Sample records for microsoft windows human

  1. T-547: Microsoft Windows Human Interface Device (HID) Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Windows does not properly warn the user before enabling additional Human Interface Device (HID) functionality over USB, which allows user-assisted attackers to execute arbitrary programs via crafted USB data, as demonstrated by keyboard and mouse data sent by malware on a Smartphone that the user connected to the computer.

  2. V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...

    Broader source: Energy.gov (indexed) [DOE]

    A vulnerability was reported in the Windows NAT Driver PLATFORM: Windows Server 2012 ABSTRACT: This security update resolves a vulnerability in the Windows NAT Driver in Microsoft...

  3. U-028: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in Microsoft Windows, which can be exploited by malicious people to compromise a user's system.

  4. Explorations in Computing Lab Manual for Microsoft Windows XP

    E-Print Network [OSTI]

    Oregon, University of

    never used Command Prompt you should read Chapter 5 to learn how to type command lines in Microsoft, and then run the program from the command line. · Chapter 10 explains how to get detailed information about all people will read the entire manual; in fact, students who are already familiar with the Command Prompt

  5. Creating a Parallel Version of VisIt for Microsoft Windows

    SciTech Connect (OSTI)

    Whitlock, B J; Biagas, K S; Rawson, P L

    2011-12-07T23:59:59.000Z

    VisIt is a popular, free interactive parallel visualization and analysis tool for scientific data. Users can quickly generate visualizations from their data, animate them through time, manipulate them, and save the resulting images or movies for presentations. VisIt was designed from the ground up to work on many scales of computers from modest desktops up to massively parallel clusters. VisIt is comprised of a set of cooperating programs. All programs can be run locally or in client/server mode in which some run locally and some run remotely on compute clusters. The VisIt program most able to harness today's computing power is the VisIt compute engine. The compute engine is responsible for reading simulation data from disk, processing it, and sending results or images back to the VisIt viewer program. In a parallel environment, the compute engine runs several processes, coordinating using the Message Passing Interface (MPI) library. Each MPI process reads some subset of the scientific data and filters the data in various ways to create useful visualizations. By using MPI, VisIt has been able to scale well into the thousands of processors on large computers such as dawn and graph at LLNL. The advent of multicore CPU's has made parallelism the 'new' way to achieve increasing performance. With today's computers having at least 2 cores and in many cases up to 8 and beyond, it is more important than ever to deploy parallel software that can use that computing power not only on clusters but also on the desktop. We have created a parallel version of VisIt for Windows that uses Microsoft's MPI implementation (MSMPI) to process data in parallel on the Windows desktop as well as on a Windows HPC cluster running Microsoft Windows Server 2008. Initial desktop parallel support for Windows was deployed in VisIt 2.4.0. Windows HPC cluster support has been completed and will appear in the VisIt 2.5.0 release. We plan to continue supporting parallel VisIt on Windows so our users will be able to take full advantage of their multicore resources.

  6. U-033: Microsoft Security Bulletin Summary for November 2011...

    Broader source: Energy.gov (indexed) [DOE]

    are available from Microsoft Update. Addthis Related Articles T-727:Microsoft Windows SSLTLS Protocol Flaw Lets Remote Users Decryption Sessions U-074: Microsoft .NET Bugs Let...

  7. T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users...

    Energy Savers [EERE]

    Service Pack 1 ABSTRACT: A remote user with the ability to conduct a man-in-the-middle attack can decrypt SSLTLS sessions. reference LINKS: Microsoft Security Advisory (2588513)...

  8. Windows Server Evaluation Guide

    E-Print Network [OSTI]

    Hunt, Galen

    Windows Server 2012 R2 Evaluation Guide #12;Copyright Information © 2013 Microsoft Corporation. All .......................................................................................................................1 Introduction to Windows Server 2012 R2 ..................................................................................................7 Windows Server: Architecture of the Evaluation Environment

  9. A Prototyping Environment for Research on Human-Machine Interfaces in Process Control: Use of Microsoft WPF for Microworld and Distributed Control System Development

    SciTech Connect (OSTI)

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2014-08-01T23:59:59.000Z

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, but the set of tools for developing and designing HMIs is still in its infancy. Here we propose that Microsoft Windows Presentation Foundation (WPF) is well suited for many roles in the research and development of HMIs for process control.

  10. Microsoft PowerPoint - Crouther - Human Capital Update

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -ofUpdates Presented to the

  11. Microsoft PowerPoint - Crouther.HumanCapitalInitiatives.042909

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -ofUpdates Presented to

  12. A true virtual window

    E-Print Network [OSTI]

    Radikovic, Adrijan Silvester

    2005-02-17T23:59:59.000Z

    Previous research from environmental psychology shows that human well-being suffers in windowless environments in many ways and a window view of nature is psychologically and physiologically beneficial to humans. Current window substitutes, still...

  13. An Introduction to Using Python with Microsoft Azure

    E-Print Network [OSTI]

    Narasayya, Vivek

    . Cluster debugging. Use Python in-line with webpages that you serve. Create IPython Notebooks. Use Python development tools. One is the IPython Notebook, which can be deployed to Linux and Windows virtual for developing Python applications on Microsoft Azure Deploying an IPython Notebook to Microsoft Azure Using

  14. T-593: Microsoft Internet Explorer unspecified code execution

    Broader source: Energy.gov [DOE]

    Unspecified vulnerability in Microsoft Internet Explorer 8 on Windows 7 allows remote attackers to bypass Protected Mode and create arbitrary files by leveraging access to a Low integrity process.

  15. Functional specificity in the human brain: A window into the functional architecture of the mind

    E-Print Network [OSTI]

    Kanwisher, Nancy

    Is the human mind/brain composed of a set of highly specialized components, each carrying out a specific aspect of human cognition, or is it more of a general-purpose device, in which each component participates in a wide ...

  16. Microsoft Word - Document in Windows Internet Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an enabling agreement that provides flexibility to the Parties while allowing BC Hydro to create the space needed to reduce likelihood of spill at Mica during their unit...

  17. Lab Validation Microsoft Windows Server 2012

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................22 All trademark names are property of their respective companies. Information contained

  18. Lab Validation Microsoft Windows Server 2012 with

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................16 All trademark names are property of their respective companies. Information contained

  19. Microsoft Word - Document in Windows Internet Explorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPAURTeC:8CO 2 FoamC M E TBILLHorizontal

  20. Window shopping

    SciTech Connect (OSTI)

    Best, D.

    1990-03-01T23:59:59.000Z

    The author addresses the energy efficiency of windows and describes changes and new products available in this consumer information article. Experiments currently being done by Lawrence Berkeley Laboratory (LBL), Bonneville Power Authority and the Washington State Energy Office show that some of these superwindows collect more energy from the sun than they let escape from inside the home. One type of window in current production is the low-E (low-emissivity) and the IGUs (insulated glass units). Low-E techniques include glazing of the glass with various materials including polyester and metallic coatings. Other measures include filling the airspace in double pane windows with argon, aerogel or by creating a vacuum in the airspace. Another factor the author considers is ultraviolet light protection.

  1. EMC PERSPECTIVE: THE POWER OF WINDOWS SERVER 2012 AND EMC

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    EMC PERSPECTIVE: THE POWER OF WINDOWS SERVER 2012 AND EMC INFRASTRUCTURE FOR MICROSOFT PRIVATE and storage optimization features of intelligent storage arrays, such as the EMC® Symmetrix® VMAX® storage family, the EMC® VNX® series, and the EMC® Isilon® scale-out NAS family. With new technologies

  2. Trustworthy Computing | Microsoft's Approach to Compliance in the Cloud 1 The Microsoft Approach to

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Trustworthy Computing | Microsoft's Approach to Compliance in the Cloud 1 The Microsoft Approach to Compliance in the Cloud Microsoft Trustworthy Computing Executive summary Microsoft recognizes that trust Microsoft cloud services create customer choice 11 #12;Trustworthy Computing | The Microsoft Approach

  3. Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-01-01T23:59:59.000Z

    Energy Performance of Electrochromic Windows Controlled for2006). Advancement of Electrochromic Windows, CaliforniaSavings Potential of Electrochromic Windows in the U.S.

  4. Microsoft, libraries and open source

    SciTech Connect (OSTI)

    None

    2010-04-26T23:59:59.000Z

    We are finally starting to see the early signs of transformation inscholarly publishing. The innovations we've been expecting for years areslowly being adopted, but we can also expect the pace of change toaccelerate in the coming 3 to 5 years. At the same time, many of ritualsand artifacts of the scholarly communication lifecycle are still rooted ina centuries-old model.  What are the primary goals of scholarlycommunication, and what will be the future role of librarians in thatcycle?  What are the obstacles in information flow (many of our owndesign) that can be removed?Is the library profession moving fast enough to stay ahead of the curve...or are we ever going to be struggling to keep up? With the advent of thedata deluge, all-XML workflows, the semantic Web, cloud servicesand increasingly intelligent mobile devices - what are the implicationsfor libraries, archivists, publishers, scholarly societies as well asindividual researchers and scholars? The opportunities are many - butcapitalizing on this ever-evolving landscape will require significantchanges to our field, changes that we are not currently well-positioned toenact. This talk will map the current scholarly communication landscape -highlighting recent exciting developments, and will focus on therepercussions and some specific recommendations for the broader field ofinformation management.About the speaker:Alex Wade is the Director for Scholarly Communication within Microsoft'sExternal Research division, where he oversees several projects related toresearcher productivity tools, semantic information capture, and theinteroperability of information systems. Alex holds a Bachelor's degree inPhilosophy from U.C. Berkeley, and a Masters of Librarianship degree fromthe University of Washington.During his career at Microsoft, Alex has managed the corporate search andtaxonomy management services; has shipped a SharePoint-based document andworkflow management solution for Sarbanes-Oxley compliance; and served asSenior Program Manager for Windows Search in Windows Vista and Windows 7.Prior to joining Microsoft, Alex held Systems Librarian, EngineeringLibrarian, Philosophy Librarian, and technical library positions at theUniversity of Washington, the University of Michigan, and U.C. Berkeley.Web: http://research.microsoft.com/en-us/people/awade/ 

  5. Microsoft, libraries and open source

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    We are finally starting to see the early signs of transformation inscholarly publishing. The innovations we've been expecting for years areslowly being adopted, but we can also expect the pace of change toaccelerate in the coming 3 to 5 years. At the same time, many of ritualsand artifacts of the scholarly communication lifecycle are still rooted ina centuries-old model.  What are the primary goals of scholarlycommunication, and what will be the future role of librarians in thatcycle?  What are the obstacles in information flow (many of our owndesign) that can be removed?Is the library profession moving fast enough to stay ahead of the curve...or are we ever going to be struggling to keep up? With the advent of thedata deluge, all-XML workflows, the semantic Web, cloud servicesand increasingly intelligent mobile devices - what are the implicationsfor libraries, archivists, publishers, scholarly societies as well asindividual researchers and scholars? The opportunities are many - butcapitalizing on this ever-evolving landscape will require significantchanges to our field, changes that we are not currently well-positioned toenact. This talk will map the current scholarly communication landscape -highlighting recent exciting developments, and will focus on therepercussions and some specific recommendations for the broader field ofinformation management.About the speaker:Alex Wade is the Director for Scholarly Communication within Microsoft'sExternal Research division, where he oversees several projects related toresearcher productivity tools, semantic information capture, and theinteroperability of information systems. Alex holds a Bachelor's degree inPhilosophy from U.C. Berkeley, and a Masters of Librarianship degree fromthe University of Washington.During his career at Microsoft, Alex has managed the corporate search andtaxonomy management services; has shipped a SharePoint-based document andworkflow management solution for Sarbanes-Oxley compliance; and served asSenior Program Manager for Windows Search in Windows Vista and Windows 7.Prior to joining Microsoft, Alex held Systems Librarian, EngineeringLibrarian, Philosophy Librarian, and technical library positions at theUniversity of Washington, the University of Michigan, and U.C. Berkeley.Web: http://research.microsoft.com/en-us/people/awade/ 

  6. 2011 Microsoft Corporation. All rights reserved. Reposting of content without explicit permission is forbidden.

    E-Print Network [OSTI]

    Hunt, Galen

    to run your business every day. All this continuous communication can also lead to new security and Your PBX -- The Best of Both Worlds William Van Winkle 38 LYNC SERVER 2010 Making the Lync WINDOWS 7 Take Back Control by Managing Windows Access Rights David Rowe 14 MICROSOFT FOREFRONT Protecting

  7. Residential Windows and Window Coverings: A Detailed View of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior Residential Windows and Window Coverings: A Detailed View of the Installed Base...

  8. Microsoft Word - test | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    test Microsoft Word - test Microsoft Word - test More Documents & Publications Interested Parties - WAPA Public Comment InterestedPartiesCOPSCoWAPA040309.pdf Microsoft Word -...

  9. Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-01-01T23:59:59.000Z

    Pacific Grove, CA. Zero Energy Windows Dariush Arasteh,No. DE-AC02-05CH11231. Zero Energy Windows Dariush Arasteh,Advanced Windows for Zero-Energy Homes. ASHRAE - American

  10. Advancement of Electrochromic Windows

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Guide for Early-Market Electrochromic Windows. LBNL-59950.Granqvist, C.G. 2000. "Electrochromic Tungsten Oxide Films:the performance of the electrochromic windows. Proceedings

  11. Windows XP - LPR Printing

    E-Print Network [OSTI]

    dbrown

    2004-07-27T23:59:59.000Z

    Printer Setup in Windows XP. To print to the math department printers in Windows XP, “Print Services for Unix” must be installed. To begin installation of “

  12. Microsoft Word - LLNLHRPfinal062606.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependentDepartment of Energy Microsoft Word -HUMAN

  13. 2011 Microsoft Corporation. All rights reserved. Reposting of content without explicit permission is forbidden.

    E-Print Network [OSTI]

    Hunt, Galen

    guidance. 1 2 51 GEEK OF ALL TRADES Fabric, Host Cluster and Cloud Greg Shields 59 WINDOWS POWERSHELL Build Data List Raymond Chen #12;© 2011 Microsoft Corporation. All rights reserved. Reposting of content to an organization in any of a variety of positions. It`s sound advice: invest your time, energy and passion in your

  14. Using X Windows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remote applications on your local computer screen. X-Windows follows the client-server architecture. Normally, the X server runs on the users desktoplaptop computer, while...

  15. Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-01-01T23:59:59.000Z

    be contributors to zero-energy buildings. This paper definesinto the role of zero energy building components. Achievingthe vision of zero energy buildings. Windows can admit solar

  16. Microsoft Word - Document7 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    - Document7 Microsoft Word - Document7 More Documents & Publications Excess Uranium Inventory Management Plan 2008 Microsoft Word - 25 May Vienna GTR Fact SheetFINAL 1 .doc...

  17. Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Nils Petermann

    2010-02-28T23:59:59.000Z

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  18. Windows technology assessment

    SciTech Connect (OSTI)

    Baron, J.J.

    1995-10-01T23:59:59.000Z

    This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

  19. Zero Energy Windows

    SciTech Connect (OSTI)

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-05-17T23:59:59.000Z

    Windows in the U.S. consume 30 percent of building heating and cooling energy, representing an annual impact of 4.1 quadrillion BTU (quads) of primary energy. Windows have an even larger impact on peak energy demand and on occupant comfort. An additional 1 quad of lighting energy could be saved if buildings employed effective daylighting strategies. The ENERGY STAR{reg_sign} program has made standard windows significantly more efficient. However, even if all windows in the stock were replaced with today's efficient products, window energy consumption would still be approximately 2 quads. However, windows can be ''net energy gainers'' or ''zero-energy'' products. Highly insulating products in heating applications can admit more useful solar gain than the conductive energy lost through them. Dynamic glazings can modulate solar gains to minimize cooling energy needs and, in commercial buildings, allow daylighting to offset lighting requirements. The needed solutions vary with building type and climate. Developing this next generation of zero-energy windows will provide products for both existing buildings undergoing window replacements and products which are expected to be contributors to zero-energy buildings. This paper defines the requirements for zero-energy windows. The technical potentials in terms of national energy savings and the research and development (R&D) status of the following technologies are presented: (1) Highly insulating systems with U-factors of 0.1 Btu/hr-ft{sup 2}-F; (2) Dynamic windows: glazings that modulate transmittance (i.e., change from clear to tinted and/or reflective) in response to climate conditions; and (3) Integrated facades for commercial buildings to control/ redirect daylight. Market transformation policies to promote these technologies as they emerge into the marketplace are then described.

  20. International Conference on Ground Control in Mining SDPS for Windows: An Integrated Approach to Ground Deformation Prediction

    E-Print Network [OSTI]

    application to a number of case studies. The package now exploits all the benefits of the Microsoft Windows features advanced calibration routines to handle predictions over specific regions. The case studies through the statistical analysis of data from a number of case studies (VPI & SU, 1987 & 1999; Karmis et

  1. The Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Petermann, Nils

    2006-03-31T23:59:59.000Z

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  2. Subject Responses to Electrochromic Windows

    E-Print Network [OSTI]

    Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

    2006-01-01T23:59:59.000Z

    Visual quality assessment of electrochromic and conventionalissues for large-area electrochromic windows in commercialOffice worker preferences of electrochromic windows: a pilot

  3. Microsoft External Research Backgrounder

    E-Print Network [OSTI]

    Narasayya, Vivek

    are undeniable. M icrosoft Research believes that collaboration between the public and private sectors, combined with the power of computing, can help researchers as they work to solve the most urgent challenges in medicine, Building the Future of Technology Microsoft External Research Backgrounder #12;The team promotes research

  4. Microsoft Technology Centers Novosibirsk

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  5. Microsoft Technology Centers Philadelphia

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  6. Microsoft Technology Centers Minneapolis

    E-Print Network [OSTI]

    Hunt, Galen

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  7. Close Window ENCYCLOPEDIA ARTICLE

    E-Print Network [OSTI]

    Michigan, University of

    , in local time versus geomagnetic (dipole) latitude coordinates, shows the equivalent current contoursClose Window ENCYCLOPEDIA ARTICLE Geomagnetic variations Variations in the natural magnetic field measured at the Earth's surface and elsewhere in the Earth's magnetosphere (for example

  8. CH7 Windows Introduction

    E-Print Network [OSTI]

    Collette. SĂ©bastien

    4 Server · Account lockout security ­ Protection contre les attaques sur les mots de passe Windows NT 4 Server · Account lockout security ­ Protection contre les attaques sur les mots de passe

  9. Advancement of Electrochromic Windows

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    to control bright sky luminance that can cause discomfortluminance, and to operate in a reliable manner under representative sun and skysky equinox or solstice conditions, the EC window at Tv=0.05 maintained the luminance

  10. Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-01-01T23:59:59.000Z

    Window Type Sales (Business as usual) Energy Star (Low-e)Total, quads Sales (Business as usual) Energy Star (Low-e)modest energy savings beyond the business-as usual case (0.3

  11. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1998-05-19T23:59:59.000Z

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  12. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1997-03-11T23:59:59.000Z

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  13. Microsoft Private Cloud Title of document

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Microsoft Private Cloud Title of document 1 1 Microsoft Private Cloud A Comparative Look at Functionality, Benefits, and Economics November2012 #12;Microsoft Private Cloud Title of document 2 2 Copyright Information © 2012 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information

  14. Health and Wellbeing The Microsoft External Research

    E-Print Network [OSTI]

    Oxford, University of

    Health and Wellbeing The Microsoft External Research Division within Microsoft Research partners to support every stage of the research process. Efforts are focused in four research areas--including Health about their health. Microsoft External Research http://research.microsoft.com/en-us/ collaboration

  15. High Performance Window Retrofit

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL; Hun, Diana E [ORNL; Desjarlais, Andre Omer [ORNL

    2013-12-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  16. 1 Microsoft's Top 10 Business Practices for Environmentally Sustainable Datacenters Microsoft's Top 10 Business Practices for

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    10 Business Practices for Environmentally Sustainable Datacenters How to Reduce Energy Consumption1 Microsoft's Top 10 Business Practices for Environmentally Sustainable Datacenters Microsoft's Top, Waste, and Costs while Increasing Efficiency and ROI Microsoft recognizes the tough challenges

  17. Adaptive Liquid Crystal Windows

    SciTech Connect (OSTI)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31T23:59:59.000Z

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMI’s roll-to-roll process, proved by making 1ft × 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.

  18. Microsoft Word - MPP_ Application.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependentDepartment of Energy Microsoft Word -HUMAN0

  19. Windows and lighting program

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

  20. Carbon smackdown: smart windows

    ScienceCinema (OSTI)

    Delia Milliron

    2010-09-01T23:59:59.000Z

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  1. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry L. (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

    1997-01-01T23:59:59.000Z

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  2. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry Lawrence (Seaford, VA); Elliott, Thomas S. (Yorktown, VA)

    1998-01-01T23:59:59.000Z

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  3. Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-01-01T23:59:59.000Z

    impact of 4.1 quadrillion BTU (quads) of primary energy 1 .systems with U-factors of 0.1 Btu/hr-ft˛-°F Dynamic windows:for 1 quadrillion (10 15 ) Btu = 1.056 EJ. percent (Apte,

  4. The Window Strategy with Options

    E-Print Network [OSTI]

    McCorkle, Dean; Amosson, Stephen H.; Fausett, Marvin

    1999-06-23T23:59:59.000Z

    The window strategy is one of several marketing strategies using futures and options to establish a floor price and allow for upside price potential. It also reduces option premium costs. This publication discusses how the window strategy works...

  5. A Review of Electrochromic Window Performance Factors

    E-Print Network [OSTI]

    Selkowitz Ed, S.E.

    2010-01-01T23:59:59.000Z

    ratio of 0.30. The electrochromic windows were controlled toProceedings. A Review of Electrochromic Window Performanceand economic benefits of electrochromic smart windows,"

  6. Performance Criteria for Residential Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

    2006-01-01T23:59:59.000Z

    and Marc LaFrance. 2006. “Zero Energy Windows. ” ProceedingsFuture Advanced Windows for Zero-Energy Homes. ” ASHRAEfor Residential Zero Energy Windows Dariush Arasteh, Howdy

  7. Microsoft Word - lessonsgjsite

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 Acquisition RegulationMicrosoftTheLessons

  8. Microsoft Word - deslist

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official File UnitedToOn4.doc MicrosoftSOFTWARE QUALITY &

  9. Window Replacement, Rehabilitation, & Repair Guides - Building...

    Energy Savers [EERE]

    Window Replacement, Rehabilitation, & Repair Guides - Building America Top Innovation Window Replacement, Rehabilitation, & Repair Guides - Building America Top Innovation Effec...

  10. Subject Responses to Electrochromic Windows

    SciTech Connect (OSTI)

    Clear, Robert; Inkarojrit, Vorapat; Lee, Eleanor

    2006-03-03T23:59:59.000Z

    Forty-three subjects worked in a private office with switchable electrochromic windows, manually-operated Venetian blinds, and dimmable fluorescent lights. The electrochromic window had a visible transmittance range of approximately 3-60%. Analysis of subject responses and physical data collected during the work sessions showed that the electrochromic windows reduced the incidence of glare compared to working under a fixed transmittance (60%) condition. Subjects used the Venetian blinds less often and preferred the variable transmittance condition, but used slightly more electric lighting with it than they did when window transmittance was fixed.

  11. Microsoft Word - IGCA Inventory Sub Guide 031611 | Department...

    Office of Environmental Management (EM)

    Word - IGCA Inventory Sub Guide 031611 Microsoft Word - IGCA Inventory Sub Guide 031611 Microsoft Word - IGCA Inventory Sub Guide 031611 More Documents & Publications OFFICE OF...

  12. Microsoft PowerPoint - IGCA Training 2011-OPAM | Department of...

    Office of Environmental Management (EM)

    - IGCA Training 2011-OPAM Microsoft PowerPoint - IGCA Training 2011-OPAM IGCA Inventory Data Collection Tool Training 2011 Microsoft PowerPoint - IGCA Training 2011-OPAM...

  13. Microsoft Word - Final Sample Participant Profile November 2008...

    Office of Environmental Management (EM)

    Final Sample Participant Profile November 2008.doc Microsoft Word - Final Sample Participant Profile November 2008.doc More Documents & Publications Microsoft Word -...

  14. U-262: Microsoft Internet Explorer Flaw Lets Remote Users Execute...

    Broader source: Energy.gov (indexed) [DOE]

    Microsoft Internet Explorer Flaw Lets Remote Users Execute Arbitrary Code PLATFORM: Internet Explorer 6, 7, 8, 9 ABSTRACT: A vulnerability was reported in Microsoft Internet...

  15. U-074: Microsoft .NET Bugs Let Remote Users Execute Arbitrary...

    Broader source: Energy.gov (indexed) [DOE]

    4: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands, Access User Accounts, and Redirect Users U-074: Microsoft .NET Bugs Let Remote Users Execute Arbitrary Commands,...

  16. A window on urban sustainability

    SciTech Connect (OSTI)

    Stigt, Rien van, E-mail: rien.vanstigt@hu.nl [Research Center for Technology and Innovation, Utrecht University of Applied Sciences, P.O. Box 182, 3500 AD Utrecht (Netherlands); Driessen, Peter P.J., E-mail: p.driessen@uu.nl [Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands); Spit, Tejo J.M., E-mail: T.J.M.Spit@uu.nl [Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht (Netherlands)

    2013-09-15T23:59:59.000Z

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

  17. Checkpointing strategies with prediction windows Regular paper

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Checkpointing strategies with prediction windows Regular paper Guillaume Aupy1,3, Yves Robert1, a regular mode outside prediction windows, and a proactive mode inside prediction windows, whenever the size of these windows is large enough. We are able to compute the best period for any size of the prediction windows

  18. Microsoft Technology Centers Thames Valley

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  19. Microsoft Technology Centers Mexico City

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  20. Microsoft Technology Centers Silicon Valley

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  1. Microsoft SQL Server 2012 Licensing Guide

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Microsoft SQL Server 2012 Licensing Guide #12;2 Contents Overview......................................................................................................................................................................................................3 SQL Server 2012 Editions ......................................................................................................................................................................4 How SQL Server 2012 Licenses Are Sold

  2. Do You Have Windows That Need Replacing?

    Broader source: Energy.gov [DOE]

    Do you have windows that need replacing, too? Do you have any plans to replace them with newer, more efficient windows?

  3. January through June 2010 Microsoft | Security Intelligence Report

    E-Print Network [OSTI]

    Bernstein, Phil

    /IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective owners Gullotto Microsoft Malware Protection Center Paul Henry Wadeware LLC Jeannette Jarvis CSS Security Jeff ISD Mark Miller Microsoft Trustworthy Computing Price Oden Microsoft IT Information Security and Risk

  4. Window performance for human thermal comfort

    E-Print Network [OSTI]

    Huizenga, C; Zhang, H.; Mattelaer, P.; Yu, T.; Arens, Edward A; Lyons, P.

    2006-01-01T23:59:59.000Z

    ? = 0.08 face 4, 6/16/6/16/6mm G8 Table 14: Range of glazinglow- ? coating (G5 and G8) greatly improves the solarm˛] G1 G2 G3 G4 G5 G6 G7 G8 Figure 35: Scenario 1 – Maximum

  5. Window performance for human thermal comfort

    E-Print Network [OSTI]

    Huizenga, C; Zhang, H.; Mattelaer, P.; Yu, T.; Arens, Edward A; Lyons, P.

    2006-01-01T23:59:59.000Z

    Conference on Environmental Ergonomics, Fukuoka, Japan. 21.Ventilated Spaces”. Ergonomics, 29, 215 - 235. 36. Fanger,and Workload”. Applied Ergonomics, 32, 407 – 417. 54.

  6. Window performance for human thermal comfort

    E-Print Network [OSTI]

    Huizenga, C; Zhang, H.; Mattelaer, P.; Yu, T.; Arens, Edward A; Lyons, P.

    2006-01-01T23:59:59.000Z

    Basic Principles of Ventilation and Heating. 2 nd Ed. , H.K.Journal of Heating, Ventilation, Air-conditioning and

  7. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  8. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-08-26T23:59:59.000Z

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  9. Applicability of Solar Airflow Windows

    E-Print Network [OSTI]

    Hamed, M. S.; Friedrich, K.; Razaqpur, G.; Foo, S.

    2010-01-01T23:59:59.000Z

    Accurate prediction of the performance of Solar Air Windows (SAWs) operating in various climates under real conditions has not been investigated. This paper reports the results of numerical simulations of SAWs carried out using ANSYS-CFX considering...

  10. Too much ‘digital’, too little ‘humanities’? An attempt to explain why many humanities scholars are reluctant converts to Digital Humanities

    E-Print Network [OSTI]

    Porsdam, Helle

    2011-01-01T23:59:59.000Z

    6 Ibid. 7 Brett Bobley, quoted in Patricia Cohen, “Digital Keys for Unlocking the Humanities’ Riches.” See also Tony Hey, Stewart Tansley, and Kristin Tolle (eds.), The Fourth Paradigm: Data-Intensive Scientific Discovery (Microsoft Research, 2009...

  11. Search Microsoft Research Videos Projects Publications People

    E-Print Network [OSTI]

    Myers, Brad A.

    at the Microsoft Le Campus in Issy-les- Moulineaux, just southwest of central Paris. Tony Hey, corporate vice Center Events Software Summit 2011 People Tony Hey Andrew Herbert Jamie Shotton Andrew Fitzgibbon Toby Tony Hoare Fabrizio Gagliardi Uli Pinsdorf Arjmand Samuel Groups Microsoft Research Connections

  12. Extending the X Window System

    SciTech Connect (OSTI)

    Brenkosh, J.P.

    1993-12-23T23:59:59.000Z

    The X Window System was originally developed in 1984 at Massachusetts Institute of Technology. It provides client-server computing functionality and also facilitates the establishment of a distributed computing environment. Since its inception the X Window System has undergone many enhancements. Despite these enhancements there will always be a functionality desired in the standard released version of X that is not supported or commercially or academically available. The developers of the X Window System have designed it in such a way that it is possible to add functionality that is not included in the standard release. This is called an extension. Extensions are one method used to develop a customized version of the X Window System to support a specialized application. This report presents the mechanics of adding an extension and examines a particular extension that was developed at Sandia National Laboratories to support data compression in X Windows which was one aspect of the Desktop Video and Collaborative Engineering Laboratory Directed Research and Development (LDRD).

  13. www.microsoft.com/education/schooloffuture.aspx 2008 Microsoft Corporation. All rights reserved. Microsoft, Hyper-V, Windows Server 2008, and Windows Vista are either trademarks or registered trademarks of Microsoft Corporation in the United States and/o

    E-Print Network [OSTI]

    Bernstein, Phil

    Fact: If all new school construction and school renovations went green starting today, energy savings performance "green design" to deliver maximum positive impact for our world. Among these principles are energy into the local community it operates in and serves. LEED in green The Leadership in Energy and Environmental

  14. Microsoft Office 2007 Enterprise: Q: I don't want to remember each time to save my files in the 97-2003

    E-Print Network [OSTI]

    Barton, Paul I.

    Microsoft Office 2007 Enterprise: Q: I don't want to remember each time to save my files in the 97-2003 format. How can I set up Office 2007 so that all the new files will be saved automatically in the 97Point Options. 3. From the left side on the window, click Save. 4. Locate the option Save files in this format

  15. RUGGED CERAMIC WINDOW FOR RF APPLICATIONS

    SciTech Connect (OSTI)

    MIKE NEUBAUER

    2012-11-01T23:59:59.000Z

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  16. Rolling, Rolling, Rolling: Roller Window Shades | Department...

    Broader source: Energy.gov (indexed) [DOE]

    anyway, even if our windows were of the highest efficiency. One of my colleagues in a solar energy group I belonged to was a distributor of a high R-value quilted roller window...

  17. AIR LEAKAGE OF NEWLY INSTALLED RESIDENTIAL WINDOWS

    E-Print Network [OSTI]

    Weidt, John

    2013-01-01T23:59:59.000Z

    Tables 2.0.2a 2.0.2b PAGE Air Leakage Through Sash/FrameOperation Types . . . . . Air Leakage of Installed WindowsComparison of Window Types Air Leakage Performance of

  18. An analysis of residential window waterproofing systems

    E-Print Network [OSTI]

    Parsons, Austin, 1959-

    2004-01-01T23:59:59.000Z

    The prevalence of vinyl nail-on windows in the North American new home construction market has prompted ASTM International to write ASTM E2112-01 "Standard Practice for Installation of Exterior Windows, Doors and Skylights". ...

  19. A Design Guide for Early-Market Electrochromic Windows

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Office worker preferences of electrochromic windows: a pilotDetails for an Electrochromic Window Wall Attached arethe performance of the electrochromic windows. Proceedings

  20. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air...

  1. Microsoft PowerPoint - Deepwater Horizon Containment - 30 JUN...

    Broader source: Energy.gov (indexed) [DOE]

    Deepwater Horizon Containment - 30 JUN.ppt Microsoft PowerPoint - Deepwater Horizon Containment - 30 JUN.ppt Microsoft PowerPoint - Deepwater Horizon Containment - 30 JUN.ppt More...

  2. Microsoft Word - k-25 cover

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 Acquisition RegulationMicrosoft

  3. Microsoft Word - meritrev.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 Acquisition RegulationMicrosoftTheLessons

  4. Microsoft PowerPoint - WIPPRecovery

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel MicrosoftSeptember 15, September T

  5. Microsoft Word - AG19 1

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft19.1, Summary of Small Business

  6. Windows Server 2008 R2 Licensing Guide

    E-Print Network [OSTI]

    Narasayya, Vivek

    Windows Server 2008 R2 Licensing Guide m Your Comprehensive Resource for Licensing and Pricing #12;2 Table of Contents Summary 3 Table of Windows Server 2008 R2 Core Product Offerings 3 License Terms ­ Windows Server 2008 R2 Product Line Updates 4 Edition Comparison by Server Role 5 New and Updated Features

  7. Information Security Management System for Microsoft's Cloud Infrastructure

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Information Security Management System for Microsoft's Cloud Infrastructure Online Services ......................................................................................................................................................................................1 Information Security Management System.......................................................................................................................7 Information Security Management Forum

  8. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13T23:59:59.000Z

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  9. U-124: Microsoft Security Bulletin Advance Notification for March 2012

    Broader source: Energy.gov [DOE]

    Microsoft Security Bulletin Advance Notification for March 2012. Microsoft has posted 1 Critical Bulletin, 4 Important bulletins and 1 Moderate bulletin. Bulletins with the Maximum Severity Rating and Vulnerability Impact of "Critical" may allow remote execution of code. Microsoft is hosting a webcast to address customer questions on these bulletins on March 14, 2012, at 11:00 AM Pacific Time (US & Canada).

  10. Profile synchronization guide for Microsoft SharePoint Server 2010

    E-Print Network [OSTI]

    Hunt, Galen

    Profile synchronization guide for Microsoft SharePoint Server 2010 Microsoft Corporation Published describes how to plan and configure profile synchronization in Microsoft SharePoint Server 2010. Also included is technical reference information about profile properties, data types, and permissions

  11. a microsoft white paper Drilling for new Business Value

    E-Print Network [OSTI]

    Bernstein, Phil

    a microsoft white paper Drilling for new Business Value How innovative oil and gas companies Perez, Enterprise Architect, Microsoft #12;a microsoft white paper Drilling for new B usiness Value 2 for new B usiness Value 3 executive summary as the buzz about big data makes the leap from technology

  12. Rigid thin windows for vacuum applications

    DOE Patents [OSTI]

    Meyer, Glenn Allyn (Danville, CA); Ciarlo, Dino R. (Livermore, CA); Myers, Booth Richard (Livermore, CA); Chen, Hao-Lin (Lafayette, CA); Wakalopulos, George (Pacific Palisades, CA)

    1999-01-01T23:59:59.000Z

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  13. Window Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWasteWho WillWind Programof EnergyWindow

  14. T-565: Vulnerability in Microsoft Malware Protection Engine Could Allow Elevation of PrivilegeVulnerability

    Broader source: Energy.gov [DOE]

    Microsoft is releasing this security advisory to help ensure customers are aware that an update to the Microsoft Malware Protection Engine also addresses a security vulnerability reported to Microsoft.

  15. Microsoft Word - Graphics A-76 Post - MEO VV Review Report _F...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microsoft Word - Graphics A-76 Post - MEO VV Review Report F.doc Microsoft Word - Graphics A-76 Post - MEO VV Review Report F.doc Microsoft Word - Graphics A-76 Post - MEO VV...

  16. Microsoft Word - NNSA Logistics A-76 Post - MEO VV Review Report...

    Broader source: Energy.gov (indexed) [DOE]

    Microsoft Word - NNSA Logistics A-76 Post - MEO VV Review Report 111.doc Microsoft Word - NNSA Logistics A-76 Post - MEO VV Review Report 111.doc Microsoft Word - NNSA...

  17. Microsoft PowerPoint - Nov 2009 PI Org Chart (web) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Microsoft PowerPoint - Nov 2009 PI Org Chart (web) Microsoft PowerPoint - Nov 2009 PI Org Chart (web) PI Organization chart Microsoft PowerPoint - Nov 2009 PI Org Chart (web) More...

  18. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Syvania, OH)

    2010-02-23T23:59:59.000Z

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  19. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Syvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

    2011-10-04T23:59:59.000Z

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  20. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming (Sylvania, OH); Liao, Xianbo (Toledo, OH); Du, Wenhui (Toledo, OH)

    2011-02-01T23:59:59.000Z

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  1. U-267: RSA® Authentication Agent 7.1 for Microsoft Windows®...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Users Bypass Authentication Requirements V-159: RSA SecurID Agent Discloses Node Secret Encryption Key to Local Users V-195: RSA Authentication Manager Lets Local Users View...

  2. V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment ofPrivileges

  3. T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski -BlueprintThisVulnerabilitiesVulnerability |UsersSessions |

  4. U-267: RSA® Authentication Agent 7.1 for Microsoft Windows® and RSA®

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnologyfactTuscaroraDepartmentAuthentication Client 3.5 Access

  5. V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergy 94:Vulnerabilities | Department

  6. Microsoft PowerPoint - 10 Lee LCLS Lessons Learned PM Workshop...

    Office of Environmental Management (EM)

    0 Lee LCLS Lessons Learned PM Workshop Final Compatibility Mode Microsoft PowerPoint - 10 Lee LCLS Lessons Learned PM Workshop Final Compatibility Mode Microsoft PowerPoint -...

  7. Laboratory Performance Testing of Residential Window Mounted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Issues High-Efficiency Window Air Conditioners - Building America Top Innovation 2014-05-05 Issuance: Test Procedure for Portable Air Conditioners; Notice of Data Availability...

  8. THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS

    E-Print Network [OSTI]

    Selkowitz, Stephen E.

    2011-01-01T23:59:59.000Z

    Efficient Use of Energy, New York (1975). Glaser, V.H.J. , "Energy Transport Control in Window Systems", Report ETR-1277-2, Stony Brook, New York, (

  9. The Delivery Man Problem with Time Windows

    E-Print Network [OSTI]

    2009-09-01T23:59:59.000Z

    depot, while open time windows are considered at all other locations. ... nodes of G: earliest and latest times are described by parameters ei and li for nodes i ...

  10. Functional genomics as a window on radiation stress signaling Sally A Amundson*,1

    E-Print Network [OSTI]

    Functional genomics as a window on radiation stress signaling Sally A Amundson*,1 , Michael Bittner 20892, USA; 2 National Human Genome Research Institute, National Institutes of Health, Bethesda, MD before the completion of the human genome draft sequence, a number of techniques for genomic expression

  11. Laser sealed vacuum insulation window

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1987-01-01T23:59:59.000Z

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  12. Laser sealed vacuum insulating window

    DOE Patents [OSTI]

    Benson, D.K.; Tracy, C.E.

    1985-08-19T23:59:59.000Z

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  13. Daylighting control performance of a thin-film ceramic electrochromic window: Field study results

    SciTech Connect (OSTI)

    Lee, E.S.; DiBartolomeo, D.L.; Selkowitz, S.E.

    2005-01-26T23:59:59.000Z

    Control system development and lighting energy monitoring of ceramic thin-film electrochromic (EC) windows were initiated at the new full-scale window systems test-bed facility at the Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. The new facility consists of three identically configured side-by-side private offices with large-area windows that face due south. In one room, an array of EC windows with a center-of-glass visible transmittance T_v range of 0.05-0.60 was installed. In the two other rooms, unshaded windows with a T_v = 0.50 or 0.15 were used as reference. The same dimmable fluorescent lighting system was used in all three rooms. This study explains the design and commissioning of an integrated EC window-lighting control system, and then illustrates its performance in the test-bed under clear, partly cloudy, and overcast sky conditions during the equinox period. The performance of an early prototype EC window controller is also analyzed. Lighting energy savings data are presented. Daily lighting energy savings were 44-59% compared to the reference window of T_v = 0.15 and 8-23% compared to the reference window of T_v = 0.50. The integrated window-lighting control system maintained interior illuminance levels to within +/- 10% of the setpoint range of 510-700 lx for 89-99% of the day. Further work is planned to refine the control algorithms and monitor cooling load, visual comfort, and human factor impacts of this emerging technology. (author)

  14. Microsoft Word - ATVMLP template.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft19.1, Summary3AL2006-10Microsoft

  15. Microsoft Word - BRC Charter | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice ofARRAModelWAS.docMicrosoft Word -of U.S.Microsoft

  16. Measure Guideline: Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.

    2012-12-01T23:59:59.000Z

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  17. Solar Window Technology for BIPV or

    E-Print Network [OSTI]

    Painter, Kevin

    Solar Window Technology for BIPV or BAPV Energy Systems Problem this technology solves: Using of Solar energy considerably, photovoltaic or PV material is still a major $ cost/unit of energy produced a novel high efficiency concentrator design, this static "Solar Window" system is such that it allows

  18. A monolithic thin film electrochromic window

    SciTech Connect (OSTI)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. [Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center; Wei, G. [Mobil Solar Energy Corp., Billerica, MA (United States); Yu, P.C. [PPG Industries, Inc., Monroeville, PA (United States)

    1991-12-31T23:59:59.000Z

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  19. THERM 5 / WINDOW 5 NFRC simulation manual

    SciTech Connect (OSTI)

    Mitchell, Robin; Kohler, Christian; Arasteh, Dariush; Carmody, John; Huizenga, Charlie; Curcija, Dragan

    2003-06-01T23:59:59.000Z

    This document, the ''THERM 5/WINDOW 5 NFRC Simulation Manual', discusses how to use the THERM and WINDOW programs to model products for NFRC certified simulations and assumes that the user is already familiar with those programs. In order to learn how to use these programs, it is necessary to become familiar with the material in both the ''THERM User's Manual'' and the ''WINDOW User's Manual''. In general, this manual references the User's Manuals rather than repeating the information. If there is a conflict between either of the User Manual and this ''THERM 5/''WINDOW 5 NFRC Simulation Manual'', the ''THERM 5/WINDOW 5 NFRC Simulation Manual'' takes precedence. In addition, if this manual is in conflict with any NFRC standards, the standards take precedence. For example, if samples in this manual do not follow the current taping and testing NFRC standards, the standards not the samples in this manual, take precedence.

  20. Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed

    E-Print Network [OSTI]

    Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

    2000-01-01T23:59:59.000Z

    lifetime prediction of electrochromic windows for buildingsenergy performance of electrochromic windows. ” Proceedingsin the Proceedings. Electrochromic Windows for Commercial

  1. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort

    E-Print Network [OSTI]

    Fernandes, Luis

    2014-01-01T23:59:59.000Z

    Energy Performance of Electrochromic Windows Controlled forenergy performance of electrochromic windows. Proceedingssignal for daylight (electrochromic window, no overhang).

  2. March 24, 2009 RE: Microsoft Hardware

    E-Print Network [OSTI]

    Narasayya, Vivek

    with the requirements of Enforcement Ordinance on the Recycling of Electrical and Electronic Equipment and Vehicles Act of the EU Battery Directive (2006/66/EC), which includes battery markings, information provided in documentation and recycling schemes. With respect to packaging, Microsoft designs its hardware and software

  3. Microsoft Word - GSP_Charter.doc | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy Geospatial Sciences Program (GSP) Charter Microsoft Word - GSPCharter.doc More Documents & Publications Geospatial Science Program Mananagemnt Office...

  4. Observational Window Functions in Planet Transit Searches

    E-Print Network [OSTI]

    Kaspar von Braun; David R. Ciardi

    2008-01-17T23:59:59.000Z

    Window functions describe, as a function of orbital period, the probability that an existing planetary transit is detectable in one's data for a given observing strategy. We show the dependence of this probability upon several strategy and astrophysical parameters, such as length of observing run, observing cadence, length of night, and transit duration. The ability to detect a transit is directly related to the intrinsic noise of the observations. In our simulations of the window function, we explicitly address non-correlated (gaussian or white) noise and correlated (red) noise and discuss how these two different noise components affect window functions in different manners.

  5. Highly Insulating Residential Windows Using Smart Automated Shading...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window...

  6. Research and Development Roadmap: Windows and Building Envelope...

    Broader source: Energy.gov (indexed) [DOE]

    office windows. This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and...

  7. Window and Envelope Technologies Overview - 2014 BTO Peer Review...

    Energy Savers [EERE]

    Windows and Building Envelope Overview - 2015 BTO Peer Review Research and Development Roadmap: Windows and Building Envelope Research & Development Roadmap: Emerging Water Heating...

  8. June 1998Program Description Windows and Daylighting Group

    E-Print Network [OSTI]

    June 1998Program Description THERM 2.0 Windows and Daylighting Group Building Technologies, and Dariush Arasteh Windows and Daylighting Group Building Technologies Department Environmental Energy

  9. Effects of Overhangs on the Performance of Electrochromic Windows

    E-Print Network [OSTI]

    Tavil, Aslihan; Lee, Eleanor S.

    2005-01-01T23:59:59.000Z

    issues for large-area electrochromic windows in commercialenergy performance of electrochromic windows controlled forwindows.lbl.gov/comm_perf/Electrochromic/ Winkelmann, F.C. ,

  10. Efficient Adjustable Reflectivity Smart Window

    SciTech Connect (OSTI)

    D. Morgan Tench

    2005-12-01T23:59:59.000Z

    This project addressed the key technical issues for development of an efficient smart window based on reversible electrochemical transfer of silver between a mirror electrode and a localized counter electrode. Effort to provide uniform switching over large areas focused on use of a resistive transparent electrode innerlayer to increase the interelectrode resistance. An effective edge seal was developed in collaboration with adhesive suppliers and an electrochromic device manufacturer. Work to provide a manufacturable counter electrode focused on fabricating a dot matrix electrode without photolithography by electrodeposition of Pt nuclei on inherent active sites on a transparent oxide conductor. An alternative counter electrode based on a conducting polymer and an ionic liquid electrolyte was also investigated. Work in all of these areas was successful. Sputtered large-bandgap oxide innerlayers sandwiched between conductive indium tin oxide (ITO) layers were shown to provide sufficient cross-layer resistance (>300 ohm/cm{sup 2}) without significantly affecting the electrochemical properties of the ITO overlayer. Two edge seal epoxies, one procured from an epoxy manufacturer and one provided by an electrochromic device manufacturer in finished seals, were shown to be effective barriers against oxygen intrusion up to 80 C. The optimum density of nuclei for the dot matrix counter electrode was attained without use of photolithography by electrodeposition from a commercial alkaline platinum plating bath. Silver loss issues for cells with dot matrix electrodes were successfully addressed by purifying the electrolyte and adjusting the cell cycling parameters. More than 30K cycles were demonstrated for a REM cell (30-cm square) with a dot matrix counter electrode. Larger cells (30-cm square) were successfully fabricated but could not be cycled since the nucleation layers (provided by an outside supplier) were defective so that mirror deposits could not be produced.

  11. Microsoft Word - 25A2284 Continued

    Broader source: Energy.gov (indexed) [DOE]

    Unlike other building components, windows theoretically can be energy neutral or even net contributors to the energy balance. EC are the most promising of the three primary...

  12. NREL Electrochromic Window Research Wins Award

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  13. NREL Electrochromic Window Research Wins Award

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  14. 700 MHz window R & D at LBNL

    E-Print Network [OSTI]

    Rimmer, R.A.; Koehler, G.; Saleh, T.; Weidenbach, R.

    2000-01-01T23:59:59.000Z

    LBNL-47939 LAUR 01-2574 CBP tech230 700 MHz Window R&D at LBNL R. Rimmer, G. Koehler, T.describes the R&D activities at LBNL under contract # 06261-

  15. Electrochromic sun control coverings for windows

    SciTech Connect (OSTI)

    Benson, D K; Tracy, C E

    1990-04-01T23:59:59.000Z

    The 2 billion square meters (m{sup 2}) of building windows in the United States cause a national energy drain almost as large as the energy supply of the Alaskan oil pipeline. Unlike the pipeline, the drain of energy through windows will continue well into the 21st century. A part of this energy drain is due to unwanted sun gain through windows. This is a problem throughout the country in commercial buildings because they generally require air conditioning even in cold climates. New commercial windows create an additional 1600 MW demand for peak electric power in the United States each year. Sun control films, widely used in new windows and as retrofits to old windows, help to mitigate this problem. However, conventional, static solar control films also block sunlight when it is wanted for warmth and daylighting. New electrochromic, switchable, sun-gain-control films now under development will provide more nearly optimal and automatic sun control for added comfort, decreased building operating expense, and greater energy saving. Switchable, electrochromic films can be deposited on polymers at high speeds by plasma enhanced chemical vapor deposition (PECVD) in a process that may be suitable for roll coating. This paper describes the electrochromic coatings and the PECVD processes, and speculates about their adaptability to high-speed roll coating. 8 refs., 3 figs.

  16. Towards Discovering Data Center Genome Using Sensor Nets Microsoft Research

    E-Print Network [OSTI]

    Amir, Yair

    en- ergy consumption. Improving data center energy efficiency is a pressing issue with significant operators lack sufficient visibility into how heat is generated, distributed, and exchanged in data centersTowards Discovering Data Center Genome Using Sensor Nets Jie Liu Microsoft Research One Microsoft

  17. Microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Watson, Robert D. (Tijeras, NM)

    2002-01-01T23:59:59.000Z

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  18. Cosmic Microwave Background Anisotropy Window Functions Revisited

    E-Print Network [OSTI]

    Lloyd Knox

    1999-09-28T23:59:59.000Z

    The primary results of most observations of cosmic microwave background (CMB) anisotropy are estimates of the angular power spectrum averaged through some broad band, called band-powers. These estimates are in turn what are used to produce constraints on cosmological parameters due to all CMB observations. Essential to this estimation of cosmological parameters is the calculation of the expected band-power for a given experiment, given a theoretical power spectrum. Here we derive the "band power" window function which should be used for this calculation, and point out that it is not equivalent to the window function used to calculate the variance. This important distinction has been absent from much of the literature: the variance window function is often used as the band-power window function. We discuss the validity of this assumed equivalence, the role of window functions for experiments that constrain the power in {\\it multiple} bands, and summarize a prescription for reporting experimental results. The analysis methods detailed here are applied in a companion paper to three years of data from the Medium Scale Anisotropy Measurement.

  19. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect (OSTI)

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01T23:59:59.000Z

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  20. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, R.A.

    1984-06-19T23:59:59.000Z

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  1. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, Robert A. (R.D. #1, Box 462-A, Voorheesville, NY 12186)

    1984-01-01T23:59:59.000Z

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  2. 1 MICROSOFT.COM/CITIZENSHIP Microsoft on the Topic: Environmental Sustainability

    E-Print Network [OSTI]

    Narasayya, Vivek

    to protect the environment, conserve natural resources, and safeguard the health and safety of our employees. Our site in Dublin, Ireland, opening in 2009, will be cooled with outside air for 30 percent to 50 created and funds its own transport system called the Microsoft Connector Service--a series of busses

  3. Microsoft Technology Centers The Microsoft Technology Centers (MTCs) are collaborative environments that

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  4. Solar optical materials for innovative window design

    SciTech Connect (OSTI)

    Lampert, C.M.

    1982-08-01T23:59:59.000Z

    New and innovative optical materials and coatings can greatly improve the efficiency of window energy systems. These potential materials and coatings increase energy efficiency by reducing radiative losses in the infrared, or reducing visible reflection losses or controlling overheating due to solar gain. Current progress in heat mirror coatings for glass and polymeric substrates is presented. Highly doped semiconducting oxides and metal/dielectric interference coatings are reviewed. Physical and optical properties are outlined for antireflection films and transparent aerogel insulation media. The potential for optical switching films as window elements includes discussions of electrochromic, photochromic and other physical switching processes.

  5. Energy-Efficient Windows | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome |Cooking for WinterWindow TreatmentsWindows

  6. Making Smart Windows Smarter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmart Windows Smarter Making Smart Windows

  7. Improved Performance of Energy Window Ratio Criteria Obtained Using Multiple Windows at Radiation Portal Monitoring Sites

    SciTech Connect (OSTI)

    Weier, Dennis R.; Lopresti, Charles A.; Ely, James H.; Bates, Derrick J.; Kouzes, Richard T.

    2006-06-07T23:59:59.000Z

    Radiation portal monitors are being used to detect radioactive target materials in vehicles transporting cargo. As vehicles pass through the portal monitors, they generate count profiles over time that can be compared to the average panel background counts obtained just prior to the time the vehicle entered the area of the monitors. Pacific Northwest National Laboratory, in support of U.S. Customs and Border Protection (CBP) and U.S. Domestic Nuclear Detection Office (DNDO) under the U.S. Department of Homeland Security (DHS), has accumulated considerable data regarding such background radiation and vehicle profiles from portal installations. Energy window criteria have been shown to increase sensitivity to certain types of target radioactive sources while also controlling to a manageable level the rate of false or nuisance alarms. First generation equipment had only two-window capability, and while energy windowing for such systems was shown to be useful for detecting certain types of sources, it was subsequently found that improved performance could be obtained with more windows. Second generation equipment instead has more windows and can thus support additional energy window criteria which can be shown to be sensitive to a wider set of target sources. Detection likelihoods are generated for various sources and energy window criteria, as well as for gross count decision criteria, based on computer simulated injections of sources into archived vehicle profiles. (PIET-43741-TM-534)

  8. The Current T2K Beam Window

    E-Print Network [OSTI]

    McDonald, Kirk

    Downstream Helium velocity 5 m/s Heat transfer coefficient 150 W/m2K #12;Helium flow grooves He in He out at KEK (via Oak Ridge via PSI). #12;Assembled Window #12;Remote Handling #12;Remote handling Monitor Chamber (Canada) Target Station (Japan) #12;Remote installation #12;Stress analysis and upgrade potential

  9. Occupant Response to Window Control Signaling Systems

    E-Print Network [OSTI]

    Ackerly, Katherine

    2012-01-01T23:59:59.000Z

    preventing energy waste during the red light mode is a moregreen lights was installed to help avoid energy waste, or inlight means that energy is being used to modify the temparature inside and therefore if I open my window it will waste energy.  

  10. Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Crawley Drive for Net Zero Energy Commercial Buildings Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings Microsoft PowerPoint - 06 Crawley Drive...

  11. Microsoft PowerPoint - 12 Holman White PM Conference 2010 Rev...

    Office of Environmental Management (EM)

    PowerPoint - 12 Holman White PM Conference 2010 Rev 2 revised Microsoft PowerPoint - 12 Holman White PM Conference 2010 Rev 2 revised Microsoft PowerPoint - 12 Holman White PM...

  12. Microsoft PowerPoint - 5.3 Item 01 Top Kill Operation Status...

    Broader source: Energy.gov (indexed) [DOE]

    5.3 Item 01 Top Kill Operation Status 09 June 1400.pptx More Documents & Publications Microsoft PowerPoint - Enterprise Top Hat Phases - 07-04-2010.pptx Microsoft PowerPoint -...

  13. Microsoft PowerPoint - 15.1130_Jeff Baker_Final Ultra-High Efficiency...

    Energy Savers [EERE]

    130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings Microsoft PowerPoint - 15.1130Jeff BakerFinal Ultra-High Efficiency Commercial Buildings Microsoft PowerPoint -...

  14. V-058: Microsoft Internet Explorer CDwnBindInfo Object Reuse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Microsoft Internet Explorer CDwnBindInfo Object Reuse Flaw Lets Remote Users Execute Arbitrary Code V-058: Microsoft Internet Explorer CDwnBindInfo Object Reuse Flaw Lets Remote...

  15. V-002: EMC NetWorker Module for Microsoft Applications Lets Remote...

    Broader source: Energy.gov (indexed) [DOE]

    2: EMC NetWorker Module for Microsoft Applications Lets Remote Users Execute Arbitrary Code and Local Users Obtain Passwords V-002: EMC NetWorker Module for Microsoft Applications...

  16. Microsoft Word - WIPP ARRA Final Report Cover

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I07 AnnualMicrosoft

  17. Microsoft Word - Y-12 Special Inquiry ELECTRONIC

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I07 AnnualMicrosoft OctoberB

  18. Microsoft Word - Y00368_MAP.docx

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I07 AnnualMicrosoft

  19. Microsoft PowerPoint - 2 David Kosson

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember 5-6, 2001Department ofDepartment ofMicrosoftUse ofPut

  20. Microsoft Word - Policy Flash 2011-65

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S.Fluor-B&WOPOWER07.doc MicrosoftChapter81165

  1. Microsoft Word - al2006-12.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovemberi CONTENTSSTATEMENT OF DAVID14,4.doc Microsoft

  2. Microsoft Word - al2007-11.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovemberi CONTENTSSTATEMENT OF DAVID14,4.doc Microsoft7-11

  3. Microsoft PowerPoint - 8 Greg Flach

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -of 16 Mar |org

  4. Microsoft PowerPoint - Advances_Taylor

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -of 16 MarNational

  5. Microsoft PowerPoint - Briefings_Casey

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -of 16Oversight *TRANSCOM

  6. Microsoft PowerPoint - Budget.pptx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -of 16Oversight

  7. Microsoft Word - EMSSABChairs conference call 022113 Final

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERELa18, 2012

  8. Microsoft Word - EMSSABChairs conferencecall Jan27.FINAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27, 2011 Participants

  9. Microsoft Word - EMSSABChairs conferencecall July 29.FINAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27, 2011 ParticipantsJuly

  10. Microsoft Word - EMSSABChairs conferencecall Sept19.FINAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27, 2011November 20,

  11. Microsoft Word - FAL2006-03.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27,Department4 Department

  12. Microsoft Word - final report.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official File UnitedToOn4.doc MicrosoftSOFTWARE On

  13. Microsoft Word - AL2006-02.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft19.1, Summary of3.doc3.doc5.doc1.doc2

  14. Microsoft Word - AL2006-03.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft19.1, Summary3 Acquisition Regulation

  15. Microsoft Word - Assessment-B-ProgramCriteria

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft19.1,AcqGuide71pt1.doc More

  16. Microsoft Word - Chapter12_2006_Jun

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOfficeNOTICE: SubmittingChapter 10_2006_Jun Microsoft

  17. Microsoft Word - FAL2004-05.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOfficeNOTICE:InspectionsMicrosoft Word - FAL2004-03.doc

  18. Microsoft Word - Final MR AL.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOfficeNOTICE:InspectionsMicrosoftINL/EXT-11-23452 Revision

  19. Microsoft PowerPoint - Franklin System IO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt Microsoft PowerPoint - C-ModChemicalFile

  20. Microsoft PowerPoint - GVR2_Poster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt Microsoft PowerPoint -March 26 -

  1. Microsoft PowerPoint - LANL_colloqium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE's

  2. Microsoft PowerPoint - LANL_seminar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G. Van de Water Los

  3. Microsoft Word - Data Contribution Best Practices Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriority Data Fields for theEnergy MicrosoftData

  4. Microsoft Word - qa_plan1.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriority DataPART 970 -7-11.doc MicrosoftRecordsSJ-RT

  5. Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures

    E-Print Network [OSTI]

    Infrared Thermography Measurements of Window Thermal Test Specimen Surface Temperatures Brent T Temperatures of Window Specimens: Infrared Thermography Laboratory Measurements Brent T. Griffith1 , Howdy and cold sides, respectively. Surface temperature maps were compiled using an infrared thermographic system

  6. Pennsylvania: Window Technology First of Its Kind for Commercial...

    Energy Savers [EERE]

    manufacturer Traco, a division of Kawneer (an Alcoa company), to develop the OptiQ(tm) Ultra Thermal Window series (OptiQ(tm)) for the commercial buildings sector. These windows...

  7. Pennsylvania: New Series of Windows Has Potential to Save Energy...

    Office of Environmental Management (EM)

    increase in energy efficiency compared to existing commercially available double-pane low-emissivity windows. Prior to the introduction of the OptiQ(tm), R-5 windows were not...

  8. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Environmental Management (EM)

    The windows will function autonomously and in a networked configuration. Project Impact LBNL is aiming toward a mature market cost increment of 12ft2 of window. LBNL will also...

  9. The Impact of Overhang Design on the Performance of Electrochromic Windows

    E-Print Network [OSTI]

    Tavil, Aslihan; Lee, Eleanor S.

    2005-01-01T23:59:59.000Z

    Issues for Large-area Electrochromic Windows in CommercialAnalysis of Prototype Electrochromic Windows”, ASHRAEon the Performance of Electrochromic Windows Asilhan Tavil

  10. The energy-savings potential of electrochromic windows in the US commercial buildings sector

    E-Print Network [OSTI]

    Lee, Eleanor; Yazdanian, Mehry; Selkowitz, Stephen

    2004-01-01T23:59:59.000Z

    Alone Photovoltaic-Powered Electrochromic Smart Window.Subject responses to electrochromic windows. To be publishedAnalysis of Prototype Electrochromic Windows, ASHRAE

  11. End User Impacts of Automated Electrochromic Windows in a Pilot Retrofit Application

    E-Print Network [OSTI]

    Lee, Eleanor S.

    2014-01-01T23:59:59.000Z

    2006. Advancement of electrochromic windows: Final report.User Impacts of Automated Electrochromic Windows in a Pilotenergy performance of electrochromic windows controlled for

  12. End User Impacts of Automated Electrochromic Windows in a Pilot

    E-Print Network [OSTI]

    LBNL-6027E End User Impacts of Automated Electrochromic Windows in a Pilot Retrofit Application E Electrochromic Windows in a Pilot Retrofit Application Eleanor S. Lee1 Abstract , Erin S. Claybaugh Building Independence Avenue, S.W., Washington, DC 20585 USA Automated electrochromic (EC) windows, advanced thermally

  13. Performance Criteria for Residential Zero Energy Windows

    SciTech Connect (OSTI)

    Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

    2006-10-09T23:59:59.000Z

    This paper shows that the energy requirements for today's typical efficient window products (i.e. ENERGY STAR{trademark} products) are significant when compared to the needs of Zero Energy Homes (ZEHs). Through the use of whole house energy modeling, typical efficient products are evaluated in five US climates and compared against the requirements for ZEHs. Products which meet these needs are defined as a function of climate. In heating dominated climates, windows with U-factors of 0.10 Btu/hr-ft{sup 2}-F (0.57 W/m{sup 2}-K) will become energy neutral. In mixed heating/cooling climates a low U-factor is not as significant as the ability to modulate from high SHGCs (heating season) to low SHGCs (cooling season).

  14. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01T23:59:59.000Z

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  15. A review of electrochromic window performance factors

    SciTech Connect (OSTI)

    Selkowitz, S.E.; Rubin, M.; Lee, E.S.; Sullivan, R.; Finlayson, E.; Hopkins, D.

    1994-04-01T23:59:59.000Z

    The performance factors which will influence the market acceptance of electrochromic windows are reviewed. A set of data representing the optical properties of existing and foreseeable electrochromic window devices was generated. The issue of reflective versus absorbing electrochromics was explored. This data was used in the DOE 2.1 building energy model to calculate the expected energy savings compared to conventional glazings. The effects of several different control strategies were tested. Significant energy and peak electric demand benefits were obtained for some electrochromic types. Use of predictive control algorithms to optimize cooling control may result in greater energy savings. Initial economic results considering annual savings, cooling equipment cost savings, and electrochromic window costs are presented. Calculations of thermal and visual comfort show additional benefits from electrochromics but more work is needed to quantify their importance. The design freedom and aesthetic possibilities of these dynamic glazings should provide additional market benefits, but their impact is difficult to assess at this time. Ultimately, a full assessment of the market viability of electrochromics must consider the impacts of all of these issues.

  16. Microsoft Word - MSW Part I

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriority Data FieldsFinalDepartment ofHUMAN0 of144

  17. Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort

    E-Print Network [OSTI]

    Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

    2005-01-01T23:59:59.000Z

    Subject responses to electrochromic windows. Submitted toin a full-scale electrochromic window testbed. Technicaloptimization of electrochromic operations for occupant

  18. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect (OSTI)

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11T23:59:59.000Z

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  19. List of Windows Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other Alternative FuelEnergysourcesourceWindows

  20. Window Daylighting Demo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofoftoMay 8,Energy Wind Vision:Window

  1. X-Windows Acceleration via NX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat isJoin theanniversaryI 1 0 3 P 0 dX-RayX-Windows

  2. Window Industry Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind PowerWindStromRoadmap Name Window

  3. EndNote X6 Basics For Windows

    E-Print Network [OSTI]

    will need to choose between two installation types ­ Typical or Custom. If you choose Typical, you EndNote: Opening or creating an EndNote Library Adding bibliographic references or citations to your library Using EndNote with Microsoft Word to organize research papers, insert references using Cite While

  4. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    E-Print Network [OSTI]

    Transfer Design Tools Arild Gustavsen1,* , Dariush Arasteh2 , Bjørn Petter Jelle3,4 , Charlie Curcija5-conductance window frames requires accurate simulation tools for product research and development. Based and develop recommendation for inclusion into the design fenestration tools. 3. Assess existing correlations

  5. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    SciTech Connect (OSTI)

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30T23:59:59.000Z

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to recover to a bleached state upon exposure to heat and solar radiation while being cycled over time from the bleached to the dark state. Most likely the polymers are undergoing degradation reactions which are accelerated by heat and solar exposure while in either the reduced or oxidized states and the performance of the polymers is greatly reduced over time. For this technology to succeed in an exterior window application, there needs to be more work done to understand the degradation of the polymers under real-life application conditions such as elevated temperatures and solar exposure so that recommendations for improvements in to the overall system can be made. This will be the key to utilizing this type of technology in any future real-life applications.

  6. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, J.; Haglund, K.

    2012-11-01T23:59:59.000Z

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  7. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24T23:59:59.000Z

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  8. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Crandall, Richard S. (Boulder, CO); Deb, Satyendra K. (Boulder, CO); Stone, Jack L. (Lakewood, CO)

    1995-01-01T23:59:59.000Z

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  9. Toshiba recommends Windows 7 Satellite L750-12T

    E-Print Network [OSTI]

    Saskatchewan, University of

    Toshiba recommends Windows 7 Model: i Satellite L750-12T 2nd Generation Intel® CoreTM i3-2350M processor­ 2.3 GHz, Genuine Windows® 7 Home Premium, 15.6" HD LCD, 4GB DDR3, 640GB HDD S-ATA, DVD Super and Enhanced Intel® SpeedStep® Technology Operating System Genuine Windows® 7 Home Premium Key Features Toshiba

  10. Windows and Building Envelope Overview - 2015 BTO Peer Review...

    Office of Environmental Management (EM)

    Envelope Technologies Overview - 2014 BTO Peer Review Emerging Technologies Program Overview - 2015 BTO Peer Review Research and Development Roadmap: Windows and Building Envelope...

  11. Robust Inventory Routing with Flexible Time Window Allocation

    E-Print Network [OSTI]

    Chengliang Zhang

    2015-01-15T23:59:59.000Z

    Jan 15, 2015 ... Abstract: This paper studies a robust maritime inventory routing problem with time windows and stochastic travel times. One of the novelties of ...

  12. "Explosive" atom movement is new window into growing metalnanostructu...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    movement is new window into growing metal nanostructures Michael Tringides, Materials Science and Engineering , 515-294-6439 Breehan Gerleman Lucchesi, Public Affairs,...

  13. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01T23:59:59.000Z

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  14. The robust vehicle routing problem with time windows

    E-Print Network [OSTI]

    Agostinho Agra

    2012-10-02T23:59:59.000Z

    Oct 2, 2012 ... Abstract: This paper addresses the robust vehicle routing problem with time windows. We are motivated by a problem that arises in maritime ...

  15. Microsoft Word - APMS Report 24 Feb 2011 EMAB Meeting. FINAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft Word -0.doc MicrosoftINTERIM

  16. Microsoft Word - al94-19.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official File UnitedToOn4.doc Microsoft Word 93-4Microsoft Word

  17. Microsoft Word - AL2005-03.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft Word2.doc Microsoft Word

  18. Microsoft Word - AL2005-07.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft Word2.doc Microsoft7.doc

  19. Microsoft Word - AL2005-10.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft Word2.doc10.doc Microsoft

  20. Microsoft Word - AL2005-12.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft Word2.doc10.docMicrosoft

  1. Microsoft Word - AL2005-14.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc Microsoft Word -

  2. Microsoft Word - AL2005-15.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc Microsoft Word -5.doc

  3. Microsoft Word - AL2005-16.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc Microsoft Word

  4. Microsoft Word - AL2006-01.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc Microsoft Word1.doc

  5. Microsoft Word - AL2006-02.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc Microsoft

  6. Microsoft Word - AL2006-03.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc Microsoft3.doc

  7. Microsoft Word - AL2006-07.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc Microsoft3.doc7.doc

  8. Microsoft Word - AL2006-09.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc9.doc Microsoft Word -

  9. Microsoft Word - AL2006-11.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc9.doc Microsoft

  10. Microsoft Word - AL2008-05.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc9.doc5.doc Microsoft

  11. Microsoft Word - Annual Report 2009_Final.docx

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice ofARRAModelWAS.doc MicrosoftMicrosoftStrategic

  12. Porting salinas to the windows platform.

    SciTech Connect (OSTI)

    Reese, Garth M.; Wilson, Christopher Riley

    2006-06-01T23:59:59.000Z

    The ASC program has enabled significant development of high end engineering applications on massively parallel machines. There is a great benefit in providing these applications on the desktop of the analysts and designers, at least insofar as the small models may be run on these platforms, thus providing a tool set that spans the application needs. This effort documents the work of porting Salinas to the WINDOWS{trademark} platform. Selection of the tools required to compile, link, test and run Salinas in this environment is discussed. Significant problems encountered along the way are listed along with an estimation of the overall cost of the port. This report may serve as a baseline for streamlining further porting activities with other ASC codes.

  13. Simulating Complex Window Systems using BSDF Data

    SciTech Connect (OSTI)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22T23:59:59.000Z

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  14. MAVIS III -- A Windows 95/NT Upgrade

    SciTech Connect (OSTI)

    Hardwick, M.F. [Sandia National Labs., Livermore, CA (United States). GTS Engineering Dept.

    1997-12-01T23:59:59.000Z

    MAVIS (Modeling and Analysis of Explosive Valve Interactions) is a computer program that simulates operation of explosively actuated valve. MAVIS was originally written in Fortran in the mid 1970`s and was primarily run on the Sandia Vax computers in use through the early 1990`s. During the mid to late 1980`s MAVIS was upgraded to include the effects of plastic deformation and it became MAVIS II. When the Vax computers were retired, the Gas Transfer System (GTS) Development Department ported the code to the Macintosh and PC platforms, where it ran as a simple console application. All graphical output was lost during these ports. GTS code developers recently completed an upgrade that provides a Windows 95/NT MAVIS application and restores all of the original graphical output. This upgrade is called MAVIS III version 1.0. This report serves both as a user`s manual for MAVIS III v 1.0 and as a general software development reference.

  15. Isocurvature forecast in the anthropic axion window

    SciTech Connect (OSTI)

    Hamann, J. [LAPTh, Université de Savoie, CNRS, BP 110, F-74941 Annecy-le-Vieux Cedex (France); Hannestad, S. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Raffelt, G.G. [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany); Wong, Y.Y.Y., E-mail: hamann@lapp.in2p3.fr, E-mail: sth@phys.au.dk, E-mail: raffelt@mppmu.mpg.de, E-mail: yvonne.wong@cern.ch [Theory Division, Physics Department, CERN, CH-1211 Genčve 23 (Switzerland)

    2009-06-01T23:59:59.000Z

    We explore the cosmological sensitivity to the amplitude of isocurvature fluctuations that would be caused by axions in the ''anthropic window'' where the axion decay constant f{sub a} >> 10{sup 12} GeV and the initial misalignment angle ?{sub i} << 1. In a minimal ?CDM cosmology extended with subdominant scale-invariant isocurvature fluctuations, existing data constrain the isocurvature fraction to ? < 0.09 at 95% C.L. If no signal shows up, Planck can improve this constraint to 0.042 while an ultimate CMB probe limited only by cosmic variance in both temperature and E-polarisation can reach 0.017, about a factor of five better than the current limit. In the parameter space of f{sub a} and H{sub I} (Hubble parameter during inflation) we identify a small region where axion detection remains within the reach of realistic cosmological probes.

  16. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect (OSTI)

    Michael Arney, Ph.D.

    2002-12-31T23:59:59.000Z

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  17. Managing coherence via put/get windows

    DOE Patents [OSTI]

    Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Coteus, Paul W. (Yorktown Heights, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Heidelberger, Philip (Cortlandt Manor, NY); Hoenicke, Dirk (Ossining, NY); Ohmacht, Martin (Yorktown Heights, NY)

    2011-01-11T23:59:59.000Z

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  18. Managing coherence via put/get windows

    DOE Patents [OSTI]

    Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Coteus, Paul W. (Yorktown Heights, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Heidelberger, Philip (Cortlandt Manor, NY); Hoenicke, Dirk (Ossining, NY); Ohmacht, Martin (Yorktown Heights, NY)

    2012-02-21T23:59:59.000Z

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  19. Benefits of Windows Small Business Server Code Name "Aurora"

    E-Print Network [OSTI]

    Hunt, Galen

    Benefits of Windows Small Business Server Code Name "Aurora" includes: Daily automatic backups Business Server Code Name "Aurora" provides an easy-to-use solution ideal for first server small businesses with up to 25 users, Windows Small Business Server Code Name "Aurora" provides a cost-effective and easy

  20. Validation of the Window Model of the Modelica Buildings Library

    E-Print Network [OSTI]

    LBNL-5735E Validation of the Window Model of the Modelica Buildings Library Thierry Stephane MODEL OF THE MODELICA BUILDINGS LIBRARY Thierry Stephane Nouidui, Michael Wetter, and Wangda Zuo the validation of the window model of the free open-source Modelica Buildings library. This paper starts

  1. Boron nitride protective coating of beryllium window surfaces

    SciTech Connect (OSTI)

    Gmuer, N.F.

    1991-12-01T23:59:59.000Z

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment.

  2. Windowing Time in Digital Libraries Michael G. Christel

    E-Print Network [OSTI]

    Christel, Mike

    Windowing Time in Digital Libraries Michael G. Christel Carnegie Mellon University Pittsburgh, PA, organization, and utility of time references identified in digital library materials, emphasizing how to treat to illustrate the concept of windowing such time in digital library interfaces. Categories and Subject

  3. Budget Windows, Sunsets and Fiscal Control Alan J. Auerbach

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Budget Windows, Sunsets and Fiscal Control Alan J. Auerbach University of California, Berkeley have struggled to find the right method of controlling public spending and budget deficits. In recent years, the United States has evaluated policy changes using a ten-year budget window. The use of a multi

  4. Radiation-transparent windows, method for imaging fluid transfers

    DOE Patents [OSTI]

    Shu, Deming (Darien, IL); Wang, Jin (Burr Ridge, IL)

    2011-07-26T23:59:59.000Z

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  5. Migrate Roles and Features to Windows Server 2012 R2 or

    E-Print Network [OSTI]

    Hunt, Galen

    #12;Migrate Roles and Features to Windows Server 2012 R2 or Windows Server 2012 Summary: This E-Book includes guidance to help you migrate server roles and features to Windows Server 2012 R2 or Windows Server 2012. Also included is an installation and operations guide for Windows Server Migration Tools, a set

  6. 2012 Dell and Microsoft Putting Data to Work for

    E-Print Network [OSTI]

    Bernstein, Phil

    ©2012 Dell and Microsoft Putting Data to Work for Mid-Market Companies Contents The Context for Mid-Market BI Data is the New Oil The fuel of the information economy is data. We use data to describe products the products themselves. Many of the biggest companies in the new economy--Google, Amazon.com, Netflix and e

  7. To: Microsoft's Premier Preferred Provider Law Firms From: Brad Smith

    E-Print Network [OSTI]

    Bernstein, Phil

    and the details concerning the Law Firm Diversity Program for Microsoft's Premier Preferred Provider (PPP) law that each PPP firm is eligible for a two percent quarterly or annual bonus based on whether it achieves of the PPP elections. First, we are pleased and honored to announce that all PPP firms have elected

  8. Microsoft SQL Server 2012 helps enable organizations to build

    E-Print Network [OSTI]

    Bernstein, Phil

    Microsoft® SQL Server® 2012 helps enable organizations to build comprehensive, enterprise-scale Services introduces the BI Semantic Model, a single model for users with multiple ways of building business. The single model requires no change to existing projects and will open up possibilities for future projects

  9. Demographic Window, H. G. Muller et al. 1 Demographic Window to Aging in the Wild: Constructing Life

    E-Print Network [OSTI]

    MĂĽller, Hans-Georg

    Demographic Window, H. G. M¨uller et al. 1 Demographic Window to Aging in the Wild: Constructing for wild populations. A demographic key identity is established that leads to a method whereby age identity is established for the continuous case where the survival schedule of the wild population

  10. Microsoft Word - T4_VEIC_TO2_ Sub3_Residential Retrofit Program...

    Office of Environmental Management (EM)

    ofitprogramdesignguide.pdf More Documents & Publications Microsoft Word - Horizon Wind Energy Comments.docx Reporting Pre-guidance Announcement 06-02-2011 Letter to SEP...

  11. Microsoft PowerPoint - 16.1330_Rimando 110316 rev3 [Compatibility...

    Energy Savers [EERE]

    & Publications Microsoft PowerPoint - 01 Bosco PM Workshop BOSCO Feb222010PB final rcvd 5 Mar Compatibility Mode Roadmap: EM Journey to Excellence EMAB Meeting - February 2011...

  12. V-112: Microsoft SharePoint Input Validation Flaws Permit Cross...

    Broader source: Energy.gov (indexed) [DOE]

    update addresses the vulnerabilities correcting the way that Microsoft SharePoint Server validates URLs and user input. IMPACT: A remote user can cause denial of service...

  13. Microsoft PowerPoint - 13 DOE PM Workshop UPF Presentation revised...

    Office of Environmental Management (EM)

    3 DOE PM Workshop UPF Presentation revised - Harry Peters Compatibility Mode Microsoft PowerPoint - 13 DOE PM Workshop UPF Presentation revised - Harry Peters Compatibility...

  14. T-656: Microsoft Office Visio DXF File Handling Arbitrary Code Execution Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Office Visio contains a vulnerability that could allow an unauthenticated, remote attacker to execute arbitrary code on a targeted system.

  15. Dynamics of window glass fracture in explosions

    SciTech Connect (OSTI)

    Beauchamp, E.K.; Matalucci, R.V.

    1998-05-01T23:59:59.000Z

    An exploratory study was conducted under the Architectural Surety Program to examine the possibility of modifying fracture of glass in the shock-wave environment associated with terrorist bombings. The intent was to explore strategies to reduce the number and severity of injuries resulting from those attacks. The study consisted of a series of three experiments at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology at Socorro, NM, in which annealed and tempered glass sheets were exposed to blast waves at several different levels of overpressure and specific impulse. A preliminary assessment of the response of tempered glass to the blast environment suggested that inducing early failure would result in lowering fragment velocity as well as reducing the loading from the window to the structure. To test that possibility, two different and novel procedures (indentation flaws and spot annealing) were used to reduce the failure strength of the tempered glass while maintaining its ability to fracture into small cube-shaped fragments. Each experiment involved a comparison of the performance of four sheets of glass with different treatments.

  16. Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames

    E-Print Network [OSTI]

    Gustavsen Ph.D., Arild

    2010-01-01T23:59:59.000Z

    windows are often called passive -house wind ows, as windowse window frames, like passive-house windows. In this p aperare supposed to satisfy the Passive house requirements of

  17. Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuickEnergyforDepartment ofEnergyResidential Windows

  18. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet (Seaford, VA); Dylla, III, Henry Frederick (Yorktown, VA)

    1997-01-01T23:59:59.000Z

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  19. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04T23:59:59.000Z

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  20. Effect of window reflections on photonic Doppler velocimetry measurements

    SciTech Connect (OSTI)

    Ao, T.; Dolan, D. H. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2011-02-15T23:59:59.000Z

    Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

  1. Monitored Energy Performance of Electrochromic Windows Controlled for Daylight and Visual Comfort

    E-Print Network [OSTI]

    Lee, Eleanor S.; DiBartolomeo, Dennis L.; Klems, Joseph; Yazdanian, Mehry; Selkowitz, Stephen E.

    2005-01-01T23:59:59.000Z

    Windows Controlled for Daylight and Visual Comfort Eleanorof means to bring in daylight while minimizing window glare.was controlled to admit daylight while the lower zone was

  2. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    E-Print Network [OSTI]

    Gustavsen, Arild

    2008-01-01T23:59:59.000Z

    through vacuum and electrochromic vacuum glazed windows,technologies, such as an electrochromic vacuum glazedof rebate depth on an electrochromic vacuum glazed window.

  3. Hydrogen Safety Project: Chemical analysis support task. Window ``E`` analyses

    SciTech Connect (OSTI)

    Jones, T.E.; Campbell, J.A.; Hoppe, E.W.; Greenwood, L.R.; Gillespie, B.M.

    1992-09-01T23:59:59.000Z

    Core samples taken from tank 101-SY at Hanford during ``window E`` were analyzed for organic and radiochemical constituents by staff of the Analytical Chemistry Laboratory at Pacific Northwest Laboratory. Westinghouse Hanford company submitted these samples to the laboratory.

  4. Building America Expert Meeting: Windows Options for New and...

    Broader source: Energy.gov (indexed) [DOE]

    The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the...

  5. Switchable window based on electrochromic polymers Chunye Xu,a)

    E-Print Network [OSTI]

    Taya, Minoru

    Switchable window based on electrochromic polymers Chunye Xu,a) Lu Liu, Susan E. Legenski, Dai Ning March 2004) A large contrast ratio (> 60%) and rapid switching (0.3­1 s) electrochromic (EC) polymer

  6. Engineering adenylate cyclases regulated by near-infrared window light

    E-Print Network [OSTI]

    Ryu, Min-Hyung

    Bacteriophytochromes sense light in the near-infrared window, the spectral region where absorption by mammalian tissues is minimal, and their chromophore, biliverdin IX?, is naturally present in animal cells. These properties ...

  7. Multilayered Microelectronic Device Package With An Integral Window

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Watson, Robert D. (Tijeras, NM)

    2004-10-26T23:59:59.000Z

    A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.

  8. NREL: Continuum Magazine - Energy Efficient Window Coatings that...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    even before coming to NREL, Satyen Deb conceived of making a window that incorporated tungsten oxide thin films that had adjustable properties. Once at NREL (then, the Solar Energy...

  9. A Design Guide for Early-Market Electrochromic Windows

    SciTech Connect (OSTI)

    Lee, Eleanor S.; Selkowitz, Stephen E.; Clear, Robert D.; DiBartolomeo, Dennis L.; Klems, Joseph H.; Fernandes, Luis L.; Ward, GregJ.; Inkarojrit, Vorapat; Yazdanian, Mehry

    2006-05-01T23:59:59.000Z

    Switchable variable-tint electrochromic (EC) windows preserve view out while modulating transmitted light, glare, and solar heat gains. Consumers will require objective information on the risks and benefits of this emerging technology as it enters the market in 2006. This guide provides such information and data derived from a wide variety of simulations, laboratory tests, and a 2.5-year field test of prototype large-area EC windows evaluated under outdoor sun and sky conditions. This design guide is provided to architects, engineers, building owners, and others interested in electrochromic windows. The design guide provides basic information about what is an electrochromic window, what it looks like, how fast does it switch, and what current product offerings are. The guide also provides information on performance benefits if more mature product offerings were available.

  10. Performance Testing of Window Installation and Flashing Details

    E-Print Network [OSTI]

    Weston, T. A.; Herrin, J.

    2002-01-01T23:59:59.000Z

    and proposed installation practices incorporating new flashing materials. This paper focuses specifically on the installation practices relating to windows with mounting fins or flanges. REVIEW OF CURRENT PRACTICES AND ATTITUDES Interviews with builders... into two categories based on the how the flashing and the rough opening is treated. g167g32 2-Dimensional Methods: using flashing to extend protection around the perimeter of the window flanges on to the face of the sheathing, and g167g32 3...

  11. T-526: Microsoft Internet Explorer 'ReleaseInterface()' Remote Code Execution Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Internet Explorer is prone to a remote code-execution vulnerability. Successful exploits will allow an attacker to run arbitrary code in the context of the user running the application. Failed attacks will cause denial-of-service conditions. Microsoft Internet Explorer 8.0.7600.16385 is vulnerable; other versions may also be affected.

  12. Indledning Velkommen til Microsoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Side 4 Inspiration Vi er drevet af passion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Side 8

    E-Print Network [OSTI]

    Hunt, Galen

    af software og it-lřsninger . Siden 1990 har Microsoft vćret reprćsenteret i Danmark, hvor vi i dag Danmark kombinerer det bedste fra to verdener: det ameri- kanske fokus pĺ performance og talentudvikling,fleksibilitetogklaremĺlervoresDNA. Hos Microsoft Danmark er vi 450 medarbejdere med vidt forskellige baggrunde og kompetenc

  13. .NET DEVELOPER PROGRAM A ten-week comprehensive program covering Microsoft .NET technologies

    E-Print Network [OSTI]

    Schaefer, Marcus

    .NET DEVELOPER PROGRAM A ten-week comprehensive program covering Microsoft® .NET technologies DePaul University's .NET Developer Program is designed to provide programmers with an intensive and comprehensive introduction to all essential aspects of the technologies, techniques and principles of Microsoft .NET

  14. Performance of a multifunctional PV/T hybrid solar window

    SciTech Connect (OSTI)

    Davidsson, Henrik; Perers, Bengt; Karlsson, Bjoern [Energy and Building Design, Lund University, P.O. Box 118, SE 221 00 Lund (Sweden)

    2010-03-15T23:59:59.000Z

    A building-integrated multifunctional PV/T solar window has been developed and evaluated. It is constructed of PV cells laminated on solar absorbers placed in a window behind the glazing. To reduce the cost of the solar electricity, tiltable reflectors have been introduced in the construction to focus radiation onto the solar cells. The reflectors render the possibility of controlling the amount of radiation transmitted into the building. The insulated reflectors also reduce the thermal losses through the window. A model for simulation of the electric and hot water production was developed. The model can perform yearly energy simulations where different features such as shading of the cells or effects of the glazing can be included or excluded. The simulation can be run with the reflectors in an active, up right, position or in a passive, horizontal, position. The simulation program was calibrated against measurements on a prototype solar window placed in Lund in the south of Sweden and against a solar window built into a single family house, Solgaarden, in Aelvkarleoe in the central part of Sweden. The results from the simulation shows that the solar window annually produces about 35% more electric energy per unit cell area compared to a vertical flat PV module. (author)

  15. Evaluation of integrated wall systems incorporating electrochromic windows [Final report

    SciTech Connect (OSTI)

    Sbar, Neil L.

    2001-03-30T23:59:59.000Z

    Billions of dollars are spent annually in the U.S. on energy lost through the use of inefficient windows. Even wall systems with advanced static glazings and moveable shading devices are not optimal because they can't effectively respond to changing solar conditions. Electrochromic (EC) smart windows can dynamically control the amount of solar light and heat entering a building. The energy saving performance of fully dynamic wall systems containing EC windows was compared with that of static systems using the DOE 2.1E building simulation program. Total costs for different scenarios were computed. SAGE demonstrated the capability to produce double pane EC windows in which the transmittance repeatedly varied between 2-58%. Relative impact of EC glazings in buildings compared to static is 10-20% energy savings across all climatic regions investigated. Significant life cycle cost savings are predicted for SAGE's EC windows when compared to conventional solar control windows over an estimated product lifetime of 20 years.

  16. Improving the thermal performance of the US residential window stock

    SciTech Connect (OSTI)

    Brown, R.E.; Arasteh, D.K.; Eto, J.H.

    1992-05-01T23:59:59.000Z

    Windows have typically been the least efficient thermal component in the residential envelope, but technology advances over the past decade have helped to dramatically improve the energy efficiency of window products. While the thermal performance of these advanced technology windows can be easily characterized for a particular building application, few precise estimates exist of their aggregate impact on national or regional energy use. Policy-makers, utilities, researchers and the fenestration industry must better understand these products` ultimate conservation potential in order to determine the value of developing new products and initiating programs to accelerate their market acceptance. This paper presents a method to estimate the conservation potential of advanced window technologies, combining elements of two well-known modeling paradigms: supply curves of conserved energy and residential end-use forecasting. The unique features include: detailed descriptions of the housing stock by region and vintage, state-of-the-art thermal descriptions of window technologies, and incorporation of market effects to calculate achievable conservation potential and timing. We demonstrate the methodology by comparing, for all new houses built between 1990 and 2010, the conservation potential of very efficient, high R-value ``superwindows`` in the North Central federal region and spectrally-selective low-emissivity (moderate Revalue and solar transmittance) windows in California.

  17. www.microsoft.com/auto One Platform: Endless Possibilities

    E-Print Network [OSTI]

    Narasayya, Vivek

    Embedded Automotive Driving a connected lifestyle Committed to the automotive industry As an industry in the vehicles they buy. Windows® Embedded Automotive leads the automotive infotainment industry by enabling experience. In today's competitive in-vehicle technology space, Windows Embedded Automotive provides

  18. Microsoft Word - EPRR_procedures_042015.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sampling Network WES-PLAN-300 Technical Project Plan, Meteorological Monitoring Data Management EP-DIV-SOP-10006 Performing Human Ecological Risk Screening Assessments ER-SOP-20231...

  19. T-613: Microsoft Excel Axis Properties Remote Code Execution Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Excel is prone to a remote code-execution vulnerability because the applications fails to sufficiently validate user-supplied input. Attackers can exploit this issue by enticing an unsuspecting user to open a specially crafted Excel file. Successful exploits can allow attackers to execute arbitrary code with the privileges of the user running the application. Failed exploit attempts will result in a denial-of-service condition.

  20. Completed April 30, 2004. LBNL-54966. The Energy-Savings Potential of Electrochromic Windows

    E-Print Network [OSTI]

    " as the number one top priority. Smart windows include chromogenic glazings that can be reversibly switched from century [1]. Window industry executives identified a new generation of dynamic, responsive "Smart Windows and optical properties that can be dynamically controlled. "Smart windows" incorporating electrochromic

  1. Energy performance of a dual airflow window under different climates Jingshu Wei1

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    -e windows was also calculated for com parison. The dual airflow window can reduce heating energy1 Energy performance of a dual airflow window under different climates Jingshu Wei1 , Jianing Zhao1. This paper reports our effort to use EnergyPlus to simulate the energy performance of a dual airflow window

  2. A first-generation prototype dynamic residential window

    SciTech Connect (OSTI)

    Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

    2004-10-26T23:59:59.000Z

    We present the concept for a ''smart'' highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available ''off-the-shelf'' components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The unit's predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

  3. Method of making an integral window hermetic fiber optic component

    DOE Patents [OSTI]

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1996-11-12T23:59:59.000Z

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam. 9 figs.

  4. Method of making an integral window hermetic fiber optic component

    DOE Patents [OSTI]

    Dalton, Rick D. (Miamisburg, OH); Kramer, Daniel P. (Centerville, OH); Massey, Richard T. (Hamilton, OH); Waker, Damon A. (Bellbrook, OH)

    1996-11-12T23:59:59.000Z

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  5. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  6. Developmental time windows for axon growth influence neuronal network topology

    E-Print Network [OSTI]

    Lim, Sol

    2015-01-01T23:59:59.000Z

    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation especially concerning short-distance connectivity during early development, either starting at the same time for all neurons (parallel, i.e. maximally-overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e. no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: neurons that started axon growth early on in s...

  7. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, L.A.

    1995-11-14T23:59:59.000Z

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  8. Application issues for large-area electrochromic windows incommercial buildings

    SciTech Connect (OSTI)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01T23:59:59.000Z

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT) displays. However, window and architectural design as well as electrochromic control options are suggested as methods to broaden the applicability of electrochromics for commercial buildings. Without further modification, its applicability is expected to be limited during cold winter periods due to its slow switching speed.

  9. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, Lee A. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  10. Microsoft Word - FEMP-State MOU pdf version.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOfficeNOTICE:InspectionsMicrosoft Word -MicrosoftMicrosoft

  11. Microsoft Word - Illinois State DOE Exec Summary.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window SHGC: .45 Heat Pump HSPF: 9.2 Heat Pump SEER: 17.8 Water Heater EF: .93 Key Statistics: Location: Normal, Illinois 2009 IECC Climate Zone: 5A Square Feet: 1,428 Number of...

  12. The In uence of Windowing on Time Delay Estimates

    E-Print Network [OSTI]

    Maryland at College Park, University of

    'Ruanaidh Siemens Corporate Research 755 College Road East Princeton , NJ 08540 rvbalan,rosca,rickard,oruanaidh@scr.siemens of frequencies. Such a relation holds true when the Fourier transform is used to go into the frequency domain. However, in practice, one has to use the windowed Fourier transform to obtain the frequency domain

  13. The Influence of Windowing on Time Delay Estimates

    E-Print Network [OSTI]

    Balan, Radu V.

    O'Ruanaidh Siemens Corporate Research 755 College Road East Princeton , NJ 08540 rvbalan,rosca,rickard,oruanaidh@scr.siemens of frequencies. Such a relation holds true when the Fourier transform is used to go into the frequency domain. However, in practice, one has to use the windowed Fourier transform to obtain the frequency domain

  14. Instruction-Window Power Reduction Using Data Dependence Metric

    E-Print Network [OSTI]

    Lee, Hsien-Hsin "Sean"

    power savings, and with an average performance loss of a very modest 1.9%. I. INTRODUCTION NewInstruction-Window Power Reduction Using Data Dependence Metric Ziad Youssfi and Michael Shanblatt Department of Electrical and Computer Engineering Michigan State University East Lansing, MI 48824 ziad

  15. OPERATING TEMPERATURE WINDOWS FOR FUSION REACTOR STRUCTURAL MATERIALS

    E-Print Network [OSTI]

    California at Los Angeles, University of

    OPERATING TEMPERATURE WINDOWS FOR FUSION REACTOR STRUCTURAL MATERIALS S.J. Zinkle1 and N.M. Ghoniem reactor structural materials: four reduced-activation structural materials (oxide-dispersion- strengthened operating temperature limit of structural materials is determined by one of four factors, all of which

  16. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01T23:59:59.000Z

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  17. IRLstack 3.0: High-Performance Windows Sockets

    E-Print Network [OSTI]

    Zhuo, Yue

    2014-12-12T23:59:59.000Z

    by bottlenecks inside the TCP/IP stack. Improvements have been made for Linux, but there is still limited work in Windows. To bridge this gap, we build a new generation of our network driver IRLstack and show that it can achieve 10 Gbps wire rate (i.e. 14.88 Mpps...

  18. Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Milliron, Delia; Selkowitz, Stephen

    2010-08-03T23:59:59.000Z

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  19. Windows on Computer Science Department of Computer and Information Science

    E-Print Network [OSTI]

    Fang, Shiaofen

    1 CSCI 120 Windows on Computer Science Department of Computer and Information Science IUPUI What is Computer Science? Is Computer Science the study of computers (Building computers, and writing computer programs) ? Computer Science is no more about computers than astronomy is about telescopes, or biology

  20. Energy Gaining Windows for Residential Buildings Jesper Kragh, Assistant Professor,

    E-Print Network [OSTI]

    season. It is assumed that in northern cold climates all of the solar gain during the heating season can profiles, solar gain, net energy gain, low energy houses SUMMARY: This paper presents some of the research buildings. The net energy gain of windows is the solar gain minus the heat loss integrated over the heating

  1. Covered Product Category: Residential Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  2. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators

    SciTech Connect (OSTI)

    He, Zhiwei; Sun, Yong [Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China) [Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhan, Meng, E-mail: zhanmeng@wipm.ac.cn [Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)] [Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2013-12-15T23:59:59.000Z

    Route to chaos (or periodicity) in dynamical systems is one of fundamental problems. Here, dynamical behaviors of coupled chaotic Rössler oscillators on complex networks are investigated and two different types of periodic windows with the variation of coupling strength are found. Under a moderate coupling, the periodic window is intermittent, and the attractors within the window extremely sensitively depend on the initial conditions, coupling parameter, and topology of the network. Therefore, after adding or removing one edge of network, the periodic attractor can be destroyed and substituted by a chaotic one, or vice versa. In contrast, under an extremely weak coupling, another type of periodic window appears, which insensitively depends on the initial conditions, coupling parameter, and network. It is sustained and unchanged for different types of network structure. It is also found that the phase differences of the oscillators are almost discrete and randomly distributed except that directly linked oscillators more likely have different phases. These dynamical behaviors have also been generally observed in other networked chaotic oscillators.

  3. DO NOT INCLUDE: flatten cardboard staples, tape & envelope windows ok

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    / bottles Metal items other than cans/foil Napkins Paper towels Plastic bags Plastic films Plastic utensilsDO NOT INCLUDE: flatten cardboard staples, tape & envelope windows ok Aerosol cans Books Bottle, PDAs, inkjet cartridges, CFL bulbs (cushioned, sealed in plastic) computers, printers, printer

  4. Microsoft Word - Improvment Timeline 8-28-14

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM AcronymsIQA memo10-6-08 Microsoft Word

  5. Microsoft Word - Meeting Agenda.Draft.090814(Clean Version)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM AcronymsIQA memo10-6-08 Microsoft

  6. Microsoft Word - National Report 05-02-03.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM AcronymsIQA memo10-6-08 Microsoft May

  7. Microsoft Word - No Fear Stats FY02.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM AcronymsIQA memo10-6-08 Microsoft May2

  8. Microsoft Word - No Fear Stats FY03.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM AcronymsIQA memo10-6-08 Microsoft May23

  9. Microsoft Word - No Fear Stats FY04.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM AcronymsIQA memo10-6-08 Microsoft May23

  10. Microsoft Word - No Fear Stats FY06.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM AcronymsIQA memo10-6-08 Microsoft May236

  11. Microsoft Word - PeerReview_SAR.doc | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM AcronymsIQA memo10-6-08SAR.doc Microsoft

  12. Microsoft Word - Privacy_Contact_Listing_September_21_2010

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EM AcronymsIQA memo10-6-08SAR.doc Microsoft

  13. Microsoft Word - Policy Flash 2011-2 Attachment 2

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I I DAcquisitiMicrosoft Word

  14. Microsoft Word - Unconventional Resources Tech Adv Committee - signed

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I07 AnnualMicrosoft Word

  15. Microsoft Word - WA Parish_MAP_Final.docx

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I07 AnnualMicrosoft WordW.A.

  16. Microsoft Word - aDE-FOA-0000096.rtf

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I07 AnnualMicrosoft

  17. Microsoft Word - acqguide18pt0 March 2011 final

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I07 AnnualMicrosoft

  18. Microsoft Word - al2005-04.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National NuclearRegulation;I07al2005-04.doc Microsoft

  19. Microsoft Word - fal2004-04.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 Acquisition RegulationMicrosoft Word -

  20. Microsoft Word - frm-070210-GO-EF-1_Form

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 Acquisition RegulationMicrosoft Word

  1. Microsoft Word - katrina and rita report.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement of the National 93-4 Acquisition RegulationMicrosoftThe

  2. V-196: Microsoft Security Bulletin Advance Notification for July 2013 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of Energy Microsoft Security Bulletin Advance Notification for

  3. Microsoft PowerPoint - 2 Cynthia Barr [Read-Only]

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember 5-6, 2001Department ofDepartment ofMicrosoftUse of

  4. Microsoft PowerPoint - 2013 RER presentation SSAB (2)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember 5-6, 2001Department ofDepartment ofMicrosoftUseOak

  5. Microsoft Word - AL2005-01.doc | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S. DEPARTMENT OF ENERGY6 ADM 24-02.doc Microsoft

  6. Microsoft Word - Data Classification Security Framework V5.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S. DEPARTMENTthe UseCR-091AprilMicrosoftU.S.888P

  7. Microsoft Word - FAL2004-01.doc | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S. DEPARTMENTtheStatus of3-03R.doc Microsoft Word

  8. Microsoft Word - FAL2004-02.doc | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S. DEPARTMENTtheStatus of3-03R.doc Microsoft

  9. Microsoft Word - FAL2004-03.doc | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S. DEPARTMENTtheStatus of3-03R.doc Microsoft3.doc

  10. Microsoft Word - FAL2006-04.doc | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S. DEPARTMENTtheStatus of3-03R.doc6-04.doc Microsoft

  11. Microsoft Word - Policy Flash 2010-81 Attachment 1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S.Fluor-B&WOPOWER07.doc MicrosoftChapter 70-31C

  12. Microsoft Word - Policy Flash 2010-81 Attachment 2

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S.Fluor-B&WOPOWER07.doc MicrosoftChapter

  13. Microsoft Word - Policy Flash 2010-82 Attachment 1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S.Fluor-B&WOPOWER07.doc MicrosoftChapter811 New

  14. Microsoft PowerPoint - ASCEM SSAB Updated Talk 061411 (1)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -of 16 Mar |orgOverview

  15. Microsoft PowerPoint - Allison - Savannah River Presentation

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -of 16

  16. Microsoft PowerPoint - Barry_Gaffney_Budget [Compatibility Mode]

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -of 16Oversight * Oversight

  17. Microsoft PowerPoint - Benson EM Webinar Engr Barrier Perf

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -of 16Oversight *

  18. Microsoft PowerPoint - EM_Update.061011.pptx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -ofUpdatesUpdate

  19. Microsoft PowerPoint - EPI-Briefing_Antizzo

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint -ofUpdatesUpdateFootprint

  20. Microsoft PowerPoint - FACA for Members.pptx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPoint

  1. Microsoft PowerPoint - FinalModule8.ppt

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPointEM-TWS) status7:

  2. Microsoft PowerPoint - Fiore.Communications.042909

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPointEM-TWS)

  3. Microsoft PowerPoint - Gerdes_SSAB_Chairs_MJW.pptx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPointEM-TWS)Nuclear

  4. Microsoft PowerPoint - Gilbertson - Energy Park Initiative Update

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPointEM-TWS)Nuclear Initiative

  5. Microsoft PowerPoint - Gilbertson.EnergyParksInitiative.042909

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPointEM-TWS)Nuclear

  6. Microsoft PowerPoint - Murray - Quality Assurance Update

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft PowerPointEM-TWS)NuclearSiteSite EM5EM

  7. Microsoft PowerPoint - REVWaste_Disposition_Update.061411.pptx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel Microsoft

  8. Microsoft PowerPoint - Surash.AcquisitionProjectMgmt.042909

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel MicrosoftSeptember 15, September 15, Management

  9. Microsoft PowerPoint - Sykes.EM Footprint Reduction.042909

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel MicrosoftSeptember 15, September 15,Public

  10. Microsoft PowerPoint - TA-21_LASO_Rhodes

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel MicrosoftSeptember 15, September 15,PublicLand

  11. Microsoft PowerPoint - TWCB Summary Aug12r1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel MicrosoftSeptember 15, September

  12. Microsoft PowerPoint - Triay - EM Program Update

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel MicrosoftSeptember 15, September T I A liUpdate

  13. Microsoft PowerPoint - Triay.EMUpdate.042709

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel MicrosoftSeptember 15, September T I A

  14. Microsoft Word - 10 Nov 10 - FINAL APMS Report Follow Up

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel MicrosoftSeptember 15, Septemberi TABLEREPORT TO

  15. Microsoft Word - CCP-PO-012-Revision 15

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft Word -0.docBRC CharterPO-012

  16. Microsoft Word - CCP-QP-002-Revision 39

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft Word -0.docBRC

  17. Microsoft Word - CCP-QP-008-Revision 24

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft Word -0.docBRCQP-008 Revision 24

  18. Microsoft Word - DOE MEBA Storage letter.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergy Cover1-13)

  19. Microsoft Word - EERE PSRP 7 23 2010 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERE PSRP 7 23

  20. Microsoft Word - EM QA Corporate Board Meeting Minutes - February 2014

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERE PSRP 7 th

  1. Microsoft Word - EM Roadmap Rev 0 Dec 17 2010.docx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERE PSRP 7

  2. Microsoft Word - EM SSAB Fall 2010 Mtg Min.FINAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERE February

  3. Microsoft Word - EM SSAB Spring 2010 Mtg Min.063010

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERE February

  4. Microsoft Word - EMAB 15 Sept 2010 Meeting Agenda.090710

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERELa Fonda on

  5. Microsoft Word - EMAB 17 Nov 2010 Meeting Agenda.102510

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERELa Fonda

  6. Microsoft Word - EMAB APMS Sept 2010 - FINAL Report.091010

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERELa

  7. Microsoft Word - EMAB TWS Summary Report FINAL.docx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERELa

  8. Microsoft Word - EMSSABChairs conferencecall Dec2 FINAL_cab_rev

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft WordEnergyWestEERELa18,

  9. Microsoft Word - EMSSABChairs conferencecall Jan22 FINAL.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc Microsoft

  10. Microsoft Word - EMSSABChairs conferencecall July9 FINAL.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27, 2011

  11. Microsoft Word - EMSSABChairs conferencecall Nov20 FINAL.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27, 2011November 20, 2008

  12. Microsoft Word - EMSSABChairs.conferencecall.Jan21.FINAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27, 2011November

  13. Microsoft Word - EMSSABChairs.conferencecall.March18.FINAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27, 2011NovemberMarch 18,

  14. Microsoft Word - EMSSABChairs.conferencecall.May19.FINAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27, 2011NovemberMarch

  15. Microsoft Word - EMSSABChairs.conferencecall.May7.070809.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27, 2011NovemberMarchMay

  16. Microsoft Word - EMSSABChairs.conferencecall.Nov19.FINAL.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27,

  17. Microsoft Word - FINAL EM Continuous Improvement - 2 Nov 10

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating Panel1.doc MicrosoftJanuary 27,Department4FFATA Memoon

  18. Microsoft Word - Revised DOE M 460 -Mar 2006.doc

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating35.doc Microsoft Word -

  19. Microsoft Word - Sept 2010.MeetingMinutes.FINAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating35.doc Microsoft Word -Secretary of EnergyEnergyLa

  20. Microsoft Word - TWCB meeting minutes Aug12r1 web

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating35.doc Microsoft Word -Secretary ofUpdated

  1. Microsoft Word - WIPPCookoff_Hobbs_V3.docx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating35.doc Microsoft Word -Secretary ofUpdated014

  2. Microsoft Word - ygjlenss_EMSSABChairs.conferencecall.August7.FINAL

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_Cost Estimating35.doc Microsoft Word -Secretary6-12.doc8August 7, 2008

  3. Microsoft Word - AL2005-11.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312),Microgrid Set-TopWILLIAM8-04AL 2005-03DOE OrderMicrosoft

  4. Microsoft Word - April06.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312),MicrogridDepartment ofBAppendix A_2006_JunMicrosoft Word

  5. Microsoft Word - al2007-11.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official File UnitedToOn4.doc Microsoft Word

  6. Microsoft Word - test2015_race_to_zero_team_template

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OF CONTENTS 1of:Microsoft WordREMARKS

  7. Microsoft PowerPoint - FinalModule1.ppt

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint -0855_Raines[Read-Only]

  8. Microsoft PowerPoint - FinalModule2.ppt

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint -0855_Raines[Read-Only]2:

  9. Microsoft PowerPoint - FinalModule3.ppt

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint

  10. Microsoft PowerPoint - FinalModule4.ppt

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint4: Budgeting Prepared by:

  11. Microsoft PowerPoint - FinalModule5.ppt

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint4: Budgeting Prepared

  12. Microsoft PowerPoint - FinalModule6.ppt

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint4: Budgeting Prepared6:

  13. Microsoft PowerPoint - FinalModule7.ppt

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint4: Budgeting Prepared6:7:

  14. Microsoft Word - 00 - EE FY 11 Appropriation Language.DOC

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint4:Department ofi TABLE OF3

  15. Microsoft Word - 2005 FOIA ANNUAL REPORT.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint4:Department ofi

  16. Microsoft Word - 4.18.13 Final Deputy Secretary Testimony

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint4:DepartmentAudit of the

  17. Microsoft Word - 6.28.12 MA Final Testimony

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft PowerPoint4:DepartmentAudit ofPARKS,

  18. Microsoft Word - AL2006-10.doc | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft19.1, Summary3AL2006-10 More

  19. Microsoft Word - Assessment-C-SiteVisitProtocol

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft19.1,AcqGuide71pt1.doc MoreATTACHMENT

  20. Microsoft Word - Blue Report Cover for FY 2012 DOE IPERA

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstituteMicrosoft19.1,AcqGuide71pt1.docFollow-up2

  1. Microsoft Word - FY09PropertyBSCContractor.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependent Research Assessmentof 8Microsoft Word

  2. Microsoft Word - FY09PropertyBSCFed.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependent Research Assessmentof 8Microsoft Word Personal

  3. Microsoft Word - FY10PropertyBSCContractor.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependent Research Assessmentof 8Microsoft Word

  4. Microsoft Word - FY10PropertyBSCFed.doc

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependent Research Assessmentof 8Microsoft WordFederal

  5. Microsoft Word - Matrixpart1.doc | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependentDepartment of Energy Microsoft Word

  6. Microsoft Word - May2009.doc | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependentDepartment of Energy MicrosoftMay2009.doc

  7. Microsoft Word - Preservation of Department of Energy Federal Records

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe DistrictIndependentDepartment4.doc MoreCert-Microsoft

  8. Microsoft Word - AL2005-01.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft Word

  9. Microsoft Word - AL2005-08.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft Word2.doc

  10. Microsoft Word - AL2005-11.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft Word2.doc10.doc

  11. Microsoft Word - AL2005-13.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft

  12. Microsoft Word - AL2006-08.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc

  13. Microsoft Word - AL2008-06.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.doc Microsoft4.doc9.doc5.doc

  14. Microsoft Word - APPALACHIAN_STATE_VolumeI-Submissionv2.docx

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOffice of Small.docALonEO13423Last.doc Microsoft Word

  15. Microsoft Word - FAC2005-19.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOfficeNOTICE:Inspections andMicrosoft WordMemorandum

  16. Microsoft Word - FOA cover sheet.doc | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOfficeNOTICE:InspectionsMicrosoft WordFFATA T hrough t

  17. Microsoft Word - FY07AnnualReport.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOfficeNOTICE:InspectionsMicrosoft WordFFATA TMicrosoft7

  18. Microsoft Word - Final Report 01-02-08.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction to EnergyDepartmentOfficeNOTICE:InspectionsMicrosoftINL/EXT-11-23452INCIDENT

  19. Microsoft PowerPoint - Fiore_EPS_Invited_04

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt Microsoft PowerPoint -

  20. Microsoft PowerPoint - Fiveyr2003_AT.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt Microsoft PowerPoint - C-Mod Advanced

  1. Microsoft PowerPoint - GSWCorr2007Posterb_20070313.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt Microsoft PowerPoint -March 26 - 30,

  2. Microsoft PowerPoint - GapTrainingScreenCaptures.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt Microsoft PowerPoint -March 26

  3. Microsoft PowerPoint - IEEE IAS PES 102313.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE's ARRA Smart Grid Program

  4. Microsoft PowerPoint - Ievlev_NaturePhys_2013.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE's ARRA Smartnow widely

  5. Microsoft PowerPoint - Interconnection-20120419-SEPA-Basso.ppsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE's ARRA Smartnow widelyGrid

  6. Microsoft PowerPoint - Keith Presentation.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE's ARRABetween

  7. Microsoft PowerPoint - Keystone Update June 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE's ARRABetweenKeystone Rotor

  8. Microsoft PowerPoint - LANL Student Symposium Poster.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE's ARRABetweenKeystone

  9. Microsoft PowerPoint - Lamb_et_al_Norfolk_Poster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G. Van de WaterPhaseAMF

  10. Microsoft PowerPoint - Last MTRG Sheet May 10.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G. Van de

  11. Microsoft PowerPoint - Liang_ACSNano-2013.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G. Van deThe

  12. Microsoft PowerPoint - Liang_JACS-2013.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G. Van deThe(~175 words)

  13. Microsoft PowerPoint - Lokitz_Macromolecules-2013.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G. VanIn this paper,

  14. Microsoft PowerPoint - MPI_NERSC_rev2.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G. VanInChanging

  15. Microsoft PowerPoint - MTL DO Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand RetrievalsFinalModule8.ppt MicrosoftDOE'sR.G.

  16. Microsoft PowerPoint - IGCA Training 2010 v3 | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    IGCA Training 2010 v3 More Documents & Publications IGCA Training 2012 Microsoft PowerPoint - IGCA Training 2011-OPAM O:A76FAIRFair Act 2008GuidancePDFCOLLECTION TOOL...

  17. Microsoft Word - GRS Review_OMB White Paper - Real Property Right...

    Office of Environmental Management (EM)

    GRS ReviewOMB White Paper - Real Property Right-sizing and Carbon Reduction August 7 2009 2.docx Microsoft Word - GRS ReviewOMB White Paper - Real Property Right-sizing and...

  18. Microsoft PowerPoint -Risk_Portfolio_Manager(RPM)_overview_Under...

    Office of Environmental Management (EM)

    PowerPoint - RiskPortfolioManager(RPM)overviewUnderSecDOE2011V4 Final 3-22-2011.ppt Read-Only Compatibili Microsoft PowerPoint - RiskPortfolioManager(RPM)overviewUn...

  19. Keeping Secrets in Hardware: the Microsoft Xbox(TM) Case Study

    E-Print Network [OSTI]

    Huang, Andrew "bunnie"

    2002-05-26T23:59:59.000Z

    This paper discusses the hardware foundations of the cryptosystem employed by the Xbox(TM) video game console from Microsoft. A secret boot block overlay is buried within a system ASIC. This secret boot block decrypts and ...

  20. Testimony of Kathryn McKinley, Microsoft, before the House Science Committee on 2/14/2013 Page 1 Written Testimony of

    E-Print Network [OSTI]

    McKinley, Kathryn S.

    at Microsoft Research and an Endowed Professor of Computer Science at the University of Texas at Austin. The National Science Foundation (NSF), IBM, DARPA, Microsoft, Google, CISCO, and Intel all supported myTestimony of Kathryn McKinley, Microsoft, before the House Science Committee on 2/14/2013 Page 1

  1. On the use of the exponential window method in the space domain

    E-Print Network [OSTI]

    Liu, Li

    2009-05-15T23:59:59.000Z

    treatments. In this dissertation, an alternative is investigated based on the dynamic stiffness and the exponential window method in the space-wave number domain. Applying the exponential window in the space-wave number domain is equivalent to introducing...

  2. Key Elements of and Materials Performance Targets for Highly Insulating Window Frames

    E-Print Network [OSTI]

    Gustavsen, Arild

    2012-01-01T23:59:59.000Z

    in light green. 2.5 Window Frame E (PVC) Window frame Eis polyvinyl chloride (PVC). We performed calculations forspacer = 0.25?0.1 W/(mK) ? pvc = 0.9 W/(mK), ? eff. ,spacer

  3. Photo of the Week: The First Energy-Efficient Dual-Paned Windows...

    Broader source: Energy.gov (indexed) [DOE]

    Photo of the Week: The First Energy-Efficient Dual-Paned Windows Photo of the Week: The First Energy-Efficient Dual-Paned Windows December 5, 2013 - 12:53pm Addthis Researchers at...

  4. Building America Webinar: Low-E Storms: The Next Big Thing in Window Retrofits

    Broader source: Energy.gov [DOE]

    This Building America webinar presented a new and improved low-e storm window that boasts a combination of curb appeal and energy efficiency, all for a fraction of the cost of window replacement, on Sept. 9, 2014.

  5. Design of an energy efficient and economical actuator for automobile windows

    E-Print Network [OSTI]

    Durand, Keith (Keith V.)

    2007-01-01T23:59:59.000Z

    This thesis describes the design and analysis of an efficient, yet low cost, drum driven window actuation system for an automotive power window. The design uses a novel approach that involves using cables to both actuate ...

  6. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for Improved Performance. Thin Metal Oxide Films to Modify a Window Layer in CdTe-Based Solar Cells for...

  7. Print this article Close This Window EU OKs India joining ITER nuclear reactor project

    E-Print Network [OSTI]

    Print this article Close This Window EU OKs India joining ITER nuclear reactor project Fri Dec 2 trademarks and trademarks of the Reuters group of companies around the world. Close This Window 12/2/05 4

  8. TIME-VARIABLEFILTERING OF MtTLTI[CHANNELSIGNALS USING MULTIPLE WINDOWS COHERENCEAND THE WEYL TRANSFORM

    E-Print Network [OSTI]

    Sandsten, Maria

    TIME-VARIABLEFILTERING OF MtTLTI[CHANNELSIGNALS USING MULTIPLE WINDOWS COHERENCEAND THE WEYL between all channel pairs. Time-frequency coherence functions are estimated using the multiple window

  9. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    Building Heating Loads (Trillion BTU/yr) Total BuildingCooling Loads (Trillion BTU/yr) Non. Wind Infilt SHGC Wind.Energy Consumption (Trillion BTU/yr) Area, Window Window

  10. Installation of Window Air Conditioners Page 1 of 2 Virginia Polytechnic Institute and State University No. 5705 Rev.: 3

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Installation of Window Air Conditioners Page 1 of 2 Virginia Polytechnic Institute and State __________________________________________________________________________________ Subject: Installation of Window Air Conditioners........................................................................................................................................1 1. Purpose To define a policy for installation of window air conditioners that avoids exterior

  11. A First-Generation Prototype Dynamic Residential Window Christian Kohler, Howdy Goudey, and Dariush Arasteh

    E-Print Network [OSTI]

    October 26, 2004 Abstract We present the concept for a "smart" highly efficient dynamic window in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys technology have significantly reduced window-related energy use and peak demand in residential buildings

  12. Integrated self-cleaning window assembly for optical transmission in combustion environments

    DOE Patents [OSTI]

    Kass, Michael D [Oak Ridge, TN

    2007-07-24T23:59:59.000Z

    An integrated window design for optical transmission in combustion environments is described. The invention consists of an integrated optical window design that prevents and removes the accumulation of carbon-based particulate matter and gaseous hydrocarbons through a combination of heat and catalysis. These windows will enable established optical technologies to be applied to combustion environments and their exhaust systems.

  13. The Trouble with Sliding Windows and the Selective Pressure in BRCA1

    E-Print Network [OSTI]

    Yang, Ziheng

    The Trouble with Sliding Windows and the Selective Pressure in BRCA1 Karl Schmid1 , Ziheng Yang2 is applied. Citation: Schmid K, Yang Z (2008) The Trouble with Sliding Windows and the Selective Pressure Abstract Sliding-window analysis has widely been used to uncover synonymous (silent, dS) and nonsynonymous

  14. Lighting energy savings potential of split-pane electrochromic windows controlled for

    E-Print Network [OSTI]

    LBNL-6152E Lighting energy savings potential of split- pane electrochromic windows controlled potential of split-pane electrochromic windows controlled for daylighting with visual comfort L was conducted to evaluate lighting energy savings of split-pane electrochromic (EC) windows controlled

  15. A Sliding-Window Approach to Supporting On-Line Interactive Display for Continuous Media1

    E-Print Network [OSTI]

    Chang, Ye-In

    A Sliding-Window Approach to Supporting On-Line Interactive Display for Continuous Media1 Chien the overhead, in this paper, we will propose a sliding window approach to supporting interactive display subobjects for display in a sliding window. For the way of interactive display described above, in which

  16. Widening the Axion Window via Kinetic and Stückelberg Mixings

    E-Print Network [OSTI]

    Gary Shiu; Wieland Staessens; Fang Ye

    2015-03-03T23:59:59.000Z

    We point out that kinetic and St\\"uckelberg mixings that are generically present in the low energy effective action of axions can significantly widen the window of axion decay constants. We show that an effective super-Planckian decay constant can be obtained even when the axion kinetic matrix has only sub-Planckian entries. Our minimal model involves only two axions, a St\\"uckelberg U(1) and a modest rank instanton generating non-Abelian group. Below the mass of the St\\"uckelberg U(1), there is only a single axion with a non-perturbatively generated potential. In contrast to previous approaches, the enhancement of the axion decay constant is not tied to the number of degrees of freedom introduced. We also discuss how kinetic mixings can lower the decay constant to the desired axion dark matter window. String theory embeddings of this scenario and their phenomenological features are briefly discussed.

  17. Performance prediction using geostatistics and window reservoir simulation

    SciTech Connect (OSTI)

    Fontanilla, J.P.; Al-Khalawi, A.A. [Saudi Aramco, Dhahran (Saudi Arabia); Johnson, S.G.

    1995-11-01T23:59:59.000Z

    This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite. Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.

  18. Analysis of a Fabric/Desiccant Window Cavity Dehumidifier

    E-Print Network [OSTI]

    Hunn, B. D.; Grasso, M. M.; Vadlamani, V.

    1994-01-01T23:59:59.000Z

    were conducted to a) determine a suitable fabric/desiccant combination for use in the window cavity dehumidifier, and b) to estimate the moisture absorption (regain) capacity of the candidate fabriddesiccant combinations. After examining... the properties of various solid desiccants. we determined that silica gel beads, encapsulated in a fabric pouch, would be the best approach. ?bus, we measured the moisture regain characteristics of several fabrics used to encapsulate silica gel beads...

  19. One trip window cutting tool method and apparatus

    SciTech Connect (OSTI)

    Jugens, R.; Krehl, D.

    1992-05-05T23:59:59.000Z

    This patent describes a device for drilling a deflection hole or window from a drill hole in underground rock or geologic formations, it comprises: a deflection wedge unit mountable via a packer in the drill hole, and a pilot cutting tool mounted to the lower end of a drill string, the deflection wedge unit eventually guiding the tool and the drill string including one or more later cutting tools.

  20. Visual and energy performance of switchable windows with antireflection coatings

    SciTech Connect (OSTI)

    Jonsson, Andreas; Roos, Arne [Department of Engineering Sciences, Uppsala University, P.O. Box 534, SE-751 21 Uppsala (Sweden)

    2010-08-15T23:59:59.000Z

    The aim of this project was to investigate how the visual appearance and energy performance of switchable or smart windows can be improved by using antireflective coatings. For this study clear float glass, low-e glass and electrochromic glass were treated with antireflection (AR) coatings. Such a coating considerably increases the transmittance of solar radiation in general and the visible transmittance in particular. For switchable glazing based on absorptive electrochromic layers in their dark state it is necessary to use a low-emissivity coating on the inner pane of a double glazed window in order to reject the absorbed heat. In principle all surfaces can be coated with AR coatings, and it was shown that a thin AR coating on the low-e surface neither influences the thermal emissivity nor the U-value of the glazing. The study showed that the use of AR coatings in switchable glazing significantly increases the light transmittance in the transparent state. It is believed that this is important for a high level of user acceptance of such windows. (author)

  1. High Reliability R-10 Windows Using Vacuum Insulating Glass Units

    SciTech Connect (OSTI)

    Stark, David

    2012-08-16T23:59:59.000Z

    The objective of this effort was for EverSealed Windows (“EverSealed” or “ESW”) to design, assemble, thermally and environmentally test and demonstrate a Vacuum Insulating Glass Unit (“VIGU” or “VIG”) that would enable a whole window to meet or exceed the an R-10 insulating value (U-factor ? 0.1). To produce a VIGU that could withstand any North American environment, ESW believed it needed to design, produce and use a flexible edge seal system. This is because a rigid edge seal, used by all other know VIG producers and developers, limits the size and/or thermal environment of the VIG to where the unit is not practical for typical IG sizes and cannot withstand severe outdoor environments. The rigid-sealed VIG’s use would be limited to mild climates where it would not have a reasonable economic payback when compared to traditional double-pane or triple-pane IGs. ESW’s goals, in addition to achieving a sufficiently high R-value to enable a whole window to achieve R-10, included creating a VIG design that could be produced for a cost equal to or lower than a traditional triple-pane IG (low-e, argon filled). ESW achieved these goals. EverSealed produced, tested and demonstrated a flexible edge-seal VIG that had an R-13 insulating value and the edge-seal system durability to operate reliably for at least 40 years in the harshest climates of North America.

  2. Development of a cooled microwave window. CRADA final report for CRADA Number Y-1293-0200

    SciTech Connect (OSTI)

    Bell, G.L.; Bigelow, T.S.; Leitch, R.M.; Berry, L.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Holber, W.M. [Applied Science and Technology, Inc., Woburn, MA (United States)

    1995-04-06T23:59:59.000Z

    The objective of this Cooperative Research and Development project (CRADA) was to generate a new design for a microwave vacuum window to be used with ASTeX Corporation plasma processing equipment. This vacuum window allows transmission of microwave power from an input waveguide into a vacuum chamber for creation of plasma using the electron cyclotron resonance process. Requirements for the window design are: higher power capability, improved resistance to chemical attack, and physical compatibility with previous window models. In these applications, a significant portion of the input power is deposited in the window by plasma bombardment so the window must remove a great deal of heat to remain at a reliable operating temperature. A power level increase from 1.5 kW to 5 kW is desired by ASTeX for the new window which must have {approximately} 120 mm diameter and be compatible with existing hardware. New applications for these processing systems are being developed by ASTeX; these require the use of highly reactive fluorine plasmas which can rapidly etch some window materials. Therefore, the use of a fluorine compatible window ceramic is required. Two new window designs were investigated using advanced window-modeling techniques and low-power laboratory testing. It was determined that both concepts were capable of operating at significantly higher power levels than present commercial windows and would meet the CRADA design objectives. The compatibility of the window materials considered with fluorine plasmas are believed to be acceptable. ASTeX has a continuing interest in pursuing these window designs and will likely begin manufacturing design work of the improved design in the near future. There will also be a continuing effort to keep AlN ceramic manufacturers interested in improving the quality of large AlN disks. Additional window tests and development work could be performed by ORNL/MMES if a suitable funding source is available.

  3. Building America's Low-e Storm Window Adoption Program Plan (FY2014)

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-12-23T23:59:59.000Z

    Low emissivity (low-e) storm windows/panels appear to hold promise for effectively reducing existing home heating, ventilation, and air-conditioning (HVAC) consumption. Due to the affordability of low-e storm windows and the large numbers of existing homes that have low-performing single-pane or double-pane clear windows, a tremendous opportunity exists to provide energy savings by transforming the low-e storm window market and increasing market adoption. This report outlines U.S. Department of Energy (DOE) Building America’s planned market transformation activities in support of low-e storm window adoption during fiscal year (FY) 2014.

  4. Independent SOC 3 Report for the Security and Availability Trust Principle for Microsoft GFS 1 Independent Service

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Independent SOC 3 Report for the Security and Availability Trust Principle for Microsoft GFS 1 Report for the Security and Availability Trust Principle for Microsoft GFS 2 Independent Service Auditor and availability of the GFS Information Technology Infrastructure and Services during the period October 1, 2012

  5. .NET WEB DEVELOPER PROGRAM A ten-week comprehensive program covering web development using Microsoft .NET technologies

    E-Print Network [OSTI]

    Schaefer, Marcus

    .NET WEB DEVELOPER PROGRAM A ten-week comprehensive program covering web development using Microsoft® .NET technologies DePaul University's .NET Web Developer Program is designed to provide, techniques and principles of Microsoft .NET. The program stresses an understanding of the relevant

  6. Microsoft Lync 2010 for Android Microsoft LyncTM 2010 for Android brings presence, instant messaging (IM), and the voice capabilities of

    E-Print Network [OSTI]

    Paulsson, Johan

    and search for contacts Search for a contact View a contact card Call or send to the Android Market, and search for Microsoft Lync 2010. 2. Tap the Install button the Lync 2010 icon. 2. On the sign-in screen, enter your credentials, and then tap

  7. Microsoft PowerPoint - 5_g ARYWednesday 5-22 SAMS - Fillable...

    National Nuclear Security Administration (NNSA)

    Installation Requirements - Download required zip file - Extract files and save to Windows Folder (ex. Desktop) 7 Operation Demonstration - Opening Form -...

  8. Expert Meeting Report: Windows Options for New and Existing Homes

    SciTech Connect (OSTI)

    Ojczyk, C.; Carmody, J.; Haglund, K.

    2013-05-01T23:59:59.000Z

    The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.

  9. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    SciTech Connect (OSTI)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05T23:59:59.000Z

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  10. Laser window with annular grooves for thermal isolation

    DOE Patents [OSTI]

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13T23:59:59.000Z

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  11. Energy Savings from Window Attachments | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy ActEnergyContracts EnergyHVACfrom Window

  12. Energy-Efficient Window Treatments | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome |Cooking for WinterWindow Treatments

  13. Window, Door, and Skylight Products and Services | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|IdahotheWhat is the FOIA ? What isWhyofWindow,

  14. Expert Meeting Report: Windows Options for New and Existing Homes

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: Final EnvironmentalCounties,UnitedCommunication,1] Windows Options for New and Existing

  15. Windows and Building Envelope Overview - 2015 BTO Peer Review | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015Visiting Strong, Smart,DepartmentResearch &of Energy Windows

  16. Window, Door, and Skylight Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWasteWho WillWind ProgramofWindow, Door, and

  17. Vinyl Kraft Windows and Doors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeterUtah: Energy Resources Jump to:Vinyl Kraft Windows

  18. Nanolens Window Coatings for Daylighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIRE BUILDS OFFNanolens Window Coatings for Daylighting

  19. Spectral selectivity of electrochromic windows with color state for all-sky conditions

    SciTech Connect (OSTI)

    Soule, D.E. [Western Illinois Univ., Macomb, IL (United States)] [Western Illinois Univ., Macomb, IL (United States); Zhang, J.G.; Benson, D.K. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States)

    1995-07-01T23:59:59.000Z

    The optical performance of an electrochromic window is studied for the visible, ultraviolet, and near infrared spectral regions. The performance is found to deviate strongly with window color state and for clear or cloudy skies. A new spectral cloud model is applied to an electrochromic window recently developed at NREL. A spectral comparison is made between the electrochromic window and spectrally selective standard windows. Two series of double-glazed window sections, including the electrochromic window with color state and a series of low-E windows, were measured for transmittance and reflectance (300-2500nm), With these spectral data, a new near-infrared blocking (reflection + absorption) factor is developed for window application in warm climates for cooling load reduction. A chromaticity analysis is presented for both the daylight spectra and the transmitted electrochromic window spectra with color state, Computed daylight correlated color temperatures show a wide range, with values of 5660K for clear global irradiation, 6210K for clouds, and 13,250K for a zenith blue sky. Chromatic trajectories with color state for transmitted radiation extend further toward the blue to 8180K for the global and 28,990K for zenith sky irradiation.

  20. Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed

    SciTech Connect (OSTI)

    Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

    2000-04-01T23:59:59.000Z

    Electrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to transform windows and skylights from an energy liability to an energy source for the nation's building stock. Monitored results from a full-scale demonstration of large-area electrochromic windows are given. The test consisted of two side-by-side, 3.7x4.6-m, office-like rooms. In each room, five 62x173-cm lower electrochromic windows and five 62x43-cm upper electrochromic windows formed a large window wall. The window-to-exterior-wall ratio (WWR) was 0.40. The southeast-facing electrochromic windows had an overall visible transmittance (Tv) range of Tv=0.11-0.38 and were integrated with a dimmable electric lighting system to provide constant work plane illuminance and to control direct sun. Daily lighting use from the automated electrochromic window system decreased by 6 to 24% compared to energy use with static, low-transmission (Tv =0.11), unshaded windows in overcast to cle ar sky winter conditions in Oakland, California. Daily lighting energy use increased as much as 13% compared to lighting energy use with static windows that had Tv=0.38. Even when lighting energy savings were not obtainable, the visual environment produced by the electrochromic windows, indicated by well-controlled window and room luminance levels, was significantly improved for computer-type tasks throughout the day compared to the visual environment with unshaded 38%-glazing. Cooling loads were not measured, but previous building energy simulations indicate that additional savings could be achieved. To ensure visual and thermal comfort, electrochromics require occasional use of interior or exterior shading systems when direct sun is present. Other recommendations to improve electrochromic materials and controls are noted along with some architectural constraints.