sub x} control as that of natural gas in basic reburning at low heat inputs. Maximum NO{sub x} reduction achieved with walnut shell and furniture pellets was 65% and 58% respectively. Willow wood provided a maximum NO{sub x} reduction of 50% and was no better than natural gas at any condition tested. The efficiency of biomass increases when N-agent is injected into reburning and/or burnout zones, or along with OFA (Advanced Reburning). Co-injection of Na{sub 2}CO{sub 3} with N-agent further increases efficiency of NO{sub x} reduction. Maximum NO{sub x} reduction achieved with furniture pellets and willow wood in Advanced Reburning was 83% and 78% respectively. All combustion experiments of the Phase II project have been completed. All objectives of the experimental tasks were successfully met. The kinetic model of biomass reburning has been developed. Model agrees with experimental data for a wide range of initial conditions and thus correctly represents main features of the reburning process. Modeling suggests that the most important factors that provide high efficiency of biomass in reburning are low fuel-N content and high content of alkali metals in ash. These results indicate that the efficiency of biomass as a reburning fuel may be predicted based on its ultimate, proximate, and ash analyses. The results of experimental and kinetic modeling studies were utilized in applying a validated methodology for reburning system design to biomass reburning in a typical coal-fired boiler. Based on the trends in biomass reburning performance and the characteristics of the boiler under study, a preliminary process design for biomass reburning was developed. Physical flow models were applied to specific injection parameters and operating scenarios, to assess the mixing performance of reburning fuel and overfire air jets which is of paramount importance in achieving target NO{sub x} control performance. The two preliminary cases studied showed potential as candidate reburning designs, and demonstrated that similar mixing performance could be achieved in operation with different quantities of reburning fuel. Based upon this preliminary evaluation, EER has determined that reburning and advanced reburning technologies can be successfully applied using biomass. Pilot-scale studies on biomass reburning conducted by EER have indicated that biomass is an excellent reburning fuel. This generic design study provides a template approach for future demonstrations in specific installations.

Vladimir M. Zamansky; Mark S. Sheldon; Vitali V. Lissianski; Peter M. Maly; David K. Moyeda; Antonio Marquez; W. Randall Seeker

2000-10-01T23:59:59.000Z

342

Non-streaming high-efficiency perforated semiconductor neutron detectors, methods of making same and measuring wand and detector modules utilizing same  

DOE Patents (OSTI)

Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.

McGregor, Douglas S. (Riley, KS); Shultis, John K. (Manhattan, KS); Rice, Blake B. (Manhattan, KS); McNeil, Walter J. (Winnfield, KS); Solomon, Clell J. (Wichita, KS); Patterson, Eric L. (Manhattan, KS); Bellinger, Steven L. (Manhattan, KS)

2010-12-21T23:59:59.000Z

343

Recovery Act: High-Efficiency, Wideband Three-Phase Rectifiers and Adaptive Rectifier Management for Telecomm Central Office and Large Data Center Applications  

Science Conference Proceedings (OSTI)

Lineage Power and Verizon teamed up to address a DOE funding opportunity focused on improving the power conversion chain in telecommunications facilities and data centers. The project had three significant elements: the design and development of high efficiency and high power three-phase rectifiers by Lineage Power, design and development of software to optimize overall plant energy efficiency by Lineage Power, and a field trial in active Verizon telecommunications facilities where energy consumption was measured before and after efficiency upgrades.

Mark A. Johnson

2012-06-29T23:59:59.000Z

344

High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells: Final Technical Report, 1 September 2001--6 March 2005  

SciTech Connect

The objectives for the University of Toledo are to: (1) establish a transferable knowledge and technology base for fabricating high-efficiency triple-junction a-Si-based solar cells, and (2) develop high-rate deposition techniques for the growing a-Si-based and related alloys, including poly-Si, c-Si, a-SiGe, and a-Si films and photovoltaic devices with these materials.

Deng, X.

2006-01-01T23:59:59.000Z

345

INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM  

E-Print Network (OSTI)

GLOSSARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .for LBL by EIA staff. V. GLOSSARY "Middle distillate" means

Hopelain, D.G.

2011-01-01T23:59:59.000Z

346

Middle School | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle School Middle School National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Print Text Size: A A A RSS Feeds FeedbackShare Page 2013 Middle School Teams 2013 Middle School National Teams The National Science Bowl® for Middle School Students was started in 2002 and includes two types of competitions - an academic math and science competition and a model car race. The car race provides the students with a

347

Armageddon, oil, and the Middle East crisis  

SciTech Connect

This book relates the intricate subject of biblical prophecy to the current crisis in the Middle East. With the development of oil politics, Dr. Walvoord believes a new world government will emerge, centered in the Middle East, which will eclipse the United States and Russia as world powers. The world government will be subjected to catastrophic, divine judgments which precipitate a gigantic world war culminating in Armageddon. Each chapter is devoted to the scriptural explanations of events leading to the second coming of Christ. The result is a prophetic calendar summing up to the countdown to Armageddon. Some of the chapter titles include: the Arab oil blackmail; watch Jerusalen; the rising tide of world religion; the coming Middle East peace; the coming world dictator; and Armageddon: the world's death struggle.

Walvoord, J.F.; Walvoord, J.E.

1980-01-01T23:59:59.000Z

348

Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL  

SciTech Connect

The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

D. Kokkinos

2005-04-28T23:59:59.000Z

349

High-Throughput Proteomics Using High Efficiency Multiple-Capillary Liquid Chromatography With On-Line High-Performance ESI FTICR Mass Spectrometry  

Science Conference Proceedings (OSTI)

We report on the design and application of a high-efficiency multiple-capillary liquid chromatography (LC) system for high-throughput proteome analysis. The multiple-capillary LC system was operated at the pressure of 10,000 psi using commercial LC pumps to deliver the mobile phase and newly developed passive feedback valves to switch the mobile phase flow and introduce samples. The multiple-capillary LC system was composed of several serially connected dual-capillary column devices. The dual-capillary column approach was designed to eliminate the time delay for regeneration (or equilibrium) of the capillary column after its use under the mobile phase gradient condition (i.e. one capillary column was used in separation and the other was washed using mobile phase A). The serially connected dual-capillary columns and ESI sources were operated independently, and could be used for either''backup'' operation or with other mass spectrometer(s). This high-efficiency multiple-capillary LC system uses switching valves for all operations and is highly amenable to automation. The separations efficiency of dual-capillary column device, optimal capillary dimensions (column length and packed particle size), suitable mobile phases for electrospray, and the capillary re-generation were investigated. A high magnetic field (11.5 tesla) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer was coupled on-line with this high-efficiency multiple-capillary LC system through an electrospray ionization source. The capillary LC provided a peak capacity of {approx}600, and the 2-D capillary LC-FTICR provided a combined resolving power of > 6 x 10 7 polypeptide isotopic distributions. For yeast cellular tryptic digests, > 100,000 polypeptides were typically detected, and {approx}1,000 proteins can be characterized in a single run.

Shen, Yufeng (BATTELLE (PACIFIC NW LAB)); Tolic, Nikola (BATTELLE (PACIFIC NW LAB)); Zhao, Rui (ASSOC WESTERN UNIVERSITY); Pasa Tolic, Ljiljana (BATTELLE (PACIFIC NW LAB)); Li, Lingjun (Illinois Univ Of-Urbana/Champa); Berger, Scott J. (ASSOC WESTERN UNIVERSITY); Harkewicz, Richard (BATTELLE (PACIFIC NW LAB)); Anderson, Gordon A. (BATTELLE (PACIFIC NW LAB)); Belov, Mikhail E. (BATTELLE (PACIFIC NW LAB)); Smith, Richard D. (BATTELLE (PACIFIC NW LAB))

2000-12-01T23:59:59.000Z

350

Basic studies of III-V high-efficiency cell components: Annual subcontract report, 15 August 1985-14 August 1986  

DOE Green Energy (OSTI)

This report documents research on the fabrication and photovoltaic characterization of the basic building blocks of III-V cells: the pn junction, the pn heterojunction, the isotype (p-p and n-n) heterojunction, and graded-gap semiconductors. The goal of the project is to maximize cell performance by characterizing the electrical properties of high-efficiency cell components. Other goals are to demonstrate new cell structures fabricated by molecular beam epitaxy (MBE), develop measurement techniques, and characterize methodologies. This work should help identify paths toward higher efficiency III-V cells.

Lundstrom, M S; Melloch, M R; Kyono, C S; McMahon, C P; Noren, R E; Rancour, D P

1987-03-01T23:59:59.000Z

351

Spray nozzle pattern test for the DWPF HEME task technical plan. [Defense Waste Processing Facility (DWPF), High-Efficiency Mist Eliminators (HEME)  

SciTech Connect

The DWPF melter off-gas systems have two High-Efficiency Mist Eliminators (HEME) upstream of the High-Efficiency Particulates Air filters (HEPA) to remove fine droplets and particulates from the off-gas. The HEMEs consist of three filter candles. Each filter candle consists of a 0.5 inch layer of 30 micron diameter glass fiber on the upstream face followed by a 2.5 inch layer of 8-micron-diameter glass fiber packed at 11 lbs per cubic foot. The coarse 30-micron filter serves as a prefilter and extends the life of the HEME filter. To have an acceptable fitter life and an efficient HEMIE operation, air atomized water is sprayed into the off-gas stream entering the 14EME and onto the HEMEE surface. The water spray keeps the HEME wet which would dissolve the soluble particulates and enhance the HEME efficiency. A properly designed spray nozzle should wet the three candies of the HEME filter completely.

Lee, L.

1991-11-15T23:59:59.000Z

352

2010 DOE National Science Bowl Photos - Will James Middle School...  

Office of Science (SC) Website

A A A RSS Feeds FeedbackShare Page Will James Middle School Team as they compete in the Solar Car Challenge at the National Science Bowl for middle school students in Washington...

353

2010 DOE National Science Bowl Photos - Will James Middle School...  

Office of Science (SC) Website

A A A RSS Feeds FeedbackShare Page The Will James Middle School team competes in the Solar Car Challenge at the National Science Bowl in Washington, DC. Will James Middle School...

354

Idaho Regional Middle School Science Bowl | U.S. DOE Office of...  

Office of Science (SC) Website

Programs WDTS Home NSB Home Middle School Middle School Regionals Idaho Regions Idaho Regional Middle School Science Bowl National Science Bowl (NSB) NSB...

355

Middle School Academic Competition - Round Robin | U.S. DOE Office...  

Office of Science (SC) Website

Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination News Media WDTS Home Contact...

356

High Efficiency Fans and High Efficiency Electrical Motors  

E-Print Network (OSTI)

Replacing nominal efficient electrical motors with premium efficiency can save on electrical power costs in cotton gins. Connected horsepower load on industrial air fans is approximately 60% of the total horsepower in a typical cotton gin. By replacing old inefficient centrifugal fans with new higher efficiency fans, additional power savings can be achieved.

Breedlove, C. W.

1989-09-01T23:59:59.000Z

357

The post-war Middle East  

SciTech Connect

The Middle East remains today the global energy fulcrum. One year after the Persian Gulf war, the region is in greater turmoil and political uncertainty than it has known in modern times. The Iraqi invasion of Kuwait and subsequent external military intervention forced neighboring states to question the need for a foreign military presence in the future. The rift between the secular revolutionary states in the region led by Iraq, Libya, Yemen, Algeria, and Syria and the traditional monarchy of Saudi Arabia and the emirates of the gulf has widened. Egypt provides, at present, an uncomfortable bridge. The balance of political forces may be shifting. This paper attempts to answer the following questions: Where will we see the new leadership in the Middle East Will it again play a role through the Organization of Petroleum Exporting Countries and determination of the oil price in shaping the structure of global energy supply and demand

Tempest, P.

1992-03-09T23:59:59.000Z

358

Middle East oil show: Proceedings. Volume 2  

SciTech Connect

This conference proceedings represent the second volume of a two volume set of papers dealing with oil and gas development concepts in the Middle East. It presents papers dealing with enhanced recovery techniques, methods for predicting productivity of wells, computer modeling methods for reservoirs, methods for minimizing water influx and formation damage, offshore platform designs, and advances in various geophysical logging and surveying techniques. Papers deal with both the onshore and offshore environments.

NONE

1995-10-01T23:59:59.000Z

359

Geopolitical implications of Middle East oil  

SciTech Connect

Despite the current belief that there is no longer an energy crisis, the U.S. is highly dependent on imported oil from the Middle East. This dependence will increase with economic growth, causing crude imports to double by the year 2000. Without further investment in exploration and development, the U.S. will continue to suffer from a declining reserve base and the uncertainties associated with world politics.

Keplinger, H.F.

1986-11-01T23:59:59.000Z

360

PVT correlations for Middle East crude oils  

Science Conference Proceedings (OSTI)

Empirical equations for estimating bubblepoint pressure, oil FVF at bubblepoint pressure, and total FVF for Middle East crude oils were derived as a function of reservoir temperature, total surface gas relative density, solution GOR, and stock-tank oil relative density. These empirical equations should be valid for all types of oil and gas mixtures with properties falling within the range of the data used in this study.

Al-Marhoun, M.A.

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Middle East oil show: Proceedings. Volume 1  

SciTech Connect

This is a book of conference proceedings which deal with critical issues and technologies being used to maximize recovery of the oil and gas resources of the Middle East. Papers include information on horizontal drilling techniques, corrosion control, offshore technologies, uses of flexible tubing in drilling and completion, scale control technologies, enhanced recovery techniques, and waste management. Other topics include performance testing for drilling fluids and new computer codes for simulating well performance during both tertiary and secondary recovery.

NONE

1995-11-01T23:59:59.000Z

362

Some Lizards of the Middle West  

NLE Websites -- All DOE Office Websites (Extended Search)

Lizards of the Middle West Lizards of the Middle West Nature Bulletin No. 344-A May 10, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation SOME LIZARDS OF THE MIDDLE WEST More than 2,500 kinds of lizards are now known in the world, and they vary more widely in size, shape, color and habit than any of the other three groups of reptiles -- the snakes, the turtles and the alligators. Three kinds of lizards are known to live within 50 miles of Chicago but they are so scarce, and so wary or secretive, that the total number found by all the reptile enthusiasts is often only one or two a year. Farther south they become more common and farm boys know them well. Lizards, having dry scaly skins that they shed from time to time, should not be confused with the salamanders which, altho also four- legged and cold-blooded, are amphibians -- not reptiles -- and have moist smooth skins. The only live lizards that most of us ever see are in the zoos, notably the sluggish Gila Monster which is one of the only two poisonous species; or a friendly little Horned "Toad" which someone may have brought back from the Southwest; or one of those little American chameleons sometimes sold at carnivals or county fairs in states where that is still permitted.

363

An Estimate of Diesel High-Efficiency Clean Combustion Impacts on FTP-75 Aftertreatment Requirements (SAE Paper Number 2006-01-3311)  

SciTech Connect

A modified Mercedes 1.7-liter, direct-injection diesel engine was operated in both normal and high-efficiency clean combustion (HECC) combustion modes. Four steady-state engine operating points that were previously identified by the Ad-hoc fuels working group were used as test points to allow estimation of the hot-start FTP-75 emissions levels in both normal and HECC combustion modes. The results indicate that operation in HECC modes generally produce reductions in NOX and PM emissions at the expense of CO, NMHC, and H2CO emissions. The FTP emissions estimates indicate that aftertreatment requirements for NOX are reduced, while those for PM may not be impacted. Cycle-average aftertreatment requirements for CO, NMHC, and H2CO may be challenging, especially at the lowest temperature conditions.

Sluder, Scott [ORNL; Wagner, Robert M [ORNL

2006-01-01T23:59:59.000Z

364

Micro-joule sub-10-fs VUV pulse generation by MW pump pulse using highly efficient chirped-four-wave mixing in hollow-core photonic crystal fibers  

E-Print Network (OSTI)

We theoretically study chirped four-wave mixing for VUV pulse generation in hollow-core photonic crystal fibers. We predict the generation of sub-10-fs VUV pulses with energy of up to hundreds of microjoule by broad-band chirped idler pulses at 830 nm and MW pump pulses with narrow-band at 277 nm. MW pump could be desirable to reduce the complexity of the laser system or use a high repetition rate-laser system. The energy conversion efficiency from pump pulse to VUV pulse reaches to 30%. This generation can be realized in kagome-lattice hollow-core PCF filled with noble gas of high pressure with core-diameter less than 40 micrometers which would enable technically simple or highly efficient coupling to fundamental mode of the fiber.

Im, Song-Jin

2013-01-01T23:59:59.000Z

365

High efficiency 2 micrometer laser utilizing wing-pumped Tm{sup 3+} and a laser diode array end-pumping architecture  

DOE Patents (OSTI)

Wing pumping a Tm{sup 3+} doped, end pumped solid state laser generates 2 {micro}m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm{sup 3+} absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm{sup 3+} because high Tm{sup 3+} concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation. 7 figs.

Beach, R.J.

1997-11-18T23:59:59.000Z

366

New concepts for high efficiency energy conversion: The avalanche heterostructure and superlattice solar cells. Subcontract report, 1 June 1987--31 January 1990  

DOE Green Energy (OSTI)

This report describes investigation into the theory and technology of a novel heterojunction or superlattice, single-junction solar cell, which injects electrons across the heterointerface to produce highly efficient impact ionization of carriers in the lowband-gap side of the junction, thereby conserving their total energy. Also, the superlattice structure has the advantage of relaxing the need for perfect lattice matching at the p-n interface and will inhibit the cross diffusion of dopant atoms that typically occurs in heavy doping. This structure avoids the use of tunnel junctions that make it very difficult to achieve the predicted efficiencies in cascade cells, thus making it possible to obtain energy efficiencies that are competitive with those predicted for cascade solar cells with reduced complexity and cost. This cell structure could also be incorporated into other solar cell structures designed for wider spectral coverage.

Summers, C.J.; Rohatgi, A.; Torabi, A.; Harris, H.M. [Georgia Tech Research Inst., Atlanta, GA (United States)

1993-01-01T23:59:59.000Z

367

New III-V cell design approaches for very high efficiency. Annual subcontract report, 1 August 1991--31 July 1992  

DOE Green Energy (OSTI)

This report describes to examine new solar cell desip approaches for achieving very high conversion efficiencies. The program consists of two elements. The first centers on exploring new thin-film approaches specifically designed for M-III semiconductors. Substantial efficiency gains may be possible by employing light trapping techniques to confine the incident photons, as well as the photons emitted by radiative recombination. The thin-film approach is a promising route for achieving substantial performance improvements in the already high-efficiency, single-junction, III-V cell. The second element of the research involves exploring desip approaches for achieving high conversion efficiencies without requiring extremely high-quality material. This work has applications to multiple-junction cells, for which the selection of a component cell often involves a compromise between optimum band pp and optimum material quality. It could also be a benefit manufacturing environment by making the cell`s efficiency less dependent on materialquality.

Lundstrom, M.S.; Melloch, M.R.; Lush, G.B.; Patkar, M.P.; Young, M.P. [Purdue Univ., Lafayette, IN (United States)

1993-04-01T23:59:59.000Z

368

High efficiency 2 micrometer laser utilizing wing-pumped Tm.sup.3+ and a laser diode array end-pumping architecture  

DOE Patents (OSTI)

Wing pumping a Tm.sup.3+ doped, end pumped solid state laser generates 2 .mu.m laser radiation at high average powers with high efficiency. Using laser diode arrays to end-pump the laser rod or slab in the wing of the Tm.sup.3+ absorption band near 785 nm results in 2-for-1 quantum efficiency in Tm.sup.3+ because high Tm.sup.3+ concentrations can be used. Wing pumping allows the thermal power generated in the rod or slab to be distributed over a large enough volume to make thermal management practical in the laser gain medium even at high average power operation. The approach is applicable to CW, Q-switched, and rep-pulsed free-laser operation.

Beach, Raymond J. (Livermore, CA)

1997-01-01T23:59:59.000Z

369

High Efficiency Single Photon Detector  

Science Conference Proceedings (OSTI)

... The wire is cooled to less than 2 K and biased with a current precisely set to just below the critical threshold at which the material switches to a ...

2013-03-12T23:59:59.000Z

370

Enabling High Efficiency Ethanol Engines  

Science Conference Proceedings (OSTI)

Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

Szybist, J.; Confer, K. (Delphi Automotive Systems)

2011-03-01T23:59:59.000Z

371

High-Efficiency Steam Electrolyzer  

DOE Green Energy (OSTI)

A hydrogen economy will require readily available and affordable hydrogen fuel. Current methods of hydrogen production do not fulfill these requirements. We are working on an electrolyzer system that can provide distributed hydrogen production while taking advantage of the nation's existing natural gas infrastructure. Electrolysis is a promising hydrogen production technology both because of its ability to produce pure hydrogen from water and because it does not require large, centralized plants. Unlike other technologies, the cost of hydrogen production scales well from larger to smaller systems. Electrolysis units could be widely distributed and scaled to meet the hydrogen requirements of different users such as individual households, local fueling stations and industrial facilities. A significant drawback to traditional electrolysis is the large electricity consumption required to convert water to hydrogen and oxygen. The electricity requirements mean such systems are expensive to operate. In addition, if the electricity is provided from coal or gas-fired power plants, electrolytic hydrogen production does not mitigate greenhouse gas emissions. The concept described in this report is intended to resolve some of the problems associated with electrolytic hydrogen production. By utilizing natural gas in place of air in the anode compartment in a solid oxide electrolyzer, the electricity requirements of the system are greatly reduced. The system has the capability to produce pure hydrogen, or hydrogen humidified to levels appropriate for direct use in a PEM fuel cell. With inherent electrochemical compression, the requirement for external compression for pressurization could be reduced. This technology offers numerous advantages for distributed hydrogen production of stationary and transportation hydrogen fuel cells. Our preliminary calculations indicate that using this concept, hydrogen could be produced at a cost competitive with gasoline (on a per gallon equivalent basis) while also lowering carbon dioxide emissions.

Vance, A L; Trent, J W; See, E F; Glass, R S

2003-06-30T23:59:59.000Z

372

High-Efficiency Steam Electrolyzer  

SciTech Connect

A hydrogen economy will require readily available and affordable hydrogen fuel. Current methods of hydrogen production do not fulfill these requirements. We are working on an electrolyzer system that can provide distributed hydrogen production while taking advantage of the nation's existing natural gas infrastructure. Electrolysis is a promising hydrogen production technology both because of its ability to produce pure hydrogen from water and because it does not require large, centralized plants. Unlike other technologies, the cost of hydrogen production scales well from larger to smaller systems. Electrolysis units could be widely distributed and scaled to meet the hydrogen requirements of different users such as individual households, local fueling stations and industrial facilities. A significant drawback to traditional electrolysis is the large electricity consumption required to convert water to hydrogen and oxygen. The electricity requirements mean such systems are expensive to operate. In addition, if the electricity is provided from coal or gas-fired power plants, electrolytic hydrogen production does not mitigate greenhouse gas emissions. The concept described in this report is intended to resolve some of the problems associated with electrolytic hydrogen production. By utilizing natural gas in place of air in the anode compartment in a solid oxide electrolyzer, the electricity requirements of the system are greatly reduced. The system has the capability to produce pure hydrogen, or hydrogen humidified to levels appropriate for direct use in a PEM fuel cell. With inherent electrochemical compression, the requirement for external compression for pressurization could be reduced. This technology offers numerous advantages for distributed hydrogen production of stationary and transportation hydrogen fuel cells. Our preliminary calculations indicate that using this concept, hydrogen could be produced at a cost competitive with gasoline (on a per gallon equivalent basis) while also lowering carbon dioxide emissions.

Vance, A L; Trent, J W; See, E F; Glass, R S

2003-06-30T23:59:59.000Z

373

High Efficiency New Metallurgical Technology  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... Investigation of Pyrometallurgical Nickel Pig Iron (NPI) Production Process ... Manganese is mainly consumed by steel and battery industries. ... Hydrothermal Sulfidation of Carbonate-Hosted Zinc-Lead Ore with Elemental...

374

Multicolor, High Efficiency, Nanotextured LEDs  

SciTech Connect

We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and green for Solid State Lighting applications. Accomplishments in the duration of the contract period include (i) heteroepitaxy of nitrogen-polar LEDs on sapphire, (ii) heteroepitaxy of semipolar (11{bar 2}2) green LEDs on sapphire, (iii) synthesis of quantum-dot loaded nanoporous GaN that emits white light without phosphor conversion, (iv) demonstration of the highest quality semipolar (11{bar 2}2) GaN on sapphire using orientation-controlled epitaxy, (v) synthesis of nanoscale GaN and InGaN medium, and (vi) development of a novel liftoff process for manufacturing GaN thin-film vertical LEDs. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

Jung Han; Arto Nurmikko

2011-09-30T23:59:59.000Z

375

High-efficiency server design  

Science Conference Proceedings (OSTI)

Large-scale data centers consume megawatts in power and cost hundreds of millions of dollars to equip. Reducing the energy and cost footprint of servers can therefore have substantial impact. Web, Grid, and cloud servers in particular can be hard to ...

Eitan Frachtenberg; Ali Heydari; Harry Li; Amir Michael; Jacob Na; Avery Nisbet; Pierluigi Sarti

2011-11-01T23:59:59.000Z

376

High efficiency diamond solar cells  

SciTech Connect

A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

Gruen, Dieter M. (Downers Grove, IL)

2008-05-06T23:59:59.000Z

377

High Efficiency New Metallurgical Technology  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... The alumina leaching rate of calcium aluminate in residue is over 80%. .... Different types of plasma torches including a high power steam plasma torch ... for about 50% of the total NOX emissions in the iron and steel industry.

378

The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners  

SciTech Connect

A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

Ternes, M.P.; Levins, W.P.

1992-08-01T23:59:59.000Z

379

Monitoring and evaluation of replacing low-efficiency air conditioners with high-efficiency air conditioners in single-family detached houses in Austin, Texas  

SciTech Connect

The US DOE initiated this project to evaluate the performance of an air conditioner retrofit program in Austin, Texas. The City's Austin's Resource Management Department pursued this project to quantify the retrofit effect of replacing low-efficiency air conditioners with high-efficiency air conditioners in single-family detached homes. If successfully implemented, this retrofit program could help defer construction of a new power plant which is a major goal of this department. The project compares data collected from 12 houses during two cooling seasons under pre-retrofit and then post-retrofit air conditioner units. The existing low-efficiency air conditioners were monitored during the 1987 cooling season, replaced during the 1987--88 heating season with new, smaller sized, high-efficiency units, and then monitored again during the 1988 cooling season. Results indicated that the air conditioner retrofits reduce the annual air conditioner electric consumption and peak electric demand by an average of 38%. When normalized to the nominal capacity of the air conditioner, average demand savings were 1.12 W/ft{sup 2} and estimated annual energy savings were 1.419 kWh/ft{sup 2}. Individual air conditioner power requirements were found to be a well defined function of outdoor temperature as expected. In the absence of detailed data, estimates of the peak demand reductions of new air conditioners can be made from the manufacturer's specifications. Air conditioner energy consumption proved to be strongly linear as a function of the outdoor temperature as expected when taken as an aggregate. No noticeable differences in the diversity factor of the air conditioner usage were found. Analysis of the retrofit effect using PRISM yields estimates of the reduction in normalized annual consumption (NAC) and annual cooling consumption of 12% and 30%. 2 refs., 11 figs., 17 tabs.

Burns, R.; Hough, R.E. (Fleming (W.S.) and Associates, Inc., Syracuse, NY (United States))

1991-10-01T23:59:59.000Z

380

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Goes Local for PV Solar Energy System Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

382

Renewable energy resource and technology assessment: Southern Tier Central Region, New York, New York. Renewable Energy Resource Inventory; renewable energy technology handbook; technology assessment workbook  

DOE Green Energy (OSTI)

The Renewable Energy Resource Inventory contains regional maps that record the location of renewable energy resources such as insolation, wind, biomass, and hydropower in the Southern Tier Central Region of New York State. It contains an outline of a process by which communities can prepare local renewable energy resource inventories using maps and overlays. The process starts with the mapping of the resources at a regional scale and telescopes to an analysis of resources at a site-specific scale. The resource inventory presents a site analysis of Sullivan Street Industrial Park, Elmira, New York.

Not Available

1978-12-01T23:59:59.000Z

383

Hanford 1999 Tier 2 Emergency and Hazardous Chemical Inventory Emergency Planning and Community Right to Know Act Section 312  

SciTech Connect

The Hanford Site covers approximately 1,450 square kilometers (560 square miles) of land that is owned by the U.S. Government and managed by the U.S. Department of Energy, Richland Operations Office (DOE-RL). The Hanford Site is located northwest of the city of Richland, Washington. The city of Richland adjoins the southeastern portion of the Hanford Site boundary and is the nearest population center. Activities on the Hanford Site are centralized in numerically designated areas. The 100 Areas, located along the Columbia River, contain deactivated reactors. The processing units are in the 200 Areas, which are on a plateau approximately 11 kilometers (7 miles) from the Columbia River. The 300 Area, located adjacent to and north of Richland, contains research and development laboratories. The 400 Area, 8 kilometers (5 miles) northwest of the 300 Area, contains the Fast Flux Test Facility previously used for testing liquid metal reactor systems. Adjacent to the north of Richland, the 1100 Area contains offices associated with administration, maintenance, transportation, and materials procurement and distribution. The 600 Area covers all locations not specifically given an area designation. This Tier Two Emergency and Hazardous Chemical Inventory report contains information pertaining to hazardous chemicals managed by DOE-RL and its contractors on the Hanford Site. It does not include chemicals maintained in support of activities conducted by others on lands covered by leases, use permits, easements, and other agreements whereby land is used by parties other than DOE-RL. For example, this report does not include chemicals stored on state owned or leased lands (including the burial ground operated by US Ecology, Inc.), lands owned or used by the Bonneville Power Administration (including the Midway Substation and the Ashe Substation), lands used by the National Science Foundation (the Laser Interferometer Gravitational-Wave Observatory), lands leased to the Washington Public Power Supply System, Johnson Controls, Inc. (boilers operated for steam production), and R. H. Smith Company (gas stations), or similarly leased lands not under the management of DOE-RL.

ZALOUDEK, D.E.

2000-03-01T23:59:59.000Z

384

1998 Tier two emergency and hazardous chemical inventory - emergency planning and community right-to-know act section 312  

SciTech Connect

The Hanford Site covers approximately 1,450 square kilometers (560 square miles) of land that is owned by the U.S, Government and managed by the U.S. Department of Energy, Richland Operations Office (DOE-RL). The Hanford Site is located northwest of the city of Richland, Washington. The city of Richland adjoins the southeastern portion of the Hanford Site boundary and is the nearest population center. Activities on the Hanford Site are centralized in numerically designated areas. The 100 Areas, located along the Columbia River, contain deactivated reactors. The processing units are in the 200 Areas, which are on a plateau approximately 11 kilometers (7 miles) from the Columbia River. The 300 Area, located adjacent to and north of Richland, contains research and development laboratories. The 400 Area, 8 kilometers (5 miles) northwest of the 300 Area, contains the Fast Flux Test Facility previously used for testing liquid metal reactor systems. Adjacent to the north of Richland, the 1100 Area contains offices associated with administration, maintenance, transportation, and materials procurement and distribution. The 600 Area covers all locations not specifically given an area designation. This Tier Two Emergency and Hazardous Chemical Inventory report contains information pertaining to hazardous chemicals managed by DOE-RL and its contractors on the Hanford Site. It does not include chemicals maintained in support of activities conducted by others on lands covered by leases, use permits, easements, and other agreements whereby land is used by parties other than DOE-RL. For example, this report does not include chemicals stored on state owned or leased lands (including the burial ground operated by US Ecology, Inc.), lands owned or used by the Bonneville Power Administration (including the Midway Substation and the Ashe Substation), lands used by the National Science Foundation (the Laser Interferometer Gravitational-Wave Observatory), lands leased to the Washington Public Power Supply System, Johnson Controls, Inc. (boilers operated for steam production), and R. H. Smith Company (gas stations), or similarly leased lands not under the management of DOE-RL.

ZALOUDEK, D.E.

1999-03-02T23:59:59.000Z

385

NSF UChicago: Tier 2 and Tier 3 1 Tier 2 and Tier 3 Facilities  

E-Print Network (OSTI)

generally through Open Science Grid. We have deployed a high performance computing facility (the ATLAS

386

Middle East future line plans muddled following Gulf War  

Science Conference Proceedings (OSTI)

This paper reports that the recent Gulf War has left the middle East in an awkward situation on current and future pipe line projects. Much of Kuwait's production capacity was destroyed and its ability to regain its previous position as an oil producer in the Middle East in the near term is questionable. Iraq's production remains severely curtailed by international agreement. Saudi Arabia and the other Middle Eastern states continue to produce at the higher than normal levels instigated in the early days of the crisis. The continuing efforts to bring the Kuwait oilfields under control, coupled with ongoing excessive production by some Middle eastern countries and the world response to Sadam Hussein's questionable intentions leave the Middle East pipe line construction picture muddled. The war forestalled pipe line projects in Kuwait and Iraq and many of the planned projects now are questionable. In other areas of the Middle East, the war may have firmed tentative plans for pipe line construction.

Not Available

1991-11-01T23:59:59.000Z

387

Oil, turmoil, and Islam in the Middle East  

SciTech Connect

The turmoil and strife of the Middle East raises serious questions about the security of the world's oil supply. The author argues that OPEC and OAPEC can no longer afford to impose indiscriminate price increases on the marketplace because they hurt not only themselves but oil poor Third World nations as well. The author analyzes the importance of Middle Eastern oil in world politics. He emphasizes that any consideration of the forces influencing development in the Middle East should take Islamic tradition into account. Each chapter is organized around a current Middle Eastern problem: oil politics in relation to international energy needs; the ramifications of the new oil wealth and power of the Middle East; The Iran-Iraq War; Muslim insurgency in Afghanistan; The Arab-Israel conflict; turmoil in Lebanon; Palestinian nationalism; and the Middle East as a superpower.

Sheikh, A.R.

1986-01-01T23:59:59.000Z

388

Growth and development of GaInAsP for use in high-efficiency solar cells. Final subcontract report, 1 July 1991--30 December 1993  

DOE Green Energy (OSTI)

This report describes accomplishments during Phase 3 of this subcontract. The overall goals of the subcontract were (1) to develop the necessary technology to grow high-efficiency GaInAsP layers that are lattice-matched to GaAs and Ge; (2) to demonstrate highefficiency GaInAsP single-junction solar cells; and (3) to demonstrate GaInAsP/Ge cascade solar cells suitable for operation under concentrated (500X) sunlight. The major accomplishments during Phase 3 include (1) demonstrating a GaInAsP tunnel diode for use as an interconnect in the GaInAsP/Ge cascade cell, and (2) demonstrating a GaInAsP/Ge cascade cell. The development of the GaInAsP tunnel diode is a major accomplishment because it allows for the GaInAsP and Ge cells to be connected without optical losses for the bottom Ge cell, such as a Ge tunnel diode would cause. The GaInAsP/Ge cascade cell development is significant because of the demonstration of a cascade cell with a new materials system.

Sharps, P.R. [Research Triangle Inst., Research Triangle Park, NC (United States)

1994-10-01T23:59:59.000Z

389

Task B: Research on stable, high-efficiency, large-area, amorphous-silicon-based submodules: Semiannual subcontract report, 1 February 1987--31 July 1987  

DOE Green Energy (OSTI)

This semiannual report presents results of research on stable, high-efficiency, large-area, amorphous-silicon-based submodules. High conversion efficiencies (up to 11.95%) were obtained in small-area, single-junction, a-Si solar cells by using textured tin oxide, superlattice p-layers, graded carbon concentrations near the p-i interface, and highly relective ITO/silver back contacts. Researchers also fabricated single-junction a-SiC and a-SiGe p-i-n cells with efficiencies of 9%--11%. Stacked-junction cells of a-SiC/a-Si, a-SiC/a-SiGe, and a-SiC/a-Si/a-SiGe were fabricated, and efficiencies of about 10% were achieved in some of them. Boron-doped microcrystalline SiC films were developed that contain up to 6 at.% C with conductivities of 3 /times/ 10/sup /minus/3/ ohm /sup /minus/1/ cm/sup /minus/1/ at room temperature and activation energies of 0.11 eV. Stability studies showed that light-induced degradation is usually enhanced by the presence of C grading near the p-i interface. Light-induced degradation of the fill factor of p-i-n cells strongly correlates with optical absorption at 1.2 eV, as measured by photothermal deflection spectroscopy. 11 refs., 70 figs., 16 tabs.

Carlson, D.E.; Arya, R.R.; Bennett, M.S.; Catalano, A.; D'Aiello, R.V.; Dickson, C.R.; Fortmann, C.M.; Goldstein, B.; Morris, J.; Newton, J.L.

1988-07-01T23:59:59.000Z

390

High-Efficiency Amorphous Silicon Alloy Based Solar Cells and Modules; Final Technical Progress Report, 30 May 2002--31 May 2005  

DOE Green Energy (OSTI)

The principal objective of this R&D program is to expand, enhance, and accelerate knowledge and capabilities for development of high-efficiency hydrogenated amorphous silicon (a-Si:H) and amorphous silicon-germanium alloy (a-SiGe:H) related thin-film multijunction solar cells and modules with low manufacturing cost and high reliability. Our strategy has been to use the spectrum-splitting triple-junction structure, a-Si:H/a-SiGe:H/a-SiGe:H, to improve solar cell and module efficiency, stability, and throughput of production. The methodology used to achieve the objectives included: (1) explore the highest stable efficiency using the triple-junction structure deposited using RF glow discharge at a low rate, (2) fabricate the devices at a high deposition rate for high throughput and low cost, and (3) develop an optimized recipe using the R&D batch large-area reactor to help the design and optimization of the roll-to-roll production machines. For short-term goals, we have worked on the improvement of a-Si:H and a-SiGe:H alloy solar cells. a-Si:H and a-SiGe:H are the foundation of current a-Si:H based thin-film photovoltaic technology. Any improvement in cell efficiency, throughput, and cost reduction will immediately improve operation efficiency of our manufacturing plant, allowing us to further expand our production capacity.

Guha, S.; Yang, J.

2005-10-01T23:59:59.000Z

391

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01T23:59:59.000Z

392

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (9) System Outline and Endurance Test of Low-Pressure Steam Injectors  

Science Conference Proceedings (OSTI)

A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. We are developing technology for 'Innovative Simplified Nuclear Power Plants' in order to further improve the economy and safety of nuclear power plants. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying 'High-Efficiency SI', which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feedwater heaters and Emergency Core Cooling Systems (ECCS) of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). The innovative-simplified nuclear power plant consists of a simplified feedwater heating system, a passive core injection system and a passive containment cooling system. This report describes the results of the endurance and performance tests of low-pressure SIs for feedwater heaters with Jet-deaerator and core injection system. A part of this report are fruits of research which is carried out by Tokyo Electric Power Company (TEPCO), Toshiba, and 7 Universities in Japan, funded from the Ministry of Economy, Trade and Industry (METI) of Japan as the national public research-funded program. (authors)

Shuichi Ohmori; Michitsugu Mori; Shoji Goto [Tokyo Electric Power Company (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Chikako Iwaki; Yutaka Asanuma [Toshiba Corporation (Japan)

2006-07-01T23:59:59.000Z

393

Research on high-efficiency, single-junction, monolithic, thin-film amorphous silicon solar cells: Phase II annual subcontract report, 1 January 1985--31 January 1986  

DOE Green Energy (OSTI)

This report presents results of the second phase of research on high-efficiency, single-junction, monolithic, thin-film a-Si solar cells. Five glow-discharge deposition systems, including a new in-line, multichamber system, were used to grow both doped and undoped a-Si:H. A large number of silane and disilane gas cylinders were analyzed with a gas chromatography/mass spectroscopy system. Strong correlations were found between the breakdown voltage, the deposition rate, the diffusion length, and the conversion efficiency for varying cathode-anode separations in a DC glow-discharge deposition mode. Tin oxide films were grown by chemical vapor deposition with either tetramethyl tin (TMT) or tin tetrachloride (TTC). The best were grown with TMT, but TTC films had a more controlled texture for light trapping and provided a better contact to the p-layer. The best results were obtained with 7059 glass substrates. Efficiencies as high as 10.86% were obtained in p-i-n cells with superlattice p-layers and as high as 10.74% in cells with both superlattice p- and n-layers. Measurements showed that the boron-doping level in the p-layer can strongly affect transport in the i-layer, which can be minimized by reactive flushing before i-layer deposition. Stability of a-Si:H cells is improved by light doping. 51 refs., 64 figs., 21 tabs.

Carlson, D.E.; Ayra, R.R.; Bennett, M.S.; Catalano, A.; D'Aiello, R.V.; Dickson, C.R.; McVeigh, J.; Newton, J.; O'Dowd, J.; Oswald, R.S.; Rajan, K.

1988-09-01T23:59:59.000Z

394

Low temperature metal-organic chemical vapor deposition growth processes for high-efficiency solar cells. Final technical report, 1 September 1985--30 November 1989  

DOE Green Energy (OSTI)

This report describes the results of a program to develop a more complete understanding of the physical and chemical processes involved in low-temperature growth of III-V compounds by metal-organic chemical vapor deposition (MOCVD) and to develop a low-temperature process that is suitable for the growth of high-efficiency solar cells. The program was structured to develop a better understanding of the chemical reactions involved in MOCVD growth, to develop a model of the processes occurring in the gas phase, to understand the physical kinetics and reactions operative on the surface of the growing crystal, and to develop an understanding of the means by which these processes may be altered to reduce the temperature of growth and the utilization of toxic hydrides. The basic approach was to develop the required information about the chemical and physical kinetics operative in the gas phase and on the surface by the direct physical measurement of the processes whenever possible. The program included five tasks: (1) MOCVD growth process characterization, (2) photoenhanced MOCVD studies, (3) materials characterization, (4) device fabrication and characterization, and (5) photovoltaic training. Most of the goals of the program were met and significant progress was made in defining an approach that would allow both high throughput and high uniformity growth of compound semiconductors at low temperatures. The technical activity was focused on determining the rates of thermal decomposition of trimethyl gallium, exploring alternate arsenic sources for use MOCVD, and empirical studies of atomic layer epitaxy as an approach.

Dapkus, P.D. [University of Southern California, Los Angeles, CA (United States)

1993-02-01T23:59:59.000Z

395

Middle Tennessee EMC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle Tennessee EMC - Residential Energy Efficiency Rebate Program Middle Tennessee EMC - Residential Energy Efficiency Rebate Program Middle Tennessee EMC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Manufacturing Heat Pumps Windows, Doors, & Skylights Program Info State Tennessee Program Type Utility Rebate Program Rebate Amount Windows (Replacement): $500 Storm Windows: $500 Duct Work: $500 HVAC (Replacement): $250 Building Insulation (Contractor Installed): $500 Building Insulation (Self Installed): $250 Water Heater Insulation: $50 Air Sealing: $500 HVAC Tune-Up: $150 Provider Middle Tennessee Electric Membership Corporation

396

NETL: 2010 SW PA Middle School Science Bowl  

NLE Websites -- All DOE Office Websites (Extended Search)

is open to middle school students (school, scouts, home school) from Southwestern Pennsylvania (SW PA). Complete eligibility requirements are located at the National...

397

AC 2010-151: THE NIST SUMMER INSTITUTE FOR MIDDLE ...  

Science Conference Proceedings (OSTI)

... NIST and a local high school on the use of growing algae for biofuels led to the exploration of possible connections to the middle school curriculum. ...

2011-01-28T23:59:59.000Z

398

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea...  

Open Energy Info (EERE)

SURVEY, 2006 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,...

399

Gravity wave coupling of the lower and middle atmosphere.  

E-Print Network (OSTI)

??A method of inferring tropospheric gravity wave source characteristics from middle atmosphere observations has been adapted from previous studies for use with MF radar observations (more)

Love, Peter Thomas

2009-01-01T23:59:59.000Z

400

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1  

SciTech Connect

OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.''

BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "middle tier high-efficiency" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1  

DOE Green Energy (OSTI)

OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.''

BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-12-01T23:59:59.000Z

402

Development and testing of a high efficiency advanced coal combustor: Phase 3, industrial boiler retrofit. Quarterly technical progress report number 12, July 1, 1994--September 30, 1994  

SciTech Connect

The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. During this reporting period, data reduction/evaluation and interpretation from the long term four hundred hours Proof-of-Concept System Test under Task 3 were completed. Cumulatively, a total of approximately 563 hours of coal testing was performed with 160 hrs on 100% coal and over 400 hours with co-firing coal and gas. The primary objectives of this testing were to: (1) obtain steady state operation consistently on 100% coal; (2) increase carbon conversion efficiency from 95% to the project goal of 98%; and (3) maintain NOx emissions at or below 0.6 lbs/MBtu. The following specific conclusions are based on results of coal-fired testing at Penn State and the initial economic evaluation of the HEACC system: a coal handling/preparation system can be designed to meet the technical requirements for retrofitting microfine coal combustion to a gas/oil-designed boiler; the boiler thermal performance requirements were met; the NOx emission target of was met; combustion efficiencies of 95% could be met on a daily average basis, somewhat below the target of 98%; the economic playback is very sensitive to fuel differential cost, unit size, and annual operating hours; continuous long term demonstration is needed to quantify ash effects and how to best handle ashes. The following modifications are recommended prior to the 1,000 hour demonstration phase testing: (1) coal feeding improvements--improved raw coal/storage and transport, installation of gravimetric feeder, and redesign/installation of surge bin bottom; (2) burner modification--minor modification to the tip of the existing HEACC burner to prevent change of flame shapes for no apparent reason.

Patel, R.L.; Borio, R. [ABB/Combustion Engineering, Windsor, CT (United States). Power Plant Labs.; Scaroni, A.W.; Miller, B.G. [Pennsylvania State Univ., University Park, PA (United States); McGowan, J.G. [Univ. of Massachusetts, Amherst, MA (United States)

1994-11-18T23:59:59.000Z

403

The Revision of the UK Pipe Insulation Standard: - Its Likely Effect on Building Energy Efficiency and the Uptake of Highly Efficient Insulation Materials  

E-Print Network (OSTI)

The UK Government has set an ambitious target of a 20% reduction in CO2 emissions by 2010 based on a 1990 baseline. Since buildings account for over 40% of current CO2 emissions, the revision of building and building services insulation standards has been a high priority. The previous UK pipe insulation standard (BS 5422 - 1990) was based on an economic thickness methodology that resulted in thickness requirements for different materials of unequal energy saving value. The 2001 revision (BS 5422 - 2001) not only addresses this imbalance by defining environmental thicknesses that deliver equivalent energy savings but also increases the potential to reduce CO2 emissions by up to 5 million tonnes per annum. To stimulate this potential, the UK Government has introduced a tax incentive under the existing Capital Allowances scheme to promote the widespread adoption of the new standard in both new build and, more importantly, in renovation projects. Just as importantly, the new standard highlights the true cost-effectiveness of highly efficient insulation materials such as phenolic foam. Phenolic foam had already gained more than a 15% market share in the UK pipe insulation market prior to the recent changes to the standard on the basis of its excellent thermal resistance and fire properties. However, previous economic thickness models had promoted the use of less efficient materials with a poorer level of energy saving being the result. With this loophole now closed, the phenolic foam industry believes that its product will receive the acclamation that it deserves - while helping the UK Government to meet its own CO2 targets.

Ashford, P.

2002-01-01T23:59:59.000Z

404

Heath Middle School Science Students Study Environmental Issue at Paducah  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heath Middle School Science Students Study Environmental Issue at Heath Middle School Science Students Study Environmental Issue at Paducah Site Heath Middle School Science Students Study Environmental Issue at Paducah Site April 1, 2012 - 12:00pm Addthis Mentor Jim Erickson of the LATA Kentucky team shows Heath Middle School sixthgrader Ian Morgan how to use red cabbage to indicate if a watery solution is acidic, basic, or neutral. Mentor Jim Erickson of the LATA Kentucky team shows Heath Middle School sixthgrader Ian Morgan how to use red cabbage to indicate if a watery solution is acidic, basic, or neutral. Heath Middle School eighth-grader Travis Crouch performs a pH (acidity-basicity) test using red cabbage. Heath Middle School eighth-grader Travis Crouch performs a pH (acidity-basicity) test using red cabbage. Kelly Layne of the LATA Kentucky team tells Heath Middle School students how to use zinc pennies in an experiment with differing known and unknown solutions. Facing, from left, are students Atherton Milford, McKenzie Moss, Trevor Kendall, Max Kolb, and James Michael Dodd.

405

Middle East: stratigraphic evolution and oil habitat: discussion  

SciTech Connect

The paper, Middle East: Stratigraphic Evolution and Oil Habitat, by R.J. Murris (AAPG Bull. v. 64, p. 597-618) is discussed. Problems with the time-stratigraphic units used in the article are pointed out, along with the source rocks of the petroleum deposits, the depositional cyclicity, subsidence and sea level fluctuation, and the Middle East geosyncline. (JMT)

Ibrahim, M.W.

1981-03-01T23:59:59.000Z

406

Middle School Students Go Green | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Students Go Green Middle School Students Go Green Middle School Students Go Green November 15, 2010 - 2:27pm Addthis Lindsay Gsell Kentucky's Turkey Foot Middle School is going green. In this video, see a tour from students as they showcase the school's geothermal field, green roof, green building products, daylight harvesting system, solar panels and rainwater catchment system. Through the Kentucky Department for Energy Development and Independence, Turkey Foot Middle School received nearly $2 million in Recovery Act funding to complete the project. Addthis Related Articles Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Geothermal Systems are a Breath of Fresh Air for Illinois School District

407

Are You Smarter Than a Middle Schooler? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Are You Smarter Than a Middle Schooler? Are You Smarter Than a Middle Schooler? Are You Smarter Than a Middle Schooler? April 25, 2012 - 10:12am Addthis Hopkins Junior High School Team members, from Fremont, Calif., Raghu Dhara and Krishna Bharathal compete at the 2010 National Science Bowl for middle school students in Washington D.C. | Photo courtesy of John Troha, National Science Bowl. Hopkins Junior High School Team members, from Fremont, Calif., Raghu Dhara and Krishna Bharathal compete at the 2010 National Science Bowl for middle school students in Washington D.C. | Photo courtesy of John Troha, National Science Bowl. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs How can I participate? We will be livetweeting the round-robin tournaments from @energy on

408

NREL: News Feature - Middle Schoolers Shine in Electric Car Races  

NLE Websites -- All DOE Office Websites (Extended Search)

Middle Schoolers Shine in Electric Car Races Middle Schoolers Shine in Electric Car Races May 24, 2013 In this photo, a boy grins widely as he holds a yellow folder over his model solar car. In the background are several black neoprene tracks and other middle-school students awaiting the starting signal. An adult race judge holds her hand in the air, signaling that everything is ready for the start of the race. Enlarge image Xavier Urquijo from Summit Ridge Middle School in Littleton waits for the start signal to lift the folder covering the solar panel on his team's car, "Knight Hawk." His team was one of 97 from 28 Colorado middle schools racing solar and lithium-ion powered vehicles they designed and built themselves at NREL's 2013 Junior Solar Sprint and Lithium-Ion Battery car competitions on May 18.

409

A Simulation of the Separate Climate Effects of Middle-Atmospheric and Tropospheric CO2 Doubling  

Science Conference Proceedings (OSTI)

The separate climate effects of middle-atmospheric and tropospheric CO2 doubling have been simulated and analyzed with the ECHAM middle-atmosphere climate model. To this end, the CO2 concentration has been separately doubled in the middle-...

M. Sigmond; P. C. Siegmund; E. Manzini; H. Kelder

2004-06-01T23:59:59.000Z

410

Los Alamos Middle School team wins regional MathCounts competition  

NLE Websites -- All DOE Office Websites (Extended Search)

Alamos Middle School wins regional MathCounts event Competes against 60 other middle schools for the title. March 1, 2013 Los Alamos Middle School won the regional MathCounts...

411

The Seasonal Cycle of Gravity Wave Drag in the Middle Atmosphere  

Science Conference Proceedings (OSTI)

Using a variational technique, middle atmosphere gravity wave drag (GWD) is estimated from Met Office middle atmosphere analyses for the year 2002. The technique employs an adjoint model of a middle atmosphere dynamical model to minimize a cost ...

Manuel Pulido; John Thuburn

2008-09-01T23:59:59.000Z

412

Middle School Electric Car Competition | U.S. DOE Office of Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Car Competition National Science Bowl (NSB) NSB Home About High School Middle School Attending National Event Volunteers 2013 Competition Results Middle School Round...

413

Middle East and African Partnerships and Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle East and African Partnerships and Projects Middle East and African Partnerships and Projects Middle East and African Partnerships and Projects EERE engages bilaterally with individual countries in the Middle East and Africa. Bilateral Partnerships Israel Binational Industrial Research and Development (BIRD) Foundation EERE collaborates with the Israeli Ministry of National Infrastructure to conduct jointly-funded research, development, and demonstration projects that aim to successfully commercialize cutting-edge clean energy technologies. The two governments work through the Binational BIRD Foundation, a quasi-governmental entity that was established in the 1970s to stimulate, promote, and support industrial R&D to mutually benefit the United States and Israel. Using funds provided by EERE and Israeli Ministry

414

Memorial Middle School Wind Project | Open Energy Information  

Open Energy Info (EERE)

Middle School Wind Project Middle School Wind Project Jump to: navigation, search Name Memorial Middle School Wind Project Facility Memorial Middle School Sector Wind energy Facility Type Community Wind Location SD Coordinates 43.532688°, -96.818901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.532688,"lon":-96.818901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

The SPARC Intercomparison of Middle-Atmosphere Climatologies  

Science Conference Proceedings (OSTI)

An updated assessment of uncertainties in observed climatological winds and temperatures in the middle atmosphere (over altitudes 1080 km) is provided by detailed intercomparisons of contemporary and historic datasets. These datasets include ...

William Randel; Petra Udelhofen; Eric Fleming; Marvin Geller; Mel Gelman; Kevin Hamilton; David Karoly; Dave Ortland; Steve Pawson; Richard Swinbank; Fei Wu; Mark Baldwin; Marie-Lise Chanin; Philippe Keckhut; Karin Labitzke; Ellis Remsberg; Adrian Simmons; Dong Wu

2004-03-01T23:59:59.000Z

416

On the Inertial Stability f the Equatorial Middle Atmosphere  

Science Conference Proceedings (OSTI)

A theory of inertial instability on the equatorial beta-plane is developed with application to the inertial stability of the equatorial middle atmosphere at the solstices. It is shown that the stability of this region depends primarily on two ...

Timothy J. Dunkerton

1981-11-01T23:59:59.000Z

417

Williams Elementary and Middle School Wind Project | Open Energy  

Open Energy Info (EERE)

Middle School Wind Project Middle School Wind Project Jump to: navigation, search Name Williams Elementary and Middle School Wind Project Facility Williams Elementary and Middle School Sector Wind energy Facility Type Community Wind Location AZ Coordinates 35.253555°, -112.19558° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.253555,"lon":-112.19558,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Middle School Energy and Nuclear Science Curriculum Now Available |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available Middle School Energy and Nuclear Science Curriculum Now Available October 30, 2013 - 1:18pm Addthis Andrea Duskas Public Affairs Specialist for the Office of Nuclear Energy A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers accurate, unbiased, and up-to-date information on the roles that energy and nuclear science play in our lives. The essential principles and fundamental concepts in The Harnessed Atom address the latest science standards for crosscutting concepts about energy and matter. The Harnessed Atom teacher's kit is an updated and expanded edition of the

419

NREL: Education Programs - National Science Bowl Middle School  

NLE Websites -- All DOE Office Websites (Extended Search)

National Science Bowl - Middle School National Science Bowl - Middle School Photo of a group of students and adults standing on a stage. Department of Energy Secretary Steven Chu and First Lady Michelle Obama are standing among the students. Photo of a small, indoor model car racetrack. People are kneeling around the track as they watch a race that is in progress. The Department of Energy's Office of Science sponsors the National Science Bowl® competition. This fun, fast-paced academic tournament tests the brainpower of middle school student teams on science and math topics. It is well recognized that the middle school years are the most productive time to attract students to science, technology, engineering, and math (STEM) subjects. The National Science Bowl provides an opportunity for students to

420

East Middle School and Cayuga Community College Space Heating Low  

Open Energy Info (EERE)

Middle School and Cayuga Community College Space Heating Low Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name East Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Facility East Middle School and Cayuga Community College Sector Geothermal energy Type Space Heating Location Auburn, New York Coordinates 42.9317335°, -76.5660529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}