Sample records for midamerican energy location

  1. MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating...

  2. MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers basic energy efficiency incentives for residential customers in Nebraska to improve the comfort and savings in participating homes. These incentives include gas heating...

  3. MidAmerican Energy (Gas)- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers a variety of incentives for residential customers to improve the energy efficiency of homes. Eligible customers are eligible for rebates on furnaces, furnace fan motors,...

  4. MidAmerican Energy (Electric) - Municipal Solid-State Lighting...

    Open Energy Info (EERE)

    must be an Iowa electric governmental customer of MidAmerican Energy Company. Light-emitting diode and induction types of solid state lighting (SSL) qualify under this program....

  5. MidAmerican Energy (Gas)- Commercial EnergyAdvantage Rebate Program

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers a variety of incentives for commercial customers to improve the energy efficiency of facilities. Qualified natural gas equipment includes ovens, steamers, fryers, furnaces...

  6. MidAmerican Energy (Gas and Electric)- Commercial New Construction Energy-Efficiency Program

    Broader source: Energy.gov [DOE]

    MidAmerican Energy's Commercial New Construction Program offers incentives to businesses for energy-efficient construction and design of new or pre-existing buildings. Construction Incentives are...

  7. MidAmerican Energy (Electric)- Municipal Solid-State Lighting Grant Program

    Broader source: Energy.gov [DOE]

    MidAmerican Energy offers grants to munipalities which implement solid-state roadway street lighting upgrades. Grants of up to $5,000 are available to participating entities who install eligible...

  8. MidAmerican's Walter Scott, Jr. Energy Center Unit 4 earns Power's highest honor

    SciTech Connect (OSTI)

    Peltier, R.

    2007-08-15T23:59:59.000Z

    MidAmerican Energy Co. and its project partners are convinced that supercritical coal-firing technology's inherently higher efficiency and lower CO{sub 2} emissions no longer come with a price: reduced reliability. Unit 4 of the Walter Scott, Jr. Energy Center (WSEC) entered into service in June 2006 doubling the capacity of the PRB-coal fuelled plant to 1,600 MW. This is the first major new supercritical plant in the US in more than 15 years. The design of the boiler and the air pollution control systems downstream are described and illustrated. Unit 4 won the 2007 Plant of the Year awarded by Power magazine. 11 figs.

  9. MidAmerican Energy Co (South Dakota) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickey HotVII, Cologne,Caldera,

  10. MidAmerican Energy Co (Illinois) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc Jump to:Jump to: navigation,

  11. MidAmerican Energy Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc Jump to:Jump to:

  12. Renewable Resources: a national catalog of model projects. Volume 2. Mid-American Solar Energy Complex Region

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Mid-American Solar Energy Complex Region. (WHK)

  13. MidAmerican Energy (Gas and Electric) - Residential EnergyAdvantage Loan

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OF CONTENTS 1of:Microsoft WordREMARKSMicrosoft0

  14. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of...

  15. Alternative Energy Law (AEL)

    Broader source: Energy.gov [DOE]

    Iowa requires its two investor-owned utilities (MidAmerican Energy and Alliant Energy Interstate Power and Light) to own or to contract for a combined total of 105 megawatts (MW) of renewable...

  16. Data:D7c639c5-f198-439b-9f83-973c6f30745e | Open Energy Information

    Open Energy Info (EERE)

    2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: MidAmerican Energy Co Effective date: 20120302 End date if known: Rate name: Industrial Power -...

  17. Data:51e37496-dd10-4a44-9d80-f25ce892b60c | Open Energy Information

    Open Energy Info (EERE)

    name: MidAmerican Energy Co Effective date: 19951215 End date if known: Rate name: General Service, Time-of-Use at Primary Voltage Price Schedule GTN Sector: Industrial...

  18. Mid-American Review of Sociology, Volume 6, Number 2 (WINTER, 1981): Back Matter

    E-Print Network [OSTI]

    1981-01-01T23:59:59.000Z

    , Charles Vert. A New Look at Black Families. 2nd ed. Bayside, N.V.: General Hall, 1981. SUBSCRIPTION ORDER FORM . Editor-In-Chief Mid-American Review of Sociology University of Kansas Sociology Department Lawrence, Kansas 66045 TO WHOM IT MAY CONCERN...

  19. Locations of Smart Grid Demonstration and Large-Scale Energy...

    Broader source: Energy.gov (indexed) [DOE]

    the location of all projects created with funding from the Smart Grid Demonstration and Energy Storage Project, funded through the American Recovery and Reinvestment Act....

  20. Location, Location, Location--The Role of Spatial Locality in Asymptotic Energy Minimization

    E-Print Network [OSTI]

    DeHon, André

    designs with p > 0.5 and implementations with metal layers that grow as O(Np-0.5 ) require only O(Np+0.5 ) energy; this bound can be achieved with O(1) metal layers with a novel multicontext design that has heterogeneous context depth. In contrast, a p > 0.5 FPGA design on an implementation technology with O(1) metal

  1. Alternative Fueling Station Locator | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1A PotentialAllison Casey About Us

  2. Truckstop Electrification Locator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas Zip:Hills Jump

  3. Alternative Fueling Station Locator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place: Wayne,EnergyInfrastructure | OpenServices

  4. Energy conservationists locate alternatives for fuel efficiency

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    A report is given of International Maritime Industry's energy conservation workshop. At the workshop, which was conducted by Argonne National Laboratory, about 40 alternatives were discussed for saving shipping energy. Most of those judged most effective involved modification, conversion or installation of thoroughly tested equipment. However, the alternative selected by participants as having the greatest savings potential was a management program aimed at developing crew understanding of efficient operation of the ship and any new fuel-saving equipment. The results of the workshop will be used to refine a chart developed by Argonne that summarizes information available on alternatives for saving fuel aboard ship. To encourage maritime industry efforts to improve energy-use efficiency, the Department of Energy will distribute the revised chart to U.S. and foreign flag operators engaged in U.S. foreign trade.

  5. Property:Event/Location | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationTypeEstimatedCostMedianUSD Jump to:EstimatedTimeMedian Jump

  6. Property:UtilityLocation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/OrganizationTechProbSolutions Jump to:Property Edit with

  7. Information about DOE Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment of EnergyTreatmentInformationPlanDevelopment

  8. OnLocation, Inc., Energy Systems Consulting Hydrogen Scenarios

    E-Print Network [OSTI]

    Delivery Analysis Meeting by Frances Wood OnLocation, Inc. Energy Systems Consulting May 9, 2007 #12;On simulates energy production, consumption, and conversion sectors ­ including hydrogen. D e m a n d C o m p o Activity Module Macroeconomic Activity Module Oil and Gas Supply Module Nat. Gas T&D Module Renewable Fuels

  9. Scalable Energy Efficient Location Aware Multicast Protocol for MANET (SEELAMP)

    E-Print Network [OSTI]

    Kamboj, Pariza

    2010-01-01T23:59:59.000Z

    Multicast plays an important role in implementing the group communications in bandwidth scarce multihop mobile ad hoc networks. However, due to the dynamic topology of MANETs it is very difficult to build optimal multicast trees and maintaining group membership, making even more challenging to implement scalable and robust multicast in Mobile Ad hoc Networks (MANET). A scalable and energy efficient location aware multicast algorithm, called SEELAMP, for mobile ad hoc networks is presented in the paper that is based on creation of shared tree using the physical location of the nodes for the multicast sessions. It constructs a shared bi-directional multicast tree for its routing operations rather than a mesh, which helps in achieving more efficient multicast delivery. The algorithm uses the concept of small overlapped zones around each node for proactive topology maintenance with in the zone. Protocol depends on the location information obtained using a distributed location service, which effectively reduces th...

  10. Energy Storage Demonstration Project Locations | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublic Law of| DepartmentDepartment of

  11. Energy Storage Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | DepartmentSource |  WhyEnergy Storage

  12. Property:News/PrimaryLocation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty Edit withTieredDoc JumpPrimaryLocation

  13. Property:EIA/861/NercLocation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to: navigation,AltFuelVehicle2 Jump to:NercLocation

  14. Mobile Location Sharing: An Energy Consumption Study Ekhiotz Jon Vergara, Mihails Prihodko, Simin Nadjm-Tehrani

    E-Print Network [OSTI]

    Mobile Location Sharing: An Energy Consumption Study Ekhiotz Jon Vergara, Mihails Prihodko, Simin- packet interval) highly influences the energy consumption of the mobile device. Our work focuses other clients' location updates (similar to pull behaviour). In order to evaluate the energy consumption and the

  15. An ab initio method for locating potential energy minima

    SciTech Connect (OSTI)

    Bock, Nicolas [Los Alamos National Laboratory; Peery, Travis [Los Alamos National Laboratory; Venneri, Giulia [Los Alamos National Laboratory; Chisolm, Eric [Los Alamos National Laboratory; Wallace, Duane [Los Alamos National Laboratory; Lizarraga, Raquel [CHILE; Holmstrom, Erik [CHILE

    2009-01-01T23:59:59.000Z

    We study the potential energy landscape underlying the motion of monatomic liquids by quenching from random initial configurations (stochastic configurations) to the nearest local minimum of the potential energy. We show that this procedure reveals the underlying potential energy surface directly. This is in contrast to the common technique of quenching from a molecular dynamics trajectory which does not allow a direct view of the underlying potential energy surface, but needs to be corrected for thermodynamic weighting factors.

  16. Renormalized Ginzburg-Landau Energy and the Location of Near ...

    E-Print Network [OSTI]

    2012-02-10T23:59:59.000Z

    of renormalized energy. As the layer width decreases to zero, we show that the vortices of any minimizer converge to a point of the boundary with max-.

  17. Energy, Interior Departments Announce New Location for Solar Decathlon 2011

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublic Law of|Energy TechnologyClean Energy|

  18. Building Technologies Office: DOE Zero Energy Ready Home Partner Locator

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary 29 - MarchCodesEnergy 3 Peer Review The

  19. Uranium Lease Tracts Location Map | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy Office ofStephanieMaterial2008

  20. Locations of Industrial Assessment Centers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnualThe following termsof EnergyBadgesAward

  1. Alternative Fueling Station Locator - Mobile | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatech srlFinance Place:Benefit Tool

  2. Categorical Exclusion Determinations: Other Location | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergy BushCalifornia9Hampshire CategoricalDakotaRenewableOregonOther

  3. LEDS Collaboration in Action Workshop Location | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation, search GEOTHERMALTexas:KujuBiography Jump to:

  4. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy Maine State Historic5

  5. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy Maine State Historic5Slide 1 The

  6. Major DOE Biofuels Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.Energy Maine State Historic5Slide 1 TheAlgal

  7. Historical Procurement Information - by Location | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 at IowaSecretary Chu Secretary ChuCertiofSmall business contracing is

  8. Property:Water Column Location | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This propertyVolume Jump to: navigation,Was

  9. File:VallesLocationMap.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdf JumpUsgs.9.2010.Fig01.pdf JumpUtilityROW.pdf

  10. Energy Department Announces Student Teams, Location for Solar Decathlon

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'KaneSystems (EGS)2015 | Department of

  11. Energy Department Announces Student Teams, New Location for Solar Decathlon

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'KaneSystems (EGS)2015 | Department of2013 |

  12. Smart Grid Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready, Set,Buildings EquipmentDemonstration

  13. Smart Grid Demonstration Project Locations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmall BusinessSecondary Ventilation8 PreparedSmart Grid

  14. The Net Zero Energy Residential Test Facility, located at the National Institute of Standards

    E-Print Network [OSTI]

    Purpose The Net Zero Energy Residential Test Facility, located at the National Institute of measurement science needed to achieve net- zero energy residential homes. The facility will initially be used's Office of Facilities and Property Management. Net-Zero Energy Residential Test Facility Unique

  15. Energy Procedia 00 (2011) 000000 www.elsevier.com/locate/procedia

    E-Print Network [OSTI]

    Perez, Richard R.

    2011-01-01T23:59:59.000Z

    Code. It is also the model used for generating the CWEEDS (Canadian Weather Energy and Engineering Data and analysis in various applications, including buildings heating and cooling as well as solar systems. OverallEnergy Procedia 00 (2011) 000­000 Energy Procedia www.elsevier.com/locate/procedia SHC 2012

  16. International Journal of Hydrogen Energy 28 (2003) 125129 www.elsevier.com/locate/ijhydene

    E-Print Network [OSTI]

    Vilela Mendes, Rui

    International Journal of Hydrogen Energy 28 (2003) 125­129 www.elsevier.com/locate/ijhydene Quantum for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved. PACS: 31.50.+w 1. Introduction of the octahedral cage. 0360-3199/02/$ 22.00 ? 2002 International Association for Hydrogen Energy. Published

  17. Location-Aided Flooding: An Energy-Efficient Data Dissemination Protocol for

    E-Print Network [OSTI]

    Chakrabarty, Krishnendu

    Location-Aided Flooding: An Energy-Efficient Data Dissemination Protocol for Wireless Sensor such as the broadcast storm problem [6]. In this paper, we present an energy-efficient flooding mechanism, termed of battery and, hence, any solution must be energy-efficient. . Self-configuration. Since it is not feasible

  18. Energy Procedia 00 (2010) 000000 www.elsevier.com/locate/XXX

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    , the total operational and capital costs resulting from the high energy consumption are prohibitiveEnergy Procedia Energy Procedia 00 (2010) 000­000 www.elsevier.com/locate/XXX Available online, MA02139, USA. b Siemens AG, Corporate Research & Technology, CT T DE HW4, Günther-Scharowsky-Str. 1

  19. Annals of Nuclear Energy 26 (1999) 13711393 www.elsevier.com/locate/anucene

    E-Print Network [OSTI]

    Pázsit, Imre

    Annals of Nuclear Energy 26 (1999) 1371±1393 www.elsevier.com/locate/anucene 0306-4549/99/$ - see�zsit V. Arzhanov / Annals of Nuclear Energy 26 (1999) 1371±1393 #12;I. Pa�zsit V. Arzhanov / Annals of Nuclear Energy 26 (1999) 1371±1393 1373 #12;1374 I. Pa�zsit V. Arzhanov / Annals of Nuclear Energy 26

  20. Center for Energy Sustainability The San Diego State University Center for Energy Sustainability, located in the heart of

    E-Print Network [OSTI]

    Ponce, V. Miguel

    1 Center for Energy Sustainability Mission The San Diego State University Center for Energy Sustainability, located in the heart of California's Imperial Valley, America's epicenter, and to seize this opportunity, we are establishing the Center for Energy Sustainability (CES) on SDSU's Brawley

  1. International Journal of Hydrogen Energy 32 (2007) 44894502 www.elsevier.com/locate/ijhydene

    E-Print Network [OSTI]

    Kandlikar, Satish

    Hydrogen fuel cells are being developed as highly efficient and cost effective energy conversion devices.elsevier.com/locate/ijhydene Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell J.P. Owejana, , T.A. Trabolda , D.L. Jacobsonb , M. Arifb , S.G. Kandlikarc aGeneral Motors Fuel Cell Activities, 10

  2. Department of Energy and Mineral Engineering Spring 2013 "Plunger at Location" Sensing

    E-Print Network [OSTI]

    Demirel, Melik C.

    ) of the on-board device from the 3D printer in the Learning Factory. Outcomes We were able to develop the onPENNSTATE Department of Energy and Mineral Engineering Spring 2013 "Plunger at Location" Sensing to use to print a plastic prototype (rather than the steel the device should actually be made of

  3. ENERGY-AWARE SECURE MULTICAST COMMUNICATION IN AD-HOC NETWORKS USING GEOGRAPHIC LOCATION INFORMATION

    E-Print Network [OSTI]

    Lazos, Loukas

    ENERGY-AWARE SECURE MULTICAST COMMUNICATION IN AD-HOC NETWORKS USING GEOGRAPHIC LOCATION INFORMATION Loukas Lazos, Radha Poovendran Network Security and Cryptography Laboratory University by NSF grant ANI-0093187 and ARO grant DAAD-190210242 ABSTRACT The problem of securing multicast

  4. Location Efficiency as the Missing Piece of The Energy Puzzle: How Smart Growth Can Unlock Trillion Dollar Consumer Cost Savings

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Location Efficiency as the Missing Piece of The Energy Puzzle: How Smart Growth Can Unlock Trillion. In the analysis the energy efficiency potential of smart growth developments (the type that are occurring in the US) are estimated using location efficiency research findings. The results show energy savings

  5. The energy performance of electrochromic windows in heating-dominated geographic locations

    SciTech Connect (OSTI)

    Sullivan, R.; Lee, E.S.; Rubin, M.; Selkowitz, S.

    1996-01-01T23:59:59.000Z

    This paper presents the results of a study investigating the energy performance of electrochromic windows in heating-dominated geographic locations under a variety of state-switching control strategies. The authors used the DOE-2.1E energy simulation program to analyze the annual heating, cooling and lighting energy use and performance as a function of glazing type, size, and electrochromic control strategy. They simulated a prototypical commercial office building module located in Madison, Wisconsin. Control strategies analyzed were based on daylight illuminance, incident total solar radiation, and space cooling load. The results show that overall energy performance is best if the electrochromic is left in its clear or bleached state during the heating season, but controlled during the cooling season using daylight illuminance as a control strategy. Even in such heating dominated locations as madison, there is still a well-defined cooling season when electrochromic switching will be beneficial. However, having the electrochromic remain in its bleached state during the winter season may result in glare and visual comfort problems for occupants much in the same way as conventional glazings.

  6. Overview of Opportunities for Co-Location of Solar Energy Technologies and Vegetation

    SciTech Connect (OSTI)

    Macknick, J.; Beatty, B.; Hill, G.

    2013-12-01T23:59:59.000Z

    Large-scale solar facilities have the potential to contribute significantly to national electricity production. Many solar installations are large-scale or utility-scale, with a capacity over 1 MW and connected directly to the electric grid. Large-scale solar facilities offer an opportunity to achieve economies of scale in solar deployment, yet there have been concerns about the amount of land required for solar projects and the impact of solar projects on local habitat. During the site preparation phase for utility-scale solar facilities, developers often grade land and remove all vegetation to minimize installation and operational costs, prevent plants from shading panels, and minimize potential fire or wildlife risks. However, the common site preparation practice of removing vegetation can be avoided in certain circumstances, and there have been successful examples where solar facilities have been co-located with agricultural operations or have native vegetation growing beneath the panels. In this study we outline some of the impacts that large-scale solar facilities can have on the local environment, provide examples of installations where impacts have been minimized through co-location with vegetation, characterize the types of co-location, and give an overview of the potential benefits from co-location of solar energy projects and vegetation. The varieties of co-location can be replicated or modified for site-specific use at other solar energy installations around the world. We conclude with opportunities to improve upon our understanding of ways to reduce the environmental impacts of large-scale solar installations.

  7. A New Approach for Determining Optimal Air Compressor Location in A Manufacturing Facility to Increase Energy Efficiency

    E-Print Network [OSTI]

    Zahlan, J.; Avci, M.; Asfour, S.

    2014-01-01T23:59:59.000Z

    An approach is proposed to determine the optimal air compressor location in a manufacturing facility. The optimization strategy is based on an objective function that minimizes the total energy consumption of the air compressor -thereby decreasing...

  8. Energy Programs and Recent Initiatives Environment, Energy & Natural Resources Center: Located in the heart of the energy industry

    E-Print Network [OSTI]

    Azevedo, Ricardo

    , and Natural Resources Meet As the global demand for energy increases and U.S. oil and gas production soars Bar: Environmental Law, Oil, Gas and Energy Law, and International Law. · EENR Speaker Series energy-specific courses, especially those in oil and gas, and its faculty is internationally

  9. arXiv:astro-ph/0701281v110Jan2007 Very High Energy Observations of Gamma-Ray Burst Locations

    E-Print Network [OSTI]

    arXiv:astro-ph/0701281v110Jan2007 Very High Energy Observations of Gamma-Ray Burst Locations high energies (VHE, E > 100 GeV) can impose tight constraints on some GRB emission models. Many 1 Fred, Tanta University, Tanta, Egypt 4 Department of Physics, University of Massachusetts, Amherst, MA 01003

  10. www.elsevier.com/locate/pnucene Progress in Nuclear Energy, Vol. 43, No. I-4, pp. 313-319, 2003

    E-Print Network [OSTI]

    Pázsit, Imre

    Pergamon www.elsevier.com/locate/pnucene Progress in Nuclear Energy, Vol. 43, No. I-4, pp. 313 Department of Reactor Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden ABSTRACT is investigated. This investigation relies on 2-group diffusion theory, and all the calculations are performed

  11. International Journal of Hydrogen Energy 27 (2002) 403412 www.elsevier.com/locate/ijhydene

    E-Print Network [OSTI]

    Kim, Jai Sam

    International Journal of Hydrogen Energy 27 (2002) 403­412 www with the titanium atoms in the B2 TiFe surfaces. ? 2002 International Association for Hydrogen Energy. Published.00 ? 2002 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights

  12. Net PV Value by location and building type | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX Ltd JumpNepali Alternative

  13. EIS-0463: Notice of Public Meeting Location Change | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1Energy |FinalEESS-7 to|GranbyChamplain HudsonDraftConduct Public On

  14. Category:Utility Rate Impacts on PV Economics By Location | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as exploration techniques, clickpage?Information

  15. Check Out the New Alternative Fuel Station Locator | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJuneWasteDepartmentUtilities in many Find Stations Plan a Route

  16. Property:Types of Co-located facilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This property isType" Showinglocated

  17. Data Center Energy Benchmarking: Part 1 -Case Studies on Two Co-location Data Centers

    E-Print Network [OSTI]

    ................................................................................................................. 3 3 ELECTRIC POWER CONSUMPTION CHARACTERISTICS ........................ 8 4 MECHANICAL SYSTEM was prepared as an account of work sponsored by the United States Government and California Energy Commission. While this document is believed to contain correct information, neither the United States Government nor

  18. Energy Procedia 00 (2008) 000000 www.elsevier.com/locate/XXX

    E-Print Network [OSTI]

    Haszeldine, Stuart

    , accounting for almost 70% of the total energy consumption, but India still faces serious electricity (56%) do not have electricity, and women and girls spend a total of 80 billion hours each year [3]. The Indian government plans to invest heavily in the rural sectors, seeking to achieve more than

  19. Data Center Energy Benchmarking: Part 2 -Case Studies on Two Co-location Network Data Centers

    E-Print Network [OSTI]

    ...................................................................................................................... 2 3 ELECTRIC POWER CONSUMPTION CHARACTERISTICS ........................ 3 3.1 PDU SYSTEM was prepared as an account of work sponsored by the United States Government and California Energy Commission. While this document is believed to contain correct information, neither the United States Government nor

  20. On the Location of Energy Release and Temperature Pro les along Coronal Loops

    E-Print Network [OSTI]

    Mackay, Duncan

    temperature and the temperature distribution along the loop. In each case the ratio between the heat deposited and radiation provides a scaling for the summit temperature. Keywords: methods: Numerical - MHD - sun: corona;les of the energy release are then used to in- vestigate the temperature distribution along a loop.

  1. Energy Procedia 00 (2010) 000000 www.elsevier.com/locate/XXX

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    auxiliary gas power for CCS energy needs in retrofitted coal power plants Sarah O. Bashadia , Howard J Adding post-combustion capture technology to existing coal-fired power plants is being considered-fired power plants today and the projected growth in electricity demand worldwide, coal will remain

  2. Energy Procedia 00 (2010) 000000 www.elsevier.com/locate/XXX

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    2010-01-01T23:59:59.000Z

    strategy. Geological carbon sequestration, however, also carries substantial risks such as leakage (acute the highest CO2 output per energy unit, indicating the need for some form of carbon mitigation [1] regardless of the predicted climate change scenario [2]. Geological sequestration of the captured CO2 is the most mature

  3. Interval Analysis for Unknown Dependencies and Genetic

    E-Print Network [OSTI]

    : Power Systems Engineering Research Center Cornell University 428 Phillips Hall Ithaca, New York 14853 given to MidAmerican Energy for its support of this project. Thanks are also given to our industry advisors: · O. Dale Stevens, II, MidAmerican Energy Co. · John Thomas Chatelain, MidAmerican Energy Co. #12

  4. Review of water, lighting, and cooling energy efficiency measures for low-income homes located in warm climates

    SciTech Connect (OSTI)

    Martin, M.A.; Gettings, M.B.

    1998-02-01T23:59:59.000Z

    In support of the U.S. Department of Energy`s Weatherization Assistance Program, Oak Ridge National Laboratory has performed a literature review of weatherization measures applicable for homes located in warm climate regions. Sources for this information included: (1) documented engineering estimates, (2) vendor information, (3) reported performance from research and field tests, and (4) direct discussions with researchers, vendors, and field reporters. Estimated savings are extrapolated from reported energy savings and applied to the end-use energy consumption for low-income homes reported by the Energy Information Administration. Additionally, installation costs, savings-to-investment ratios, and parameters indicating performance sensitivity to issues such as occupancy, construction, client education, and maintenance requirements are presented. The report is comprised of two sections: (1) an overview of measure performance, and (2) an appendix. The overview of measures is in a tabular format, which allows for quick reference. More detailed discussions and references for each measure are presented in the Appendix and it is highly recommended that these be reviewed prior to measure selection.

  5. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTerms Loan Terms TheNaturalemployee

  6. Locations of Smart Grid Demonstration and Large-Scale Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing |Prepare for an Energy EmergencyRespond

  7. Data Center Energy Benchmarking: Part 2 - Case Studies on TwoCo-location Network Data Centers (No. 18 and 19)

    SciTech Connect (OSTI)

    Xu, Tengfang; Greenberg, Steve

    2007-08-01T23:59:59.000Z

    Two data centers in this study were within a co-location facility located on the sixth floor of a multi-story building in downtown Los Angeles, California. The facility had 37,758 gross square feet floor area with 2-foot raised-floors in the data services area. The two data centers were designated as the west data center (DC No.18) and the east data center (DC No.19). The study found that 56% of the overall electric power was consumed by sixth floor critical loads in both data centers, 33% of the power was consumed by HVAC systems, 3% of the power was consumed by UPS units, 3% of the power was for generator losses, and the remaining 5% was used by lighting and miscellaneous loads in the building. The power density of installed computer loads (rack load) in the two data centers was 20 W/ft{sup 2} and 56 W/ft{sup 2}, respectively. The power density was relatively lower in DC No.18 compared to other data centers previously studied. In addition, HVAC to IT power demand ratio was 0.6 in DC No.18 in this study, and was 0.4 in DC No.19. Two out of three chillers were running at a low partial load, making the operation very energy inefficient. The operation and control of the chillers and air-handling units should be optimized while providing sufficient cooling to the data centers. Although arranging hot aisle/cold aisle design to separate airflow streams would be difficult in such a co-location data center, optimizing air distribution should be pursued. General recommendations for improving overall data center energy efficiency include improving the design, operation, and control of mechanical systems serving the data centers with various critical loads in place. This includes chiller operation, chilled water system, AHUs, airflow management and control in data centers. Additional specific recommendations or considerations to improve energy efficiency are provided in this report.

  8. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect (OSTI)

    Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01T23:59:59.000Z

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

  9. www.elsevier.com/locate/pnucene Progre,ss in Nuclear Energy, Vol. 43, No. 1-4, pp. 151-158, 2003

    E-Print Network [OSTI]

    Pázsit, Imre

    ~ Pergamon www.elsevier.com/locate/pnucene Progre,ss in Nuclear Energy, Vol. 43, No. 1-4, pp. 151 Diagnostics of core-barrel vibrations has traditionally been made by use of ex- vessel neutron detector were tested on some measurements taken in the Ringhals PWRs. The results confirm the validity

  10. www.elsevier.com/locate/pnucene Progress in Nuclear Energy, Vol. 43, No. 1-4, pp. 429-436, 2003

    E-Print Network [OSTI]

    Pázsit, Imre

    Pergamon www.elsevier.com/locate/pnucene Progress in Nuclear Energy, Vol. 43, No. 1-4, pp. 429. INTRODUCTION Monitoring of criticality in low-power subcritical systems has gained some renewed interest to be run in a subcritical mode, continuous monitoring of the margins to criticality is essential for safe

  11. Location | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Argonne National Laboratory, 25 miles southwest of Chicago at the heart of the Midwest's broad industrial and academic research and transportation...

  12. Hazardous Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soilASTI-SORTI Comparison T. M.090041 -0500

  13. Sensitivity of forced air distribution system efficiency to climate, duct location, air leakage and insulation

    E-Print Network [OSTI]

    Walker, Iain

    2001-01-01T23:59:59.000Z

    Location, Air Leakage and Insulation Iain S. Walker Energy4 Duct Insulation, Location and Leakageinsulation

  14. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  15. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  16. Library Locations Locations other than Main Library

    E-Print Network [OSTI]

    Library Locations Locations other than Main Library Example: Feminist Studies HQ1410 .U54 2009 University of California, Santa Barbara Library www.library.ucsb.edu Updated 3-2014 A - B.......................................6 Central M - N..................................................Arts Library (Music Building) P

  17. Research Site Locations for Current and Former EERE Postdoctoral...

    Broader source: Energy.gov (indexed) [DOE]

    Research Site Locations for Current and Former EERE Postdoctoral Awards, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. eeremap2015.pdf...

  18. 1 hour, 25 minutes ago Japan will ask the European Union to declare it a "joint host" of a revolutionary nuclear energy project even if the reactor is located in

    E-Print Network [OSTI]

    " of a revolutionary nuclear energy project even if the reactor is located in France, a newspaper said. The Nihon to 'joint host' revolutionary nuclear reactor 6/6/05 8:23 AMPrint Story: Japan to ask EU to 'joint host' revolutionary nuclear reactor on Yahoo! News Page 1 of 1http://news.yahoo.com/s/afp/20050606/sc

  19. Boston, Massachusetts Location: Boston, MA

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    -recovery ventilation and water-source heat pumps Each unit has fresh air ducted independently. Each residence is warmed by a heat pump that taps the Trigen Energy Corporation steam lines that run underneath the street. #12;WallsBoston, Massachusetts #12;Location: Boston, MA Building type(s): Multi-unit residential, Retail 350

  20. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, L.J.; Foreman, L.R.

    1999-08-31T23:59:59.000Z

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  1. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Alamos, NM); Foreman, Larry R. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

  2. Reversible micromachining locator

    DOE Patents [OSTI]

    Salzer, Leander J. (Los Almos, NM); Foreman, Larry R. (late of Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.

  3. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  4. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  5. TOPIC TIME LOCATION CATEGORY TITLE AUTHORS INSTITUTION Advanced Energy Systems 10:15 to 10:35 AM BA1180 CSME

    E-Print Network [OSTI]

    :30 to 11:45 AM BA2139 CSME An Autonomous Vehicle for Navigation and Path Following in Outdoor Farms F FUEL CELL ELECTRODES S. M. R. Niya ,M. Hoorfar University of British Columbia Advanced Energy Systems 4:05 to 4:25 PM BA1180 CSME Effect of Hygrothermal Fatigue on Damage Propagation in PEM Fuel Cell Membrane R

  6. Standard room is W1 0 015 (unless otherwise expressively stated). Other locations are the CIP Cluster (Computer Room), the Energy

    E-Print Network [OSTI]

    Peinke, Joachim

    ) 10:00 Coffee Break 10:15 Keynote Lecture I: Photovoltaics - Technology and Application - a Report on the State of Art Dr. Hansjörg Gabler, Head of Department "Photovoltaics" Center for Solar Energy Efficiency Partnership, Int Sec. Vienna 11:45 Lunch Break Session 1: Systems Analysis and Simulation, Part 1

  7. Low-energy absorption towards the ultra-compact binary 4U1850-087 located in the globular cluster NGC6712

    E-Print Network [OSTI]

    L. Sidoli; N. La Palombara; T. Oosterbroek; A. N. Parmar

    2005-07-11T23:59:59.000Z

    We report the results of two XMM-Newton observations of the ultra-compact low-mass X-ray binary 4U1850-087 located in the galactic globular cluster NGC6712. A broad emission feature at 0.7keV was detected in an earlier ASCA observation and explained as the result of an unusual Ne/O abundance ratio in the absorbing material local to the source. We find no evidence for this feature and derive Ne/O ratios in the range 0.14-0.21, consistent with that of the interstellar medium. During the second observation, when the source was 10% more luminous, there is some evidence for a slightly higher Ne/O ratio and additional absorption. Changes in the Ne/O abundance ratio have been detected from another ultra-compact binary, 4U1543-624. We propose that these changes result from an X-ray induced wind which is evaporated from an O and Ne rich degenerate donor. As the source X-ray intensity increases so does the amount of evaporation and hence the column densities and abundance ratio of Ne and O.

  8. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07T23:59:59.000Z

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  9. Optimal fault location

    E-Print Network [OSTI]

    Knezev, Maja

    2009-05-15T23:59:59.000Z

    are triggered. Protection system consisting of protection relays and circuit breakers (CBs) will operate in order to de-energize faulted line. Different Intelligent Electronic Devices (IEDs) located in substations for the purpose of monitoring... in the control center by an operator who will mark fault event in a spreadsheet and inform other staff responsible for dealing with fault analysis and repair such as protection group or maintenance respectively. Protective relaying staff will be ready...

  10. Optimal fault location

    E-Print Network [OSTI]

    Knezev, Maja

    2008-10-10T23:59:59.000Z

    are triggered. Protection system consisting of protection relays and circuit breakers (CBs) will operate in order to de-energize faulted line. Different Intelligent Electronic Devices (IEDs) located in substations for the purpose of monitoring... in the control center by an operator who will mark fault event in a spreadsheet and inform other staff responsible for dealing with fault analysis and repair such as protection group or maintenance respectively. Protective relaying staff will be ready...

  11. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  12. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValleyPerformance

  13. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 162 Fall 2001. Date: Wednesday December 12, 2001. Time: 7:00 pm -9:00 pm. Location: Lambert Fieldhouse ...

  14. Final Exam Location and Time

    E-Print Network [OSTI]

    Final Exam Location and Time. Math 161 Fall 2001. Date: Friday December 14, 2001. Time: 8:00 am -10:00 am. Location: Lambert Fieldhouse ...

  15. NMOCD - Form G-102 - Geothermal Resources Well Location and Acreage...

    Open Energy Info (EERE)

    Well Location and Acreage Dedication Plat Author State of New Mexico Energy and Minerals Department Published New Mexico Oil Conservation Division, 1978 DOI Not Provided...

  16. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    SciTech Connect (OSTI)

    Smith, Anthony A. [Research Sites Restoration Ltd, Winfrith, Dorset (United Kingdom)] [Research Sites Restoration Ltd, Winfrith, Dorset (United Kingdom)

    2013-07-01T23:59:59.000Z

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] it is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)

  17. Employer Location Aduro Hamilton

    E-Print Network [OSTI]

    Waikato, University of

    Hamilton Analytica Hamilton Auckland Regional Council North Shore City Bakels Mt Maunganui Balance Agri Carnetechnologies Cambridge CHH Tokoroa Code Avenger Hamilton Compaq - Taste Technology Auckland Contact Energy Hamilton Gallagher Group Ltd Hamilton GEA Avapac Hamilton GEA Farm Technologies Hamilton Genesis Energy

  18. Location and Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - CenterLinks BerkeleyLiving well,

  19. SMA Locations.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome to the LCLS UserEnergyLos Alamos

  20. ARM - Instrument Location Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a User Recovery Act Mission

  1. Transformer Location Plan.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;IDEC. i' , iiU i.1 '7,

  2. Alternative Fueling Station Locator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat PumpAllegations of PotentialAlternative Fueling

  3. The Cricket indoor location system

    E-Print Network [OSTI]

    Priyantha, Nissanka Bodhi, 1968-

    2005-01-01T23:59:59.000Z

    Indoor environments present opportunities for a rich set of location-aware applications such as navigation tools for humans and robots, interactive virtual games, resource discovery, asset tracking, location-aware sensor ...

  4. Clean Cities: Coalition Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2 Permit

  5. ARM - Measurement - Cloud location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDC documentationBarrow,ice particle ARM Data Discovery Browse

  6. WIPP Faciliy Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural Public Reading

  7. Berkeley Lab Shower Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find More Like3.3BenefitsSearch This

  8. Presentation Title Presentation Location

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and|Hours(5-Unit)WEA-2010-05 |Overview for Tribal

  9. CC locator map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0LinkA Look at the U.S.CBFO

  10. GE Global Research Locations | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,Dioxide and MethaneLocations GE

  11. Precision zero-home locator

    DOE Patents [OSTI]

    Stone, W.J.

    1983-10-31T23:59:59.000Z

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  12. Our Locations | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Astrophysics One ofSpeedingthisOur HistoryHistoryLocations |

  13. Essays on energy and environmental policy

    E-Print Network [OSTI]

    Novan, Kevin Michael

    2012-01-01T23:59:59.000Z

    1 Valuing the Wind: Renewable Energy Policies and Air Pollu-Emissions Reductions from Wind Energy: Location, Location,High-capacity factor wind energy systems, Jounal of Solar

  14. Synchronized sampling improves fault location

    SciTech Connect (OSTI)

    Kezunovic, M. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States); Perunicic, B. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States)

    1995-04-01T23:59:59.000Z

    Transmission line faults must be located accurately to allow maintenance crews to arrive at the scene and repair the faulted section as soon as possible. Rugged terrain and geographical layout cause some sections of power transmission lines to be difficult to reach. In the past, a variety of fault location algorithms were introduced as either an add-on feature in protective relays or stand-alone implementation in fault locators. In both cases, the measurements of current and voltages were taken at one terminal of a transmission line only. Under such conditions, it may become difficult to determine the fault location accurately, since data from other transmission line ends are required for more precise computations. In the absence of data from the other end, existing algorithms have accuracy problems under several circumstances, such as varying switching and loading conditions, fault infeed from the other end, and random value of fault resistance. Most of the one-end algorithms were based on estimation of voltage and current phasors. The need to estimate phasors introduces additional difficulty in high-speed tripping situations where the algorithms may not be fast enough in determining fault location accurately before the current signals disappear due to the relay operation and breaker opening. This article introduces a unique concept of high-speed fault location that can be implemented either as a simple add-on to the digital fault recorders (DFRs) or as a stand-alone new relaying function. This advanced concept is based on the use of voltage and current samples that are synchronously taken at both ends of a transmission line. This sampling technique can be made readily available in some new DFR designs incorporating receivers for accurate sampling clock synchronization using the satellite Global Positioning System (GPS).

  15. Energy 25 (2000) 445461 www.elsevier.com/locate/energy

    E-Print Network [OSTI]

    Budair, Mohammed Omar

    elements are examined for a heat exchanger that is used in a crude oil preheat train. The results­461 Nomenclature A =External heat exchanger surface (m2 ) CA =Cost of additional fuel consumption ($) CA =Cost of additional fuel consumption per day ($.day 1 ) CH =Cost of fuel consumption ($) CS =Cost of steam consumption

  16. Energy 25 (2000) 427443 www.elsevier.com/locate/energy

    E-Print Network [OSTI]

    Budair, Mohammed Omar

    2000-01-01T23:59:59.000Z

    subject to fouling Part I: Performance evaluation Syed M. Zubair * , Anwar K. Sheikh, Muhammad Younas, M.O. Budair Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261 of the plant. This may result in both economic and human loss, particularly in refineries and thermal power

  17. Energy 29 (2004) 14671478 www.elsevier.com/locate/energy

    E-Print Network [OSTI]

    Gnanadesikan, Anand

    -scale sequestration strategies have been considered to help mitigate rising levels of atmospheric carbon dioxide (CO2 mitigate the rapid and potentially dangerous accumulation of carbon dioxide (CO2) in Earth's atmosphere [1 into the deep ocean and thereby ``short-circuiting'' the sluggish exchange of carbon between the major natural

  18. Location logistics of industrial facilities

    E-Print Network [OSTI]

    Hammack, William Eugene

    1981-01-01T23:59:59.000Z

    of company intent1ons is not made at the correct time and in the correct manner. 6. Recommend Best Areas for Further Invest1 ations. Once the on-site evaluations have been completed, the 11st of possibilities is reduced still further and only the best... location and site selection. This data was gathered through library research, atten- dance of various industr1al development conferences, sol1citation of mater1als from individuals currently involved with industrial facil1ties location, and various...

  19. Location of laccase in ordered mesoporous materials

    SciTech Connect (OSTI)

    Mayoral, Álvaro [Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Edificio I - D, Mariano Esquillor, 50018 Zaragoza (Spain); Gascón, Victoria; Blanco, Rosa M.; Márquez-Álvarez, Carlos; Díaz, Isabel, E-mail: idiaz@icp.csic.es [Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Madrid (Spain)

    2014-11-01T23:59:59.000Z

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (C{sub s}) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  20. Building Address Locations -Assumes entire

    E-Print Network [OSTI]

    Guenther, Frank

    Building Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC Biosquare III 670 Albany Floors 2, 3, 6, 7 BMC Biosquare III 670 Albany Floors 1, 4, 5, 8 BU Building

  1. Icarus 182 (2006) 343349 www.elsevier.com/locate/icarus

    E-Print Network [OSTI]

    California at Berkeley, University of

    Icarus 182 (2006) 343­349 www.elsevier.com/locate/icarus Solar wind plasma protrusion, Finland i Finnish Meteorological Institute, Box 503, FIN-00101 Helsinki, Finland j Space Physics Research. The peak electron energy often exceeds the peak energy at the bow shock that indicates a significant

  2. Joint microseismic event location with uncertain velocity

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2013-01-01T23:59:59.000Z

    We study the problem of the joint location of seismic events using an array of receivers. We show that locating multiple seismic events simultaneously is advantageous compared to the more traditional approaches of locating ...

  3. Asymptotic analysis of an optimal location problem

    E-Print Network [OSTI]

    2003-05-13T23:59:59.000Z

    Asymptotic analysis of an optimal location problem. One considers the problem of optimal location of masses(say production centers) in order to approximate a ...

  4. Energy Policy ] (

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    to the locational marginal prices of several pricing points in the New England, New York, and PJM electricityEnergy Policy ] (

  5. American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance U.S. Army Project 181 Implementation Challenges in Deployment of an Energy Security Microgrid for Army Reserve Facilities located on the Former Fort Devens Army Base

    SciTech Connect (OSTI)

    Warwick, William M.

    2010-09-30T23:59:59.000Z

    This documents reports on a request for technical assistance from Fort Devens to analyze procurement of energy from nearby renewable generating resources.

  6. Conference Programme Session Location Speaker

    E-Print Network [OSTI]

    Joshi, Manoj

    Theatre Prof. James Scourse ­ Director of Climate Change Consortium for Wales 5.00-7.00pm Wine & Poster Psych Cafe 11.30-1.00pm Energy & Emissions Stanley Paris Lecture Theatre Mix of full and speed: Is there a role for shale gas in a sustainable energy transition? Aberdare Hall Representatives from within

  7. Short range radio locator system

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers to sample the ether for the radar pulse. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information.

  8. WINDExchange: School Wind Project Locations

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:

  9. AE Locations (cont/ae)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the EnergyTAMANG, APIL. AProvenanceGte d N a

  10. EIS-0426: Site-Wide Environmental Impact Statement for Continued Operation of the Department of Energy / National Nuclear Security Administration Nevada National Security Site and Off-Site Locations in the State of Nevada

    Broader source: Energy.gov [DOE]

    This Site-Wide EIS evaluates the potential environmental impacts of proposed alternatives for continued management and operation of the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site) and other U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)-managed sites in Nevada.

  11. Connectivity Based Location Estimation Scheme for Wireless Ad Hoc Networks

    E-Print Network [OSTI]

    Ramanathan, Parameswaran "Parmesh"

    Connectivity Based Location Estimation Scheme for Wireless Ad Hoc Networks Niveditha Sundaram. The loca- tion estimates rely on neighborhood relationships gathered by each user through message, form factors, energy consumption, etc., providing GPS support may not be feasible even in outdoor

  12. Biomass Energy Resources and Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    implementing remote energy technologies. Energy Security: Biomass resources are viable renewable energy resources found in almost every location across the U.S. It is a...

  13. Wisconsin | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wisconsin Wisconsin Wisconsin Energy Efficiency (WE2) Milwaukee Energy Efficiency (Me2) Green Madison City of Racine Location: Milwaukee, Madison, and Racine, Wisconsin Seed...

  14. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles 

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  15. Analysis of the AirTouch automatic vehicle location system's ability to locate moving vehicles

    E-Print Network [OSTI]

    Henry, Tracy Lynn

    1995-01-01T23:59:59.000Z

    Automatic vehicle location systems are becoming more prevalent in diverse transportation applications. Their ability to locate vehicles can assist in locating emergency and public transit vehicles for better real-time dispatching as well...

  16. LOCATION: Johnson County Sheriff's Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental Run SchedulesLNG Technology Is

  17. Ombuds Office Location & Hours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation | NationalNovember 11,Oil OilOmbuds

  18. Mobile Alternative Fueling Station Locator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7,AMission MissionMistakesMo

  19. Helicopter Surveys for Locating Wells and Leaking Oilfield Infrastructure

    SciTech Connect (OSTI)

    Hammack, R.W.; Veloski, G.A.; Hodges, G. (Fugro Airborne Surveys)

    2006-10-01T23:59:59.000Z

    Prior to the injection of CO2 into geological formations, either for enhanced oil recovery or for CO2 sequestration, it is necessary to locate wells that perforate the target formation and are within the radius of influence for planned injection wells. Locating and plugging wells is necessary because improperly plugged well bores provide the most rapid route for CO2 escape to the surface. This paper describes the implementation and evaluation of helicopter and ground-based well detection strategies at a 100+ year old oilfield in Wyoming where a CO2 flood is planned. This project was jointly funded by the U.S. Department of Energy’s National Energy Technology Laboratory and Fugro Airborne Surveys

  20. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  1. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | Blandine AllocationSearchLocate17,099

  2. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About BecomeTechnologies | Blandine AllocationSearchLocate17,099

  3. Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/enpol

    E-Print Network [OSTI]

    Firestone, Jeremy

    2011 Keywords: Wind power Offshore wind power Levelized cost of energy Breakeven priceQ1 a b s t r a c other new renewable energy technologies, though it is more costly than land-based wind power and most: www.elsevier.com/locate/enpol Energy Policy Energy Policy ] (

  4. Draft Environmental Impact Statement for the Conveyance and Transfer of Certain Land Tracts Administered by the Department of Energy and Located at the Los Alamos National Laboratory, Los Alamos and Sante Fe Counties, New Mexico

    SciTech Connect (OSTI)

    N /A

    1999-02-26T23:59:59.000Z

    This chapter introduces the U.S. Department of Energy's (DOE's) role in the conveyance and transfer of 10 land parcels at Los Alamos National Laboratory (LANL) to the Incorporated County of Los Alamos and to the Secretary of the U.S. Department of the Interior, in trust for San Ildefonso Pueblo, as required by Public Law (PL) 105-119; a statement of the purpose and need for the DOE's action; and an overview of the alternatives analyzed in this Draft Conveyance and Transfer of Certain Land Tracts Environmental Impact Statement (Draft CT EIS). In addition, this chapter explains DOE decisions that the Draft CT EIS is intended to support, as well as the relationship of this document to other environmental documentation prepared by the DOE. At the conclusion of this chapter is an overview of the Draft CT EIS.

  5. Helicopter magnetic survey conducted to locate wells

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

    2008-07-01T23:59:59.000Z

    A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

  6. Location theory and the location of industry along an interstate highway

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01T23:59:59.000Z

    to determine the significance of these locational factors among plants with different characteristics that have located in certain localities should provide pertinent information with both practical and theoretical implications. Since 1956, approximately 64... Summary of Plant Location Theory Cost Fac'tots . . . . . . . . . . . . . ~ The Importance of 'the Demand Factor Greenhut's General Theory of Plant Location and the Intangible Factor Location Factors as Revealed by Empirical Study Greenhut's Case...

  7. Regenerator Location Problem in Flexible Optical Networks

    E-Print Network [OSTI]

    BARIS YILDIZ

    2014-11-22T23:59:59.000Z

    Nov 22, 2014 ... Abstract: In this study we introduce the regenerator location problem in flexible optical networks (RLP-FON). With a given traffic demand, ...

  8. National Renewable Energy Laboratory Innovation for Our Energy Future

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance a given location for the best technology, or a renewable energy technology for the best location, accurate

  9. Mapping the location and configuration of nitrogen in diamond nanoparticles.

    SciTech Connect (OSTI)

    Barnard, A. S.; Sternberg, M.; Center for Nanoscale Materials; Univ. of Oxford

    2007-01-17T23:59:59.000Z

    Understanding how impurities such as nitrogen are included in diamond nanoparticles is expected to be important for use in future nanodevices, such as qubits for quantum computing. Most commercial diamond nanoparticles contain approximately 2-3% nitrogen, but it is difficult to determine experimentally whether it is located within the core or at the surface of the nanoparticles. Presented here are density functional tight-binding simulations examining the configuration and potential energy surface of substitutional nitrogen in diamond nanoparticles, directly comparing results of different sizes, shapes and surface chemistry. The results predict that nitrogen is metastable within the core of both hydrogenated and dehydrogenated particles, but that the binding energy, coordination and preferred location is dependent upon the structure of the nanoparticle as a whole.

  10. Storing and transporting energy

    DOE Patents [OSTI]

    McClaine, Andrew W. (Lexington, MA); Brown, Kenneth (Reading, MA)

    2010-09-07T23:59:59.000Z

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  11. Automated Fault Location In Smart Distribution Systems 

    E-Print Network [OSTI]

    Lotfifard, Saeed

    2012-10-19T23:59:59.000Z

    ............................................................................................................................ 88 x LIST OF FIGURES Page Figure 1 Multiple possible fault location estimation for a fault at node A ........................ 7 Figure 2 Simple faulted network model [1] © [2011] IEEE ............................................ 40 Figure 3... Types C and D voltage sags for different phases [51] © [2003] IEEE .............. 42 Figure 4 Rf estimation procedure [1] © [2011] IEEE ...................................................... 45 Figure 5 Flow chart of the fault location algorithm [1...

  12. RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED

    E-Print Network [OSTI]

    Miami, University of

    RECYCLING PROGRAM TYPE LOCATION ALLOWED NOT ALLOWED Batteries, toner, ink cartridges & cell phones and recycling is an important part of that effort. Below is a guide to on-campus recycling at RSMAS: Visit http://www.rsmas.miami.edu/msgso/ for map of recycling bin locations. NOTE: This is not an exhaustive list. If unauthorized items are found

  13. Optimized Fault Location Final Project Report

    E-Print Network [OSTI]

    Engineering Research Center Optimized Fault Location Concurrent Technologies Corporation Final Project Report by the Concurrent Technologies Corporation (CTC) and the Power Systems Engineering Research Center (PSERC). NeitherOptimized Fault Location Final Project Report Power Systems Engineering Research Center A National

  14. Locating and tracking assets using RFID 

    E-Print Network [OSTI]

    Kim, Gak Gyu

    2009-05-15T23:59:59.000Z

    , this research presents a math¬ematical model of using RFID (both handheld readers and stationary readers) for e?cient asset location. We derive the expected cost of locating RFID¬tagged objects in a multi¬area environment where hand¬held RF readers are used. We...

  15. Location Privacy and the Personal Distributed Environment

    E-Print Network [OSTI]

    Atkinson, Robert C

    Location Privacy and the Personal Distributed Environment Robert C Atkinson, Swee Keow Goo, James-- The Personal Distributed Environment is a new concept being developed within the Mobile VCE Core 3 research, wherever their location: ubiquitous access. Devices are co-ordinated by Device Management Entities (DMEs

  16. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContractElectron-StateEnergy /newsroom/_assets/images/energy-icon.png Energy

  17. The Construction of Locative Situations: Locative Media and the Situationist International, Recuperation or Redux?

    E-Print Network [OSTI]

    McGarrigle, Conor

    2009-01-01T23:59:59.000Z

    closely aligned to the SI's construction of situations. ThisG (1957) Report on the Construction of Situations and on theThe Construction of Locative Situations: Locative Media and

  18. SFSU Building Coordinators List College or Administrative Unit Location(s)

    E-Print Network [OSTI]

    SFSU Building Coordinators List College or Administrative Unit Location(s) Building Coordinator81193 cathym@sfsu.edu GYM 102B Student Services Building SSB Mirel Tikkanen x53566 mtikkane@sfsu.edu SSB

  19. Sensitivity of Forced Air Distribution System Efficiency to Climate, Duct Location, Air Leakage and Insulation

    E-Print Network [OSTI]

    , Air Leakage and Insulation Iain S. Walker Energy Performance of Buildings Group Indoor Environment ................................................................................................................................................ 4 Duct Insulation, Location and Leakage Examples............................................................... 4 Figure 2. Sheet metal ducts in a basement insulated with asbestos

  20. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01T23:59:59.000Z

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  1. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar Energy author Andraka, C.E. year 2008 report-id SAND2008-4513C event Energy Sustainability 2008 location Jacksonville, FL Concentrating Solar Power (CSP) dish...

  2. Energy Department Announces Student Teams, New Location for Solar...

    Office of Environmental Management (EM)

    California (Los Angeles, Calif.) Vienna University of Technology (Vienna, Austria) West Virginia University (Morgantown, W. Va.) Follow the progress of Solar Decathlon 2013...

  3. Renewable Energy Co-Location of Distribution Facilities (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation applies to distribution facilities, which include poles and wires, cables, pipelines, or other underground conduits by which a renewable generator is able to (i) supply electricity...

  4. Energy Department Announces Student Teams, Location for Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /ofConcentrating Solar Power Systems |Materialat2015 |

  5. Energy Department Announces Student Teams, New Location for Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register /ofConcentrating Solar Power Systems |Materialat2015 |2013

  6. Energy Department Launches Alternative Fueling Station Locator App |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and Fuel Cell TechnologiesDrop-In

  7. Energy Department Launches Alternative Fueling Station Locator App |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogen and Fuel Cell TechnologiesDrop-InDepartment of

  8. Oregon: Clean Energy Works Coordinates Energy Efficiency Efforts...

    Energy Savers [EERE]

    Impact EERE-funded program is reducing energy waste, which is slowing the effects of climate change. Locations Oregon Partners Clean Energy Works Oregon EERE Investment 20...

  9. THE PLANAR HUB LOCATION PROBLEM: A PROBABILISTIC ...

    E-Print Network [OSTI]

    2012-11-21T23:59:59.000Z

    Nov 5, 2012 ... Aykin and Brown, [4]. ...... [8] J.F. Campbell, Integer programming formulations of discrete hub location problems, European J. of O.R.. 72(1994) ...

  10. Developing a theory of nightclub location choice

    E-Print Network [OSTI]

    Crim, Stephen J. (Stephen Johnson)

    2008-01-01T23:59:59.000Z

    This work is an investigation of the factors that influence where nightclubs locate within a city. Nightclubs, like other social spaces, provide important social and economic benefits in the urban environment. As amenities, ...

  11. Techniques for Mobile Location Estimation in UMTS 

    E-Print Network [OSTI]

    Thomas, Nicholas J

    The subject area of this thesis is the locating of mobile users using the future 3rd generation spread spectrum communication system UMTS. The motivation behind this work is twofold: firstly the United States Federal ...

  12. Driver expectancy in locating automotive controls 

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990... Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er...

  13. Driver expectancy in locating automotive controls

    E-Print Network [OSTI]

    Francis, Dawn Suzette

    1990-01-01T23:59:59.000Z

    Major Subject: Industrial Engineering DRIVER EXPECTANCY IN LOCATING AUTOMOTIVE CONTROLS A Thesis by DAWN SUZETTE FRANCIS Approved as to style and content by: R. Dale Huchi son (Chair of Committee) Rodger . . ppa (Member) Waymon L ohnston (M er... assessment of automotive industry practices in 1971 and concluded that only 50% of controls/displays on various models could be said to have a common location. Perel (1974) reviewed prior research and found that it would be difficult to pinpoint...

  14. Locating Boosted Kerr and Schwarzschild Apparent Horizons

    E-Print Network [OSTI]

    Mijan F. Huq; Matthew W. Choptuik; Richard A. Matzner

    2000-02-22T23:59:59.000Z

    We describe a finite-difference method for locating apparent horizons and illustrate its capabilities on boosted Kerr and Schwarzschild black holes. Our model spacetime is given by the Kerr-Schild metric. We apply a Lorentz boost to this spacetime metric and then carry out a 3+1 decomposition. The result is a slicing of Kerr/Schwarzschild in which the black hole is propagated and Lorentz contracted. We show that our method can locate distorted apparent horizons efficiently and accurately.

  15. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:researchEmerging ThreatsEmployment Openings

  16. Locating PHEV exchange stations in V2G

    SciTech Connect (OSTI)

    Pan, Feng [Los Alamos National Laboratory; Bent, Russell [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Izraelevitz, David [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

  17. Locating PHEV Exchange Stations in V2G

    E-Print Network [OSTI]

    Pan, Feng; Berscheid, Alan; Izraelevitz, David

    2010-01-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are an environmentally friendly technology that is expected to rapidly penetrate the transportation system. Renewable energy sources such as wind and solar have received considerable attention as clean power options for future generation expansion. However, these sources are intermittent and increase the uncertainty in the ability to generate power. The deployment of PHEVs in a vehicle-to-grid (V2G) system provide a potential mechanism for reducing the variability of renewable energy sources. For example, PHEV supporting infrastructures like battery exchange stations that provide battery service to PHEV customers could be used as storage devices to stabilize the grid when renewable energy production is fluctuating. In this paper, we study how to best site these stations in terms of how they can support both the transportation system and the power grid. To model this problem we develop a two-stage stochastic program to optimally locate the stations prior to the realizat...

  18. Energy

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNew 1325.8.Enaineer;/:4,4 (; ...) "..

  19. Reconstructing Spatial Distributions from Anonymized Locations

    SciTech Connect (OSTI)

    Horey, James L [ORNL] [ORNL; Forrest, Stephanie [University of New Mexico, Albuquerque] [University of New Mexico, Albuquerque; Groat, Michael [University of New Mexico, Albuquerque] [University of New Mexico, Albuquerque

    2012-01-01T23:59:59.000Z

    Devices such as mobile phones, tablets, and sensors are often equipped with GPS that accurately report a person's location. Combined with wireless communication, these devices enable a wide range of new social tools and applications. These same qualities, however, leave location-aware applications vulnerable to privacy violations. This paper introduces the Negative Quad Tree, a privacy protection method for location aware applications. The method is broadly applicable to applications that use spatial density information, such as social applications that measure the popularity of social venues. The method employs a simple anonymization algorithm running on mobile devices, and a more complex reconstruction algorithm on a central server. This strategy is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction method in a variety of simulated and real-world settings and demonstrates that the method is accurate enough to be used in many real-world scenarios.

  20. Location theory and the location of industry along an interstate highway 

    E-Print Network [OSTI]

    Miller, James Patterson

    1965-01-01T23:59:59.000Z

    a greater gamble. This sect. ion has been devoted to s review of the fundamental factors underlying all plant location ss recognised in location theory. The next section will review some recent. empirical attempts to determine the actual... for this thesis was possible through the assistance provided )ointly by the Texas Highway Department and the Bureau of Public Roads. i. v TABLE OF CONTENTS Chapter Page INTRODUCTION Purpose Plan of Study REVIEW OF PLANT LOCATION CONCEPTS Introduction...

  1. energy_assurance.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    attention being given to security concerns for America's vital energy infra- structure, RMOTC is offering its remote location, oil production facilities, and experienced...

  2. Utility Locating in the DOE Environment

    SciTech Connect (OSTI)

    Clark Scott; Gail Heath

    2006-04-01T23:59:59.000Z

    Some advances have been made in utility locating in recent years and standards have been recently published to try and categorize the level of information known about the utility in the subsurface. At the same time some characterization about the level of effort or technology in the geophysicist approach to utility locating may be generalized. The DOE environment poses some added difficulties and this presentation covers these issues, costs and the technical approach that has been developed at the INEEL to prevent utility hits and how it fits into the generalized classification of effort.

  3. Locations of criticality alarms and nuclear accident dosimeters at Hanford

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    Hanford facilities that contain fissionable materials capable of achieving critical mass are monitored with nuclear accident dosimeters (NADS) in compliance with the requirements of DOE Order 5480.11, Chapter XI, Section 4.c. (DOE 1988). The US Department of Energy (DOE) Richland Field Office (RL) has assigned the responsibility for maintaining and evaluating the Hanford NAD system to the Instrumentation and External Dosimetry (I ED) Section of Pacific Northwest Laboratory's (PNL's) Health Physics Department. This manual provides a description of the Hanford NAD, criteria and instructions for proper NAD placement, and the locations of these dosimeters onsite.

  4. Location | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let usNucleartearing modeTissue andLocated

  5. Alternative Fuels Data Center: Ethanol Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean CitiesStation Locations to someone by E-mail

  6. Alternative Fuels Data Center: Natural Gas Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduce OperatingPropaneStation Locations to

  7. Locating and tracking assets using RFID

    E-Print Network [OSTI]

    Kim, Gak Gyu

    2009-05-15T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . 10 C. Different Technologies for Asset Tracking / Locating . . . . 10 1. Hand-held Reader . . . . . . . . . . . . . . . . . . . . 11 2. Fixed Reader Installed in Area . . . . . . . . . . . . . 11 3. Fixed Reader Installed at Chokepoint... . . . . . . . . . . . 34 a. CaseofInstallingtheFixedReaderintheMost Probable Area . . . . . . . . . . . . . . . . . . . . 35 b. Case of Installing the Fixed Reader in the Far- thest Area . . . . . . . . . . . . . . . . . . . . . . 36 3. Extension of Experiments...

  8. Recycling Bin Guide Locations and prices

    E-Print Network [OSTI]

    Kirschner, Denise

    Recycling Bin Guide Locations and prices Metal Bins Deskside Bins with Side Saddle Rubbermaid Bins.58 for auxiliaries. And Non-Public Areas Public Offices Non-Public Recyclables Recyclables RecyclablesTrash Trash Trash #12;New Recycling Bin Guidelines Frequently Asked Questions (as of December 2008) · Why

  9. Ontology-based Disambiguation of Spatiotemporal Locations

    E-Print Network [OSTI]

    Hyvönen, Eero

    , in the semantic portal MuseumFinland3 [7] a location parton- omy4 was used for annotating museum artifacts. #12;A problem when creating a semantic cultural heritage portal is that places, both modernFinland originate from regions that no longer exist and/or are not part of Finland but of Russia with new names

  10. Transportation Networks and Location A Geometric Approach

    E-Print Network [OSTI]

    Palop del Río, Belén

    Transportation Networks and Location A Geometric Approach Belén Palop1,2 1Departamento de March 2009 Florida State University #12;Belén Palop, UVa, SUNY Outline Transportation Network Model;Transportation Network Model Belén Palop, UVa, SUNY Outline Transportation Network Model Network placement

  11. Exact Location : Date of Accident : AM PM

    E-Print Network [OSTI]

    Swaddle, John

    SSN Cell Phone Home Phone Work Phone Exact Location : Date of Accident : AM PM Date accident treatment provided? Yes No Where Was time lost from work? Yes No If yes, how long? Could this accident have the following information as soon as it relates to your work related accident/injury/illness within 72 hours

  12. Where is the ideal location for a US East Coast offshore grid? Michael J. Dvorak,1

    E-Print Network [OSTI]

    weather model data from 2006­2010 were used to approximate wind farm output. The offshore grid was located%, and the combined capacity factor was 48% (gross). By interconnecting offshore wind energy farms 450 km apart of no and full-power events. Offshore grids to connect offshore wind energy (OWE) farms have been proposed

  13. Location of Leaks in Pressure Testable Direct Burial Steam Distribution Conduits 

    E-Print Network [OSTI]

    Sittel, M. G.; Messock, R. K.

    1993-01-01T23:59:59.000Z

    , resulting in increased thermal energy losses and eventual damage to the steam line. Breaches in the outer conduit are difficult to locate, and damage to the steam line may progress until the entire line requires replacement. Thermal energy losses are high...

  14. ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEM RecoveryManagement'sJuneAprilEMS U.S.

  15. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwoJaniceEnerG2Energetics of Hydrogen .M

  16. RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY

    E-Print Network [OSTI]

    Levinson, David M.

    RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY UC Davis-Caltrans Air control measure. #12;RESIDENTIAL LOCATION CHOICE AND TRAVEL BEHAVIOR: IMPLICATIONS FOR AIR QUALITY.......................................................... 3 2.2 The Role of Residential Location Choice

  17. IIHR--HYDROSCIENCE & ENGINEERING COLLEGE OF ENGINEERING

    E-Print Network [OSTI]

    Stanier, Charlie

    a Feasibility Study to Increase Heat Dissipation at Ameren's UE Newton Plant Circulating-Water Cooling System Ameren Nakato * The Effect of Ethanol on BTEX Migration and Natural Attenuation API Alvarez * Hydraulic and Sediment Model Tests of MidAmerican Energy Company's New George Neal north Water Intake Structures Burns

  18. VCSEL fault location apparatus and method

    DOE Patents [OSTI]

    Keeler, Gordon A. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM)

    2007-05-15T23:59:59.000Z

    An apparatus for locating a fault within an optical fiber is disclosed. The apparatus, which can be formed as a part of a fiber-optic transmitter or as a stand-alone instrument, utilizes a vertical-cavity surface-emitting laser (VCSEL) to generate a test pulse of light which is coupled into an optical fiber under test. The VCSEL is subsequently reconfigured by changing a bias voltage thereto and is used as a resonant-cavity photodetector (RCPD) to detect a portion of the test light pulse which is reflected or scattered from any fault within the optical fiber. A time interval .DELTA.t between an instant in time when the test light pulse is generated and the time the reflected or scattered portion is detected can then be used to determine the location of the fault within the optical fiber.

  19. Automated Fault Location In Smart Distribution Systems

    E-Print Network [OSTI]

    Lotfifard, Saeed

    2012-10-19T23:59:59.000Z

    Quality Meters (PQM), are installed to capture harmonics and certain disturbances for analyzing the power quality indices. Digital Protective Relays are utilized to detect occurrence of the faults and isolate faulted section as fast as possible. Digital... Protective Relays) use synchronous methods [28]. Therefore, if the available data is provided by RTUs, fault location methods that operate based on direct comparison of the input samples cannot be 17 utilized. However, if the data could be gathered from...

  20. Evaluation of workplace air monitoring locations

    SciTech Connect (OSTI)

    Stoetzel, G.A.; Cicotte, G.R.; Lynch, T.P. (Pacific Northwest Lab., Richland, WA (United States)); Aldrich, L.K. (Westinghouse Hanford Co., Richland, WA (United States))

    1991-10-01T23:59:59.000Z

    Current federal guidance on occupational radiation protection recognizes the importance of conducting air flow studies to assist in the placement of air sampling and monitoring equipment. In support of this, Pacific Northwest Laboratory has provided technical assistance to Westinghouse Hanford Company for the purpose of evaluating the adequacy of air sampling and monitoring locations at selected Hanford facilities. Qualitative air flow studies were performed using smoke aerosols to visually determine air movement. Three examples are provided of how air flow studies results, along with information on the purpose of the air sample being collected, were used as a guide in placing the air samplers and monitors. Preparatory steps in conducting an air flow study should include: (1) identifying type of work performed in the work area including any actual or potential release points; (2) determining the amounts of radioactive material available for release and its chemical and physical form; (3) obtaining accurate work area descriptions and diagrams; (4) identifying the location of existing air samplers and monitors; (5) documenting physical and ventilation configurations; (6) notifying appropriate staff of the test; and (7) obtaining necessary equipment and supplies. The primary steps in conducting an air flow study are measurements of air velocities in the work area, release of the smoke aerosol at selected locations in the work area and the observation of air flow patterns, and finally evaluation and documentation of the results. 2 refs., 3 figs.

  1. Poynting-vector based method for determining the bearing and location of electromagnetic sources

    DOE Patents [OSTI]

    Simons, David J. (Modesto, CA); Carrigan, Charles R. (Tracy, CA); Harben, Philip E. (Livermore, CA); Kirkendall, Barry A. (Golden, CO); Schultz, Craig A. (Danville, CA)

    2008-10-21T23:59:59.000Z

    A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.

  2. Sandia Energy - EC Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    83 times Category Energy Security, Modeling and Analysis, Photovoltaic, Presentation, Solar Energy Tags sand2012-3097c location Denver, Colorado report-id SAND2012-3097C author...

  3. EIS-0463: Notice of Public Meeting Location Change | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Location Change EIS-0463: Notice of Public Meeting Location Change Presidential Permit Application for Northern Pass Transmission, New Hampshire On September 6, 2013, DOE...

  4. Optimization Online - p-facility Huff location problem on networks

    E-Print Network [OSTI]

    Rafael Blanquero

    2014-10-30T23:59:59.000Z

    Oct 30, 2014 ... Abstract: The p-facility Huff location problem aims at locating facilities on a competitive environment so as to maximize the market share.

  5. Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025

    E-Print Network [OSTI]

    Blair, N.

    2010-01-01T23:59:59.000Z

    COVERED (From - To) Renewable Energy and Efficiency Modelinga Common High Renewable Energy Penetration Scenario in 2025OnLocation) National Renewable Energy Laboratory 1617 Cole

  6. Department of Energy Issues Draft Renewable Energy and Efficient...

    Energy Savers [EERE]

    the Department of Energy issued a draft loan guarantee solicitation today for innovative renewable energy and energy efficiency projects located in the U.S. that avoid, reduce, or...

  7. Pattern Alteration: Location of Bust Fullness

    E-Print Network [OSTI]

    2006-08-04T23:59:59.000Z

    ). Figure 1. Bodice with Darts Darts should point toward the fullest part of the bust, ending ? to 1 ? inches (1 to 4 cm) from its tip. This depends on the garment style, your fi gure and personal preference. The Personal Measurement Chart (line 6) can... help you deter- mine the position of your bust point on the pattern. If your measurement and the pattern bust point location differ, you need an alteration. 1. To fi nd the bust point on a basic pattern, extend the center lines of the darts until...

  8. NREL, Clean Cities, and industry leaders join forces to create the first comprehensive online locator for electric vehicle

    E-Print Network [OSTI]

    locator for electric vehicle charging stations. The National Renewable Energy Laboratory (NREL) and the U-in electric vehicles (PEVs) can easily find charging stations across the United States. These leaders in PEV, comprehensive source of locations for electric vehicle supply equipment (EVSE)--better known as charging

  9. Upcoming Funding Opportunity to Develop and Field Test Wind Energy...

    Energy Savers [EERE]

    and operating wind energy facilities in locations with sensitive bat species. As wind energy continues to grow as a renewable source of energy for communities throughout...

  10. Location-Tracking Applications ecent technological advances in wireless loca-

    E-Print Network [OSTI]

    Gruteser, Marco

    areas they have visited. #12;Location-Tracking Applications broker as part of their service contract

  11. Locating a Recycling Center: The General Density Case Jannett Highfill

    E-Print Network [OSTI]

    Mou, Libin

    Locating a Recycling Center: The General Density Case Jannett Highfill Department of Economics) 677-3374. #12;2 Locating a Recycling Center: The General Density Case Abstract: The present paper considers a municipality that has a landfill (fixed in location) and plans to optimally locate a "recycling

  12. Date Time Event Description/Participants Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGas SeparationsRelevantDOE Progress

  13. Regenerator Location Problem in Flexible Optical Networks

    E-Print Network [OSTI]

    2014-11-22T23:59:59.000Z

    Alone in US, a 1% saving in the energy consumption of Internet ..... Pricing Problem: Let RPS be the restricted PS-LP formulation with a fraction of its columns. At.

  14. Sandia National Laboratories: Locations: Livermore, California: Visiting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About

  15. Sandia National Laboratories: Sandia National Laboratories: Locations:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche HomeCybernetics: Visual Targeting VisualLivermore,

  16. Practical Methods for Locating Abandoned Wells in Populated Areas

    SciTech Connect (OSTI)

    Veloski, G.A.; Hammack, R.W.; Lynn, R.J.

    2007-09-01T23:59:59.000Z

    An estimated 12 million wells have been drilled during the 150 years of oil and gas production in the United States. Many old oil and gas fields are now populated areas where the presence of improperly plugged wells may constitute a hazard to residents. Natural gas emissions from wells have forced people from their houses and businesses and have caused explosions that injured or killed people and destroyed property. To mitigate this hazard, wells must be located and properly plugged, a task made more difficult by the presence of houses, businesses, and associated utilities. This paper describes well finding methods conducted by the National Energy Technology Laboratory (NETL) that were effective at two small towns in Wyoming and in a suburb of Pittsburgh, Pennsylvania.

  17. Locating hardware faults in a parallel computer

    DOE Patents [OSTI]

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13T23:59:59.000Z

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  18. Location Independent Professional Project: A Pilot Study

    SciTech Connect (OSTI)

    Hudson, J.A.; Long, J.P.; Miller, M.M.

    1999-02-01T23:59:59.000Z

    This pilot study project explored the problem of providing access to the nomadic worker who desires to connect a computer through network access points at a number of different locations within the SNL/NM campus as well as outside the campus. The design and prototype development gathered knowledge that may allow a design to be developed that could be extended to a larger number of SNL/NM network drop boxes. The focus was to provide a capability for a worker to access the SNL IRN from a network drop box (e.g. in a conference room) as easily as when accessing the computer network from the office normally used by the worker. Additional study was done on new methods to authenticate the off campus worker, and protect and control access to data.

  19. Transmission Benefits of Co-Locating Concentrating Solar Power and Wind

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2012-03-01T23:59:59.000Z

    In some areas of the U.S. transmission constraints are a limiting factor in deploying new wind and concentrating solar power (CSP) plants. Texas is an example of one such location, where the best wind and solar resources are in the western part of the state, while major demand centers are in the east. The low capacity factor of wind is a compounding factor, increasing the relative cost of new transmission per unit of energy actually delivered. A possible method of increasing the utilization of new transmission is to co-locate both wind and concentrating solar power with thermal energy storage. In this work we examine the benefits and limits of using the dispatachability of thermal storage to increase the capacity factor of new transmission developed to access high quality solar and wind resources in remote locations.

  20. System, method and computer-readable medium for locating physical phenomena

    DOE Patents [OSTI]

    Weseman, Matthew T. (Idaho Falls, ID) [Idaho Falls, ID; Rohrbaugh, David T. (Idaho Falls, ID) [Idaho Falls, ID; Richardson, John G. (Idaho Falls, ID) [Idaho Falls, ID

    2008-02-26T23:59:59.000Z

    A method, system and computer product for detecting the location of a deformation of a structure includes baselining a defined energy transmitting characteristic for each of the plurality of laterally adjacent conductors attached to the structure. Each of the plurality of conductors includes a plurality of segments coupled in series and having an associated unit value representative of the defined energy transmitting characteristic. The plurality of laterally adjacent conductors includes a plurality of identity groups with each identity group including at least one of the plurality of segments from each of the plurality of conductors. Each of the plurality of conductors are monitored for a difference in the defined energy transmitting characteristic when compared with a baseline energy transmitting characteristic for each of the plurality of conductors. When the difference exceeds a threshold value, a location of the deformation along the structure is calculated.

  1. Radioactive Waste Management Site located in

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNL 2001a,Summary; i-C C1 1 1

  2. TTR-NTTR-NNSS CAS locations_2

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 42 45 5

  3. MobiEyes: A Distributed Location Monitoring Service Using Moving Location Queries

    E-Print Network [OSTI]

    Liu, Ling

    , distributed algorithms, mobile data management. Ç 1 INTRODUCTION WITH the growing availability of mobile-sensitive resource management. The former uses location data to tailor the information delivered to the mobile users traffic and weather. Examples include systems for fleet manage- ment, mobile workforce management

  4. Commercial Wind Energy Property Valuation

    Broader source: Energy.gov [DOE]

    Prior to 2007, wind energy devices generating electricity for commercial sale were assessed differently depending on where they were located. Some counties valued the entire turbine structure ...

  5. Indianapolis, Indiana | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Buildings Program Near Eastside Neighborhood Sweeps Program EcoHouse Project Lafayette Energy Improvement Program Location: Indianapolis and Lafayette, Indiana Seed Funding: 10...

  6. Fault Locating, Prediction and Protection (FLPPS)

    SciTech Connect (OSTI)

    Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

    2010-09-30T23:59:59.000Z

    One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

  7. www.lhp-bayreuth.de LOCATION CONTACT

    E-Print Network [OSTI]

    Schmidt, Matthias

    to lower the costs for solar panels which asks for novel concepts to harvest sunlight. With the invention", the "Bayreuth Institute of Macromolecular Research", and the DFG Research Training Unit "GRK 1640". By plane, it becomes clear that solar energy conversion provides a sustainable, environmental clean, long-term solution

  8. PROJECT LIST SPONSOR LOCATION BRIEF DESCRIPTION

    E-Print Network [OSTI]

    Edwards, Paul N.

    in a specific market BASF South Korea; Malaysia; Germany; Netherlands; China; and the U.S. Assess changing to optimize their value Crosstex Energy Dallas, TX and Columbus, OH Conduct market study of new and extended strategy Delphi Automotive Troy, MI Create a revenue forecasting and planning model to enhance strategic

  9. Assessment of Wind/Solar Co-located Generation in Texas

    SciTech Connect (OSTI)

    Steven M. Wiese

    2009-07-20T23:59:59.000Z

    This paper evaluates the opportunity to load co-located wind and solar generation capacity onto a constrained transmission system while engendering only minimal losses. It quantifies the economic and energy opportunities and costs associated with pursuing this strategy in two Texas locations �¢���� one in west Texas and the other in south Texas. The study builds upon previous work published by the American Solar Energy Society (ASES) which illuminated the potential benefits of negative correlation of wind and solar generation in some locations by quantifying the economic and energy losses which would arise from deployment of solar generation in areas with existing wind generation and constrained transmission capacity. Clean Energy Associates (CEA) obtained and incorporated wind and solar resource data and the Electric Reliability Council of Texas (ERCOT)) load and price data into a model which evaluates varying levels of solar thermal, solar photovoltaic (PV) and wind capacity against an assumed transmission capacity limit at each of the two locations.

  10. THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;THE EFFECT OF LOCATION OF THE PREDICTED PERFORMANCE OF A HEAT PUMP WATER HEATER Laboratory testing and field testing have shown that a heat pump water heater (HPWH) uses about half the electrical energy input that an electric resistance water heater does. However, since the heat pump water heater

  11. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-04-30T23:59:59.000Z

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules. 15 figs.

  12. Borehole locations on seven interior salt domes

    SciTech Connect (OSTI)

    Simcox, A.C.; Wampler, S.L.

    1982-08-01T23:59:59.000Z

    This report is designed as an inventory of all wells known to have been drilled within a five-mile radius of each of seven salt domes within the Interior Salt Basin in east Texas, northern Louisiana and Mississippi. There are 72 boreholes that entered salt above an elevation of -3000 feet mean sea level. For these, details of location, drilling dates, depth of casing and cement, elevation of top of caprock and salt, etc., are given on tables in the appendix. Of the seven domes, Oakwood has the largest number of boreholes, thirty-eight (including two sidetracked wells) that enter the salt stock above -3000 feet mean sea level; another dome in northeast Texas, Keechi, has eight; in northern Louisiana, Rayburn's has four and Vacherie has five; in southern Mississippi, Cypress Creek has seven, Lampton has one, and Richton has nine. In addition, all wells known outside the supra-domal area, but within a five-mile radius of the center of the 7 domes are separately catalogued.

  13. SAPLE: Sandia Advanced Personnel Locator Engine.

    SciTech Connect (OSTI)

    Procopio, Michael J.

    2010-04-01T23:59:59.000Z

    We present the Sandia Advanced Personnel Locator Engine (SAPLE) web application, a directory search application for use by Sandia National Laboratories personnel. SAPLE's purpose is to return Sandia personnel 'results' as a function of user search queries, with its mission to make it easier and faster to find people at Sandia. To accomplish this, SAPLE breaks from more traditional directory application approaches by aiming to return the correct set of results while placing minimal constraints on the user's query. Two key features form the core of SAPLE: advanced search query interpretation and inexact string matching. SAPLE's query interpretation permits the user to perform compound queries when typing into a single search field; where able, SAPLE infers the type of field that the user intends to search on based on the value of the search term. SAPLE's inexact string matching feature yields a high-quality ranking of personnel search results even when there are no exact matches to the user's query. This paper explores these two key features, describing in detail the architecture and operation of SAPLE. Finally, an extensive analysis on logged search query data taken from an 11-week sample period is presented.

  14. Homodyne impulse radar hidden object locator

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    An electromagnetic detector is designed to locate an object hidden behind a separator or a cavity within a solid object. The detector includes a PRF generator for generating 2 MHz pulses, a homodyne oscillator for generating a 2 kHz square wave, and for modulating the pulses from the PRF generator. A transmit antenna transmits the modulated pulses through the separator, and a receive antenna receives the signals reflected off the object. The receiver path of the detector includes a sample and hold circuit, an AC coupled amplifier which filters out DC bias level shifts in the sample and hold circuit, and a rectifier circuit connected to the homodyne oscillator and to the AC coupled amplifier, for synchronously rectifying the modulated pulses transmitted over the transmit antenna. The homodyne oscillator modulates the signal from the PRF generator with a continuous wave (CW) signal, and the AC coupled amplifier operates with a passband centered on that CW signal. The present detector can be used in several applications, including the detection of metallic and non-metallic objects, such as pipes, studs, joists, nails, rebars, conduits and electrical wiring, behind wood wall, ceiling, plywood, particle board, dense hardwood, masonry and cement structure. The detector is portable, light weight, simple to use, inexpensive, and has a low power emission which facilitates the compliance with Part 15 of the FCC rules.

  15. TAGGING, TRACKING AND LOCATING WITHOUT GPS

    SciTech Connect (OSTI)

    Cordaro, J.; Coleman, T.; Shull, D.

    2012-07-08T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) was requested to lead a Law Enforcement Working Group that was formed to collaborate on common operational needs. All agencies represented on the working group ranked their need to tag, track, and locate a witting or unwitting target as their highest priority. Specifically, they were looking for technologies more robust than Global Positioning Satellite (GPS), could communicate back to the owner, and worked where normal cell phone communications did not work or were unreliable. SRNL brought together multiple technologies in a demonstration that was held in in various Alaska venues, including metropolitan, wilderness, and at-sea that met the working group's requirements. Using prototypical technologies from Boeing, On Ramp, and Fortress, SRNL was able to demonstrate the ability to track personnel and material in all scenarios including indoors, in heavily wooden areas, canyons, and in parking garages. In all cases GPS signals were too weak to measure. Bi-directional communication was achieved in areas that Wi-Fi, cell towers, or traditional radios would not perform. The results of the exercise will be presented. These technologies are considered ideal for tracking high value material such has nuclear material with a platform that allows seamless tracking anywhere in the world, indoors or outdoors.

  16. Etherthreads : an infrastructure for location-based messages

    E-Print Network [OSTI]

    Lassey, Bradford, 1980-

    2004-01-01T23:59:59.000Z

    This thesis proposes an infrastructure for location-based services for Bluetooth enabled cellular phones. Specifically, it explores the use of this architecture in a location-based messaging application. A user can send ...

  17. Provable and practical location privacy for vehicular and mobile systems

    E-Print Network [OSTI]

    Popa, Raluca Ada

    2010-01-01T23:59:59.000Z

    In recent years, there has been a rapid evolution of location-based vehicular and mobile services (e.g., electronic tolling, congestion pricing, traffic statistics, insurance pricing, location-based social applications), ...

  18. A unified Bayesian framework for relative microseismic location

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    We study the problem of determining an unknown microseismic event location relative to previously located events using a single monitoring array in a monitoring well. We show that using the available information about the ...

  19. A unified Bayesian framework for relative microseismic location

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2013-01-01T23:59:59.000Z

    We study the problem of determining an unknown microseismic event location relative to previously located events using a single monitoring array in a monitoring well. We show that using the available information about the ...

  20. Holdout transshipment policy in two-location inventory systems 

    E-Print Network [OSTI]

    Zhang, Jiaqi

    2009-01-01T23:59:59.000Z

    In two-location inventory systems, unidirectional transshipment policies are considered when an item is not routinely stocked at a location in the system. Unlike the past research in this area which has concentrated on ...

  1. Policy-aware sender anonymity in Location-based services

    E-Print Network [OSTI]

    Vyas, Avinash

    2011-01-01T23:59:59.000Z

    LBS Server Location Server CSP Sender Figure 1.1: LBS ModelService Provider, denoted as CSP, the Location Server,is either the MPC in the CSP’s network or an Over-The-Top (

  2. Locating a semi-obnoxious facility with repelling polygonal regions

    E-Print Network [OSTI]

    2007-04-30T23:59:59.000Z

    Apr 30, 2007 ... Page 1 ... For the last years, the location of semi-desirable facilities has been a widely studied topic by the researchers in location theory (see [1 ...

  3. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31T23:59:59.000Z

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  4. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01T23:59:59.000Z

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  5. Title, Location, Document Number Estimated Cost Description

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ThirdCostsComments

  6. Risks of using AP locations discovered through war driving

    E-Print Network [OSTI]

    Kotz, David

    Risks of using AP locations discovered through war driving Minkyong Kim, Jeffrey J. Fielding the actual locations are often unavailable, they use estimated locations from war driving estimated through war driving. War driving is the process of collecting Wi-Fi beacons by driving or walking

  7. Accurate Eye Center Location through Invariant Isocentric Patterns

    E-Print Network [OSTI]

    Gevers, Theo

    1 Accurate Eye Center Location through Invariant Isocentric Patterns Roberto Valenti, Student Member, IEEE, and Theo Gevers, Member, IEEE, Abstract--Locating the center of the eyes allows for valuable information to be captured and used in a wide range of applications. Accurate eye center location

  8. Sandia National Laboratories: Locations: Kauai Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSS Top DefenseIntegratedSandia/NewKauai

  9. Sandia National Laboratories: Locations: Livermore, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSS Top

  10. Sandia National Laboratories: Locations: Livermore, California: Visiting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSS TopLivermore Livermore

  11. Location and Hours | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC)DepartmentSecurity

  12. Mobile Truck Stop Electrification Site Locator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A. Revised:7,AMission

  13. Radiation damage in the LHCb Vertex Locator

    E-Print Network [OSTI]

    A. Affolder; K. Akiba; M. Alexander; S. Ali; M. Artuso; J. Benton; M. van Beuzekom; P. M. Bj\\ornstad; G. Bogdanova; S. Borghi; T. J. V. Bowcock; H. Brown; J. Buytaert; G. Casse; P. Collins; S. De Capua; D. Dossett; L. Eklund; C. Farinelli; J. Garofoli; M. Gersabeck; T. Gershon; H. Gordon; J. Harrison; V. Heijne; K. Hennessy; D. Hutchcroft; E. Jans; M. John; T. Ketel; G. Lafferty; T. Latham; A. Leflat; M. Liles; D. Moran; I. Mous; A. Oblakowska-Mucha; C. Parkes; G. D. Patel; S. Redford; M. M. Reid; K. Rinnert; E. Rodrigues; M. Schiller; T. Szumlak; C. Thomas; J. Velthuis; V. Volkov; A. D. Webber; M. Whitehead; E. Zverev

    2013-02-21T23:59:59.000Z

    The LHCb Vertex Locator (VELO) is a silicon strip detector designed to reconstruct charged particle trajectories and vertices produced at the LHCb interaction region. During the first two years of data collection, the 84 VELO sensors have been exposed to a range of fluences up to a maximum value of approximately $\\rm{45 \\times 10^{12}\\,1\\,MeV}$ neutron equivalent ($\\rm{1\\,MeV\\,n_{eq}}$). At the operational sensor temperature of approximately $-7\\,^{\\circ}\\rm{C}$, the average rate of sensor current increase is $18\\,\\upmu\\rm{A}$ per $\\rm{fb^{-1}}$, in excellent agreement with predictions. The silicon effective bandgap has been determined using current versus temperature scan data after irradiation, with an average value of $E_{g}=1.16\\pm0.03\\pm0.04\\,\\rm{eV}$ obtained. The first observation of n-on-n sensor type inversion at the LHC has been made, occurring at a fluence of around $15 \\times 10 ^{12}$ of $1\\,\\rm{MeV\\,n_{eq}}$. The only n-on-p sensors in use at the LHC have also been studied. With an initial fluence of approximately $\\rm{3 \\times 10^{12}\\,1\\,MeV\\,n_{eq}}$, a decrease in the Effective Depletion Voltage (EDV) of around 25\\,V is observed, attributed to oxygen induced removal of boron interstitial sites. Following this initial decrease, the EDV increases at a comparable rate to the type inverted n-on-n type sensors, with rates of $(1.43\\pm 0.16) \\times 10 ^{-12}\\,\\rm{V} / \\, 1 \\, \\rm{MeV\\,n_{eq}}$ and $(1.35\\pm 0.25) \\times 10 ^{-12}\\,\\rm{V} / \\, 1 \\, \\rm{MeV\\,n_{eq}}$ measured for n-on-p and n-on-n type sensors, respectively. A reduction in the charge collection efficiency due to an unexpected effect involving the second metal layer readout lines is observed.

  14. U.S. Department of Energy Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    Brown University - Marine Hydro-Kinetic Energy Harvesting Using Cyber-Physical Systems Program or Field Office:Advanced Research Projects Agency- Energy (ARPA-E) Location(s) (City...

  15. Energy Systems Integration Facility Overview

    SciTech Connect (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-02-28T23:59:59.000Z

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  16. Energy Systems Integration Facility Overview

    ScienceCinema (OSTI)

    Arvizu, Dan; Chistensen, Dana; Hannegan, Bryan; Garret, Bobi; Kroposki, Ben; Symko-Davies, Martha; Post, David; Hammond, Steve; Kutscher, Chuck; Wipke, Keith

    2014-06-10T23:59:59.000Z

    The U.S. Department of Energy's Energy Systems Integration Facility (ESIF) is located at the National Renewable Energy Laboratory is the right tool, at the right time... a first-of-its-kind facility that addresses the challenges of large-scale integration of clean energy technologies into the energy systems that power the nation.

  17. Site Energy Reduction Program

    E-Print Network [OSTI]

    Jagen, P. R.

    2007-01-01T23:59:59.000Z

    DuPont’s Sabine River Works site is the largest energy consuming location within DuPont. In the year 2000, each production area was encouraged to reduce energy costs. By 2003 site energy consumption was down 16% on an absolute basis and 12% on a BTU...

  18. Ultrasonic Emissions Warn of Energy Loss

    E-Print Network [OSTI]

    Goodman, M. A.

    1981-01-01T23:59:59.000Z

    Ultrasonic emissions are utilized as a method for locating sources of energy waste. Included in the discussions will be a description of the unique 'Tone Test' for locating faulty seals and gaskets as well as leaking heat exchanger tubes. Quick...

  19. Energy Industry Analyst

    Broader source: Energy.gov [DOE]

    This position is located in the Northeast Satellite Office of the Office of Energy Market Regulation (OEMR)/Division of Electric Power Regulation, East. OEMR works to promote and maintain...

  20. NASA Surface meteorology and Solar Energy: Methodology

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 NASA Surface meteorology and Solar Energy: Methodology Energy Technology (RET) projects. These climatological profiles are used for designing systems that have of the renewable energy resource potential can be determined for any location on the globe. That estimate may

  1. Method using a density field for locating related items for data mining

    DOE Patents [OSTI]

    Wylie, Brian N. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method makes use of numeric values as a measure of similarity between each pairing of items. The items are given initial coordinates in the space. An energy is then determined for each item from the item's distance and similarity to other items, and from the density of items assigned coordinates near the item. The distance and similarity component can act to draw items with high similarities close together, while the density component can act to force all items apart. If a terminal condition is not yet reached, then new coordinates can be determined for one or more items, and the energy determination repeated. The iteration can terminate, for example, when the total energy reaches a threshold, when each item's energy is below a threshold, after a certain amount of time or iterations.

  2. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    SciTech Connect (OSTI)

    Mohd, Shukri [Nondestructive Testing Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Holford, Karen M.; Pullin, Rhys [Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, CARDIFF CF24 3AA (United Kingdom)

    2014-02-12T23:59:59.000Z

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  3. Automated detection and location of indications in eddy current signals

    DOE Patents [OSTI]

    Brudnoy, David M. (Albany, NY); Oppenlander, Jane E. (Burnt Hills, NY); Levy, Arthur J. (Schenectady, NY)

    2000-01-01T23:59:59.000Z

    A computer implemented information extraction process that locates and identifies eddy current signal features in digital point-ordered signals, signals representing data from inspection of test materials, by enhancing the signal features relative to signal noise, detecting features of the signals, verifying the location of the signal features that can be known in advance, and outputting information about the identity and location of all detected signal features.

  4. Optimization Online - An MILP approach to Multi-location, Multi ...

    E-Print Network [OSTI]

    Christina N Burt

    2014-11-30T23:59:59.000Z

    Nov 30, 2014 ... An MILP approach to Multi-location, Multi-Period Equipment Selection for Surface Mining with Case Studies. Christina N Burt(cnburt ***at*** ...

  5. Located in historic Los Alamos, New Mexico against the backdrop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Located in historic Los Alamos, New Mexico against the backdrop of the lush Jemez Mountains, Los Alamos National Laboratory (LANL) offers its education program participants...

  6. Attack-Resistant Location Estimation in Sensor (Revised August 2005)

    E-Print Network [OSTI]

    Ning, Peng

    role in many sensor network applications. Not only do applications such as environment monitoring and target tracking require sensors' location information to fulfill their tasks, but several fundamental

  7. acoustic location system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON POWER SYSTEMS, VOL. 29, NO. 1, JANUARY 2014 203 Distribution Locational Marginal Pricing for Optimal Power Transmission, Distribution and Plants Websites Summary:...

  8. anatomic subsite location: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    services (e.g., electronic tolling, congestion pricing, traffic statistics, insurance pricing, location-based social applications), ... Popa, Raluca Ada 2010-01-01 First Page...

  9. agency dtra location: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flows or spillovers between multinational enterprises (MNEs the diversity of locational environments. The localization of knowledge sources depends on MNE group of...

  10. The Value of Flexibility in Robust Location-Transportation Problem

    E-Print Network [OSTI]

    Amir Ardestani-Jaafari

    2014-11-25T23:59:59.000Z

    Nov 25, 2014 ... Abstract: Facility location decisions play a critical role in transportation planning. In fact, it has recently become essential to study how such ...

  11. Title 33 CFR 115 Bridge Locations and Clearances: Administrative...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 33 CFR 115 Bridge Locations and Clearances: Administrative ProceduresLegal...

  12. Identification of High Collision Concentration Locations Under Wet Weather Conditions

    E-Print Network [OSTI]

    Hwang, Taesung; Chung, Koohong; Ragland, David; Chan, Chin-Yao

    2008-01-01T23:59:59.000Z

    conducted under wet weather conditions. Observations fromLeahy, M. , and Suggett, J. Weather as a Chronic Hazard forLocations Under Wet Weather Conditions Taesung Hwang,

  13. p-facility Huff location problem on networks ?

    E-Print Network [OSTI]

    2014-10-30T23:59:59.000Z

    ing field, in problems such as location of petrol stations, shopping centers or restaurants. [14, 20, 22]. Network optimization models [5] are widely used in practice ...

  14. Colorado CRS 29-20-108, Location, Construction, or Improvement...

    Open Energy Info (EERE)

    Location, Construction, or Improvement of Major Electrical or Natural Gas Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  15. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  16. U.S. Department of Energy Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    Projects Agency - Energy Proiect Title: (0290-1684) General Compression, Inc. - Fuel-Free, Ubiquitous, Compressed Air Energy Storage Location: Massachusetts Proposed Action or...

  17. Calibration in High-Energy Astrophysics Statistical Computation

    E-Print Network [OSTI]

    van Dyk, David

    : Effective area records sensitivity as a function of energy Energy redistribution matrix can vary with energy/location Point Spread Functions can vary with energy and location Exposure Map shows how effective area variesCalibration in High-Energy Astrophysics Statistical Computation Back to Calibration Uncertainty

  18. Blind Channel Identification for the Emitter Location Problem

    E-Print Network [OSTI]

    Fowler, Mark

    a thesis entitled "Blind Channel Identification for the Emitter Location Problem: A Least Square ApproachBlind Channel Identification for the Emitter Location Problem: A Least Square Approach BY Cheung C. Chau B.S.E.E., Binghamton University, 2000 Thesis Submitted in Partial Fulfillment of the Requirements

  19. Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets Haifeng Liu restructured wholesale power markets, the detailed derivation of LMPs as actually used in industry practice Operator (MISO). Keywords: Locational marginal pricing, wholesale power market, AC optimal power flow, DC

  20. Model-based Lifecycle Optimization of Well Locations

    E-Print Network [OSTI]

    Van den Hof, Paul

    Model-based Lifecycle Optimization of Well Locations and Production Settings in Petroleum Reservoirs #12;#12;MODEL-BASED LIFECYCLE OPTIMIZATION OF WELL LOCATIONS AND PRODUCTION SETTINGS IN PETROLEUM System Approach Petroleum Production" (ISAPP) programme. The knowledge center is a long-term co

  1. Benefits of Location-Based Access Control: A Literature Study

    E-Print Network [OSTI]

    Wieringa, Roel

    Benefits of Location-Based Access Control: A Literature Study Andr´e van Cleeff, Wolter Pieters.pieters, r.j.wieringa}@utwente.nl Abstract--Location-based access control (LBAC) has been suggested-based, physical and logical access control, (ii) improving the transparency of LBAC decision making, and (iii

  2. Quartz resonators thermal modelization using located constants networks

    E-Print Network [OSTI]

    Boyer, Edmond

    of quartz resonator. The designed model is tested by comparison of the experimental frequency versus235 Quartz resonators thermal modelization using located constants networks S. Galliou and J. P modelization of quartz resonators is first presented ; next, the method consisting on establishing a located

  3. Detecting and Locating Radioactive Signals with Wireless Sensor Networks

    E-Print Network [OSTI]

    Zhang, Tonglin

    Detecting and Locating Radioactive Signals with Wireless Sensor Networks Tonglin Zhang Department-765-4940558 AbstractMethods of detecting and locating nuclear radioac- tive targets via wireless sensor networks (WSN model, radia- tion and radioactive isotopes, wireless sensor network. I. INTRODUCTION Currently, using

  4. A MODELING APPROACH FOR LOCATING LOGISTICS PLATFORMS FOR FAST PARCEL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 29 A MODELING APPROACH FOR LOCATING LOGISTICS PLATFORMS FOR FAST PARCEL DELIVERY IN URBAN AREAS for optimizing, in a sustainable way (i.e. economical, eco-friendly and societal), the location of logistics has a logistics platform right in its centre (ARENC: 41362 m2 of warehouses and offices

  5. Facility Location with Hierarchical Facility Costs Zoya Svitkina #

    E-Print Network [OSTI]

    Tardos, Ã?va

    Facility Location with Hierarchical Facility Costs Zoya Svitkina # â?? Eva Tardos + Abstract We consider the facility location problem with hierarchi­ cal facility costs, and give a (4 installation costs. Shmoys, Swamy and Levi [13] gave an approxi­ mation algorithm for a two­level version

  6. Comparison of Different Methods for Next Location Prediction

    E-Print Network [OSTI]

    Ungerer, Theo

    Comparison of Different Methods for Next Location Prediction Jan Petzold, Faruk Bagci, Wolfgang prediction anticipates a person's movement based on the history of previous sojourns. It is useful location prediction methods: dynamic Bayesian network, multi-layer perceptron, Elman net, Markov predictor

  7. Location of Mobile Terminals using Time Measurements and Survey Points

    E-Print Network [OSTI]

    Plataniotis, Konstantinos N.

    Location of Mobile Terminals using Time Measurements and Survey Points M. McGuire ,K.N. Plataniotis is the Time Difference of Arrival (TDoA)method where the location of the mobile terminal is estimated using research communityon technologiesthat can estimatethe loca- tion of mobile terminals. Mobile terminal

  8. Models for Offender Target Location Selection with Explicit Dependency Structures

    E-Print Network [OSTI]

    O'Leary, Michael

    Models for Offender Target Location Selection with Explicit Dependency Structures Mike O'Leary April 30 - May 1, 2012 O'Leary & Tucker (Towson University) Target Location Selection QMDNS 2012 1 / 54 in this study We thank Phil Canter from the Baltimore County Police Department for his assistance. O'Leary

  9. Location of Natural Gas Production Facilities in the Gulf of Mexico

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS will be fieldedYearLocation of

  10. Anywhere But Here: An Introduction to State Control of Hazardous Waste Facility Location

    E-Print Network [OSTI]

    Tarlock, Dan A.

    1981-01-01T23:59:59.000Z

    State Control Of Hazardous- Waste Facility Location A. Danautonomy over the location of hazardous-waste managementa hazardous-waste facility-siting process is the location of

  11. Residential mobility and location choice: a nested logit model with sampling of alternatives

    E-Print Network [OSTI]

    Lee, Brian H.; Waddell, Paul

    2010-01-01T23:59:59.000Z

    Waddell, P. : Modeling residential location in UrbanSim. In:D. (eds. ) Modelling Residential Location Choice. Springer,based model system and a residential location model. Urban

  12. Wind Testing and Certification | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind plant levels. These testing facilities are geographically diverse, located in key wind energy regions, and possess unique testing capabilities that allow the Department of...

  13. Abstract The Holocene Parinacota Volcanic Debris Av-alanche (ca. 8,000 years B.P.) is located in the central An-

    E-Print Network [OSTI]

    Huppert, Herbert

    that material that travelled further broke up and had an initial greater kinetic energy. Keywords Debris Andes Volcanic Zone of northern Chile (Figs. 1 and 2). Parinacota Volcano is located on the Chile­Bolivia

  14. Magma energy

    SciTech Connect (OSTI)

    Dunn, J.C.

    1987-01-01T23:59:59.000Z

    The thermal energy contained in magmatic systems represents a huge potential resource. In the US, useful energy contained in molten and partially-molten magma within the upper 10 km of the crust has been estimated at 5 to 50 x 10/sup 22/ J (50,000 to 500,000 Quads). The objective of the Magma Energy Extraction Program is to determine the engineering feasibility of locating, accessing, and utilizing magma as a viable energy resource. This program follows the DOE/OBES-funded Magma Energy Research Project that concluded scientific feasibility of the magma energy concept. A primary long-range goal of this program is to conduct an energy extraction experiment directly in a molten, crustal magma body. Critical to determining engineering feasibility are several key technology tasks: (1) Geophysics - to obtain detailed definition of potential magma targets, (2) Geochemistry/Materials - to characterize the magma environment and select compatible engineering materials, (3) Drilling - to develop drilling and completion techniques for entry into a magma body, and (4) Energy Extraction - to develop heat extraction technology.

  15. Please cite this article in press as: M.M. Rogers, et al., HERO: A smart-phone application for location based emissions estimates, Sustain. Comput.: Inform. Syst. (2014), http://dx.doi.org/10.1016/j.suscom.2014.09.001

    E-Print Network [OSTI]

    Shi, Weisong

    Locational marginal price Smart-phone Household energy a b s t r a c t A smartphone application has been for location based emissions estimates, Sustain. Comput.: Inform. Syst. (2014), http://dx.doi.org/10.1016/j and Systems journal homepage: www.elsevier.com/locate/suscom HERO: A smart-phone application for location

  16. NV Energy RFP

    Broader source: Energy.gov [DOE]

    NV Energy request for proposals (RFP) is seeking proposals that would allow the company to acquire or partner to construct a renewable energy resource that would satisfy a 54-MW of planning capacity. The company is also looking for proposals for a build-transfer option for a 140-MW single axis tracking solar PV facility at a location provided by the bidder.

  17. Location and design of a competitive facility for profit maximisation

    E-Print Network [OSTI]

    A single facility has to be located in competition with fixed existing facilities of .... xa and a strictly positive weight ?a, supposed to be an indicator of its buying ...

  18. 2013 Fall Commencement Receptions College/School Time Location

    E-Print Network [OSTI]

    Pittendrigh, Barry

    2013 Fall Commencement Receptions College/School Time Location Agriculture 12/15 after ceremony@purdue.edu Nuclear 12/15 11:30-1:00 Nuclear Engineering Bldg, Rm 115 For more info Chrystal Randler (765

  19. Position: Forestry Intern Location: Lower Suwannee National Wildlife Refuge

    E-Print Network [OSTI]

    Mazzotti, Frank

    Position: Forestry Intern Location: Lower Suwannee National Wildlife Refuge Application Process: Student Conservation Association (SCA) Forestry and biological Wildlife Refuge. This forestry position will be mostly field work within the Lower

  20. accident location analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At the end, some safety-related recommendations are listed. Balda, F 2002-01-01 54 Multivariate data analysis based on two location vectors and two scatter matrices...

  1. Identification of critical locations across multiple infrastructures for terrorist actions

    E-Print Network [OSTI]

    Patterson, Sean A. (Sean Albert), 1981-

    2005-01-01T23:59:59.000Z

    This paper discusses a possible approach to ranking geographic regions that can influence multiple infrastructures. Once ranked, decision makers can determine whether these regions are critical locations based on their ...

  2. Location and Institution SOUTH AFRICA -PRETORIA FORDHAM UNIVERSITY -UBUNTU PROGRAM

    E-Print Network [OSTI]

    Galles, David

    Location and Institution SOUTH AFRICA - PRETORIA FORDHAM UNIVERSITY - UBUNTU demographics, and South Africa. Students will also take a required module in Sociology holders need a student visa to enter and study in South Africa, which must

  3. arbitrarily located electric: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiently manage the electricity cost of distributed IDCs based on the Locational Marginal Pricing (LMP Rahman, A.K.M. Ashikur 475 Proper Use of ElectricGas UtilityType...

  4. An Information Theoretic Location Verification System for Wireless Networks

    E-Print Network [OSTI]

    Yan, Shihao; Nevat, Ido; Peters, Gareth W

    2012-01-01T23:59:59.000Z

    As location-based applications become ubiquitous in emerging wireless networks, Location Verification Systems (LVS) are of growing importance. In this paper we propose, for the first time, a rigorous information-theoretic framework for an LVS. The theoretical framework we develop illustrates how the threshold used in the detection of a spoofed location can be optimized in terms of the mutual information between the input and output data of the LVS. In order to verify the legitimacy of our analytical framework we have carried out detailed numerical simulations. Our simulations mimic the practical scenario where a system deployed using our framework must make a binary Yes/No "malicious decision" to each snapshot of the signal strength values obtained by base stations. The comparison between simulation and analysis shows excellent agreement. Our optimized LVS framework provides a defence against location spoofing attacks in emerging wireless networks such as those envisioned for Intelligent Transport Systems, wh...

  5. Methods for short-circuit identification and location in automobiles

    E-Print Network [OSTI]

    Crumlin, Alex Justin

    2006-01-01T23:59:59.000Z

    As the number of electrical components in cars increases at a rapid rate, so too does the chance for electrical failure. A method for locating shorts to the chassis of a car is developed in this thesis. The developed ...

  6. Short & long run transmission incentives for generation location

    E-Print Network [OSTI]

    Turvey, Ralph

    2006-01-01T23:59:59.000Z

    This paper is about one aspect of Britain's electricity trading system, its advantages and its weaknesses concerning the incentives it provides or fails to provide for the location of generation. (Similar considerations ...

  7. ambulance location monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model adds a dependence on the datatype used to derive the location. M. S. Briggs; G. N. Pendleton; J. J. Brainerd; V. Connaughton; R. M. Kippen; C. Meegan; K. Hurley...

  8. Infill location determination and assessment of corresponding uncertainty

    E-Print Network [OSTI]

    Senel, Ozgur

    2009-05-15T23:59:59.000Z

    tried to solve this problem with statistical approaches. In this study, a reservoir simulation based approach was used to select infill well locations. I used multiple reservoir realizations to take different possible outcomes into consideration...

  9. New approach to the fault location problem using synchronized sampling

    E-Print Network [OSTI]

    Mrkic, Jasna

    1994-01-01T23:59:59.000Z

    This thesis presents a new approach to solving the problem of fault location on a transmission line using synchronized data from both ends of the line. The synchronized phase voltage and current samples taken during the fault transient are used...

  10. accident locations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Exact Location : Date of Accident : AM PM Environmental Sciences and Ecology Websites Summary: SSN Cell Phone Home...

  11. Location of the solar dynamo and near-surface shear

    E-Print Network [OSTI]

    Axel Brandenburg

    2005-12-29T23:59:59.000Z

    The location of the solar dynamo is discussed in the context of new insights into the theory of nonlinear turbulent dynamos. It is argued that, from a dynamo-theoretic point of view, the bottom of the convection zone is not a likely location and that the solar dynamo may be distributed over the convection zone. The near surface shear layer produces not only east-west field alignment, but it also helps the dynamo disposing of its excess small scale magnetic helicity.

  12. Predicting threshold and location of laser damage on optical surfaces

    DOE Patents [OSTI]

    Siekhaus, Wigbert (Berkeley, CA)

    1987-01-01T23:59:59.000Z

    An apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities comprising, a focused and pulsed laser, an photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  13. BEACON SOLAR ENERGY PROJECT (08-AFC-2) Project Title: Beacon Solar Energy Project (Beacon)

    E-Print Network [OSTI]

    BEACON SOLAR ENERGY PROJECT (08-AFC-2) FACT SHEET Project Title: Beacon Solar Energy Project (Beacon) Sponsor: Beacon Solar, LLC (Beacon Solar), a Delaware limited liability company and wholly owned and operate the Beacon Solar Energy Project (Beacon). Location: The project is located in eastern Kern County

  14. Special case waste located at Oak Ridge National Laboratory facilities: Survey report

    SciTech Connect (OSTI)

    Forgy, J.R. Jr.

    1995-11-01T23:59:59.000Z

    Between October 1994 and October 1995, a data base was established at the Oak Ridge National Laboratory (ORNL) to provide a current inventory of the radioactive waste materials, located at ORNL, for which the US Department of Energy (DOE) has no definite planned disposal alternatives. DOE refers to these waste materials as special case waste. To assist ORNL and DOE management in future planning, an inventory system was established and a baseline inventory prepared. This report provides the background of the ORNL special case waste survey project, as well as special case waste category definitions, both current and anticipated sources and locations of special case waste materials, and the survey and data management processes. Special case waste will be that waste material which, no matter how much practical characterization, treatment, and packaging is made, will never meet the acceptance criteria for permanent disposal at ORNL, and does not meet the criteria at a currently planned off-site permanent disposal facility.

  15. Solar energy collector

    SciTech Connect (OSTI)

    Bale, N.R.

    1983-11-22T23:59:59.000Z

    A solar energy collector is disclosed comprising a collector core located within a longitudinal parabolic reflector and formed of a series of spaced tubes exposed to the direct rays of the sun and to rays reflected by the reflector and arranged in a cylindrical array extending longitudinally to form a fluid path between two end annular manifolds connected at opposite ends of a storage tank located within the array.

  16. Climate-development-energy policy related seminars

    E-Print Network [OSTI]

    Sussex, University of

    Paula Kivimaa (Finnish Environment Institute) From energy to climate policy in Finland Energy & climate Energy & Climate Tue 3rd Dec 18.00- 19.30 Large Jubilee Jeremy Leggett (SolarCentury) The EnergyClimate-development-energy policy related seminars Autumn term 2013 Date Time Location Speaker

  17. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-02-07T23:59:59.000Z

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

  18. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

  19. Multi-Site Energy Reduction Through Teamwork

    E-Print Network [OSTI]

    Theising, T

    2008-01-01T23:59:59.000Z

    Energy Teams have been established at seven BASF locations to facilitate implementation of the findings from the 2003 and 2004 Energy Audits conducted at these Sites. These Teams were charged with implementation, progress tracking, and management...

  20. Nordic network for Sustainable Energy

    E-Print Network [OSTI]

    Nordic network for Sustainable Energy Systems in Isolated Locations (NordSESIL) Gordon A. Mackenzie of the Nordic region to access sustainable energy solutions by creating and stimulating a network of relevant sustainable energy projects happening' in isolated areas of the Nordic region. #12;Partners, organisation (1

  1. Geothermal energy: a brief assessment

    SciTech Connect (OSTI)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01T23:59:59.000Z

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  2. Who Owns Renewable Energy Certificates? An Exploration of Policy Options and Practice

    E-Print Network [OSTI]

    Holt, Edward A.; Wiser, Ryan; Bolinger, Mark

    2006-01-01T23:59:59.000Z

    Minnesota Methane owns a landfill gas facility located infor example, that wind or landfill gas energy was conveyed,

  3. managed for the U.S. Department of Energy by Brookhaven Science Associates, a company

    E-Print Network [OSTI]

    of Energy National Nuclear Security Administration (DOE NNSA)-Located in Washington, D.C., DOE NNSA supports

  4. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    Geothermal Resource Areas Location/KGRA Estimated Reservoir o Temperature, C a Electric Energy Potential MWe for 30 years (

  5. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    California Energy Commission STAFF REPORT DRAFT EVALUATION REPORT Proposed Compliance Option of temperature sensors. Section RA3.2.2.2.2 of the reference appendices specifies the location and hole

  6. New York | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    New York New York New York State Home Performance with ENERGY STAR Location: New York Seed Funding: 40 million (21.4 million of which went to sub-grantee, New York City) Target...

  7. A flexible location management scheme for mobile computing

    E-Print Network [OSTI]

    Zhang, Ying

    1996-01-01T23:59:59.000Z

    , ation B. Distril?Ite&1 Datahase Management System (DBMS) . C. Prototype Design and Conhgurat, ion 24 24 99 vn CHAPTER Pa. ge IV EXPERIMENTAL RESULTS . A. ExpeHmental Results B. Analytic Results 38 V CONCLUSION REFERENCES 43 VITA 47 vn1... rent l)DBMS's. tVe have cleveloped an experimental prototype t, hat rc&nsiclers these charact, eris- tics of a, location mauagen&ent system. The nltin&ate purpose of' this prototype is to demonstrate the feasibility of our proposecl location...

  8. Predicting threshold and location of laser damage on optical surfaces

    DOE Patents [OSTI]

    Siekhaus, W.

    1985-02-04T23:59:59.000Z

    Disclosed is an apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities. The apparatus comprises a focused and pulsed laser, a photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  9. EnergyPlus Weather Data for use with EnergyPlus Simulation Software

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    EnergyPlus is simulation software from DOE's Office of Energy Efficiency and Renewable Energy (EE) that models heating, cooling, lighting, ventilating, and other energy flows as well as water in buildings. Because the environment surrounding any building is an important component of the energy choices that go into the building's design and the energy performance of that building thereafter, weather data from all parts of the world are made available through the EnergyPlus web site. The data are collected from more than 2100 locations — 1042 locations in the USA, 71 locations in Canada, and more than 1000 locations in 100 other countries throughout the world. The weather data are arranged by World Meteorological Organization region and Country. In addition to using the weather data via the utility installed automatically with EnergyPlus software, users may view and download EnergyPlus weather data directly using a weather data layer for Google Earth.

  10. Locations of criticality alarms and nuclear accident dosimeters at Hanford. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    Hanford facilities that contain fissionable materials capable of achieving critical mass are monitored with nuclear accident dosimeters (NADS) in compliance with the requirements of DOE Order 5480.11, Chapter XI, Section 4.c. (DOE 1988). The US Department of Energy (DOE) Richland Field Office (RL) has assigned the responsibility for maintaining and evaluating the Hanford NAD system to the Instrumentation and External Dosimetry (I&ED) Section of Pacific Northwest Laboratory`s (PNL`s) Health Physics Department. This manual provides a description of the Hanford NAD, criteria and instructions for proper NAD placement, and the locations of these dosimeters onsite.

  11. Located off exit 10 of interstate 68, 10 miles east of the interstates 79 and 68

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let usNucleartearing modeTissue andLocated off

  12. Energy Demands and Efficiency Strategies in Data Center Buildings

    E-Print Network [OSTI]

    Shehabi, Arman

    2010-01-01T23:59:59.000Z

    site location into energy-efficient design strategies. Theof IT and non-IT energy efficient design measures (Brown etcenter with an energy-efficient design. A closer evaluation

  13. Engineering and Computing Open Day Programme 2012 Activity Time Location

    E-Print Network [OSTI]

    Berzins, M.

    Engineering and Computing Open Day Programme 2012 Activity Time Location Building Number What is Engineering? (Talk) 0900 - 0945 Electronic and Electrical Engineering, Rhodes Lecture Theatre 51 1000 - 1045 EC Stoner Building, School of Computing, Reception (Level 7) 73 Electronic Engineering (Talk) 1000

  14. Geoforum xxx (2007) xxxxxx www.elsevier.com/locate/geoforum

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    2007-01-01T23:59:59.000Z

    Geoforum xxx (2007) xxx­xxx www.elsevier.com/locate/geoforum 0016-7185/$ - see front matter © 2007 contributed equally to the writing of this paper. #12;2 M.T. BoykoV, J.M. BoykoV / Geoforum xxx (2007) xxx­xxx

  15. Rapid location of mount points JONATHAN M. SMITH

    E-Print Network [OSTI]

    ­­ ­­ Rapid location of mount points JONATHAN M. SMITH Computer Science Department, Columbia ``core'' is ``/u2/smith/core''. The current directory is a directory­valued variable. It is an implied traversal; the root contains itself. This scheme is extensible across multiple media through mount points

  16. Building and Facility Codes Code Building Location Bldg # Coordinates

    E-Print Network [OSTI]

    Russell, Lynn

    Building and Facility Codes Code Building Location Bldg # Coordinates APM Applied Physics & Mathematics Building Muir 249 F7 ASANT Asante Hall Eleanor Roosevelt 446 F5 BIO Biology Building Muir 259 F7 BIRCH Birch Aquarium SIO 2300 S-D7 BONN Bonner Hall Revelle 131 G8 BSB Biomedical Sciences Building

  17. Double Difference Earthquake Locations at the Salton Sea Geothermal Reservoir

    SciTech Connect (OSTI)

    Boyle, K L; Hutchings, L J; Bonner, B P; Foxall, W; Kasameyer, P W

    2007-08-08T23:59:59.000Z

    The purpose of this paper is to report on processing of raw waveform data from 4547 events recorded at 12 stations between 2001 and 2005 by the Salton Sea Geothermal Field (SSGF) seismic network. We identified a central region of the network where vertically elongated distributions of hypocenters have previously been located from regional network analysis. We process the data from the local network by first autopicking first P and S arrivals; second, improving these with hand picks when necessary; then, using cross-correlation to provide very precise P and S relative arrival times. We used the HypoDD earthquake location algorithm to locate the events. We found that the originally elongated distributions of hypocenters became more tightly clustered and extend down the extent of the study volume at 10 Km. However, we found the shapes to depend on choices of location parameters. We speculate that these narrow elongated zones of seismicity may be due to stress release caused by fluid flow.

  18. Location-Based Tax Incentives: Evidence From India Ritam Chaurey

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    in India. Specifically, I examine the federally financed New Industrial Policy for the statesLocation-Based Tax Incentives: Evidence From India Ritam Chaurey Department of Economics, State University of New York, Binghamton August 24, 2014 Abstract While policies targeting particular geographic

  19. Optimizing Controller Location in Networked Control Systems with Packet Drops

    E-Print Network [OSTI]

    Optimizing Controller Location in Networked Control Systems with Packet Drops C. L. Robinson1 and P in answering these two questions is that analysis of optimality in networked control systems subject to random mechanisms for wireless networked control systems [8, 6, 5]. In this paper we consider the issue of optimal

  20. activation test locations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activation test locations First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Active Testing CERN Preprints...

  1. a r r i o r BUILDING# NAME LOCATION

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Admissions Parking Palmer Lake B l a c k W a r r i o r R i v e r BUILDING# NAME LOCATION 3430 1FamilyResearchClinic 10-F 5016 ChildDevelopmentResearchCenter 10-L 1040 ClarkHall 8-E 6082 ColemanColiseum 15-G 6086 Crisp

  2. a r r i o r BUILDING# NAME LOCATION

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Palmer Lake B l a c k W a r r i o r R i v e r BUILDING# NAME LOCATION 3430 1North 3-I 5020 600 1052 Ceramics 8-F 1160 ChildandFamilyResearchClinic 10-F 5016 ChildDevelopmentResearchCenter 10-L 1040

  3. Lab 4: Plate Tectonics Locating Geologic Hazards Introduction

    E-Print Network [OSTI]

    Chen, Po

    1 Lab 4: Plate Tectonics ­ Locating Geologic Hazards Introduction The likelihood of major geologic hazards associated with the lithosphere, such as earthquakes and volcanoes, is not uniform around provides a ready explanation for the distribution of these types of geologic hazards. It is useful

  4. NAME: Eelgrass Restoration in Puget Sound LOCATION: Puget Sound, WA

    E-Print Network [OSTI]

    US Army Corps of Engineers

    NAME: Eelgrass Restoration in Puget Sound LOCATION: Puget Sound, WA ACRES: 3,700 acres of subtidal restoration efforts and to contribute to the Puget Sound Partnership's Action Agenda recovery goal of 20% more within the Puget Sound region of the Salish Sea: the Nisqually, Elwha, and Skokomish Rivers. These major

  5. Optimal Location of a Mobile Sensor Continuum for Environmental Monitoring

    E-Print Network [OSTI]

    Boyer, Edmond

    air pollution monitoring, seismic monitoring, or monitoring of large infrastructures in civil is proposed for the goal of optimal location of a mobile sensor continuum. The monitoring of pollution on a 2D or track distributed environmental phenomena (weather, seismic events, wildfires, air, soil or river

  6. Location-based information system for open spaces

    E-Print Network [OSTI]

    Tejavanija, Kampanart

    2004-11-15T23:59:59.000Z

    OF SCIENCE August 2004 Major Subject: Construction Management LOCATION-BASED INFORMATION SYSTEM FOR OPEN SPACES A Thesis by KAMPANART TEJAVANIJA Submitted to the Office of Graduate Studies of Texas A&M University...-Chair of Committee) (Co-Chair of Committee) _______________________________ _____________________________ Robert E. Johnson James C. Smith (Member) (Head of Department) August 2004 Major Subject: Construction Management iii ABSTRACT...

  7. TWRS information locator database system administrator`s manual

    SciTech Connect (OSTI)

    Knutson, B.J., Westinghouse Hanford

    1996-09-13T23:59:59.000Z

    This document is a guide for use by the Tank Waste Remediation System (TWRS) Information Locator Database (ILD) System Administrator. The TWRS ILD System is an inventory of information used in the TWRS Systems Engineering process to represent the TWRS Technical Baseline. The inventory is maintained in the form of a relational database developed in Paradox 4.5.

  8. A Directionality based Location Discovery Scheme for Wireless Sensor Networks

    E-Print Network [OSTI]

    Ha, Dong S.

    A Directionality based Location Discovery Scheme for Wireless Sensor Networks Asis Nasipuri and Kai is a large ad hoc network of densely dis- tributed sensors that are equipped with low power wireless number of such wireless sensors can be networked to coordinate amongst themselves and per- form the much

  9. About Michigan Tech Michigan Tech is located in

    E-Print Network [OSTI]

    Honrath, Richard E.

    About Michigan Tech Michigan Tech is located in Houghton, MI on the south shore of Lake Superior and in the community. Michigan Tech is rated as one of the safest college campuses in the United States, and the local and Environmental Engineering The Civil and Environmental Engineering Department at Michigan Tech includes 26

  10. COMMUNICATION Does the Location of a Mutation Determine the Ability

    E-Print Network [OSTI]

    Regan, Lynne

    COMMUNICATION Does the Location of a Mutation Determine the Ability to Form Amyloid Fibrils? Marina by a domain swapping mechanism. Domain swapping is a specific means by which oligomeric proteins are formed that the mutations in our model system facilitate domain swapping as the pathway to amyloid for- mation (Figure 1(b

  11. Icarus 181 (2006) 302308 www.elsevier.com/locate/icarus

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Icarus 181 (2006) 302­308 www.elsevier.com/locate/icarus Near-infrared spectra of laboratory H2O could change peaks in the near-IR as well. This would complicate the interpretation of reflection online 13 December 2005 Abstract We present 1.25­19 µm infrared spectra of pure solid CH4 and H2O/CH4

  12. www.elsevier.com/locate/neucom Author's Accepted Manuscript

    E-Print Network [OSTI]

    Bartlett, Marian Stewart

    embodiment (e.g., perception-action systems, biomechanics, motor control), and sensitivity to cognitivewww.elsevier.com/locate/neucom Author's Accepted Manuscript New trends in cognitive science Bartlett and Tony Jebara, New trends in cognitive science: Integrative approaches to learning

  13. Evolving Cellular Automata for Location Management in Mobile Computing Networks

    E-Print Network [OSTI]

    Ha, Dong S.

    entering one of these reporting cells. To create such an evolving CA system, cells in the network for a number of test problems. Index Terms--Cellular automata, genetic algorithms, mobile computing, mobility to interferences. On the other hand, a miss on the location of a mobile terminal will necessitate a search

  14. Structural Location of Disease-associated Single-nucleotide Polymorphisms

    E-Print Network [OSTI]

    Pervouchine, Dmitri D.

    Structural Location of Disease-associated Single-nucleotide Polymorphisms Nathan O. Stitziel1 , Yan-synonymous single-nucleotide polymorphism (nsSNP) of genes introduces amino acid changes to proteins, and plays reserved Keywords: single-nucleotide polymorphism; alpha shape; hidden Markov model; surface pockets

  15. Employer Organization Name Internship Title Internship Location Application

    E-Print Network [OSTI]

    Steele, Brian

    Posted or Modified Employer Organization Name Internship Title Internship Location Application Deadline Click Link Below 6/20/2014 Live Commercial Advertising, Inc. INTERNSHIPS & COLLEGE GRADUATES INTERN Missoula, MT 9/14/2014 Click Here #12;Posted or Modified Employer Organization Name Internship

  16. VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION

    E-Print Network [OSTI]

    Watson, Craig A.

    VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

  17. Seismic Event Location: Nonlinear Inversion Using a Neighbourhood Algorithm

    E-Print Network [OSTI]

    Sambridge, Malcolm

    is an important part of seismological practice with a wide range of applications, but has particularly signi and the majority of natural earthquakes is provided by the depth of the source. Drilling techniques there is a need to obtain the best possible location by combining data from regional and more distant stations

  18. accident prone locations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident prone locations First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Accident proneness as an...

  19. Quantifying Network Denial of Service: A Location Service Case Study

    E-Print Network [OSTI]

    Kubiatowicz, John D.

    1 Quantifying Network Denial of Service: A Location Service Case Study Yan Chen, Adam Bargteil distributed denial-of-service (DDoS) attacks with a few keystrokes [11]. Besides these com- mon flooding classes of network DoS at- tacks, we propose a novel benchmarking methodology and apply it to study

  20. Location and Geology Fig 1. The Macasty black shale

    E-Print Network [OSTI]

    , Quebec, is organic-rich black shale and hosting oil and gas. It is equivalent to the Ithaca shaleLocation and Geology Fig 1. The Macasty black shale in the Anticosti Island in the Gulf of St. d13C for calcite disseminated in the black shale range from 2.6o to 2.8 / The values are lower

  1. Network Based Approaches for Clustering and Location Decisions

    E-Print Network [OSTI]

    Verma, Anurag

    2012-10-19T23:59:59.000Z

    in large scale graphs, determining location of facilities for pre-positioning emergency relief supplies, and selecting nodes to form a virtual backbone in a wireless sensor network. To begin with, a new clique relaxation called a k-community is defined...

  2. INTERNATIONAL JOURNAL OF WIRELESS AND MOBILE COMPUTING 1 Effective Location-Guided Overlay Multicast in

    E-Print Network [OSTI]

    Nahrstedt, Klara

    INTERNATIONAL JOURNAL OF WIRELESS AND MOBILE COMPUTING 1 Effective Location-Guided Overlay: location-guided k-ary (LGK) tree, location-guided directional (LGD) tree, and location-guided Steiner (LGS. To augment and enhance our location- guided tree construction algorithms, we propose several companion

  3. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The AFDC is a resource of the U.S. Department of Energy's Clean Cities program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 05292015...

  4. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The AFDC is a resource of the U.S. Department of Energy's Clean Cities program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 0529...

  5. Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors

    E-Print Network [OSTI]

    The LIGO Scientific Collaboration; the Virgo Collaboration; J. Aasi; J. Abadie; B. P. Abbott; R. Abbott; T. Abbott; M. R. Abernathy; T. Accadia; F. Acernese; C. Adams; T. Adams; P. Addesso; R. X. Adhikari; C. Affeldt; M. Agathos; N. Aggarwal; O. D. Aguiar; P. Ajith; B. Allen; A. Allocca; E. Amado. Ceron; D. Amariutei; R. A. Anderson; S. B. Anderson; W. G. Anderson; K. Arai; M. C. Araya; C. Arceneaux; J. Areeda; S. Ast; S. M. Aston; P. Astone; P. Aufmuth; C. Aulbert; L. Austin; B. E. Aylott; S. Babak; P. T. Baker; G. Ballardin; S. W. Ballmer; J. C. Barayoga; D. Barker; S. H. Barnum; F. Barone; B. Barr; L. Barsotti; M. Barsuglia; M. A. Barton; I. Bartos; R. Bassiri; A. Basti; J. Batch; J. Bauchrowitz; Th. S. Bauer; M. Bebronne; B. Behnke; M. Bejger; M. G. Beker; A. S. Bell; C. Bell; I. Belopolski; G. Bergmann; J. M. Berliner; D. Bersanetti; A. Bertolini; D. Bessis; J. Betzwieser; P. T. Beyersdorf; T. Bhadbhade; I. A. Bilenko; G. Billingsley; J. Birch; S. Biscans; M. Bitossi; M. A. Bizouard; E. Black; J. K. Blackburn; L. Blackburn; D. Blair; M. Blom; O. Bock; T. P. Bodiya; M. Boer; C. Bogan; C. Bond; F. Bondu; L. Bonelli; R. Bonnand; R. Bork; M. Born; V. Boschi; S. Bose; L. Bosi; J. Bowers; C. Bradaschia; P. R. Brady; V. B. Braginsky; M. Branchesi; C. A. Brannen; J. E. Brau; J. Breyer; T. Briant; D. O. Bridges; A. Brillet; M. Brinkmann; V. Brisson; M. Britzger; A. F. Brooks; D. A. Brown; D. D. Brown; F. Brückner; T. Bulik; H. J. Bulten; A. Buonanno; D. Buskulic; C. Buy; R. L. Byer; L. Cadonati; G. Cagnoli; J. Calderó. Bustillo; E. Calloni; J. B. Camp; P. Campsie; K. C. Cannon; B. Canuel; J. Cao; C. D. Capano; F. Carbognani; L. Carbone; S. Caride; A. Castiglia; S. Caudill; M. Cavaglià; F. Cavalier; R. Cavalieri; G. Cella; C. Cepeda; E. Cesarini; R. Chakraborty; T. Chalermsongsak; S. Chao; P. Charlton; E. Chassande-Mottin; X. Chen; Y. Chen; A. Chincarini; A. Chiummo; H. S. Cho; J. Chow; N. Christensen; Q. Chu; S. S. Y. Chua; S. Chung; G. Ciani; F. Clara; D. E. Clark; J. A. Clark; F. Cleva; E. Coccia; P. -F. Cohadon; A. Colla; M. Colombini; M. Constanci. Jr.; A. Conte; D. Cook; T. R. Corbitt; M. Cordier; N. Cornish; A. Corsi; C. A. Costa; M. W. Coughlin; J. -P. Coulon; S. Countryman; P. Couvares; D. M. Coward; M. Cowart; D. C. Coyne; K. Craig; J. D. E. Creighton; T. D. Creighton; S. G. Crowder; A. Cumming; L. Cunningham; E. Cuoco; K. Dahl; T. Da. Canton; M. Damjanic; S. L. Danilishin; S. D'Antonio; K. Danzmann; V. Dattilo; B. Daudert; H. Daveloza; M. Davier; G. S. Davies; E. J. Daw; R. Day; T. Dayanga; G. Debreczeni; J. Degallaix; E. Deleeuw; S. Deléglise; W. De. Pozzo; T. Denker; T. Dent; H. Dereli; V. Dergachev; R. T. DeRosa; R. D. Rosa; R. DeSalvo; S. Dhurandhar; M. Díaz; A. Dietz; L. D. Fiore; A. D. Lieto; I. D. Palma; A. D. Virgilio; K. Dmitry; F. Donovan; K. L. Dooley; S. Doravari; M. Drago; R. W. P. Drever; J. C. Driggers; Z. Du; J. -C. Dumas; S. Dwyer; T. Eberle; M. Edwards; A. Effler; P. Ehrens; J. Eichholz; S. S. Eikenberry; G. Endr?czi; R. Essick; T. Etzel; K. Evans; M. Evans; T. Evans; M. Factourovich; V. Fafone; S. Fairhurst; Q. Fang; B. Farr; W. Farr; M. Favata; D. Fazi; H. Fehrmann; D. Feldbaum; I. Ferrante; F. Ferrini; F. Fidecaro; L. S. Finn; I. Fiori; R. Fisher; R. Flaminio; E. Foley; S. Foley; E. Forsi; N. Fotopoulos; J. -D. Fournier; S. Franco; S. Frasca; F. Frasconi; M. Frede; M. Frei; Z. Frei; A. Freise; R. Frey; T. T. Fricke; P. Fritschel; V. V. Frolov; M. -K. Fujimoto; P. Fulda; M. Fyffe; J. Gair; L. Gammaitoni; J. Garcia; F. Garufi; N. Gehrels; G. Gemme; E. Genin; A. Gennai; L. Gergely; S. Ghosh; J. A. Giaime; S. Giampanis; K. D. Giardina; A. Giazotto; S. Gil-Casanova; C. Gill; J. Gleason; E. Goetz; R. Goetz; L. Gondan; G. González; N. Gordon; M. L. Gorodetsky; S. Gossan; S. Goßler; R. Gouaty; C. Graef; P. B. Graff; M. Granata; A. Grant; S. Gras; C. Gray; R. J. S. Greenhalgh; A. M. Gretarsson; C. Griffo; H. Grote; K. Grover; S. Grunewald; G. M. Guidi; C. Guido; K. E. Gushwa; E. K. Gustafson; R. Gustafson; B. Hall; E. Hall; D. Hammer; G. Hammond; M. Hanke; J. Hanks; C. Hanna; J. Hanson; J. Harms; G. M. Harry; I. W. Harry; E. D. Harstad; M. T. Hartman; K. Haughian; K. Hayama; J. Heefner; A. Heidmann; M. Heintze; H. Heitmann; P. Hello; G. Hemming; M. Hendry; I. S. Heng; A. W. Heptonstall; M. Heurs; S. Hild; D. Hoak; K. A. Hodge; K. Holt; T. Hong; S. Hooper; T. Horrom; D. J. Hosken; J. Hough; E. J. Howell; Y. Hu; Z. Hua; V. Huang; E. A. Huerta; B. Hughey; S. Husa; S. H. Huttner; M. Huynh; T. Huynh-Dinh; J. Iafrate; D. R. Ingram; R. Inta; T. Isogai; A. Ivanov; B. R. Iyer; K. Izumi; M. Jacobson; E. James; H. Jang; Y. J. Jang; P. Jaranowski; F. Jiménez-Forteza; W. W. Johnson; D. I. Jones; D. Jones; R. Jones; R. J. G. Jonker; L. Ju; Hari. K; P. Kalmus; V. Kalogera; S. Kandhasamy; G. Kang; J. B. Kanner; M. Kasprzack; R. Kasturi; E. Katsavounidis; W. Katzman; H. Kaufer

    2014-12-03T23:59:59.000Z

    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a non-co-located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40 - 460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a $95%$ confidence level (C.L.) upper limit on the gravitational-wave energy density of \\Omega(f)<7.7 x 10^{-4} (f/ 900 Hz)^3, which improves on the previous upper limit by a factor of $\\sim 180$. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.

  6. Does energy follow urban form? : an examination of neighborhoods and transport energy use in Jinan, China

    E-Print Network [OSTI]

    Jiang, Yang, M.C.P. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis explores the impacts of neighborhood form and location on household transportation energy use in the context of Jinan, China. From a theoretical perspective, energy use is a derived outcome of activities, and ...

  7. Summit Location Announced: Hilton Anaheim, California | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -Blueprint |EnergyEnergyofSummary: DraftEnergy Summit

  8. Mid-American Review of Sociology, Volume 14, Number 1&2 (WINTER, 1990): Front Matter

    E-Print Network [OSTI]

    1990-01-01T23:59:59.000Z

    and Diversity, and Anthropological Perspectives on Education. Dr. Wax, while at KU, was able to arouse the suspicions of the "Tribal Establishment" during his research project among the Oklahoma Cherokee. After having Chief Keeler denounce his project... Cherokee, Mildred Ballenger. Later Chief Keeler was "to be implicated in the scandals that marked the close of the Nixon administration." GEORGE RITZER ("A Metatheoretical Analysis of Socioeconomics") was an Associate Professor of Sociology...

  9. Mid-American Review of Sociology, Volume 7, Number 1 (SPRING, 1982): Book Review

    E-Print Network [OSTI]

    Graf, Laura J.

    1982-04-01T23:59:59.000Z

    Dubois, Paul M. The Hospice ~tJay of Death. New York: Human Sciences Press, 1980, 167 pp., $22.95 cloth. In this book, Paul M.Dubois provides a comprehensive over­ view of the development of the hospice concept and factors in­ volved in its implementation... of their disease, only a small amount of fund­ ing is allocated to their needs (pp. 149-151). The chapter on the federal response is over-worked, however. It includes twenty­ two conclusions which have already been made explicit in the preceding text and six...

  10. Mid-American Review of Sociology, Volume 7, Number 2 (WINTER, 1982): Book Review

    E-Print Network [OSTI]

    Janzen, James K.

    1982-01-01T23:59:59.000Z

    ). Since information is subjective, distortion is ram­ pant in its translation. This is due to the action of various "sti ­ muli" which inhibit persons from viewing and perceiving infor­ mation in the same manner. Furthermore, one cannot compre­ hend all...

  11. Mid-American Review of Sociology, Volume 7, Number 2 (WINTER, 1982): Back Matter

    E-Print Network [OSTI]

    1982-01-01T23:59:59.000Z

    : An Instructor's Training Guide. N.V.: Human Sciences Press, 1981. Talbott, John A. (ed.). The Chronic Mentally Ill: Treatment, Programs, Systems. N.V.: Human Sciences Press, 1981. Vallance, Theodore R. and Ru M. Sabre (eds.). Mental Health Services in Transition...

  12. Mid-American Review of Sociology, Volume 8, Number 1 (SPRING, 1983): Book Review

    E-Print Network [OSTI]

    Wildcat, Daniel R.

    1983-04-01T23:59:59.000Z

    such as begging, stoicism, bribery, bargaining, cooperation, screaming, challenge, manipulation (escape), physical attack, and denial. The conduct patterns of the killer group are discussed under the headings of pronounce­ ments, commands, verification of victim... during the initiating s~ag.e of the robbery and then friendly depending on how the vicnm responds. After establishing control of the encounter, robbery group members Henry, Ricardo, and David all report that ~e~ssurance and a kind of rapport...

  13. Mid-American Review of Sociology, Volume 3, Number 1 (SPRING, 1978): Notes and Comments

    E-Print Network [OSTI]

    Jacobsen, Christian Wells

    1978-04-01T23:59:59.000Z

    : John Wiley and Sons, Inc. Kim, J ae-On and Frank Kohout 1975a "Special Topics in General Linear Models." Pp. 368-97 in Norman Nie et ale (eds.), SPSS, Second Edition. New York: McGraw-Hill Book Co. 1975b "Analyis of Variance and Covariance: Subprograms...

  14. Mid-American Review of Sociology, Volume 6, Number 1 (SPRING, 1981): Book Review

    E-Print Network [OSTI]

    John, Robert

    1981-04-01T23:59:59.000Z

    Mitchell Arnold Gehlen, Man in the ~ge ofTechnology. New York: Colum­ bia University Press, 1980, 185 pp. This translation of the 1957 revised edition of Die Seele im technischen Zeitalter is the first work of Arnold Gehlen's to be translated into English... the denatured title chosen for the English translation. Correctly translated, The Soul in the Age of Technology preserves Gehlen's intention to explain the pre­ dicament of modern man without ignoring the metaphysical element generally considered beyond...

  15. Mid-American Review of Sociology, Volume 6, Number 1 (SPRING, 1981): Book Review

    E-Print Network [OSTI]

    Stucky, Barbara S.

    1981-04-01T23:59:59.000Z

    as the central problem of the technological age he would have also been able to offer more adequate solutions to the problems he identi­ fied. GeWen was not a reactionary and did not suggest that man­ kind could simply tum back the clock. Something new... to the debased condition of modern existence. Gehlen believed that a new understanding of existence based on historical verities was necessary and possible, but only if social life conformed to man's philosophical anthropology. The essence of his critique of life...

  16. Mid-American Review of Sociology, Volume 15, Number 2 (SPRING, 1991): Back Matter

    E-Print Network [OSTI]

    1991-04-01T23:59:59.000Z

    : An Intellectual Biography. 11(1):95-98. Bonanno, Alessandro. 1987. "Decentralization, Informalization, and the State: A Reinterpretation of the Farm Crisis in the U.S." 12(1):15-33. Bradfield, Cecil D. and R. Ann Meyers. 1980. "Make Today Count: A Mutual Support... of Judith Weinstein Klein, Jewish Identity and Self-Esteem: Healing Wounds Through Ethnotherapy. 7(1):185-187. Editors. 1976. "A Letter From the Editors." 1(1):i-iv. Eitzen, D. Stanley. 1990. "Conflict and Order: Implications for a Research Agenda." 14...

  17. Fast Flux Test Facility Asbestos Location Tracking Program

    SciTech Connect (OSTI)

    REYNOLDS, J.A.

    1999-04-13T23:59:59.000Z

    Procedure Number HNF-PRO-408, revision 0, paragraph 1.0, ''Purpose,'' and paragraph 2.0, ''Requirements for Facility Management of Asbestos,'' relate building inspection and requirements for documentation of existing asbestos-containing building material (ACBM) per each building assessment. This documentation shall be available to all personnel (including contractor personnel) entering the facility at their request. Corrective action was required by 400 Area Integrated Annual Appraisal/Audit for Fiscal Year 1992 (IAA-92-0007) to provide this notification documentation. No formal method had been developed to communicate the location and nature of ACBM to maintenance personnel in the Fast Flux Test Facility (FFTF) 400 Area. The scope of this Data Package Document is to locate and evaluate any ACBM found at FFTF which constitutes a baseline. This includes all buildings within the protected area. These findings are compiled from earlier reports, numerous work packages and engineering evaluations of employee findings.

  18. Determining Mountaintop Mining Locations in West Virginia Using Elevation Datasets

    E-Print Network [OSTI]

    Rowland, Danny

    2009-11-18T23:59:59.000Z

    Determining Mountaintop Mining Locations in West Virginia Using Elevation Datasets Danny Rowland Haskell Indian Nations University Image from: http://www.colorado.edu/geography/cartpro/cartography2/spring2006/syphers.../projects/westvirginia/whatis.htm Image from: http://washingtonindependent.com/49008/congress-takes-on-mountaintop-mining Mountaintop Mining Operation 2 Elevation datasets: NED & SRTM West Virginia NED SRTM Elevation Change Over ~30 Year Period 20021970’s SRTM Subtracted from...

  19. Locating Pleistocene refugia: Comparing phylogeographic and ecological niche model predictions

    E-Print Network [OSTI]

    Waltari, Eric; Hijmans, Robert J.; Peterson, A. Townsend; Nyá ri, Á rpá d S.; Perkins, Susan L.; Guralnick, Robert P.

    2007-07-11T23:59:59.000Z

    , American Museum of Natural History, New York, New York, United States of America, 2 International Rice Research Institute, Los Ban˜os, Laguna, Philippines, 3Natural History Museum & Biodiversity Research Center, University of Kansas, Lawrence, Kansas.... Refugia identified in phylogeographic studies are shown as black outlines. Areas predicted to be refugia are in green, areas not predicted are in gray, and hatching indicates approximate locations of ice sheets [68]. Gray lines indicate present day...

  20. Location Prediction in Social Media Based on Tie Strength

    E-Print Network [OSTI]

    McGee, Jeffrey A

    2013-04-29T23:59:59.000Z

    used in this paper. Alberto adds location information to his tweets. Beryl is a reciprocal friend of Alberto, Chris is just a friend since Alberto follows Chris, Debby is just a follower, and Ernesto is just mentioned. The line to Ernesto is dashed... to show that there is no friend/follow relationship between Alberto and Ernesto. The other arrows show who follows whom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Cumulative distribution function(CDF) of the distance...

  1. The application of satellite time references to HVDC fault location

    SciTech Connect (OSTI)

    Dewe, M.B.; Sankar, S.; Arrillaga, J. (Univ. of Canterbury, Christchurch (New Zealand))

    1993-07-01T23:59:59.000Z

    An HVdc fault location scheme is described which relies on very precise detection of the time of arrival of fault created surges at both ends of the line. Such detection is achieved by a very accurate data acquisition and processing system combined with the time reference signals provided by a global positioning system receiver. Extensive digital simulation is carried out to determine the voltage and current waveforms, to identify the main sources of error and suggest possible compensation techniques.

  2. California Renewable Energy Center Integrated Assessment

    E-Print Network [OSTI]

    California at Davis, University of

    in which different renewable resources are co-located. How best to take advantage of this opportunityCalifornia Renewable Energy Center Integrated Assessment of Renewable Energy Technology Options #12;California Renewable Energy Center California has a long history of aggressively pursuing renewable energy

  3. Energy Department Announces $7 Million to Develop Advanced Logistics...

    Office of Environmental Management (EM)

    the Energy Department is supporting the production of renewable and cost-competitive biofuels. The projects, located in New York and Tennessee, will focus on developing advanced...

  4. Town of Hempstead: Project Energy, From Project Execution to...

    Energy Savers [EERE]

    message * Model for Others Data Collection and Monitoring ENERGY PARK: Location 1ST SOLAR PV INSTALLATION 1ST SOLAR PV INSTALLATION *Long Island Power Authority Solar Pioneer...

  5. Mesquite Solar 1, LLC (Sempra Mesquite) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mesquite Solar 1, LLC (Sempra Mesquite) Location: Maricopa County, AZ Eligibility: 1705 Snapshot In September 2011, the Department of Energy issued Mesquite Solar 1, LLC a 337...

  6. U.S. Department of Energy Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    25A2461 Regents of the University of California, Los Angeles - Thermal Energy Storage with Supercritical Fluids Location: California Proposed Action or Project Description:...

  7. Expedited Permitting of Grid-Scale Wind Energy Development (Maine)

    Broader source: Energy.gov [DOE]

    Maine's Expedited Permitting of Grid-Scale Wind Energy Development statue provides an expedited permitting pathway for proposed wind developments in certain designated locations, known as expedited...

  8. Energy Efficiency Standards for Microwave Ovens Saves Consumers...

    Broader source: Energy.gov (indexed) [DOE]

    Positive Impact Significant savings to consumer energy bills and reductions in carbon pollution. Locations Nationwide Partners Lawrence Berkeley National Laboratory, Navigant EERE...

  9. U.S. Department of Energy Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    -1594) Eaton Corporation - Predictive Battery Management for Commercial Hybrid Vehicles Program or Field Office: Advanced Research Projects Agency - Energy LocationCs) (City...

  10. Renewable Energy World Conference and Expo North America

    Broader source: Energy.gov [DOE]

    Renewable Energy World Conference & Expo North America will be co-located with Power Generation Week, providing networking opportunities with 20,000+ professionals and key decision makers.

  11. U.S. Department of Energy Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    - Energy Proiect Title: 0289-1628 Battelle - Cascade Reverse Osmosis and the Reverse Absorption Osmosis Cycle Location: Ohio Proposed Action or Project Description: American...

  12. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...

    Energy Savers [EERE]

    for NNSA's Los Alamos National Laboratory (LANL), located in Los Alamos, New Mexico. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at...

  13. Okanogan County PUD- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Public Utility District No. 1 of Okanogan County provides rebates to residential customers for purchasing energy efficient appliances. The qualifying appliance must be installed in a location that...

  14. Alternative Fueling Station Locator App Provides Info at Your...

    Broader source: Energy.gov (indexed) [DOE]

    iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station...

  15. Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9Moat of Long| Open EnergyLake PaiuteOpen

  16. DOE Office of Indian Energy: Leveraging Tribal Resources to Support Department of Defense Strategic Energy Goals (Fact Sheet)

    SciTech Connect (OSTI)

    Doris, E.

    2012-11-01T23:59:59.000Z

    This DOE Office of Indian Energy Policy and Programs fact sheet identifies tribal technology generation potential and Native American tribal lands located near military bases.

  17. NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812842

    E-Print Network [OSTI]

    Demazière, Christophe

    annals of NUCLEAR ENERGY Annals of Nuclear Energy 32 (2005) 812­842 www.elsevier.com/locate/anucene Identification and localization of absorbers of variable strength in nuclear reactors C. Demazie`re a,*, G evenly distrib- uted throughout the core of a commercial nuclear reactor. The novelty

  18. Annals of Nuclear Energy 31 (2004) 647680 www.elsevier.com/locate/anucene

    E-Print Network [OSTI]

    Demazière, Christophe

    constants corres- ponding to the actual reactor operating conditions. The calculations are performed applications. Consequently, the calculation of the dynamic reactor transfer function, i.e. the neutron noise demonstrated that the calculation of the dynamic reactor transfer function was possible mainly by modifying

  19. Energy Procedia 00 (2010) 000000 www.elsevier.com/locate/XXX

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    early investments in carbon capture and storage technology under uncertainty Eleanor Ereiraa , Howard early investment in coal-fired power with carbon capture and sequestration (CCS) creates an option Elsevier Ltd. All rights reserved Keywords: Carbon capture and sequestration; CCS; economic modeling

  20. International Journal of Hydrogen Energy 32 (2007) 463468 www.elsevier.com/locate/ijhydene

    E-Print Network [OSTI]

    Weidner, John W.

    2007-01-01T23:59:59.000Z

    Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 is produced via a two-step process involving iodine. The distillation of HI from solution and concurrent

  1. Energy Procedia 00 (2010) 000000 www.elsevier.com/locate/XXX

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    . We conclude that relying on air capture technology to play a major role in mitigating carbon mitigation technology. Technically, air capture is not a new technology; industrial applications can the emission target. In that case, there could be a need of a technology that "sucks" carbon out

  2. Energy Procedia 00(2008 )000 000 www.elsevier.com/locate/XXX

    E-Print Network [OSTI]

    analysis of carbon capture and sequestration generation dispatch in the western U.S. electricity system Gary Shua ,* Mort D. Webstera , Howard J. Herzoga a Carbon Capture and Sequestration Technologies, MIT of the feasibility of dispatch of coal-firedgenerationwith carbon capture and sequestration (CCS) asa

  3. Energy Procedia 00 (2008) 000000 www.elsevier.com/locate/XXX

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    here Abstract While capture of carbon dioxide from coal-fired power plants has important potential, the higher level of carbon dioxide (CO2) emissions from coal-fired power plants is, among other factors) provides a means of reducing carbon dioxide emissions at coal -fired power plants, but until recently

  4. Energy Procedia 00 (2010) 000000 www.elsevier.com/locate/XXX

    E-Print Network [OSTI]

    Haszeldine, Stuart

    2010-01-01T23:59:59.000Z

    a Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK b British Geological team of geoscientists and engineers is required to collect and analyse data, generate models more detailed geological data and simulating geomechanical and geochemical processes. The results

  5. Icarus 182 (2006) 329336 www.elsevier.com/locate/icarus

    E-Print Network [OSTI]

    California at Berkeley, University of

    in the planetary shadow. The heavy ions (considered as planetary ones) are accelerated to the energy of the solar 7228-0510, USA e Finnish Meteorological Institute, Box 503, FIN-00101 Helsinki, Finland f Space Physics adjacent to the magnetic pile-up boundary. These ions are accelerated to energy greater than 2000 e

  6. Icarus 191 (2007) 636650 www.elsevier.com/locate/icarus

    E-Print Network [OSTI]

    Bottke, William F.

    2007-01-01T23:59:59.000Z

    , Adam Mickiewicz University, ul. Sloneczna 36, PL 60-286 Pozna´n, Poland Received 1 March 2007; revised and rotational motion of a model asteroid. Solar torques, YORP, and internal energy dissipation were included into a tumbling rotation state depends on the efficiency of its internal energy dissipation and on the precise way

  7. Multi-canister overpack closure operations location study

    SciTech Connect (OSTI)

    Goldmann, L.H.

    1996-04-15T23:59:59.000Z

    The Spent Nuclear Fuel Path Forward Project (SNF Project) has been established to develop engineered methods for the expedited removal of the irradiated uranium fuel from the K East (KE) and K West (KW) Basins. As specified by the SNF Project, the SNF will be removed from the K Basins, conditioned for dry storage and placed in a long term interim storage facility located in the 200 East Area. The SNF primarily consists of Zircaloy-2 clad uranium fuel discharged from the N-Reactor. A small portion of the SNF is Single Pass Reactor (SPR) Fuel, which is aluminum clad uranium fuel. The SNF will be loaded into Multi-Canister Overpacks (MCOs) at the K Basins, transferred to the Cold Vacuum Drying (CVD) facility for initial fuel conditioning, and transported to the Canister Storage Building (CSB) for staging, final fuel conditioning, and dry storage. The MCO is a transportation, conditioning, and storage vessel. The MCO consists of a 24 inch pipe with a welded bottom closure and a top closure that is field welded after the MCO is loaded with SNF. The MCO is handled and transported in the vertical orientation during all operations. Except for operations within the CSB, the MCO is always within the transportation cask which primarily provides radiological shielding and structural protection of the MCO. The MCO closure operations location study provides a relative evaluation of location options at the K Basins and the CVD Facility and recommends that the MCO closure weld be performed, inspected, and repaired at the CVD Facility.

  8. Microfluidic ultrasonic particle separators with engineered node locations and geometries

    DOE Patents [OSTI]

    Rose, Klint A; Fisher, Karl A; Wajda, Douglas A; Mariella, Jr., Raymond P; Bailey, Christoppher; Dehlinger, Dietrich; Shusteff, Maxim; Jung, Byoungsok; Ness, Kevin D

    2014-05-20T23:59:59.000Z

    An ultrasonic microfluidic system includes a separation channel for conveying a sample fluid containing small particles and large particles, flowing substantially parallel, adjacent to a recovery fluid, with which it is in contact. An acoustic transducer produces an ultrasound standing wave, that generates a pressure field having at least one node of minimum pressure amplitude. An acoustic extension structure is located proximate to said separation channel for positioning said acoustic node off center in said acoustic area and concentrating the large particles in said recovery fluid stream.

  9. Optimizing Manufactured Housing Energy Use

    E-Print Network [OSTI]

    McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

    2004-01-01T23:59:59.000Z

    In partnership with the Florida Solar Energy Center (FSEC), two manufactured homes were located on North Carolina A&T State University's campus in Greensboro, NC and used in a side-by-side energy consumption comparison. One of the homes was built...

  10. On The Relationships Between Clustering and Spatial Co-location Pattern University of North Texas

    E-Print Network [OSTI]

    Huang, Yan

    On The Relationships Between Clustering and Spatial Co-location Pattern Mining Yan Huang University The goal of spatial co-location pattern mining is to find subsets of spatial features frequently located and located together from mo- bile devices (e.g., PDAs and cellular phones) and sym- biotic species in ecology

  11. Abstract--Although Locational Marginal Pricing (LMP) plays an important role in many restructured wholesale power

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Abstract-- Although Locational Marginal Pricing (LMP) plays an important role in many Terms-- Locational marginal pricing, wholesale power market, AC optimal power flow, DC optimal power congestion by means of Locational Marginal Pricing (LMP), i.e., the pricing of power by the location

  12. RSSI Based Location-Aware PC Power Management Zhong-Yi Jin and Rajesh K. Gupta

    E-Print Network [OSTI]

    Gupta, Rajesh

    RSSI Based Location-Aware PC Power Management Zhong-Yi Jin and Rajesh K. Gupta University- sideration the locations of computer users, location- aware PC power management techniques can over- come the capabilities to support effi- cient PC power management. In this paper, we present NAPS, a zone based location

  13. The Department's Fleet Vehicle Sustainability Initiatives at Selected Locations

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon2001 PowerofUse of U.S. Department of

  14. Title 33 CFR 115 Bridge Locations and Clearances: Administrative Procedures

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,Open EnergyTitleMissionInformation|

  15. NMOCD - Form G-102 - Geothermal Resources Well Location and Acreage

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy Resources JumpNEF AdvisorsState of

  16. Expansion analyses of strategic petroleum reserve in Bayou Choctaw : revised locations.

    SciTech Connect (OSTI)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2010-11-01T23:59:59.000Z

    This report summarizes a series of three-dimensional simulations for the Bayou Choctaw Strategic Petroleum Reserve. The U.S. Department of Energy plans to leach two new caverns and convert one of the existing caverns within the Bayou Choctaw salt dome to expand its petroleum reserve storage capacity. An existing finite element mesh from previous analyses is modified by changing the locations of two caverns. The structural integrity of the three expansion caverns and the interaction between all the caverns in the dome are investigated. The impacts of the expansion on underground creep closure, surface subsidence, infrastructure, and well integrity are quantified. Two scenarios were used for the duration and timing of workover conditions where wellhead pressures are temporarily reduced to atmospheric pressure. The three expansion caverns are predicted to be structurally stable against tensile failure for both scenarios. Dilatant failure is not expected within the vicinity of the expansion caverns. Damage to surface structures is not predicted and there is not a marked increase in surface strains due to the presence of the three expansion caverns. The wells into the caverns should not undergo yield. The results show that from a structural viewpoint, the locations of the two newly proposed expansion caverns are acceptable, and all three expansion caverns can be safely constructed and operated.

  17. How can we use one fracture to locate another?

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    2011-01-01T23:59:59.000Z

    Hydraulic fracturing is an important tool that helps extract fluids from the subsurface. It is critical in applications ranging from enhanced oil recovery to geothermal energy pro-duction. As the goal of fracturing is to ...

  18. Sandia National Laboratories: Locations: Albuquerque, New Mexico: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandianPrograms:Co-ops: GoLatest

  19. Sandia National Laboratories: Locations: Albuquerque, New Mexico: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandianPrograms:Co-ops:

  20. Sandia National Laboratories: Locations: Livermore, California: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandianPrograms:Co-ops:Livermore:

  1. Sandia National Laboratories: Locations: Livermore, California: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandianPrograms:Co-ops:Livermore:Livermore:

  2. On-Site Notaries Public * Name Location Phone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearch &CEATOmar The

  3. Network and topology for identifying, locating and quantifying physical phenomena, systems and methods for employing same

    DOE Patents [OSTI]

    Richardson, John G.; Moore, Karen A.; Carrington, Robert A.

    2005-05-10T23:59:59.000Z

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A plurality of laterally adjacent conductors may each include a plurality of segments. Each segment is constructed to exhibit a unit value representative of a defined energy transmission characteristic. A plurality of identity groups are defined with each identity group comprising a plurality of segments including at least one segment from each of the plurality of conductors. The segments contained within an identity group are configured and arranged such that each of their associated unit values may be represented by a concatenated digit string which is a unique number relative to the other identity groups. Additionally, the unit values of the segments within an identity group maintain unique ratios with respect to the other unit values in the identity group.

  4. Structures including network and topology for identifying, locating and quantifying physical phenomena

    DOE Patents [OSTI]

    Richardson, John G.; Moore, Karen A.; Carrington, Robert A.

    2006-04-25T23:59:59.000Z

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A plurality of laterally adjacent conductors may each include a plurality of segments. Each segment is constructed to exhibit a unit value representative of a defined energy transmission characteristic. A plurality of identity groups are defined with each identity group comprising a plurality of segments including at least one segment from each of the plurality of conductors. The segments contained within an identity group are configured and arranged such that each of their associated unit values may be represented by a concatenated digit string which is a unique number relative to the other identity groups. Additionally, the unit values of the segments within an identity group maintain unique ratios with respect to the other unit values in the identity group.

  5. Pipeline including network and topology for identifying, locating and quantifying physical phenomena

    DOE Patents [OSTI]

    Richardson, John G.; Moore, Karen A.; Carrington, Robert A.

    2006-02-14T23:59:59.000Z

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A plurality of laterally adjacent conductors may each include a plurality of segments. Each segment is constructed to exhibit a unit value representative of a defined energy transmission characteristic. A plurality of identity groups are defined with each identity group comprising a plurality of segments including at least one segment from each of the plurality of conductors. The segments contained within an identity group are configured and arranged such that each of their associated unit values may be represented by a concatenated digit string which is a unique number relative to the other identity groups. Additionally, the unit values of the segments within an identity group maintain unique ratios with respect to the other unit values in the identity group.

  6. TIPPIE COLLEGE OF BUSINESS & AFFILIATES -ADMINISTRATIVE OFFICES PBB = Pappajohn Business Building PC = Pomerantz Center

    E-Print Network [OSTI]

    Anstreicher, Kurt M.

    )......................5-0994 W401 PBB COLLOQUIUM - MIDAMERICAN S401 PBB COLLOQUIUM ­ TENNECO C120 PBB COMM. & EXTERNAL

  7. Collection of liquid from below-ground location

    DOE Patents [OSTI]

    Phillips, S.J.; Alexander, R.G.

    1995-05-30T23:59:59.000Z

    A method is described for retrieving liquid from a below-ground collection area by permitting gravity flow of the liquid from the collection area to a first closed container; monitoring the level of the liquid in the closed container; and after the liquid reaches a given level in the first closed container, transferring the liquid to a second closed container disposed at a location above the first closed container, via a conduit, by introducing into the first closed container a gas which is substantially chemically inert with respect to the liquid, the gas being at a pressure sufficient to propel the liquid from the first closed container to the second closed container. 3 figs.

  8. Modeling study of deposition locations in the 291-Z plenum

    SciTech Connect (OSTI)

    Mahoney, L.A.; Glissmeyer, J.A.

    1994-06-01T23:59:59.000Z

    The TEMPEST (Trent and Eyler 1991) and PART5 computer codes were used to predict the probable locations of particle deposition in the suction-side plenum of the 291-Z building in the 200 Area of the Hanford Site, the exhaust fan building for the 234-5Z, 236-Z, and 232-Z buildings in the 200 Area of the Hanford Site. The Tempest code provided velocity fields for the airflow through the plenum. These velocity fields were then used with TEMPEST to provide modeling of near-floor particle concentrations without particle sticking (100% resuspension). The same velocity fields were also used with PART5 to provide modeling of particle deposition with sticking (0% resuspension). Some of the parameters whose importance was tested were particle size, point of injection and exhaust fan configuration.

  9. Location deterministic biosensing from quantum-dot-nanowire assemblies

    SciTech Connect (OSTI)

    Liu, Chao [Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Kim, Kwanoh [Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Fan, D. L., E-mail: dfan@austin.utexas.edu [Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-08-25T23:59:59.000Z

    Semiconductor quantum dots (QDs) with high fluorescent brightness, stability, and tunable sizes, have received considerable interest for imaging, sensing, and delivery of biomolecules. In this research, we demonstrate location deterministic biochemical detection from arrays of QD-nanowire hybrid assemblies. QDs with diameters less than 10?nm are manipulated and precisely positioned on the tips of the assembled Gold (Au) nanowires. The manipulation mechanisms are quantitatively understood as the synergetic effects of dielectrophoretic (DEP) and alternating current electroosmosis (ACEO) due to AC electric fields. The QD-nanowire hybrid sensors operate uniquely by concentrating bioanalytes to QDs on the tips of nanowires before detection, offering much enhanced efficiency and sensitivity, in addition to the position-predictable rationality. This research could result in advances in QD-based biomedical detection and inspires an innovative approach for fabricating various QD-based nanodevices.

  10. Matter & Energy Solar Energy

    E-Print Network [OSTI]

    Rogers, John A.

    See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry Electronics Over 1.2 Million Electronics Parts, Components and Equipment. www.AlliedElec.com solar energy

  11. Energy Efficiency & Renewable Energy

    E-Print Network [OSTI]

    Federal buildings which begin the planning process by 2020 to achieve zero-net energy by 2030 PotentialEnergy Efficiency & Renewable Energy Overview of Hydrogen and Fuel Cell Activities Dr. Sunita of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA #12;2 1. Overview

  12. U.S. Department of Energy Categorical Exclusion Determination...

    Broader source: Energy.gov (indexed) [DOE]

    Proj ect Title: ITN Energy Systems - Low-cost Electrochrom ic Film on Plastic for Net-zero Energy Buildi ng Location: *- Multiple States - Colorado, Michigan Proposed Action or...

  13. Magma Energy Research Project, FY80 annual progress report

    SciTech Connect (OSTI)

    Colp, J.L. (ed.)

    1982-04-01T23:59:59.000Z

    The technical feasibility of extracting energy from magma bodies is explored. Five aspects of the project are studied: resource location and definition, source tapping, magma characterization, magma/material compatibility, and energy extraction.

  14. City and County of Denver- Elevations Energy Loans Program (Colorado)

    Broader source: Energy.gov [DOE]

    The Elevations Energy Loan can be used to finance a wide variety of efficiency and renewable energy projects in homes and businesses. Homes and businesses located in Boulder County or the City and...

  15. City of Milwaukee- Energy Efficiency (Me2) Business Financing

    Broader source: Energy.gov [DOE]

    Milwaukee Energy Efficiency (Me2) offers four different financing options for businesses to implement energy-efficiency projects into their buildings. Businesses must be located in the City of...

  16. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 29, NO. 1, JANUARY 2014 203 Distribution Locational Marginal Pricing for Optimal

    E-Print Network [OSTI]

    Oren, Shmuel S.

    (DSO) determines distribution locational marginal prices (DLMPs) by solving the social welfare, distribution locational marginal prices (DLMPs), distribution locational marginal pricing (DLMP), distribution at node . System locational marginal price (LMP) at time period for the node feeding the distribution grid

  17. Finding of No Significant Impact and Final Environmental Assessment for the Future Location of Heat Source/Radioisotope Power System Assembly and Testing and Operations Currently Located at the Mound Site

    SciTech Connect (OSTI)

    N /A

    2002-08-30T23:59:59.000Z

    The U.S. Department of Energy (the Department) has completed an Environmental Assessment for the Future Location of the Heat Source/Radioisotope Power System Assembly and Test. Operations Currently Located at the Mound Site. Based on the analysis in the environmental assessment, the Department has determined that the proposed action, the relocation of the Department's heat source and radioisotope power system operations, does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the ''National Environmental Policy Act'' of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (FONSI).

  18. Locating Climate Insecurity: Where Are the Most Vulnerable Places in

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum,LittleLivonia, NewBiomassLocal

  19. EA-1599: Disposition of Radioactively Contaminated Nickel Located at the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S.ContaminationJuly 2011D APPENDIX D9 STAT.BPA's10Y-12 Steam Plant Life 230-kVEast

  20. Notices PUMPOUT FACILITIES-Continued # Name Location Lat./Long.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O N N789 Federal2311040769261242

  1. Alternative Fueling Station Locator App Provides Info at Your Fingertips |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy:Whether you're a16-17,2-13) All Other Editions areEnergyDepartment

  2. THE LABORATORY Located in Menlo Park, California, SLAC National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF and

  3. Microfluidic ultrasonic particle separators with engineered node locations

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronicCurves | SciTechLagrange Multiplier Technique |and geometries | SciTech

  4. Methodology for Use of Reclaimed Water at Federal Locations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy MetalProgramFiscalMethanegasFort

  5. RADIOLOGICAL EVALUATION OF DECONTAMINATION DEBRIS LOCATED AT THE

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A' 3 ct : -. .S. Driof,h

  6. Building Location Aware Apps on the iPhone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE Building Envelopes MFEL.jpgiPhone

  7. Alternative Fueling Station Locator App Provides Info at Your Fingertips |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM -Alicia Moulton About UsAll27,Energy

  8. Sandia National Laboratories: Locations: Albuquerque, New Mexico: Life in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandianPrograms:Co-ops: GoLatest News

  9. Applicant Location Requested DOE Funds Project Summary Feasibility Studies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartmentAnthony Lucas - ESF-12 NationalAPPENDIXASRAC is|Requested

  10. Multi-Site Energy Reduction Through Teamwork

    E-Print Network [OSTI]

    Tutterow, V.; Walters, T.

    2006-01-01T23:59:59.000Z

    Multi-Site Energy Reduction Through Teamwork Thomas R. Theising Energy/Waste Management and Procurement Manager BASF Corporation Freeport, Texas ABSTRACT Energy Teams were established at seven locations in Tennessee, Texas... to the business. The completion of an energy audit will leave a laundry list of ideas to be considered. The energy management process, at the Site level, begins at this point. At BASF, we have found the most successful method of evaluating...

  11. Wind Energy Permitting Standards (North Carolina)

    Broader source: Energy.gov [DOE]

    North Carolina has statewide permitting requirements for wind energy facilities. Any wind turbine or collection of wind turbines located within a half mile of each other with a collective rated...

  12. Hyde County- Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Hyde County, located in eastern North Carolina, adopted a wind ordinance in 2008 to regulate the use of wind energy facilities throughout the county, including waters within the boundaries of Hyde...

  13. Tyrrell County- Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Tyrrell County, located in northeastern North Carolina, adopted a wind ordinance in 2009 to regulate the use of wind energy facilities in the unincorporated areas of the county. The ordinance is...

  14. Applied Solutions Webinar: Insights Into District Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Local governments and their communities that inhabit dense locations can take advantage of district heating and/or cooling systems as a way to increase energy efficiency and reliability while...

  15. Electrical energy monitoring in an industrial plant

    E-Print Network [OSTI]

    Dorhofer, Frank Joseph

    1994-01-01T23:59:59.000Z

    This thesis presents an investigation into the actual electrical energy and demand use of a large metal fabrication facility located in Houston, Texas. Plant selection and the monitoring system are covered. The influence of a low power factor...

  16. Certified Practitioner in Energy Management Systems Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Training February 24, 2015 8:00AM CST to February 27, 2015 4:00PM CST Location Midwest Energy Efficiency Alliance 20 N Wacker Dr. Suite 1301 Chicago, IL 60606 Learn more...

  17. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Renewable Energy Center 58 Wind: Development Potential ­ Geyserville · Potential to collocate wind Renewable Energy Center Assessment of Co-located Renewable Generation Potential #12;California Renewable (Task 2, L.A. Basin) and regions (Task 5) with co-located resources · Assess resource potential

  18. Assessment of the 296-S-21 Stack Sampling Probe Location

    SciTech Connect (OSTI)

    Glissmeyer, John A.

    2006-09-08T23:59:59.000Z

    Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Pacific Northwest National Laboratory conducted most tests on a 3.67:1 scale model of the stack. CH2MHill also performed some limited confirmatory tests on the actual stack. The tests assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream. The tests were conducted for the practical combinations of operating fans and addressed: (1) Angular Flow--The purpose is to determine whether the velocity vector is aligned with the sampling nozzle. The average yaw angle relative to the nozzle axis should not be more than 20. The measured values ranged from 5 to 11 degrees on the scale model and 10 to 12 degrees on the actual stack. (2) Uniform Air Velocity--The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. The uniformity is expressed as the variability of the measurements about the mean, the coefficient of variance (COV). The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ?20% across the center two-thirds of the area of the stack. At the location simulating the sampling probe, the measured values ranged form 4 to 11%, which are within the criterion. To confirm the validity of the scale model results, air velocity uniformity measurements were made both on the actual stack and on the scale model at the test ports 1.5 stack diameters upstream of the sampling probe. The results ranged from 6 to 8% COV on the actual stack and 10 to 13% COV on the scale model. The average difference for the eight runs was 4.8% COV, which is within the validation criterion. The fact that the scale model results were slightly higher than the actual stack suggests that the other test results on the scale model are conservative relative to the actual stack. (3) Uniform Concentration of Tracer Gases--A uniform contaminant concentration in the sampling plane enables the extraction of samples that represent the true concentration. This was first tested using a tracer gas to represent gaseous effluents. The fan is a good mixer, so injecting the tracer downstream of the fans provides worst-case results. The acceptance criteria are that (1) the COV of the measured tracer gas concentration is ?20% across the center two-thirds of the sampling plane and (2) at no point in the sampling plane does the concentration vary from the mean by >30%. The results on the scale model at the point simulating the sampling probe ranged from 0.3 to 6 %COV, and the maximum single point deviation from the mean was -10%. (4) Uniform Concentration of Tracer Particles--Uniformity in contaminant concentration at the sampling probe was further demonstrated using tracer particles large enough to exhibit inertial effects. Particles of 10-?m aerodynamic diameter were used. The acceptance criterion is that the COV of particle concentration is ?20% across the center two-thirds of the sampling plane. The scale model results ranged form 2 to 9%. Based on these tests, the location of the air sampling probe on the 296-S-21 stack meets the requirements of the ANSI/HPS N13.1-1999 standard.

  19. DATES: JANUARY 29 -MARCH 26, 2014 LOCATION: ONLINE

    E-Print Network [OSTI]

    Hutcheon, James M.

    a water audit III. Sustainability and Energy Goal: The goal of this module is to provide basic infor-855-478-5551 Fax (912) 478-0847 Contact Information: Call or email Judy Hendrix-Poole Georgia Southern UniversityD, Georgia Southern University Phone: (912) 478-0800 Email: leege@georgiasouthern.edu Sustainability Advisor

  20. Enhancing Location Privacy for Electric Vehicles (at the right time)

    E-Print Network [OSTI]

    power to help balance loads by "valley filling" (charging at night when the demand is low) and "peak could buffer renewable power sources such as wind power, for example, by storing excess energy produced stabilizing the intermittency of wind power. If the car has installed solar panel, it may further generate

  1. www.elsevier.com/locate/sna Hotspot and NDVI Differencing

    E-Print Network [OSTI]

    Li, Zhanqing

    area; 2) be readily ronments. ©Elsevier Science Inc., 2000 adaptable to a range of input data sets analyst intervention. * Intermap Technologies, Ottawa, Ontario, Canada Current satellite-based strategies 19 February 1999; revised 15 December 1999. hotspot detection, fire thermal energy is used

  2. Tectonophysics 315 (1999) 145162 www.elsevier.com/locate/tecto

    E-Print Network [OSTI]

    Fritz, Harald

    1999-01-01T23:59:59.000Z

    .V. All rights reserved. Keywords: Egypt; exhumation of core complexes; intramontane basin formation oblique convergence in the Eastern Desert of Egypt: magmatically versus tectonically induced subsidence H final exhumation of core complexes. Enhanced relief energy and high sediment delivery rates suggest

  3. Lamar Fleming 564 1 1 UH Vending Locations

    E-Print Network [OSTI]

    Azevedo, Ricardo

    Melcher Hall 528 2 2 1 1 Moody Towers South 584 2 1 Moody Towers North 584 2 2 Moores School of Music 520 Energy Research Park Bldg. 2 & 3 have beverage and snack machines. 506506 537 Beverage, Ice Cream #12;

  4. Toward Optimal Allocation of Location Dependent Tasks in Crowdsensing

    E-Print Network [OSTI]

    Reisslein, Martin

    , Junshan Zhang, Jiming Chen School of Electrical, Computer, and Energy Engineering, Arizona State and market demand (i.e., the number of mobile users who intend to perform the task). Extensive simulation the movement, and are uploaded to a backend cloud. They are then fused and visualized. Common Sense provides

  5. More information about the U.S. Department of Energy's Clean Energy Manufacturing Initiative is available online

    E-Print Network [OSTI]

    ). While wind power is the lowest cost energy source in some locations, demand is still driven by policy significant, is relatively small by comparison (U.S. Department of Energy Wind Technology Market Report 2013 Galveston area is often the lowest cost location for importing and exporting wind products on account of low

  6. Noise pair velocity and range echo location system

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-02-16T23:59:59.000Z

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution is disclosed. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna. 46 figs.

  7. Noise pair velocity and range echo location system

    DOE Patents [OSTI]

    Erskine, David J. (Oakland, CA)

    1999-01-01T23:59:59.000Z

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna.

  8. Adjusting flow station job to remote Nigerian location yields savings

    SciTech Connect (OSTI)

    Wooten, R.; Williams, E.C. (OPI International Inc., Houston, TX (United States))

    1994-05-02T23:59:59.000Z

    In September 1991, Chevron Nigeria Ltd. and Nigerian National Petroleum Crop. contracted Offshore Pipelines to design, procure, construct, install, and commission the Opuekeba 30,000 b/d crude-oil flow station on an offshore platform near Olero Creek, Nigeria, approximately 22 miles from the nearest deepwater access. Chevron's original project plan included bringing the flow station to the site in small packages and then assembling it in a lengthy field hook-up process. Offshore Pipelines developed a plan early in the project to maximize construction and hook-up in the fabrication yard, then transport the nearly complete structures to site by way of a newly dredged canal. What proved to be most difficult was the site location in Nigeria. Job planning and communication were important in the successful completion of the project. Keeping the components of the large and complex facility simple proved to be effective and efficient and played a key role in completing the project on time and within budget. The paper discusses overcoming obstacles, lift and depth constraints, dredging, fabrication, installation, and large-time problems.

  9. National Ignition Facility and Managing Location, Component, and State

    SciTech Connect (OSTI)

    Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

    2011-07-25T23:59:59.000Z

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  10. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  11. Integration Of Locational Decisions with the Household Activity Pattern Problem and Its Applications in Transportation Sustainability

    E-Print Network [OSTI]

    Kang, Jee E

    2013-01-01T23:59:59.000Z

    hazardous materials transportation: risk analysis, routing/scheduling and facility location,locations, several papers present applications, such as medicine (Or and Pierskalla, 1979; Chan et al, 2001), waste/hazardous

  12. Integration of Locational Decisions with the Household Activity Pattern Problem and Its Applications in Transportation Sustainability

    E-Print Network [OSTI]

    Kang, Jee Eun

    2013-01-01T23:59:59.000Z

    hazardous materials transportation: risk analysis, routing/scheduling and facility location,locations, several papers present applications, such as medicine (Or and Pierskalla, 1979; Chan et al, 2001), waste/hazardous

  13. "Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Space Heating Usage Indicators by UrbanRural Location, 2005" " Million U.S. Housing Units" ,,"UrbanRural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating...

  14. Joint location of microseismic events in the presence of velocity uncertainty

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    The locations of seismic events are used to infer reservoir properties and to guide future production activity, as well as to determine and understand the stress field. Thus, locating seismic events with uncertainty ...

  15. Grid-search event location with non-Gaussian error models

    E-Print Network [OSTI]

    Rodi, William L.

    This study employs an event location algorithm based on grid search to investigate the possibility of improving seismic event location accuracy by using non-Gaussian error models. The primary departure from the Gaussian ...

  16. Challenges and Solutions for Location-based Routing in Wireless Sensor Networks with Complex Network Topology

    E-Print Network [OSTI]

    Won, Myounggyu

    2013-07-17T23:59:59.000Z

    Complex Network Topologies (CNTs)–network holes and cuts–often occur in practical WSN deployments. Many researchers have acknowledged that CNTs adversely affect the performance of location-based routing and proposed various CNT- aware location...

  17. Energy Conservation Renewable Energy

    E-Print Network [OSTI]

    Delgado, Mauricio

    Energy Conservation Renewable Energy The Future at Rutgers University Facilities & Capital Planning Operations & Services Utilities Operations 6 Berrue Circle Piscataway, NJ 08854 #12;Energy Conservation Wh C ti ? R bl EWhy Conservation? Renewable Energy · Climate control reduces green house gases · Reduces

  18. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  19. Seismic Line Location Map Hot Pot Project, Humboldt County, Nevada 2010

    SciTech Connect (OSTI)

    Lane, Michael

    2012-01-01T23:59:59.000Z

    Location of seismic lines carried out under DOE funded project Advanced Seismic Data Analysis Program (The Hot Pot Project).

  20. Asymptotic Exit Location Distributions in the Stochastic Exit Problem

    E-Print Network [OSTI]

    NCR­90­16211. y Partially supported by the U.S. Department of Energy under grant DE­FG03­93ER25155. 1­activated escape from a connected planar domain W ae R 2 with smooth boundary, in the limit of weak noise. If b = (b i ), i = 1; 2 is a smooth vector field on a neighborhood of the closure ¯ W, we define the random