Powered by Deep Web Technologies
Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Local microwave background radiation  

E-Print Network [OSTI]

An inquiry on a possible local origin for the Microwave Background Radiation is made. Thermal MBR photons are contained in a system called {\\it magnetic bottle} which is due to Earth magnetic field and solar wind particles, mostly electrons. Observational tests are anticipated.

Domingos Soares

2014-11-13T23:59:59.000Z

2

On the radiative and thermodynamic properties of the Cosmic Microwave Background radiation using COBE FIRAS instrument data  

E-Print Network [OSTI]

Use formulas to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, pressure, enthalpy density, and internal energy density in the finite range of frequencies are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60 - 600 GHz frequency interval at the temperature T = 2.728 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant are calculated. In the case of the dipole spectrum, the constants a and the Stefan-Bol...

Fisenko, Anatoliy I

2014-01-01T23:59:59.000Z

3

On the ultra high energy cosmic rays and the origin of the cosmic microwave background radiation  

E-Print Network [OSTI]

Some inconsistencies to the assumption of a cosmological origin of the cosmic microwave background CMB, such as the absence of gravitational lensing in the WMAP data, open the doors to some speculations such as a local origin to the CMB. We argue here that this assumption agrees with the absence of the GZK cutoff (at least according to AGASA data) in the energy spectrum of the cosmic ray due to the cosmic interaction with the CMB at $6\\times 10^{19} eV$ or above. Within 50 Mpc from Earth, the matter and light distributions are close to an anisotropic distribution, where the local cluster and local super-clusters of galaxies can be identified. In contrast, the ultra high energy comic rays data is consistent to an almost isotropic distribution, and there is no correlation between their arrival direction and astronomical sources within our local cluster. This means that the events above the GZK cutoff come from distances above 50 Mpc, without an apparent energy loss. This scenario is plausible under the assumption of the CMB concentrated only within 3-4 Mpc from Earth. In other words, the CMB has a local origin linked only to the local super-cluster of galaxies. In addition, the galactic and extragalactic energy spectra index within the energy equipartition theorem strongly constrains the dark matter and dark energy hypothesis, essential in the Big Bang cosmology.

C. E. Navia; C. R. A. Augusto; K. H. Tsui

2007-07-12T23:59:59.000Z

4

Limits on the Polarization of the Cosmic Microwave Background Radiation at Multipoles up to l~2000  

E-Print Network [OSTI]

We report upper limits on the polarization of the CMBR as measured with the Cosmic Background Imager, a 13 element interferometer that operates in the 26-36 GHz band and is sited on Llano de Chajnantor in northern Chile. The array consists of 90-cm Cassegrain antennas mounted on a steerable platform that can be rotated about the optical axis to facilitate polarization observations. The CBI employs single-mode circularly polarized receivers and it samples multipoles from l~400 to l~3500. The polarization data were calibrated on 3C279 and Tau A. The polarization observations consist of 278 hours of data on two fields taken in 2000, during the first CBI observing season. A joint likelihood analysis of the two fields yields three upper limits (95% c.l.) for \\mathcal{C}_l^{EE} = C^{EE}l(l+1)/(2pi) under the assumption that \\mathcal{C}_l^{BB}=0: 49.0 microK^2 (l=603); 164 microK^2 (l=1144); and 630 microK^2 (l=2048).

J. K. Cartwright; T. J. Pearson; A. C. S. Readhead; M. C. Shepherd; J. L. Sievers; G. B. Taylor

2005-02-08T23:59:59.000Z

5

Gauging the cosmic microwave background  

E-Print Network [OSTI]

We provide a new derivation of the anisotropies of the cosmic microwave background (CMB), and find an exact expression that can be readily expanded perturbatively. Close attention is paid to gauge issues, with the motivation to examine the effect of super-Hubble modes on the CMB. We calculate a transfer function that encodes the behaviour of the dipole, and examine its long-wavelength behaviour. We show that contributions to the dipole from adiabatic super-Hubble modes are strongly suppressed, even in the presence of a cosmological constant, contrary to claims in the literature. We also introduce a naturally defined CMB monopole, which exhibits closely analogous long-wavelength behaviour. We discuss the geometrical origin of this super-Hubble suppression, pointing out that it is a simple reflection of adiabaticity, and hence argue that it will occur regardless of the matter content.

J. P. Zibin; Douglas Scott

2008-12-21T23:59:59.000Z

6

Differential Microwave Radiometer and the Cosmic Microwave Background |  

Office of Science (SC) Website

Differential Differential Microwave Radiometer and the Cosmic Microwave Background Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) DOE's Philosophy on LDRD Frequently Asked Questions Success Stories Brochures Additional Information LDRD Program Contacts Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 Success Stories Differential Microwave Radiometer and the Cosmic Microwave Background Print Text Size: A A A RSS Feeds FeedbackShare Page

7

Cosmic Microwave Background: Past, Future, and Present  

E-Print Network [OSTI]

I explain the origin and evolution of anisotropies in the Cosmic Microwave Background (CMB) and argue that upcoming experiments will measure cosmological and fundamental parameters very accurately. Most of the paper focuses on present data, which strongly suggest that the universe is flat. Several arguments are given to prove that present data sets are not contaminated by systematics. New techniques to compare different experiments visually are introduced. These are illustrated for two years of the MSAM and Python experiments.

Scott Dodelson

1999-12-22T23:59:59.000Z

8

Cosmic Microwave Background Tests of Inflation  

E-Print Network [OSTI]

Inflation provides a unified paradigm for understanding the isotropy of the cosmic microwave background (CMB), the flatness problem, and the origin of large-scale structure. Although the physics responsible for inflation is not yet well understood, slow-roll inflation generically makes several predictions: a flat Universe, primordial adiabatic density perturbations, and a stochastic gravity-wave background. Inflation further predicts specific relations between the amplitudes and shapes of the spectrum of density perturbations and gravity waves. There are now excellent prospects for testing precisely these predictions with forthcoming CMB temperature and polarization maps. Here I discuss these new CMB tests of inflation.

Marc Kamionkowski

1998-03-14T23:59:59.000Z

9

New physics from the Cosmic Microwave Background  

E-Print Network [OSTI]

I review the present status of the Cosmic Microwave Background, with some emphasis on the current and future implications for particle physics. Conclusions are: gravitational instability in a dark matter dominated universe grew today's structure; the Universe remained neutral until z<~50; the CMB power spectrum peaks at 150<~l<~350; the large-scale structure of spacetime appears to be simple; something like inflation is something like proven; we will learn a great deal about cosmology, astrophysics and particle physics from MAP and Planck.

Douglas Scott

1999-11-17T23:59:59.000Z

10

Anisotropies in the Cosmic Microwave Background: Theory  

E-Print Network [OSTI]

Anisotropies in the Cosmic Microwave Background (CMB) contain a wealth of information about the past history of the universe and the present values of cosmological parameters. I ouline some of the theoretical advances of the last few years. In particular, I emphasize that for a wide class of cosmological models, theorists can accurately calculate the spectrum to better than a percent. The specturm of anisotropies today is directly related to the pattern of inhomogeneities present at the time of recombination. This recognition leads to a powerful argument that will enable us to distinguish inflationary models from other models of structure formation. If the inflationary models turn out to be correct, the free parameters in these models will be determined to unprecedented accuracy by the upcoming satellite missions.

Scott Dodelson

1997-02-14T23:59:59.000Z

11

Information Gains from Cosmic Microwave Background Experiments  

E-Print Network [OSTI]

To shed light on the fundamental problems posed by Dark Energy and Dark Matter, a large number of experiments have been performed and combined to constrain cosmological models. We propose a novel way of quantifying the information gained by updates on the parameter constraints from a series of experiments which can either complement earlier measurements or replace them. For this purpose, we use the Kullback-Leibler divergence or relative entropy from information theory to measure differences in the posterior distributions in model parameter space from a pair of experiments. We apply this formalism to a historical series of Cosmic Microwave Background experiments ranging from Boomerang to WMAP, SPT, and Planck. Considering different combinations of these experiments, we thus estimate the information gain in units of bits and distinguish contributions from the reduction of statistical errors and the `surprise' corresponding to a significant shift of the parameters' central values. For this experiment series, we...

Seehars, Sebastian; Refregier, Alexandre; Paranjape, Aseem; Akeret, Joël

2014-01-01T23:59:59.000Z

12

The Cosmic Microwave Background and Particle Physics  

E-Print Network [OSTI]

In forthcoming years, connections between cosmology and particle physics will be made increasingly important with the advent of a new generation of cosmic microwave background (CMB) experiments. Here, we review a number of these links. Our primary focus is on new CMB tests of inflation. We explain how the inflationary predictions for the geometry of the Universe and primordial density perturbations will be tested by CMB temperature fluctuations, and how the gravitational waves predicted by inflation can be pursued with the CMB polarization. The CMB signatures of topological defects and primordial magnetic fields from cosmological phase transitions are also discussed. Furthermore, we review current and future CMB constraints on various types of dark matter (e.g. massive neutrinos, weakly interacting massive particles, axions, vacuum energy), decaying particles, the baryon asymmetry of the Universe, ultra-high-energy cosmic rays, exotic cosmological topologies, and other new physics.

Marc Kamionkowski; Arthur Kosowsky

1999-04-09T23:59:59.000Z

13

Statistics of Cosmic Microwave Background Polarization  

E-Print Network [OSTI]

We present a formalism for analyzing a full-sky temperature and polarization map of the cosmic microwave background. Temperature maps are analyzed by expanding over the set of spherical harmonics to give multipole moments of the two-point correlation function. Polarization, which is described by a second-rank tensor, can be treated analogously by expanding in the appropriate tensor spherical harmonics. We provide expressions for the complete set of temperature and polarization multipole moments for scalar and tensor metric perturbations. Four sets of multipole moments completely describe isotropic temperature and polarization correlations; for scalar metric perturbations one set is identically zero, giving the possibility of a clean determination of the vector and tensor contributions. The variance with which the multipole moments can be measured in idealized experiments is evaluated, including the effects of detector noise, sky coverage, and beam width. Finally, we construct coordinate-independent polarization two-point correlation functions, express them in terms of the multipole moments, and derive small-angle limits.

Marc Kamionkowski; Arthur Kosowsky; Albert Stebbins

1996-11-15T23:59:59.000Z

14

Risk Estimation; Background Radiation (Natural and Artificial )  

E-Print Network [OSTI]

-threshold mode estimate the response at lower doses. · The Committee on Biological Effects of Ionizing RadiationModule 9 Risk Estimation; Background Radiation (Natural and Artificial ) · sources of background radiation · various risk models. · estimating risk and on the sources of background radiation, both

Massey, Thomas N.

15

DarkLight radiation backgrounds  

SciTech Connect (OSTI)

We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-on, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW CW beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, field emission inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation.

Kalantarians, N. [Department of Physics, Hampton University, Hampton VA 23668 (United States); Collaboration: DarkLight Collaboration

2013-11-07T23:59:59.000Z

16

DarkLight radiation backgrounds  

SciTech Connect (OSTI)

We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-on, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW CW beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, field emission inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation.

Kalantarians, Narbe [University of Texas

2013-11-01T23:59:59.000Z

17

The Anisotropy of the Microwave Background to l = 3500: Deep Field Observations with the Cosmic Background Imager  

E-Print Network [OSTI]

We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l ~ 200 - 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l \\~ 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000 - 3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma_8 >~ 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.

B. S. Mason; T. J. Pearson; A. C. S. Readhead; M. C. Shepherd; J. L. Sievers; P. S. Udomprasert; J. K. Cartwright; A. J. Farmer; S. Padin; S. T. Myers; J. R. Bond; C. R. Contaldi; U. -L. Pen; S. Prunet; D. Pogosyan; J. E. Carlstrom; J. Kovac; E. M. Leitch; C. Pryke; N. W. Halverson; W. L. Holzapfel; P. Altamirano; L. Bronfman; S. Casassus; J. May; M. Joy

2002-05-22T23:59:59.000Z

18

The Cosmic Microwave Background: Beyond the Power Spectrum  

E-Print Network [OSTI]

Much recent work on the cosmic microwave background (CMB) has focussed on the angular power spectrum of temperature anisotropies and particularly on the recovery of cosmological parameters from acoustic peaks in the power spectrum. However, there is more that can conceivably be done with CMB measurements. Here I briefly survey a few such ideas: cross-correlation with other cosmic backgrounds as a probe of the density of the Universe; CMB polarization as a gravitational-wave detector; secondary anisotropies and the ionization history of the Universe; tests of alternative-gravity theories; polarization, the Sunyaev-Zeldovich effect, and cosmic variance; and tests for a neutrino mass.

Marc Kamionkowski

1998-09-24T23:59:59.000Z

19

Effects of Microwave Radiation on Oil Recovery  

Science Journals Connector (OSTI)

A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co?mingled with suspended solids and water. To increase oil recovery it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil?in?water and oil?water?solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers water can be discharged and oil is collected. High?frequency microwave recycling process can recover oil and gases from oil shale residual oil drill cuttings tar sands oil contaminated dredge/sediments tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly fuel?generating recycler to reduce waste cut emissions and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

2011-01-01T23:59:59.000Z

20

Translational invariance and the anisotropy of the cosmic microwave background  

SciTech Connect (OSTI)

Primordial quantum fluctuations produced by inflation are conventionally assumed to be statistically homogeneous, a consequence of translational invariance. In this paper we quantify the potentially observable effects of a small violation of translational invariance during inflation, as characterized by the presence of a preferred point, line, or plane. We explore the imprint such a violation would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes of the spherical-harmonic coefficients.

Carroll, Sean M.; Tseng, C.-Y.; Wise, Mark B. [California Institute of Technology, Pasadena, California 91125 (United States)

2010-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Testing gaussianity, homogeneity and isotropy with the cosmic microwave background  

E-Print Network [OSTI]

We review the basic hypotheses which motivate the statistical framework used to analyze the cosmic microwave background, and how that framework can be enlarged as we relax those hypotheses. In particular, we try to separate as much as possible the questions of gaussianity, homogeneity and isotropy from each other. We focus both on isotropic estimators of non-gaussianity as well as statistically anisotropic estimators of gaussianity, giving particular emphasis on their signatures and the enhanced "cosmic variances" that become increasingly important as our putative Universe becomes less symmetric. After reviewing the formalism behind some simple model-independent tests, we discuss how these tests can be applied to CMB data when searching for large scale "anomalies"

L. Raul Abramo; Thiago S. Pereira

2010-05-13T23:59:59.000Z

22

Determining cosmic microwave background anisotropies in the presence of foregrounds  

E-Print Network [OSTI]

Separating foregrounds from the signal is one of the big challenges in cosmic microwave background (CMB) experiments. A simple way to estimate the CMB temperature in a given pixel is to fit for the amplitudes of the CMB and the various foreground components. The variance squared of this estimator is shown to be equal to $[(FDF)^2\\ \\sigzt + \\sigsh^2]$, where $\\sigz$ is the variance in the absence of foregrounds; $\\sigsh$ is the variance due to the uncertainty in the shapes of the foreground components; and FDF is the {\\it foreground degradation factor}. This one number, the FDF, gives a good indication of the ability of a given experiment to disentangle the CMB from foreground sources. A variety of applications relating to the planning and analyzing of experiments is presented.

Scott Dodelson

1995-12-05T23:59:59.000Z

23

Weighing the Universe with the Cosmic Microwave Background  

E-Print Network [OSTI]

Variations in $\\Omega$, the total density of the Universe, leave a clear and distinctive imprint on the power spectrum of temperature fluctuations in the cosmic microwave background (CMB). This signature is virtually independent of other cosmological parameters or details of particular cosmological models. We evaluate the precision with which $\\Omega$ can be determined by a CMB map as a function of sky coverage, pixel noise, and beam size. For example, assuming only that the primordial density perturbations were adiabatic and with no prior information on the values of any other cosmological parameters, a full-sky CMB map at $0.5^\\circ$ angular resolution and a noise level of $15\\,\\mu{\\rm K}$ per pixel can determine $\\Omega$ with a variance of 5\\%. If all other cosmological parameters are fixed, $\\Omega$ can be measured to better than 1\\%.

Gerard Jungman; Marc Kamionkowski; Arthur Kosowsky; David N. Spergel

1995-07-21T23:59:59.000Z

24

Measurement of a Peak in the Cosmic Microwave Background Power  

Science Journals Connector (OSTI)

We describe a measurement of the angular power spectrum of anisotropies in the cosmic microwave background (CMB) at scales of 03 to 5° from the North American test flight of the Boomerang experiment. Boomerang is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a long-duration balloon flight. During a 6 hr test flight of a prototype system in 1997, we mapped more than 200 deg2 at high Galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26' and 165 FWHM, respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of 1° with an amplitude 70 ?KCMB.

P. D. Mauskopf; P. A. R. Ade; P. de Bernardis; J. J. Bock; J. Borrill; A. Boscaleri; B. P. Crill; G. DeGasperis; G. De Troia; P. Farese; P. G. Ferreira; K. Ganga; M. Giacometti; S. Hanany; V. V. Hristov; A. Iacoangeli; A. H. Jaffe; A. E. Lange; A. T. Lee; S. Masi; A. Melchiorri; F. Melchiorri; L. Miglio; T. Montroy; C. B. Netterfield; E. Pascale; F. Piacentini; P. L. Richards; G. Romeo; J. E. Ruhl; E. Scannapieco; F. Scaramuzzi; R. Stompor; N. Vittorio

2000-01-01T23:59:59.000Z

25

Chiral-field microwave antennas (Chiral microwave near fields for far-field radiation)  

E-Print Network [OSTI]

In a single-element structure we obtain a radiation pattern with a squint due to chiral microwave near fields originated from a magnetostatic-mode ferrite disk. At the magnetostatic resonances, one has strong subwavelength localization of energy of microwave radiation. Magnetostatic oscillations in a thin ferrite disk are characterized by unique topological properties: the Poynting-vector vortices and the field helicity. The chiral-topology near fields allow obtaining unique phase structure distribution for far-field microwave radiation.

Kamenetskii, E O; Shavit, R

2015-01-01T23:59:59.000Z

26

Cosmological-Parameter Determination with Microwave Background Maps  

E-Print Network [OSTI]

The angular power spectrum of the cosmic microwave background (CMB) contains information on virtually all cosmological parameters of interest, including the geometry of the Universe ($\\Omega$), the baryon density, the Hubble constant ($h$), the cosmological constant ($\\Lambda$), the number of light neutrinos, the ionization history, and the amplitudes and spectral indices of the primordial scalar and tensor perturbation spectra. We review the imprint of each parameter on the CMB. Assuming only that the primordial perturbations were adiabatic, we use a covariance-matrix approach to estimate the precision with which these parameters can be determined by a CMB temperature map as a function of the fraction of sky mapped, the level of pixel noise, and the angular resolution. For example, with no prior information about any of the cosmological parameters, a full-sky CMB map with $0.5^\\circ$ angular resolution and a noise level of 15 $\\mu$K per pixel can determine $\\Omega$, $h$, and $\\Lambda$ with standard errors of $\\pm0.1$ or better, and provide determinations of other parameters which are inaccessible with traditional observations. Smaller beam sizes or prior information on some of the other parameters from other observations improves the sensitivity. The dependence on the the underlying cosmological model is discussed.

Gerard Jungman; Marc Kamionkowski; Arthur Kosowsky; David N. Spergel

1996-05-23T23:59:59.000Z

27

Large-Angular-Scale Anisotropy in the Cosmic Background Radiation  

DOE R&D Accomplishments [OSTI]

We report the results of an extended series of airborne measurements of large-angular-scale anisotropy in the 3 K cosmic background radiation. Observations were carried out with a dual-antenna microwave radiometer operating at 33 GHz (.089 cm wavelength) flown on board a U-2 aircraft to 20 km altitude. In eleven flights, between December 1976 and May 1978, the radiometer measured differential intensity between pairs of directions distributed over most of the northern hemisphere with an rms sensitivity of 47 mK Hz{sup 1?}. The measurements how clear evidence of anisotropy that is readily interpreted as due to the solar motion relative to the sources of the radiation. The anisotropy is well fit by a first order spherical harmonic of amplitude 360{+ or -}50km sec{sup -1} toward the direction 11.2{+ or -}0.5 hours of right ascension and 19 {+ or -}8 degrees declination. A simultaneous fit to a combined hypotheses of dipole and quadrupole angular distributions places a 1 mK limit on the amplitude of most components of quadrupole anisotropy with 90% confidence. Additional analysis places a 0.5 mK limit on uncorrelated fluctuations (sky-roughness) in the 3 K background on an angular scale of the antenna beam width, about 7 degrees.

Gorenstein, M. V.; Smoot, G. F.

1980-05-00T23:59:59.000Z

28

Polarization of the Atmosphere as a Foreground for Cosmic Microwave Background Polarization Experiments  

E-Print Network [OSTI]

We quantify the level of polarization of the atmosphere due to Zeeman splitting of oxygen in the Earth's magnetic field and compare it to the level of polarization expected from the polarization of the cosmic microwave background radiation. The analysis focuses on the effect at mid-latitudes and at large angular scales. We find that from stratospheric balloon borne platforms and for observations near 100 GHz the atmospheric linear and circular polarized intensities is about 10^{-12} and 100 x 10^{-9} K, respectively, making the atmosphere a negligible source of foreground. From the ground the linear and circular polarized intensities are about 10^{-9} and 100 x 10^{-6} K, making the atmosphere a potential source of foreground for the CMB E (B) mode signal if there is even a 1% (0.01%) conversion of circular to linear polarization in the instrument.

Shaul Hanany; Philip Rosenkranz

2003-07-02T23:59:59.000Z

29

BAYESIAN INFERENCE OF POLARIZED COSMIC MICROWAVE BACKGROUND POWER SPECTRA FROM INTERFEROMETRIC DATA  

SciTech Connect (OSTI)

Detection of B-mode polarization of the cosmic microwave background (CMB) radiation is one of the frontiers of observational cosmology. Because they are an order of magnitude fainter than E-modes, it is quite a challenge to detect B-modes. Having more manageable systematics, interferometers prove to have a substantial advantage over imagers in detecting such faint signals. Here, we present a method for Bayesian inference of power spectra and signal reconstruction from interferometric data of the CMB polarization signal by using the technique of Gibbs sampling. We demonstrate the validity of the method in the flat-sky approximation for a simulation of an interferometric observation on a finite patch with incomplete uv-plane coverage, a finite beam size, and a realistic noise model. With a computational complexity of O(n {sup 3/2}), n being the data size, Gibbs sampling provides an efficient method for analyzing upcoming cosmology observations.

Karakci, Ata; Korotkov, Andrei; Tucker, Gregory S. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Sutter, P. M.; Wandelt, Benjamin D. [Department of Physics, 1110 W. Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Zhang, Le; Timbie, Peter [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bunn, Emory F., E-mail: ata_karakci@brown.edu [Physics Department, University of Richmond, Richmond, VA 23173 (United States)

2013-01-15T23:59:59.000Z

30

A Polarization Sensitive Bolometric Detector for Observations of the Cosmic Microwave Background  

E-Print Network [OSTI]

We have developed a bolometric detector that is intrinsically sensitive to linear polarization which is optimized for making measurements of the polarization of the cosmic microwave background radiation. The receiver consists of a pair of co-located silicon nitride micromesh absorbers which couple anisotropically to linearly polarized radiation through a corrugated waveguide structure. This system allows simultaneous background limited measurements of the Stokes I and Q parameters over ~ 30% bandwidths at frequencies from ~ 60 to 600 GHz. Since both linear polarizations traverse identical optical paths from the sky to the point of detection, the susceptibility to systematic effects is minimized. The amount of uncorrelated noise between the two polarization senses is limited to the quantum limit of thermal and photon shot noise, while drifts in the relative responsivity to orthogonal polarizations are limited to the effect of non-uniformity in the thin film deposition of the leads and the intrinsic thermistor properties. Devices using NTD Ge thermistors have achieved NEPs of 2 x 10^{-17} W/sqrt{Hz} with a 1/f knee below 100 mHz at a base temperature of 270 mK. Numerical modelling of the structures has been used to optimize the bolometer geometry and coupling to optics. Comparisons of numerical results and experimental data are made. A description of how the quantities measured by the device can be interpreted in terms of the Stokes parameters is presented. The receiver developed for the Boomerang and Planck HFI focal planes is presented in detail.

W. C. Jones; R. S. Bhatia; J. J. Bock; A. E. Lange

2002-09-08T23:59:59.000Z

31

Smoothing of the cosmic background radiation by multiple gravitational scattering  

Science Journals Connector (OSTI)

We investigated the smoothing of the cosmic background radiation (CBR) ... rays increases exponentially through multiple scatterings. This exponential growth occurs if the distance is smaller...

Junichiro Making

1994-01-01T23:59:59.000Z

32

ESnet supports Sandia and APNIC IPv6 Background Radiation research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

supports Sandia and APNIC IPv6 Background Radiation research Engineering Services The Network OSCARS Fasterdata IPv6 Network IPv6 Implementation Checklist ESnet IPv6 Mirror Servers...

33

Differential Damage in Bacterial Cells by Microwave Radiation on the Basis of Cell Wall Structure  

Science Journals Connector (OSTI)

...consistent when the microwave radiation was repeated. Changes in the...NaCl was exposed to microwave radiation at 600 W, and its temperature...U200; Hitachi Co., Tokyo, Japan). All the experiments were...cells were treated by microwave radiation, the shape of the cells was...

Im-Sun Woo; In-Koo Rhee; Heui-Dong Park

2000-05-01T23:59:59.000Z

34

Effect of a chameleon scalar field on the cosmic microwave background  

Science Journals Connector (OSTI)

We show that a direct coupling between a chameleonlike scalar field and photons can give rise to a modified Sunyaev-Zel’dovich (SZ) effect in the cosmic microwave background (CMB). The coupling induces a mixing between chameleon particles and the CMB photons when they pass through the magnetic field of a galaxy cluster. Both the intensity and the polarization of the radiation are modified. The degree of modification depends strongly on the properties of the galaxy cluster such as magnetic field strength and electron number density. Existing SZ measurements of the Coma cluster enable us to place constraints on the photon-chameleon coupling. The constrained conversion probability in the cluster is PComa(204??GHz)<6.2×10-5 at 95% confidence, corresponding to an upper bound on the coupling strength of geff(cell)<2.2×10-8??GeV-1 or geff(Kolmo)<(7.2–32.5)×10-10??GeV-1, depending on the model that is assumed for the cluster magnetic field structure. We predict the radial profile of the chameleonic CMB intensity decrement. We find that the chameleon effect extends farther toward the edges of the cluster than the thermal SZ effect. Thus we might see a discrepancy between the x-ray emission data and the observed SZ intensity decrement. We further predict the expected change to the CMB polarization arising from the existence of a chameleonlike scalar field. These predictions could be verified or constrained by future CMB experiments.

Anne-Christine Davis; Camilla A. O. Schelpe; Douglas J. Shaw

2009-09-10T23:59:59.000Z

35

An electronic radiation of blackbody: Cosmic electron background  

E-Print Network [OSTI]

The Universe owns the electronic radiation of blackbody at temperature 2.725 K, which we call the cosmic electron background. We calculate its radiation spectrum. The energy distribution of number density of electrons in the cosmic electron background becomes zero as energy goes to both zero and infinity. It has one maximum peak near the energy level of 10**(-23) J.

Jian-Miin Liu

2008-02-23T23:59:59.000Z

36

Low Background Radiation Experiment Yields Interesting Preliminary Results  

Broader source: Energy.gov (indexed) [DOE]

Low Background Radiation Experiment Yields Interesting Preliminary Low Background Radiation Experiment Yields Interesting Preliminary Results Low Background Radiation Experiment Yields Interesting Preliminary Results May 18, 2011 - 12:00pm Addthis Media Contact Deb Gill U.S. DOE Carlsbad Field Office (575) 234-7270 CARLSBAD, N.M. - New Mexico State University"s Low Background Radiation Experiment (LBRE), which takes place 2,150 feet below the earth"s surface at the Waste Isolation Pilot Plant, recently released some results about the project"s first two years of experimentation. The March 2011 edition of Health Physics printed an article titled "Exploring Biological Effects of Low Level Radiation from the Other Side of Background," summarizing some initial data taken from LBRE and from a sister experiment conducted at the Lovelace Respiratory Research Institute

37

Model-Independent Test for Scale-Dependent Non-Gaussianities in the Cosmic Microwave Background  

Science Journals Connector (OSTI)

We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.

C. Räth, G. E. Morfill, G. Rossmanith, A. J. Banday, and K. M. Górski

2009-03-31T23:59:59.000Z

38

Probing non-Gaussianities in the cosmic microwave background on an incomplete sky using surrogates  

Science Journals Connector (OSTI)

We demonstrate the feasibility to generate surrogates by Fourier-based methods for an incomplete data set. This is performed for the case of a cosmic microwave background analysis, where astrophysical foreground emission, mainly present in the Galactic plane, is a major challenge. The shuffling of the Fourier phases for generating surrogates is now enabled by transforming the spherical harmonics into a new set of basis functions that are orthonormal on the cut sky. The results show that non-Gaussianities and hemispherical asymmetries in the cosmic microwave background as identified in several former investigations, can still be detected even when the complete Galactic plane (|b|<30°) is removed. We conclude that the Galactic plane cannot be the dominant source for these anomalies. The results point towards a violation of statistical isotropy.

G. Rossmanith, H. Modest, C. Räth, A. J. Banday, K. M. Górski, and G. Morfill

2012-10-15T23:59:59.000Z

39

Is natural background or radiation from nuclear power plants leukemogenic  

SciTech Connect (OSTI)

The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab.

Cronkite, E.P.

1989-01-01T23:59:59.000Z

40

Effect of microwave radiation on Jayadhar cotton fibers: WAXS studies  

SciTech Connect (OSTI)

Thermal effect in the form of micro wave energy on Jayadhar cotton fiber has been investigated. Microstructural parameters have been estimated using wide angle x-ray scattering (WAXS) data and line profile analysis program developed by us. Physical properties like tensile strength are correlated with X-ray results. We observe that the microwave radiation do affect significantly many parameters and we have suggested a multivariate analysis of these parameters to arrive at a significant result.

Niranjana, A. R., E-mail: arnphysics@gmail.com; Mahesh, S. S., E-mail: arnphysics@gmail.com; Divakara, S., E-mail: arnphysics@gmail.com; Somashekar, R., E-mail: arnphysics@gmail.com [Department of Studies in Physics, University of Mysore, Mysore-570006 (India)

2014-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Measuring plasma turbulence using low coherence microwave radiation  

SciTech Connect (OSTI)

Low coherence backscattering (LCBS) is a proposed diagnostic technique for measuring plasma turbulence and fluctuations. LCBS is an adaptation of optical coherence tomography, a biomedical imaging technique. Calculations and simulations show LCBS measurements can achieve centimeter-scale spatial resolution using low coherence microwave radiation. LCBS measurements exhibit several advantages over standard plasma turbulence measurement techniques including immunity to spurious reflections and measurement access in hollow density profiles. Also, LCBS is scalable for 1-D profile measurements and 2-D turbulence imaging.

Smith, D. R. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-02-20T23:59:59.000Z

42

Radiative emission of neutrino pair free of quantum electrodynamic backgrounds  

E-Print Network [OSTI]

A scheme of quantum electrodynamic (QED) background-free radiative emission of neutrino pair (RENP) is proposed in order to achieve precision determination of neutrino properties so far not accessible. The important point for the background rejection is the fact that the dispersion relation between wave vector along propagating direction in wave guide (and in a photonic-crystal type fiber) and frequency is modified by a discretized non-vanishing effective mass. This effective mass acts as a cutoff of allowed frequencies, and one may select the RENP photon energy region free of all macro-coherently amplified QED processes by choosing the cutoff larger than the mass of neutrinos.

Yoshimura, M; Tanaka, M

2015-01-01T23:59:59.000Z

43

Radiative emission of neutrino pair free of quantum electrodynamic backgrounds  

E-Print Network [OSTI]

A scheme of quantum electrodynamic (QED) background-free radiative emission of neutrino pair (RENP) is proposed in order to achieve precision determination of neutrino properties so far not accessible. The important point for the background rejection is the fact that the dispersion relation between wave vector along propagating direction in wave guide (and in a photonic-crystal type fiber) and frequency is modified by a discretized non-vanishing effective mass. This effective mass acts as a cutoff of allowed frequencies, and one may select the RENP photon energy region free of all macro-coherently amplified QED processes by choosing the cutoff larger than the mass of neutrinos.

M. Yoshimura; N. Sasao; M. Tanaka

2015-01-23T23:59:59.000Z

44

Electromagnetic radiation in a time-varying background medium  

E-Print Network [OSTI]

Analytical solutions are presented for the electromagnetic radiation by an arbitrary pulsed source into a homogeneous time-varying background medium. In the constant-impedance case an explicit radiation formula is obtained for the synchronous permittivity and permeability described by any positive function of time. As might be expected, such a medium introduces significant spectral shifts and spatio-temporal modulation, which are analized here for the linear and exponential time-variations of the medium parameters. In the varying-impedance case the solution is obtained for the fourth-order polynomial time-dependence of the permittivity. In addition to the spectral shifts and modulation this spatially homogeneous medium scatters the field introducing causal echoes at the receiver location.

Budko, Neil V

2009-01-01T23:59:59.000Z

45

ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS  

SciTech Connect (OSTI)

Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z > 5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g., carbon monoxide, CO) in two ways: (1) it provides an additional source of (both dust and gas) heating and (2) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift, and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.

Da Cunha, Elisabete; Groves, Brent; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)] [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Weiss, Axel [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)] [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Bertoldi, Frank [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)] [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States)] [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Daddi, Emanuele; Sargent, Mark [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d'Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France)] [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d'Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Elbaz, David; Ivison, Rob [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)] [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Maiolino, Roberto [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom)] [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Riechers, Dominik [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)] [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Smail, Ian, E-mail: cunha@mpia.de [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom)] [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom)

2013-03-20T23:59:59.000Z

46

New Constraints on Cosmic Polarization Rotation from B-Mode Polarization in Cosmic Microwave Background  

E-Print Network [OSTI]

STPpol, POLARBEAR and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications of their analysis of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational waves components, also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would lead also to new constraints on CPR, in practice these can only be given on its fluctuations , since constraints on its mean angle are inhibited by the de-rotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on theoretical model) gives constraint ^1/2 areas observed by SPTpol, POLARBEAR and BICEP2.

Sperello di Serego Alighieri; Wei-Tou Ni; Wei-Ping Pan

2014-04-07T23:59:59.000Z

47

DASI First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum  

E-Print Network [OSTI]

We present measurements of anisotropy in the Cosmic Microwave Background (CMB) from the first season of observations with the Degree Angular Scale Interferometer (DASI). The instrument was deployed at the South Pole in the austral summer 1999--2000, and made observations throughout the following austral winter. We have measured the angular power spectrum of the CMB in the range 100

N. W. Halverson; E. M. Leitch; C. Pryke; J. Kovac; J. E. Carlstrom; W. L. Holzapfel; M. Dragovan; J. K. Cartwright; B. S. Mason; S. Padin; T. J. Pearson; M. C. Shepherd; A. C. S. Readhead

2001-04-30T23:59:59.000Z

48

The Distortion of the Cosmic Microwave Background by the Milky Way  

E-Print Network [OSTI]

The Milky Way can act as a large-scale weak gravitational lens of the cosmic microwave background (CMB). We study this effect using a photon ray-tracing code and a Galactic mass distribution with disk, bulge and halo components. For an observer at the Sun's coordinates in the Galaxy, the bending of CMB photon paths is limited to less than one arcsecond, and only for rays that pass within a few degrees of the Galactic Center. However, the entire sky is affected, resulting in global distortions of the CMB on large angular scales. These distortions can cause the low-order multipoles of a spherical harmonic expansion of the CMB sky temperature to leak into higher-order modes. Thus the component of the CMB dipole that results from the Local Group's motion relative to the local cosmic frame of rest contributes to higher-order moments for an observer in the solar system. With our ray-tracing code we show that the phenomenon is not sensitive to the specific choice of Galactic potential. We also quantitatively rule it...

Czaja, Benjamin

2014-01-01T23:59:59.000Z

49

Re-Ionization and its Imprint on the Cosmic Microwave Background  

E-Print Network [OSTI]

Early reionization changes the pattern of anisotropies expected in the cosmic microwave background. To explore these changes, we derive from first principles the equations governing anisotropies, focusing on the interactions of photons with electrons. Vishniac (1987) claimed that second order terms can be large in a re-ionized Universe, so we derive equations correct to second order in the perturbations. There are many more second order terms than were considered by Vishniac. To understand the basic physics involved, we present a simple analytic approximation to the first order equation. Then turning to the sec- ond order equation, we show that the Vishniac term is indeed the only important one. We also present numerical results for a variety of ionization histories [in a standard cold dark matter Universe] and show quantitatively how the sig- nal in several experiments depends on the ionization history. The most pronounced indication of a re-ionized Universe would be seen in very small scale experiments; the expected signal in the Owens Valley experiment is smaller by a factor of order ten if the last scattering surface is at a redshift $z\\simeq100$ as it would be if the Universe were re-ionized very early. On slightly larger scales, the expected signal in a re-ionized Universe {\\it is} smaller than it would be with standard recombination, but only by a factor of two or so.

Scott Dodelson; Jay Jubas

1993-08-16T23:59:59.000Z

50

Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background  

E-Print Network [OSTI]

Damping of magnetic fields via ambipolar diffusion and decay of magnetohydrodynamical (MHD) turbulence in the post decoupling era heats the intergalactic medium (IGM). Collisional ionization weakly ionizes the IGM, producing an optical depth to scattering of the cosmic microwave background (CMB). The optical depth generated at $z\\gg 10$ does not affect the "reionization bump" of the CMB polarization power spectrum at low multipoles, but affects the temperature and polarization power spectra at high multipoles. Using the Planck 2013 temperature and lensing data together with the WMAP 9-year polarization data, we constrain the present-day field strength, $B_0$, smoothed over the damping length at the decoupling epoch as a function of the spectral index, $n_B$. We find the 95% upper bounds of $B_0<0.56$, 0.31, and 0.14 nG for $n_B=-2.9$, $-2.5$, and $-1.5$, respectively. For these spectral indices, the optical depth is dominated by dissipation of the decaying MHD turbulence that occurs shortly after the decou...

Kunze, Kerstin E

2015-01-01T23:59:59.000Z

51

Measurements of the cosmic microwave background temperature at 1. 47 GHz  

SciTech Connect (OSTI)

A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus minus} 0.02,K global average CMB temperature.

Bensadoun, M.J.

1991-11-01T23:59:59.000Z

52

Measurements of the cosmic microwave background temperature at 1.47 GHz  

SciTech Connect (OSTI)

A radiofrequency-gain total power radiometer measured the intensity of the cosmic microwave background (CMB) at a frequency of 1.47 GHz (20.4 cm wavelength) from White Mountain, California, in September 1988 and from the South Pole, Antarctica, in December 1989. The CMB thermodynamic temperature, TCMB, is 2.27 {plus_minus} 0.25 K (68% C.L.) measured from White Mountain and 2.26 {plus_minus} 0.21 K from the South Pole site. The combined result is 2.27 {plus_minus} 0.19 K. The correction for galactic emission has been derived from scaled low-frequency maps and constitutes the main source, of error. The atmospheric signal is found by extrapolation from zenith scan measurements at higher frequencies. The result is consistent with previous low-frequency measurements, including a measurement at 1.41 GHz (Levin et al. 1988) made with an earlier version of this instrument. The result is {approximately}2.5 {sigma} ({approximately}l% probability) from the 2.74 {plus_minus} 0.02,K global average CMB temperature.

Bensadoun, M.J.

1991-11-01T23:59:59.000Z

53

SYSTEMATIC EFFECTS IN INTERFEROMETRIC OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION  

SciTech Connect (OSTI)

The detection of the primordial B-mode spectrum of the polarized cosmic microwave background (CMB) signal may provide a probe of inflation. However, observation of such a faint signal requires excellent control of systematic errors. Interferometry proves to be a promising approach for overcoming such a challenge. In this paper we present a complete simulation pipeline of interferometric observations of CMB polarization, including systematic errors. We employ two different methods for obtaining the power spectra from mock data produced by simulated observations: the maximum likelihood method and the method of Gibbs sampling. We show that the results from both methods are consistent with each other as well as, within a factor of six, with analytical estimates. Several categories of systematic errors are considered: instrumental errors, consisting of antenna gain and antenna coupling errors; and beam errors, consisting of antenna pointing errors, beam cross-polarization, and beam shape (and size) errors. In order to recover the tensor-to-scalar ratio, r, within a 10% tolerance level, which ensures the experiment is sensitive enough to detect the B-signal at r = 0.01 in the multipole range 28 < l < 384, we find that, for a QUBIC-like experiment, Gaussian-distributed systematic errors must be controlled with precisions of |g{sub rms}| = 0.1 for antenna gain, |{epsilon}{sub rms}| = 5 Multiplication-Sign 10{sup -4} for antenna coupling, {delta}{sub rms} Almost-Equal-To 0. Degree-Sign 7 for pointing, {zeta}{sub rms} Almost-Equal-To 0. Degree-Sign 7 for beam shape, and {mu}{sub rms} = 5 Multiplication-Sign 10{sup -4} for beam cross-polarization. Although the combined systematic effects produce a tolerance level on r twice as large for an experiment with linear polarizers, the resulting bias in r for a circular experiment is 15% which is still on the level of desirable sensitivity.

Karakci, Ata; Korotkov, Andrei; Tucker, Gregory S. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Zhang Le; Timbie, Peter [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Sutter, P. M.; Wandelt, Benjamin D. [Department of Physics, 1110 W. Green Street, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Bunn, Emory F., E-mail: ata_karakci@brown.edu [Physics Department, University of Richmond, Richmond, VA 23173 (United States)

2013-07-15T23:59:59.000Z

54

Cosmic Microwave Background Temperature and Polarization Anisotropy in Brans-Dicke Cosmology  

E-Print Network [OSTI]

We develop a formalism for calculating cosmic microwave background (CMB) temperature and polarization anisotropies in cosmological models with Brans-Dicke gravity. We then modify publicly available Boltzmann codes to calculate numerically the temperature and polarization power spectra. Results are illustrated with a few representative models. Comparing with the general-relativistic model with the same cosmological parameters, both the amplitude and the width of the acoustic peaks are different in the Brans-Dicke models. We use a covariance-matrix calculation to investigate whether the effects of Brans-Dicke gravity are degenerate with those of variation in other cosmological parameters and to simultaneously determine whether forthcoming CMB maps might be able to distinguish Brans-Dicke and general-relativistic cosmology. Although the predicted power spectra for plausible Brans-Dicke models differ from those in general relativity only slightly, we find that MAP and/or the Planck Surveyor may in principle provide a test of Brans-Dicke theory that is competitive to solar-system tests. For example, if all other parameters except for the CMB normalization are fixed, a value of the Brans-Dicke parameter omega as large as 500 could be identified with MAP, and for Planck, values as large as omega \\simeq3000 could be identified; these sensitivities are decreased roughly by a factor of 3 if we marginalize over the baryon density, Hubble constant, spectral index, and reionization optical depth. In more general scalar-tensor theories, omega may evolve with time, and in this case, the CMB probe would be complementary to that from solar-system tests.

Xuelei Chen; Marc Kamionkowski

1999-05-27T23:59:59.000Z

55

SEARCH F O R LINEAR POLARIZATION O F THE COSMIC BACKGROUND RADIATION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SEARCH F SEARCH F O R LINEAR POLARIZATION O F THE COSMIC BACKGROUND RADIATION P h i l M. Lubin and George F. Smoot Space Sciences L a b o r a t o r y and Lawrence Berkeley L a b o r a t o r y U n i v e r s i t y of C a l i f o r n i a Berkeley, C a l i f o r n i a 94720 Received ABSTRACT W e p r e s e n t p r e l i m i n a r y measurements of t h e l i n e a r p o l a r i z a t i o n of t h e cosmic microwave background ( 3 ° K blackbody) r a d i a t i o n . These ground-based measurements a r e made a t 9 mm wavelength. W e f i n d no e v i d e n c e f o r l i n e a r p o l a r i z a t i o n , and s e t a n upper l i m i t f o r a p o l a r i z e d component of 0.8 m°K with a 95% confidence l e v e l . T h i s i m p l i e s t h a t t h e p r e s e n t rate of e x p a n s i o n of t h e Universe i s i s o t r o p i c t o one p a r t i n 1 0 , assuming no r e - i o n i z a t i o n of t h e p r i m o r d i a l plasma a f t e r recombination. 6 The observed cosmic microwave background r

56

BOOMERANG: A Balloon-borne Millimeter Wave Telescope and Total Power Receiver for Mapping Anisotropy in the Cosmic Microwave Background  

E-Print Network [OSTI]

We describe BOOMERANG; a balloon-borne microwave telescope designed to map the Cosmic Microwave Background (CMB) at a resolution of 10' from the Long Duration Balloon (LDB) platform. The millimeter-wave receiver employs new technology in bolometers, readout electronics, cold re-imaging optics, millimeter-wave filters, and cryogenics to obtain high sensitivity to CMB anisotropy. Sixteen detectors observe in 4 spectral bands centered at 90, 150, 240 and 410 GHz. The wide frequency coverage, the long duration flight, the optical design and the observing strategy provide strong rejection of systematic effects. We report the flight performance of the instrument during a 10.5 day stratospheric balloon flight launched from McMurdo Station, Antarctica that mapped ~2000 square degrees of the sky.

B. P. Crill; P. A. R. Ade; D. R. Artusa; R. S. Bhatia; J. J. Bock; A. Boscaleri; P. Cardoni; S. E. Church; K. Coble; P. deBernardis; G. deTroia; P. Farese; K. M. Ganga; M. Giacometti; C. V. Haynes; E. Hivon; V. V. Hristov; A. Iacoangeli; W. C. Jones; A. E. Lange; L. Martinis; S. Masi; P. V. Mason; P. D. Mauskopf; L. Miglio; T. Montroy; C. B. Netterfield; C. G. Paine; E. Pascale; F. Piacentini; G. Polenta; F. Pongetti; G. Romeo; J. E. Ruhl; F. Scaramuzzi; D. Sforna; A. D. Turner

2002-06-14T23:59:59.000Z

57

BACKGROUND  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BACKGROUND The safe and environmentally conscious performance of work is a fundamental core value of the Hanford Advisory Board. The Department of Energy (DOE) in seeking to move...

58

Possible Relics from New Physics in the Early Universe: Inflation, the Cosmic Microwave Background, and Particle Dark Matter  

E-Print Network [OSTI]

I review two different connections between particle theory and early-Universe cosmology: (1) Cosmic-microwave-background (CMB) tests of inflation and (2) particle dark matter. The inflationary predictions of a flat Universe and a nearly scale-invariant spectrum of primordial density perturbations will be tested precisely with forthcoming maps of the CMB temperature. A stochastic gravitational-wave background may be probed with a map of the CMB polarization. I also discuss some other uses of CMB maps. Particle theory has produced two very well-motivated candidates for the dark matter in the Universe: an axion and a supersymmetric particle. In both cases, there are a variety of experiments afoot to detect these particles. I review the properties of these dark-matter candidates and these detection techniques. Much of the material here has appeared before in astro-ph/9712215 and hep-ph/9710467, but the article here is updated and also expanded considerably.

Marc Kamionkowski

1998-09-16T23:59:59.000Z

59

Microwave influence on the isolated heart function. 2: Combined effect of radiation and some drugs  

SciTech Connect (OSTI)

The combined effects of microwave radiation and some drugs were studied in an isolated frog auricle preparation. The experiments established that exposure to pulse-modulated 915 Mhz microwaves for up to 40 min had no effect on either the rate or the amplitude of spontaneous auricle twitches, unless the average absorbed power was high enough to produce preparation heating. Treatment of the preparation with saline containing (0.6--3.0) 10{sup {minus}5} M of propranolol or (0.5--1.5) 10{sup {minus}7} M of atropine altered neither its pacemaker nor its contractile functions; these drugs also had no effect when they were combined with nonthermal microwave irradiation. Caffeine (1 mM) strongly increased the average heart power, which was calculated as the product of twitch rate ad amplitude. The caffeine effect appeared to be significantly augmented (by about 15%, P<0.02) under exposure to burst-type pulsed microwaves (pulse width, 1.5 msec; pause, 2.5 msec; 8 pulses/burst, 16 bursts/s; average SAR, 8--10 W/kg). By itself, this modulation was not effective; the heating of the preparation and saline during exposure was approximately 0.1 C, which could not account for the detected changes. The experimental results demonstrate that caffeine treatment increases the microwave sensitivity of the frog auricle preparation and reveals primarily subthreshold, nonthermal microwave effect.

Pakhomov, A.G.; Dubovick, B.V.; Degtyariov, I.G.; Pronkevich, A.N. [Russian Academy of Medical Sciences, Obninsk (Russian Federation). Medical Radiology research Center

1995-09-01T23:59:59.000Z

60

BACKGROUND  

Broader source: Energy.gov (indexed) [DOE]

Emergency Medical Coordination Emergency Medical Coordination Memorandum of Agreement at Brookhaven National Laboratory DOE/IG-0594 March 2003 Department of Energy Washington, DC 20585 March 3 1,2003 FROM: Inspector General SUBJECT: INFORMATION: Report on Inspection of "Emergency Medical Coordination Memorandum of Agreement at Brookhaven National Laboratory" BACKGROUND Because of possible exposure to radioactive and hazardous materials and the potential for industrial accidents at Department of Energy (DOE) sites, the Department has established formalized agreements with local emergency medical providers. These arrangements are generally documented through memoranda of agreements (MOAs). These documents detail the m u

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Background  

Office of Legacy Management (LM)

explains the potential health hazards associated with air quality related to the removal and storage of explains the potential health hazards associated with air quality related to the removal and storage of mill tailings and other contaminated materials. Background From 1942 to 1960, uranium ore was processed at the Monticello mill in southeast Utah. When the mill was closed, approximately 2.3 million cubic yards of low-level radioactive mill tailings, contaminated soil, and other miscellaneous debris remained on the site. The U.S. Department of Energy (DOE) Grand Junction Projects Office, in conjunction with the U.S. Environmental Protection Agency (EPA) and the State of Utah, is conducting the cleanup of the millsite and more than 400 area homes and businesses contaminated with mill tailings. The purpose of the cleanup is to minimize risks to the public and the

62

Background  

Broader source: Energy.gov (indexed) [DOE]

Format for the one pager: Report Statement/Recommendation Format for the one pager: Report Statement/Recommendation Background Pros/Cons discussion We would like to see good drafts by noon. 3/30/01. 11 circulate them as soon as I get them in. Any questions, give me a call. 456-7874 Charlie ___ ___ _8171 DOE015-1514 Martin, Adrienne ^ From: Anderson, Margot / / Sent: Thursday, March 29, 2001 723 PM To: 'Andrew D. Lundquisltovp.eop.gov%intemet' Subject: RE: 1 spoke with Charlie and we got it fixed. Thanksl -Original Message- From: Andrew D. Lundquist@ovp.eop.gov%intemet Imailto:Andrew D. Lundquistovp.eop.gov] Sent: Thursday March 29, 2001 7:18 PM To: Anderson. Margot Cc: Kelliher, Joseph; Kolevar, Kevin; Charles M. Smthovp.egov%htemet; Juleanna FR GOovsWeovp.eop.gov%intemet 'kmurphyiosec.doc.gov%intemet 'dina.eisOdo.treas.gov%intemer;

63

Background  

Broader source: Energy.gov (indexed) [DOE]

Patent Rights in the New Patent Rights in the New Independent States (NIS) of the Former Soviet Union for Inventions made by NIS institutes' employeess in the course of or under agreements entered into pursuant to the Fiscal Year 1994 Foreign Operations Appropriations Act (P.L. 103- 87). W(C) 94-001 Background The dissolution of the Soviet Union and the drastic reductions in defense spending by the NIS have created an extremely difficult situation for the scientists and engineers who are responsible for the former Soviet Union's defense technology base. It is estimated that there are several tens of thousands of such scientists and engineers; they possess critical technical knowledge about weapons of mass destruction and are underemployed and undercompensated, and consequently, could contribute to

64

COSMIC MICROWAVE BACKGROUND POLARIZATION AND TEMPERATURE POWER SPECTRA ESTIMATION USING LINEAR COMBINATION OF WMAP 5 YEAR MAPS  

SciTech Connect (OSTI)

We estimate cosmic microwave background (CMB) polarization and temperature power spectra using Wilkinson Microwave Anisotropy Probe (WMAP) 5 year foreground contaminated maps. The power spectrum is estimated by using a model-independent method, which does not utilize directly the diffuse foreground templates nor the detector noise model. The method essentially consists of two steps: (1) removal of diffuse foregrounds contamination by making linear combination of individual maps in harmonic space and (2) cross-correlation of foreground cleaned maps to minimize detector noise bias. For the temperature power spectrum we also estimate and subtract residual unresolved point source contamination in the cross-power spectrum using the point source model provided by the WMAP science team. Our TT, TE, and EE power spectra are in good agreement with the published results of the WMAP science team. We perform detailed numerical simulations to test for bias in our procedure. We find that the bias is small in almost all cases. A negative bias at low l in TT power spectrum has been pointed out in an earlier publication. We find that the bias-corrected quadrupole power (l(l + 1)C{sub l} /2{pi}) is 532 {mu}K{sup 2}, approximately 2.5 times the estimate (213.4 {mu}K{sup 2}) made by the WMAP team.

Samal, Pramoda Kumar; Jain, Pankaj [Department of Physics, Indian Institute of Technology, Kanpur (India); Saha, Rajib [Jet Propulsion Laboratory, M/S 169-327, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Delabrouille, Jacques [CNRS, Laboratoire APC, 10, rue Alice Domon et Leonie Duquet, 75205 Paris (France); Prunet, Simon [Institut d'Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris (France); Souradeep, Tarun [Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India)

2010-05-01T23:59:59.000Z

65

Constraints on holographic dark energy from the latest supernovae, galaxy clustering, and cosmic microwave background anisotropy observations  

Science Journals Connector (OSTI)

The holographic dark energy model is proposed by Li as an attempt for probing the nature of dark energy within the framework of quantum gravity. The main characteristic of holographic dark energy is governed by a numerical parameter c in the model. The parameter c can only be determined by observations. Thus, in order to characterize the evolving feature of dark energy and to predict the fate of the Universe, it is of extraordinary importance to constrain the parameter c by using the currently available observational data. In this paper, we derive constraints on the holographic dark energy model from the latest observational data including the gold sample of 182 type Ia supernovae (SNIa), the shift parameter of the cosmic microwave background (CMB) given by the three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). The joint analysis gives the fit results in 1-?: c=0.91-0.18+0.26 and ?m0=0.29±0.03. That is to say, though the possibility of c1 cannot be excluded in one-sigma error range, which is somewhat different from the result derived from previous investigations using earlier data. So, according to the new data, the evidence for the quintom feature in the holographic dark energy model is not as strong as before.

Xin Zhang and Feng-Quan Wu

2007-07-06T23:59:59.000Z

66

REIONIZATION ON LARGE SCALES. II. DETECTING PATCHY REIONIZATION THROUGH CROSS-CORRELATION OF THE COSMIC MICROWAVE BACKGROUND  

SciTech Connect (OSTI)

We investigate the effect of patchy reionization on the cosmic microwave background (CMB) temperature. An anisotropic optical depth ?( n-hat ) alters the TT power spectrum on small scales l > 2000. We make use of the correlation between the matter density and the reionization redshift fields to construct full sky maps of ?( n-hat ). Patchy reionization transfers CMB power from large scales to small scales, resulting in a non-zero cross correlation between large and small angular scales. We show that the patchy ? correlator is sensitive to small root mean square (rms) values ?{sub rms} ? 0.003 seen in our maps. We include frequency-independent secondaries such as CMB lensing and kinetic Sunyaev-Zel'dovich (kSZ) terms, and show that patchy ? may still be detected at high significance. Reionization models that predict different values of ?{sub rms} may be distinguished even for the same mean value (?). It is more difficult to detect patchy ? in the presence of larger secondaries such as the thermal Sunyaev-Zel'dovich, radio background, and the cosmic infrared background. In this case, we show that patchy ? may be detected if these frequency-dependent secondaries are minimized to ?< 5 ?K (rms) by means of a multi-frequency analysis. We show that the patchy ? correlator provides information that is complementary to what may be obtained from the polarization and the kSZ power spectra.

Natarajan, A.; Battaglia, N.; Trac, H. [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Pen, U.-L. [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Loeb, A. [Institute for Theory and Computation, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

2013-10-20T23:59:59.000Z

67

Experimental study of the effect of electromagnetic microwave radiation on parts made of high-energy polymer materials  

Science Journals Connector (OSTI)

Results of experimental measurements of Young’s modulus, burning rate, and specific heat of condensed high-energy polymer compositions (solid propellants) subjected to microwave radiation are reported. Experim...

L. L. Khimenko; A. P. Rybakov; N. A. Rybakov…

2014-07-01T23:59:59.000Z

68

Cross-correlation of the cosmic microwave background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources  

Science Journals Connector (OSTI)

We cross-correlate the cosmic microwave background temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP) with the projected distribution of extended sources in the Two Micron All Sky Survey (2MASS). By modeling the theoretical expectation for this signal, we extract the signatures of dark energy [integrated Sachs-Wolfe effect (ISW)], hot gas [thermal Sunyaev-Zeldovich (SZ) effect], and microwave point sources in the cross-correlation. Our strongest signal is the thermal SZ, at the 3.1–3.7? level, which is consistent with the theoretical prediction based on observations of x-ray clusters. We also see the ISW signal at the 2.5? level, which is consistent with the expected value for the concordance ?CDM cosmology, and is an independent signature of the presence of dark energy in the Universe. Finally, we see the signature of microwave point sources at the 2.7? level.

Niayesh Afshordi; Yeong-Shang Loh; Michael A. Strauss

2004-04-28T23:59:59.000Z

69

Estimation of background radiation doses for the Peninsular Malaysia’s population by ESR dosimetry of tooth enamel  

Science Journals Connector (OSTI)

It is worth mentioning that the background dose is required in evaluating a tooth’s excess dose of radiation workers or individuals accidentally exposed to radiation, by subtracting the background level of a give...

Mohd Rodzi; Kassym Zhumadilov; Megu Ohtaki…

2011-08-01T23:59:59.000Z

70

On the radiative and thermodynamic properties of the extragalactic far infrared background radiation using COBE FIRAS instrument data  

E-Print Network [OSTI]

Using the explicit form of the function to describe the average spectrum of the extragalactic far infrared background (FIRB) radiation measured by the COBE FIRAS instrument in the 0.15 - 2.4 THz frequency interval, the radiative and thermodynamic properties, such as the total emissivity, total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, pressure, enthalpy density, and internal energy density are calculated. The calculated value of the total intensity received in the 0.15 - 2.4 THz frequency interval is 13.6 nW m^-2 sr^-1, and comprises about 19.4 % of the total intensity expected from the energy released by stellar nucleosynthesis over cosmic history. The radiative and thermodynamic functions of the extragalactic far infrared background (FIRB) radiation are calculated at redshift z = 1.5.

Fisenko, Anatoliy I

2014-01-01T23:59:59.000Z

71

Thermal and non-thermal radiation of rotating polarizable particle moving in an equilibrium background of electromagnetic radiation  

E-Print Network [OSTI]

A theory of thermal and nonthermal radiation in a vacuum background of arbitrary temperature generated by relativistic polarizable particle with spin is proposed. When the particle rotates, radiation is produced by vacuum fluctuations even in the case of zero temperature of the system. In the ultrarelativistic case, the spectral-angular intensity of radiation is concentrated along the velocity of the particle. At finite temperatures of particle and vacuum, the particle temperature (in its rest frame) rather quickly acquires an equilibrium magnitude depending on the velocities of rotation and uniform motion and the background temperature. This equilibrium temperature determines the intensity of radiation. The dynamical slowing down takes a very long time until the kinetic energy of uniform motion and rotation is converted into radiation.

A. A. Kyasov; G. V Dedkov

2014-09-17T23:59:59.000Z

72

REIONIZATION ON LARGE SCALES. III. PREDICTIONS FOR LOW-l COSMIC MICROWAVE BACKGROUND POLARIZATION AND HIGH-l KINETIC SUNYAEV-ZEL'DOVICH OBSERVABLES  

SciTech Connect (OSTI)

We present new predictions for cosmic microwave background (CMB) temperature (on small angular scales) and polarization (on large angular scales) anisotropies induced during the epoch of reionization (EoR). Using a novel method calibrated from radiation-hydrodynamic simulations, we model the EoR in large volumes (L ?> 2 Gpc h {sup –1}). We find that the EoR contribution to the kinetic Sunyaev-Zel'dovich power spectrum (patchy kSZ) ranges between ?0.6-2.8 ?K{sup 2} at l = 3000 for the explored parameter space. For each model, the patchy kSZ power spectrum is calculated from three large 15° × 15° maps for better numerical convergence. Decreasing the size of these maps biases the overall patchy kSZ power to higher values. We find that the amplitude of the patchy kSZ power spectrum at l = 3000 follows simple scalings of D{sub l=3000}{sup kSZ}? z-bar and D{sub l=3000}{sup kSZ}??{sub z}{sup 0.51} for the mean redshift ( z-bar ) and duration (?{sub z}) of reionization. Using the constraints on z-bar from the Wilkinson Microwave Anisotropy Probe seven year results and the lower limit on ?{sub z} from EDGES, we find a lower limit of ?0.4 ?K{sup 2} at l = 3000. Planck will infer the mean redshift from the Thomson optical depth imprinted in the low-l polarization power spectrum. Future measurements of the high-l CMB power spectrum from the Atacama Cosmology Telescope and South Pole Telescope should detect the patchy kSZ signal if the cross correlation between the thermal SZ effect and the cosmic infrared background is constrained. We show that the combination of temperature and polarization measurements constrains both z-bar and ?{sub z}. The patchy kSZ maps, power spectra templates, and the polarization power spectra will be publicly available.

Battaglia, N.; Natarajan, A.; Trac, H. [McWilliams Center for Cosmology, Wean Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213 (United States); Cen, R. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Loeb, A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

2013-10-20T23:59:59.000Z

73

Differential Resistance of Two Dimensional Electron Systems Subject to Microwave Radiation  

SciTech Connect (OSTI)

We present the expression for differential resistance of a disordered two-dimensional electron gas placed in a perpendicular magnetic field and subject to microwave irradiation. We demonstrate that in strong dc electric fields the current oscillates as a function of the strength of the applied constant electric field. We demonstrate that the amplitude of oscillations of the differential resistivity is characterized by the back-scattering rate off disorder. We argue that the dominant contribution to the non-linearity in strong electric fields originates from the modification of electron scattering off disorder by electric fields, or so-called 'displacement' mechanism. The non-equilibrium mechanism, which is related to modification of electron distribution function by electric fields turns out to be inefficient in strong electric fields, although it describes current in weak electric fields. We further analyze the positions of maxima and minima of the differential resistance as a function of the applied electric field and frequency of microwave radiation.

Khodas, M.; Vavilov, M.G.

2008-11-03T23:59:59.000Z

74

The effect of aberration on partial-sky measurements of the cosmic microwave background temperature power spectrum  

E-Print Network [OSTI]

Our motion relative to the cosmic-microwave-background (CMB) rest frame deflects light rays giving rise to shifts as large as L -> L(1+-beta), where beta=0.00123 is our velocity (in units of the speed of light) on measurements of small-scale (large multipole moment L) CMB fluctuations. For measurements at L>1000, where the CMB power spectrum varies roughly as C(L) ~ L^-7, the fractional change to the power spectrum measured on a small sky patch can be as large as Delta C(L)/C(L)~7*beta~1%, larger than the measurement uncertainties in several current experiments. Here we present a novel harmonic-space approach to this CMB aberration that improves upon prior work by allowing us to (i) go to higher orders in beta, thus extending the validity of the analysis to measurements at L>1/beta~800; and (ii) treat the effects of window functions and pixelization in a more accurate and computationally efficient manner. We calculate precisely the magnitude of the systematic bias in the power spectrum inferred from current S...

Jeong, Donghui; Dai, Liang; Kamionkowski, Marc; Wang, Xin

2014-01-01T23:59:59.000Z

75

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......retained in the skeleton is associated with mineral bone and is not incorporated into living...Pattison J. E. , Hugtenberg R. P., Green S. Enhancement of natural background gamma-radiation...R. , Khoury H. J., Viera J. W., Lime V. J. M. MAX06 and FAX06: update of......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

76

FOREGROUND PREDICTIONS FOR THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM FROM MEASUREMENTS OF FAINT INVERTED RADIO SOURCES AT 5 GHz  

SciTech Connect (OSTI)

We present measurements of a population of matched radio sources at 1.4 and 5 GHz down to a flux limit of 1.5 mJy in 7 deg{sup 2} of the NOAO Deep Field South. We find a significant fraction of sources with inverted spectral indices that all have 1.4 GHz fluxes less than 10 mJy and are therefore too faint to have been detected and included in previous radio source count models that are matched at multiple frequencies. Combined with the matched source population at 1.4 and 5 GHz in 1 deg{sup -2} in the ATESP survey, we update models for the 5 GHz differential number counts and distributions of spectral indices in 5 GHz flux bins that can be used to estimate the unresolved point source contribution to the cosmic microwave background temperature anisotropies. We find a shallower logarithmic slope in the 5 GHz differential counts than in previously published models for fluxes {approx}< 100 mJy as well as larger fractions of inverted spectral indices at these fluxes. Because the Planck flux limit for resolved sources is larger than 100 mJy in all channels, our modified number counts yield at most a 10% change in the predicted Poisson contribution to the Planck temperature power spectrum. For a flux cut of 5 mJy with the South Pole Telescope and a flux cut of 20 mJy with the Atacama Cosmology Telescope, we predict a {approx}30% and {approx}10% increase, respectively, in the radio source Poisson power in the lowest frequency channels of each experiment relative to that predicted by previous models.

Schneider, Michael D. [Lawrence Livermore National Laboratory, P.O. Box 808 L-210, Livermore, CA 94551 (United States); Becker, Robert H. [Department of Physics, University of California, One Shields Avenue, Davis, CA 08991 (United States); De Vries, Willem [Lawrence Livermore National Laboratory, P.O. Box 808 L-211, Livermore, CA 94551 (United States); White, Richard L., E-mail: schneider42@llnl.gov [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

2012-05-10T23:59:59.000Z

77

Microwave Quantum Illumination  

E-Print Network [OSTI]

Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally-occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or 'quantum radar', is shown to be superior to that of any classical microwave radar of equal transmitted energy.

Shabir Barzanjeh; Saikat Guha; Christian Weedbrook; David Vitali; Jeffrey H. Shapiro; Stefano Pirandola

2014-10-15T23:59:59.000Z

78

Microwave Quantum Illumination  

E-Print Network [OSTI]

Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally-occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or 'quantum radar', is shown to be superior to that of any classical microwave radar of equal transmit...

Barzanjeh, Shabir; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

2014-01-01T23:59:59.000Z

79

Low Frequency Measurement of the Spectrum of the Cosmic Background Radiation  

DOE R&D Accomplishments [OSTI]

We have made measurements of the cosmic background radiation spectrum at 5 wavelengths (0.33, 0.9, 3, 6.3, and 12 cm) using radiometers with wavelength-scaled corrugated horn antennas having very low sidelobes. A single large-mouth (0.7 m diameter) liquid-helium-cooled absolute reference load was used for all five radiometers. The results of the observations are consistent with previous measurements and represent a significant improvement in accuracy.

Smoot, G. F.; De Amici, G.; Friedman, S. D.; Witebsky, C.; Mandolesi, N.; Partridge, R. B.; Sironi, G.; Danese, L.; De Zotti, G.

1983-06-00T23:59:59.000Z

80

The BOOMERANG North America Instrument: A Balloon-borne Bolometric Radiometer Optimized for Measurements of Cosmic Background Radiation Anisotropies from 03 to 4°  

Science Journals Connector (OSTI)

We describe the BOOMERANG North America instrument, a balloon-borne bolometric radiometer designed to map the cosmic microwave background (CMB) radiation with 03 resolution over a significant portion of the sky. This receiver employs new technologies in bolometers, readout electronics, millimeter-wave optics and filters, cryogenics, scan, and attitude reconstruction. All these subsystems are described in detail in this paper. The system has been fully calibrated in flight using a variety of techniques, which are described and compared. Using this system, we have obtained a measurement of the first peak in the CMB angular power spectrum in a single, few hour long balloon flight. The instrument described here was a prototype of the BOOMERANG Long Duration Balloon experiment.

F. Piacentini; P. A. R. Ade; R. S. Bhatia; J. J. Bock; A. Boscaleri; P. Cardoni; B. P. Crill; P. de Bernardis; H. Del Castillo; G. De Troia; P. Farese; M. Giacometti; E. F. Hivon; V. V. Hristov; A. Iacoangeli; A. E. Lange; S. Masi; P. D. Mauskopf; L. Miglio; C. B. Netterfield; P. Palangio; E. Pascale; A. Raccanelli; S. Rao; G. Romeo; J. Ruhl; F. Scaramuzzi

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Human exposure to high natural background radiation: what can it teach us about  

Science Journals Connector (OSTI)

Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case–control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case–control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors.

Jolyon H Hendry; Steven L Simon; Andrzej Wojcik; Mehdi Sohrabi; Werner Burkart; Elisabeth Cardis; Dominique Laurier; Margot Tirmarche; Isamu Hayata

2009-01-01T23:59:59.000Z

82

Massive charged scalar field in the Kerr-Newman background II: Hawking radiation  

E-Print Network [OSTI]

We perform accurate calculations of the energy-, momentum-, and charge-emission rates of a charged scalar field in the background of the Kerr-Newman black hole at the range of parameters for which the effect is not negligibly small and, at the same time, the semiclassical regime is, at least marginally, valid. For black holes with charge below or not much higher than the charge accretion limit $Q \\sim \\mu M/e$ (where $e$ and $\\mu$ are the electron's mass and charge), the time between the consequent emitting of two charged particles is very large. For primordial black holes the transition between the increasing and decreasing of the ratio $Q/M$ occurs around the charge accretion limit. The rotation increases the intensity of radiation up to three orders, while the effect of the field's mass strongly suppresses the radiation.

R. A. Konoplya; A. Zhidenko

2014-04-03T23:59:59.000Z

83

Background and radiation resistance tests of neutral particle analyzer detectors for ITER by using a fast neutron beam  

SciTech Connect (OSTI)

The radiation resistance and background sensitivity of scintillation (Hamamatsu H8500D photo-multiplier) and semiconductor (ORTEC BF-018-100-60 and BU-012-050-100) detectors to neutron and gamma radiation were investigated. Conclusions are drawn concerning the possibility of using such detectors in neutral particle analyzers that are being developed for ITER at the Ioffe Institute.

Afanasyev, V. I. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kozlovskii, S. S.; Makar'in, D. V. [St. Petersburg State Polytechnical University (Russian Federation); Mel'nik, A. D.; Mironov, M. I.; Nesenevich, V. G.; Petrov, M. P.; Petrov, S. Ya.; Chernyshev, F. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

2010-05-15T23:59:59.000Z

84

State background-radiation levels: results of measurements taken during 1975-1979  

SciTech Connect (OSTI)

Background radiation levels across the United States have been measured by the Off-Site Pollutant Measurements Group of the Health and Safety Research Division at Oak Ridge National Laboratory (ORNL). These measurements have been conducted as part of the ORNL program of radiological surveillance at inactive uranium mills and sites formerly utilized during Manhattan Engineer District and early Atomic Energy Commission projects. The measurements included determination of /sup 226/Ra, /sup 232/Th, and /sup 238/U concentrations in surface soil samples and measurement of external gamma-ray exposure rates at 1 m above the ground surface at the location of soil sampling. This information is being utilized for comparative purposes to determine the extent of contamination present at the survey sites and surrounding off-site areas. The sampling program to date has provided background information at 356 locations in 33 states. External gamma-ray exposure rates were found to range from less than 1 to 34 ..mu..R/h, with an US average of 8.5 ..mu..R/h. The nationwide average concentrations of /sup 226/Ra, /sup 232/Th, and /sup 238/U in surface soil were determined to be 1.1, 0.98, and 1.0 pCi/g, respectively.

Myrick, T.E.; Berven, B.A.; Haywood, F.F.

1981-11-01T23:59:59.000Z

85

Sky maps without anisotropies in the cosmic microwave background are a better fit to WMAP's uncalibrated time ordered data than the official sky maps  

E-Print Network [OSTI]

The purpose of this reanalysis of the WMAP uncalibrated time ordered data (TOD) was two fold. The first was to reassess the reliability of the detection of the anisotropies in the official WMAP sky maps of the cosmic microwave background (CMB). The second was to assess the performance of a proposed criterion in avoiding systematic error in detecting a signal of interest. The criterion was implemented by testing the null hypothesis that the uncalibrated TOD was consistent with no anisotropies when WMAP's hourly calibration parameters were allowed to vary. It was shown independently for all 20 WMAP channels that sky maps with no anisotropies were a better fit to the TOD than those from the official analysis. The recently launched Planck satellite should help sort out this perplexing result.

Keith S. Cover

2009-09-02T23:59:59.000Z

86

Microwave Absorption and Radiation from Large-area Multilayer CVD Graphene  

E-Print Network [OSTI]

the emergence of reproducible large-area synthesis of graphene by chemical coplanar waveguides [21–23], rectangular waveguides [24], ve been carried out in the microwave transisto t and dyn osed [36]. multilayer graphene is also of great interest as a h... metamaterial in the THz regime [37]. Microwave absorption of graphene composites have been experimentally studied to design microwave absorbing mate- * Corresponding author. C A R B O N 7 7 ( 2 0 1 4 ) 8 1 4 –8 2 2 Avai lab le at www.sc iencedi rect .com...

Wu, Bian; Tuncer, Hatice M.; Katsounaros, Anestis; Wu, Weiping; Cole, Matthew T.; Ying, Kai; Zhang, Lianhong; Milne, William I.; Hao, Yang

87

Determining the Impact of Concrete Roadways on Gamma Ray Background Readings for Radiation Portal Monitoring Systems  

E-Print Network [OSTI]

locations have reported abnormally high gamma background count rates. The higher background data has been attributed, in part, to the concrete surrounding the portal monitors. Higher background can ultimately lead to more material passing through the RPMs...

Ryan, Christopher Michael

2012-07-16T23:59:59.000Z

88

A DIRECT MEASUREMENT OF THE LINEAR BIAS OF MID-INFRARED-SELECTED QUASARS AT z ? 1 USING COSMIC MICROWAVE BACKGROUND LENSING  

SciTech Connect (OSTI)

We measure the cross-power spectrum of the projected mass density as traced by the convergence of the cosmic microwave background lensing field from the South Pole Telescope (SPT) and a sample of Type 1 and 2 (unobscured and obscured) quasars at (z) ? 1 selected with the Wide-field Infrared Survey Explorer, over 2500 deg{sup 2}. The cross-power spectrum is detected at ?7?, and we measure a linear bias b = 1.61 ± 0.22, consistent with clustering analyses. Using an independent lensing map, derived from Planck observations, to measure the cross-spectrum, we find excellent agreement with the SPT analysis. The bias of the combined sample of Type 1 and 2 quasars determined in this work is similar to that previously determined for Type 1 quasars alone; we conclude that obscured and unobscured quasars trace the matter field in a similar way. This result has implications for our understanding of quasar unification and evolution schemes.

Geach, J. E. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield, AL10 9AB (United Kingdom)] [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield, AL10 9AB (United Kingdom); Hickox, R. C.; Hainline, K. N. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)] [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Bleem, L. E.; Benson, B. A.; Bhattacharya, S.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States)] [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States)] [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Holder, G. P.; De Haan, T.; Dobbs, M. A.; Dudley, J. [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada)] [Department of Physics, McGill University, Montreal, Quebec H3A 2T8 (Canada); Aird, K. A. [University of Chicago, Chicago, IL 60637 (United States)] [University of Chicago, Chicago, IL 60637 (United States); Cho, H.-M. [NIST Quantum Devices Group, Boulder, CO 80305 (United States)] [NIST Quantum Devices Group, Boulder, CO 80305 (United States); George, E. M.; Holzapfel, W. L. [Department of Physics, University of California, Berkeley, CA 94720 (United States)] [Department of Physics, University of California, Berkeley, CA 94720 (United States); Halverson, N. W., E-mail: j.geach@herts.ac.uk [Department of Astrophysical and Planetary Sciences and Department of Physics, University of Colorado, Boulder, CO 80309 (United States); and others

2013-10-20T23:59:59.000Z

89

Effects of fetal microwave radiation exposure on offspring behavior in mice  

Science Journals Connector (OSTI)

......In the developing nervous system, the brain tissue is more conductive than that of...neuronal functions and synaptic plasticity in brain slice preparations of rats exposed either...et al. Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile......

Yanchun Zhang; Zhihui Li; Yan Gao; Chenggang Zhang

2014-10-01T23:59:59.000Z

90

The similar effects of low-dose ionizing radiation and non-ionizing radiation from background environmental levels of exposure  

Science Journals Connector (OSTI)

The meltdown and release of radioactivity (ionizing radiation) from four damaged nuclear reactors at the Fukushima Nuclear Facility in Japan in March 2011 continues to contaminate air and ocean water even 1 year ...

Cindy Sage

2012-06-01T23:59:59.000Z

91

Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body  

Science Journals Connector (OSTI)

...photoelectrons. For most ionizing radiations, a large proportion...the absorbed dose is deposited...having a shorter range and being more strongly ionizing close to the...in high local doses, causing damage...enhancement of the radiation dose in volumes...

2010-01-01T23:59:59.000Z

92

Future Cosmic Microwave Background Experiments  

E-Print Network [OSTI]

We summarise some aspects of experiments currently being built or planned, and indulge in wild speculation about possibilities on the more distant horizon.

Mark Halpern; Douglas Scott

1999-04-19T23:59:59.000Z

93

Microwave radiation by a relativistic electron beam propagation through low?pressure air  

Science Journals Connector (OSTI)

Intense relativistic electron beams fired into air at varying pressures display a wide range of microwave signatures. These experiments held beam current energy and pulse length constant while varying gas pressure. Our observing window is 10 to 40 GHz. At low pressures (generated plasma frequencies. Power falls linearly with pressure above 20 mTorr until electron?Neutral collisions damp the emission at a few Torr. However weak 10 GHz emission appears at full atmospheric pressure.

S. Jordan; A. Ben?Amar Baranga; G. Benford; D. Tzach; K. Kato

1985-01-01T23:59:59.000Z

94

Quantum Illumination at the Microwave Wavelengths  

E-Print Network [OSTI]

Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally-occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

Shabir Barzanjeh; Saikat Guha; Christian Weedbrook; David Vitali; Jeffrey H. Shapiro; Stefano Pirandola

2015-01-31T23:59:59.000Z

95

Simulation of Radiation Backgrounds associated with the HEXRI Diagnostics at the National Ignition Facility  

SciTech Connect (OSTI)

Experiments resulting in a significant neutron yield are scheduled to start in 2010 at the National Ignition Facility (NIF). A wide range of diagnostics will be used to measure several parameters of implosion such as the core and fuel shape, temperatures and densities, and neutron yield. Accurate evaluations of the neutron and gamma backgrounds are important for several diagnostics, such as the High Energy X-ray Imager (HEXRI). Several Monte-Carlo simulations were performed to identify the expected signal to background ratios at several potential locations for the HEXRI diagnostics. Gamma backgrounds were significantly reduced by using tungsten collimators. The collimators resulted in the reduction of the gamma background at the HEXRI scintillators by more than an order of magnitude during the first 40 ns following a THD shot.

Khater, H; Dauffy, L; Tommasini, R; Eckart, M; Eder, D

2009-10-05T23:59:59.000Z

96

Developing a Methodology for Characterizing the Effects of Building Materials’ Natural Radiation Background on a Radiation Portal Monitoring System  

E-Print Network [OSTI]

the sponsors of this research, Oak Ridge National Laboratory (ORNL). vi NOMENCLATURE EW Energy Windowing FWHM Full-Width at Half Maximum HEU Highly Enriched Uranium HPGe High-Purity Germanium ISOCS In-Situ Object Counting System MCA Multichannel... Naturally Occurring Radioactive Material ? Diameter ORNL Oak Ridge National Laboratory PMT Photomultiplier Tube PNNL Pacific Northwest National Laboratory PVT Polyvinyl Toluene RDD Radiological Dispersal Device vii RPM Radiation Portal Monitor...

Fitzmaurice, Matthew Blake 1988-

2012-11-06T23:59:59.000Z

97

Mass without radiation: heavily obscured AGN, the X-ray Background and the Black Hole Mass Density  

E-Print Network [OSTI]

A recent revision of black hole scaling relations (Kormendy & Ho 2013), indicates that the local mass density in black holes should be increased by up to a factor of five with respect to previously determined values. The local black hole mass density is connected to the mean radiative efficiency of accretion through the time integral of the AGN volume density and a significant increase of the local black holes mass density would have interesting consequences on AGN accretion properties and demography. One possibility to explain a large black hole mass density is that most of the Black Hole growth is via radiatively inefficient channels such as super Eddington accretion, however, given the intrinsic degeneracies in the Soltan argument, this solution is not unique. Here we show how it is possible to accommodate a larger fraction of heavily buried, Compton thick AGN, without violating the limit imposed by the hard X-ray and mid-infrared backgrounds spectral energy density.

Comastri, A; Marconi, A; Risaliti, G; Salvati, M

2015-01-01T23:59:59.000Z

98

Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies  

E-Print Network [OSTI]

The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

Sailer, André; Lohse, Thomas

2013-01-10T23:59:59.000Z

99

Reduction of Radioactive Backgrounds in Electroformed Copper for Ultra-Sensitive Radiation Detectors  

SciTech Connect (OSTI)

Abstract Ultra-pure construction materials are required for the next generation of neutrino physics, dark matter and environmental science applications. These new efforts require materials with purity levels at or below 1 uBq/kg 232Th and 238U. Yet radiometric analysis lacks sensitivity below ~10 uBq/kg for the U and Th decay chains. This limits both the selection of clean materials and the validation of purification processes. Copper is an important high-purity material for low-background experiments due to the ease with which it can be purified by electrochemical methods. Electroplating for purification into near-final shapes, known as electroforming, is one such method. Continued refinement of the copper electroforming process is underway, for the first time guided by an ICP-MS based assay method that can measure 232Th and 238U near the desired purity levels. An assay of electroformed copper at 10 uBq/kg for 232Th has been achieved and is described. The implications of electroformed copper at or better than this purity on next-generation low-background experiments are discussed.

Hoppe, Eric W.; Aalseth, Craig E.; Farmer, Orville T.; Hossbach, Todd W.; Liezers, Martin; Miley, Harry S.; Overman, Nicole R.; Reeves, James H.

2014-02-08T23:59:59.000Z

100

PHOTOCHEMISTRY IN THE MICROWAVE FIELD  

E-Print Network [OSTI]

. The objective of microwave-assisted photochemistry is frequently, but not irreplaceably, connected. EDLs Hg-EDLs: I2- and P-EDLs S-EDL vs. solar radiation flux Literature: 1. P. Kl�n V. C�rkva, Microwave in the MW field. � No evidence for nonthermal microwave effects was observed. Outlook � MW-assisted

Cirkva, Vladimir

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows  

SciTech Connect (OSTI)

The gravitational wave (GW) signals emitted by a network of cosmic strings are reexamined in view of the possible formation of a network of cosmic superstrings at the end of brane inflation. The reconnection probability p of intersecting fundamental or Dirichlet strings might be much smaller than 1, and the properties of the resulting string network may differ significantly from those of ordinary strings (which have p=1). In addition, it has been recently suggested that the typical length of newly formed loops may differ by a factor {epsilon}<<1 from its standard estimate. Here, we analyze the effects of the two parameters p and {epsilon} on the GW signatures of strings. We consider both the GW bursts emitted from cusps of oscillating string loops, which have been suggested as candidate sources for the LIGO/VIRGO and LISA interferometers, and the stochastic GW background, which may be detectable by pulsar-timing observations. In both cases we find that previously obtained results are quite robust, at least when the loop sizes are not suppressed by many orders of magnitude relative to the standard scenario. We urge pulsar observers to reanalyze a recently obtained 17-yr combined data set to see whether the large scatter exhibited by a fraction of the data might be due to a transient GW burst activity of some sort, e.g., to a near cusp event.

Damour, Thibault [Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette (France); Vilenkin, Alexander [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)

2005-03-15T23:59:59.000Z

102

Delayed MeV-GeV Gamma-Ray Photons in Gamma-Ray Bursts: An Effect of Electromagnetic Cascades of Very High Energy Gamma Rays in the Infrared/Microwave Background  

Science Journals Connector (OSTI)

We show that the electromagnetic cascade of very high energy gamma-rays from gamma-ray bursts in the IR/microwave background will produce delayed MeV-GeV photons. Monte Carlo simulations have been performed to study this process. The distance of GB 940217 is estimated to be not less than 120 Mpc using our model, which supports a cosmological origin for this source. We also show that the time delays of gamma-ray photons are inversely proportional to their energy. Our model does not require the presence of intergalactic magnetic fields.

L. X. Cheng; K.

1996-01-01T23:59:59.000Z

103

Coherence length of cosmic background radiation enlarges the attenuation length of the ultra-high energy proton  

E-Print Network [OSTI]

It is pointed out that an agreement of the one particle energy spectrum of the cosmic background radiation (CMBR) with Plank distribution of 2.725 [K] does not give a strong constraint on the coherence length of CMBR if the mean free path of CMBR is very long. The coherence length in this situation is estimated as a few times of $k_BT$. Due to this finite coherence length, the attenuation length of ultra-high energy cosmic rays (UHECR) is reduced in the $\\Delta $ resonance region,i.e., around $10^{20}$ [eV]. The small attenuation length makes the suppression of the flux of cosmic rays in this energy region less prominent than the naive estimation

Kenzo Ishikawa; Yutaka Tobita

2008-01-21T23:59:59.000Z

104

The Cosmic Background Imager  

E-Print Network [OSTI]

The Cosmic Background Imager (CBI) is an instrument designed to make images of the cosmic microwave background radiation and to measure its statistical properties on angular scales from about 3 arc minutes to one degree (spherical harmonic scales from l ~ 4250 down to l ~ 400). The CBI is a 13-element interferometer mounted on a 6 meter platform operating in ten 1-GHz frequency bands from 26 GHz to 36 GHz. The instantaneous field of view of the instrument is 45 arcmin (FWHM) and its resolution ranges from 3 to 10 arcmin; larger fields can be imaged by mosaicing. At this frequency and resolution, the primary foreground is due to discrete extragalactic sources, which are monitored at the Owens Valley Radio Observatory and subtracted from the CBI visibility measurements. The instrument has been making observations since late 1999 of both primordial CMB fluctuations and the Sunyaev-Zeldovich effect in clusters of galaxies from its site at an altitude of 5080 meters near San Pedro de Atacama, in northern Chile. Observations will continue until August 2001 or later. We present preliminary results from the first few months of observations.

T. J. Pearson; B. S. Mason; S. Padin; A. C. S. Readhead; M. C. Shepherd; J. Sievers; P. S. Udomprasert; J. K. Cartwright

2000-12-11T23:59:59.000Z

105

The Cosmic Background Imager  

E-Print Network [OSTI]

Design and performance details are given for the Cosmic Background Imager (CBI), an interferometer array that is measuring the power spectrum of fluctuations in the cosmic microwave background radiation (CMBR) for multipoles in the range 400 < l < 3500. The CBI is located at an altitude of 5000 m in the Atacama Desert in northern Chile. It is a planar synthesis array with 13 0.9-m diameter antennas on a 6-m diameter tracking platform. Each antenna has a cooled, low-noise receiver operating in the 26-36 GHz band. Signals are cross-correlated in an analog filterbank correlator with ten 1 GHz bands. This allows spectral index measurements which can be used to distinguish CMBR signals from diffuse galactic foregrounds. A 1.2 kHz 180-deg phase switching scheme is used to reject cross-talk and low-frequency pick-up in the signal processing system. The CBI has a 3-axis mount which allows the tracking platform to be rotated about the optical axis, providing improved (u,v) coverage and a powerful discriminant against false signals generated in the receiving electronics. Rotating the tracking platform also permits polarization measurements when some of the antennas are configured for the orthogonal polarization.

S. Padin; M. C. Shepherd; J. K. Cartwright; R. G. Keeney; B. S. Mason; T. J. Pearson; A. C. S. Readhead; W. L. Schaal; J. Sievers; P. S. Udomprasert; J. K. Yamasaki; W. L. Holzapfel; J. E. Carlstrom; M. Joy; S. T. Myers; A. Otarola

2001-10-05T23:59:59.000Z

106

Impact of Hillslope-Scale Organization of Topography, Soil Moisture, Soil Temperature, and Vegetation on Modeling Surface Microwave Radiation Emission  

E-Print Network [OSTI]

Microwave radiometry will emerge as an important tool for global remote sensing of near-surface soil moisture in the coming decade. In this modeling study, we find that hillslope-scale topography (tens of meters) influences ...

Flores, Alejandro N.

107

Cosmological origin of anomalous radio background  

SciTech Connect (OSTI)

The ARCADE 2 collaboration has reported a significant excess in the isotropic radio background, whose homogeneity cannot be reconciled with clustered sources. This suggests a cosmological origin prior to structure formation. We investigate several potential mechanisms and show that injection of relativistic electrons through late decays of a metastable particle can give rise to the observed excess radio spectrum through synchrotron emission. However, constraints from the cosmic microwave background (CMB) anisotropy, on injection of charged particles and on the primordial magnetic field, present a challenge. The simplest scenario is with a ?>9 GeV particle decaying into e{sup +}e{sup ?} at a redshift of z ? 5, in a magnetic field of ? 5?G, which exceeds the CMB B-field constraints, unless the field was generated after decoupling. Decays into exotic millicharged particles can alleviate this tension, if they emit synchroton radiation in conjunction with a sufficiently large background magnetic field of a dark U(1)' gauge field.

Cline, James M. [Department of Physics, McGill University, 3600 Rue University, Montréal, Québec, H3A 2T8 Canada (Canada); Vincent, Aaron C., E-mail: jcline@physics.mcgill.ca, E-mail: vincent@ific.uv.es [Instituto de Física Corpuscular, Universitat de València - CSIC, 46071, Valencia (Spain)

2013-02-01T23:59:59.000Z

108

Microwaves and Bacteria  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microwaves and Bacteria Microwaves and Bacteria Name: mike Location: N/A Country: N/A Date: N/A Question: Do the microwaves in a microwave kill bacteria or is it the heat that kills the bacteria? I am wondering this because i have a science fair project and i am searching for a project dealing with bacteria. Replies: As far as I'm aware it is the heat that kill bacteria in a microwave, and they need quite some time to be dead. The spores that some kind of bacteria make to survive harsh conditions do not contain much water and they might survive microwaves. I'm not sure what bacteria do that can survive high dosis of radiation, like Deinococcus radiodurans. They can do this by a very efficient repair system for their DNA. My guess is that they would also be killed by the heat generated in a microwave but I haven't found any data on this.

109

Scanning tip microwave near field microscope  

DOE Patents [OSTI]

A microwave near field microscope has a novel microwave probe structure wherein the probing field of evanescent radiation is emitted from a sharpened metal tip instead of an aperture or gap. This sharpened tip, which is electrically and mechanically connected to a central electrode, extends through and beyond an aperture in an endwall of a microwave resonating device such as a microwave cavity resonator or a microwave stripline resonator. Since the field intensity at the tip increases as the tip sharpens, the total energy which is radiated from the tip and absorbed by the sample increases as the tip sharpens. The result is improved spatial resolution without sacrificing sensitivity.

Xiang, Xiao-Dong (Alameda, CA); Schultz, Peter G. (Oakland, CA); Wei, Tao (Albany, CA)

1998-01-01T23:59:59.000Z

110

Childhood exposures to Rn-222 and background gamma radiation in the uranium provinces of south Kazakhstan and northern Kyrgyzstan  

Science Journals Connector (OSTI)

The project was undertaken in southern Kazakhstan and Kyrgyzstan. It was speculated that the radiation doses in these areas would be sufficiently high and dispersed to facilitate a case–control study where the radiation doses to leukaemia subjects/their siblings could be compared with those received by control children. As a precursor a pilot project was undertaken to confirm radiation exposures in the region. This was undertaken in association with regional childhood cancer treatment centres. Children from families affected by childhood leukaemia were monitored for 1 month for external ?-radiation dose and for exposure to radon gas. 28 children from families in Kazakhstan and from 31 families in Kyrgyzstan were monitored. The median measured radon in air concentration recorded in Kazakhstan was 123 Bq m?3 and in Kyrgyzstan was 177 Bq m?3. These represent 24-h average indoor/outdoor values. In the case of the ?-doses the mean annual dose was 1.2 mGy for Kazakhstan and 2.1 mGy for Kyrgyzstan. Overall, the results suggest that the populations studied receive similar annual radiation doses to those received by populations living in other areas with enhanced natural radioactivity and that further study of Kazakh and Kyrgyz populations would not facilitate a successful case–control study for childhood leukaemia.

N.D. Priest; D. Hoel; B. Uralbekov; D.O. Baizakova; M. Burkitbayev

2013-01-01T23:59:59.000Z

111

Evidence for a non-zero Lambda and a low matter density from a combined analysis of the 2dF Galaxy Redshift Survey and Cosmic Microwave Background Anisotropies  

E-Print Network [OSTI]

We perform a joint likelihood analysis of the power spectra of the 2dF Galaxy Redshift Survey (2dFGRS) and the cosmic microwave background (CMB) anisotropies under the assumptions that the initial fluctuations were adiabatic, Gaussian and well described by power laws with scalar and tensor indices of n_s and n_t. On its own, the 2dFGRS sets tight limits on the parameter combination Omega_m h, but relatively weak limits on the fraction of the cosmic matter density in baryons Omega_b/Omega_m. The CMB anisotropy data alone set poor constraints on the cosmological constant and Hubble constant because of a `geometrical degeneracy' among parameters. Furthermore, if tensor modes are allowed, the CMB data allow a wide range of values for the physical densities in baryons and cold dark matter. Combining the CMB and 2dFGRS data sets helps to break both the geometrical and tensor mode degeneracies. The values of the parameters derived here are consistent with the predictions of the simplest models of inflation, with the baryon density derived from primordial nucleosynthesis and with direct measurements of the Hubble parameter. In particular, we find strong evidence for a positive cosmological constant with a pm 2sigma range of 0.65 < Omega_Lambda < 0.85, completely independently of constraints on Omega_\\Lambda derived from Type Ia supernovae.

George Efstathiou; Stephen Moody; John A. Peacock; Will J. Percival; Carlton Baugh; Joss Bland-Hawthorn; Terry Bridges; Russell Cannon; Shaun Cole; Matthew Colless; Chris Collins; Warrick Couch; Gavin Dalton; Roberto De Propis; Simon P. Driver; Richard S. Ellis; Carlos S. Frenk; Karl Glazebrook; Carole Jackson; Ofer Lahav; Ian Lewis; Stuart Lumsden; Steve Maddox; Peder Norberg; Bruce A. Peterson; Will Sutherland; Keith Taylor

2001-09-10T23:59:59.000Z

112

Blazar Duty-Cycle at gamma-ray Frequecies: Constraints from Extragalactic Background Radiation and Prospects for AGILE and GLAST  

E-Print Network [OSTI]

We take into account the constraints from the observed extragalactic gamma-ray background to estimate the maximum duty cycle allowed for a selected sample of WMAP Blazars, in order to be detectable by AGILE and GLAST gamma-ray experiments. For the nominal sensitivity values of both instruments, we identify a subset of sources which can in principle be detectable also in a steady state without over-predicting the extragalactic background. This work is based on the results of a recently derived Blazar radio LogN-LogS obtained by combining several multi-frequency surveys.

Pittori, Carlotta; Colafrancesco, Sergio; Giommi, Paolo

2007-01-01T23:59:59.000Z

113

Blazar Duty-Cycle at gamma-ray Frequecies: Constraints from Extragalactic Background Radiation and Prospects for AGILE and GLAST  

E-Print Network [OSTI]

We take into account the constraints from the observed extragalactic gamma-ray background to estimate the maximum duty cycle allowed for a selected sample of WMAP Blazars, in order to be detectable by AGILE and GLAST gamma-ray experiments. For the nominal sensitivity values of both instruments, we identify a subset of sources which can in principle be detectable also in a steady state without over-predicting the extragalactic background. This work is based on the results of a recently derived Blazar radio LogN-LogS obtained by combining several multi-frequency surveys.

Carlotta Pittori; Elisabetta Cavazzuti; Sergio Colafrancesco; Paolo Giommi

2007-05-04T23:59:59.000Z

114

The microwave background anisotropies:?Observations  

Science Journals Connector (OSTI)

...imposes limits on energy-producing processes...modes, so more energy can be collected...CMBR source. The disadvantages of bolometeric detectors...course, the main advantage of interferometer...demonstrated the many advantages of using experiments...and 106 GHz. The solar panels (shown deployed...

David Wilkinson

1998-01-01T23:59:59.000Z

115

Cosmic Microwave Background Mini-Review  

E-Print Network [OSTI]

A compact overview of the status of CMB anisotropy results and their cosmological interpretation up until the end of 2005. Sections headings: Introduction; Description of CMB Anisotropies; Cosmological Parameters; Physics of Anisotropies; Current Anisotropy Data; CMB Polarization; Complications; Constraints on Cosmologies; Particle Physics Constraints; Fundamental Lessons; and Future Directions.

Douglas Scott; George Smoot

2006-01-14T23:59:59.000Z

116

Cosmic Microwave Background Theory J. Richard Bond  

E-Print Network [OSTI]

\\Omega tot , but theoretical forecasts of fu­ ture long duration balloon and satellite experi­ ments gas processes can obscure the direct con­ nection to the early universe physics. Most easily inter

Bond, Dick

117

New Limits to the IR Background: Bounds on Radiative Neutrino Decay and on VMO Contributions to the Dark Matter Problem  

E-Print Network [OSTI]

From considering the effect of gamma-gamma interactions on recently observed TeV gamma-ray spectra, improved limits are set to the density of extragalactic infrared (IR) photons which are robust and essentially model-independent. The resulting limits are up to two orders of magnitude more restrictive than direct observations in the 0.025-0.3eV regime. These limits are used to improve constraints on radiative neutrino decay in the mass range above 0.05eV and on Very Massive Objects (VMOs) as providing the dark matter needed to explain galaxy rotation curves.

S. D. Biller; J. Buckley; A. Burdett; J. Bussons Gordo; D. A. Carter-Lewis; D. J. Fegan; J. Findley; J. A. Gaidos; A. M. Hillas; F. Krennrich; R. C. Lamb; R. Lessard; J. E. McEnery; G. Mohanty; J. Quinn; A. J. Rodgers; H. J. Rose; F. Samuelson; G. Sembroski; P. Skelton; T. C. Weekes; J; Zweerink

1998-02-18T23:59:59.000Z

118

Microwave off-gas treatment apparatus and process  

DOE Patents [OSTI]

The invention discloses a microwave off-gas system in which microwave energy is used to treat gaseous waste. A treatment chamber is used to remediate off-gases from an emission source by passing the off-gases through a susceptor matrix, the matrix being exposed to microwave radiation. The microwave radiation and elevated temperatures within the combustion chamber provide for significant reductions in the qualitative and quantitative emissions of the gas waste stream.

Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL); Wicks, George G. (North Aiken, SC)

2003-01-01T23:59:59.000Z

119

Microwave generator  

DOE Patents [OSTI]

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

Kwan, T.J.T.; Snell, C.M.

1987-03-31T23:59:59.000Z

120

Microwave heating for adsorbents regeneration and oil sands coke activation.  

E-Print Network [OSTI]

??Microwave heating has unique advantages compared to convection-radiation heating methods including fast heating rate and selective heating of objects. This thesis studied two applications of… (more)

Chen, Heng

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Posters Preliminary Analysis of Ground-Based Microwave and Infrared...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Posters Preliminary Analysis of Ground-Based Microwave and Infrared Radiance Observations During the Pilot Radiation OBservation Experiment E. R. Westwater, Y. Han, J. H....

122

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents [OSTI]

A system is described for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample. 11 figs.

Maerefat, N.L.; Parmeswar, R.; Brinkmeyer, A.D.; Honarpour, M.

1994-08-23T23:59:59.000Z

123

Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample  

DOE Patents [OSTI]

A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

Maerefat, Nicida L. (Sugar Land, TX); Parmeswar, Ravi (Marlton, NJ); Brinkmeyer, Alan D. (Tulsa, OK); Honarpour, Mehdi (Bartlesville, OK)

1994-01-01T23:59:59.000Z

124

Microwave furnace having microwave compatible dilatometer  

DOE Patents [OSTI]

An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy. 2 figs.

Kimrey, H.D. Jr.; Janney, M.A.; Ferber, M.K.

1992-03-24T23:59:59.000Z

125

Microwave furnace having microwave compatible dilatometer  

DOE Patents [OSTI]

An apparatus for measuring and monitoring a change in the dimension of a sample being heated by microwave energy is described. The apparatus comprises a microwave heating device for heating a sample by microwave energy, a microwave compatible dilatometer for measuring and monitoring a change in the dimension of the sample being heated by microwave energy without leaking microwaves out of the microwave heating device, and a temperature determination device for measuring and monitoring the temperature of the sample being heated by microwave energy.

Kimrey, Jr., Harold D. (Knoxville, TN); Janney, Mark A. (Knoxville, TN); Ferber, Mattison K. (Oak Ridge, TN)

1992-01-01T23:59:59.000Z

126

The Big Bang, COBE, and the Relic Radiation of Creation (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Berkeley Lab's George Smoot won the 2006 Physics Nobel Prize, together with John Mather of NASA Goddard Space Flight Center, for "the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." The anisotropy showed as small variations in the map of the early universe. This research looks back into the infant universe and provides a better understanding of the origin of galaxies and stars. The cosmic background radiation is a tool to understand the structure and history of the universe and the structure of space-time. These observations have provided increased support for the big bang theory of the universe's origin. The Cosmic Background Explorer (COBE) NASA satellite, launched in 1989, carries instruments that measured various aspects of cosmic microwave background radiation, and produced the data for these compelling scientific results, which opened up a field that continues very actively today.

Smoot, George

2011-04-28T23:59:59.000Z

127

A container for heat treating materials in microwave ovens  

DOE Patents [OSTI]

The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed to top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation for reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achievable in the oven without the container.

Holcombe, C.E.; Dykes, N.L.; Kimrey, H.D. Jr.; Mills, J.E.

1988-01-26T23:59:59.000Z

128

Legal Background  

Office of Legacy Management (LM)

Legal Background Legal Background Book 1 . . Project Rulison :.Contract: . . AEC, Austral Oil Company, and CER Geonuclear Corporation, . . . . , . . . . , . . February 1969 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. PROJECT RULISON CONTRACT NO. UNITED STATES OF AMERICA REPRESENTED BY THE ATOMIC ENERGY COMMISSION and THE DEPARTMENT. OF THE INTERIOR and AUSTRAL OIL COMPANY INCORPORATED and CER GEONUCLEAR CORPORATION Prepared by OFFICE OF THE CHIEF COUNSEL NEVADA OPERATIONS OFFICE FEBRUARY 1969 This page intentionally left blank UNITED STATES ATOMIC ENERGY COMMISSION . NEVADA OPERATIONS OFFICE TABLE OF CONTENTS VII VIII XV XVI XVII SUBJECT - PAGE Definitions 2 Description of Project ~ulisdn 3

129

Tandem microwave waste remediation and decontamination system  

DOE Patents [OSTI]

The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (North Aiken, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

1999-01-01T23:59:59.000Z

130

Note: Cryogenic coaxial microwave filters  

SciTech Connect (OSTI)

The careful filtering of microwave electromagnetic radiation is critical for controlling the electromagnetic environment for experiments in solid-state quantum information processing and quantum metrology at millikelvin temperatures. We describe the design and fabrication of a coaxial filter assembly and demonstrate that its performance is in excellent agreement with theoretical modelling. We further perform an indicative test of the operation of the filters by making current-voltage measurements of small, underdamped Josephson junctions at 15 mK.

Tancredi, G.; Meeson, P. J. [Department of Physics, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom)] [Department of Physics, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); Schmidlin, S. [Department of Physics, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom) [Department of Physics, Royal Holloway, University of London, Egham TW20 0EX (United Kingdom); National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom)

2014-02-15T23:59:59.000Z

131

Container for heat treating materials in microwave ovens  

DOE Patents [OSTI]

The efficiency of a microwave oven of a conventional two-source configuration and energy level is increased by providing the oven with a container for housing a refractory material to be treated. The container is formed of top and bottom walls transparent to microwaves while the sidewalls, in a circular configuration, are formed of a nonmetallic material opaque to microwave radiation reflecting the radiation penetrating the top and bottom walls radially inwardly into the center of the container wherein a casket of heat-insulating material is provided for housing the material to be heat treated. The reflection of the microwave radiation from the sidewalls increases the concentration of the microwaves upon the material being heat treated while the casket retains the heat to permit the heating of the material to a substantially higher temperature than achieveable in the oven without the container.

Holcombe, Cressie E. (Farragut, TN); Dykes, Norman L. (Oak Ridge, TN); Kimrey, Jr., Harold D. (Knoxville, TN); Mills, James E. (Knoxville, TN)

1989-01-01T23:59:59.000Z

132

CMVRTC: Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

newsletters newsletters contacts tools latest news 12.05.2013 Next Quarterly meeting scheduled for February 19, 2014 (10 a.m. - 12 p.m. ET). read more ... More information CMVRTC Showcase Events CMVRTC Poster Sessions Related Projects Heavy Truck Duty Cycle Medium Truck Duty Cycle Fuel Tax Evasion Other technical director For more information, please contact Gary Capps, Technical Director, at cappsgj@ornl.gov or (865) 946-1285. Background Introduction Vision cmvrtc poster Benefits Technology Transfer Introduction The Federal Motor Carrier Safety Administration (FMCSA) launched the Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) on August 7, 2007, in partnership with the Tennessee Departments of Safety and Transportation, the Oak Ridge National Laboratory (ORNL), and the

133

Non-thermal Cosmic Backgrounds from Blazars: the contribution to the CMB, X-ray and gamma-ray Backgrounds  

E-Print Network [OSTI]

We present a new assessment of the contribution of Blazars to the extragalactic background radiation across the e.m. spectrum. Our calculations rely on deep Blazar radio counts that we derived combining several multifrequency surveys. The integrated Blazar emission yields a broad-band non-thermal background that in some parts of the e.m. spectrum dominates the extragalactic brightness. Blazars are the main point-like contributors to the CMB. Their integrated emission causes an apparent T increase of 5-50 muK in the 50-250 GHz range. The CMB fluctuation spectrum is sensibly contaminated at l>300, for a Poissonian source distribution, or at lower l values if spatial clustering is present. We estimate that well over 100,000 Blazars will produce a significant signal in the PLANCK CMB anisotropy maps. Because of the microwave-Xray flux correlation, these sources are expected to have flux > a few 10^{-15} erg/s in the soft X-ray band. Thus, a large fraction of the foreground sources in CMB anisotropy maps could be identified and removed using a multi frequency approach, provided that a sufficiently deep all sky X-ray survey will be available. We further show that Blazars are a major constituent of all high-E extragalactic backgrounds. Their contribution is 11-12% at X-ray frequencies and possibly 100% in the 0.5-50 MeV band. At E>100 MeV, the Blazar collective emission, obtained extrapolating their integrated micro-wave flux to the gamma-ray band using the SED of EGRET detected sources, over-predicts the extragalactic background by a large factor, implying that Blazars not only dominate the gamma-ray sky but also that their average duty cycle at these frequencies must be rather low. We also find that Blazars of the HBL type may produce a significant amount of flux at TeV energies.

P. Giommi; S. Colafrancesco; E. Cavazzuti; M. Perri; C. Pittori

2005-08-01T23:59:59.000Z

134

Ground-based Microwave Cloud Tomography  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microwave Cloud Tomography Microwave Cloud Tomography Experiment, SGP, May 15-June 15, 2009 Lead Scientist Dong Huang, BNL Co-Investigators Al Gasiewski, UC Boulder Maria Cadeddu, ANL Warren Wiscombe, BNL Radiation Processes Working Group March 30, 2009 multiple radiometers All good cloud radiation modelers should close their airplane window shades so as not to be corrupted by the spectacle of real 3D clouds. - Roger Davies In case you forget to do this, you see 3/30/2009 ARM RPWG 2 Effects of cloud structure on radiation 3/30/2009 ARM RPWG 3 Typical climate model - Cloud fraction & mean water content - Horizontally uniform clouds, no side radiation - Assumption on overlap Courtesy of Bernhard Mayer Cloud structure important to radiation - Cumulus (Benner & Evans 2001, Pincus et al. 2005), deep convection (DiGiuseppe &

135

Microsoft PowerPoint - Powerpoint_Background.ppt [Compatibility Mode]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

g g Radiation Radiation Radiation is everywhere Cosmic Inhaled Radon Inhaled Radon Bodies Plants Bodies Radioactive Elements We live in a sea of radiation... Rocks BACKGROUND RADIATION BACKGROUND RADIATION The average background radiation per person is 370 millirems per person is 370 millirems (mrem) per year. This varies widely depending on where someone lives and their someone lives, and their occupation, health and lifestyle. Background Radiation g Most background radiation is g natural. It is part of nat re It is part of nature. It has always been here. y People have always lived with it. Radiation comes from space- sun and cosmic rays Because this type of radiation is somewhat shielded by the atmosphere, y p the dose is higher at higher altitudes Background Radiation Exposure at Different Elevations

136

Gun Injection into a Microwave Plasma J. C. Sprott  

E-Print Network [OSTI]

Gun Injection into a Microwave Plasma by J. C. Sprott May, 1970 Plasma Studies University high densities by rapid pulsed gun injection. TIlis no te describes measurements made -Cwo years ago in which a gun plasma was injected into a background microwave plasma of variable density in the toroidal

Sprott, Julien Clinton

137

Preliminary Results from the Cosmic Background Imager  

E-Print Network [OSTI]

The Cosmic Background Imager (CBI) is a 13-element interferometer designed to image intrinsic anisotropies in the cosmic microwave background (CMB) on arcminute scales. A review of the capabilities of the instrument is presented, together with a discussion of observations which have been taken over the past 9 months from the Atacama desert of Chile. We present preliminary high-resolution mosaiced images of the CMB obtained from recent CBI data and discuss topics which the CBI will address in the near future.

B. S. Mason; J. K. Cartwright; S. Padin; T. J. Pearson; A. C. S. Readhead; M. Shepherd; J. Sievers; P. Udomprasert

2001-01-11T23:59:59.000Z

138

Hubble diagrams of soft and hard radiation sources in the graviton background: to an apparent contradiction between supernova 1a and gamma-ray burst observations  

E-Print Network [OSTI]

In the sea of super-strong interacting gravitons, non-forehead collisions with gravitons deflect photons, and this deflection may differ for soft and hard radiations. As a result, the Hubble diagram would not be a universal function and it will have a different view for such sources as supernovae in visible light and gamma-ray bursts. Observations of these two kinds are compared here with the limit cases of the Hubble diagram.

Michael A. Ivanov

2007-01-10T23:59:59.000Z

139

Microwave Radiometer (MWR) Handbook  

SciTech Connect (OSTI)

The Microwave Radiometer (MWR) provides time-series measurements of column-integrated amounts of water vapor and liquid water. The instrument itself is essentially a sensitive microwave receiver. That is, it is tuned to measure the microwave emissions of the vapor and liquid water molecules in the atmosphere at specific frequencies.

Morris, VR

2006-08-01T23:59:59.000Z

140

Earth X-ray albedo for cosmic X-ray background radiation in the 1--1000 keV band  

E-Print Network [OSTI]

We present calculations of the reflection of the cosmic X-ray background (CXB) by the Earth's atmosphere in the 1--1000 keV energy range. The calculations include Compton scattering and X-ray fluorescent emission and are based on a realistic chemical composition of the atmosphere. Such calculations are relevant for CXB studies using the Earth as an obscuring screen (as was recently done by INTEGRAL). The Earth's reflectivity is further compared with that of the Sun and the Moon -- the two other objects in the Solar system subtending a large solid angle on the sky, as needed for CXB studies.

E. Churazov; S. Sazonov; R. Sunyaev; M. Revnivtsev

2008-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Neutrino and Cosmic-Ray Emission and Cumulative Background from Radiatively Inefficient Accretion Flows in Low-Luminosity Active Galactic Nuclei  

E-Print Network [OSTI]

We study high-energy neutrino and cosmic-ray (CR) emission from the cores of low-luminosity active galactic nuclei (LLAGN). In LLAGN, the thermalization of particles is expected to be incomplete in radiatively inefficient accretion flows (RIAFs), allowing the existence of non-thermal particles. In this work, assuming stochastic particle acceleration due to turbulence in RIAFs, we solve the Fokker-Planck equation and calculate spectra of escaping neutrinos and CRs. The RIAF in LLAGN can emit CR protons with $\\gtrsim10$ PeV energies and TeV-PeV neutrinos generated via $pp$ and/or $p\\gamma$ reactions. We find that, if $\\sim1$% of the accretion luminosity is carried away by non-thermal ions, the diffuse neutrino intensity from the cores of LLAGN may be as high as $E_\

Shigeo S. Kimura; Kohta Murase; Kenji Toma

2014-11-13T23:59:59.000Z

142

CONTRIBUTION OF GAMMA-RAY-LOUD RADIO GALAXIES' CORE EMISSIONS TO THE COSMIC MeV AND GeV GAMMA-RAY BACKGROUND RADIATION  

SciTech Connect (OSTI)

The Fermi gamma-ray satellite has recently detected gamma-ray emissions from radio galaxy cores. From these samples, we first examine the correlation between the luminosities at 5 GHz, L{sub 5GHz}, and at 0.1-10 GeV, L{sub {gamma}}, of gamma-ray-loud radio galaxies. We find that the correlation is significant with L{sub {gamma}}{proportional_to}L{sup 1.16}{sub 5GHz} based on a partial correlation analysis. Using this correlation and the radio luminosity function (RLF) of radio galaxies, we explore the contribution of gamma-ray-loud radio galaxies to the unresolved extragalactic gamma-ray background (EGRB). The gamma-ray luminosity function is obtained by normalizing the RLF to reproduce the source-count distribution of the Fermi gamma-ray-loud radio galaxies. We find that gamma-ray-loud radio galaxies can explain {approx}25% of the unresolved Fermi EGRB flux above 100 MeV and will also make a significant contribution to the EGRB in the 1-30 MeV energy band. Since blazars explain 22% of the EGRB above 100 MeV, radio-loud active galactic nucleus populations explain {approx}47% of the unresolved EGRB. We further make an interpretation on the origin of the EGRB. The observed EGRB spectrum at 0.2-100 GeV does not show an absorption signature by the extragalactic background light. Thus, the dominant population of the origin of EGRB at very high energy (>30 GeV) might be either nearby gamma-ray-emitting sources or sources with very hard gamma-ray spectra.

Inoue, Yoshiyuki, E-mail: yinoue@kusastro.kyoto-u.ac.jp [Department of Astronomy, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

2011-05-20T23:59:59.000Z

143

Minimizing the background radiation in the new neutron time-of-flight facility at CERN FLUKA Monte Carlo simulations for the optimization of the n_TOF second experimental line  

E-Print Network [OSTI]

At the particle physics laboratory CERN in Geneva, Switzerland, the Neutron Time-of-Flight facility has recently started the construction of a second experimental line. The new neutron beam line will unavoidably induce radiation in both the experimental area and in nearby accessible areas. Computer simulations for the minimization of the background were carried out using the FLUKA Monte Carlo simulation package. The background radiation in the new experimental area needs to be kept to a minimum during measurements. This was studied with focus on the contributions from backscattering in the beam dump. The beam dump was originally designed for shielding the outside area using a block of iron covered in concrete. However, the backscattering was never studied in detail. In this thesis, the fluences (i.e. the flux integrated over time) of neutrons and photons were studied in the experimental area while the beam dump design was modified. An optimized design was obtained by stopping the fast neutrons in a high Z mat...

Bergström, Ida; Elfgren, Erik

2013-06-11T23:59:59.000Z

144

Ground-Based Microwave Radiometer Measurements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground-Based Microwave Radiometer Measurements Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment D. Cimini University of L'Aquila L'Aquil, Italy E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Y. Han Science System Applications National Aeronautics Space Administration Goddard Space Flight Center Greenbelt, Maryland S. Keihm Jet Propulsion Laboratory California Institute of Technology Pasadena, California Introduction During September to October 2000, a water vapor intensive operational period (WVIOP) was conducted at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains (SGP) Cloud and

145

Lowering the Light Speed Isotropy Limit: European Synchrotron Radiation Facility Measurements  

E-Print Network [OSTI]

The measurement of the Compton edge of the scattered electrons in GRAAL facility in European Synchrotron Radiation Facility (ESRF) in Grenoble with respect to the Cosmic Microwave Background dipole reveals up to 10 sigma variations larger than the statistical errors. We now show that the variations are not due to the frequency variations of the accelerator. The nature of Compton edge variations remains unclear, thus outlining the imperative of dedicated studies of light speed anisotropy.

V. G. Gurzadyan; J. -P. Bocquet; A. Kashin; A. Margarian; O. Bartalini; V. Bellini; M. Castoldi; A. D'Angelo; J. -P. Didelez; R. Di Salvo; A. Fantini; G. Gervino; F. Ghio; B. Girolami; A. Giusa; M. Guidal; E. Hourany; S. Knyazyan; V. Kouznetsov; R. Kunne; A. Lapik; P. Levi Sandri; A. Lleres; S. Mehrabyan; D. Moricciani; V. Nedorezov; C. Perrin; D. Rebreyend; G. Russo; N. Rudnev; C. Schaerf; M. -L. Sperduto; M. -C. Sutera; A. Turinge

2007-01-05T23:59:59.000Z

146

Graphene Integrated Microwave Photonics  

Science Journals Connector (OSTI)

This paper proposes and analyzes the incorporation of graphene to integrated waveguides and circuits for application to the field of microwave photonics (MWP). We discuss the main...

Capmany, José; Doménech, David; Muñoz, Pascual

2014-01-01T23:59:59.000Z

147

Higher-order gravitational perturbations of the cosmic microwave background  

Science Journals Connector (OSTI)

We study the behavior of light rays in perturbed Robertson-Walker cosmologies, calculating the redshift between an observer and the surface of last scattering to second order in the metric perturbation. At first order we recover the classic results of Sachs and Wolfe, and at second order we delineate the various new effects which appear; there is no a priori guarantee that these effects are significantly smaller than those at first order, since there are large length scales in the problem which could lead to sizable prefactors. We find that secondorder terms of potential observational interest may be interpreted as transverse and longitudinal lensing by foreground density perturbations, and a correction to the integrated Sachs-Wolfe effect.

Ted Pyne and Sean M. Carroll

1996-03-15T23:59:59.000Z

148

Higher-Order Gravitational Perturbations of the Cosmic Microwave Background  

E-Print Network [OSTI]

We study the behavior of light rays in perturbed Robertson-Walker cosmologies, calculating the redshift between an observer and the surface of last scattering to second order in the metric perturbation. At first order we recover the classic results of Sachs and Wolfe, and at second order we delineate the various new effects which appear; there is no {\\it a priori} guarantee that these effects are significantly smaller than those at first order, since there are large length scales in the problem which could lead to sizable prefactors. We find that second order terms of potential observational interest may be interpreted as transverse and longitudinal lensing by foreground density perturbations, and a correction to the integrated Sachs-Wolfe effect.

Ted Pyne; Sean M. Carroll

1995-12-07T23:59:59.000Z

149

NEAR-MILLIMETER SPECTRUM OF THE MICROWAVE BACKGROUND  

E-Print Network [OSTI]

terminated at time B. Thermometers T1 through T7 are locatedindicated in Fig. 1. The thermometer T8 , which was immersedand a heater. A separate thermometer was used to monitor the

Woody, D.P.

2013-01-01T23:59:59.000Z

150

The Quest for Ultimate Broadband High Power Microwaves  

E-Print Network [OSTI]

Paper describes High Power Microwave research of combining GW peak power to achieve MV/m and GV/m radiated fields in 1 to 500 GHz band. To achieve such fields multiple independently triggered broadband GW sources, supplying power to multiple spatially distributed broadband radiators/antennas are used. Single TW array is used as an ultimate microwave weapon in 1 to 5 GHz range while multiple TW arrays provide GV/m radiating field at plasma frequencies in 300 GHz range leading to fusion power.

Podgorski, Andrew S

2014-01-01T23:59:59.000Z

151

First Intrinsic Anisotropy Observations with the Cosmic Background Imager  

E-Print Network [OSTI]

We present the first results of observations of the intrinsic anisotropy of the cosmic microwave background radiation with the Cosmic Background Imager from a site at 5080 m altitude in northern Chile. Our observations show a sharp decrease in C_l in the range l=400 - 1500. The broadband amplitudes we have measured are deltaT(band) = 58.7 (-6.3, +7.7) microK for l = 603 (-166, +180) and 29.7 (-4.2, +4.8) microK for l = 1190 (-224, +261), where these are half-power widths in l. Such a decrease in power at high l is one of the fundamental predictions of the standard cosmological model, and these are the first observations which cover a broad enough l range to show this decrease in a single experiment. The C_l we have measured enable us to place limits on the density parameter, Omega(tot) = 0.7 (90% confidence).

S. Padin; J. K. Cartwright; B. S. Mason; T. J. Pearson; A. C. S. Readhead; M. C. Shepherd; J. Sievers; P. S. Udomprasert; W. L. Holzapfel; S. T. Myers; J. E. Carlstrom; E. M. Leitch; M. Joy; L. Bronfman; J. May

2000-12-11T23:59:59.000Z

152

Variable frequency microwave heating apparatus  

DOE Patents [OSTI]

A variable frequency microwave heating apparatus (10) designed to allow modulation of the frequency of the microwaves introduced into a multi-mode microwave cavity (34) for testing or other selected applications. The variable frequency microwave heating apparatus (10) includes a microwave signal generator (12) and a high-power microwave amplifier (20) or a high-power microwave oscillator (14). A power supply (22) is provided for operation of the high-power microwave oscillator (14) or microwave amplifier (20). A directional coupler (24) is provided for detecting the direction and amplitude of signals incident upon and reflected from the microwave cavity (34). A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN); Johnson, Arvid C. (Lake in the Hills, IL); Thigpen, Larry T. (Angier, NC)

1999-01-01T23:59:59.000Z

153

Microwave Observation of Detonation  

Science Journals Connector (OSTI)

... We have recently developed a technique for measuring the velocity of detonation of various high explosives under contained conditions by means of the reflexion of microwaves from ... contained conditions by means of the reflexion of microwaves from a region travelling with the detonation front. The technique differs substantially from that of Koch2 and the recent development of ...

JOHN L. FARRANDS; G. F. CAWSEY

1956-01-07T23:59:59.000Z

154

Microwave processing of ceramics  

SciTech Connect (OSTI)

Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

Katz, J.D.

1993-04-01T23:59:59.000Z

155

Microwave processing of ceramics  

SciTech Connect (OSTI)

Recent work in the areas of microwave processing and joining of ceramics is briefly reviewed. Advantages and disadvantages of microwave processing as well as some of the current issues in the field are discussed. Current state and potential for future commercialization of this technology is also addressed.

Katz, J.D.

1993-01-01T23:59:59.000Z

156

ARM - Campaign Backgrounders  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Annual Reports Program Fact Sheets Campaign Backgrounders Education and Outreach Posters Brochures Research Highlights Summaries Campaign Backgrounders Please contact...

157

Non-thermal Cosmic Backgrounds from Blazars: the contribution to the CMB, X-ray and gamma-ray Backgrounds  

E-Print Network [OSTI]

We present a new assessment of the contribution of Blazars to the extragalactic background radiation across the e.m. spectrum. Our calculations rely on deep Blazar radio counts that we derived combining several multifrequency surveys. The integrated Blazar emission yields a broad-band non-thermal background that in some parts of the e.m. spectrum dominates the extragalactic brightness. Blazars are the main point-like contributors to the CMB. Their integrated emission causes an apparent T increase of 5-50 muK in the 50-250 GHz range. The CMB fluctuation spectrum is sensibly contaminated at l>300, for a Poissonian source distribution, or at lower l values if spatial clustering is present. We estimate that well over 100,000 Blazars will produce a significant signal in the PLANCK CMB anisotropy maps. Because of the microwave-Xray flux correlation, these sources are expected to have flux > a few 10^{-15} erg/s in the soft X-ray band. Thus, a large fraction of the foreground sources in CMB anisotropy maps could be ...

Giommi, P; Cavazzuti, E; Perri, M; Pittori, C

2006-01-01T23:59:59.000Z

158

Cosmic Background Radiation Mini-Review  

E-Print Network [OSTI]

This is a complete re-write of the mini-review for the Review of Particle Physics (a.k.a the Partcicle Data Book), which includes an assessment of the CMB anisotropy results and their interpretation up until the end of 2003. It forms a compact overview of the field at this time. Sections headings are: Introduction; Description of CMB Anisotropies; Cosmological Parameters; Physics of Anisotropies; Current Anisotropy Data; CMB Polarization; Complications; Constraints on Cosmologies; Particle Physics Constraints; Fundamental Lessons; and Future Directions.

Douglas Scott; George Smoot

2004-06-24T23:59:59.000Z

159

Microwave coupler and method  

DOE Patents [OSTI]

The present invention is directed to a microwave coupler for enhancing the heating or metallurgical treatment of materials within a cold-wall, rapidly heated cavity as provided by a microwave furnace. The coupling material of the present invention is an alpha-rhombohedral-boron-derivative-structure material such as boron carbide or boron silicide which can be appropriately positioned as a susceptor within the furnace to heat other material or be in powder particulate form so that composites and structures of boron carbide such as cutting tools, grinding wheels and the like can be rapidly and efficiently formed within microwave furnaces.

Holcombe, C.E.

1984-11-29T23:59:59.000Z

160

Emitron: microwave diode  

DOE Patents [OSTI]

The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

1982-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics  

E-Print Network [OSTI]

,2 These sources are usually flames or plasmas: arcs, sparks, plasma jets, inductively coupled plasma (ICP), high demonstrated the signal enhancement ability of their LAMPS (Laser-Assisted Microwave Plasma Spectroscopy utilizing interaction between microwave radiation and laser-induced plasma has been evaluated. Experimental

Richardson, Martin C.

162

Comparative study of microwave tomography segmentation techniques based on GMM and KNN in breast cancer detection  

Science Journals Connector (OSTI)

Microwave Tomography Imaging (MTI) is a new technology for early breast cancer detection. Compared to other methods such as X-ray, Magnetic Resonance Imaging (MRI) and ultrasound, the MTI technology is almost radiation-free, and low cost. However, the ... Keywords: gaussian mixture model, microwave tomography imaging, segmentation

Chunqiu Wang, Wei Wang, Sung Shin, Soon I. Jeon

2014-10-01T23:59:59.000Z

163

The evolution of energetic particles and the emitted radiation in solar flares  

SciTech Connect (OSTI)

The evolution of accelerated particle distributions in a magnetized plasma and the resulting radiation are calculated, and the results are applied to solar flares. To study the radiation on timescales of order of the particle lifetimes, the evolution of the particle distribution is determined using the Fokker-Planck equation including Coulomb collisions and magnetic mirroring. Analytic solution to the equation are obtained for limiting cases such as homogeneous injection in a homogeneous plasma, and for small pitch angle. These analytic solutions are used to place constraints on flare parameters such as density, loop length, and the injection timescale for very short impulsive flares. For general particle distributions in arbitrary magnetic field and background density, the equation is solved numerically. Over longer timescales, the variation with X-ray peak fluxes is shown to be consistent with the nonthermal thick target beam model, while multithermal and thin target models have difficulty matching the observations. The relative timing of microwaves and X-ray during individual flares is then investigated. The observation that the microwaves are observed to peak {approximately}2 s later than hard X-rays is interpreted as being due to an excess of microwave flux above that predicted by the simple thick target model. The author discusses a number of possible sources for this excess microwave flux including a flattening in the electron spectrum above hard X-ray energies, thermal synchroton emission, and trapping of electrons by converging magnetic field.

Lu, E.T.

1989-01-01T23:59:59.000Z

164

Joining of thermoplastic substrates by microwaves  

DOE Patents [OSTI]

A method for joining two or more items having surfaces of thermoplastic material includes the steps of depositing an electrically-conductive material upon the thermoplastic surface of at least one of the items, and then placing the other of the two items adjacent the one item so that the deposited material is in intimate contact with the surfaces of both the one and the other items. The deposited material and the thermoplastic surfaces contacted thereby are then exposed to microwave radiation so that the thermoplastic surfaces in contact with the deposited material melt, and then pressure is applied to the two items so that the melted thermoplastic surfaces fuse to one another. Upon discontinuance of the exposure to the microwave energy, and after permitting the thermoplastic surfaces to cool from the melted condition, the two items are joined together by the fused thermoplastic surfaces. The deposited material has a thickness which is preferably no greater than a skin depth, .delta..sub.s, which is related to the frequency of the microwave radiation and characteristics of the deposited material in accordance with an equation.

Paulauskas, Felix L. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

1997-01-01T23:59:59.000Z

165

Microwave and Radio Frequency Workshop  

Broader source: Energy.gov [DOE]

At the Microwave and Radio Frequency Workshop (held in Long Beach, CA, on July 25, 2012), academic and industry experts discussed the existing and emerging electrotechnologies – such as microwave ...

166

Microwave | OpenEI  

Open Energy Info (EERE)

Microwave Microwave Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

167

A New Microwave Temperature Profiler Â… First Measurements in Polar Regions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microwave Temperature Profiler - First Microwave Temperature Profiler - First Measurements in Polar Regions E. N. Kadygrov, A. V. Koldaev, and A. S. Viazankin Central Aerological Observatory Moscow, Russia A. Argentini, and A. Conidi Institute of Atmospheric Physics CNR, Italy Introduction Temperature inversions are a ubiquitous feature of the high latitude atmospheric boundary layer (ABL). In Polar Regions, the temperature inversion is a complicated phenomenon involving interactions between surface radiative cooling, subsidence and warm air advection. In the period 1997-2002, several microwave temperature profilers were used to measure temperature inversion parameters at one of the three sites of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM)

168

Estimating radiological background using imaging spectroscopy  

SciTech Connect (OSTI)

Optical imaging spectroscopy is investigated as a method to estimate radiological background by spectral identification of soils, sediments, rocks, minerals and building materials derived from natural materials and assigning tabulated radiological emission values to these materials. Radiological airborne surveys are undertaken by local, state and federal agencies to identify the presence of radiological materials out of regulatory compliance. Detection performance in such surveys is determined by (among other factors) the uncertainty in the radiation background; increased knowledge of the expected radiation background will improve the ability to detect low-activity radiological materials. Radiological background due to naturally occurring radiological materials (NORM) can be estimated by reference to previous survey results, use of global 40K, 238U, and 232Th (KUT) values, reference to existing USGS radiation background maps, or by a moving average of the data as it is acquired. Each of these methods has its drawbacks: previous survey results may not include recent changes, the global average provides only a zero-order estimate, the USGS background radiation map resolutions are coarse and are accurate only to 1 km – 25 km sampling intervals depending on locale, and a moving average may essentially low pass filter the data to obscure small changes in radiation counts. Imaging spectroscopy from airborne or spaceborne platforms can offer higher resolution identification of materials and background, as well as provide imaging context information. AVIRIS hyperspectral image data is analyzed using commercial exploitation software to determine the usefulness of imaging spectroscopy to identify qualitative radiological background emissions when compared to airborne radiological survey data.

Bernacki, Bruce E.; Schweppe, John E.; Stave, Sean C.; Jordan, David V.; Kulisek, Jonathan A.; Stewart, Trevor N.; Seifert, Carolyn E.

2014-06-13T23:59:59.000Z

169

Radiation: Facts, Risks and Realities  

E-Print Network [OSTI]

of Radiation 3 Understanding Radiation Risks 6 Naturally Occurring (Background) Radiation 7 Man-Made Radiation, beta particles and gamma rays. Other types, such as x-rays, can occur naturally or be machine-produced. Scientists have also learned that radiation sources are naturally all around us. Radiation can come from

170

Variable frequency microwave furnace system  

DOE Patents [OSTI]

A variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34) for testing or other selected applications. The variable frequency microwave furnace system (10) includes a microwave signal generator (12) or microwave voltage-controlled oscillator (14) for generating a low-power microwave signal for input to the microwave furnace. A first amplifier (18) may be provided to amplify the magnitude of the signal output from the microwave signal generator (12) or the microwave voltage-controlled oscillator (14). A second amplifier (20) is provided for processing the signal output by the first amplifier (18). The second amplifier (20) outputs the microwave signal input to the furnace cavity (34). In the preferred embodiment, the second amplifier (20) is a traveling-wave tube (TWT). A power supply (22) is provided for operation of the second amplifier (20). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load (28).

Bible, Don W. (Clinton, TN); Lauf, Robert J. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

171

Variable frequency microwave furnace system  

DOE Patents [OSTI]

A variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity for testing or other selected applications. The variable frequency microwave furnace system includes a microwave signal generator or microwave voltage-controlled oscillator for generating a low-power microwave signal for input to the microwave furnace. A first amplifier may be provided to amplify the magnitude of the signal output from the microwave signal generator or the microwave voltage-controlled oscillator. A second amplifier is provided for processing the signal output by the first amplifier. The second amplifier outputs the microwave signal input to the furnace cavity. In the preferred embodiment, the second amplifier is a traveling-wave tube (TWT). A power supply is provided for operation of the second amplifier. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. Reflected power is dissipated in the reflected power load. 5 figs.

Bible, D.W.; Lauf, R.J.

1994-06-14T23:59:59.000Z

172

Extended Mosaic Observations with the Cosmic Background Imager  

E-Print Network [OSTI]

Two years of microwave background observations with the Cosmic Background Imager (CBI) have been combined to give a sensitive, high resolution angular power spectrum over the range 400 2000 power previously seen with the CBI is reduced. Under the assumption that any signal in excess of the primary anisotropy is due to a secondary Sunyaev-Zeldovich anisotropy in distant galaxy clusters we use CBI, ACBAR, and BIMA data to place a constraint on the present-day rms mass fluctuation sigma_8. We present the results of a cosmological parameter analysis on the l < 2000 primary anisotropy data which show significant improvements in the parameters as compared to WMAP alone, and we explore the role of the small-scale cosmic microwave background data in breaking parameter degeneracies.

A. C. S. Readhead; B. S. Mason; C. R. Contaldi; T. J. Pearson; J. R. Bond; S. T. Myers; S. Padin; J. L. Sievers; J. K. Cartwright; M. C. Shepherd; D. Pogosyan; S. Prunet; P. Altamirano; R. Bustos; L. Bronfman; S. Casassus; W. L. Holzapfel; J. May; U. -L. Pen; S. Torres; P. S. Udomprasert

2004-02-15T23:59:59.000Z

173

Development of Generic Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kentucky Guidance for Ambient Background Assessment Kentucky Guidance for Ambient Background Assessment January 8, 2004 Natural Resources and Environmental Protection Cabinet Introduction This guidance document is intended to assist in comparing site data and background data for sites undergoing environmental assessment. These procedures provide a simplified statistical procedure for determining if the site data is part of the background population. It also provides generic statewide background values for inorganic chemicals that may be used in lieu of collecting site-specific background samples. The statistical procedures may be used for site- specific data or the generic statewide values in Tables 1 and 2. This guidance does not preclude other appropriate statistical comparisons from being made, but rather a simplified screening

174

Polarization Observations with the Cosmic Background Imager  

E-Print Network [OSTI]

Polarization observations of the cosmic microwave background with the Cosmic Background Imager from September 2002 to May 2004 provide a significant detection of the E-mode polarization and reveal an angular power spectrum of polarized emission showing peaks and valleys that are shifted in phase by half a cycle relative to those of the total intensity spectrum. This key agreement between the phase of the observed polarization spectrum and that predicted based on the total intensity spectrum provides support for the standard model of cosmology, in which dark matter and dark energy are the dominant constituents, the geometry is close to flat, and primordial density fluctuations are predominantly adiabatic with a matter power spectrum commensurate with inflationary cosmological models.

A. C. S. Readhead; S. T. Myers; T. J. Pearson; J. L. Sievers; B. S. Mason; C. R. Contaldi; J. R. Bond; R. Bustos; P. Altamirano; C. Achermann; L. Bronfman; J. E. Carlstrom; J. K. Cartwright; S. Casassus; C. Dickinson; W. L. Holzapfel; J. M. Kovac; E. M. Leitch; J. May; S. Padin; D. Pogosyan; M. Pospieszalski; C. Pryke; R. Reeves; M. C. Shepherd; S. Torres

2004-09-23T23:59:59.000Z

175

ARM - Radar Backgrounder  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Field Notes Blog feed Events feed Employment Research Highlights Data Announcements Education News Archive What's this? Social Media Guidance Radar Backgrounder ARM Scanning...

176

Radiation.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An average American's exposure is about 620 millirems per year from naturally occurring and other sources. Other Factors Background radiation varies with location....

177

Dark radiation from particle decay: cosmological constraints and opportunities  

SciTech Connect (OSTI)

We study particle decay as the origin of dark radiation. After elaborating general properties and useful parametrisations we provide model-independent and easy-to-use constraints from nucleosynthesis, the cosmic microwave background and structure formation. Bounds on branching ratios and mass hierarchies depend in a unique way on the time of decay. We demonstrate their power to exclude well-motivated scenarios taking the example of the lightest ordinary sparticle decaying into the gravitino. We point out signatures and opportunities in cosmological observations and structure formation. For example, if there are two dark decay modes, dark radiation and the observed dark matter with adjustable free-streaming can originate from the same decaying particle, solving small-scale problems of structure formation. Hot dark matter mimicking a neutrino mass scale as deduced from cosmological observations can arise and possibly be distinguished after a discovery. Our results can be used as a guideline for model building.

Hasenkamp, Jasper; Kersten, Jörn, E-mail: Jasper.Hasenkamp@desy.de, E-mail: Joern.Kersten@desy.de [II. Institute for Theoretical Physics, University of Hamburg, 22761 Hamburg (Germany)

2013-08-01T23:59:59.000Z

178

Dark radiation from particle decay: cosmological constraints and opportunities  

E-Print Network [OSTI]

We study particle decay as the origin of dark radiation. After elaborating general properties and useful parametrisations we provide model-independent and easy-to-use constraints from nucleosynthesis, the cosmic microwave background and structure formation. Bounds on branching ratios and mass hierarchies depend in a unique way on the time of decay. We demonstrate their power to exclude well-motivated scenarios taking the example of the lightest ordinary sparticle decaying into the gravitino. We point out signatures and opportunities in cosmological observations and structure formation. For example, if there are two dark decay modes, dark radiation and the observed dark matter with adjustable free-streaming can originate from the same decaying particle, solving small-scale problems of structure formation. Hot dark matter mimicking a neutrino mass scale as deduced from cosmological observations can arise and possibly be distinguished after a discovery. Our results can be used as a guideline for model building.

Jasper Hasenkamp; Jörn Kersten

2014-02-13T23:59:59.000Z

179

A microwave impedance meter  

E-Print Network [OSTI]

A MICROWAVE IMPEDANCE METER A Thesis Virgil Layfaette 8oaz Submitted to the Graduate School of the Agricultural and Mechanical College oi' Texas in partial fulfillment of the requirements for the degree of MASTER OF SC I ENCE August 1 g61... and advice of Dr. J. P, German who suggested the research proj ct and rendered assistance when necessary. Further thanks are extended to the Electrical Engineering Faculty and Staff for their patience and suggestions, 1v CONTENTS LIST OF FIGURES...

Boaz, Virgil Layfaette

2012-06-07T23:59:59.000Z

180

Cryogenic Microwave Anisotropic Artificial Frank Trang  

E-Print Network [OSTI]

Cryogenic Microwave Anisotropic Artificial Materials by Frank Trang B.S., University of California entitled: Cryogenic Microwave Anisotropic Artificial Materials written by Frank Trang has been approved.D., Electrical Engineering) Cryogenic Microwave Anisotropic Artificial Materials Thesis directed by Professor

Popovic, Zoya

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Metamaterial microwave holographic imaging system  

Science Journals Connector (OSTI)

We demonstrate a microwave imaging system that combines advances in metamaterial aperture design with emerging computational imaging techniques. The flexibility inherent to...

Hunt, John; Gollub, Jonah; Driscoll, Tom; Lipworth, Guy; Mrozack, Alex; Reynolds, Matthew S; Brady, David J; Smith, David R

2014-01-01T23:59:59.000Z

182

Application of microwave solidification technology to radioactive waste  

SciTech Connect (OSTI)

The EPA has declared vitrification to be the Best Available Demonstrated Technology (BDAT) for High Level Radioactive Waste (40 CFR 268.42). Vitrification has been chosen as the method of choice for treating a number of radioactive residues and wastes in the DOE complex. Vitrification offers advantages of waste volume reduction, the ability to handle changing waste forms, and a stable, nonleachable final waste form. Microwave heating is a superior method for vitrification of radioactive wastes. Advantages of microwave heating include: (1) direct waste heating, eliminates need for electrodes, refractories and other consumables; (2) ``in-can`` processing allows for treatment of the material in its final container, (3) a mechanically simple system where the microwaves are generated away from the treatment area and transmitted to the treatment applicator by a wave guide, thus minimizing worker exposure to radiation; (4) easier equipment maintenance; and (5) a high degree of public acceptance.

Harris, M.; Sprenger, G.; Roushey, B.; Fenner, G.; Nieweg, R.

1995-09-28T23:59:59.000Z

183

"Millikan oil drops" as quantum transducers between electromagnetic and gravitational radiation  

E-Print Network [OSTI]

Pairs of Planck-mass-scale drops of superfluid helium coated by electrons (i.e., "Millikan oil drops"), when levitated in the presence of strong magnetic fields and at low temperatures, can be efficient quantum transducers between electromagnetic (EM) and gravitational (GR) radiation. A Hertz-like experiment, in which EM waves are converted at the source into GR waves, and then back-converted at the receiver from GR waves back into EM waves, should be practical to perform. This would open up observations of the gravity-wave analog of the Cosmic Microwave Background from the extremely early Big Bang, and also communications directly through the interior of the Earth.

Raymond Y. Chiao

2007-02-19T23:59:59.000Z

184

Microwave and optical saturable absorption in graphene  

Science Journals Connector (OSTI)

We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene...

Zheng, Zhiwei; Zhao, Chujun; Lu, Shunbin; Chen, Yu; Li, Ying; Zhang, Han; Wen, Shuangchun

2012-01-01T23:59:59.000Z

185

Microwave and Pulsed Power  

SciTech Connect (OSTI)

The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

Freytag, E.K.

1993-03-01T23:59:59.000Z

186

radiation.cdr  

Office of Legacy Management (LM)

Radiation-It's a Fact of Life Radiation-It's a Fact of Life It has been with us since the beginning of time. Everyone who has ever walked on this planet has been exposed to radiation. For the most part, nature is the largest source of exposure. It's in the air we breathe, the ground we walk on, and even the food we eat. The radiation we receive from all natural and some man-made sources is called "background radiation." The millirem (mrem) is a unit used for measuring radiation received by a person. The total average background for radiation received by people living in the United States is 360 millirem per year (mrem/yr), of which 300 mrem/yr is from natural sources, and 60 mrem/yr is man-made. Cosmic Radiation from the sun and stars Internal Radiation from naturally radioactive

187

EBSD Images Theoretical Background  

E-Print Network [OSTI]

Motivation EBSD Images Theoretical Background Defects in the Weld Grain Growth Low Speed Welding High Speed Welding Conclusion Heat-Affected Zone Observations Welding Experiments The low density in the transportation industries. Reproducibility and the low cost make welding a major large scale assembly process

Candea, George

188

David Smith Academic background  

E-Print Network [OSTI]

David Smith Academic background Ph.D. in Mathematics (Algebra), Université de Sherbrooke, Canada project program (I. Assem, F. Bergeron, C. Reutenauer, D. Smith) $132,000 ($44,000 per year for 3 years. Schiffler and D. Smith, Friezes, strings and cluster variables, to appear in Glasgow Mathematcal Journal. 2

189

Method and apparatus for measuring butterfat and protein content using microwave absorption techniques  

DOE Patents [OSTI]

A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

Fryer, Michael O. (Roberts, ID); Hills, Andrea J. (Iowa City, IA); Morrison, John L. (Idaho Falls, ID)

2000-01-01T23:59:59.000Z

190

Gravitational-Wave Stochastic Background from Cosmic Strings  

Science Journals Connector (OSTI)

We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.

Xavier Siemens; Vuk Mandic; Jolien Creighton

2007-03-13T23:59:59.000Z

191

Microwave Regenerated DPF for Auxiliary Power Units and Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave Regenerated DPF for Auxiliary Power Units and Diesel Hybrid Vehicles Microwave regeneration...

192

Electroweak Corrections to Photon Scattering, Polarization and Lensing in a Gravitational Background and the Near Horizon Limit  

E-Print Network [OSTI]

We investigate the semiclassical approach to the lensing of photons in a spherically symmetric gravitational background, starting from Born level and include in our analysis the radiative corrections obtained from the electroweak theory for the graviton/photon/photon vertex. In this approach, the cross section is related to the angular variation of the impact parameter ($b$), which is then solved for $b$ as a function of the angle of deflection, and measured in horizon units ($b_h\\equiv b/(2 G M)$). Exact numerical solutions for the angular deflection are presented. The numerical analysis shows that perturbation theory in a weak background agrees with the classical Einstein formula for the deflection already at distances of the order of $20$ horizon units ($\\sim 20\\, b_h$) and it is optimal in the description both of very strong and weak lensings. We show that the electroweak corrections to the cross section are sizeable, becoming very significant for high energy gamma rays. Our analysis covers in energy most of the photon spectrum, from the cosmic microwave background up to very high energy gamma rays, and scatterings with any value of the photon impact parameter. We also study the helicity-flip photon amplitude, which is of $O(\\alpha^2)$ in the weak coupling $\\alpha$, and its massless fermion limit, which involves the exchange of a conformal anomaly pole. The corresponding cross section is proportional to the Born level result and brings to a simple renormalization of Einsten's formula.

Claudio Coriano; Luigi Delle Rose; Matteo Maria Maglio; Mirko Serino

2014-11-11T23:59:59.000Z

193

Gigatron microwave amplifier  

DOE Patents [OSTI]

An electron tube for achieving high power at high frequency with high efficiency is described, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot there through for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

McIntyre, P.M.

1993-07-13T23:59:59.000Z

194

Gigatron microwave amplifier  

DOE Patents [OSTI]

An electron tube for achieving high power at high frequency with high efficiency, including an input coupler, a ribbon-shaped electron beam and a traveling wave output coupler. The input coupler is a lumped constant resonant circuit that modulates a field emitter array cathode at microwave frequency. A bunched ribbon electron beam is emitted from the cathode in periodic bursts at the desired frequency. The beam has a ribbon configuration to eliminate limitations inherent in round beam devices. The traveling wave coupler efficiently extracts energy from the electron beam, and includes a waveguide with a slot therethrough for receiving the electron beam. The ribbon beam is tilted at an angle with respect to the traveling wave coupler so that the electron beam couples in-phase with the traveling wave in the waveguide. The traveling wave coupler thus extracts energy from the electron beam over the entire width of the beam.

McIntyre, Peter M. (611 Montclair, College Station, TX 77840)

1993-01-01T23:59:59.000Z

195

GammaSense: Infrastructureless Positioning Using Background Radioactivity  

Science Journals Connector (OSTI)

We introduce the harvesting of natural background radioactivity for positioning. Using a standard Geiger-Müller counter as sensor, we fingerprint the natural levels of gamma radiation with the aim of then roughly pinpointing the position of a client ...

Doina Bucur; Mikkel Baun Kjærgaard

2008-10-01T23:59:59.000Z

196

II. HISTORICAL BACKGROUND Since 1977 the University of Oregon Solar  

E-Print Network [OSTI]

of utilities headed by the Eugene Water and Electric Board initiated the Re- gional Solar Radiation Monitoring2 II. HISTORICAL BACKGROUND Since 1977 the University of Oregon Solar Monitoring Laboratory has operated a solar radiation monitoring network in the Pacific Northwest. The number of stations participat

Oregon, University of

197

Paducah Background Factsheet | Department of Energy  

Office of Environmental Management (EM)

Background Factsheet Paducah Background Factsheet Background Fact Sheet Transfer of Depleted Uranium and Subsequent Transactions, May 15, 2012 Paducah Background...

198

Thermodynamics of water superheated in the microwave oven  

Science Journals Connector (OSTI)

Water is conveniently heated above its normal boiling point in a microwave oven in a glass microwave oven teapot. ...

B. H. Erné; Penny Snetsinger

2000-10-01T23:59:59.000Z

199

Microwave coupling of frequency-locked Josephson junction arrays  

SciTech Connect (OSTI)

A high temperature superconducting YBa{sub 2}Cu{sub 3}O{sub y} array of five Josephson junctions designed with additional coupling lines has been developed to demonstrate the effects of frequency locking and impedance matching for applications such as oscillators, mixers, and detectors. The Josephson self-radiation power was directly detected by a superheterodyne receiver, and Shapiro steps were also measured. The Josephson self-radiation properties reveal good quality of phase locking and microwave coupling with external circuits. The maximum self-radiation power of our array is about 50 pW which is several ten times higher than that of a single Josephson junction, and its peak point exactly satisfies the Josephson current-voltage relation. The Shapiro-step measurements show that the behavior of current-voltage curve depends on the effective inductance of coupling lines which affects the total impedance of Josephson junction array and microwave coupling. The Josephson oscillation frequency was obtained up to about 880 GHz which is 73{percent} of the maximum available frequency calculated from the characteristic voltage of the Josephson junctions. Experimental results show that this type of Josephson junction array can improve the Josephson self-radiation power and increase the maximum detectable frequency. {copyright} {ital 1997 American Institute of Physics.}

Song, I.; Eom, Y.; Park, G. [Department of Physics, Sogang University, Seoul 100-611 (Korea)] [Department of Physics, Sogang University, Seoul 100-611 (Korea); Lee, E.; Park, S. [Electronic Materials Laboratory, Samsung Advanced Institute of Technology, Suwon (Korea)] [Electronic Materials Laboratory, Samsung Advanced Institute of Technology, Suwon (Korea)

1997-06-01T23:59:59.000Z

200

Low Dose Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ancient Salt Beds Ancient Salt Beds Repository Science Renewable Energy The WIPP Underground may be ideal to study effects of Very Low Dose Rates on Biological Systems Low Background Radiation Experiment We're all bathing in it. It's in the food we eat, the water we drink, the soil we tread and even the air we breathe. It's background radiation, it's everywhere and we can't get away from it. But what would happen if you somehow "pulled the plug" on natural background radiation? Would organisms suffer or thrive if they grew up without their constant exposure to background radiation? That's what a consortium of scientists conducting an experiment at the Waste Isolation Pilot Plant aim to find out. Despite being an underground repository for transuranic radioactive waste,

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

202

Microwavable thermal energy storage material  

DOE Patents [OSTI]

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

203

Microwave assisted centrifuge and related methods  

DOE Patents [OSTI]

Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

Meikrantz, David H. (Idaho Falls, ID) [Idaho Falls, ID

2010-08-17T23:59:59.000Z

204

Possible generation of $?$-ray laser by electrons wiggling in a background laser  

E-Print Network [OSTI]

The possibility of $\\gamma-$ray laser generation by the radiation of wiggling electrons in an usual background laser is discussed.

Qi-Ren Zhang

2014-08-13T23:59:59.000Z

205

Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects  

SciTech Connect (OSTI)

This report is concerned with the potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS). The report is written in the form of a detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation, followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system (US DOE and NASA, 1978).

Not Available

1980-11-01T23:59:59.000Z

206

Instrument Design Simulations for Synthetic Aperture Microwave Radiometric Imaging of Wind Speed and  

E-Print Network [OSTI]

Instrument Design Simulations for Synthetic Aperture Microwave Radiometric Imaging of Wind Speed, US Abstract -- The measurement of peak winds in hurricanes is critical to forecasting intensity in radiative transfer modeling for hurricane force winds and large incidence angles are required for HIRad

Ruf, Christopher

207

Microwave and plasma-assisted modification of composite fiber surface topography  

DOE Patents [OSTI]

The present invention introduces a novel method for producing an undulated surface on composite fibers using plasma technology and microwave radiation. The undulated surface improves the mechanical interlocking of the fibers to composite resins and enhances the mechanical strength and interfacial sheer strength of the composites in which they are introduced.

Paulauskas, Felix L. (Knoxville, TN); White, Terry L. (Knoxville, TN); Bigelow, Timothy S. (Knoxville, TN)

2003-02-04T23:59:59.000Z

208

Microwave scattering from laser spark in air  

SciTech Connect (OSTI)

In this paper, microwave Mie scattering from a laser-induced plasma in atmospheric air is computed. It shows that the scattered microwave transitions from coherent Rayleigh scattering to Mie scattering based on the relative transparency of the laser-induced plasma at the microwave frequency. The microwave penetration in the plasma alters from total transparency to partial shielding due to the sharp increase of the electron number density within the avalanche ionization phase. The transition from Rayleigh scattering to Mie scattering is verified by both the temporal evolution of the scattered microwave and the homogeneity of polar scattering plots.

Sawyer, Jordan; Zhang Zhili [Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Shneider, Mikhail N. [Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

2012-09-15T23:59:59.000Z

209

Adhesive bonding using variable frequency microwave energy  

DOE Patents [OSTI]

Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy.

Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Paulauskas, Felix L. (Oak Ridge, TN); Fathi, Zakaryae (Cary, NC); Wei, Jianghua (Raleigh, NC)

1998-01-01T23:59:59.000Z

210

Adhesive bonding using variable frequency microwave energy  

DOE Patents [OSTI]

Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

1998-09-08T23:59:59.000Z

211

Adhesive bonding using variable frequency microwave energy  

DOE Patents [OSTI]

Methods of facilitating the adhesive bonding of various components with variable frequency microwave energy are disclosed. The time required to cure a polymeric adhesive is decreased by placing components to be bonded via the adhesive in a microwave heating apparatus having a multimode cavity and irradiated with microwaves of varying frequencies. Methods of uniformly heating various articles having conductive fibers disposed therein are provided. Microwave energy may be selectively oriented to enter an edge portion of an article having conductive fibers therein. An edge portion of an article having conductive fibers therein may be selectively shielded from microwave energy. 26 figs.

Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.; Fathi, Z.; Wei, J.

1998-08-25T23:59:59.000Z

212

Microwave sintering of boron carbide  

DOE Patents [OSTI]

A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

1988-06-10T23:59:59.000Z

213

Microwave transient analyzer  

DOE Patents [OSTI]

A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source and a Bragg cell for deflecting a light beam at a plurality of deflection angles dependent upon frequency content of the signal. A streak camera and a microchannel plate intensifier are used to project Bragg cell output onto either a photographic film or a charge coupled device (CCD) imager. Timing markers are provided by a comb generator and a one shot generator, the outputs of which are also routed through the streak camera onto the film or the CCD imager. Using the inventive method, the full range of the output of the Bragg cell can be recorded as a function of time. 5 figs.

Gallegos, C.H.; Ogle, J.W.; Stokes, J.L.

1992-11-24T23:59:59.000Z

214

Microwave transient analyzer  

DOE Patents [OSTI]

A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source (12) and a Bragg cell (14) for deflecting a light beam (22) at a plurality of deflection angles (36) dependent upon frequency content of the signal. A streak camera (26) and a microchannel plate intensifier (28) are used to project Bragg cell (14) output onto either a photographic film (32) or a charge coupled device (CCD) imager (366). Timing markers are provided by a comb generator (50) and a one shot generator (52), the outputs of which are also routed through the streak camera (26) onto the film (32) or the CCD imager (366). Using the inventive method, the full range of the output of the Bragg cell (14) can be recorded as a function of time.

Gallegos, Cenobio H. (Santa Fe, NM); Ogle, James W. (Santa Fe, NM); Stokes, John L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

215

Polycrystal diamond growth in a microwave plasma torch  

SciTech Connect (OSTI)

Diamond films of different structures were deposited on quartz, WC-Co, and molybdenum substrates in a microwave plasma torch discharge in an argon-hydrogen-methane gas mixture in a sealed chamber at pressures close to atmospheric by using the chemical vapor deposition technique. Images of diamond polycrystal films and separate crystals, as well as results of Raman spectroscopy, are presented. The spectra of optical plasma radiation recorded during film deposition demonstrate the presence of intense H{sub {alpha}} hydrogen and C{sub 2} radical bands known as Swan bands.

Sergeichev, K. F.; Lukina, N. A.; Bolshakov, A. P.; Ralchenko, V. G.; Arutyunyan, N. R.; Vlasov, I. I. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation)

2010-12-15T23:59:59.000Z

216

Influence of Extraterrestrial Radiation on Radiation Portal Monitors  

SciTech Connect (OSTI)

Cosmic radiation and solar flares can be a major source of background radiation at the Earth’s surface. This paper examines the relationship between extraterrestrial radiation and the detectable background in radiation portal monitors used for homeland security applications. Background radiation data from 13 radiation portal monitor facilities are examined and compared against external sources of data related to extraterrestrial radiation, including measurements at neutron monitors located at 53 cosmic-ray observatories around the Earth, four polar orbiting satellites, three geostationary satellites, ground-based geomagnetic field data from observatories around the Earth, a solar magnetic index, solar radio flux data, and sunspot activity data. Four-years (January 2003 through December 2006) of data are used in this study, which include the latter part of Solar Cycle 23 as solar activity was on the decline. The analysis shows a significant relationship between some extraterrestrial radiation and the background detected in the radiation portal monitors. A demonstrable decline is shown in the average gamma ray and neutron background at the radiation portal monitors as solar activity declined over the period of the study.

Keller, Paul E.; Kouzes, Richard T.

2009-06-01T23:59:59.000Z

217

MAR Background Report MAR Background Report: Indigenous Protest in Brazil  

E-Print Network [OSTI]

MAR Background Report MAR Background Report: Indigenous Protest in Brazil Hundreds of indigenous people demonstrated at the National Congress in Brasilia, capital of Brazil, following the announcement in the 1990s in the midst of extensive protests in Brazil and around the world. On February 8, an indigenous

Milchberg, Howard

218

Americans' Average Radiation Exposure  

SciTech Connect (OSTI)

We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body.

NA

2000-08-11T23:59:59.000Z

219

Simulation of PEP-II Accelerator Backgrounds Using TURTLE  

SciTech Connect (OSTI)

We present studies of accelerator-induced backgrounds in the BaBar detector at the SLAC B-Factory, carried out using LPTURTLE, a modified version of the DECAY TURTLE simulation package. Lost-particle backgrounds in PEP-II are dominated by a combination of beam-gas bremstrahlung, beam-gas Coulomb scattering, radiative-Bhabha events and beam-beam blow-up. The radiation damage and detector occupancy caused by the associated electromagnetic shower debris can limit the usable luminosity. In order to understand and mitigate such backgrounds, we have performed a full program of beam-gas and luminosity-background simulations, that include the effects of the detector solenoidal field, detailed modeling of limiting apertures in both collider rings, and optimization of the betatron collimation scheme in the presence of large transverse tails.

Barlow, R.J.; Fieguth, T.; /SLAC; Kozanecki, W.; /DSM, DAPNIA, Saclay; Majewski, S.A.; /Stanford U., Phys. Dept.; Roudeau, P.; Stocchi, A.; /Orsay, LAL

2006-02-15T23:59:59.000Z

220

Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar panels are designed as a photovoltaic module. The energy producing aspect of the photovoltaic module has two primary steps. The first is a semiconducting material such as...

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and the Bureau of Reclamation signed 10-year agreements - known as the Columbia Basin Fish Accords - with four Northwest tribes and two states on May 2, 2008. These historic...

222

Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

maintenance personnel, and film crews use small, portable lighting systems known as "mobile lighting." Traditionally, mobile lighting units are powered by diesel fuel generators...

223

Background  

Science Journals Connector (OSTI)

Onondaga Lake is located (lat. 43°06?54?; long. 76°14?34?) immediately north of the City of Syracuse, in Onondaga County, in the middle of the most urbanized ... River. The Seneca River combines with the Oneida R...

Steven W. Effler; Gena Harnett

1996-01-01T23:59:59.000Z

224

Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonneville Power Administration is considering building a new office building on its Ross Complex in Vancouver, Wash., to meet long-standing work space needs. BPA is inviting...

225

Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Administration, January 14, 2011 Figure 2 - Natural Gas Rig Count U.S. Natural Gas Rotary Rigs in Operation (Count) 0 400 800 1200 1600 2000 J a n - 0 7 M a r - 0 7 M a y -...

226

Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable energy sources are critical to the nation's future, and hydrogen-powered fuel cells offer an attractive alternative to current technologies. However, fuel cell...

227

Background  

Office of Scientific and Technical Information (OSTI)

Energy Star Lighting Verification Program (Program for the Evaluation and Analysis of Residential Lighting) Semi-annual report For the period of October 2003 to April 2004 Authored...

228

Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

build a facility in the Sandia Science & Technology Park (SS&TP) in 1998 for their Photovoltaics Division, which builds solar cells for the space industry. This division is built...

229

Cosmic string, hydrodynamics and microanisotropies in the cosmic background radiation  

Science Journals Connector (OSTI)

... R/c, and in the region r ^ R, the metric will be approximately Schwarzschild. For these reasons I shall take the ... . For these reasons I shall take the Schwarzschild metric for r^ R, and 'cut out' the sphere r < R which ...

S.T. Chase

1986-09-04T23:59:59.000Z

230

Microwave assisted hard rock cutting  

DOE Patents [OSTI]

An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

1991-01-01T23:59:59.000Z

231

Gravitational-wave stochastic background from kinks and cusps on cosmic strings  

Science Journals Connector (OSTI)

We compute the contribution of kinks on cosmic string loops to stochastic background of gravitational waves (SBGW). We find that kinks contribute at the same order as cusps to the SBGW. We discuss the accessibility of the total background due to kinks as well as cusps to current and planned gravitational-wave detectors, as well as to the big bang nucleosynthesis (BBN), the cosmic microwave background (CMB), and pulsar timing constraints. As in the case of cusps, we find that current data from interferometric gravitational-wave detectors, such as LIGO, are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds.

S. Ölmez; V. Mandic; X. Siemens

2010-05-13T23:59:59.000Z

232

Microwave solidification development for Rocky Flats waste  

SciTech Connect (OSTI)

The Microwave Engineering Team at the Rocky Flats Plant has developed a production-scale system for the treatment of hazardous, radioactive, and mixed wastes using microwave energy. The system produces a vitreous final form which meets the acceptance criteria for shipment and disposal. The technology also has potential for application on various other waste streams from the public and private sectors. Technology transfer opportunities are being identified and pursued for commercialization of the microwave solidification technology.

Dixon, D.; Erle, R.; Eschen, V. [and others

1994-04-01T23:59:59.000Z

233

Aluminum as a source of background in low background experiments  

E-Print Network [OSTI]

Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10^-5 counts/(kg y keV) in the region of interest around the Q value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of 22Na, 26Al, 226Ra and 228Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.

B. Majorovits; I. Abt; M. Laubenstein; O. Volynets

2011-05-18T23:59:59.000Z

234

Process for microwave sintering boron carbide  

DOE Patents [OSTI]

A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

Holcombe, C.E.; Morrow, M.S.

1993-10-12T23:59:59.000Z

235

Process for microwave sintering boron carbide  

DOE Patents [OSTI]

A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

Holcombe, Cressie E. (440 Sugarwood Dr., Knoxville, TN 37922); Morrow, Marvin S. (Rte. #3, Box 113, Kingston, TN 37763)

1993-01-01T23:59:59.000Z

236

Terahertz radiation mixer  

DOE Patents [OSTI]

A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

Wanke, Michael C. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA); Lee, Mark (Albuquerque, NM)

2008-05-20T23:59:59.000Z

237

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Expanded Capacity Microwave-Cleaned Diesel Particulate Filter Expanded Capacity Microwave-Cleaned Diesel Particulate Filter 2002 DEER Conference Presentation: Industrial Ceramic...

238

New Energy Efficiency Standards for Microwave Ovens to Save Consumers...  

Energy Savers [EERE]

New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills May 31,...

239

Energy Efficiency Standards for Microwave Ovens Saves Consumers...  

Energy Savers [EERE]

Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy...

240

Radiation Safety Edward O'Connell  

E-Print Network [OSTI]

tissues) #12;Sources of Background Radiation Exposure · Naturally occurring radioactive materialsRadiation Safety Edward O'Connell Radiation Safety Officer Stony Brook University New York #12;STONY BROOK UNIVERSITY & U. HOSPITAL MEDICAL CENTER #12;Why Radiation Safety · Working with radioactive

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Low background techniques in XMASS  

SciTech Connect (OSTI)

The XMASS project aims to detect pp and {sup 7}Be solar neutrinos, neutrino-less double beta decay, and dark matter searches using ultra-pure liquid xenon. The first stage of XMASS project is concentrated on dark matter searches using 800 kg liquid xenon detector which requires low background and low threshold. Several techniques applied to XMASS detector for low background will be presented.

Takeda, Atsushi [Kamioka Observatory, ICRR, University of Tokyo, 456 Higashi-Mozumi, Kamioka-cho, Hida, Gifu, 506-1205 (Japan)

2011-04-27T23:59:59.000Z

242

MARSAME Appendix B B. SOURCES OF BACKGROUND RADIOACTIVITY  

E-Print Network [OSTI]

consideration is given to issues associated with technologically enhanced naturally occurring radioactive reports on Exposure of the Population in the United States and Canada from Natural Background Radiation.1 Terrestrial Radioactivity The naturally occurring forms of radioactive elements incorporated into the Earth

243

Measurements of Secodary Cosmic Microwave Background Anisotropies with the South Pole Telescope  

E-Print Network [OSTI]

dark lines indicate regions where the underlying silicon has been etched away leaving the spiderweb membrane suspended, although the web

Lueker, Martin Van

2010-01-01T23:59:59.000Z

244

Antenna-coupled Superconducting Bolometers for Observations of the Cosmic Microwave Background Polarization  

E-Print Network [OSTI]

ment with Newton’s law of gravitation. Only in cases ofpublished his Law of Universal Gravitation. This theory

Myers, Michael James

2010-01-01T23:59:59.000Z

245

Implications about the large scale properties of the universe from the cosmic microwave background  

E-Print Network [OSTI]

power spectrum, the correlation between ? lm ’s takesthe form ? lm ? ? l ? m ? = ? ll ? ? mm ? C l ? C l ? = 4?spherical harmonics n , x) = a lm (x)Y lm (ˆ n ) , lm where

Aslanyan, Grigor; Aslanyan, Grigor

2012-01-01T23:59:59.000Z

246

Measurement of the Cosmic Microwave Background Polarization with the BICEP Telescope at the South Pole  

E-Print Network [OSTI]

temperatures of the adsorption pumps, gas-gap heat switches,operating the adsorption pumps and the heat switches, for

Takahashi, Yuki David

2010-01-01T23:59:59.000Z

247

A Log-Periodic Focal-Plane Architecture for Cosmic Microwave Background Polarimetry  

E-Print Network [OSTI]

and etched the ?lms with a CF4 plasma ( Hamilton [2010]).We mixed the CF4 with trace amounts of O2 to wear away the

OBrient, Roger

2010-01-01T23:59:59.000Z

248

Scientific results from the Cosmic Background Explorer (COBE): (microwave/infrared)  

Science Journals Connector (OSTI)

...Laboratory for Astronomy and Solar Physics, Greenbelt...Physics, Room 20F-001, Massachusetts Institute of Technology...Extensive modeling of solar system and galactic...Laboratory for Astronomy and Solar Physics, Greenbelt...Physics, Room 20F-001, Massachusetts Institute of Technology...

C. L. Bennett; N. W. Boggess; E. S. Cheng; M. G. Hauser; T. Kelsall; J. C. Mather; S. H. Moseley; Jr.; T. L. Murdock; R. A. Shafer; R. F. Silverberg; G. F. Smoot; R. Weiss; E. L. Wright

1993-01-01T23:59:59.000Z

249

Measurements of Secodary Cosmic Microwave Background Anisotropies with the South Pole Telescope  

E-Print Network [OSTI]

the physics of Josephson junctions, SQUID noise performance,insulating barriers, or Josephson junctions(Josephson, 1962;current, I c , of a Josephson junction determine how much

Lueker, Martin Van

2010-01-01T23:59:59.000Z

250

Neutrino Degeneracy and Decoupling: New Limits from Primordial Nucleosynthesis and the Cosmic Microwave Background  

E-Print Network [OSTI]

We reanalyze the cosmological constraints on the existence of a net universal lepton asymmetry and neutrino degeneracy. We show that neutrinos can begin to decouple at higher temperatures than previous estimates due to several corrections which diminish the neutrino reaction rate. These decoupled neutrinos are therefore not heated as the particle degrees of freedom change. The resultant ratio of the relic neutrino-to-photon temperatures after $e^\\pm$ annihilation can then be significantly reduced by more than a factor of two from that of the standard nondegenerate ratio. This changes the expansion rate and subsequent primordial nucleosynthesis, photon decoupling, and structure formation. In particular we analyze physically plausible lepton-asymmetric models with large $\

M. Orito; T. Kajino; G. J. Mathews; R. N. Boyd

2000-05-23T23:59:59.000Z

251

Universal Lepton Asymmetry: New Constraints from the Cosmic Microwave Background and Primordial Nucleosynthesis  

E-Print Network [OSTI]

We study the primordial nucleosynthesis and cosmic age in the presence of a net lepton asymmetry as well as baryon asymmetry. We explore a previously unnoted region of the parameter space in which very large baryon densities $0.1 \\le \\Omega_b \\le 1$ can be accommodated within the light-element constraints from primordial nucleosynthesis. This parameter space consists of $\

T. Kajino; M. Orito; G. J. Mathews; R. N. Boyd

2002-02-06T23:59:59.000Z

252

Observing dark energy dynamics with supernova, microwave background, and galaxy clustering  

Science Journals Connector (OSTI)

Observing dark energy dynamics is the most important aspect of the current dark energy research. In this paper we perform a global analysis of the constraints on the property of dark energy from the current observations. We pay particular attention to the effects of dark energy perturbations. Using the data from SNIa (157 gold sample), WMAP, and SDSS we find that the best fitting dark energy model is given by the dynamical model with the equation of state crossing -1. Nevertheless the standard ?CDM model is still a good fit to the current data and evidence for dynamics is currently not very strong. We also consider the constraints with the recent released SNIa data from Supernova Legacy Survey.

Jun-Qing Xia; Gong-Bo Zhao; Bo Feng; Hong Li; Xinmin Zhang

2006-03-20T23:59:59.000Z

253

Solar Background Document 3 | Department of Energy  

Energy Savers [EERE]

3 Solar Background Document 3 A list of private sector investment in Solyndra. Solar Background Document 3.pdf More Documents & Publications Solar Background Document 2 GridWise...

254

Microwave cavity searches for dark-matter axions  

Science Journals Connector (OSTI)

Recent determinations of cosmological parameters point to a flat Universe, whose total energy density is composed of about two-thirds vacuum energy and one-third matter. Ordinary baryonic matter is relegated to a small fraction of the latter, within which the luminous part is an order of magnitude smaller yet. Particle dark matter, i.e., one or more relic particle species from the big bang, is thus strongly suggested as the dominant component of matter in the Universe. The axion, a hypothetical elementary pseudoscalar arising from the Peccei-Quinn solution to the strong-CP problem, is a well-motivated candidate. If the axion exists, it must be extremely light, in the mass range of 10-6–10-3 eV, and possess extraordinarily feeble couplings to matter and radiation. Nevertheless, as proposed by Sikivie in 1983, the axion’s two-photon coupling lends itself to a feasible search strategy with currently available technology. In this scheme, axions resonantly convert to single microwave photons by a Primakoff interaction, in a tunable microwave cavity permeated by a strong magnetic field. Present experiments utilizing heterostructure transistor microwave amplifiers have achieved total system noise temperatures of ?3 K and represent the world’s quietest spectral radio receivers. Exclusion regions have already been published well into the band of realistic axion model couplings, within the lowest decade of mass range. Recent breakthroughs in the development of near-quantum-limited superconducting quantum interference device amplifiers should reduce the system noise temperature to ?100 mK or less. Ongoing research into using Rydberg-atom single-quantum detectors as the detector in a microwave cavity experiment could further reduce the effective noise temperature. In parallel with improvements in amplifier technology, promising concepts for higher-frequency cavity resonators are being explored to open up the higher decades in mass range. Definitive experiments to find or exclude the axion may therefore be at hand in the next few years. As the microwave cavity technique measures the total energy of the axion, a positive discovery could well reveal fine structure of the signal due to flows of nonthermalized axions. Manifesting diurnal and sidereal modulation, such detailed features would contain a wealth of information about the history, structure, and dynamics of our Milky Way galaxy.

Richard Bradley; John Clarke; Darin Kinion; Leslie J Rosenberg; Karl van Bibber; Seishi Matsuki; Michael Mück; Pierre Sikivie

2003-06-12T23:59:59.000Z

255

Empirical Evaluation of Four Microwave Radiative Forward Models...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Liebe et al. 1993), ROSEN98 (Rosenkranz 1998) and MONORTM (Delamere et al. 2002, Cady-Pereira et al. 2002). By processing three readily available historical datasets of radiosonde...

256

Uncertainty of microwave radiative transfer computations in rain  

E-Print Network [OSTI]

retrieval using new thermodynamic observations; and 3) to investigate the characteristics of four different RT codes. Firstly, a plane-parallel RT Model (RTM) of n layers in light rainfall was used for the analytical and computational derivation...

Hong, Sung Wook

2009-06-02T23:59:59.000Z

257

Integrated global background monitoring network  

SciTech Connect (OSTI)

This paper describes the background and elucidates the need for an integrated global background monitoring network. This network should: establish reference levels for pollutants that have potential for global contaminatin, serve as an early warning site for detecting global spread of pollutants, and establish baseline levels for selected ecosystem parameters against which data from more impacted areas can be compared. This paper proposes the following: (1) establish an integrated global background monitoring network for pollutants and ecosystem parameters; (2) pollutant measurements be multi-media; (3) carry out ecosystem parameter studies in conjunction with pollutant measurements; (4) the network be maintained for an indefinite period of time; (5) the network be established using the international biosphere reserve system as the universe from which a subset of monitoring sites are drawn; and (6) that the project be under the overall direction of the Global Environmental Monitoring System. 43 references, 1 figure, 1 table.

Wiersma, G.B.

1984-08-01T23:59:59.000Z

258

Internal and External Radioactive Backgrounds  

E-Print Network [OSTI]

.6 Table 3.1: Naturally occurring radioactive isotopes [89]. The elemental abundance is the total amount words the signal to noise ratio should be greater than one, S/N > 1. Naturally, the larger S/N is to be distinguished from beta particles or gamma radiation. The big challenge for the Borexino experiment is to deal

259

Microwave processing for carbide ceramics  

SciTech Connect (OSTI)

The US Bureau of Mines (USBM) has developed a process for synthesizing carbide ceramics in a microwave-induced plasma (MIP). For example, the process forms tungsten carbide with only 0.04% free carbon impurity at an average particle size of 0.05 {mu}m. Starting materials are tungsten oxide, carbon, and carbon monoxide. Commercial methods to produce tungsten carbide require heating to 1,500 C for up to 7 hours. Using the USBM method, tungsten carbide can be produced in approximately 10 minutes using a 30 kW, 915 mHz microwave unit. The reaction is carried out in a short-circuited waveguide to create a standing wave. Reactants rest on a carbon pedestal inside a closed zirconia crucible filled with carbon monoxide. The crucible is place at a field maximum within the waveguide. The waveguide was filled with helium to protect the waveguide. A procedure for producing carbide on a larger scale is described. Other ceramic compounds have been produced using this method, including silicon carbide and titanium carbide.

Tolley, W.K.; Church, R.H. [Bureau of Mines, Salt Lake City, UT (United States). Salt Lake City Research Center

1995-08-01T23:59:59.000Z

260

Microwave sintering of nanocrystalline ceramics  

SciTech Connect (OSTI)

A single-mode cavity microwave furnace, operating in the TE{sub 103} mode at 2.45 GHz, has been set up at the Naval Research Laboratory (NRL) and is currently being used to investigate sintering of nanocrystalline ceramics. This presentation will discuss the apparatus used and the results obtained to date. The high purity Al{sub 2}O{sub 3} and TiO{sub 2} nanocrystalline powders were prepared by the sol-gel method. These powders were first uniaxially pressed to 14 MPa, CIP`ed to various pressures > 420 MPa and finally sectioned into wafers. The density of the green wafers was 30 to 38% TD. The wafers were heated in the microwave furnace for up to three hours at temperatures {<=} 1720{degrees}C. The temperature of the workpiece was monitored using an optical pyrometer. Final densities up to 80% TD have been obtained to date for Al{sub 2}O{sub 3} and up to 52% TD for TiO{sub 2}. Work is ongoing to characterize the sintered compacts, optimize the casketing for this furnace, and lay the groundwork for new studies using a 35 GHz gyrotron and quasioptical gyrotron tunable from 85 to 120 GHz.

Bruce, R.W. [United States Naval Academy, Annapolis, MD (United States); Rayne, R.; Chow, G.M. [Naval Research Lab., Washington, DC (United States)] [and others

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ground-Based Microwave Study of LWP Spatial Anisotropy in Winter Clouds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground-Based Microwave Study of LWP Spatial Ground-Based Microwave Study of LWP Spatial Anisotropy in Winter Clouds A. V. Koldaev, E. A. Miller, V. E. Kadygrov, and A. I. Gusev Central Aerological Observatory Moscow, Russia A. V. Troitsky Radio Physics Institute of Nigny Novgorod, Russia W. Strapp Meteorological Service of Canada Cloud Physics Research Division Ottawa, Canada Introduction The role of horizontal anisotropy of the cloud field in the radiation transfer is under investigation of Atmospheric Radiation Measurement (ARM) science team since the beginning of the program. It was recognized within last few years that the inhomogeneity of clouds could lead to large errors in heat fluxes calculations. It was calculated and experimentally proved (Gorchakova, Golitsyn et al. 2001) that

262

Numerical Study of a Propagating Non-Thermal Microwave Feature in a Solar Flare Loop  

E-Print Network [OSTI]

We analytically and numerically study the motion of electrons along a magnetic loop, to compare with the observation of the propagating feature of the non-thermal microwave source in the 1999 August 28 solar flare reported by Yokoyama et al. (2002). We model the electron motion with the Fokker-Planck equation and calculate the spatial distribution of the gyrosynchrotron radiation. We find that the microwave propagating feature does not correspond to the motion of electrons with a specific initial pitch angle. This apparent propagating feature is a consequence of the motion of an ensemble of electrons with different initial pitch angles, which have different time and position to produce strong radiation in the loop. We conclude that the non-thermal electrons in the 1999 August 28 flare were isotropically accelerated and then are injected into the loop.

T. Minoshima; T. Yokoyama

2008-06-02T23:59:59.000Z

263

REFERENCE AND BACKGROUND CHECK PROCESS  

E-Print Network [OSTI]

REFERENCE AND BACKGROUND CHECK PROCESS Workforce Planning | 408-924-2250 classcomp process. Workforce Planning will arrange this directly with the finalist(s) once the hiring manager has provided the finalist(s) name(s) to Workforce Planning. An exception to this process is for any candidates

Su, Xiao

264

Integrated Global Background Monitoring Network  

SciTech Connect (OSTI)

One of the more significant problems when trying to determine what impact is having on global cycles is not knowing what ''natural'' levels should be for both abiotic (gases, trace elements) and biotic (ecosystem functions) processes. The authors believe that a well designed, coordinated network of baseline stations in remote areas around the world can provide a data base will allow best current estimates to be made of biotic and abiotic baseline conditions. These baseline conditions will then help us make better comparisons with more impacted areas, and thus help us more fully understand the impact man is having on his world. This paper examines the history of background pollution monitoring at the international level, describes current activities in the field of ''integrated'' background monitoring, and proposes criteria for the development of a global network of baseline stations to coordinate background monitoring for the presence, accumulation and behavior of pollutants in remote ecosystems. In this paper, this network is called the Integrated Global Background Monitoring Network.

Wiersma, G.B.; Franklin, J.F.; Kohler, A.; Croze, H.; Boelcke, C.

1986-12-01T23:59:59.000Z

265

Oxidative Degradation of Trichloroethylene Adsorbed on Active Carbons: Use of Microwave Energy  

E-Print Network [OSTI]

OXIDATIVE DEGRADATION OF TRICHLOROETHYLENE ADSORBED ON ACTIVE CARBONS: USE OF MICROWAVE ENERGY R. VARMA, S. P. NANDI, D. CLEAVELAND, K. M. MYLES, D. R. VISSERS, AND P. A. NELSON Chemist Chemical Technology Division Argonne National... Laboratory Argonne, Illinois ABSTRACT Trichloroethylene (TCE) adsorbed on different types of active carbons was exposed to a dry and moist air stream in the presence of 2.45 GHz micro wave radiation. Active carbon beds were used becauae they absorb...

Varma, R.; Nandi, S. P.; Cleaveland, D.; Myles, K. M.; Vissers, D. R.; Nelson, P. A.

266

Alpha Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

267

Radiation: Radiation Control (Indiana)  

Broader source: Energy.gov [DOE]

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

268

Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) Global Gridded Products Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) Global Gridded Products Dataset Summary Description The SSM/I products are useful for evaluating the mean climate state, it's interannual and seasonal variations, and the detection of anomalies associated with ENSO and regional climatic variations. The Hydrology Team has assembled a time series of the entire SSM/I archive, now entering it's 16th year, which includes data from July 1987 to the present. Monthly average products are produced for precipitation, cloud liquid water, total precipitable water, snow cover, sea-ice cover, and oceanic surface wind speed.

269

Microwave concrete decontamination - Phase II results  

SciTech Connect (OSTI)

This report documents the results of the second phase of a four-phase development program to develop a system to decontaminate concrete using microwave energy. In the first phase of the program the feasibility of using microwaves to remove concrete surfaces was demonstrated. In the first phase experiments, concrete slabs were placed on a translator and moved beneath a stationery microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Phases III and IV will further develop the technology to be remotely operated and capable of removing concrete from floors as well as from vertical surfaces.

White, T.L.; Foster, D. Jr.

1994-06-01T23:59:59.000Z

270

QCD background for the UA1 W?tb¯ signal  

Science Journals Connector (OSTI)

The cc¯X and bb¯X background affecting the W?tb¯ e/?+2 jets signal reported by the UA1 Collaboration is discussed. Calculations are based on an O(?s 2)+leading-pole approximation scheme, which includes jet radiation in the initial and final states of the hard binary parton process, and include the heavy-flavor excitation contribution, the stability of which has been checked. The main conclusions are the following. (i) Selection cuts naturally induce a topological event structure on the surviving background mimicking that expected for a W?tb¯ signal. (ii) The background rates for ?+2 jets events, on which we concentrate, are compatible within theoretical uncertainties with the number of events experimentally observed. The importance of purely leptonic decay modes, which survive the lepton-isolation cuts, and the bias induced by lepton-isolation cuts on background event topologies are also clarified.

A. Grosso and R. Odorico

1985-12-01T23:59:59.000Z

271

E-Print Network 3.0 - assessment south microwave Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process Christopher Marion Supervisor: Prof Kristian Waters Summary: microwaves) Optimization of the microwave pre-treatment process Assess the effect of the microwave pre......

272

Emergent Supersymmetry in Warped Backgrounds  

E-Print Network [OSTI]

We show that quantum mechanical supersymmetries are emerged in Kaluza-Klein spectrum of linearized gravity in several warped backgrounds as a consequence of higher-dimensional general coordinate invariance. These emergent supersymmetries play an essential role for the spectral structure of braneworld gravity. We show that for the case of braneworld models with two codimension-1 branes the spectral pattern is completely determined only through the supersymmetries.

Nagasawa, Tomoaki; Sakamoto, Kazuki; Sakamoto, Makoto

2011-01-01T23:59:59.000Z

273

Emergent Supersymmetry in Warped Backgrounds  

E-Print Network [OSTI]

We show that quantum mechanical supersymmetries are emerged in Kaluza-Klein spectrum of linearized gravity in several warped backgrounds as a consequence of higher-dimensional general coordinate invariance. These emergent supersymmetries play an essential role for the spectral structure of braneworld gravity. We show that for the case of braneworld models with two codimension-1 branes the spectral pattern is completely determined only through the supersymmetries.

Tomoaki Nagasawa; Satoshi Ohya; Kazuki Sakamoto; Makoto Sakamoto

2011-05-24T23:59:59.000Z

274

Planar slot coupled microwave hybrid  

DOE Patents [OSTI]

A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

Petter, Jeffrey K. (Williston, VT)

1991-01-01T23:59:59.000Z

275

SLOW MAGNETOACOUSTIC OSCILLATIONS IN THE MICROWAVE EMISSION OF SOLAR FLARES  

SciTech Connect (OSTI)

Analysis of the microwave data, obtained in the 17 GHz channel of the Nobeyama Radioheliograph during the M1.6 flare on 2010 November 4, revealed the presence of 12.6 minute oscillations of the emitting plasma density. The oscillations decayed with the characteristic time of about 15 minutes. Similar oscillations with the period of about 13.8 minutes and the decay time of 25 minutes are also detected in the variation of EUV emission intensity measured in the 335 A channel of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed properties of the oscillations are consistent with the oscillations of hot loops observed by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation (SUMER) in the EUV spectra in the form of periodic Doppler shift. Our analysis presents the first direct observations of the slow magnetoacoustic oscillations in the microwave emission of a solar flare, complementing accepted interpretations of SUMER hot loop oscillations as standing slow magnetoacoustic waves.

Kim, S.; Shibasaki, K. [Nobeyama Solar Radio Observatory/NAOJ, Nagano 384-1305 (Japan); Nakariakov, V. M., E-mail: sjkim@nro.nao.ac.jp [Physics Department, University of Warwick, Coventry, CV4 7AL (United Kingdom)

2012-09-10T23:59:59.000Z

276

Modulated microwave microscopy and probes used therewith  

DOE Patents [OSTI]

A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

2012-09-11T23:59:59.000Z

277

Container evaluation for microwave solidification project  

SciTech Connect (OSTI)

This document discusses the development and testing of a suitable waste container and packaging arrangement to be used with the Microwave Solidification System (MSS) and Bagless Posting System (BPS). The project involves the Rocky Flats Plant.

Smith, J.A.

1994-08-01T23:59:59.000Z

278

E-Print Network 3.0 - atm radiation exposure Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

O'Connell Summary: tissues) 12;Sources of Background Radiation Exposure Naturally occurring radioactive materials... . Cosmic radiation. Fall-out from nuclear weapons...

279

Assessment of cochlear damage after microwave irradiation. Final report, 30 September 1985-17 February 1988  

SciTech Connect (OSTI)

The objective of this project was to determine whether or not excessive exposure to microwaves results in permanent damage to the inner ear. A group of 15 chinchillas was exposed for one hour to pulsed microwaves (1250 MHz) of 20 usec duration and 0.1-Hz repetition rate and an average power of 1 Watt. The specific absorption rate of various measurement sites in the head ranged from 2-8 Wkg. The exposures were done at the WRAIR Microwave Laboratory, Washington, D.C. Seven animals were sham-exposed for one hour using the same apparatus and sedation. For the sham exposures, the microwave equipment was powered but no radiation was delivered. The cochleas from 20 control chinchillas of the same age range as the animals in the study were available for comparison purposes. The controls had spent their entire lives in sound-treated animal quarters at Washington University in St. Louis, MO. The cochleas from all animals were processed for histological evaluation as plastic-embedded flat preparations. Some animals were processed less than 24 hour after their exposures; the rest were processed after a month or more of recovery. In each cochlea, the following quantitative data were obtained: the extent and pattern of degeneration in the sensory-cell populations; the number of missing pillar cells; the extent and location of degeneration of the stria vascularis and of the myelinated nerve fibers in the osseous spiral lamina.

Bohne, B.A.; Gruner, M.M.; Bassen, H.I.

1988-02-26T23:59:59.000Z

280

Solar Background Document 6 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Background Document 6 Graph illustrating solar cell production in the United States and China from 2002 to 2010. Solar Background Document 6.pdf More Documents & Publications Solar...

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar Background Document 1 | Department of Energy  

Energy Savers [EERE]

Solar Background Document 1 Solar Background Document 1 A timeline outlining the Energy Department's extensive review of the Solyndra Solar loan guarantee application from 2006 to...

282

Solar Background Document 5 | Department of Energy  

Energy Savers [EERE]

5 Solar Background Document 5 Graph illustrating Chinese Development Bank financing to Chinese solar companies. Solar Background Document 5.pdf More Documents & Publications Solar...

283

Solar Background Document 6 | Department of Energy  

Energy Savers [EERE]

6 Solar Background Document 6 Graph illustrating solar cell production in the United States and China from 2002 to 2010. Solar Background Document 6.pdf More Documents &...

284

Solar Background Document 2 | Department of Energy  

Energy Savers [EERE]

2 Solar Background Document 2 Media reports and other independent analysts which pointed to Solyndra as a very promising, innovative company. Solar Background Document 2.pdf More...

285

Solar Background Document 4 | Department of Energy  

Energy Savers [EERE]

4 Solar Background Document 4 Graph illustrating global distribution of solar manufacturing market share from 1990 to 2010. Solar Background Document 4.pdf More Documents &...

286

APS USER TRAINING HISTORY Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USER TRAINING HISTORY USER TRAINING HISTORY Background The User Program Division Director has delegated to the CATs the authority to authorize the conduct of experiments because the CATs have accepted responsibility for: * identifying and evaluating the hazards posed by the experiment, * specifying controls appropriate to the hazards, and * verifying that controls are in place. One form of hazard control frequently made mandatory by law and laboratory policy is worker knowledge. The accepted means of verifying that a worker has the required knowledge is ensuring that the worker has completed appropriate training. With CAT input, the APS has developed the APS User Training History. This web-based tool enables designated CAT personnel to examine data characterizing ES&H training courses

287

Phase 2 microwave concrete decontamination results  

SciTech Connect (OSTI)

The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm{sup 2}/s and 4.9 cm{sup 3}/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard.

White, T.L.; Foster, D. Jr.; Wilson, C.T.; Schaich, C.R.

1995-04-01T23:59:59.000Z

288

No increase in background, manmade radioactivity for Los Alamos area  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March » March » Man-Made Radioactivity For Los Alamos area No increase in background, manmade radioactivity for Los Alamos area Two aerial flyovers found that radioisotopes and their associated exposure rates are consistent with those expected from normal background radiation. March 19, 2013 High southwest aerial view of Los Alamos National Laboratory (left) and Los Alamos townsite (middle and right). High southwest aerial view of Los Alamos National Laboratory (left) and Los Alamos townsite (middle and right). The results are good news and the information will benefit the Lab and the community for years to come as we work toward cleanup and sustainability. Two aerial flyovers of the Los Alamos area to determine the presence of background and manmade radioactivity found that radioisotopes and their

289

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water...  

Energy Savers [EERE]

Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4? Microwave vs. Electric Kettle: Which Appliance Is in Hot Water in EnergyFaceoff Round 4?...

290

Global estimation of precipitation using opaque microwave bands  

E-Print Network [OSTI]

This thesis describes the use of opaque microwave bands for global estimation of precipitation rate. An algorithm was developed for estimating instantaneous precipitation rate for the Advanced Microwave Sounding Unit (AMSU) ...

Chen, Frederick Wey-Min, 1975-

2004-01-01T23:59:59.000Z

291

E-Print Network 3.0 - accidental radiation evaluation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

environmental contamination from decommissioning of the Summary: from the naturally occurring background radiation - both for routine releases and accidental releases......

292

E-Print Network 3.0 - arrbod acute radiation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 5 Summary: to years). Exposure to naturally occurring background radiation is an example of chronic exposure. Acute......

293

E-Print Network 3.0 - acute radiation effects Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 5 Summary: to years). Exposure to naturally occurring background radiation is an example of chronic exposure. Acute......

294

About Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

295

Microwave accelerator E-beam pumped laser  

DOE Patents [OSTI]

A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

Brau, Charles A. (Los Alamos, NM); Stein, William E. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

296

Methods for microwave heat treatment of manufactured components  

DOE Patents [OSTI]

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases. The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

Ripley, Edward B. (Knoxville, TN)

2010-08-03T23:59:59.000Z

297

Radiation Sensitivity of Leukemic Progenitor Cells in Acute Nonlymphocytic Leukemia  

Science Journals Connector (OSTI)

...Foundation, Hiroshima, Japan; 2Hiroshima University...Dentistry, Hiroshima, Japan. Background: Epidemiological...A-bomb) survivors by the Radiation Effects Research Foundation...distal colorectum to radiation exposure. Citation Format...atomic bomb survivors in Japan. [abstract]. In...

Keiya Ozawa; Yasusada Miura; Toshio Suda; Kazuo Motoyoshi; and Fumimaro Takaku

1983-05-01T23:59:59.000Z

298

Cavern background measurement with the ATLAS RPC system  

E-Print Network [OSTI]

The measurement of cavern background has been carried out systematically since the beginning of LHC, as soon as the luminosity produced a detectable signal, from L = 10^28 cm^2s^1 of the early 2010 operation up to L=10^28 cm^2s^1 at the end of 2011 proton-proton run, which is just 1/3 of the nominal LHC luminosity. The reason for this is to early foresee the running condition for the detector for the nominal LHC luminosity and beyond, in view of the super-LHC upgrade. Background Montecarlo calculations have been validated against data and the background map analysis pointed out hotspots due to localized cracks in the radiation shielding. The RPCs participated to this effort since the earliest stages providing an accurate correlation between luminosity and background, a 3D background map in the barrel region and a direct measurement of the cavern activation. Moreover due to the high sensitivity and very good signal to noise ratio of the proposed method, based on the gap current, the measurement was provided in...

Aielli, G; The ATLAS collaboration

2012-01-01T23:59:59.000Z

299

International Conference on Microwave and High Frequency Heating Nottingham, UK, September 2013 Scaling Up Reactors for Microwave-Assisted  

E-Print Network [OSTI]

2013 316 Scaling Up Reactors for Microwave-Assisted Chemistry via ANN Optimization Andrew O. Holmesa by demonstrating that a particular microwave reactor can be designed with the help of computer optimization optimization technique to a microwave reactor. This technique is used here to optimize the geometry of a system

Yakovlev, Vadim

300

A SEARCH FOR CONCENTRIC CIRCLES IN THE 7 YEAR WILKINSON MICROWAVE ANISOTROPY PROBE TEMPERATURE SKY MAPS  

SciTech Connect (OSTI)

In this Letter, we search for concentric circles with low variance in cosmic microwave background sky maps. The detection of such circles would hint at new physics beyond the current cosmological concordance model, which states that the universe is isotropic and homogeneous, and filled with Gaussian fluctuations. We first describe a set of methods designed to detect such circles, based on matched filters and {chi}{sup 2} statistics, and then apply these methods to the best current publicly available data, the 7 year Wilkinson Microwave Anisotropy Probe (WMAP) temperature sky maps. We compare the observations with an ensemble of 1000 Gaussian {Lambda}CDM simulations. Based on these tests, we conclude that the WMAP sky maps are fully compatible with the Gaussian and isotropic hypothesis as measured by low-variance ring statistics.

Wehus, I. K. [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Eriksen, H. K., E-mail: i.k.wehus@fys.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway)

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope  

Science Journals Connector (OSTI)

This paper presents a detailed modeling and characterization of a microfabricated cantilever-based scanning microwave probe with separated excitation and sensing electrodes. Using finite-element analysis we model the tip-sample interaction as small impedance changes between the tip electrode and the ground at our working frequencies near 1 GHz . The equivalent lumped elements of the cantilever can be determined by transmission line simulation of the matching network which routes the cantilever signals to 50 ? feed lines. In the microwave electronics the background common-mode signal is canceled before the amplifier stage so that high sensitivity (below 1 aF capacitance changes) is obtained. Experimental characterization of the microwavemicroscope was performed on ion-implanted Si wafers and patterned semiconductor samples. Pure electrical or topographical signals can be obtained from different reflection modes of the probe.

K. Lai; W. Kundhikanjana; M. Kelly; Z. X. Shen

2008-01-01T23:59:59.000Z

302

Refinement of a semi-empirical model for the microwave emissivity of the sea surface as a function of wind speed  

E-Print Network [OSTI]

's sea surface emissivity model. The first change to the model is to the model's treatment of multiple reflections. Multiple reflections are now treated as if the radiation is reflected back into the view path of the microwave sensor. This change lowered...

Kohn, David Jacob

2012-06-07T23:59:59.000Z

303

Danger radiations  

ScienceCinema (OSTI)

Le conférencier Mons.Hofert parle des dangers et risques des radiations, le contrôle des zones et les précautions à prendre ( p.ex. film badge), comment mesurer les radiations etc.

None

2011-04-25T23:59:59.000Z

304

Optimized ECR plasma apparatus with varied microwave window thickness  

DOE Patents [OSTI]

The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

Berry, L.A.

1995-11-14T23:59:59.000Z

305

Gravitational clustering in Static and Expanding Backgrounds  

E-Print Network [OSTI]

A brief summary of several topics in the study of gravitational many body problem is given. The discussion covers both static backgrounds (applicable to astrophysical systems) as well as clustering in an expanding background (relevant for cosmology)

T. Padmanabhan

2003-08-28T23:59:59.000Z

306

Network Requirements Workshop - Documents and Background Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Requirements Reviews Network Requirements Reviews Documents and Background Materials Science Engagement Move your data Programs & Workshops Science...

307

Microwave Plasma Sources for Gas Processing  

SciTech Connect (OSTI)

In this paper atmospheric pressure microwave discharge methods and devices used for producing the non-thermal plasmas for processing of gases are presented. The main part of the paper concerns the microwave plasma sources (MPSs) for environmental protection applications. A few types of the MPSs, i.e. waveguide-based surface wave sustained MPS, coaxial-line-based and waveguide-based nozzle-type MPSs, waveguide-based nozzleless cylinder-type MPS and MPS for microdischarges are presented. Also, results of the laboratory experiments on the plasma processing of several highly-concentrated (up to several tens percent) volatile organic compounds (VOCs), including Freon-type refrigerants, in the moderate (200-400 W) waveguide-based nozzle-type MPS (2.45 GHz) are presented. The results showed that the microwave discharge plasma fully decomposed the VOCs at relatively low energy cost. The energy efficiency of VOCs decomposition reached 1000 g/kWh. This suggests that the microwave discharge plasma can be a useful tool for environmental protection applications. In this paper also results of the use of the waveguide-based nozzleless cylinder-type MPS to methane reforming into hydrogen are presented.

Mizeraczyk, J. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland); Department of Marine Electronics, Gdynia Martime University, Morska 83, 81-225 Gdynia (Poland); Jasinski, M.; Dors, M.; Zakrzewski, Z. [Centre for Plasma and Laser Engineering, Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk (Poland)

2008-03-19T23:59:59.000Z

308

Analysis of Microwave Propagation In Plasma  

E-Print Network [OSTI]

Analysis of Microwave Propagation In Plasma Elaine Chung Advisor: Dr. John Rodgers #12;Plasma OverviewPlasma Overview · Plasma ­ ionized gas htt[p://www.noaa.gov http://www.photoeverywhere.co.uk http://sohowww.nascom.nasa.gov/ #12;Experimental Plasma · Formed by collisional excitation of gas in an electric field Electrode Non

Anlage, Steven

309

Environmental assessment: South microwave communication facilities  

SciTech Connect (OSTI)

Western Area Power Administration (Western) is proposing to construct, operate, and maintain eight microwave repeater stations in southwestern Colorado, southeastern Utah, and northern Arizona, in order to meet the minimum fade criteria established by the Western Systems Coordinating Council (WSCC) for the operation and protection of electric power systems. The proposed microwave facilities would increase the reliability of communication. This environmental assessment (EA) describes the existing environmental conditions and the impacts from construction of the eight microwave communication facilities. The EA was prepared in compliance with the National Environmental Policy Act of 1969, the Council on Environmental Quality Regulations (40 CFR 1500-1508), and the Department of Energy Guidelines (52 FR 47662, December 15, 1987). The proposed project would consist of constructing eight microwave facilities, each of which would include a self-supported lattice tower, an equipment building, a propane tank, distribution lines to provide electric power to the sites, and access roads to the sites. The facilities would be constructed in San Miguel and Montezuma Counties in Colorado, San Juan County, Utah, and Navajo, Apache, Coconino, and Yavapai Counties in Arizona. 20 refs., 2 figs., 2 tabs.

Not Available

1989-06-01T23:59:59.000Z

310

Microwave-assisted synthesis of carbon nanotubes from tannin, lignin, and derivatives  

SciTech Connect (OSTI)

A method of synthesizing carbon nanotubes. In one embodiment, the method includes the steps of: (a) dissolving a first amount of a first transition-metal salt and a second amount of a second transition-metal salt in water to form a solution; (b) adding a third amount of tannin to the solution to form a mixture; (c) heating the mixture to a first temperature for a first duration of time to form a sample; and (d) subjecting the sample to a microwave radiation for a second duration of time effective to produce a plurality of carbon nanotubes.

Viswanathan, Tito

2014-06-17T23:59:59.000Z

311

A Fast Gridded Method for the Estimation of the Power Spectrum of the CMB from Interferometer Data with Application to the Cosmic Background Imager  

E-Print Network [OSTI]

We describe an algorithm for the extraction of the angular power spectrum of an intensity field, such as the cosmic microwave background (CMB), from interferometer data. This new method, based on the gridding of interferometer visibilities in the aperture plane followed by a maximum likelihood solution for bandpowers, is much faster than direct likelihood analysis of the visibilities, and deals with foreground radio sources, multiple pointings, and differencing. The gridded aperture-plane estimators are also used to construct Wiener-filtered images using the signal and noise covariance matrices used in the likelihood analysis. Results are shown for simulated data. The method has been used to determine the power spectrum of the cosmic microwave background from observations with the Cosmic Background Imager, and the results are given in companion papers.

S. T. Myers; C. R. Contaldi; J. R. Bond; U. -L. Pen; D. Pogosyan; S. Prunet; J. L. Sievers; B. S. Mason; T. J. Pearson; A. C. S. Readhead; M. C. Shepherd

2002-05-23T23:59:59.000Z

312

Neutron Energy Response and Background of Electrochemically Etched Nuclear Track Detectors: Study of Various CR-39 Materials  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Article Neutron Energy Response and Background of Electrochemically Etched Nuclear Track Detectors: Study of Various CR-39...experiments. Results are presented for the energy dependence of the response of the various......

M. Luszik-Bhadra; W.G. Alberts; E. Piesch

1990-08-01T23:59:59.000Z

313

Inflation from D3-brane motion in the background of D5-branes  

Science Journals Connector (OSTI)

We study inflation arising from the motion of a Bogomol’nyi-Prasad-Sommerfield D3-brane in the background of a stack of k parallel D5-branes. There are two scalar fields in this setup: (i) the radion field R, a real scalar field, and (ii) a complex tachyonic scalar field ? living on the world volume of the open string stretched between the D3 and D5 branes. We find that inflation is realized by the potential of the radion field, which satisfies observational constraints coming from the cosmic microwave background. After the radion becomes of the order of the string length scale ls, the dynamics is governed by the potential of the complex scalar field. Since this field has a standard kinematic term, reheating can be successfully realized by the mechanism of tachyonic preheating with spontaneous symmetry breaking.

Sudhakar Panda; M. Sami; Shinji Tsujikawa; John Ward

2006-04-07T23:59:59.000Z

314

TEC Working Group Background | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

TEC Working Group Background TEC Working Group Background TEC Working Group Background Through the TEC/WG, DOE interacted with representatives of organizations at the state, tribal, and local levels to obtain input for program needs assessment, development and management, and to enhance their capability to carry out transportation emergency preparedness and safety activities specifically related to radioactive materials shipments. TEC membership included representatives from national, state, tribal and local government organizations, labor, industry and professional groups. Members meet semiannually to participate in plenary sessions, breakout work sessions, and in more specialized Topic Groups. To learn more about the history and background of TEC, please see the following documents:

315

TEC Working Group Background | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Background Background TEC Working Group Background Through the TEC/WG, DOE interacted with representatives of organizations at the state, tribal, and local levels to obtain input for program needs assessment, development and management, and to enhance their capability to carry out transportation emergency preparedness and safety activities specifically related to radioactive materials shipments. TEC membership included representatives from national, state, tribal and local government organizations, labor, industry and professional groups. Members meet semiannually to participate in plenary sessions, breakout work sessions, and in more specialized Topic Groups. To learn more about the history and background of TEC, please see the following documents: TEC Charter TEC Work Plan

316

LOW INCOME ENERGY EFFICIENCY PROGRAM OVERVIEW Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

314 LOW INCOME ENERGY EFFICIENCY PROGRAM OVERVIEW Background BPA's low income program began in 1980, serving the states of Oregon, Montana, Idaho, and Washington. Over time the...

317

Lighting Choices - White Background | Department of Energy  

Energy Savers [EERE]

the new energy standards that take effect from 2012-2014. allbulbshiresweb.eps More Documents & Publications Lighting Choices - White Background Lighting Choices...

318

On the mechanism of electromagnetic microwave absorption in superfluid helium  

SciTech Connect (OSTI)

In experiments on electromagnetic (EM) wave absorption in the microwave range in superfluid (SF) helium [1-3], a narrow EM field absorption line with a width on the order of (20-200) kHz was observed against the background of a wide absorption band with a width of 30-40 GHz at frequencies f{sub 0} Almost-Equal-To 110-180 GHz corresponding to the roton gap energy {Delta}{sub r}(T) in the temperature range 1.4-2.2 K. Using the so-called flexoelectric mechanism of polarization of helium atoms ({sup 4}He) in the presence of density gradients in SF helium (HeII), we show that nonresonance microwave absorption in the frequency range 170-200 GHz can be due to the existence of time-varying local density gradients produced by roton excitations in the bulk HeII. The absorption bandwidth is determined by the roton-roton scattering time in an equilibrium Boltzmann gas of rotons, which is t{sub r-r} Almost-Equal-To 3.4 Multiplication-Sign 10{sup -11} s at T = 1.4 K and decreases upon heating. We propose that the anomalously narrow microwave resonance absorption line in HeII at the roton frequency f{sub 0}(T) = {Delta}r(T)/2{pi}h appears due to the following two factors: (i) the discrete structure of the spectrum of the surface EM resonator modes in the form of a periodic sequence of narrow peaks and (ii) the presence of a stationary dipole layer in HeII near the resonator surface, which forms due to polarization of {sup 4}He atoms under the action of the density gradient associated with the vanishing of the density of the SF component at the solid wall. For this reason, the relaxation of nonequilibrium rotons generated in such a surface dipole layer is strongly suppressed, and the shape and width of the microwave resonance absorption line are determined by the roton density of states, which has a sharp peak at the edge of the roton gap in the case of weak dissipation. The effective dipole moments of rotons in the dipole layer can be directed either along or across the normal to the resonator surface, which explains the experimentally observed symmetric doublet splitting of the resonance absorption line in an external dc electric field perpendicular to the resonator surface. We show that negative absorption (induced emission) of EM field quanta observed after triggering a Kapitza 'heat gun' occurs when the occupation numbers for roton states due to 'pumping' of rotons exceed the occupation numbers of EM field photons in the resonator.

Pashitskii, E. A., E-mail: pashitsk@iop.kiev.ua; Pentegov, V. I. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)

2012-08-15T23:59:59.000Z

319

Nonlinear multiferroic phase shifters for microwave frequencies  

SciTech Connect (OSTI)

A nonlinear microwave phase shifter based on a planar multiferroic composite has been studied. The multiferroic structure is fabricated in the form of a bilayer consisting of yttrium iron garnet and barium strontium titanate. The principle of operation of the device is based on the linear and nonlinear control of the phase shift of the hybrid spin-electromagnetic waves propagating in the bilayer. The linear control is realized with magnetic and electric fields. The nonlinear control is provided by the input power of microwave signal. The device showed a nonlinear phase shift up to 250°, electric field induced phase shift up to 330°, and magnetic field induced phase shift of more than 180°.

Ustinov, Alexey B.; Kalinikos, Boris A. [Department of Physical Electronics and Technology, St. Petersburg Electrotechnical University, St. Petersburg 197376 (Russian Federation); Srinivasan, G. [Department of Physics, Oakland University, Rochester, Michigan 48309 (United States)

2014-02-03T23:59:59.000Z

320

Hybrid Microwave-Cavity Heat Engine  

E-Print Network [OSTI]

We propose and analyze the use of hybrid microwave cavities as quantum heat engines. A possible realization consists of two macroscopically separated quantum dot conductors coupled capacitively to the fundamental mode of a microwave cavity. We demonstrate that an electrical current can be induced in one conductor through cavity-mediated processes by heating up the other conductor. The heat engine can reach Carnot efficiency with optimal conversion of heat to work. When the system delivers the maximum power, the efficiency can be a large fraction of the Carnot efficiency. The heat engine functions even with moderate electronic relaxation and dephasing in the quantum dots. We provide detailed estimates for the electrical current and output power using realistic parameters.

Christian Bergenfeldt; Peter Samuelsson; Björn Sothmann; Christian Flindt; Markus Büttiker

2014-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cellular telephone-based radiation detection instrument  

DOE Patents [OSTI]

A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

2011-06-14T23:59:59.000Z

322

THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE LOW RESOLUTION SPECTROMETER  

SciTech Connect (OSTI)

Absolute spectrophotometric measurements of diffuse radiation at 1 {mu}m to 2 {mu}m are crucial to our understanding of the radiative content of the universe from nucleosynthesis since the epoch of reionization, the composition and structure of the zodiacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment is a {lambda}/{Delta}{lambda} {approx} 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 {mu}m <{lambda} < 2.1 {mu}m. This paper presents the optical, mechanical, and electronic design of the LRS, as well as the ground testing, characterization, and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.

Tsumura, K.; Arai, T.; Matsumoto, T.; Matsuura, S.; Murata, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronoutical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Brown, S.; Lykke, K.; Smith, A. [Optical Technology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Hristov, V.; Levenson, L. R.; Mason, P. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Sullivan, I., E-mail: tsumura@ir.isas.jaxa.jp [Department of Physics, The University of Washington, Seattle, WA 98195 (United States); and others

2013-08-15T23:59:59.000Z

323

Cavity Microwave Searches for Cosmological Axions  

SciTech Connect (OSTI)

This chapter will cover the search for dark matter axions based on microwave cavity experiments proposed by Pierre Sikivie. We will start with a brief overview of halo dark matter and the axion as a candidate. The principle of resonant conversion of axions in an external magnetic field will be described as well as practical considerations in optimizing the experiment as a signal-to-noise problem. A major focus of this chapter will be the two complementary strategies for ultra-low noise detection of the microwave photons--the 'photon-as-wave' approach (i.e. conventional heterojunction amplifiers and soon to be quantum-limited SQUID devices), and 'photon-as-particle' (i.e. Rydberg-atom single-quantum detection). Experimental results will be presented; these experiments have already reached well into the range of sensitivity to exclude plausible axion models, for limited ranges of mass. The section will conclude with a discussion of future plans and challenges for the microwave cavity experiment.

Carosi, G; van Bibber, K

2007-01-22T23:59:59.000Z

324

Plasma Radiation  

Science Journals Connector (OSTI)

... JUST over ten years ago the first book on plasma physics as a subject in its own right appeared; in a gradually swelling stream ... been surprisingly few monographs. One topic which has had scant coverage in any form is plasma radiation (except for spectral-line radiation which has been dealt with very fully in ...

T. J. M. BOYD

1967-07-01T23:59:59.000Z

325

Gas Chromatography—Microwave-Induced Plasma for the Determination of Halogenated Hydrocarbons  

Science Journals Connector (OSTI)

......microwave-induced plasma detector. The...generator (2450 MHz frequency) was...microwave-induced plasma in helium at atmospheric pressure as an...compounds with atmospheric pressure helium microwave induced plasma-atomic emission......

M.M. Abdillahi

1990-12-01T23:59:59.000Z

326

E-Print Network 3.0 - argon microwave plasma Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vortex Stabilization of Microwave PlasmaMicrowave... Plasma a b 2 1 3 5 4 6 7 1- quartz tube of microwave plasma torch; 2 -original tangential gas feeder; 3... Numerical...

327

Atmospheric muon background in the ANTARES detector  

E-Print Network [OSTI]

An evaluation of the background due to atmospheric muons in the ANTARES high energy neutrino telescope is presented. Two different codes for atmospheric shower simulation have been used. Results from comparisons between these codes at sea level and detector level are presented. The first results on the capability of ANTARES to reject this class of background are given.

S. Cecchini; E. Korolkova; A. Margiotta; L. Thompson

2005-10-28T23:59:59.000Z

328

Submillimeter Microwave Spectrum of H2 O16  

Science Journals Connector (OSTI)

The absorption spectrum of water vapor, in addition to giving information about the structure and properties of the water molecule, is of practical importance because of the effects of water vapor on the propagation of electromagnetic radiation. However, precise measurements of only 6 ground-vibrational-state transitions of H216O have been reported in the microwave region. We report the measurement of nine new rotational transitions of H216O and the remeasurement to higher accuracy of the four previously known submillimeter lines. The frequencies of the newly observed transitions are (in Mc/sec) 102,9?93,6, 321225.644; 75,3?66,0, 437346.667; 64,3?55,0, 439150.812; 75,2?66,1, 443018.295; 64,2?55,1, 470888.947; 53,3?44,0, 474689.127; 62,4?71,7, 488491.133; 53,2?44,1, 620700.807; and 21,1?20,2, 752033.227. These transitions have been measured with a submillimeter-wave spectrometer which employs a klystron-driven crystal harmonic generator and a 1.6°K InSb photoconducting detector. With this work, the lines contributing the major portion of the atmospheric absorption of water vapor in the region up to 800 Gc/sec have been precisely measured.

Frank C. De Lucia; Paul Helminger; Robert L. Cook; Walter Gordy

1972-02-01T23:59:59.000Z

329

Product Standards for Microwaves (Japan) | Open Energy Information  

Open Energy Info (EERE)

Product Standards for Microwaves (Japan) Product Standards for Microwaves (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Microwaves (Japan) Focus Area: Appliances & Equipment Topics: Policy Impacts Website: www.eccj.or.jp/top_runner/pdf/tr_microwaveoven.pdf Equivalent URI: cleanenergysolutions.org/content/product-standards-microwaves-japan Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling This Energy Conservation Center Japan (ECCJ) document was created as a guide in response to its newly established set of standards and labelling

330

Microwave-Assisted Polymerizations: Recent Status and Future Perspectives  

Science Journals Connector (OSTI)

Microwave heating is frequently used in the synthesis of polymers owing to the precise temperature and pressure control when using monomodal microwave synthesizer. ... Nguyen et al. investigated the homopolymerization of vinylcyclicsilazanes as well as their ability to be used in block copolymerizations with St.(19) The usage of microwave heating allowed the synthesis of higher molar mass polyvinylsilazanes (H-PVSZ) with an excellent control over the polymerization compared to conventional heating, which was attributed to the superior dielectric properties of the PVSZ mixture obtained by microwave irradiation. ... Time- and energy-consuming synthetic pathways that usually involve the use of volatile, flammable or toxic org. ...

Kristian Kempe; C. Remzi Becer; Ulrich S. Schubert

2011-07-13T23:59:59.000Z

331

Measurement of natural radioactivity and dose rate assessment of terrestrial gamma radiation in the soil of southern Punjab, Pakistan  

Science Journals Connector (OSTI)

......terrestrial background radiation mainly due to these...assess the population radiation doses(4-9). However...data are available on naturally occuring and artificial radionulides...order to assess the radiation doses for the general......

I. Fatima; J. H. Zaidi; M. Arif; M. Daud; S. A. Ahmad; S. N. A. Tahir

2008-01-01T23:59:59.000Z

332

Microwave imaging of Saturn's deep atmosphere and rings  

SciTech Connect (OSTI)

An analysis of microwave images of Saturn's atmosphere and rings is presented. Interferometer observations at wavelengths of 0.27, 2.01, 6.17, and 20.13 cm, and precise application of synthesis imaging techniques yielded brightness and polarization maps of unsurpassed resolution and sensitivity. Linear polarization is detected from the ring ansea, and brightness variations in the deep atmosphere and the rings are revealed. The disk-integrated spectrum of Saturn is interpreted within the context of a radiative transfer model that requires the NH{sub 3} mixing ratio to take on a value of 0.9 to 1.1 x 10{sup -} directly below the ammonia ice cloud at a pressure of 1.4 bar. The NH{sub 3} mixing ratio increases with depth to a value of 5.0 to 6.5 x 10{sup -} at a pressure of 6 bar. The variation of NH{sub 3} with depth can be entirely accounted for by the presence of 11 to 14 times solar abundance of H{sub 2}S, which reacts with NH{sub 3} to produce a substantial NH{sub 4}SH cloud. Latitudinal variations in brightness temperature indicate that the saturated vapor abundance of ammonia decreases by 50 percent from equator to pole within the cloud deck. At greater depths, the latitudinal variations of ammonia are consistent with alternating zones of concentration and depletion caused by vertical motions. An apparent depletion in northern mid-lattitudes is well-correlated with a decrease in infrared opacity and depressed cloud top levels, indicating deep-seated downwelling. The size, composition, and shape of particles comprising the rings of Saturn are constrained by modeling the emission, scattering, and extinction of radiation by the rings. Azimuthal variations in brightness and linear polarization favor a model in which the particles are irregularly shaped.

Grossman, A.W.

1990-01-01T23:59:59.000Z

333

Validation of Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Satellite-Derived Liquid Water Paths Using Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers M. M. Khaiyer and J. Huang Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis, B. Lin, and W. L. Smith, Jr. National Aeronautics and Space Administration Langley Research Center Hampton, Virginia A. Fan Science Applications International Corporation Hampton, Virginia A. Rapp Colorado State University Fort Collins, Colorado Introduction Satellites are useful for monitoring climatological parameters over large domains. They are especially useful for measuring various cloud microphysical and radiative parameters where ground-based instruments are not available. The geostationary operational environmental satellite (GOES) has been used to retrieve cloud and radiative properties over an extended domain centered on the Atmospheric

334

Detecting Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drizzle in Marine Warm Clouds Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data H. Shao and G. Liu Florida State University Tallahassee, Florida Introduction Determining the radiative effects of aerosols is one of the most important areas in climate research. There are observational evidences showing that aerosols can affect the radiative balance of the earth indirectly - as the number of aerosols increases, water in the cloud spreads over many more particles. Large concentrations of small droplets not only make the cloud more reflective, but also reduce the probability of rainfall and prolong cloud lifetime, because small droplets have less efficiency of coalescence (e.g., Albrecht 1989, Rosenfeld 2000). Since precipitation is a key component in

335

Minimal Microwave Anisotropy from Perturbations Induced at Late Times  

E-Print Network [OSTI]

Aside from primordial gravitational instability of the cosmological fluid, various mechanisms have been proposed to generate large-scale structure at relatively late times, including, e.g., ``late-time'' cosmological phase transitions. In these scenarios, it is envisioned that the universe is nearly homogeneous at the time of last scattering and that perturbations grow rapidly sometime after the primordial plasma recombines. On this basis, it was suggested that large inhomogeneities could be generated while leaving relatively little imprint on the cosmic microwave background (MBR) anisotropy. In this paper, we calculate the minimal anisotropies possible in any ``late-time'' scenario for structure formation, given the level of inhomogeneity observed at present. Since the growth of the inhomogeneity involves time-varying gravitational fields, these scenarios inevitably generate significant MBR anisotropy via the Sachs-Wolfe effect. Moreover, we show that the large-angle MBR anisotropy produced by the rapid post-recombination growth of inhomogeneity is generally greater than that produced by the same inhomogeneity grown via gravitational instability. In ``realistic'' scenarios one can decrease the anisotropy compared to models with primordial adiabatic fluctuations, but only on very small angular scales. The value of any particular measure of the anisotropy can be made small in late-time models, but only by making the time-dependence of the gravitational field sufficiently ``pathological''.

Andrew H. Jaffe; Albert Stebbins; Joshua A. Frieman

1993-01-21T23:59:59.000Z

336

E-Print Network 3.0 - active microwave medium Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MA: Artech House, 1981... . 41 F. Ulaby, R. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, vol. 3. Norwood... Sat Passive Microwave Polarimetric...

337

E-Print Network 3.0 - analogue microwave photonics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering ; Materials Science 6 Abstract--A novel approach to generating a frequency-tunable microwave or sub-terahertz wave based on time-delayed Summary: , microwave...

338

E-Print Network 3.0 - aura microwave limb Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measured by the Aura Microwave Limb Sounder (MLS) version 2... of the greenhouse effect. Nature, 342, 758-761. Read, W. G., and Coauthors, 2007: Aura Microwave Limb...

339

Radiation dosimeter  

DOE Patents [OSTI]

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

340

Radiation dosimeter  

DOE Patents [OSTI]

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Background field method as a canonical transformation  

Science Journals Connector (OSTI)

We construct explicitly the canonical transformation which controls the full dependence (local and nonlocal) of the vertex functional of a Yang-Mills theory on a background field. After showing that the canonical transformation found is nothing but a direct field-theoretic generalization of the Lie transform of classical analytical mechanics, we comment on a number of possible applications, and, in particular, the nonperturbative implementation of the background field method on the lattice, the background field formulation of the two-particle irreducible formalism, and, finally, the formulation of the Schwinger-Dyson series in the presence of topologically nontrivial configurations.

D. Binosi and A. Quadri

2012-06-21T23:59:59.000Z

342

Background considerations for SuperCDMS  

SciTech Connect (OSTI)

Rejection and protection from background is a key issue for the next generation SuperCDMS SNOLAB experiment that will have a cross-section sensitivity of better than 8 × 10{sup ?46} cm{sup 2} for spin-independent WIMP-nucleon interactions. This paper presents the details of the methods used to reject electromagnetic backgrounds using the new iZIP detectors that are currently operated in the Soudan Underground Laboratory, MN and the methods the collaboration is investigating to protect against neutron background in the next generation SuperCDMS experiment.

Cooley, J. [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States)] [Department of Physics, Southern Methodist University, Dallas, TX 75275 (United States); Collaboration: SuperCDMS Collaboration

2013-08-08T23:59:59.000Z

343

LOW INCOME ENERGY EFFICIENCY PROGRAM OVERVIEW Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LOW INCOME ENERGY EFFICIENCY PROGRAM OVERVIEW Background BPA's low income program began in in the mid-80s, serving the states of Oregon, Montana, Idaho, and Washington. Over time...

344

Environmental Permit Application Background Statement (Delaware)  

Broader source: Energy.gov [DOE]

The purpose of Chapter 79 of Delaware Title 7 is to ensure that the State has adequate information about the background of applicants or regulated parties for the purposes of processing permits and...

345

Background Knowledge, Category Labels, and Similarity Judgment  

E-Print Network [OSTI]

are more special than shared physical features. The goal of this dissertation is to provide evidence that complements these conflicting views. I suggest that the role of labels varies depending on the background knowledge: types of categories (living things...

Yu, Na-Yung

2011-10-21T23:59:59.000Z

346

Microsoft Word - Appendix A_Background.doc  

Office of Legacy Management (LM)

Background Information, Remedial Action Histories, Background Information, Remedial Action Histories, Present Site Conditions U.S. Department of Energy Weldon Spring Site LTS&M Plan July 2005 Doc. No. S0079000 Page A-iii Contents A1.1 Location and Property Ownership ................................................................................1 A1.2 Physiography and Topography.....................................................................................4 A1.3 Hydrogeology ...............................................................................................................5 A1.3.1 Regional ...........................................................................................................5 A1.3.2 Chemical Plant .................................................................................................5

347

Fractal generation of textures and backgrounds  

E-Print Network [OSTI]

FRACTAL GENERATION OF TEXTURES AND BACKGROUNDS A Thesis by KEVIN DUANE REUTER Subtnitted to the Oflice of Graduate Studies of Texas A&M University in partial fulfilhnent of the requirements for the degree of MASTER OF SCIENCE August 1999... Major Subject; Visualization Sciences FRACTAL GENERATION OF TEXTURES AND BACKGROUNDS A Thesis by KEVIN DUANE REUTER Submitted to Texas ARM University in partial fulfilhnent of the requirements for the degree of MASTER OF SCIENCE Approved...

Reuter, Kevin Duane

2012-06-07T23:59:59.000Z

348

The South Pole Telescope bolometer array and the measurement of secondary Cosmic Microwave Background anisotropy at small angular scales  

E-Print Network [OSTI]

spiderweb is then etched in a CF4 RIE gas etch. In the past,small fraction of O 2 to the CF4 etch increases the rate of

Shirokoff, Erik D.

2011-01-01T23:59:59.000Z

349

The South Pole Telescope bolometer array and the measurement of secondary Cosmic Microwave Background anisotropy at small angular scales  

E-Print Network [OSTI]

e-prints, 1007.0290 The Dark Energy Survey Collaboration.distant future, the Dark Energy Survey is expected to beginand near IR. (The Dark Energy Survey Collaboration, 2005) In

Shirokoff, Erik D.

2011-01-01T23:59:59.000Z

350

Tailoring The Microwave Permittivity And Permeability Of Composite Materials  

E-Print Network [OSTI]

1 Tailoring The Microwave Permittivity And Permeability Of Composite Materials Kenneth M. Bober/Lowell, Lowell, MA 01854 ABSTRACT The microwave permittivity( r ) and permeability( r ) of composite materials. Polynomials are also used for the ferrite composites because it was determined that the MG theory was unable

Massachusetts at Lowell, University of

351

Noise properties of mutually sustained microwave-optoelectronic oscillator pair  

E-Print Network [OSTI]

Noise properties of mutually sustained microwave-optoelectronic oscillator pair E. Shumakher and G microwave-optoelectronic oscillator pair are described. The two oscillators have different spectral purities and exhibits low phase noise and highly suppressed spurious modes. Optoelectronic oscillators are employed

Eisenstein, Gadi

352

Tunable negative-tap photonic microwave filter based on a  

E-Print Network [OSTI]

Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning Sze-Chun Chan,* Qing Liu, Zhu Wang, and Kin Seng Chiang Department: A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical

Chan, Sze-Chun

353

MICROWAVE-BASED NDE OF FRP-JACKETED CONCRETE STRUCTURES  

E-Print Network [OSTI]

MICROWAVE-BASED NDE OF FRP-JACKETED CONCRETE STRUCTURES Yoo Jin Kim, Franco De Flaviis University are presented in this paper. KEY WORDS: Microwave, Non-Destructive Evaluation (NDE), FRP Jacket, Imaging Technol not be visually observed. Various nondestructive evaluation (NDE) techniques have been studied to detect cracks

De Flaviis, Franco

354

Thermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby  

E-Print Network [OSTI]

, there is a considerable motivation to develop practical means to ignite pure thermites. Laser beams were found effectiveThermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby Faculty of Engineering 2012 Keywords: Thermite Microwave heating Hotspots Thermal runaway Ignition a b s t r a c t This paper

Jerby, Eli

355

Thermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby  

E-Print Network [OSTI]

, there is a considerable motivation to develop practical means to ignite pure thermites. Laser beams were found effectiveThermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby Faculty of Engineering Keywords: Thermite Microwave heating Hotspots Thermal runaway Ignition a b s t r a c t This paper presents

Jerby, Eli

356

Broadband microwave burst produced by electron beams  

E-Print Network [OSTI]

Theoretical and experimental study of fast electron beams attracts a lot of attention in the astrophysics and laboratory. In the case of solar flares the problem of reliable beam detection and diagnostics is of exceptional importance. This paper explores the fact that the electron beams moving oblique to the magnetic field or along the field with some angular scatter around the beam propagation direction can generate microwave continuum bursts via gyrosynchrotron mechanism. The characteristics of the microwave bursts produced by beams differ from those in case of isotropic or loss-cone distributions, which suggests a new tool for quantitative diagnostics of the beams in the solar corona. To demonstrate the potentiality of this tool, we analyze here a radio burst occurred during an impulsive flare 1B/M6.7 on 10 March 2001 (AR 9368, N27W42). Based on detailed analysis of the spectral, temporal, and spatial relationships, we obtained firm evidence that the microwave continuum burst is produced by electron beams. For the first time we developed and applied a new forward fitting algorithm based on exact gyrosynchrotron formulae and employing both the total power and polarization measurements to solve the inverse problem of the beam diagnostics. We found that the burst is generated by a oblique beam in a region of reasonably strong magnetic field ($\\sim 200-300$ G) and the burst is observed at a quasi-transverse viewing angle. We found that the life time of the emitting electrons in the radio source is relatively short, $\\tau_l \\approx 0.5$ s, consistent with a single reflection of the electrons from a magnetic mirror at the foot point with the stronger magnetic field. We discuss the implications of these findings for the electron acceleration in flares and for beam diagnostics.

A. T. Altyntsev; G. D. Fleishman; G. -L. Huang; V. F. Melnikov

2007-12-16T23:59:59.000Z

357

Appendix G. Radiation Appendix G. Radiation  

E-Print Network [OSTI]

-made sources. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation of radiation and its effects on the environment and biological systems. Radiation comes from natural and humanAppendix G. Radiation #12;#12;Appendix G. Radiation This appendix presents basic facts about

Pennycook, Steve

358

Microwave photonics with Josephson junction arrays  

E-Print Network [OSTI]

We introduce an architecture for a photonic crystal in the microwave regime based on superconducting transmission lines interrupted by Josephson junctions. A study of the scattering properties of a single junction in the line shows that the junction behaves as a perfect mirror when the photon frequency matches the Josephson plasma frequency. We generalize our calculations to periodic arrangements of junctions, demonstrating that they can be used for tunable band engineering, forming what we call a quantum circuit crystal. As a relevant application, we discuss the creation of stationary entanglement between two superconducting qubits interacting through a disordered media.

Zueco, David; Solano, Enrique; García-Ripoll, Juan José

2011-01-01T23:59:59.000Z

359

Microwave Plasma Monitoring System For Real-Time Elemental Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microwave Plasma Monitoring System For Real-Time Elemental Analysis Microwave Plasma Monitoring System For Real-Time Elemental Analysis Microwave Plasma Monitoring System For Real-Time Elemental Analysis The invention apparatus can also be used to monitor for the presence of halogens, sulfur and silicon. Available for thumbnail of Feynman Center (505) 665-9090 Email Microwave Plasma Monitoring System For Real-Time Elemental Analysis There has been invented a process for analyzing ambient air in a microwave induced plasma without use of an additional carrier gas. There has also been invented an apparatus for analyzing ambient air, other sample gas, or nebulized and desolvated liquids wherein a novel arrangement of plasma gas and sample gas conduits is used to enhance dependability of the plasma. This apparatus embodiment of the invention has a concentric arrangement of

360

Mobile system for microwave removal of concrete surfaces  

DOE Patents [OSTI]

A method and apparatus for the microwave removal of contaminated concrete surfaces. The apparatus comprises a housing adapted to pass over a support surface. The housing includes a waveguide for directing microwave energy to the surface at an angle maximizing absorption of microwave energy by the surface. The apparatus is further provided with a source of microwave energy operably associated with the waveguide, wherein the microwave energy has a frequency of between about 10.6 GHz and about 24 GHz and acts to remove the uppermost layer from the surface. The apparatus further includes a debris containment assembly comprising a vacuum assembly operably associated with the housing. The vacuum assembly is adapted to remove debris from the area adjacent the surface.

White, Terry L. (Oak Ridge, TN); Bigelow, Timothy S. (Knoxville, TN); Schaich, Charles R. (Lenoir City, TN); Foster, Jr., Don (Knoxville, TN)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gamma-Ray Bursts, Ultra High Energy Cosmic Rays, and Cosmic Gamma-Ray Background  

E-Print Network [OSTI]

We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in TeV range by synchrotron radiation of ultra-high-energy protons (\\sim 10^{20} eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.

Tomonori Totani

1998-10-14T23:59:59.000Z

362

Design of a novel Cherenkov detectors system for machine induced background monitoring in the CMS cavern  

E-Print Network [OSTI]

A novel detector system has been designed for an efficient online measurement of the machineinduced background in the CMS experimental cavern. The suppression of the CMS cavern background originating from pp collision products and the 25 ns bunch spacing have set the requirements for the detector design. Each detector unit will be a radiation hard, cylindrical Cherenkov radiator optically coupled to an ultra-fast UV-sensitive photomultiplier tube, providing a prompt, directionally sensitive measurement. Simulation and test beam measurements have shown the achievability of the goals that have driven the baseline design. The system will consist of 20 azimuthally distributed detectors per end, installed at a radius of r ~ 180 cm and a distance 20.6 m away from the CMS interaction region. The detector units will enable a measurement of the transverse distribution of the bunchby- bunch machine induced background flux. This will provide important feedback from the CMS on the beam conditions during the LHC machine s...

Orfanelli, Styliani; Giunta, Marina; Stickland, David P; Ambrose, Mitchell J; Rusack, Roger; Finkel, Alexey

2013-01-01T23:59:59.000Z

363

Background-reducing X-ray multilayer mirror  

DOE Patents [OSTI]

Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

Bloch, Jeffrey J. (Los Alamos, NM); Roussel-Dupre', Diane (Los Alamos, NM); Smith, Barham W. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

364

Decolorization of methylene blue by Ag/SrSnO3 composites under ultraviolet radiation  

Science Journals Connector (OSTI)

SrSn(OH)6 precursors synthesized by a cyclic microwave radiation (CMR) process were calcined at 900°C for 3h to form rodlike SrSnO3. Further, the rod-like SrSnO3 and AgNO3 in ethylene glycol (EG) were ...

Patcharanan Junploy, Titipun Thongtem, Somchai Thongtem, Anukorn Phuruangrat

2014-01-01T23:59:59.000Z

365

DOE Hydrogen and Fuel Cells Program: Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mission and Goals Mission and Goals Organization Chart and Contacts Background U.S. DRIVE Partnership Budget Timeline Program Activities Advisory Panels External Coordination U.S. Department of Energy Search help Home > About > Background Printable Version Background In the early 1970s, concern over our growing dependence on imported petroleum, coupled with concerns about our deteriorating air quality due to emissions from combustion of fossil fuels, spurred the Federal government to act. The timeline below provides policy and programmatic highlights for federally supported hydrogen and fuel cell R&D over the last three decades. Federal Support for Hydrogen and Fuel Cell R&D Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader.

366

National Climate Assessment: Background and Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Background and Process Print E-mail Background and Process Print E-mail Please view the links below to find out more about the background and process of the National Climate Assessment: National Climate Assessment Development & Advisory Committee Charter ( PDF) National Climate Assessment Proposed 2013 Report Outline [updated on 12/08/2011] (PDF) Strategy On May 20th, 2011 the National Climate Assessment released the following two strategy documents: National Climate Assessment Strategy Summary National Climate Assessment Engagement Strategy Federal Register Notices November 18, 2013 National Climate Assessment and Development Advisory Committee (NCADAC) Notice of Open Meeting pdf | html A Notice by the National Oceanic and Atmospheric Administration on 10/29/2013 This notice sets forth the schedule of a forthcoming meeting of the DoC NOAA National Climate Assessment and Development Advisory Committee (NCADAC).

367

Monitored Retrievable Storage Background | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Monitored Retrievable Storage Background Monitored Retrievable Storage Background Monitored Retrievable Storage Background `The U.S. Government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an Integral part of the Federal system for safe and permanent disposal of the nation's high-level radioactive wastes. The MRS will accept shipments of spent fuel from commercial nuclear power plants, temporarily store the spent fuel above ground, and stage shipments of it to a geologic repository for permanent disposal. The law authorizing the MRS provides an opportunity for a State or an Indian Tribe to volunteer to host the MRS. The law establishes the Office of the Nuclear Waste Negotiator, who Is 10 seek a State or an Indian Tribe

368

THE NEAR-INFRARED BACKGROUND INTENSITY AND ANISOTROPIES DURING THE EPOCH OF REIONIZATION  

SciTech Connect (OSTI)

A fraction of the extragalactic near-infrared (near-IR) background light involves redshifted photons from the ultraviolet (UV) emission from galaxies present during reionization at redshifts above 6. The absolute intensity and the anisotropies of the near-IR background provide an observational probe of the first-light galaxies and their spatial distribution. We estimate the extragalactic background light intensity during reionization by accounting for the stellar and nebular emission from first-light galaxies. We require the UV photon density from these galaxies to generate a reionization history that is consistent with the optical depth to electron scattering from cosmic microwave background measurements. We also require the bright-end luminosity function (LF) of galaxies in our models to reproduce the measured Lyman-dropout LFs at redshifts of 6-8. The absolute intensity is about 0.1-0.4 nW m{sup -2} sr{sup -1} at the peak of its spectrum at {approx}1.1 {mu}m. We also discuss the anisotropy power spectrum of the near-IR background using a halo model to describe the galaxy distribution. We compare our predictions for the anisotropy power spectrum to existing measurements from deep near-IR imaging data from Spitzer/IRAC, Hubble/NICMOS, and AKARI. The predicted rms fluctuations at tens of arcminute angular scales are roughly an order of magnitude smaller than the existing measurements. While strong arguments have been made that the measured fluctuations do not have an origin involving faint low-redshift galaxies, we find that measurements in the literature are also incompatible with galaxies present during the era of reionization. The measured near-IR background anisotropies remain unexplained with an unknown origin.

Cooray, Asantha; Gong Yan; Smidt, Joseph [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Santos, Mario G. [CENTRA, Instituto Superior Tecnico, Technical University of Lisbon, Lisboa 1049-001 (Portugal)

2012-09-01T23:59:59.000Z

369

Analysis and control of the thermal runaway of ceramic slab under microwave heating  

E-Print Network [OSTI]

Analysis and control of the thermal runaway of ceramic slab under microwave heating Changjun Liu of the dielectrics during microwave heating, in which there is a big jump of the steady-state temperature while the applied microwave power varies slightly. It hinders engineers in the applications of microwave heating

Sheen, Dongwoo

370

Ultrafast Microwave Hydrothermal Synthesis of BiFeO3 Nanoplates Riad Nechache,  

E-Print Network [OSTI]

hydrothermal processes while requiring significantly less time and energy. In addition, we show that microwaveUltrafast Microwave Hydrothermal Synthesis of BiFeO3 Nanoplates Shun Li, Riad Nechache,§ Ivan and very rapid (1­2 min) microwave-assisted hydrothermal approach. We show that the microwave treatment

371

Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE's new microwave standards will reduce carbon pollution and save consumers money on their energy bills.

372

Radiation receiver  

DOE Patents [OSTI]

The apparatus for collecting radiant energy and converting same to alternate energy form includes a housing having an interior space and a radiation transparent window allowing, for example, solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past said window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles. 5 figs.

Hunt, A.J.

1983-09-13T23:59:59.000Z

373

Portable microwave instrument for non-destructive evaluation of structural characteristics  

DOE Patents [OSTI]

A portable microwave instrument for evaluating characteristics of a structural member includes a source of microwave energy, a transmitter coupled to the source of microwave energy for transmitting a microwave signal at the structural member, and a receiver positioned on the same side of the structural member as the transmitter and being disposed to receive a microwave signal reflected by the structural member. A phase angle difference is determined between the transmitted microwave signal and the received microwave signal using a signal splitter and a balanced mixer. The difference in phase angle varies in accordance with differences in size, shape and locations of constituent materials within the structural member.

Bible, Don W. (Clinton, TN); Crutcher, Richard I. (Knoxville, TN); Sohns, Carl W. (Oak Ridge, TN); Maddox, Stephen R. (Loudon, TN)

1995-01-01T23:59:59.000Z

374

Survey Background and Technical Information on CBECS  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Background and Technical Information Survey Background and Technical Information Survey Background and Technical Information Survey Background The commercial sector encompasses a vast range of building types- service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as certain buildings that would not be considered "commercial" in a traditional economic sense, such as public and private schools, correctional institutions, and religious and fraternal organizations. Excluded from the sector are the goods-producing industries: manufacturing, agriculture, mining, forestry and fisheries, and construction. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The 2003 CBECS was the eighth survey in the series begun in 1979. From 1979 to 1986, the survey was known as the Nonresidential Buildings Energy Consumption Survey, or NBECS.

375

Background Simulations for the International Linear Collider  

E-Print Network [OSTI]

on superconducting technology to collide bunches of electrons and positrons. The baseline configuration (about 31 km in a clean experimental environment with low backgrounds. The LHC will likely discover the Higgs boson accelerator directly. DESY FLC, 22603 Hamburg, Germany, adrian.vogel@desy.de 1 #12;Figure 1: Overall view

376

CHAPTER 1 INTRODUCTION 1.1 Background  

E-Print Network [OSTI]

1 CHAPTER 1 INTRODUCTION 1.1 Background This thesis describes a multi-agent based architecture of the research and an outline plan for the rest of this thesis complete the chapter. 1.2 Software Project and monitor progress to check the development is on time and within budget. #12;3 1.3 Software Project

O'Connor, Rory

377

1 Introduction 1.1 Background  

E-Print Network [OSTI]

#12;#12;3 1 Introduction 1.1 Background Research method is a relevant topic to anybody performing. 1.2 Classical Research, Technology and Technology Research The term research is defined in several different ways. According to Merriam-Webster [1], research is "investigation or experimentation aimed

Stølen, Ketil

378

Internships at VSTEP BV Background VSTEP  

E-Print Network [OSTI]

, the effect of the current on the ship's manoeuvring characteristics needs to be implemented. 5. A damage (www.quest3d.com) and C++. Background Ship Simulator 2006 One of VSTEP's more recent products is a PC game called Ship Simulator 2006 (www.shipsim.com), in store in many countries since June 2006

Vuik, Kees

379

Carbon Management and Implementation Plan 1. Background  

E-Print Network [OSTI]

the College's energy efficiency and use of resources by integrating sustainability with corporate strategiesCarbon Management and Implementation Plan 1. Background Energy security and the increasing concentration of greenhouse gases which contribute to climate change are one of the biggest challenges facing us

Chittka, Lars

380

Background estimation using a robust Bayesian analysis  

Science Journals Connector (OSTI)

A novel method for the estimation of the background in a powder diffraction pattern has been developed using a robust Bayesian analysis. The underlying probability theory is discussed in terms of going beyond the Gaussian approximation normally associated with counting statistics and least-squares analysis, and various examples are presented that illustrate the general applicability of the approach.

David, W.I.F.

2001-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

UCHC Lockout/Tagout Policy Background  

E-Print Network [OSTI]

UCHC Lockout/Tagout Policy (4/09) Background: This safety policy is applicable to all Health Center: Lockout will be utilized for equipment which is designed with a lockout capability. A valve that can be locked out with a chain is considered as having a lockout capability. Only the Office of Research Safety

Kim, Duck O.

382

Cosmic IR Backgrounds Ned Wright (UCLA)  

E-Print Network [OSTI]

Cosmic IR Backgrounds by Ned Wright (UCLA) http://www.astro.ucla.edu/~wright/intro.html See: · http://www.astro.ucla.edu/~wright/cosmolog.htm · http://www.astro.ucla.edu/~wright/DIRBE · http://www.astro.ucla.edu/~wright/CIBR · http

Wright, Edward L. "Ned"

383

Background Material Important Questions about Magnetism  

E-Print Network [OSTI]

Background Material Important Questions about Magnetism: 1) What is Magnetism?Magnetism is a force or repulsion due to charge is called the electric force. But what about magnetism, is there a fundamental property of some matter that makes things magnetic? The answer is: "sort of." Electric current

Mojzsis, Stephen J.

384

Method and apparatus for component separation using microwave energy  

DOE Patents [OSTI]

A method for separating and recovering components includes the steps of providing at least a first component bonded to a second component by a microwave absorbent adhesive bonding material at a bonding area to form an assembly, the bonding material disposed between the components. Microwave energy is directly and selectively applied to the assembly so that substantially only the bonding material absorbs the microwave energy until the bonding material is at a debonding state. A separation force is applied while the bonding material is at the debonding state to permit disengaging and recovering the components. In addition, an apparatus for practicing the method includes holders for the components.

Morrow, Marvin S. (Kingston, TN); Schechter, Donald E. (Ten Mile, TN); Calhoun, Jr., Clyde L. (Knoxville, TN)

2001-04-03T23:59:59.000Z

385

High-Efficiency, Magnetized, Virtual-Cathode Microwave Generator  

Science Journals Connector (OSTI)

Microwave generation by electron beams in virtual-cathode configurations can achieve significant power levels. However, most designs inherently have two competing mechanisms generating microwaves: the oscillating virtual cathode and the reflexing electrons. These mechanisms interfere destructively with each other. This paper reports investigation of a novel idea of using an external axial magnetic field and a thick anode with an appropriate collimating slot to extract the electron beam and to suppress the reflexing electrons. It was found that high-power, narrow-band, monochromatic microwaves could be generated with efficiency of 10% to 20%.

Thomas J. T. Kwan

1986-10-13T23:59:59.000Z

386

Sources Of Average Individual Radiation Exposure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of Average Individual Radiation Exposure Of Average Individual Radiation Exposure Natural background Medical Consumer products Industrial, security, educational and research Occupational 0.311 rem 0.300 rem 0.013 rem 0.0003 rem 0.0005 rem Savannah River Nuclear Solutions, LLC, provides radiological protection services and oversight at the Savannah River Site (SRS). These services include radiation dose measurements for persons who enter areas where they may be exposed to radiation or radioactive material. The results are periodically reported to monitored individuals. The results listed are based on a radiation dose system developed by the International Commission on Radiation Protection. The system uses the terms "effective dose," "equivalent dose" and units of rem. You may be more familiar with the term "millirem" (mrem), which is 1/1000 of a rem.

387

Low Dose Radiation Research Program: About  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Background. Extensive research on the health effects of radiation using standard epidemiological and toxicological approaches has been done for decades to characterize responses of populations and individuals to high radiation doses, and to set exposure standards to protect both the public and the workforce. These standards were set using models that extrapolated from the cancers observed following exposure to high doses of radiation to predicted, but not measurable, changes in cancer frequency at low radiation doses. The use of models was necessary because of our inability to detect changes in cancer incidence following low doses of radiation. Historically, the predominant approach has been the Linear-no-Threshold model (see Wikipedia entry) and collective dose concept that assumes each unit of radiation, no

388

Radiation Protection Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

389

Compact microwave ion source for industrial applications  

SciTech Connect (OSTI)

A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of)

2012-02-15T23:59:59.000Z

390

An upper bound from helioseismology on the stochastic background of gravitational waves  

E-Print Network [OSTI]

The universe is expected to be permeated by a stochastic background of gravitational radiation of astrophysical and cosmological origin. This background is capable of exciting oscillations in solar-like stars. Here we show that solar-like oscillators can be employed as giant hydrodynamical detectors for such a background in the muHz to mHz frequency range, which has remained essentially unexplored until today. We demonstrate this approach by using high-precision radial velocity data for the Sun to constrain the normalized energy density of the stochastic gravitational-wave background around 0.11 mHz. These results open up the possibility for asteroseismic missions like CoRoT and Kepler to probe fundamental physics.

Daniel M. Siegel; Markus Roth

2014-01-27T23:59:59.000Z

391

Radiation protection: Natural radiation risks  

Science Journals Connector (OSTI)

... radiation to which humans are exposed consists of four components - cosmic, gamma, internal, radon. The relative contribution that each makes to the sum is shown in the chart. ... but exposure of the whole body to terrestrial gamma rays and of the lungs to radon daughters are influenced by the nature and location of housing. Gamma rays are emitted ...

M. C. O'Riordan

1983-11-17T23:59:59.000Z

392

First National Climate Assessment: Background and Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Background and Process Print E-mail Background and Process Print E-mail Workshops of the First National Climate Assessment In February 1997, the U.S. Global Change Research Program and the Office of Science and Technology Policy initiated a series of Regional Climate Change Workshops with the goal of starting the process of examining the vulnerabilities of regions of the United States to climate variability and climate change. What was initially intended to be three or four workshops developed into a series of twenty, covering every state and territory of the United States. The workshops span from May 1997 to September 1998 and represented the first step in conducting a regional assessment. Each workshop was sponsored by one or more government agencies,and was carried out by coordinators from local institutions. For details on each workshop, including its geographic coverage, see:

393

The interaction of polarized microwaves with planar arrays of femtosecond laser-produced plasma filaments in air  

SciTech Connect (OSTI)

The interaction of polarized microwaves with subwavelength arrays of parallel plasma filaments, such as those produced by the propagation of high-power femtosecond laser pulses in ambient air, was investigated by calculating the reflection and transmission coefficients as a function of the incidence angles using the finite-difference time-domain (FDTD) method. The time evolution of these coefficients was calculated and compared with experiments. It is found that the plasma filaments array becomes transparent when the polarization of the microwave radiation is perpendicular to the filaments axis, regardless the incidence angle of the microwave with respect to the filaments, except near grazing incidence. Increasing the filaments electron density or diameter, or decreasing the electron collision frequency or filaments spacing, decreases the transmission and increases the reflection. Transmission decreases when increasing the number of filament layers while reflection remains unchanged as the number of filament layers exceeds a given number ({approx}3 in our case). Transmission slightly increases when disorder is introduced in the filament arrays. The detailed calculation results are compared with those obtained from the simple birefringent slab model, which provides a convenient framework to calculate approximately the properties of filament arrays.

Marian, Anca; El Morsli, Mbark; Vidal, Francois; Payeur, Stephane; Kieffer, Jean-Claude [INRS-Energie, Materiaux et Telecommunications, Universite du Quebec, Varennes, Quebec J3X 1S2 (Canada); Chateauneuf, Marc; Theberge, Francis; Dubois, Jacques [Defense R and D Canada Valcartier, Quebec G3J 1X5 (Canada)

2013-02-15T23:59:59.000Z

394

Swift detection of all previously undetected blazars in a micro-wave flux-limited sample of WMAP foreground sources  

E-Print Network [OSTI]

Almost the totality of the bright foreground sources in the WMAP CMB maps are blazars, a class of sources that show usually also X-ray emission. However, 23 objects in a flux-limited sample of 140 blazars of the WMAP catalog (first year) were never reported before as X-ray sources. We present here the results of 41 Swift observations which led to the detection of all these 23 blazars in the 0.3-10 keV band. We conclude that all micro-wave selected blazars are X-ray emitters and that the distribution of the micro-wave to X-ray spectral slope $\\alpha_{mu x}$ of LBL blazars is very narrow, confirming that the X-ray flux of most blazars is a very good estimator of their micro-wave emission. The X-ray spectral shape of all the objects that were observed long enough to allow spectral analysis is flat and consistent with inverse Compton emission within the commonly accepted view where the radiation from blazars is emitted in a Sychrotron-Inverse-Compton scenario. We predict that all blazars and most radio galaxies a...

Giommi, P; Cavazzuti, E; Colafrancesco, S; Cucchiara, A; Falcone, A; Kennea, J; Nesci, R; Perri, M; Tagliaferri, G; Tramacere, A; Tosti, G; Blustin, A J; Branduardi-Raymont, G; Burrows, D N; Chincarini, G; Dean, A J; Gehrels, N; Krimm, H; Marshall, F; Parsons, A M; Zhang, B

2007-01-01T23:59:59.000Z

395

Sideband Mixing in Intense Laser Backgrounds  

E-Print Network [OSTI]

The electron propagator in a laser background has been shown to be made up of a series of sideband poles. In this paper we study this decomposition by analysing the impact of the residual gauge freedom in the Volkov solution on the sidebands. We show that the gauge transformations do not alter the location of the poles. The identification of the propagator from the two-point function is maintained but we show that the sideband structures mix under residual gauge transformations.

Martin Lavelle; David McMullan

2014-07-04T23:59:59.000Z

396

Method for curing polymers using variable-frequency microwave heating  

DOE Patents [OSTI]

A method for curing polymers incorporating a variable frequency microwave furnace system designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity is disclosed. By varying the frequency of the microwave signal, non-uniformities within the cavity are minimized, thereby achieving a more uniform cure throughout the workpiece. A directional coupler is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter is provided for measuring the power delivered to the microwave furnace. A second power meter detects the magnitude of reflected power. The furnace cavity may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing. 15 figs.

Lauf, R.J.; Bible, D.W.; Paulauskas, F.L.

1998-02-24T23:59:59.000Z

397

Method for curing polymers using variable-frequency microwave heating  

DOE Patents [OSTI]

A method for curing polymers (11) incorporating a variable frequency microwave furnace system (10) designed to allow modulation of the frequency of the microwaves introduced into a furnace cavity (34). By varying the frequency of the microwave signal, non-uniformities within the cavity (34) are minimized, thereby achieving a more uniform cure throughout the workpiece (36). A directional coupler (24) is provided for detecting the direction of a signal and further directing the signal depending on the detected direction. A first power meter (30) is provided for measuring the power delivered to the microwave furnace (32). A second power meter (26) detects the magnitude of reflected power. The furnace cavity (34) may be adapted to be used to cure materials defining a continuous sheet or which require compressive forces during curing.

Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Paulauskas, Felix L. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

398

High-precision optical and microwave signal synthesis and distribution  

E-Print Network [OSTI]

In this thesis, techniques for high-precision synthesis of optical and microwave signals and their distribution to remote locations are presented. The first topic is ultrafast optical pulse synthesis by coherent superposition ...

Kim, Jung-Won, 1976-

2007-01-01T23:59:59.000Z

399

Virtual cathode microwave generator having annular anode slit  

DOE Patents [OSTI]

A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

Kwan, Thomas J. T. (Los Alamos, NM); Snell, Charles M. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

400

Radiation of a neutral polarizable particle moving uniformly through a thermal radiation field  

E-Print Network [OSTI]

We discuss the properties of thermal electromagnetic radiation produced by a neutral polarizable nanoparticle moving with an arbitrary relativistic velocity in a heated vacuum background with a fixed temperature. We show that the particle in its own rest frame acquires the radiation temperature of vacuum, multiplied by a velocity-dependent factor, and then emits thermal photons predominantly in the forward direction. The intensity of radiation proves to be much higher than for the particle at rest. For metal particles with high energy, the ratio of emitted and absorbed radiation power is proportional to the Lorentz-factor squared.

G. V. Dedkov; A. A. Kyasov

2014-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Exhaust gas treatment by an atmospheric pressure microwave plasma  

Science Journals Connector (OSTI)

A microwave process for treating exhaust gases from internal combustion engines is presented. The exhaust gases are ionised by microwave energy at 2.45 GHz and the resultant plasma jet discharges into ambient air and exhaust gas environment. A gas analyser was used to measure the change in exhaust gas composition due to the influence of the plasma. Large decreases in CO2, CO and hydrocarbon levels, accompanied by an increase in NO levels, were found.

Carlos A. Destefani; Elias Siores

2002-01-01T23:59:59.000Z

402

Optomechanical microwave sensor at the sub-photon level  

E-Print Network [OSTI]

Due to their low energy content microwave signals at the single-photon level are extremely challenging to measure. Guided by recent progress in single-photon optomechanics and hybrid optomechanical systems, we propose a multimode optomechanical transducer that can detect intensities significantly below the single-photon level via adiabatic transfer of the microwave signal to the optical frequency domain where the measurement is then performed. The influence of intrinsic quantum and thermal fluctuations is also discussed.

Keye Zhang; Francesco Bariani; Ying Dong; Weiping Zhang; Pierre Meystre

2014-09-30T23:59:59.000Z

403

Method and device for microwave sintering large ceramic articles  

DOE Patents [OSTI]

A microwave sintering system and method are provided for extremely uniform sintering of large and/or irregular shaped ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing through an overmoded waveguide arrangement which acts in conjunction with a mode promoter within the cavity to achieve unexpected field uniformity. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200.degree. C./min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent of non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered.

Kimrey, Jr., Harold D. (Knoxville, TN)

1990-01-01T23:59:59.000Z

404

Hanford Site background: Part 1, Soil background for nonradioactive analytes. Revision 1, Volume 1  

SciTech Connect (OSTI)

The determination of soil background is one of the most important activities supporting environmental restoration and waste management on the Hanford Site. Background compositions serve as the basis for identifying soil contamination, and also as a baseline in risk assessment processes used to determine soil cleanup and treatment levels. These uses of soil background require an understanding of the extent to which analytes of concern occur naturally in the soils. This report documents the results of sampling and analysis activities designed to characterize the composition of soil background at the Hanford Site, and to evaluate the feasibility for use as Sitewide background. The compositions of naturally occurring soils in the vadose Zone have been-determined for-nonradioactive inorganic and organic analytes and related physical properties. These results confirm that a Sitewide approach to the characterization of soil background is technically sound and is a viable alternative to the determination and use of numerous local or area backgrounds that yield inconsistent definitions of contamination. Sitewide soil background consists of several types of data and is appropriate for use in identifying contamination in all soils in the vadose zone on the Hanford Site. The natural concentrations of nearly every inorganic analyte extend to levels that exceed calculated health-based cleanup limits. The levels of most inorganic analytes, however, are well below these health-based limits. The highest measured background concentrations occur in three volumetrically minor soil types, the most important of which are topsoils adjacent to the Columbia River that are rich in organic carbon. No organic analyte levels above detection were found in any of the soil samples.

Not Available

1993-04-01T23:59:59.000Z

405

The impact of non-Planckian effects on radio cosmological backgrounds  

E-Print Network [OSTI]

Non-Planckian (NP) spectral modifications of the CMB radiation spectrum can be produced due to the existence of a non-zero value of the plasma frequency at the recombination epoch. We present here an analysis of NP effects on the radio cosmological background and we derive, for the first time, predictions of their amplitude on three different observables: the CMB spectrum, the Sunyaev-Zel'dovich (SZ) effect in cosmic structures, and the 21-cm background temperature brightness change. We find that NP effect can manifest in the CMB spectrum at $\

Colafrancesco, Sergio; Marchegiani, Paolo

2015-01-01T23:59:59.000Z

406

The photonuclear neutron and gamma-ray backgrounds in the fast ignition experiment  

SciTech Connect (OSTI)

In the fast-ignition scheme, very hard x-rays (hereinafter referred to as {gamma}-rays) are generated by Bremsstrahlung radiation from fast electrons. Significant backgrounds were observed around the deuterium-deuterium fusion neutron signals in the experiment in 2010. In this paper the backgrounds were studied in detail, based on Monte Carlo simulations, and they were confirmed to be {gamma}-rays from the target, scattered {gamma}-rays from the experimental bay walls ({gamma}{sup Prime }-rays), and neutrons generated by ({gamma}, n) reactions in either the target vacuum chamber or the diagnostic instruments ({gamma}-n neutrons).

Arikawa, Y.; Nagai, T.; Hosoda, H.; Abe, Y.; Kojima, S.; Fujioka, S.; Sarukura, N.; Nakai, M.; Shiraga, H.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka Suita (Japan); Ozaki, T. [National Institution Fusion Science, 322-6 Oroshi-cho, Toki-city, Gifu (Japan)

2012-10-15T23:59:59.000Z

407

Properties of Natural Radiation and Radioactivity  

SciTech Connect (OSTI)

Ubiquitous natural sources of radiation and radioactive material (naturally occurring radioactive material, NORM) have exposed humans throughout history. To these natural sources have been added technologically-enhanced naturally occurring radioactive material (TENORM) sources and human-made (anthropogenic) sources. This chapter describes the ubiquitous radiation sources that we call background, including primordial radionuclides such as 40K, 87Rb, the 232Th series, the 238U series, and the 235U series; cosmogenic radionuclides such as 3H and 14C; anthropogenic radionuclides such as 3H, 14C, 137Cs, 90Sr, and 129I; radiation from space; and radiation from technologically-enhanced concentrations of natural radionuclides, particularly the short-lived decay products of 222Rn ("radon") and 220Rn ("thoron") in indoor air. These sources produce radiation doses to people principally via external irradiation or internal irradiation following intakes by inhalation or ingestion. The effective doses from each are given, with a total of 3.11 mSv y-1 (311 mrem y-1) to the average US resident. Over 2.5 million US residents receive over 20 mSv y-1 (2 rem y-1), primarily due to indoor radon. Exposure to radiation from NORM and TENORM produces the largest fraction of ubiquitous background exposure to US residents, on the order of 2.78 mSv (278 mrem) or about 89%. This is roughly 45% of the average annual effective dose to a US resident of 6.2 mSv y-1 (620 mrem y-1) that includes medical (48%), consumer products and air travel (2%), and occupational and industrial (0.1%). Much of this chapter is based on National Council on Radiation Protection and Measurements (NCRP) Report No. 160, "Ionizing Radiation Exposure of the Population of the United States," for which the author chaired the subcommittee that wrote Chapter 3 on "Ubiquitous Background Radiation."

Strom, Daniel J.

2009-07-13T23:59:59.000Z

408

DOE Vendor Communication Plan I. Background  

Broader source: Energy.gov (indexed) [DOE]

Vendor Communication Plan Vendor Communication Plan I. Background On February 2, 2011, the Office of Federal Procurement Policy (OFPP) issued a memorandum entitled "Myth-Busting: Addressing Misconceptions to Improve Communication with Industry during the Acquisition Process." In addition to identifying and refuting common misconceptions about vendor engagement, the memorandum directed agencies to develop high-level vendor communication plans to discuss how each agency will reduce unnecessary barriers, publicize communication opportunities, and prioritize engagement opportunities for high-risk, complex programs or those that fail to attract new vendors during re-competitions.

409

Application of a Microwave-Induced Helium Plasma Detector at Atmospheric Pressure for Gas Chromatographic Capillary Columns  

Science Journals Connector (OSTI)

......microwave-induced plasma emission detector...microwave- induced plasma that operates at atmospheric pressure using helium...to within 1 cm of the plasma discharge. The quartz...Raytheon PGM-10X2 2450 MHz microwave power supply......

Stanley P. Wasik; Frederick P. Schwarz

1980-12-01T23:59:59.000Z

410

Radiative heat transfer between dielectric bodies  

E-Print Network [OSTI]

The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.

Svend-Age Biehs

2011-03-16T23:59:59.000Z

411

Radiating gravastars  

SciTech Connect (OSTI)

Considering a Vaidya exterior spacetime, we study dynamical models of prototype gravastars, made of an infinitely thin spherical shell of a perfect fluid with the equation of state p = ?, enclosing an interior de Sitter spacetime. We show explicitly that the final output can be a black hole, an unstable gravastar, a stable gravastar or a 'bounded excursion' gravastar, depending on how the mass of the shell evolves in time, the cosmological constant and the initial position of the dynamical shell. This work presents, for the first time in the literature, a gravastar that emits radiation.

Chan, R. [Coordenação de Astronomia e Astrofísica, Observatório Nacional, Rua General José Cristino, 77, São Cristóvão 20921-400, Rio de Janeiro, RJ (Brazil); Silva, M.F.A. da [Departamento de Física Teórica, Instituto de Física, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã 20550-900, Rio de Janeiro - RJ (Brazil); Rocha, Jaime F. Villas da [Instituto de Biociências, Departamento de Ciências Naturais, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur 458, Urca, CEP 22290-240, Rio de Janeiro, RJ (Brazil); Wang, Anzhong, E-mail: chan@on.br, E-mail: mfasnic@gmail.com, E-mail: jfvroch@pq.cnpq.br, E-mail: anzhong_wang@baylor.edu [GCAP-CASPER, Department of Physics, Baylor University, Waco, TX 76798 (United States)

2011-10-01T23:59:59.000Z

412

Cancer incidence in areas with elevated levels of natural radiation  

Science Journals Connector (OSTI)

It has been reported that on reaching a certain level of cell damage the production of repair enzymes is triggered which decreases the chromosome aberrations. If this happens, prolonged exposure to high levels of natural radiation in areas with elevated levels of background radiation could decrease the frequency of chromosome aberrations. Recent epidemiological studies indicated that there is an increased risk of cancer in healthy individuals with high levels of chromosomal aberrations. Studies performed in Nordic countries as well as Italy, showed that increased levels of chromosome aberrations in lymphocytes can be used to predict cancer risk in humans. One may conclude that a dose of ionising radiation sufficient to produce a certain level of cell damage increases production of antioxidants and repair enzymes that decrease either the frequency of chromosome aberrations or the cancer risk. People in some areas of Ramsar, a city in northern Iran, receive an annual radiation dose from background radiation that is more than five times higher than the 20 mSv. Yr-1 that is permitted for radiation workers. Inhabitants of Ramsar have lived for many generations in these high background areas. If an annual radiation dose of a few hundred mSv is detrimental to health, causing genetic abnormalities or an increased risk of cancer, it should be evident in these people. The absorbed dose rate in some high background radiation areas of Ramsar is approximately 55-200 times higher than that of the average global dose rate. It has been reported that 3â??8% of all cancers are caused by current levels of ionising radiation. If this estimation were true, all the inhabitants of such an area with extraordinary elevated levels of natural radiation would have died of cancer. Our cytogenetic studies show no significant differences between people in the high background area compared to people in normal background areas. As there was no increased level of chromosome aberrations, it may be predicted that the cancer incidence is not higher than in the neighbouring areas with a normal background radiation level. Although there is not yet solid epidemiological information, most local physicians in Ramsar report anecdotally that there is no increase in the incidence rates of cancer or leukemia in their area. There are no data to indicate a significant increase of cancer incidence in other high background radiation areas (HBRAs). Furthermore, several studies show a significant decrease of cancer death rates in areas with high backgrounds. It can be concluded that prolonged exposure to high levels of natural radiation possibly triggers processes such as the production of antioxidants and repair enzymes, which decreases the frequency of chromosome aberrations and the cancer incidence rate.

S.M.J. Mortazavi; M. Ghiassi-Nejad; P.A. Karam; T. Ikushima; A. Niroomand-Rad; J.R. Cameron

2006-01-01T23:59:59.000Z

413

../fusion/templates/mapguide/maroon/css/maroon_fusion.css background-image: url(../images/background.gif);  

E-Print Network [OSTI]

../fusion/templates/mapguide/maroon/css/maroon_fusion.css body { background-image: url(../images/background.gif); ../fusion/templates/mapguide/maroon/css/ maroon_fusion.css body { background-color: #3e5c5f; ../fusion/templates/mapguide/maroon/css/ maroon_fusion.css #ToolbarVertical { background: #500000; maroon_fusion.css #Toolbar { background

Ahmad, Sajjad

414

Radiation Safety Policy and Procedures Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RSPPC Meeting Minutes APS only RSPPC Meeting Minutes APS only Radiation Safety Policy and Procedures Committee Charter 1. Purpose The committee reviews functional changes to the Access Control Interlock System (ACIS) and Personnel Protection System (PSS) used to provide personnel protection and area exclusion related to APS accelerators, storage ring and other radiation handling areas. The RSPP Committee advises APS management on radiation safety matters. At the request of APS Management the committee reviews projects, recommends radiation safety policy, and evaluates accident investigation conclusions. 2. Membership Members are appointed by the APS Division Directors and APS Director for their knowledge and background in Interlock Systems, Radiation Safety, Accelerator Operations and Work on the Experiment Floor.

415

Decades of Discovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of microwave background radiation, when combined with the eventual discovery of dark matter, will unify physics on the largest and smallest scales, fusing together the...

416

Astronomy at the South Pole  

Science Journals Connector (OSTI)

Polar astronomers working with submillimeter telescopes are measuring the cosmic microwave background radiation left over from the Big Bang, mapping our galaxy in the spectral line...

Wright, Gregory

2004-01-01T23:59:59.000Z

417

Electron kinetics inferred from observations of microwave bursts during edge localised modes in the Mega-Amp Spherical Tokamak  

E-Print Network [OSTI]

Recent measurements of microwave and X-ray emission during edge localised mode (ELM) activity in tokamak plasmas provide a fresh perspective on ELM physics. It is evident that electron kinetics, which are not incorporated in standard (fluid) models for the instability that drives ELMs, play a key role in the new observations. These effects should be included in future models for ELMs and the ELM cycle. The observed radiative effects paradoxically imply acceleration of electrons parallel to the magnetic field combined with rapid acquisition of perpendicular momentum. It is shown that this paradox can be resolved by the action of the anomalous Doppler instability which enables fast collective radiative relaxation, in the perpendicular direction, of electrons accelerated in the parallel direction by inductive electric fields generated by the initial ELM instability.

Freethy, S J; Chapman, S C; Dendy, R O; Lai, W N; Pamela, S J P; Shevchenko, V F; Vann, R G L

2014-01-01T23:59:59.000Z

418

An Assessment of Microwave Absorption Models and Retrievals of Cloud Liquid Water Using Clear-Sky Data  

SciTech Connect (OSTI)

Passive microwave radiometers have a long history in the remote sensing of atmospheric liquid and water vapor. Retrievals of these quantities are sensitive to variations in pressure and temperature of the liquid and water vapor. Rather than use a statistical or climatological approach to account for the natural variability in atmospheric pressure and temperature, additional information on the atmospheric profile at the time of the radiometer measurements can be directly incorporated into the retrieval process. Such an approach has been referred to in the literature as a “physical-iterative” solution. This paper presents an assessment of the accuracy of the column liquid water path that can be expected using such an iterative technique as a result of uncertainties in the microwave emissions from oxygen and water vapor. It is shown that the retrieval accuracy is influenced by the accuracy of the instrument measurements and the quality of the atmospheric profiles of temperature and pressure, as one would expect. But also critical is the uncertainty in the absorption coefficients used in the underlying microwave radiative transfer model. The uncertainty in the absorption coefficients is particularly problematic in that it may well bias the liquid water retrieval. The differences between 3 absorption models examined in this paper are equivalent to a bias of 15 to 30 g/m2, depending on the total column water vapor. An examination of typical liquid water paths from the Southern Great Plains region of the United States shows that errors of this magnitude have significant implications for shortwave radiation and retrievals of cloud effective particle size.

Marchand, Roger T.; Ackerman, Thomas P.; Westwater, Ed R.; Clough, Shepard A.; Cady-Pereira, Karen; Liljegren, James C.

2003-12-19T23:59:59.000Z

419

Natural and Radiation Carcinogenesis in Man. III. Radiation Carcinogenesis  

Science Journals Connector (OSTI)

...mice. NATURAL AND RADIATION CARCINOGENESIS IN MAN. 3. RADIATION CARCINOGENESIS. | Journal Article | Japan Neoplasms etiology Neoplasms, Radiation-Induced Radiation Genetics | JAPAN NEOPLASM ETIOLOGY NEOPLASMS, RADIATION-INDUCED RADIATION...

1965-01-01T23:59:59.000Z

420

Stimulated microwave emission from E×B drifting electrons in slow-wave cavities: A quantum approach  

Science Journals Connector (OSTI)

Stimulated microwave emission from E×B drifting electrons in slow-wave cavities occurs when the Doppler-shifted radiation frequency is either near zero or the electron cyclotron frequency. The former case, characterized by the synchronous drift velocity u, ?-ku?0, corresponds to the ‘‘pure drift’’ instability, while the latter, satisfying ?-ku?±?, is termed the ‘‘drift-cyclotron’’ mode. In both cases the drift kinetic energy and momentum are invariant during radiative transitions. The momentum of the emitted or absorbed radiation quantum comes from the vector potential associated with the static magnetic field and induces a shift of the electron guiding center in a direction transverse to the drift velocity. In the pure drift case the radiation energy comes from the change in the electrostatic potential energy. In the drift-cyclotron case both electrostatic and cyclotron rotation energies are converted into radiation. In the nonrelativistic regime the gain is symmetric with respect to the frequency detuning from resonance. The difference between the stimulated absorption and emission probabilities, responsible for the gain, is caused by field gradients across the direction of the electron drift. These gradients come from the waveguide mode structure and the collective field of the electron beam. The drift mode is always unstable, while there exists one stable and one unstable drift-cyclotron branch. Relativistic mass effects influence only the drift-cyclotron instability, adding a gain contribution that is antisymmetric in frequency detuning.

Spilios Riyopoulos

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ignition characteristics of methane/air premixed mixture by microwave-enhanced laser-induced breakdown plasma  

Science Journals Connector (OSTI)

A microwave-enhanced plasma generation technique was combined with laser-induced ignition to improve ignition characteristics. A locally intensified microwave field was formed near the...

Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji; Hayashi, Jun; Akamatsu, Fumiteru

2013-01-01T23:59:59.000Z

422

Notices Background The National Wildlife Refuge System  

Broader source: Energy.gov (indexed) [DOE]

89 Federal Register 89 Federal Register / Vol. 74, No. 223 / Friday, November 20, 2009 / Notices Background The National Wildlife Refuge System Administration Act of 1966 (16 U.S.C. 668dd-668ee) (Administration Act), as amended by the National Wildlife Refuge System Improvement Act of 1997, requires us to develop a CCP for each national wildlife refuge. The purpose for developing a CCP is to provide refuge managers with a 15-year plan for achieving refuge purposes and contributing toward the mission of the National Wildlife Refuge System, consistent with sound principles of fish and wildlife management, conservation, legal mandates, and our policies. In addition to outlining broad management direction on conserving wildlife and their habitats, CCPs identify wildlife-

423

Fast neutron background measurements at shallow depths  

SciTech Connect (OSTI)

We report on measurements of the neutron backgrounds for neutrino experiments at shallow depth (such as the proposed San Onofre neutrino oscillation experiment). A detector capable of pulse-shape discrimination measured the flux of fast neutrons at 20 mwe depth in the Stanford Underground Facility to be (1.07 {+-} 0.30) X 10{sup -6} cm{sup -2} s{sup -1}. An experiment, situated in the Tendon Gallery of the San Onofre Unit 2 reactor. studied spallation neutrons from muons traversing Pb and Cu. An underground experiment in the SUF, employing a detector filled with Gd-loaded liquid scintillator, is measuring the neutron production rate and multiplicity for muon spallation in low-A material (hydrocarbon-based liquid scintillator).

Chen, M.; Hertenberger, R.; Novikov, V. [Inst. of Nuclear Research, Moscow (Russian Federation); Dougherty, B.

1993-10-01T23:59:59.000Z

424

Project Lyman: Quantifying 11 Gyrs of Metagalactic Ionizing Background Evolution  

E-Print Network [OSTI]

The timing and duration of the reionization epoch is crucial to the emergence and evolution of structure in the universe. The relative roles that star-forming galaxies, active galactic nuclei and quasars play in contributing to the metagalactic ionizing background across cosmic time remains uncertain. Deep quasar counts provide insights into their role, but the potentially crucial contribution from star-formation is highly uncertain due to our poor understanding of the processes that allow ionizing radiation to escape into the intergalactic medium (IGM). The fraction of ionizing photons that escape from star-forming galaxies is a fundamental free parameter used in models to "fine-tune" the timing and duration of the reionization epoch that occurred somewhere between 13.4 and 12.7 Gyrs ago (redshifts between 12 > z > 6). However, direct observation of Lyman continuum (LyC) photons emitted below the rest frame \\ion{H}{1} ionization edge at 912 \\AA\\ is increasingly improbable at redshifts z > 3, due to the stead...

McCandliss, Stephan R; Bergvall, Nils; Bianchi, Luciana; Bridge, Carrie; Bogosavljevic, Milan; Cohen, Seth H; Deharveng, Jean-Michel; Dixon, W Van Dyke; Ferguson, Harry; Friedman, Peter; Hayes, Matthew; Howk, J Christopher; Inoue, Akio; Iwata, Ikuru; Kaiser, Mary Elizabeth; Kriss, Gerard; Kruk, Jeffrey; Kutyrev, Alexander S; Leitherer, Claus; Meurer, Gerhardt R; Prochaska, Jason X; Sonneborn, George; Stiavelli, Massimo; Teplitz, Harry I; Windhorst, Rogier A

2012-01-01T23:59:59.000Z

425

Cellular telephone-based wide-area radiation detection network  

DOE Patents [OSTI]

A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

2009-06-09T23:59:59.000Z

426

Integration of microwave and thermographic NDT methods for corrosion detection  

Science Journals Connector (OSTI)

Infrastructure health monitoring is an important issue in the transportation industry. For the case of cement-based structures in particular detection of corrosion on reinforcing steel bars (rebar) is an ongoing problem for aging infrastructure. There have been a number of techniques that have shown promise in this area including microwave nondestructive testing (NDT) and thermography. Thermography is quite advantageous as it is an established method and can be utilized for large inspection areas with intuitive results. Typical heat sources include induction heating and flash lamps but these are not without drawbacks. Microwave nondestructive testing has also been successful at detecting corroded rebar but at the cost of lengthy scan times. This paper presents an investigation into the potential of utilizing aspects of microwave NDT and thermography to create a hybrid NDT method herein referred to as Active Microwave Thermography (AMT). AMT takes advantage of the electromagnetically lossy nature of corrosion byproducts and uses microwave energy to induce heat in the corrosion. Subsequently the resultant heat profile is captured using an infrared camera. This paper presents initial simulations and measurements that highlight the potential of AMT to detect corroded rebar.

2014-01-01T23:59:59.000Z

427

The White Dwarf -- White Dwarf galactic background in the LISA data  

E-Print Network [OSTI]

LISA (Laser Interferometer Space Antenna) is a proposed space mission, which will use coherent laser beams exchanged between three remote spacecraft to detect and study low-frequency cosmic gravitational radiation. In the low-part of its frequency band, the LISA strain sensitivity will be dominated by the incoherent superposition of hundreds of millions of gravitational wave signals radiated by inspiraling white-dwarf binaries present in our own galaxy. In order to estimate the magnitude of the LISA response to this background, we have simulated a synthesized population that recently appeared in the literature. We find the amplitude of the galactic white-dwarf binary background in the LISA data to be modulated in time, reaching a minimum equal to about twice that of the LISA noise for a period of about two months around the time when the Sun-LISA direction is roughly oriented towards the Autumn equinox. Since the galactic white-dwarfs background will be observed by LISA not as a stationary but rather as a cyclostationary random process with a period of one year, we summarize the theory of cyclostationary random processes, present the corresponding generalized spectral method needed to characterize such process, and make a comparison between our analytic results and those obtained by applying our method to the simulated data. We find that, by measuring the generalized spectral components of the white-dwarf background, LISA will be able to infer properties of the distribution of the white-dwarfs binary systems present in our Galaxy.

Jeffrey A. Edlund; Massimo Tinto; Andrzej Krolak; Gijs Nelemans

2005-04-22T23:59:59.000Z

428

Adaptors for radiation detectors  

DOE Patents [OSTI]

Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

Livesay, Ronald Jason

2014-04-22T23:59:59.000Z

429

Radiation Safety  

Broader source: Energy.gov (indexed) [DOE]

Brotherhood of Locomotive Brotherhood of Locomotive Engineers & Trainmen Scott Palmer BLET Radiation Safety Officer New Hire Training New Hire study topics * GCOR * ABTH * SSI * Employee Safety * HazMat * Railroad terminology * OJT * 15-week class * Final test Hazardous Materials * Initial new-hire training * Required by OSHA * No specified class length * Open book test * Triennial module Locomotive Engineer Training A little bit older...a little bit wiser... * Typically 2-4 years' seniority * Pass-or-get-fired promotion * Intensive program * Perpetually tested to a higher standard * 20 Weeks of training * 15 of that is OJT * General Code of Operating Rules * Air Brake & Train Handling * System Special Instructions * Safety Instructions * Federal Regulations * Locomotive Simulators * Test Ride * Pass test with 90% Engineer Recertification

430

Reduction of Metal Oxides by Microwave Heating of Multi-walled...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduction of Metal Oxides by Microwave Heating of Multi-walled Carbon Nanotubes Microwave heating of a metal oxide in the presence of multi-walled carbon nanotubes may result in...

431

Electric Kettle Takes Down Microwave in Final Round of #EnergyFaceoff...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Kettle Takes Down Microwave in Final Round of EnergyFaceoff Electric Kettle Takes Down Microwave in Final Round of EnergyFaceoff November 24, 2014 - 12:13pm Addthis The...

432

Journal of Microwaves and Optoelectronics, Vol. 2, N.o 6, December 2002.  

E-Print Network [OSTI]

Journal of Microwaves and Optoelectronics, Vol. 2, N.o 6, December 2002. Copyright SBMO ISSN 1516 one metric is not #12;Journal of Microwaves and Optoelectronics, Vol. 2, N.o 6, December 2002

Coello, Carlos A. Coello

433

Journal of Microwaves and Optoelectronics, Vol. 2, N.o 6, December 2002.  

E-Print Network [OSTI]

Journal of Microwaves and Optoelectronics, Vol. 2, N.o 6, December 2002. Copyright SBMO ISSN 1516 investigation is subsequently #12;Journal of Microwaves and Optoelectronics, Vol. 2, N.o 6, December 2002

Coello, Carlos A. Coello

434

Attosecond timing jitter modelocked lasers and ultralow phase noise photonic microwave oscillators  

E-Print Network [OSTI]

Photonic microwave oscillator based on optical frequency comb and ultrastable optical reference cavity represents the state-of-the-art solution to generate X-band microwaves of ultralow phase noise. Such high-quality ...

Li, Duo, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

435

Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation  

Science Journals Connector (OSTI)

In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation hi...

Vidyadhar V. Gedam; Iyyaswami Regupathi

2012-03-01T23:59:59.000Z

436

E-Print Network 3.0 - argon-helium microwave plasma Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Medicine 63 Development of a Permanent-Magnet Microwave Ion Source for a Sealed-Tube Neutron Generator Summary: to efficiently couple the microwave energy into the plasma,...

437

High redshift AGNs and HI reionisation: limits from the unresolved X-ray background  

E-Print Network [OSTI]

The rapidly declining population of bright quasars at z~3 appears to make an increasingly small contribution to the ionising background at the HI Lyman limit. It is then generally though that massive stars in (pre-)galactic systems may provide the additional ionising flux needed to complete HI reionisation by z>6. A galaxy dominated background, however, may require that the escape fraction of Lyman continuum radiation from high redshift galaxies is as high as 10%, a value somewhat at odds with (admittedly scarce) observational constraints. High escape fractions from dwarf galaxies have been advocated, or, alternatively, a so-far undetected (or barely detected) population of unobscured, high-redshift faint AGNs. Here we question the latter hypothesis, and show that such sources, to be consistent with the measured level of the unresolved X-ray background at z=0, can provide a fraction of the HII filling factor not larger than 13% by z=6. The fraction rises to 10%.

Haardt, Francesco

2015-01-01T23:59:59.000Z

438

COLUMBIA RADIATION LABORATORY RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iVP-^"^^? iVP-^"^^? COLUMBIA RADIATION LABORATORY RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING THE USEFUL RANGE OF THE ELECTROMAGNETIC SPECTRUM Special Technical Report Signal Corps Contract DA-36-039 SC-64630 DA Project No. 3-99-10-022 SC Project No. 102B U. S. Army Laboratory Procurement Office Signal Corps Supply Agency Fort Monmouth, New Jersey The Trustees of Columbia University in the City of New York Box 6, Low Memorial Library New York 27, New York March 1, 1956 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. COLUMBIA RADIATION LABORATORY Collected Papers on the AAASER (Microwave Amplification by Stimulated Emission of Radiation) Special Technical Report

439

Cerenkov Radiator Driven by a Superconducting RF Electron Gun  

SciTech Connect (OSTI)

The Naval Postgraduate School (NPS), Niowave, Inc., and Boeing have recently demonstrated operation of the first superconducting RF electron gun based on a quarter wave resonator structure. In preliminary tests, this gun has produced 10 ps long bunches with charge in excess of 78 pC, and with beam energy up to 396 keV. Initial testing occurred at Niowave's Lansing, MI facility, but the gun and diagnostic beam line are planned for installation in California in the near future. The design of the diagnostic beam line is conducive to the addition of a Cerenkov radiator without interfering with other beam line operations. Design and simulations of a Cerenkov radiator, consisting of a dielectric lined waveguide will be presented. The dispersion relation for the structure is determined and the beam interaction is studied using numerical simulations. The characteristics of the microwave radiation produced in both the short and long bunch regimes will be presented.

Poole, B R; Harris, J R

2011-03-07T23:59:59.000Z

440

Constraining large–scale structure theories with the cosmic background radiation  

Science Journals Connector (OSTI)

...would be required. Adding a hot dark matter component gives a power...baryons, hot, warm and cold dark matter, coherent fields, i...were in place prior to the COBE discovery for Phil. Trans. R. Soc...Fixsen et al. 1997), in energy ECompton cool /Ecmb = 4y...

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......of doses to members of the public, since all humans are exposed...22). For members of the public, ingestion could also be an...Physics Society First Annual Meeting 25-27 June 1956. 33-48...United States Uranium Registry/Hanford Environmental Health Foundation......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

442

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......higher fraction of depleted uranium (DU). These...in mandibular cancer patients following...Reprocessed uranium exposure and lung cancer risk. Health...and risks from uranium are not increased...The impact of depleted uranium (DU......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

443

Enhancement of natural background gamma-radiation dose around uranium microparticles in the human body  

Science Journals Connector (OSTI)

...surrounded the adverse health effects of depleted uranium (DU) munitions...Society. 2001 The health hazards of depleted uranium munitions-Part 1...Society. 2002 The health effects of depleted uranium munitions-Part 2...

2010-01-01T23:59:59.000Z

444

Measurements of environmental background radiation at location of coal-fired power plants  

Science Journals Connector (OSTI)

......before the incidence of depleted uranium over Yugoslav territory...Riyadh, Saudi Arabia. Health Phys. 66 (6), 821-824...Northern New Jersey. Health Phys. 72 (6), 915-922...before the incidence of depleted uranium over former Yougoslav......

F. Adrovic; M. Prokic; M. M. Ninkovic; R. Glisic

2004-12-01T23:59:59.000Z

445

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......UK The impact of depleted uranium (DU) on human health has been the subject...977-985. 11 World Health Organization. Depleted uranium: sources, exposure...Royal Society. The health hazards of depleted uranium munitions-Part I......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

446

Constraining large–scale structure theories with the cosmic background radiation  

Science Journals Connector (OSTI)

...parameters such as the energy densities of baryons, cold and hot dark matter, in the vacuum...that LSS redshift surveys probe. The density...CMB and LSS redshift survey results we will get...parameter h, various mean energy densities {tot...

1999-01-01T23:59:59.000Z

447

0.6 cu. ft. (17 litre) capacity microwave 700 watts of cooking power  

E-Print Network [OSTI]

. Installation/yearly maintenance not included. Danby ENERGY STAR Mini Fridge (DCR88WDD) Danby Microwave (DMW608W

Lotze, Heike K.

448

In situ RF/microwave remediation of soil experiment overview  

SciTech Connect (OSTI)

Contaminant plumes are significant waste problems that require remediation in both the government and private sectors. The authors are developing an in situ process that uses RF/microwave stimulation to remove pollutants from contaminated soils. This process is more efficient than existing technologies, creates less secondary pollution, and is applicable to situations that are not amenable to treatment by existing technologies. Currently, the most commonly used process is soil vapor extraction. However, even when it is successful, this technology is energy inefficient. The authors objective is to combine RF/microwave energy application with soil vapor extraction to help mobilize and efficiently remove the soil contaminants, specifically demonstrating the viability of RF/microwave induced, in situ, soil remediation of light and dense non-aqueous phase liquids (LNAPL, DNAPL) contaminants.

Regan, A.H.; Palomares, M.E.; Polston, C.; Rees, D.E.; Roybal, W.T. [Los Alamos National Lab., NM (United States); Ross, T.J. [Univ. of New Mexico, Albuquerque, NM (United States)

1995-09-01T23:59:59.000Z

449

Purcell effect with microwave drive: Suppression of qubit relaxation rate  

E-Print Network [OSTI]

We analyze the Purcell relaxation rate of a superconducting qubit coupled to a resonator, which is coupled to a transmission line and pumped by an external microwave drive. Considering the typical regime of the qubit measurement, we focus on the case when the qubit frequency is significantly detuned from the resonator frequency. Surprisingly, the Purcell rate decreases when the strength of the microwave drive is increased. This suppression becomes significant in the nonlinear regime. In the presence of the microwave drive, the loss of photons to the transmission line also causes excitation of the qubit; however, the excitation rate is typically much smaller than the relaxation rate. Our analysis also applies to a more general case of a two-level quantum system coupled to a cavity.

Eyob A. Sete; Jay M. Gambetta; Alexander N. Korotkov

2014-01-22T23:59:59.000Z

450

Optical control of microwaves with semiconductor n?i?p?i structures  

Science Journals Connector (OSTI)

We control the microwave transmission of a GaAsn?i?p?i structure by illuminating it with a cw argon ion laser. Tests in a broadband microwave modulator wave spectrometer show that an optical intensity of 800 mW/cm2 produces a 50% change in transmission for microwaves between 10 and 50 GHz.

Alan Kost; Linda West; T. C. Hasenberg; Jeffrey O. White; Mehran Matloubian; George C. Valley

1993-01-01T23:59:59.000Z

451

Microwave and EUV Observations of an Erupting Filament and Associated Flare and Coronal Mass Ejections  

Science Journals Connector (OSTI)

......feature was 5.51 MHz at 07:48 UT, and...High-Temperature Plasma to the Microwave...microwave emission from plasma below this temperature...case of a stratified atmosphere; then, the integrations...high- temperature plasma to the microwave...operating at 5743 MHz (5.2 cm), observed......

Costas E. Alissandrakis; Alexey A. Kochanov; Spiros Patsourakos; Alexander T. Altyntsev; Sergey V. Lesovoi; Nadya N. Lesovoya

2013-12-05T23:59:59.000Z

452

Microwave-assisted sample preparation of coal and coal fly ash for subsequent metal determination  

SciTech Connect (OSTI)

The aim of this paper is to review microwave-assisted digestion of coal and coal fly ash. A brief description of microwave heating principles is presented. Microwave-assisted digestion appears currently to be the most popular preparation technique, possibly due to the comparatively rapid sample preparation and the reduction of contamination, compared to the conventional hot-plate digestion methods.

Srogi, K. [Inst. of Chemical Processing of Coal, Zabrze (Poland)

2007-01-15T23:59:59.000Z

453

CAD Technique for Microwave Chemistry Reactors with Energy Efficiency Optimized for Different Reactants  

E-Print Network [OSTI]

CAD Technique for Microwave Chemistry Reactors with Energy Efficiency Optimized for Different in experimental development of large- scale and highly-productive reactors. This paper proposes to address this issue by developing microwave chemistry reactors as microwave systems, rather than as black

Yakovlev, Vadim

454

Apparatus with moderating material for microwave heat treatment of manufactured components  

DOE Patents [OSTI]

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material. Heat treating medium such as eutectic salts may be employed. A fluidized bed introduces process gases which may include carburizing or nitriding gases The process may be operated in a batch mode or continuous process mode. A microwave heating probe may be used to restart a frozen eutectic salt bath.

Ripley, Edward B. (Knoxville, TN)

2011-05-10T23:59:59.000Z

455

Schwarzschild black hole in dark energy background  

E-Print Network [OSTI]

In this paper we present an exact solution of Einstein's field equations describing the Schwarzschild black hole in dark energy background. It is also regarded as an embedded solution that the Schwarzschild black hole is embedded into the dark energy space producing Schwarzschild-dark energy black hole. It is found that the space-time geometry of Schwarzschild-dark energy solution is non-vacuum Petrov type $D$ in the classification of space-times. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor of the Schwarzschild-dark energy solution. We also find that the energy-momentum tensor of the Schwarzschild-dark energy solution violates the strong energy condition due to the negative pressure leading to a repulsive gravitational force of the matter field in the space-time. It is shown that the time-like vector field for an observer in the Schwarzschild-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity and the area of the horizons for the Schwarzschild-dark energy black hole.

Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh

2014-09-27T23:59:59.000Z

456

Patterns of care study of radiation therapy for esophageal cancer in Japan: influence of age on parameters of treatment  

Science Journals Connector (OSTI)

Background. In Japan, the elderly population is growing rapidly, ... good candidates for aggressive surgery or chemotherapy. Radiation therapy offers excellent potential for the treatment...

T. Teshima; H. Ikeda; M. Abe; G. E. Hanks…

1998-12-01T23:59:59.000Z

457

Pressure History Measurement in a Microwave Beaming Thruster  

Science Journals Connector (OSTI)

In a microwave beaming thruster with a 1?dimensional nozzle plasma and shock wave propagates in the nozzle absorbing microwave power. In this study pressure histories in the thruster are measured using pressure gauges. Measured pressure history at the thruster wall shows constant pressure during plasma propagation in the nozzle. The result of measurement of the propagating velocities of shock wave and plasma shows that both propagate in the same velocity. These result shows that thrust producing model of analogy of pulse detonation engine is successful for the 1D thruster.

Yasuhisa Oda; Masato Ushio; Kimiya Komurasaki; Koji Takahashi; Atsushi Kasugai; Keishi Sakamoto

2006-01-01T23:59:59.000Z

458

Ultra high vacuum broad band high power microwave window  

DOE Patents [OSTI]

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

1997-01-01T23:59:59.000Z

459

Ultra high vacuum broad band high power microwave window  

DOE Patents [OSTI]

An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

Nguyen-Tuong, V.; Dylla, H.F. III

1997-11-04T23:59:59.000Z

460

Cryogenic resonant microwave cavity searches for hidden sector photons  

E-Print Network [OSTI]

The hidden sector photon is a weakly interacting hypothetical particle with sub-eV mass that kinetically mixes with the photon. We describe a microwave frequency light shining through a wall experiment where a cryogenic resonant microwave cavity is used to try and detect photons that have passed through an impenetrable barrier, a process only possible via mixing with hidden sector photons. For a hidden sector photon mass of 53 $\\mu$eV we limit the hidden photon kinetic mixing parameter $\\chi cryogenic detector cavity to place new limits on the kinetic mixing parameter for hidden sector photons as a form of cold dark matter.

Parker, Stephen R; Povey, Rhys G; Tobar, Michael E

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Cryogenic resonant microwave cavity searches for hidden sector photons  

E-Print Network [OSTI]

The hidden sector photon is a weakly interacting hypothetical particle with sub-eV mass that kinetically mixes with the photon. We describe a microwave frequency light shining through a wall experiment where a cryogenic resonant microwave cavity is used to try and detect photons that have passed through an impenetrable barrier, a process only possible via mixing with hidden sector photons. For a hidden sector photon mass of 53 $\\mu$eV we limit the hidden photon kinetic mixing parameter $\\chi cryogenic detector cavity to place new limits on the kinetic mixing parameter for hidden sector photons as a form of cold dark matter.

Stephen R. Parker; John G. Hartnett; Rhys G. Povey; Michael E. Tobar

2014-10-20T23:59:59.000Z

462

Cryogenic resonant microwave cavity searches for hidden sector photons  

Science Journals Connector (OSTI)

The hidden sector photon is a weakly interacting hypothetical particle with sub-eV mass that kinetically mixes with the photon. We describe a microwave frequency light shining through a wall experiment, where a cryogenic resonant microwave cavity is used to try and detect photons that have passed through an impenetrable barrier, a process only possible via mixing with hidden sector photons. For a hidden sector photon mass of 53???eV, we limit the hidden photon kinetic mixing parameter ?cryogenic detector cavity to place new limits on the kinetic mixing parameter for hidden sector photons as a form of cold dark matter.

Stephen R. Parker; John G. Hartnett; Rhys G. Povey; Michael E. Tobar

2013-12-03T23:59:59.000Z

463

Photonic microwave generation with high-power photodiodes  

E-Print Network [OSTI]

We utilize and characterize high-power, high-linearity modified uni-traveling carrier (MUTC) photodiodes for low-phase-noise photonic microwave generation based on optical frequency division. When illuminated with picosecond pulses from a repetition-rate-multiplied gigahertz Ti:sapphire modelocked laser, the photodiodes can achieve 10 GHz signal power of +14 dBm. Using these diodes, a 10 GHz microwave tone is generated with less than 500 attoseconds absolute integrated timing jitter (1 Hz-10 MHz) and a phase noise floor of -177 dBc/Hz. We also characterize the electrical response, amplitude-to-phase conversion, saturation and residual noise of the MUTC photodiodes.

Fortier, Tara M; Hati, Archita; Nelson, Craig; Taylor, Jennifer A; Fu, Yang; Campbell, Joe; Diddams, Scott A

2013-01-01T23:59:59.000Z

464

Nuclear radiation electronic gear  

Science Journals Connector (OSTI)

Nuclear radiation electronic gear ... Examines the line of nuclear radiation instrumentation offered by Nuclear-Chicago Corporation and Victoreen Instrument Company. ... Nuclear / Radiochemistry ...

S. Z. Lewin

1961-01-01T23:59:59.000Z

465

Radiation Control (Virginia)  

Broader source: Energy.gov [DOE]

The Department of Health is responsible for regulating radiation and radioactive materials in the Commonwealth of Virginia. Although the Department's Radiation Control Program primarily focuses on...

466

Radiative Decay of the Muon  

Science Journals Connector (OSTI)

The radiative decay of the muon, ?+?e++?+?e+?¯?, has been measured using muons from the Columbia University Nevis synchrocyclotron. The decay products e+ and ? were observed at relative angles near 180°, using scintillation counters and two 9-in.×10-in. NaI crystals, which enabled simultaneous measurement of the positron and ? energies. The pulses from the crystals were displayed on oscilloscopes and photographed, and the measured amplitudes of these pulses were calibrated using the positron spectrum of the nonradiative decay. The two-dimensional energy spectrum for positrons and ?'s was obtained for about 900 events, after subtraction of background. This spectrum and the measured rate, obtained by normalizing to the nonradiative decay, were compared with theoretical predictions for the radiative decay. The results were in good agreement with the theory, within statistics, for the case of pure V-A coupling.

E. Bogart; E. DiCapua; P. Némethy; A. Strelzoff

1967-04-25T23:59:59.000Z

467

Building Technologies Office: Home Energy Score Research and Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Background to someone by E-mail Research and Background to someone by E-mail Share Building Technologies Office: Home Energy Score Research and Background on Facebook Tweet about Building Technologies Office: Home Energy Score Research and Background on Twitter Bookmark Building Technologies Office: Home Energy Score Research and Background on Google Bookmark Building Technologies Office: Home Energy Score Research and Background on Delicious Rank Building Technologies Office: Home Energy Score Research and Background on Digg Find More places to share Building Technologies Office: Home Energy Score Research and Background on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Get Involved Partners Research & Background

468

THE COSMIC NEAR-INFRARED BACKGROUND. II. FLUCTUATIONS  

SciTech Connect (OSTI)

The near-infrared background (NIRB) is one of a few methods that can be used to observe the redshifted light from early stars at a redshift of 6 and above, and thus it is imperative to understand the significance of any detection or nondetection of the NIRB. Fluctuations of the NIRB can provide information on the first structures, such as halos and their surrounding ionized regions in the intergalactic medium (IGM). We combine, for the first time, N-body simulations, radiative transfer code, and analytic calculations of luminosity of early structures to predict the angular power spectrum (C{sub l} ) of fluctuations in the NIRB. We study in detail the effects of various assumptions about the stellar mass, the initial mass spectrum of stars, the metallicity, the star formation efficiency (f{sub *}), the escape fraction of ionizing photons (f{sub esc}), and the star formation timescale (t{sub SF}), on the amplitude as well as the shape of C{sub l} . The power spectrum of NIRB fluctuations is maximized when f{sub *} is the largest (as C{sub l} {proportional_to} f {sup 2}{sub *}) and f{sub esc} is the smallest (as more nebular emission is produced within halos). A significant uncertainty in the predicted amplitude of C{sub l} exists due to our lack of knowledge of t{sub SF} of these early populations of galaxies, which is equivalent to our lack of knowledge of the mass-to-light ratio of these sources. We do not see a turnover in the NIRB angular power spectrum of the halo contribution, which was claimed to exist in the literature, and explain this as the effect of high levels of nonlinear bias that was ignored in the previous calculations. This is partly due to our choice of the minimum mass of halos contributing to NIRB ({approx}2 x 10{sup 9} M{sub sun}), and a smaller minimum mass, which has a smaller nonlinear bias, may still exhibit a turnover. Therefore, our results suggest that both the amplitude and shape of the NIRB power spectrum provide important information regarding the nature of sources contributing to the cosmic reionization. The angular power spectrum of the IGM, in most cases, is much smaller than the halo angular power spectrum, except when f{sub esc} is close to unity, t{sub SF} is longer, or the minimum redshift at which the star formation is occurring is high. In addition, low levels of the observed mean background intensity tend to rule out high values of f{sub *} {approx}> 0.2.

Fernandez, Elizabeth R. [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States); Komatsu, Eiichiro; Shapiro, Paul R. [Texas Cosmology Center and the Department of Astronomy, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States); Iliev, Ilian T., E-mail: elizabeth.fernandez@colorado.ed [Astronomy Centre, Department of Physics and Astronomy, Pevensey II Building, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom)

2010-02-20T23:59:59.000Z

469

BACKGROUND June 1999 Centers for Disease Control and Prevention  

E-Print Network [OSTI]

that such a study would have little chance of success without adequate estimation of radiation doses was to estimate off-site radiation exposure through a dose reconstruction process. In addition, CDC proposed through the environment; and produced methods for estimating the resulting radiation doses to specific

470

Low Dose Radiation Program: Radiation Biology and the Radiation Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and the Radiation Research Program Biology and the Radiation Research Program The Department of Energy (DOE) and its predecessor organizations, Energy Research and Development Agency (ERDA) and Atomic Energy Commission (AEC), always have been concerned about the health effects of ionizing radiation. Extensive research has been conducted under their sponsorship at all levels of biological organization from molecules to man. Over the past 60 years, studies using every type of radiation source have included exposure to both external radiation sources and to internally deposited radioactive materials. These exposures used different dose patterns and distributions delivered over a wide range of experimental times. This extensive research provided the basis for the new Low Dose Radiation Research Program, linking

471

Non-absorbing high-efficiency counter for itinerant microwave photons  

E-Print Network [OSTI]

Detecting an itinerant microwave photon with high efficiency is an outstanding problem in microwave photonics and its applications. We present a scheme to detect an itinerant microwave photon in a transmission line via the nonlinearity provided by a transmon in a driven microwave resonator. With a single transmon we achieve 84% distinguishability between zero and one microwave photons and 90% distinguishability with two cascaded transmons by performing continuous measurements on the output field of the resonator. We also show how the measurement diminishes coherence in the photon number basis thereby illustrating a fundamental principle of quantum measurement: the higher the measurement efficiency, the faster is the decoherence.

Bixuan Fan; Göran Johansson; Joshua Combes; G. J. Milburn; Thomas M. Stace

2014-03-18T23:59:59.000Z

472

An Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Update on Radiative Transfer Model Development at Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc. J. S. Delamere, S. A. Clough, E. J. Mlawer, Sid-Ahmed Boukabara, K. Cady-Pereira, and M. Shepard Atmospheric and Environmental Research, Inc. Lexington, Maine Introduction Over the last decade, a suite of radiative transfer models has been developed at Atmospheric and Environmental Research, Inc. (AER) with support from the Atmospheric and Radiation Measurement (ARM) Program. These models span the full spectral regime from the microwave to the ultraviolet, and range from monochromatic to band calculations. Each model combines the latest spectroscopic advancements with radiative transfer algorithms to efficiently compute radiances, fluxes, and cooling

473

On the Features of Radiative and Convective Regimes Under the Cumulus Cloudiness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On the Features of Radiative and Convective Regimes On the Features of Radiative and Convective Regimes Under the Cumulus Cloudiness B. M. Koprov, V. M. Koprov, G. S. Golitsyn A.M. Oboukhov Institute of Atmospheric Physics Moscow, Russia E. N. Kadygrov, A. V. Koldaev Central Aerological Observatory Dolgoprudny, Russia Introduction The study of instant temperature field transformation, convective and radiative regime perturbation within the layer of 0 to 650 m was fulfilled as caused by cloud modulation of solar radiation flux. It was made within the scope of Zvenigorod Atmospheric Radiation Measurement (ARM) experiments in 2001 and 2002. Instrumentation The equipment used: 1. Microwave temperature profiler designed in Central Aerological Observatory (CAO) and manufactured by Russian company ATTEX (Kadygrov and Pick 1998).

474

Environmental assessment for the Satellite Power System (SPS) Concept Development and Evaluation Program (CDEP). [Microwave and non-microwave health and ecological assessment  

SciTech Connect (OSTI)

In the satellite power system (SPS), satellites in geosynchronous earth orbit would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwave energy would be converted to electricity. This SPS environmental assessment considers the microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and effects on electromagnetic systems. No environmental problem has been identified that would preclude the continued study of SPS technology. To increase the certainty of the assessment, some research has been initiated and long-term research is being planned.

Valentino, A.R.

1980-08-01T23:59:59.000Z

475

Non-fusion applications of RF and microwave technology  

SciTech Connect (OSTI)

The processing of materials using rf and/or microwave power is a broad area that has grown significantly in the past few years. The authors have applied rf and microwave technology in the areas of ceramic sintering, plasma processing, and waste processing. The sintering of ceramics in the frequency range of 50 MHz-28 GHz has lead to unique material characteristics compared to materials that have been sintered conventionally. It has been demonstrated that sintering can be achieved in a variety of materials, including alumina, zirconia, silicon carbide, and boron carbide. In the area of plasma processing, progress has been made in the development and understanding of high density plasma sources, including inductively coupled plasma (ICP) sources. The effects of processing conditions on the ion energy distribution at the substrate surface (a critical processing issue) have been determined for a variety of process gases. The relationship between modeling and experiment is being established. Microwave technology has also been applied to the treatment of radioactive and chemical waste. The application of microwaves to the removal of contaminated concrete has been demonstrated. Details of these programs and other potential application areas are discussed.

Caughman, J.B.O.; Baity, F.W.; Bigelow, T.S.; Gardner, W.L.; Hoffman, D.J.; Forrester, S.C.; White, T.L.

1995-12-01T23:59:59.000Z

476

Electrically long vertical interconnects for microwave circuits and antennas  

E-Print Network [OSTI]

. . . . . 2 . . . . 3 . . . . 4 . 4 . 4 . 5 . . . . 5 . . . . 6 . . . . 7 A. Transmission Line Interconnects. . B. Electromagnetically Coupled lnterconnects . . . . . C. Conclusions . . . . . . 8 . . . 10 III FIDELITY SIMULATION 12 A. B. C. D... interconnects satisfying specifications set by Raytheon Systems Co. This research was sponsored by Raytheon Systems Co. RF/Microwave Division. A vertical interconnect couples transmission lines, antennas, and components between vertically spaced layers...

Coutant, Matthew Richard

2012-06-07T23:59:59.000Z

477

Multi-modal transmission of microwaves through hole arrays  

E-Print Network [OSTI]

. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science 308Multi-modal transmission of microwaves through hole arrays James D. Edmunds,1,* Euan Hendry,1(5722), 670­672 (2005). 8. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, "Terahertz

Exeter, University of

478

ECRH microwave beam broadening in the edge turbulent plasma  

SciTech Connect (OSTI)

The influence of turbulent plasma density fluctuations on angular and spatial beam width is treated analytically in the framework of WKB based eikonal method. Reasonable agreement of analytical and numerical treatment results is demonstrated within the domain of quasi-optical approximation validity. Significant broadening of microwave beams is predicted for future ECRH experiments at ITER.

Sysoeva, E. V.; Gusakov, E. Z.; Popov, A. Yu. [Ioffe Institute, St. Petersburg, Russia and RL PAT SPbSPU, St. Petersburg (Russian Federation); Silva, F. da [Institute of Plasmas and Nuclear Fusion, IST, Lisbon (Portugal); Heuraux, S. [IJL UMR-7198 CNRS-Université de Lorraine, BP70239, 54506 Vandoeuvre Cedex (France)

2014-02-12T23:59:59.000Z

479

Experimental Investigation of Microwave Vulnerabilities in CMOS Inverters  

E-Print Network [OSTI]

Experimental Investigation of Microwave Vulnerabilities in CMOS Inverters Agis A. Iliadis effects on single CMOS inverters, the fundamental building block of logic ICs, consisting of an NMOS and a PMOS transistor. The inverters were designed in our group and fabricated in the AMI-1.5µm MOSIS line

Anlage, Steven

480

International Microwave Power Institute 127 ANALYSIS OF OPERATIONAL REGIMES  

E-Print Network [OSTI]

for microwave heating. KEY WORDS: Electric field, dissipated power, micro- wave power, model, permittivity heating systems oper ating at 915 MHz is a standard feature protecting the magnetron from reflections LOAD E. Eves and V. Yakovlev Reflections, electric field and dissipated power of a 915 MHz water load

Yakovlev, Vadim

Note: This page contains sample records for the topic "microwave background radiation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Microwave Radiometer – 3 Channel (MWR3C) Handbook  

SciTech Connect (OSTI)

The microwave radiometer 3-channel (MWR3C) provides time-series measurements of brightness temperatures from three channels centered at 23.834, 30, and 89 GHz. These three channels are sensitive to the presence of liquid water and precipitable water vapor.

Cadeddu, MP

2012-05-04T23:59:59.000Z

482

Flexible Graphene Field-Effect Transistors for Microwave Electronics  

E-Print Network [OSTI]

Flexible Graphene Field-Effect Transistors for Microwave Electronics Inanc Meric , Nicholas Petrone-frequency characteristics of graphene field-effect transistors (GFETs) has received significant interest due the very high carrier velocities in graphene. In addition to excellent electronic performance, graphene possesses

Shepard, Kenneth

483

Controlling Nanoparticle Aggregation in Colloidal Microwave Absorbers via Interface Chemistry  

E-Print Network [OSTI]

Controlling Nanoparticle Aggregation in Colloidal Microwave Absorbers via Interface Chemistry Brian ABSTRACT Interface chemistry can be implemented to modulate the aggregation and dispersion of nanoparticles of superparamagnetic magnetite nanoparticles in organic and aqueous solutions. With decrease in solution pH, individual

Stowell, Michael

484

Metal slits and liquid crystals at microwave frequencies  

Science Journals Connector (OSTI)

...the possible use of dual frequency materials to allow drive-on as well as drive-off. Unfortunately such dual-frequency materials have reduced...T Nomoto2002Microwave variable delay line using dual-frequency switching-mode liquid...

2006-01-01T23:59:59.000Z

485

System to continuously produce carbon fiber via microwave assisted plasma processing  

DOE Patents [OSTI]

A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

2014-03-25T23:59:59.000Z

486

radiation.p65  

Office of Legacy Management (LM)

5 5 United States Department of Energy This fact sheet explains the potential health hazards associated with the radioactive decay of uranium and other radioactive elements found in ore and mill tailings. Potential Health Hazards of Radiation Man-made sources of radiation, most notably from medical uses and consumer products, contribute to the remaining radiation dose that individuals receive. A few household products, including smoke detectors, micro- wave ovens, and color televisions, emit small amounts of radiation. For most people, the benefits from using such products far outweigh the radiation risks. Radiation Dose Radiation is measured in various units. Individuals who have been exposed to radiation have received a radiation dose. Radiation dose to people is expressed in

487

Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone  

E-Print Network [OSTI]

2 l Ceralink, Inc., Troy, NY, USA 2 Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA 3 Institute of Radioelectronics, Warsaw University of Technology, Warsaw electromagnetic (EM) and compu tational fluid dynamics (CFD) analyses and thus cannot be easily extended

Yakovlev, Vadim

488

Direct Detection of Vacuum Ultraviolet Radiation for Nonmetal Determinations with a Helium Microwave-Induced Plasma  

Science Journals Connector (OSTI)

A study of the determination of metals, nonmetals, and metalloids (F, Cl, Br, I, S, P, Se, As, Sb, and Pb) in the vacuum-ultraviolet spectral region with a kilowatt-plus helium...

Alvarado, Jorge; Carnahan, Jon W

1993-01-01T23:59:59.000Z

489

Microwave radiative transfer in the mixed-phase regions of tropical rainfall  

E-Print Network [OSTI]

the abrupt change of Tb just below the freezing level. In the case of convective precipitation, the focus was to investigate the effective additional rain layer thickness corresponding to the super-cooled water layer above the freezing level. From...

Jin, Kyoung-Wook

2012-06-07T23:59:59.000Z

490

Emission of non-thermal microwave radiation by a Martian dust storm Christopher Ruf,1  

E-Print Network [OSTI]

of the lowest three modes of the Martian Schumann Resonance (SR). The SR results from electromagnetic standing

Ruf, Christopher

491

Evidence-Based Background Material Underlying Guidance for Federal...  

Broader source: Energy.gov (indexed) [DOE]

Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance Plans Evidence-Based Background Material Underlying Guidance for...

492

Muon-induced backgrounds in the CUORICINO experiment  

E-Print Network [OSTI]

background in the neutrinoless double beta decay region ofis searching for neutrinoless double beta decay (0???), a

Andreotti, E.

2010-01-01T23:59:59.000Z

493

Swift detection of all previously undetected blazars in a micro-wave flux-limited sample of WMAP foreground sources  

E-Print Network [OSTI]

Almost the totality of the bright foreground sources in the WMAP CMB maps are blazars, a class of sources that show usually also X-ray emission. However, 23 objects in a flux-limited sample of 140 blazars of the WMAP catalog (first year) were never reported before as X-ray sources. We present here the results of 41 Swift observations which led to the detection of all these 23 blazars in the 0.3-10 keV band. We conclude that all micro-wave selected blazars are X-ray emitters and that the distribution of the micro-wave to X-ray spectral slope $\\alpha_{mu x}$ of LBL blazars is very narrow, confirming that the X-ray flux of most blazars is a very good estimator of their micro-wave emission. The X-ray spectral shape of all the objects that were observed long enough to allow spectral analysis is flat and consistent with inverse Compton emission within the commonly accepted view where the radiation from blazars is emitted in a Sychrotron-Inverse-Compton scenario. We predict that all blazars and most radio galaxies above the sensitivity limit of the WMAP and of the Planck CMB missions are X-ray sources detectable by the present generation of X-ray satellites. An hypothetical all-sky soft X-ray survey with sensitivity of approximately $10^{-15}$ erg/s would be crucial to locate and remove over 100,000 blazars from CMB temperature and polarization maps and therefore accurately clean the primordial CMB signal from the largest population of extragalactic foreground contaminants.

P. Giommi; M. Capalbi; E. Cavazzuti; S. Colafrancesco; A. Cucchiara; A. Falcone; J. Kennea; R. Nesci; M. Perri; G. Tagliaferri; A. Tramacere; G. Tosti; A. J. Blustin; G. Branduardi-Raymont; D. N. Burrows; G. Chincarini; A. J. Dean; N. Gehrels; H. Krimm; F. Marshall; A. M. Parsons; B. Zhang

2007-03-07T23:59:59.000Z

494

Surface-wave-enabled darkfield aperture for background suppression during  

E-Print Network [OSTI]

can be directly incorporated onto optical sensors to accom- plish predetection background suppression if the sensor is fully capable of measuring the same weak signal in the absence of background (1, 2- trivial to employ. A sensor that can intrinsically cancel a strong background prior to signal detection

Yang, Changhuei

495

PoGOLite: Neutron Background Studies for High Latitudes  

E-Print Network [OSTI]

PoGOLite: Neutron Background Studies for High Latitudes Maria Fernanda Muñoz Salinas SH2006. The measurements showed a neutron background ten times higher than expected. Because of this, new simulations of the PoGOLite flight which will take place in the summer of 2012. The neutron background was simulated

Haviland, David

496

Matrix Model in a Class of Time Dependent Supersymmetric Backgrounds  

E-Print Network [OSTI]

We discuss the matrix model in a class of 11D time dependent supersymmetric backgrounds as obtained in hep-th/0508191 . We construct the matrix model action through the matrix regularization of the membrane action in the background. We show that the action is exact to all order of fermionic coordinates. Furthermore We discuss the fuzzy sphere solutions in this background.

Hong-Zhi Chen; Bin Chen