Sample records for microscopy surface analysis

  1. Computational microscopy for sample analysis

    E-Print Network [OSTI]

    Ikoma, Hayato

    2014-01-01T23:59:59.000Z

    Computational microscopy is an emerging technology which extends the capabilities of optical microscopy with the help of computation. One of the notable example is super resolution fluorescence microscopy which achieves ...

  2. Surface Science Letters Scanning tunneling microscopy study of the anatase

    E-Print Network [OSTI]

    Diebold, Ulrike

    ; Surface structure, morphology, roughness, and topography; Low index single crystal surfaces The structureSurface Science Letters Scanning tunneling microscopy study of the anatase (1 0 0) surface NancyO2 anatase (1 0 0) surface. Natural single crystals of anatase were employed; and after several

  3. Scanning probe microscopy studies of semiconductor surfaces

    SciTech Connect (OSTI)

    Weinberg, W.H. [Univ. of California, Santa Barbara, CA (United States)

    1996-10-01T23:59:59.000Z

    Recent work involving atomic force microscopy and scanning tunneling microscopy is discussed which involves strain-induced, self-assembling nanostructures in compound semiconductor materials. Specific examples include one-dimensional quantum wires of InAs grown by MBE on GaAs(001) and zero-dimensional quantum dots of InP grown by MOCVD on InGaP which is lattice matched to GaAs(001).

  4. Investigations into Protein-Surface Interactions via Atomic Force Microscopy and Surface Plasmon Resonance

    E-Print Network [OSTI]

    Settle, Jenifer Kaye

    2012-08-31T23:59:59.000Z

    microscopy and surface plasmon resonance. Chapter one provides background information on protein surfaces interactions. Chapter 2 summarizes the techniques and surfaces utilized in the investigations in the following chapters. Chapter 3 provides background...

  5. Microscopy image segmentation tool: Robust image data analysis

    SciTech Connect (OSTI)

    Valmianski, Ilya, E-mail: ivalmian@ucsd.edu; Monton, Carlos; Schuller, Ivan K. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)] [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States)

    2014-03-15T23:59:59.000Z

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.

  6. Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO{sub 2} laser irradiation

    SciTech Connect (OSTI)

    Robin, Lucile; Cormont, Philippe; Hebert, David; Mainfray, Christelle; Rullier, Jean-Luc [CEA Cesta, Le Barp, F-33114 France (France); Combis, Patrick [CEA DAM Ile-de-France, Arpajon Cedex, 91297 France (France); Gallais, Laurent [Institut Fresnel, CNRS, Aix-Marseille Universite, Ecole Centrale Marseille, Marseille, 13013 France (France)

    2012-03-15T23:59:59.000Z

    In situ spatial and temporal temperature measurements of a fused silica surface heated by a 10.6 {mu}m CO{sub 2} laser were performed using an infrared camera. These measurements were derived from heat flux emission of the fused silica. High temperature measurements--in the range 400-2500 K--were performed at the surface of a semi-transparent media with a high spatial resolution. Particular attention was given to the experimental conception and to the calibration of the infrared device. Moreover, both conventional and interferential microscopes were used to characterize the silica surfaces after CO{sub 2} laser irradiation. By associating these results with thermal camera measurements we identified the major surface temperature levels of silica transformation when heated during 250 ms. Surface deformation of silica is observed for temperatures <2000 K. This is consistent with other recent work using CO{sub 2} laser heating. At higher temperatures, matter ejection, as deduced from microscope observations, occurs at temperatures that are still much lower than the standard boiling point. Such evaporation is described by a thermodynamical approach, and calculations show very good agreement with experiment.

  7. Tools for Surface Analysis | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface analysis - Because of the importance of clear and unambiguous communications, ISO definitions and concepts related to surface chemical analysis are now freely available....

  8. Wurtzite GaN Surface Structures Studied by Scanning Tunneling Microscopy and Reflection High Energy

    E-Print Network [OSTI]

    Feenstra, Randall

    Wurtzite GaN Surface Structures Studied by Scanning Tunneling Microscopy and Reflection High Energy studies of the surface reconstructions for both the Ga-face and the N-face of wurtzite GaN films grown a surface phenomenon. Although numerous surface studies of wurtzite GaN have been performed, progress

  9. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    SciTech Connect (OSTI)

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750 (United States)

    2014-10-28T23:59:59.000Z

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  10. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    SciTech Connect (OSTI)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01T23:59:59.000Z

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  11. Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy

    SciTech Connect (OSTI)

    Dohnalkova, Alice; Marshall, Matthew J.; Arey, Bruce W.; Williams, Kenneth H.; Buck, Edgar C.; Fredrickson, Jim K.

    2011-02-01T23:59:59.000Z

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryo-electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  12. Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Webb, Lauren J.

    Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling propargylglycine unnatural functional groups 20 Å apart and an alkanethiol self-assembled monolayer (SAM) on a gold-terminated surfaces were imaged by scanning tunneling microscopy (STM) using a low tunneling current of 10 p

  13. Investigation of fly ash carbon by thermal analysis and optical microscopy

    SciTech Connect (OSTI)

    Hill, R. [Boral Material Technologies Inc., San Antonio, TX (United States)] [Boral Material Technologies Inc., San Antonio, TX (United States); Rathbone, R.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research] [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1998-10-01T23:59:59.000Z

    A previous study investigated various fly ashes that had comparable loss on ignition values, but significant differences with respect to air entrainment performance. Thermal analysis data suggested that a poorly performing fly ash, with respect to air entrainment, contained a higher proportion of carbon that gasifies (oxidizes) at comparatively low temperatures. A relatively high abundance of isotropic carbon was identified in the poor-performing ash using optical microscopy. The present investigation examined a larger collection of fly ash samples to determine if thermal analysis could be used as a prognostic tool for fly ash performance. An attempt was made to correlate mortar air and foam index values for each sample with differential thermal analysis (DTA) data. Optical microscopy and BET surface area analysis were used as supportive techniques. No clear relationship could be established with the thermal or optical methods, although fly ash performance did correlate well with BET surface area. A low temperature component of the DTA exotherms was considered to be a function of inorganic catalytic species that reside on the carbon surface and lower the ignition temperature.

  14. Electron Spectrometer: Scanning Multiprobe Surface Analysis System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Multiprobe Surface Analysis System - Versaprobe Electron Spectrometer: Scanning Multiprobe Surface Analysis System - Versaprobe The SMSAS is a multi-technique surface...

  15. GaN(0001) Surface Structures Studied Using Scanning Tunneling Microscopy and First-Principles Total Energy Calculations

    E-Print Network [OSTI]

    occurring on the (0001) surface of wurtzite GaN are studied using scanning tunneling microscopy, electron and electronic properties of wurtzite GaN surfaces. Several prior studies have reported that these surfaces do reconstructions were identified, corresponding to the two inequivalent polar fac- es of wurtzite GaN, the (0001

  16. Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy electron diffraction

    E-Print Network [OSTI]

    Wurtzite GaN surface structures studied by scanning tunneling microscopy and reflection high energy-face of wurtzite GaN films grown using molecular beam epitaxy. N-face reconstructions are primarily adatom numerous surface studies of wurtzite GaN have been performed, progress in determining the true surface

  17. Oxidized GaN(0001) Surfaces studied by Scanning Tunneling Microscopy and Spectroscopy and by First-Principles Theory

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Oxidized GaN(0001) Surfaces studied by Scanning Tunneling Microscopy and Spectroscopy Abstract Oxidized Ga-polar GaN surfaces have been studied both experimentally and theoretically. For in tunneling spectroscopy revealed a surface band gap with size close to that of GaN, indicating that any

  18. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    SciTech Connect (OSTI)

    Hopf, Juliane [ORNL; Pierce, Eric M [ORNL

    2014-01-01T23:59:59.000Z

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  19. Switching surface polarization of atomic force microscopy probe utilizing photoisomerization of photochromic molecules

    SciTech Connect (OSTI)

    Aburaya, Yoshihiro; Nomura, Hikaru; Kageshima, Masami; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro [Department of Applied Physics, Graduate School of Engineering, Osaka University 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2011-03-15T23:59:59.000Z

    An attempt to develop an atomic force microscopy (AFM) probe with optically switchable polarization is described. Modification with a single molecular layer of photochromic molecules was attempted onto a Si substrate that is a prototype for a probe surface. Polarization switching caused by alternate irradiation of UV and visible lights were detected using the electrostatic force?>spectroscopy (EFS) technique. Si substrates modified with spiropyran and azobenzene exhibited reversible polarization switching that caused changes in CPD of about 100 and 50 mV, respectively. Modification with spiropyran was also attempted onto a Si probe and resulted in a CPD change of about 100 mV. It was confirmed that modification of an AFM probe or substrate with a single molecular layer of photochromic molecules can generate surface polarization switching of a mechanically detectable level.

  20. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; et al

    2015-03-04T23:59:59.000Z

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore »environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  1. Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    on sapphire substrate [2]. Park et al. performed the growth of Cr doped GaN single crystal by sodium fluxScanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Orleans, New Orleans, LA 70148, USA Abstract: Cr doped GaN was grown by rf N-plasma molecular beam epitaxy

  2. Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy

    E-Print Network [OSTI]

    doped MOCVD grown GaN on sapphire substrate [2]. Park et al. performed the growth of Cr doped GaN singleScanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Orleans, New Orleans, LA 70148, USA Abstract: Cr doped GaN was grown by rf N-plasma molecular beam epitaxy

  3. Selective Analysis of Molecular States by Functionalized Scanning Tunneling Microscopy Tips Z. T. Deng,1

    E-Print Network [OSTI]

    Gao, Hongjun

    . Deng,1 H. Lin,2 W. Ji,1 L. Gao,1 X. Lin,1 Z. H. Cheng,1 X. B. He,1 J. L. Lu,1 D. X. Shi,1 W. A. Hofer,2Selective Analysis of Molecular States by Functionalized Scanning Tunneling Microscopy Tips Z. T

  4. Failure Surface Analysis of Polyimide/Titanium Notched Coating Adhesion Specimens

    SciTech Connect (OSTI)

    GIUNTA,RACHEL K.; KANDER,RONALD G.

    2000-12-18T23:59:59.000Z

    Adhesively bonded joints of LaRC{trademark} PETI-5, a phenylethynyl-terminated polyimide, with chromic acid anodized titanium were fabricated and debonded interfacially. The adhesive-substrate failure surfaces were investigated using several surface analysis techniques. From Auger spectroscopy, field emission scanning electron microscopy, and atomic force microscopy studies, polymer appears to be penetrating the pores of the anodized substrate to a depth of approximately 100 nm. From x-ray photoelectron spectroscopy data, the polymer penetrating the pores appears to be in electrical contact with the titanium substrate, leading to differential charging. These analyses confirm that the polymer is becoming mechanically interlocked within the substrate surface.

  5. Electrical transport and mechanical properties of alkylsilane self-assembled monolayers on silicon surfaces probed by atomic force microscopy

    SciTech Connect (OSTI)

    Park, Jeong Young; Qi, Yabing; Ashby, Paul D.; Hendriksen, Bas L.M.; Salmeron, Miquel

    2009-02-06T23:59:59.000Z

    The correlation between molecular conductivity and mechanical properties (molecular deformation and frictional responses) of hexadecylsilane self-assembled monolayers was studied with conductive probe atomic force microscopy/friction force microscopy in ultrahigh vacuum. Current and friction were measured as a function of applied pressure, simultaneously, while imaging the topography of self-assembled monolayer molecule islands and silicon surfaces covered with a thin oxide layer. Friction images reveal lower friction over the molecules forming islands than over the bare silicon surface, indicating the lubricating functionality of alkylsilane molecules. By measuring the tunneling current change due to changing of the height of the molecular islands by tilting the molecules under pressure from the tip, we obtained an effective conductance decay constant ({beta}) of 0.52/{angstrom}.

  6. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    SciTech Connect (OSTI)

    Janssens, K.; Adams, F. [Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry; Rivers, M.L.; Jones, K.W. [Brookhaven National Lab., Upton, NY (United States)

    1992-10-01T23:59:59.000Z

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ({mu}-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  7. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy

    SciTech Connect (OSTI)

    Janssens, K.; Adams, F. (Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry); Rivers, M.L.; Jones, K.W. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01T23:59:59.000Z

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ([mu]-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  8. Phase states of water near the surface of a polymer membrane. Phase microscopy and luminescence spectroscopy experiments

    SciTech Connect (OSTI)

    Bunkin, N. F., E-mail: nbunkin@kapella.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Gorelik, V. S. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kozlov, V. A., E-mail: v.kozlov@hotmail.com; Shkirin, A. V., E-mail: avshkirin@mephi.ru; Suyazov, N. V., E-mail: nvs@kapella.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2014-11-15T23:59:59.000Z

    Phase microscopy is used to show that the refractive index in the near-surface layer of water at the surface of a polymer Nafion membrane increases by a factor of 1.1 as compared to bulk water. Moreover, this layer exhibits birefringence. Experiments on UV irradiation of dry (anhydrous) and water-soaked Nafion are performed in grazing-incidence geometry to study their stimulated luminescence spectra. These spectra are found to be identical in both cases. For dry Nafion, luminescence can only be excited if probing radiation illuminates the polymer surface. The luminescence of water-soaked Nafion can also be excited if the distance between the optical axis and the surface is several hundred micrometers.

  9. Application of Surface Analysis Methods to Nanomaterials: Summaryof ISO/TC 201 Technical Report: ISO 14187:2011 -Surface Chemical Analysis- Characterization of Nanomaterials

    SciTech Connect (OSTI)

    Baer, Donald R.

    2012-09-01T23:59:59.000Z

    ISO Technical Report (TR) 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials using surface-analysis tools. In addition, both general issues and challenges associated with characterising nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometres, the distinctions among 'bulk', 'surface' and 'particle' analysis blur. This Technical Report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that are in the domain of ISO/TC 201 including Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed.

  10. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    E-Print Network [OSTI]

    Mårsell, Erik; Arnold, Cord L; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders

    2015-01-01T23:59:59.000Z

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 micrometer. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy (STM) on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission process above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM ...

  11. Probing Heterogeneous Chemistry of Individual Atmospheric Particles Using Scanning Electron Microscopy and Energy-Dispersive X-ray Analysis

    SciTech Connect (OSTI)

    Krueger, Brenda J.; Grassian, Vicki H.; Iedema, Martin J.; Cowin, James P.; Laskin, Alexander

    2003-10-01T23:59:59.000Z

    In this paper, we demonstrate the utility of single-particle analysis to investigate the chemistry of isolated, individual particles of atmospheric relevance such as NaCl, sea salt, CaCO3, and SiO2. A variety of state-of-th-art scanning electron microscopy techniques, including environmental scanning electon microscopy and computer-controlled scanning electron microscopy/energy-dispersive X-ray analysis, were utilized for monitoring and quantifying phase transitions of individual particles, morphology, and compositional changes of individual particles as they react with nitric acid.

  12. XPS Analysis of Nanostructured Materials and Biological Surfaces...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Nanostructured Materials and Biological Surfaces. XPS Analysis of Nanostructured Materials and Biological Surfaces. Abstract: This paper examines the types of...

  13. Application of Surface Analysis Methods to Nanomaterials: Summaryof...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Methods to Nanomaterials: Summaryof ISOTC 201 Technical Report: ISO 14187:2011 -Surface Application of Surface Analysis Methods to Nanomaterials: Summaryof ISOTC 201...

  14. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    SciTech Connect (OSTI)

    Koffas, Telly Stelianos

    2004-05-15T23:59:59.000Z

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to the surface in order to minimize the total surface energy. With an understanding of the structural and environmental parameters which govern polymer surface structure, SFG is then used to explore the effects of surface hydrophobicity and solvent polarity on the orientation and ordering of amphiphilic neutral polymers adsorbed at the solid/liquid interface. SFG spectra show that poly(propylene glycol) (PPG) and poly(ethylene glycol) (PEG) adsorb with their hydrophobic moieties preferentially oriented toward hydrophobic polystyrene surfaces. These same moieties, however, disorder when adsorbed onto a hydrophilic silica/water interface. Water is identified as a critical factor for mediating the orientation and ordering of hydrophobic moieties in polymers adsorbed at hydrophobic interfaces. The role of bulk water content and water vapor, as they influence hydrogel surface structure and mechanics, continues to be explored in the next series of experiments. A method was developed to probe the surface viscoelastic properties of hydroxylethyl methacrylate (HEMA) based contact lens materials by analyzing AFM force-distance curves. AFM analysis indicates that the interfacial region is dehydrated, relative to the bulk. Experiments performed on poly(HEMA+MA) (MA = methacrylic acid), a more hydrophilic copolymer with greater bulk water content, show even greater water depletion at the surface. SFG spectra, as well as surface energy arguments, suggest that the more hydrophilic polymer component (such as MA) is not favored at the air interface; this may explain anomalies in water retention at the hydrogel surface. Adsorption of lysozyme onto poly(HEMA+MA) was found to further reduce near-surface viscous behavior, suggesting lower surface water content. Lastly, protein adsorption is studied using a model polymer system of polystyrene covalently bound with a monolayer of bovine serum albumin. SFG results indicate that some amino acid residues in proteins adopt preferred orientations. SFG spectra also show that the phenyl rings of the bare polystyrene substrate in contact with air or

  15. Repository surface design site layout analysis

    SciTech Connect (OSTI)

    Montalvo, H.R.

    1998-02-27T23:59:59.000Z

    The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond.

  16. Quantitative analysis of cell surface membrane proteins using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by...

  17. Surface Science Analysis of GaAs Photocathodes Following Sustained Electron Beam Delivery

    SciTech Connect (OSTI)

    Shutthanandan, V.; Zhu, Zihua; Stutzman, Marcy L.; Hannon, Fay; Hernandez-Garcia, Carlos; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai; Hess, Wayne P.

    2012-06-12T23:59:59.000Z

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Several photocathode degradation processes are suspected, including defect formation by ion back bombardment, photochemistry of surface adsorbed species and irradiation-induced surface defect formation. To better understand the mechanisms of photocathode degradation, we have conducted surface and bulk analysis studies of two GaAs photocathodes removed from the FEL photoinjector after delivering electron beam for a few years. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, strained super-lattice GaAs photocathode samples, removed from the CEBAF photoinjector were analyzed using Transmission Electron Microscopy (TEM) and SIMS. This analysis of photocathode degradation during nominal photoinjector operating conditions represents first steps towards developing robust new photocathode designs necessary for generating sub-micron emittance electron beams required for both fourth generation light sources and intense polarized CW electron beams for nuclear and high energy physics facilities.

  18. SCANNING ELECTRON MICROSCOPY AND X-RAY DIFFRACTION ANALYSIS OF TANK 18 SAMPLES

    SciTech Connect (OSTI)

    Hay, M.; O'Rourke, P.; Ajo, H.

    2012-03-08T23:59:59.000Z

    The F-Area Tank Farm (FTF) Performance Assessment (PA) utilizes waste speciation in the waste release model used in the FTF fate and transport modeling. The waste release modeling associated with the residual plutonium in Tank 18 has been identified as a primary contributor to the Tank 18 dose uncertainty. In order to reduce the uncertainty related to plutonium in Tank 18, a better understanding of the plutonium speciation in the Tank 18 waste (including the oxidation state and stoichiometry) is desired. Savannah River National Laboratory (SRNL) utilized Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to analyze Tank 18 samples to provide information on the speciation of plutonium in the waste material. XRD analysis of the Tank 18 samples did not identify any plutonium mineral phases in the samples. These indicates the crystalline mineral phases of plutonium are below the detection limits of the XRD method or that the plutonium phase(s) lack long range order and are present as amorphous or microcrystalline solids. SEM analysis of the Tank 18 samples did locate particles containing plutonium. The plutonium was found as small particles, usually <1 {micro}m but ranging up to several micrometers in diameter, associated with particles of an iron matrix and at low concentration in other elemental matrices. This suggests the plutonium has an affinity for the iron matrix. Qualitatively, the particles of plutonium found in the SEM analysis do not appear to account for all of the plutonium in the sample based on concentrations determined from the chemical analysis of the Tank 18 samples. This suggests that plutonium is also distributed throughout the solids in low concentrations.

  19. Improving Surface Analysis Methods for Characterization of Advanced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    useful information from a variety of different analysis tools. The International Organization for Standardization (ISO) Committee TC 201 on Surface Chemical Analysis and ASTM...

  20. Surface science analysis of GaAs photocathodes following sustained electron beam delivery

    SciTech Connect (OSTI)

    Carlos Hernandez-Garcia, Fay Hannon, Marcy Stutzman, V. Shutthanandan, Z. Zhu, M. Nandasri, S. V. Kuchibhatla, S. Thevuthasan, W. P. Hess

    2012-06-01T23:59:59.000Z

    Degradation of the photocathode materials employed in photoinjectors represents a challenge for sustained operation of nuclear physics accelerators and high power Free Electron Lasers (FEL). Photocathode quantum efficiency (QE) degradation is due to residual gasses in the electron source vacuum system being ionized and accelerated back to the photocathode. These investigations are a first attempt to characterize the nature of the photocathode degradation, and employ multiple surface and bulk analysis techniques to investigate damage mechanisms including sputtering of the Cs-oxidant surface monolayer, other surface chemistry effects, and ion implantation. Surface and bulk analysis studies were conducted on two GaAs photocathodes, which were removed from the JLab FEL DC photoemission gun after delivering electron beam, and two control samples. The analysis techniques include Helium Ion Microscopy (HIM), Rutherford Backscattering Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, two high-polarization strained superlattice GaAs photocathode samples, one removed from the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector and one unused, were also analyzed using Transmission Electron Microscopy (TEM) and SIMS. It was found that heat cleaning the FEL GaAs wafer introduces surface roughness, which seems to be reduced by prolonged use. The bulk GaAs samples retained a fairly well organized crystalline structure after delivering beam but shows evidence of Cs depletion on the surface. Within the precision of the SIMS and RBS measurements the data showed no indication of hydrogen implantation or lattice damage from ion back bombardment in the bulk GaAs wafers. In contrast, SIMS and TEM measurements of the strained superlattice photocathode show clear crystal damage in the wafer from ion back bombardment.

  1. Design and performance of a combined secondary ion mass spectrometry-scanning probe microscopy instrument for high sensitivity and high-resolution elemental three-dimensional analysis

    SciTech Connect (OSTI)

    Wirtz, Tom; Fleming, Yves; Gerard, Mathieu [Department 'Science and Analysis of Materials' (SAM), Centre de Recherche Public, Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Gysin, Urs; Glatzel, Thilo; Meyer, Ernst [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Wegmann, Urs [Department of Physics, Universitaet Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Maier, Urs [Ferrovac GmbH, Thurgauerstr. 72, CH-8050 Zuerich (Switzerland); Odriozola, Aitziber Herrero; Uehli, Daniel [SPECS Zurich GmbH, Technoparkstr. 1, CH-8005 Zuerich (Switzerland)

    2012-06-15T23:59:59.000Z

    State-of-the-art secondary ion mass spectrometry (SIMS) instruments allow producing 3D chemical mappings with excellent sensitivity and spatial resolution. Several important artifacts however arise from the fact that SIMS 3D mapping does not take into account the surface topography of the sample. In order to correct these artifacts, we have integrated a specially developed scanning probe microscopy (SPM) system into a commercial Cameca NanoSIMS 50 instrument. This new SPM module, which was designed as a DN200CF flange-mounted bolt-on accessory, includes a new high-precision sample stage, a scanner with a range of 100 {mu}m in x and y direction, and a dedicated SPM head which can be operated in the atomic force microscopy (AFM) and Kelvin probe force microscopy modes. Topographical information gained from AFM measurements taken before, during, and after SIMS analysis as well as the SIMS data are automatically compiled into an accurate 3D reconstruction using the software program 'SARINA,' which was developed for this first combined SIMS-SPM instrument. The achievable lateral resolutions are 6 nm in the SPM mode and 45 nm in the SIMS mode. Elemental 3D images obtained with our integrated SIMS-SPM instrument on Al/Cu and polystyrene/poly(methyl methacrylate) samples demonstrate the advantages of the combined SIMS-SPM approach.

  2. NISTIR 7078 TIN Techniques for Data Analysis and Surface Construction

    E-Print Network [OSTI]

    Bernal, Javier

    NISTIR 7078 TIN Techniques for Data Analysis and Surface Construction Building and Fire Research Institute of Standards and Technology #12;NISTIR 7078 TIN Techniques for Data Analysis and Surface This report addresses the task of meshing point clouds by triangulated elevated surfaces referred to as TIN

  3. Surface-Based Analysis of Functional Magnetic Resonance Imaging Data

    E-Print Network [OSTI]

    Thompson, Paul

    Surface-Based Analysis of Functional Magnetic Resonance Imaging Data Theo G.M. van Erp1, Vikas Y School of Medicine, Los Angeles, CA 90095, USA Abstract. Surface-based visualization, atlases the integration of surface-based tech- niques with functional imaging data, combining surface-based nonlinear

  4. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

    2006-07-11T23:59:59.000Z

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  5. Combined elevated pressure reactor and ultrahigh vacuum surface analysis system

    E-Print Network [OSTI]

    Goodman, Wayne

    Combined elevated pressure reactor and ultrahigh vacuum surface analysis system J&IOS Szanyi and D 19 February 1993; accepted for publication 20 April 1993) A combined elevated pressure reactor. The reaction cell is separated from the surface analysis chamber by a differentially pumped sliding seal

  6. Dark Field Microscopy for Analytical Laboratory Courses

    SciTech Connect (OSTI)

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-06-10T23:59:59.000Z

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

  7. NANOMETER-SCALE INVESTIGATIONS BY ATOMIC FORCE MICROSCOPY INTO THE EFFECT OF DIFFERENT TREATMENTS ON THE SURFACE STRUCTURE OF HAIR

    E-Print Network [OSTI]

    Durkan, C.; Wang, N.

    2014-09-15T23:59:59.000Z

    that the CPD between the hair and the cantilever was 0.4-0.6 V. In Figs. 4(a) and (b), we show the topography and KPFM images of a small area, and in Fig. 4(c), the surface potential (in colour) is overlaid on the 3-d topography. It is known that the surface... in the topography and the potential map, it is also a possibility that it is the deposits themselves that possess a lower surface potential than the hair surface they are on, and that this is where the overall negative charge on hair originates. A cross...

  8. Liquid chromatographic analysis of coal surface properties

    SciTech Connect (OSTI)

    Kwon, K.C.

    1991-01-01T23:59:59.000Z

    The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

  9. EMSL - Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscopy Capability Details * Electron microscopes with tomography, cryo, scanning, photoemission and high-resolution (sub-nanometer) imaging capabilities* Focused ion beam...

  10. Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali-silica reaction

    SciTech Connect (OSTI)

    Stastna, A., E-mail: astastna@gmail.com [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2 (Czech Republic); Sachlova, S.; Pertold, Z.; Prikryl, R. [Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha 2 (Czech Republic); Leichmann, J. [Department of Geological Sciences, Faculty of Science, Masaryk University in Brno, Kotlarska 267/2, 611 37 Brno (Czech Republic)

    2012-03-15T23:59:59.000Z

    Various microscopic techniques (cathodoluminescence, polarizing and electron microscopy) were combined with image analysis with the aim to determine a) the modal composition and degradation features within concrete, and b) the petrographic characteristics and the geological types (rocks, and their provenance) of the aggregates. Concrete samples were taken from five different portions of Highway Nos. D1, D11, and D5 (the Czech Republic). Coarse and fine aggregates were found to be primarily composed of volcanic, plutonic, metamorphic and sedimentary rocks, as well as of quartz and feldspar aggregates of variable origins. The alkali-silica reaction was observed to be the main degradation mechanism, based upon the presence of microcracks and alkali-silica gels in the concrete. Use of cathodoluminescence enabled the identification of the source materials of the quartz aggregates, based upon their CL characteristics (i.e., color, intensity, microfractures, deformation, and zoning), which is difficult to distinguish only employing polarizing and electron microscopy. - Highlights: Black-Right-Pointing-Pointer ASR in concrete pavements on the Highways Nos. D1, D5 and D11 (Czech Republic). Black-Right-Pointing-Pointer Cathodoluminescence was combined with various microscopic techniques and image analysis. Black-Right-Pointing-Pointer ASR was attributed to aggregates. Black-Right-Pointing-Pointer Source materials of aggregates were identified based on cathodoluminescence characteristics. Black-Right-Pointing-Pointer Quartz comes from different volcanic, plutonic and metamorphic parent rocks.

  11. A simplified system of pressure surfaces for atmospheric analysis 

    E-Print Network [OSTI]

    Shay, Francis Schofield

    1959-01-01T23:59:59.000Z

    LIBRARY A g M COLLEGE OF TEXAS A SIMPLIFIED SYSTEM OF PRESSURE SURFACES FOR ATMOSPHERIC ANALYSIS A Thesis By FRANCIS S. SHAY + Captain USAF Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of MASTER OP SCIENCE May 1959 Major Subject: Meteorology A SIMPLIFIED SYSTEM OF PRESSURE SURFACES FOR ATMOSPHERIC ANALYSIS A Thesis By FRANCIS S. SHAY Captain USAF jpp roved j as to style and content...

  12. Scanning Tunneling Microscopy and Surface Simulation of Zinc-Blende GaN(001) Intrinsic 4 Reconstruction: Linear Gallium Tetramers?

    E-Print Network [OSTI]

    Reconstruction: Linear Gallium Tetramers? Hamad A. AL-Brithen, Rong Yang, Muhammad B. Haider, Costel Constantin and occupied states, in agreement with surface simulations based on the 4 1 linear tetramer model the existence of linear Ga tetramers. DOI: PACS numbers: 68.35.Bs, 68.37.Ef, 73.20.At Based on both fundamental

  13. NREL: Measurements and Characterization - Surface Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isDataWorkingVoltage (I-V) OutdoorSurface

  14. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect (OSTI)

    Janssens, K.H.; van Langevelde, F.; Adams, F.C. (Universitaire Instelling Antwerpen, Antwerp (Belgium)); Vis, R.D. (Vrije Univ., Amsterdam (Netherlands)); Sutton, S.R.; Rivers, M.L. (Chicago Univ., IL (United States)); Jones, K.W. (Brookhaven National Lab., Upton, NY (United States)); Bowen, D.K. (Warwick Univ., Coventry (United Kingdom))

    1991-01-01T23:59:59.000Z

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  15. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect (OSTI)

    Janssens, K.H.; van Langevelde, F.; Adams, F.C. [Universitaire Instelling Antwerpen, Antwerp (Belgium); Vis, R.D. [Vrije Univ., Amsterdam (Netherlands); Sutton, S.R.; Rivers, M.L. [Chicago Univ., IL (United States); Jones, K.W. [Brookhaven National Lab., Upton, NY (United States); Bowen, D.K. [Warwick Univ., Coventry (United Kingdom)

    1991-12-31T23:59:59.000Z

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  16. Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces

    SciTech Connect (OSTI)

    Unal, Baris

    2008-12-01T23:59:59.000Z

    The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Our STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of their top planes. Hence, we name them as Pd+(with Pd) and Pd-(without Pd). Based on their planer structure and the step height, it can be said that these two families can be viable surface terminations. However, besides the Pd content, these two sets differ in terms of relative densities of their top planes as well as the gap separating the layer from the nearest atomic plane. The experimental data and other arguments lead to the conclusion that the Pd- family is favored over the Pd+. This has an important implication on the interpretation of local motifs seen in the high resolution STM images. In other words, the dark stars are not formed by cut-Bergmans rather they are formed by cut-Mackays.

  17. Laser Measurement of SAM Bulk and Surface Wave Amplitudes for Material Microstructure Analysis

    SciTech Connect (OSTI)

    Ken L. Telschow; Chiaki Miyasaka; David L. Cottle

    2005-07-01T23:59:59.000Z

    Scanning Acoustic Microscopy (SAM) at ultra high frequencies has proven to be a useful tool for investigating materials on the scale of individual grains. This technique is normally performed in a reflection mode from one side of a sample surface. Information about the generation and transmission of bulk acoustic waves into the material is inferred from the reflection signal amplitude. We present an adaptation to the SAM method whereby the acoustic bulk waves are directly visualized through laser acoustic detection. Ultrasonic waves were emitted from a nominal 200 MHz point focus acoustic lens into a thin silicon plate (thickness 75ìm) coupled with distilled water. A scanned laser beam detected the bulk and surface acoustic waves at the opposite surface of the thin silicon plate. Distinct amplitude patterns exhibiting the expected symmetry for Silicon were observed that alter in predictable ways as the acoustic focal point was moved throughout the plate. Predictions of the acoustic wave fields generated by the acoustic lens within and at the surface of the Silicon are being investigated through the angular spectrum of plane waves approach. Results shall be presented for plates with (100) and (111) orientations followed by discussion of applications of the technique for material microstructure analysis.

  18. The application of reflected light microscopy, scanning electron microscopy-energy dispersive spectroscopy, Auger electron spectroscopy and electron microprobe analysis to the study of dusts

    SciTech Connect (OSTI)

    Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Dept. of Geology and Geophysics)

    1993-03-01T23:59:59.000Z

    Over 500,000 tons of electric arc furnace (EAF) dust is generated each year in the US. The mineralogy and characterization of this dust is being studied to determine the phases and relationships of the valuable zinc, the hazardous lead, cadmium, and chromium, and the deleterious chlorine and fluorine. EAF dust averages 15--20% zinc and is therefore a potential source for 100,000 tons of zinc per year. The major mineralogical phases of EAF dust are franklinite (ZnFe[sub 2]O[sub 4]), magnetite (FeFe[sub 2]O[sub 4]), jacobsite (MnFe[sub 2]O[sub 4]), solid solutions between franklinite-magnetite-jacobsite, and zincite (ZnO). Franklinite, magnetite, and jacobsite solid solutions commonly are cruciform or dendritic crystals in a Ca-Fe-Si matrix and contain up to 5% chromium. Magnetite also occurs as spheres partially oxidized to hematite (Fe[sub 2]O[sub 3]) along its octahedral planes. The dust particles are predominantly in the form of spheres and broken spheres, ranging in size from 200 [mu]m to less than 1 [mu]m. Although many spheres are in the size ranges of 40--50 [mu]m and 10--20 [mu]m, most are less than 1 [mu]m in diameter. Automated scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) probed 118 particles in search of chlorine phases. Chlorine-bearing lime (CaO) was identified by that SEM study. In addition, chlorine is present as hydrophylite (CaCl[sub 2]) and sylvite (KCl). Auger electron spectroscopy (AES) was used to sputter the outer 180[angstrom] layer of the dust particles to search for the possible presence of cotunnite (PbCl[sub 2]) coatings, but none were detected. Minor phases detected include chalcopyrite (CuFeS[sub 2]), sphalerite (ZnS), pyrite (FeS[sub 2]), and coke.

  19. Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy

    E-Print Network [OSTI]

    La Rosa, Andres H.

    Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy Carolyn A. SuttonCarolyn A. Sutton PH 464PH 464 #12;OverviewOverview The OpticalThe Optical MicroscopeMicroscopy 4 Pi Microscopy4 Pi Microscopy Optical Microscope for Metallography #12;Optical Microscope: OriginsOptical

  20. Experimental thin film deposition and surface analysis techniques

    SciTech Connect (OSTI)

    Collins, W.E.; Rambabu, B.

    1986-01-01T23:59:59.000Z

    An attempt has been made to present some of the thin-film deposition and surface analysis techniques which may be useful in growing superionic conducting materials. Emphasis is made on the importance of being careful in selecting process parameters and materials in order to produce films with properties outlined in this article. Also, special care should be given to proper consideration of grain boundary effects.

  1. Electron Microscopy Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Argonne Home > EMC > EMC Home Electron Microscopy Center Web Site has moved This page has moved to http:www.anl.govcnmgroupelectron-microscopy-cente...

  2. Scaling law analysis of paraffin thin films on different surfaces

    SciTech Connect (OSTI)

    Dotto, M. E. R.; Camargo, S. S. Jr. [Engenharia Metalurgica e de Materials, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2010-01-15T23:59:59.000Z

    The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substrates present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.

  3. Harmonic analysis of climatological sea surface salinity Tim P. Boyer and Sydney Levitus

    E-Print Network [OSTI]

    Harmonic analysis of climatological sea surface salinity Tim P. Boyer and Sydney Levitus Ocean: Boyer, T. P., and S. Levitus, Harmonic analysis of climatological sea surface salinity, J. Geophys. Res

  4. Cryoelectron Microscopy as a Functional Instrument for Systems Biology, Structural Analysis & Experimental Manipulations with Living Cells. A comprehensive review of the current works

    E-Print Network [OSTI]

    Oleg V. Gradov; Margaret A. Gradova

    2015-01-18T23:59:59.000Z

    The aim of this paper is to give an introductory review of the cryoelectron microscopy as a complex data source for the most of the system biology branches, including the most perspective non-local approaches known as "localomics" and "dynamomics". A brief summary of various cryoelectron mi-croscopy methods and corresponding system biological ap-proaches is given in the text. The above classification can be considered as a useful framework for the primary comprehen-sions about cryoelectron microscopy aims and instrumental tools. We do not discuss any of these concepts in details, but merely point out that their methodological complexity follows only from the structure-functional complexity of biological systems which are investigated in this manner. We also postu-late that one can employ some of the cryoelectron microscopic techniques not only for observation, but also for modification and structural refunctionalization of some biological and similar soft matter objects and microscopic samples. In other worlds, we start with the cryoelectron microscopy as a tool for the sys-tem biology and progress to its applying as an instrument for system biology and functional biomimetics; i.e. "system cryobi-ology" goes over into "synthetic cryobiology" or "cryogenic biomimetics". All these conclusions can be deduced from the most recent works of the latest years, including just submitted foreign papers. This article provides an up-to-date description of the conceptual basis for the novel view on the computational cryoelectron microscopy (in silico) approaches and the data mining principles which lie at the very foundation of modern structural analysis and reconstruction.

  5. True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy

    SciTech Connect (OSTI)

    Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-09-15T23:59:59.000Z

    Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5?nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6?nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

  6. Evaluation of flyash surface phenomena and the application of surface analysis technology. Summary report: Phase I. [44 elements; 86 references

    SciTech Connect (OSTI)

    Smith, R.D.

    1981-06-01T23:59:59.000Z

    The factors governing the formation of flyash surfaces during and following coal combustion are reviewed. The competing chemical and physical processes during the evolution of inorganic material in coal during combustion into flyash are described with respect to various surface segregation processes. Two mechanisms leading to surface enrichment are volatilization-condensation processes and diffusion processes within individual flyash particles. The experimental evidence for each of these processes is reviewed. It is shown that the volatilization-condensation process is the major factor leading to trace element enrichment in smaller flyash particles. Evidence also exists from surface analyses of flyash and representative mineral matter that diffusion processes may lead to surface enrichment of elements not volatilized or cause transport of surface-condensed elements into the flyash matrix. The semiquantitative determination of the relative importance of these two processes can be determined by comparison of concentration versus particle size profiles with surface-depth profiles obtained using surface analysis techniques. A brief description of organic transformations on flyash surfaces is also presented. The various surface analytical techniques are reviewed and the relatively new technique of Static-Secondary Ion Mass Spectroscopy is suggested as having significant advantages in studies of surfaces and diffusion processes in model systems. Several recommendations are made for research relevant to flyash formation and processes occurring on flyash surfaces.

  7. Exploring the nature of surface barriers on MOF Zn(tbip) by applying IR microscopy in high temporal and spatial resolution

    E-Print Network [OSTI]

    Li, Jing

    ,8­10], surface permeabilities are by far more complicated to be assessed. This complication is related by deviations from the ideal crystal structure which are more likely to occur close to the surface than in the crystal bulk phase. They may give rise to pore narrowing or to total pore blocking at the surface and

  8. Analysis of Airport Performance using Surface Surveillance Data: A Case Study of BOS

    E-Print Network [OSTI]

    Balakrishnan, Hamsa

    Detailed surface surveillance datasets from sources such as the Airport Surface Detection Equipment, Model-X (ASDE-X) have the potential to be used for analysis of airport operations, in addition to their primary purpose ...

  9. Comparative analysis of surface power system architectures for human Mars exploration

    E-Print Network [OSTI]

    Cooper, Chase Allen

    2009-01-01T23:59:59.000Z

    This thesis provides a comprehensive analysis of surface power generation and energy storage architectures for human Mars surface missions, including tracking and non-tracking photovoltaic power generation, nuclear fission ...

  10. Analysis of micro-structural relaxation phenomena in laser-modified fused silica using confocal Raman microscopy

    SciTech Connect (OSTI)

    Matthews, M; Vignes, R; Cooke, J; Yang, S; Stolken, J

    2009-12-15T23:59:59.000Z

    Fused silica micro-structural changes associated with localized 10.6 {micro}m CO{sub 2} laser heating are reported. Spatially-resolved shifts in the high-frequency asymmetric stretch transverse-optic (TO) phonon mode of SiO{sub 2} were measured using confocal Raman microscopy, allowing construction of axial fictive temperature (T{sub f}) maps for various laser heating conditions. A Fourier conduction-based finite element model was employed to compute on-axis temperature-time histories, and, in conjunction with a Tool-Narayanaswamy form for structural relaxation, used to fit T{sub f}(z) profiles to extract relaxation parameters. Good agreement between the calculated and measured T{sub f} was found, yielding reasonable values for relaxation time and activation enthalpy in the laser-modified silica.

  11. Linear analysis of surface temperature dynamics and climate sensitivity

    E-Print Network [OSTI]

    Wu, Wei

    2007-04-25T23:59:59.000Z

    Spectral properties of global surface temperature and uncertainties of global climate sensitivity are explored in this work through the medium of Energy Balance Climate Models (EBCMs) and observational surface temperature data. In part I, a complete...

  12. Linear analysis of surface temperature dynamics and climate sensitivity 

    E-Print Network [OSTI]

    Wu, Wei

    2007-04-25T23:59:59.000Z

    Spectral properties of global surface temperature and uncertainties of global climate sensitivity are explored in this work through the medium of Energy Balance Climate Models (EBCMs) and observational surface temperature data. In part I, a complete...

  13. Response Predicting LTCC Firing Shrinkage: A Response Surface Analysis Study

    SciTech Connect (OSTI)

    Girardi, Michael; Barner, Gregg; Lopez, Cristie; Duncan, Brent; Zawicki, Larry

    2009-02-25T23:59:59.000Z

    The Low Temperature Cofired Ceramic (LTCC) technology is used in a variety of applications including military/space electronics, wireless communication, MEMS, medical and automotive electronics. The use of LTCC is growing due to the low cost of investment, short development time, good electrical and mechanical properties, high reliability, and flexibility in design integration (3 dimensional (3D) microstructures with cavities are possible)). The dimensional accuracy of the resulting x/y shrinkage of LTCC substrates is responsible for component assembly problems with the tolerance effect that increases in relation to the substrate size. Response Surface Analysis was used to predict product shrinkage based on specific process inputs (metal loading, layer count, lamination pressure, and tape thickness) with the ultimate goal to optimize manufacturing outputs (NC files, stencils, and screens) in achieving the final product design the first time. Three (3) regression models were developed for the DuPont 951 tape system with DuPont 5734 gold metallization based on green tape thickness.

  14. NUMERICAL ANALYSIS OF A FINITE ELEMENT SCHEME FOR THE APPROXIMATION OF HARMONIC MAPS INTO SURFACES

    E-Print Network [OSTI]

    Bartels, Soeren

    NUMERICAL ANALYSIS OF A FINITE ELEMENT SCHEME FOR THE APPROXIMATION OF HARMONIC MAPS INTO SURFACES Geometric partial differential equations and their analysis as well as numerical simulation have recently

  15. Surfaces

    E-Print Network [OSTI]

    DeMaio, Ernest Vincent, 1964-

    1989-01-01T23:59:59.000Z

    Surfaces is a collection of four individual essays which focus on the characteristics and tactile qualities of surfaces within a variety of perceived landscapes. Each essay concentrates on a unique surface theme and purpose; ...

  16. Analysis of the surface of tricalcium silicate during the induction period by X-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Bellmann, F., E-mail: frank.bellmann@uni-weimar.de [Institute for Building Materials Science, Bauhaus University Weimar, 99423 Weimar (Germany); Sowoidnich, T.; Ludwig, H.-M. [Institute for Building Materials Science, Bauhaus University Weimar, 99423 Weimar (Germany)] [Institute for Building Materials Science, Bauhaus University Weimar, 99423 Weimar (Germany); Damidot, D. [Ecole des Mines de Douai, Civil and Environmental Engineering Department, 941 rue Charles Bourseul, BP 10838, 59508 Doua cedex (France)] [Ecole des Mines de Douai, Civil and Environmental Engineering Department, 941 rue Charles Bourseul, BP 10838, 59508 Doua cedex (France)

    2012-09-15T23:59:59.000Z

    X-ray photoelectron spectroscopy allows the analysis of surface layers with a thickness of a few nanometers. The method is sensitive to the chemical environment of the atoms since the binding energy of the electrons depends on the chemical bonds to neighboring atoms. It has been applied to the hydration of tricalcium silicate (Ca{sub 3}SiO{sub 5}, C{sub 3}S) by analyzing a sample after 30 min of hydration. Also two references have been investigated namely anhydrous C{sub 3}S and intermediate phase in order to enable a quantitative evaluation of the experimental data. In the hydrated C{sub 3}S sample, the analyzed volume (0.2 mm{sup 2} surface by 13 nm depth) contained approximately 44 wt.% of C{sub 3}S and 56 wt.% of intermediate phase whereas C-S-H was not detected. Scanning Electron Microscopy data and geometric considerations indicate that the intermediate phase forms a thin layer having a thickness of approximately 2 nm and covers the complete surface instead of forming isolated clusters.

  17. On Smoothing Surfaces in Voxel Based Finite Element Analysis of Trabecular Bone

    E-Print Network [OSTI]

    Frey, Pascal

    On Smoothing Surfaces in Voxel Based Finite Element Analysis of Trabecular Bone Peter Arbenz on complicated domains composed of often hundreds of millions of voxel elements. The finite element analysis finite element (FE) analysis. The approach based on the FE analysis leads to linear systems of equations

  18. Physical properties and surface/interface analysis of nanocrystalline...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and surfaceinterface analysis of nanocrystalline WO3 films grown under variable oxygen gas flow rates. Physical properties and surfaceinterface analysis of nanocrystalline...

  19. SUBDIVISION SURFACES: A NEW PARADIGM FOR THIN-SHELL FINITE-ELEMENT ANALYSIS

    E-Print Network [OSTI]

    Desbrun, Mathieu

    SUBDIVISION SURFACES: A NEW PARADIGM FOR THIN-SHELL FINITE-ELEMENT ANALYSIS Fehmi Cirak1 , Michael for thin-shell finite-element analysis based on the use of subdivision surfaces for: i) describing by subdivision are H2 and, consequently, have a finite Kirchhoff-Love energy. The resulting finite elements

  20. SURFACE AND INTERFACE ANALYSIS Surf. Interface Anal. 2004; 36: 7782

    E-Print Network [OSTI]

    Goodman, Wayne

    -oxidized surface upon annealing under reducing conditions appears to be due to diffusion of Ti interstitials to the surface. Copyright 2004 John Wiley & Sons, Ltd. KEYWORDS: MIES; UPS; oxygen; titanium oxide; oxygen, bonding in composites, etc. Moreover, when metal particles are deposited on reducible metal oxides

  1. XPS analysis of lithium surface and modification of surface state for uniform deposition of lithium

    SciTech Connect (OSTI)

    Kanamura, K.; Shiraishi, S.; Takehara, Z. [Kyoto Univ. (Japan)

    1995-12-31T23:59:59.000Z

    The surface modification of lithium deposited at various current densities in propylene carbonate containing 1.0 ml dm{sup {minus}3} LiClO{sub 4} was performed by addition of various amounts of HF into the electrolyte, in order to investigate the effect of the HF addition on the surface reaction of lithium. XPS and SEM analyses showed that the surface state of lithium was influenced by the concentration of HF and the electrodeposition current. These two parameters are related to the chemical reaction rate of the lithium surface with HF and the electrodeposition rate of lithium, respectively. The surface modification was highly effective in suppressing lithium dendrite formation when the chemical reaction rate with HF was greater than the electrochemical deposition rate of lithium.

  2. Global analysis of Fo rster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting

    E-Print Network [OSTI]

    van Stokkum, Ivo

    Global analysis of Fo¨ rster resonance energy transfer in live cells measured by fluorescence of Fo¨ rster resonance energy transfer (FRET) in live cells using the rise time of acceptor fluorescence those molecules that are involved in the energy-transfer process are monitored. This contrasts

  3. Design of a robust superhydrophobic surface: thermodynamic and kinetic analysis

    E-Print Network [OSTI]

    Anjishnu Sarkar; Anne-Marie Kietzig

    2014-12-17T23:59:59.000Z

    The design of a robust superhydrophobic surface is a widely pursued topic.While many investigations are limited to applications with high impact velocities (for raindrops of the order of a few m/s), the essence of robustness is yet to be analyzed for applications involving quasi-static liquid transfer.To achieve robustness with high impact velocities, the surface parameters (geometrical details, chemistry) have to be selected from a narrow range of permissible values, which often entail additional manufacturing costs.From the dual perspectives of thermodynamics and mechanics, we analyze the significance of robustness for quasi-static drop impact, and present the range of permissible surface characteristics.For surfaces with a Youngs contact angle greater than 90{\\deg} and square micropillar geometry, we show that robustness can be enforced when an intermediate wetting state (sagged state) impedes transition to a wetted state (Wenzel state).From the standpoint of mechanics, we use available scientific data to prove that a surface with any topology must withstand a pressure of 117 Pa to be robust.Finally, permissible values of surface characteristics are determined, which ensure robustness with thermodynamics (formation of sagged state) and mechanics (withstanding 117 Pa).

  4. Bridging the pressure gap: In situ atomic-level investigations of model platinum catalyst surfaces under reaction conditions by scanning tunneling microscopy

    SciTech Connect (OSTI)

    McIntyre, B.J.

    1994-05-01T23:59:59.000Z

    Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H2, O2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8, results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.

  5. Surface Science Analysis of GaAs Photocathodes Following Sustained...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of GaAs Photocathodes Following Sustained Electron Beam Delivery. Abstract: Degradation of the photocathode materials employed in photoinjectors represents a challenge for...

  6. OPTICAL ANALYSIS OF SURFACES BY SECOND HARMONIC GENERATION

    E-Print Network [OSTI]

    Marrucci, Lorenzo

    additives, commonly used in the lubricant industry, whose effect derives from surface adsorption. Moreover of possible experiments that could obtain information, in particular, on the working principle of those oil In the last years, within the physics community the study of friction and lubrication has been experiencing

  7. An integrated traverse planner and analysis tool for future lunar surface exploration

    E-Print Network [OSTI]

    Johnson, Aaron William

    2010-01-01T23:59:59.000Z

    This thesis discusses the Surface Exploration Traverse Analysis and Navigation Tool (SEXTANT), a system designed to help maximize productivity, scientific return, and safety on future lunar and planetary explorations,. The ...

  8. Calculation notes for surface leak resulting in pool, TWRS FSAR accident analysis

    SciTech Connect (OSTI)

    Hall, B.W.

    1996-09-25T23:59:59.000Z

    This document includes the calculations performed to quantify the risk associated with the unmitigated and mitigated accident scenarios described in the TWRS FSAR for the accident analysis titled: Surface Leaks Resulting in Pool.

  9. Analysis of seismic waves generated by surface blasting at Indiana coal mines

    E-Print Network [OSTI]

    Polly, David

    Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent blasting) and coal mines (surface blasting) to gain new understanding of seismic wave propagation, ground

  10. Surface Analysis by Highly Charged Ion Based Secondary Ion Mass Spectrometry

    E-Print Network [OSTI]

    Surface Analysis by Highly Charged Ion Based Secondary Ion Mass Spectrometry T. Schenkel,1 A high vacuum (10^8 torr). In posi- tive polarity, HCI can be decelerated to an impact energy of $1 ke in the interaction of slow (u highly charged ions (e.g., Au69+ ) with solid surfaces increases secondary

  11. Engineering geologic analysis of reclaimed spoil at a southeast Texas Gulf Coast surface lignite mine

    E-Print Network [OSTI]

    Armstrong, Scott Charles

    1987-01-01T23:59:59.000Z

    ENGINEERING GEOLOGIC ANALYSIS OF RECLAIMED SPOIL AT A SOUTHEAST TEXAS GULF COAST SURFACE LIGNITE MINE A Thesis by SCOTT CHARLES ARMSTRONG Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1987 Major Subject: Geology ENGINEERING GEOLOGIC ANALYSIS OF RECLAIMED SPOIL AT A SOUTHEAST TEXAS GULF COAST SURFACE LIGNITE MINE A Thesis by SCOTT CHARLES ARMSTRONG Approved as to style and content: Christ...

  12. Surface sediment analysis of five carbonate banks on the Texas continental shelf

    E-Print Network [OSTI]

    Cunningham, Susanne E

    1977-01-01T23:59:59.000Z

    SURFACE SEDIMENT ANALYSIS OF FIVE CARBONATE BANKS ON THE TEXAS CONTINENTAL SHELF A Thesis by Susanne E. Cunningham Submitted to the Graduate College of Texas AcM University In partial fulfillment of the requirement for the degree of MASTER... Member Member December 1977 ABSTRACT SURFACE SEDIMENT ANALYSIS OF FIVE CARBONATE BANKS ON THE TEXAS CONTINENTAL SHELF (December 1977) Susanne E. Cunningham, B, S. , Indiana University Chairman of Advisory Committee: Dr. William Bryant The five...

  13. Ultrafast scanning tunneling microscopy

    SciTech Connect (OSTI)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01T23:59:59.000Z

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  14. Recent developments in the analysis and design of extended surface

    SciTech Connect (OSTI)

    Snider, A.D.; Kraus, A.D.

    1983-05-01T23:59:59.000Z

    Earlier papers by the authors developed a new set of parameters for characterizing heat transfer properties of single fins and fins in arrays of extended surface. The use of these parameters has facilitated the solutions to several interesting fin problems namely: a more careful characterization of one-dimensional flow configurations, a method for accomodating continuously distributed heat sources along the fin, a perturbating approach for the approximate computation of the parameters, and new insights into the precepts of the optimal fin shape. These developments are reported in this paper.

  15. Finite element analysis of surface-stress effects in the Si lattice-parameter measurement

    E-Print Network [OSTI]

    Sasso, Carlo; Massa, Enrico; Mana, Giovanni; Kuetgens, Ulrich

    2013-01-01T23:59:59.000Z

    A stress exists in solids surfaces, similarly to liquids, also if the underlying bulk material is stress-free. This paper investigates the surface stress effect on the measured value of the Si lattice parameter used to determine the Avogadro constant by counting Si atoms. An elastic-film model has been used to provide a surface load in a finite element analysis of the lattice strain of the x-ray interferometer crystal used to measure the lattice parameter. Eventually, an experiment is proposed to work a lattice parameter measurement out so that there is a visible effect of the surface stress.

  16. Measuring the effects of low energy ion milling on the magnetization of Co/Pd multilayers using scanning electron microscopy with polarization analysis

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Powell, Beam Effects, Surface Topography, and Depth Pro?lingsurface display ?a? the surface topography, ?b? the out-of-

  17. Visual-servoing optical microscopy

    DOE Patents [OSTI]

    Callahan, Daniel E; Parvin, Bahram

    2013-10-01T23:59:59.000Z

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  18. Visual-servoing optical microscopy

    DOE Patents [OSTI]

    Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Mill Valley, CA)

    2011-05-24T23:59:59.000Z

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  19. Methods, computer readable media, and graphical user interfaces for analysis of frequency selective surfaces

    DOE Patents [OSTI]

    Kotter, Dale K. (Shelley, ID) [Shelley, ID; Rohrbaugh, David T. (Idaho Falls, ID) [Idaho Falls, ID

    2010-09-07T23:59:59.000Z

    A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.

  20. Complete information acquisition in scanning probe microscopy

    SciTech Connect (OSTI)

    Belianinov, Alex [ORNL; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL

    2015-01-01T23:59:59.000Z

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  1. Phase modulated multiphoton microscopy

    E-Print Network [OSTI]

    Karki, Khadga Jung; Pullerits, Tonu

    2015-01-01T23:59:59.000Z

    We show that the modulation of the phases of the laser beams of ultra-short pulses leads to modulation of the two photon fluorescence intensity. The phase modulation technique when used in multi-photon microscopy can improve the signal to noise ratio. The technique can also be used in multiplexing the signals in the frequency domain in multi-focal raster scanning microscopy. As the technique avoids the use of array detectors as well as elaborate spatiotemporal multiplexing schemes it provides a convenient means to multi-focal scanning in axial direction. We show examples of such uses. Similar methodology can be used in other non-linear scanning microscopies, such as second or third harmonic generation microscopy.

  2. Version: 6/16/98 Keywords: wavy surface flow, finite element, longwave analysis, weakly-nonlinear analysis

    E-Print Network [OSTI]

    McCready, Mark J.

    Version: 6/16/98 Keywords: wavy surface flow, finite element, longwave analysis, weakly and drag are found, from finite element calculations, to increase as amplitude to approximately the third wavelength problem is solved numerically with a finite element formulation providing qualitative trends

  3. Artificial Neural Networks and quadratic Response Surfaces for the functional failure analysis of a thermal-hydraulic passive system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    system reliability, artificial neural network, quadratic response surface 1. INTRODUCTION Modern nuclearArtificial Neural Networks and quadratic Response Surfaces for the functional failure analysis of a thermal-hydraulic passive system George Apostolakisa , Nicola Pedronib , Enrico Ziob* a Massachusetts

  4. Cryoelectron Microscopy as a Functional Instrument for Systems Biology, Structural Analysis & Experimental Manipulations with Living Cells. A comprehensive review of the current works

    E-Print Network [OSTI]

    Gradov, Oleg V

    2015-01-01T23:59:59.000Z

    The aim of this paper is to give an introductory review of the cryoelectron microscopy as a complex data source for the most of the system biology branches, including the most perspective non-local approaches known as "localomics" and "dynamomics". A brief summary of various cryoelectron mi-croscopy methods and corresponding system biological ap-proaches is given in the text. The above classification can be considered as a useful framework for the primary comprehen-sions about cryoelectron microscopy aims and instrumental tools. We do not discuss any of these concepts in details, but merely point out that their methodological complexity follows only from the structure-functional complexity of biological systems which are investigated in this manner. We also postu-late that one can employ some of the cryoelectron microscopic techniques not only for observation, but also for modification and structural refunctionalization of some biological and similar soft matter objects and microscopic samples. In other world...

  5. Analysis of badlands: coupling of tectonic and land surface processes in the Pyrenees of Spain

    E-Print Network [OSTI]

    Baer, Christian

    Analysis of badlands: coupling of tectonic and land surface processes in the Pyrenees of Spain MSc to rainstorms. In north-east Spain, sediment from rapidly eroding badlands has significantly reduced reservoir-funded research consortium (SESAM II) with partners at the University of Lleida, Spain

  6. LASER SCANNING AND NOISE REDUCTION APPLIED TO 3D ROAD SURFACE ANALYSIS

    E-Print Network [OSTI]

    Giger, Christine

    LASER SCANNING AND NOISE REDUCTION APPLIED TO 3D ROAD SURFACE ANALYSIS Thorsten Schulz and Hilmar, EAWAG Email: michele.steiner@eawag.ch Abstract: Terrestrial laser scanning was applied to acquire 3D the catchment area of a road with respect to a pilot plant. As laser scanning requires only a few minutes

  7. International Conference on Machine Control & Guidance 2008 1 Kinematic Surface Analysis by Terrestrial Laser Scanning

    E-Print Network [OSTI]

    by Terrestrial Laser Scanning Hans-Martin ZOGG*, David GRIMM* ETH Zurich, Switzerland Abstract This paper presents terrestrial laser scanning with emphasis on kinematic surface analysis. Besides an overview of terrestrial laser scanning in general, the 2D-laser scanner SICK LMS200-30106 is introduced as well

  8. A FREEWARE PROGRAM FOR PRECISE OPTICAL ANALYSIS OF THE FRONT SURFACE OF A SOLAR CELL

    E-Print Network [OSTI]

    A FREEWARE PROGRAM FOR PRECISE OPTICAL ANALYSIS OF THE FRONT SURFACE OF A SOLAR CELL Simeon C. Baker-Finch and Keith R. McIntosh Centre for Sustainable Energy Systems, Australian National University, Canberra, ACT 0200, AUSTRALIA Tel: +61-2-6125-8966, Fax: +61-2-6125-8873, Email: simeon

  9. Multichannel Analysis of Surface Wave An Application to Diagnose Dam Bodies

    E-Print Network [OSTI]

    Barrash, Warren

    Multichannel Analysis of Surface Wave ­ An Application to Diagnose Dam Bodies Noppadol Poomvises it use as a part of geological program to explore an appropriated rock foundation at a proposed dam location, but also use to investigate the condition of dam after water being storage as well

  10. Nonlinear vibrational microscopy

    DOE Patents [OSTI]

    Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

    2000-01-01T23:59:59.000Z

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  11. Preliminary analysis of surface mining options for Naval Oil Shale Reserve 1

    SciTech Connect (OSTI)

    Not Available

    1981-07-20T23:59:59.000Z

    The study was undertaken to determine the economic viability of surface mining to exploit the reserves. It is based on resource information already developed for NOSR 1 and conceptual designs of mining systems compatible with this resource. Environmental considerations as they relate to surface mining have been addressed qualitatively. The conclusions on economic viability were based primarily on mining costs projected from other industries using surface mining. An analysis of surface mining for the NOSR 1 resource was performed based on its particular overburden thickness, oil shale thickness, oil shale grade, and topography. This evaluation considered reclamation of the surface as part of its design and cost estimate. The capital costs for mining 25 GPT and 30 GPT shale and the operating costs for mining 25 GPT, 30 GPT, and 35 GPT shale are presented. The relationship between operating cost and stripping ratio, and the break-even stripping ratio (BESR) for surface mining to be competitive with room-and-pillar mining, are shown. Identification of potential environmental impacts shows that environmental control procedures for surface mining are more difficult to implement than those for underground mining. The following three areas are of prime concern: maintenance of air quality standards by disruption, movement, and placement of large quantities of overburden; disruption or cutting of aquifers during the mining process which affect area water supplies; and potential mineral leaching from spent shales into the aquifers. Although it is an operational benefit to place spent shale in the open pit, leaching of the spent shales and contamination of the water is detrimental. It is therefore concluded that surface mining on NOSR 1 currently is neither economically desirable nor environmentally safe. Stringent mitigation measures would have to be implemented to overcome some of the potential environmental hazards.

  12. Direct Surface Analysis of Time-Resolved Aerosol Impactor Samples with Ultrahigh-Resolution Mass Spectrometry

    E-Print Network [OSTI]

    Fuller, Stephen J.; Zhao, Yongjing; Cliff, Steven S.; Wexler, Anthony S.; Kalberer, Markus

    2012-10-18T23:59:59.000Z

    was assumed to be correct. Unfortunately due to the generally low peak intensities of the identified species MS-MS analysis for further structural identification was not possible. Only about 10-15% of the peaks contain a sulfur atom and are not further... 1 Direct surface analysis of time-resolved aerosol impactor samples with ultra-high resolution mass spectrometry Stephen J. Fuller 1, Yongjing Zhao2, Steven S. Cliff2, Anthony S. Wexler2, Markus Kalberer 1* 1 University of Cambridge, Department...

  13. HotPatch Web Gateway: Statistical Analysis of Unusual Patches on Protein Surfaces

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Pettit, Frank K.; Bowie, James U. [DOE-Molecular Biology Institute

    HotPatch finds unusual patches on the surface of proteins, and computes just how unusual they are (patch rareness), and how likely each patch is to be of functional importance (functional confidence (FC).) The statistical analysis is done by comparing your protein's surface against the surfaces of a large set of proteins whose functional sites are known. Optionally, HotPatch can also write a script that will display the patches on the structure, when the script is loaded into some common molecular visualization programs. HotPatch generates complete statistics (functional confidence and patch rareness) on the most significant patches on your protein. For each property you choose to analyze, you'll receive an email to which will be attached a PDB-format file in which atomic B-factors (temp. factors) are replaced by patch indices; and the PDB file's Header Remarks will give statistical scores and a PDB-format file in which atomic B-factors are replaced by the raw values of the property used for patch analysis (for example, hydrophobicity instead of hydrophobic patches). [Copied with edits from http://hotpatch.mbi.ucla.edu/

  14. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect (OSTI)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01T23:59:59.000Z

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  15. An extensive analysis of modified nanotube surfaces for next-generation orthopedic implants

    E-Print Network [OSTI]

    Frandsen, Christine Jeanette

    2012-01-01T23:59:59.000Z

    Effects of titanium surface topography on bone integration:influence of surface chemistry and topography on the contactstiffness). Biomaterial surface topographies that have been

  16. Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather

    E-Print Network [OSTI]

    are homogeneous over large scales, with nearly constant albe- dos, high heat capacity, and infinite moisture supply. In contrast, land surfaces are highly variable in space, have lower heat capacity and limited vapor, cloud liquid water, and surface emissivities over land from a combined analysis of Special Sensor

  17. Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing

    E-Print Network [OSTI]

    Brunsell, Nathaniel A.; Gillies, Robert R.

    2003-01-01T23:59:59.000Z

    the variability across different spatial res- olutions in input data translates into variation across scales in modeled output. This issue is of prime im- portance to the remote sensing community involved in the modeling of land–atmosphere interactions...1212 VOLUME 4J O U R N A L O F H Y D R O M E T E O R O L O G Y q 2003 American Meteorological Society Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing NATHANIEL A. BRUNSELL* Department of Plants, Soils, and Biometeorology...

  18. Scanning Electron Microscopy Analysis of Fuel/Matrix Interaction Layers in Highly-Irradiated U–Mo Dispersion Fuel Plates with Al and Al–Si Alloy Matrices

    SciTech Connect (OSTI)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Brandon D. Miller; Jian Gan; Adam B. Robinson; Pavel Medvedev; James Madden; Dan Wachs; Mitch Meyer

    2014-04-01T23:59:59.000Z

    In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U–7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U–7Mo dispersion fuel elements with pure Al, Al–2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U–7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission-gas bubbles. Additionally, solid-fission-product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U–7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al–Si matrices.

  19. Ring diagram analysis of near-surface flows in the Sun

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia; S. C. Tripathy

    1998-09-24T23:59:59.000Z

    Ring diagram analysis of solar oscillation power spectra obtained from MDI data is carried out to study the velocity fields in the outer part of the solar convection zone. The three dimensional power spectra are fitted to a model which has a Lorentzian profile in frequency and which includes the advection of the wave front by horizontal flows, to obtain the two components of the sub-surface flows as a function of the horizontal wave number and radial order of the oscillation modes. This information is then inverted using OLA and RLS methods to infer the variation in horizontal flow velocity with depth. The average rotation velocity at different latitudes obtained by this technique agrees reasonably with helioseismic estimates made using frequency splitting data. The shear layer just below the solar surface appears to consist of two parts with the outer part up to a depth of 4 Mm, where the velocity gradient does not show any reversal up to a latitude of 60 degrees. In the deeper part the velocity gradient shows reversal in sign around a latitude of 55 degrees. The zonal flow velocities inferred in the outermost layers appears to be similar to those obtained by other measurements. A meridional flow from equator polewards is found. It has a maximum amplitude of about 30 m/s near the surface and the amplitude is nearly constant in the outer shear layer.

  20. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    SciTech Connect (OSTI)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01T23:59:59.000Z

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  1. Spectral multiplexing using quantum dot tagged microspheres with diffusing colloidal probe microscopy

    E-Print Network [OSTI]

    Muthukumar, Shankarapandian

    2009-05-15T23:59:59.000Z

    (TIRM) and Video Microscopy to simultaneously measure multiple particle-surface interactions with nanometer resolution in particle-surface separation. By acquiring the scattered intensity emitted by the particles, the separation distance can...

  2. International Conference on Machine Control & Guidance, June 24-26, 2008 Kinematic Surface Analysis by Terrestrial Laser Scanning

    E-Print Network [OSTI]

    Giger, Christine

    Analysis by Terrestrial Laser Scanning Hans-Martin Zogg* David Grimm* ETH Zurich, Switzerland [zogg, grimm]@geod.baug.ethz.ch Abstract This paper presents terrestrial laser scanning with emphasis on kinematic surface analysis. Besides an overview of terrestrial laser scanning in general, the 2D-laser scanner SICK LMS200

  3. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, Shimon (El Cerrito, CA); Chemla, Daniel S. (Kensington, CA); Ogletree, D. Frank (El Cerrito, CA); Botkin, David (San Francisco, CA)

    1995-01-01T23:59:59.000Z

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  4. Ultrafast scanning probe microscopy

    DOE Patents [OSTI]

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16T23:59:59.000Z

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  5. Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a

    E-Print Network [OSTI]

    Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a , S.N. Renfrow a,b , G. Vizkelethy a,1 Abstract Alternatives to traditional nuclear microprobe analysis (NMA) emerged two years ago with the invention of ion electron emission microscopy (IEEM). With nuclear emission microscopy (NEM) the ion beam

  6. An Analysis of Surface and Subsurface Lineaments and Fractures for Oil and Gas Exploration in the Mid-Continent Region

    SciTech Connect (OSTI)

    Guo, Genliang; and George, S.A.

    1999-04-08T23:59:59.000Z

    An extensive literature search was conducted and geological and mathematical analyses were performed to investigate the significance of using surface lineaments and fractures for delineating oil and gas reservoirs in the Mid-Continent region. Tremendous amount of data were acquired including surface lineaments, surface major fracture zones, surface fracture traces, gravity and magnetic lineaments, and Precambrian basement fault systems. An orientation analysis of these surface and subsurface linear features was performed to detect the basic structural grains of the region. The correlation between surface linear features and subsurface oil and gas traps was assessed, and the implication of using surface lineament and fracture analysis for delineating hydrocarbon reservoirs in the Mid-Continent region discussed. It was observed that the surface linear features were extremely consistent in orientation with the gravity and magnetic lineaments and the basement faults in the Mid-Continent region. They all consist of two major sets bending northeast and northwest, representing, therefore, the basic structural grains of the region. This consistency in orientation between the surface and subsurface linear features suggests that the systematic fault systems at the basement in the Mid-Continent region have probably been reactivated many times and have propagated upward all the way to the surface. They may have acted as the loci for the development of other geological structures, including oil and gas traps. Also observed was a strong association both in orientation and position between the surface linear features and the subsurface reservoirs in various parts of the region. As a result, surface lineament and fracture analysis can be used for delineating additional oil and gas reserves in the Mid-Continent region. The results presented in this paper prove the validity and indicate the significance of using surface linear features for inferring subsurface oil and gas reservoirs in the Mid-Continent region. Any new potential oil and gas reservoirs in the Mid-Continent region, if they exist, will be likely associated with the northeast- and northwest-trending surface lineaments and fracture traces in the region.

  7. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    SciTech Connect (OSTI)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

    2013-01-21T23:59:59.000Z

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

  8. Probing graphene defects and estimating graphene quality with optical microscopy

    SciTech Connect (OSTI)

    Lai, Shen [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); Kyu Jang, Sung [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Jae Song, Young, E-mail: yjsong@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

    2014-01-27T23:59:59.000Z

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

  9. An Scanning Tunneling Microscopy and Photoelectron Spectroscopy Study of Pattern Formation and Molecule Ordering under a Variety of Interactions

    E-Print Network [OSTI]

    Zhu, Yeming

    2013-01-01T23:59:59.000Z

    Chen, Introduction to Scanning Tunneling Microscopy, Oxfordvoltages to search the scanning area on the surface. Threecontrol system for scanning tun- neling microscope (STM)

  10. The application of soft X-ray microscopy to the in-situ analysis of sporopollenin/sporinite in a rank variable suite of organic rich sediments

    SciTech Connect (OSTI)

    Cody, G.D.; Botto, R.E. [Argonne National Lab., IL (United States). Chemistry Div.; Ade, H. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics; Wirick, S. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

    1997-07-01T23:59:59.000Z

    Soft X-ray imaging and carbon near edge absorption fine structure spectroscopy (C-NEXAFS) has been used for the in-situ analysis of sporinite in a rank variable suite of organic rich sediments extending from recent up to high volatile A bituminous coal. The acquisition of chemically based images (contrast based on the 1s - 1{pi}* transition of unsaturated carbon), revealed a homogeneous chemical structure in the spore exine. C-NEXAFS microanalysis indicates chemical structural evolution in sporopollenin/sporinite with increases in maturation. The most significant change in the C-NEXAFS spectrum is an increase in unsaturated carbon, presumably aromatic, with rank. The rate of aromatization in sporinite exceeds that of the surrounding vitrinite. Increases in the concentration of unsaturated carbon are compensated by losses of aliphatic and hydroxylated aliphatic carbon components. Carboxyl groups are present in low and variable concentrations. Absorption due to carboxyl persists in the most mature specimen in this series, a high volatile A rank coal. The reactions which drive sporopollenin chemical structural evolution during diagenesis presumably involve dehydration, Diels-Alder cyclo-addition, and dehydrogenation reactions which ultimately lead to a progressively aromatized bio/geopolymer.

  11. Instrument Series: Microscopy Aberration-Corrected

    E-Print Network [OSTI]

    , and material defects Chemistry ­ understanding particle surface interactions, atomic-level structure-tilt Crystallographic and Tomographic Analysis Ì Silicon-Lithium [Si(Li)] X-ray EDS Ì Cryogenic Imaging Capability Ì

  12. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance

    E-Print Network [OSTI]

    Bhatia, Sangeeta

    Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles: Received 21 January 2009 Accepted 26 March 2009 Available online 26 April 2009 Keywords: Nanoparticle proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we

  13. Constrained Parameterization of the Multichannel Analysis of Surface Waves Approach with Application at Yuma Proving Ground, Arizona

    E-Print Network [OSTI]

    Schwenk, Jacob Tyler

    2013-08-31T23:59:59.000Z

    used to study Vs. The multichannel analysis of surface waves (MASW) is used for Rayleigh-wave Vs estimations (Miller et al., 1999a). MASW employs a linear line of low frequency (e.g., Tyler Schwenk B.S., University of Kansas, 2009 Submitted to the graduate degree program...

  14. PHYSICAL REVIEW E 87, 032716 (2013) Optimal reconstruction of the folding landscape using differential energy surface analysis

    E-Print Network [OSTI]

    La Porta, Arthur

    2013-01-01T23:59:59.000Z

    differential energy surface analysis Arthur La Porta,1 Natalia A. Denesyuk,2 and Michel de Messieres3 1 Physics Department, Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, USA 2 Institute for Physical Science and Technology, University of Maryland

  15. SURFACE OXIDATION OF DIESEL PARTICULATE MATTER IN PRESENCE OF O3 +NOX: NEW TD/GC/MS ANALYSIS METHOD

    E-Print Network [OSTI]

    Holmén, Britt A.

    SURFACE OXIDATION OF DIESEL PARTICULATE MATTER IN PRESENCE OF O3 +NOX: NEW TD/GC/MS ANALYSIS METHOD+08 2.6e+08 2.8e+08 3e+08 Time--> Abundance TIC: 0914S4.D INTRODUCTION Diesel exhaust is one into the atmosphere diesel particles can be transformed through physical and chemical processes resulting

  16. Formation of Ti-B surface alloys by excimer laser mixing

    SciTech Connect (OSTI)

    Jervis, T.R.; Nastasi, M.; Hirvonen, J.P.; Zocco, T.G.

    1990-01-01T23:59:59.000Z

    We have formed a surface Ti-B alloy by excimer laser mixing of a single B layer on a Ti-6Al-4V alloy substrate. Rutherford backscattering spectroscopy indicates a uniform B:Ti ratio of approximately 0.7 in the surface layer. A Boron layer 60 nm thick resulted in an alloy layer approximately 200 nm thick. There is little indication, by either Auger electron spectroscopy or nuclear reaction analysis, of substantial oxygen incorporation in the surface alloy despite the fact that the processing was done in air. Transmission electron microscopy of the surface alloy shows a completely amorphous surface layer underlain by a martensitic structure.

  17. Sandia National Laboratories: scanning probe microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focus on stainless steels. Dr. An is an internationally recognized expert on scanning probe microscopy, such as atomic force microscopy and scanning ... Last Updated:...

  18. Sandia National Laboratories: scanning tunneling microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focus on stainless steels. Dr. An is an internationally recognized expert on scanning probe microscopy, such as atomic force microscopy and scanning ... Last Updated:...

  19. ORNL microscopy directly images problematic lithium dendrites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    865.574.7308 ORNL microscopy directly images problematic lithium dendrites in batteries ORNL electron microscopy captured the first real-time nanoscale images of the nucleation and...

  20. Mapping the U.S. West Coast surface circulation: A multiyear analysis of highfrequency radar observations

    E-Print Network [OSTI]

    Fabrikant, Sara Irina

    capability to monitor and understand coastal ocean dynamics and phenomenology through hourly surface current and reflected by shoreline curvature and bathymetry change and do not penetrate north of Point Conception surface currents resolve coastal surface ocean variability continuously across scales from submesoscale

  1. Numerical Analysis of Cell Deformation of Twophase Flow with Discontinuous Viscosity and Nonlinear Surface Tension

    E-Print Network [OSTI]

    ­linear Surface Tension Zhilin Li and Sharon Lubkin Center For Research in Scientific Computation & Department equations, cell deformation, non­linear surface tension, jump conditions, interface, discontinuous and non boundary separating two fluids that have equal or different viscosity and non­linear surface tension

  2. DOI: 10.1002/adma.200800742 Scanning Photoemission Microscopy of

    E-Print Network [OSTI]

    Kim, Sehun

    DOI: 10.1002/adma.200800742 Scanning Photoemission Microscopy of Graphene Sheets on SiO2** By Ki in extracting individual sheets of carbon atoms (graphene) from graphite crystals, graphene has been attracted metals or molecules.[4­6] In addition, the modification of graphene surfaces using a direct chemical

  3. Instrument Series: Microscopy Ultra-High Vacuum, Low-

    E-Print Network [OSTI]

    Instrument Series: Microscopy Ultra-High Vacuum, Low- Temperature Scanning Probe Microscope EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM range of surface analytical techniques at low temperature ­ enables ultra-violet/X-ray photoelectron

  4. Preparation of Samples for Light Microscopy Simple Wax Seal

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    Preparation of Samples for Light Microscopy Simple Wax Seal Materials - Slide - Cover Slip - Paraffin Wax Candle - Pasteur Pipette (suggested size 5 3/4 inch) - Matches Preparation of the Slide - You may want to protect the work surface from melted wax. We use a sheet of aluminum foil taped

  5. Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function

    SciTech Connect (OSTI)

    Tung, Ryan C., E-mail: ryan.tung@nist.gov; Killgore, Jason P.; Hurley, Donna C. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2014-06-14T23:59:59.000Z

    We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

  6. Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal...

    Open Energy Info (EERE)

    Available technologies for monitoring CO2 in the near-surface environment include the infrared gas analyzer, the accumulation chamber method, the eddy covariance method,...

  7. Synoptic analysis of near surface and subsurface temperatures in the Atlantic Ocean following hurricane BETSY

    E-Print Network [OSTI]

    Landis, Robert Clarence

    1966-01-01T23:59:59.000Z

    pressures Sea Surface Temperature Pattern before Hurricane Betsy 26 Sea Surface Temperature Pattern after Hur ricane Betsy 27 Seven-Day Average Sea Surface Temperatures; 23 - 29 August 1965 28 Seven-Day Average Sea Surface Temperatures; 8 - 14.... SHIIDEO ARE o IS / / / WATER 79'-80' F 73' 72' 71' BT NO. Ie 28 38 48 58 BETSY FIG, IB. SUBSURFACE THERMAL STRUCTURE BEFORE HURRICANE BETSY ALONG SECTION A. 204 21' 22' NORTH LATITUDE 23' 24' 25' 26 27' 28' 82. 5' 80. 5' 100 I 200 IJI IJI IJ...

  8. Variable temperature electrochemical strain microscopy of Sm-doped ceria

    SciTech Connect (OSTI)

    Jesse, Stephen [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Kalinin, Sergei V [ORNL; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Yang, Nan [ORNL; Doria, Sandra [ORNL; Tebano, Antonello [ORNL

    2013-01-01T23:59:59.000Z

    Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

  9. Duplex stainless steel fracture surface analysis using X-ray fractography

    SciTech Connect (OSTI)

    Rajanna, K.; Pathiraj, B.; Kolster, B.H. [Foundation for Advanced Metals Science, Hengelo (Netherlands)

    1997-02-01T23:59:59.000Z

    The fatigue fracture surface of a duplex stainless steel was analyzed using x-ray fractography. A lower than average austenite content was observed at the fracture surface due to the transformation of austenite into deformation-induced martensite. The influence of fatigue cycling on the transformation was confined to a depth of about 30 {micro}m below the fracture surface. X-ray analyses of both the ferrite-martensite and the austenite phases indicated residual stresses ({sigma}{sub r}) increasing with depth from the fracture surface and reaching a maximum some tens of microns below the fracture surface. The lower {sigma}{sub r} observed at the fracture surface has been attributed to the stress relaxation effects caused by the new fracture surfaces created in the crack growth process. The observed decrease in full width at half maximum (FWHM) in the ferrite-martensite phase was presumed to be due to the dynamic recovery effect that was likely to occur within the material close to the crack tip as a consequence of fatigue cycling.

  10. Half-harmonic Kelvin probe force microscopy with transfer function correction

    SciTech Connect (OSTI)

    Guo, Senli [ORNL] [ORNL; Jesse, Stephen [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    An approach for surface potential imaging based on half-harmonic band excitation (BE) in Kelvin probe force microscopy is demonstrated. Using linear and half-harmonic BE enables quantitative correction of the cantilever transfer function. Half-harmonic band excitation Kelvin probe force microscopy (HBE KPFM) thus allows quantitative separation of surface potential and topographic contributions to the signal, obviating the primary sources of topographic cross-talk. HBE KPFM imaging and voltage spectroscopy methods are illustrated for several model systems.

  11. Development of legged, wheeled, and hybrid rover mobility models to facilitate planetary surface exploration mission analysis

    E-Print Network [OSTI]

    McCloskey, Scott H. (Scott Haddon)

    2007-01-01T23:59:59.000Z

    This work discusses the Mars Surface Exploration (MSE) tool and its adaptation to model rovers featuring legged, wheeled, and hybrid mobility. MSE is a MATLAB based systems engineering tool that is capable of rapidly ...

  12. Liquid chromatographic analysis of coal surface properties. Quarterly progress report, September--December 1991

    SciTech Connect (OSTI)

    Kwon, K.C.

    1991-12-31T23:59:59.000Z

    The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

  13. Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies

    SciTech Connect (OSTI)

    Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine] [National Academy of Science of Ukraine, Kiev, Ukraine; Ievlev, Anton [ORNL] [ORNL; Balke, Nina [ORNL] [ORNL; Maksymovych, Petro [ORNL] [ORNL; Tselev, Alexander [ORNL] [ORNL; Kalinin, Sergei V [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

  14. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30T23:59:59.000Z

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  15. Analysis of process controls in land surface hydrological cycle over the continental United States

    E-Print Network [OSTI]

    Syed, Tajdarul Hassan; Lakshimi, V; Paleologos, E; Lohmann, D; Mitchell, K; Famiglietti, J S

    2004-01-01T23:59:59.000Z

    2004), Analysis of process controls in land surfacelack of understanding of the process controls in the surfacehydrologic cycle and the process controls can lead us to a

  16. Application Prospect Analysis of the Surface Water Source Heat-Pump in China 

    E-Print Network [OSTI]

    Zhang, C.; Zhuang, Z.; Huang, L.; Li, X.; Li, G.; Sun, D.

    2006-01-01T23:59:59.000Z

    . The lakes are closest in the East Plain and Qinghai-Xizang Plateau Land in China, and they form the two east and west opposite biggest lake cluster; The Chinese coastline begins with Yalu River at the border between China and Korea, end with Beilun... River at the border between China and Viet Nam, and the length is more than 18000 kilometers. The huge surface water system covers more than 60 percents area of China [6]. In this thesis we first investigate and analyze of the surface water...

  17. Roughness analysis applied to niobium thin films grown on MgO(001) surfaces for superconducting radio frequency cavity applications

    SciTech Connect (OSTI)

    D. B. Beringer, W. M. Roach, C. Clavero, C. E. Reece, R. A. Lukaszew

    2013-02-01T23:59:59.000Z

    This paper describes surface studies to address roughness issues inherent to thin film coatings deposited onto superconducting radio frequency (SRF) cavities. This is particularly relevant for multilayered thin film coatings that are being considered as a possible scheme to overcome technical issues and to surpass the fundamental limit of ?50??MV/m accelerating gradient achievable with bulk niobium. In 2006, a model by Gurevich [ Appl. Phys. Lett. 88 012511 (2006)] was proposed to overcome this limit that involves coating superconducting layers separated by insulating ones onto the inner walls of the cavities. Thus, we have undertaken a systematic effort to understand the dynamic evolution of the Nb surface under specific deposition thin film conditions onto an insulating surface in order to explore the feasibility of the proposed model. We examine and compare the morphology from two distinct Nb/MgO series, each with its own epitaxial registry, at very low growth rates and closely examine the dynamical scaling of the surface features during growth. Further, we apply analysis techniques such as power spectral density to the specific problem of thin film growth and roughness evolution to qualify the set of deposition conditions that lead to successful SRF coatings.

  18. RESEARCH ENGINEER IN ADVANCED ANALYTICAL ELECTRON MICROSCOPY

    E-Print Network [OSTI]

    Gilchrist, James F.

    RESEARCH ENGINEER IN ADVANCED ANALYTICAL ELECTRON MICROSCOPY Department of Materials Science. #12;Job Description (for website) Job Title: Research Engineer in Advanced Analytical Electron or an engineering discipline and four years of demonstrated experience in electron microscopy. Requirements

  19. Electron Microscopy | Center for Functional Nanomaterials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Atomic-resolution imaging of internal materials structure with scanning transmission and transmission electron microscopy Spectroscopic characterization with...

  20. Monte Carlo analysis of a monolithic interconnected module with a back surface reflector

    SciTech Connect (OSTI)

    Ballinger, C.T.; Charache, G.W. [Lockheed Martin Corp., Schenectady, NY (United States); Murray, C.S. [Bettis Atomic Power Lab., West Mifflin, PA (United States)

    1998-10-01T23:59:59.000Z

    Recently, the photon Monte Carlo code, RACER-X, was modified to include wave-length dependent absorption coefficients and indices of refraction. This work was done in an effort to increase the code`s capabilities to be more applicable to a wider range of problems. These new features make RACER-X useful for analyzing devices like monolithic interconnected modules (MIMs) which have etched surface features and incorporates a back surface reflector (BSR) for spectral control. A series of calculations were performed on various MIM structures to determine the impact that surface features and component reflectivities have on spectral utilization. The traditional concern of cavity photonics is replaced with intra-cell photonics in the MIM design. Like the cavity photonic problems previously discussed, small changes in optical properties and/or geometry can lead to large changes in spectral utilization. The calculations show that seemingly innocuous surface features (e.g., trenches and grid lines) can significantly reduce the spectral utilization due to the non-normal incident photon flux. Photons that enter the device through a trench edge are refracted onto a trajectory where they will not escape. This leads to a reduction in the number of reflected below bandgap photons that return to the radiator and reduce the spectral utilization. In addition, trenches expose a lateral conduction layer in this particular series of calculations which increase the absorption of above bandgap photons in inactive material.

  1. ELECTRON SPECTROSCOPY OF SURFACES Elemental and Chemical Analysis with X-ray

    E-Print Network [OSTI]

    of the experiment is to make the students familiar with the fundamental principles and basic methodology of XPS be of relevance for a vast range of systems not only in condensed matter physics, chemistry, and materials science simple process. When a solid surface is irradiated with soft X-ray photons (Fig. 1a), an incident photon

  2. Surface deformation analysis over a hydrocarbon reservoir using InSAR with ALOS-PALSAR data

    E-Print Network [OSTI]

    ?ahin, Sedar Cihan

    2013-01-01T23:59:59.000Z

    InSAR has been developed to estimate the temporal change on the surface of Earth by combining multiple SAR images acquired over the same area at different times. In the last two decades, in addition to conventional InSAR, ...

  3. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs

    SciTech Connect (OSTI)

    Guo, Genliang; George, S.A.; Lindsey, R.P.

    1997-08-01T23:59:59.000Z

    Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

  4. North Portal Fuel Storage System Fire Hazard Analysis-ESF Surface Design Package ID

    SciTech Connect (OSTI)

    N.M. Ruonavaara

    1995-01-18T23:59:59.000Z

    The purpose of the fire hazard analysis is to comprehensively assess the risk from fire within the individual fire areas. This document will only assess the fire hazard analysis within the Exploratory Studies Facility (ESF) Design Package ID, which includes the fuel storage system area of the North Portal facility, and evaluate whether the following objectives are met: 1.1.1--This analysis, performed in accordance with the requirements of this document, will satisfy the requirements for a fire hazard analysis in accordance with U.S. Department of Energy (DOE) Order 5480.7A. 1.1.2--Ensure that property damage from fire and related perils does not exceed an acceptable level. 1.1.3--Provide input to the ESF Basis For Design (BFD) Document. 1.1.4 Provide input to the facility Safety Analysis Report (SAR) (Paragraph 3.8).

  5. Scanning probe microscopy: Sulfate minerals in scales and cements

    SciTech Connect (OSTI)

    Hall, C. [Schlumberger Cambridge Research (United Kingdom)

    1995-11-01T23:59:59.000Z

    The principles of scanning probe microscopy (SPM) are illustrated with examples from oilfield mineralogy, particularly emphasizing sulfate minerals involved in scale formation and cement hydration chemistry. The topography of the (010) cleavage surface of gypsum observed by atomic force microscopy shows atomically flat terraces separated by shallow steps often only one unit cell high. SPM allows direct observation of processes on mineral surfaces while they are in contact with solutions. The dissolution etching and crystal growth of gypsum and barite are discussed and rates of step migration estimated. The orientation of steps is related to the crystallographic axes. The action of phosphonate crystal growth inhibitor on gypsum and of a chelating scale solvent on barite are also shown. The multiphase microstructure of an oilwell cement clinker is described in relation to its hydration chemistry in contact with water and its reaction with sulfate ions.

  6. Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis

    Broader source: Energy.gov [DOE]

    Fining Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

  7. FOURIER-TRANSFORM ANALYSIS OF NORMAL PHOTOELECTRON DIFFRACTION DATA FOR SURFACE-STRUCTURE DETERMINATION

    E-Print Network [OSTI]

    Hussain, Z.

    2013-01-01T23:59:59.000Z

    Physical Review Letters FOURIER-TRANSFORM ANALYSIS OF NORMAL0 eV. (b) Magnitude of the Fourier transform IF(r)l accord·3. l.94A and V 5 eV. Fourier-transform derived distances ZF

  8. FOURIER-TRANSFORM ANALYSIS OF NORMAL PHOTOELECTRON DIFFRACTION DATA FOR SURFACE-STRUCTURE DETERMINATION

    E-Print Network [OSTI]

    Hussain, Z.

    2013-01-01T23:59:59.000Z

    Academy of Sciences USA FOURIER-TRANSFORM ANALYSIS OF NORMALeV. (b) Magnitude of the Fourier transform IF(r)l accordingV 0 = 5 eV. Figure 3. Fourier-transform derived distances ZF

  9. Local helioseismology and correlation tracking analysis of surface structures in realistic simulations of solar convection

    E-Print Network [OSTI]

    Dali Georgobiani; Junwei Zhao; Alexander Kosovichev; David Benson; Robert F. Stein; Åke Nordlund

    2007-01-31T23:59:59.000Z

    We apply time-distance helioseismology, local correlation tracking and Fourier spatial-temporal filtering methods to realistic supergranule scale simulations of solar convection and compare the results with high-resolution observations from the SOHO Michelson Doppler Imager (MDI). Our objective is to investigate the surface and sub-surface convective structures and test helioseismic measurements. The size and grid of the computational domain are sufficient to resolve various convective scales from granulation to supergranulation. The spatial velocity spectrum is approximately a power law for scales larger than granules, with a continuous decrease in velocity amplitude with increasing size. Aside from granulation no special scales exist, although a small enhancement in power at supergranulation scales can be seen. We calculate the time-distance diagram for f- and p-modes and show that it is consistent with the SOHO/MDI observations. From the simulation data we calculate travel time maps for surface gravity waves (f-mode). We also apply correlation tracking to the simulated vertical velocity in the photosphere to calculate the corresponding horizontal flows. We compare both of these to the actual large-scale (filtered) simulation velocities. All three methods reveal similar large scale convective patterns and provide an initial test of time-distance methods.

  10. Surface and grain boundary scattering in nanometric Cu thin films: A quantitative analysis including twin boundaries

    SciTech Connect (OSTI)

    Barmak, Katayun [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 and Department of Materials Science and Engineering and Materials Research Science and Engineering Center, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Darbal, Amith [Department of Materials Science and Engineering and Materials Research Science and Engineering Center, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Ganesh, Kameswaran J.; Ferreira, Paulo J. [Materials Science and Engineering, The University of Texas at Austin, 1 University Station, Austin, Texas 78712 (United States); Rickman, Jeffrey M. [Department of Materials Science and Engineering and Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Sun, Tik; Yao, Bo; Warren, Andrew P.; Coffey, Kevin R., E-mail: kb2612@columbia.edu [Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816 (United States)

    2014-11-01T23:59:59.000Z

    The relative contributions of various defects to the measured resistivity in nanocrystalline Cu were investigated, including a quantitative account of twin-boundary scattering. It has been difficult to quantitatively assess the impact twin boundary scattering has on the classical size effect of electrical resistivity, due to limitations in characterizing twin boundaries in nanocrystalline Cu. In this study, crystal orientation maps of nanocrystalline Cu films were obtained via precession-assisted electron diffraction in the transmission electron microscope. These orientation images were used to characterize grain boundaries and to measure the average grain size of a microstructure, with and without considering twin boundaries. The results of these studies indicate that the contribution from grain-boundary scattering is the dominant factor (as compared to surface scattering) leading to enhanced resistivity. The resistivity data can be well-described by the combined Fuchs–Sondheimer surface scattering model and Mayadas–Shatzkes grain-boundary scattering model using Matthiessen's rule with a surface specularity coefficient of p?=?0.48 and a grain-boundary reflection coefficient of R?=?0.26.

  11. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Record-Setting Microscopy Illuminates Energy Storage Materials Print Thursday, 22 January 2015 12:10 X-ray microscopy...

  12. Scanning Tunneling Microscopy currents on locally disordered graphene

    E-Print Network [OSTI]

    Tsai, Shan-Wen; Peres, Nuno M. R.; Santos, J. E.; Ribeiro, R. M.

    2009-01-01T23:59:59.000Z

    Scanning Tunneling Microscopy currents on locally disorderedcharacteristic curves of Scanning Tunneling Microscopy (STM)for the calculation of Scanning Tunneling Microscopy (STM)

  13. Surface Science Letters Scanning tunneling microscopy of gold clusters on

    E-Print Network [OSTI]

    Goodman, Wayne

    ; Catalysis There are many fundamental and applied reasons for studying the stability of deposited junctions and active elements. In catalysis, deactivation of the active metal component is di- rectly

  14. Characterization of Dynamic Surface Processes by Atomic Force Microscopy

    E-Print Network [OSTI]

    Shao, Jingru

    2014-01-01T23:59:59.000Z

    hydrogen terminated as synthesized but may slowly become oxidized to oxygen termi- nated under long time storage

  15. Analysis of effect of temperature gradients on surface-tension phenomena in gas-tungsten-arc welds

    SciTech Connect (OSTI)

    Lee, H.A.; Chien, P.S.J.

    1982-10-01T23:59:59.000Z

    Fluid motion directed by surface tension is considered as a contributor to heat penetration in a weld pool. The potential phenomena at the gas-liquid interface were analyzed, and the dependence of surface motion on temperature in the gas-tungsten-arc (GTA) welding process was examined. An existing heat-transfer model was used and was able to predict weld size to +- 50% of the actual value. A momentum-transfer equation was derived by considering the contribution of Lorentz force. The momentum boundary condition was developed and was able to predict the Marangoni effect. The magnitude of surface-tension-driven force is comparable to the gravitational force on one gram. An empirical approach was proposed to couple heat-transfer and momentum-transfer phenomena. A dimensional analysis identified the pertinent dimensionless groups as Reynolds, Weber, Froude, Peclet, and Power numbers and a dimensionless velocity. A simplified form of the correction was developed by combining dimensionless groups to yield a correlation with the Bond, Prandtl, and modified power numbers. Future experimental work was proposed to test the functionality of the dimensionless groups.

  16. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    SciTech Connect (OSTI)

    Kittur, Jayant K.; Herwadkar, T. V. [KLS Gogte Institute of Technology, Belgaum -590 008, Karnataka (India); Parappagoudar, M. B. [Chhatrapati Shivaji Institute of Technology, Durg (C.G)-491001 (India)

    2010-10-26T23:59:59.000Z

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  17. Tool path generation and 3D tolerance analysis for free-form surfaces

    E-Print Network [OSTI]

    Choi, Young Keun

    2005-08-29T23:59:59.000Z

    path calculation is the method by which the trajectories of the tool is constrained to lie on the designed part. Commonly used tool path generations are as follows: 1. planar section curve 2. iso-parametric curve 3. offset curve 4. projection curve 5... sections as tool path 11 Fig. 4. Surfaces in APT are (a) the overall length of tool path is very large, (b) the tool paths do not take into account the geometry of the designed part. 2. Iso-parametric curve: With the introduction of parametric patches...

  18. Tracking granules at the Sun's surface and reconstructing velocity fields. II. Error analysis

    E-Print Network [OSTI]

    R. Tkaczuk; M. Rieutord; N. Meunier; T. Roudier

    2007-07-13T23:59:59.000Z

    The determination of horizontal velocity fields at the solar surface is crucial to understanding the dynamics and magnetism of the convection zone of the sun. These measurements can be done by tracking granules. Tracking granules from ground-based observations, however, suffers from the Earth's atmospheric turbulence, which induces image distortion. The focus of this paper is to evaluate the influence of this noise on the maps of velocity fields. We use the coherent structure tracking algorithm developed recently and apply it to two independent series of images that contain the same solar signal. We first show that a k-\\omega filtering of the times series of images is highly recommended as a pre-processing to decrease the noise, while, in contrast, using destretching should be avoided. We also demonstrate that the lifetime of granules has a strong influence on the error bars of velocities and that a threshold on the lifetime should be imposed to minimize errors. Finally, although solar flow patterns are easily recognizable and image quality is very good, it turns out that a time sampling of two images every 21 s is not frequent enough, since image distortion still pollutes velocity fields at a 30% level on the 2500 km scale, i.e. the scale on which granules start to behave like passive scalars. The coherent structure tracking algorithm is a useful tool for noise control on the measurement of surface horizontal solar velocity fields when at least two independent series are available.

  19. TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Atkinson, R.

    2012-07-31T23:59:59.000Z

    Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

  20. Y-12 Groundwater Protection Program Groundwater and Surface Water Sampling and Analysis Plan For Calendar Year 2009

    SciTech Connect (OSTI)

    Elvado Environmental LLC

    2008-12-01T23:59:59.000Z

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2009 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2009 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2009 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation. Modifications to the CY 2009 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2009 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information.

  1. Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy,

    E-Print Network [OSTI]

    Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, 75205 Paris Cedex 13, France ABSTRACT: Imaging localized plasmon modes in noble- metal nanoparticles-loss spectroscopy (EELS) to study localized surface plasmons on individual gold nanodecahedra. By exciting surface

  2. Oil shale mining cost analysis. Volume I. Surface retorting process. Final report

    SciTech Connect (OSTI)

    Resnick, B.S.; English, L.M.; Metz, R.D.; Lewis, A.G.

    1981-01-01T23:59:59.000Z

    An Oil Shale Mining Economic Model (OSMEM) was developed and executed for mining scenarios representative of commercially feasible mining operations. Mining systems were evaluated for candidate sites in the Piceance Creek Basin. Mining methods selected included: (1) room-and-pillar; (2) chamber-and-pillar, with spent shale backfilling; (3) sublevel stopping; and (4) sublevel stopping, with spent shale backfilling. Mines were designed to extract oil shale resources to support a 50,000 barrels-per-day surface processing facility. Costs developed for each mining scenario included all capital and operating expenses associated with the underground mining methods. Parametric and sensitivity analyses were performed to determine the sensitivity of mining cost to changes in capital cost, operating cost, return on investment, and cost escalation.

  3. Method And Apparatus For Two Dimensional Surface Property Analysis Based On Boundary Measurement

    DOE Patents [OSTI]

    Richardson, John G. (Idaho Falls, ID)

    2005-11-15T23:59:59.000Z

    An apparatus and method for determining properties of a conductive film is disclosed. A plurality of probe locations selected around a periphery of the conductive film define a plurality of measurement lines between each probe location and all other probe locations. Electrical resistance may be measured along each of the measurement lines. A lumped parameter model may be developed based on the measured values of electrical resistance. The lumped parameter model may be used to estimate resistivity at one or more selected locations encompassed by the plurality of probe locations. The resistivity may be extrapolated to other physical properties if the conductive film includes a correlation between resistivity and the other physical properties. A profile of the conductive film may be developed by determining resistivity at a plurality of locations. The conductive film may be applied to a structure such that resistivity may be estimated and profiled for the structure's surface.

  4. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization...

  5. Analyzing the status of oxide surface photochemical reactivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photochemical reactivity Released: July 28, 2013 Invited review shows power of scanning tunneling microscopy to understand and control the surface photochemistry of oxide...

  6. Combined electron microscopy and spectroscopy characterization of as-received, acid purified, and oxidized HiPCO single-wall carbon nanotubes

    SciTech Connect (OSTI)

    Rosario-Castro, Belinda I.; Contes, Enid J. [University of Puerto Rico, Rio Piedras Campus, Department of Chemistry, PO Box 23346, San Juan, 00931-3346 (Puerto Rico); University of Puerto Rico, Rio Piedras Campus, Center for Advanced Nanoscale Materials, PO Box 23346, San Juan, 00931-3346 (Puerto Rico); Lebron-Colon, Marisabel; Meador, Michael A. [NASA John H. Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135 (United States); Sanchez-Pomales, Germarie [University of Puerto Rico, Rio Piedras Campus, Department of Chemistry, PO Box 23346, San Juan, 00931-3346 (Puerto Rico); University of Puerto Rico, Rio Piedras Campus, Center for Advanced Nanoscale Materials, PO Box 23346, San Juan, 00931-3346 (Puerto Rico); Cabrera, Carlos R., E-mail: carlos.cabrera2@upr.edu [University of Puerto Rico, Rio Piedras Campus, Department of Chemistry, PO Box 23346, San Juan, 00931-3346 (Puerto Rico); University of Puerto Rico, Rio Piedras Campus, Center for Advanced Nanoscale Materials, PO Box 23346, San Juan, 00931-3346 (Puerto Rico)

    2009-12-15T23:59:59.000Z

    Single-wall carbon nanotubes (SWCNTs) are very important materials due to their combination of unique structure, dimension, strength, chemical stability, and electronic properties. Nevertheless, SWCNTs from commercial sources usually contain several impurities, which are usually removed by a purification process that includes reflux in acids and strong oxidation. This strong chemical procedure may alter the nanotube properties and it is thus important to control the extent of functionalization and oxidation during the purification procedure. In this report, we provide a comprehensive study of the structure and physical composition of SWCNTs during each step of the purification process. Techniques such as Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Infrared spectroscopy were used to track the SWCNTs structure, in terms of length and diameter distribution, and surface chemical modifications during each purification stage.

  7. Systematic analysis of Persson's contact mechanics theory of randomly rough elastic surfaces

    E-Print Network [OSTI]

    Wolf B. Dapp; Nikolay Prodanov; Martin H. Müser

    2014-06-24T23:59:59.000Z

    We systematically check explicit and implicit assumptions of Persson's contact mechanics theory. It casts the evolution of the pressure distribution ${\\rm Pr}(p)$ with increasing resolution of surface roughness as a diffusive process, in which resolution plays the role of time. The tested key assumptions of the theory are: (a) the diffusion coefficient is independent of pressure $p$, (b) the diffusion process is drift-free at any value of $p$, (c) the point $p=0$ acts as an absorbing barrier, i.e., once a point falls out of contact, it never reenters again, (d) the Fourier component of the elastic energy is only populated if the appropriate wave vector is resolved, and (e) it no longer changes when even smaller wavelengths are resolved. Using high-resolution numerical simulations, we quantify deviations from these approximations and find quite significant discrepancies in some cases. For example, the drift becomes substantial for small values of $p$, which typically represent points in real space close to a contact line. On the other hand, there is a significant flux of points reentering contact. These and other identified deviations cancel each other to a large degree, resulting in an overall excellent description for contact area, contact geometry, and gap distribution functions. Similar fortuitous error cancellations cannot be guaranteed under different circumstances, for instance when investigating rubber friction. The results of the simulations may provide guidelines for a systematic improvement of the theory.

  8. Analysis Of Post-Wet-Chemistry Heat Treatment Effects On Nb SRF Surface Resistance

    SciTech Connect (OSTI)

    Dhakal, Pashupati; Ciovati, Gianluigi; Kneisel, Peter K.; Myneni, Ganapati Rao

    2014-02-01T23:59:59.000Z

    Most of the current research in superconducting radio frequency (SRF) cavities is focused on ways to reduce the construction and operating cost of SRF-based accelerators as well as on the development of new or improved cavity processing techniques. The increase in quality factors is the result of the reduction of the surface resistance of the materials. A recent test on a 1.5 GHz single cell cavity made from ingot niobium of medium purity and heat treated at 1400 deg C in a ultra-high vacuum induction furnace resulted in a residual resistance of ~ 1n{Omega} and a quality factor at 2.0 K increasing with field up to ~ 5×10{sup 10} at a peak magnetic field of 90 mT. In this contribution, we present some results on the investigation of the origin of the extended Q{sub 0}-increase, obtained by multiple HF rinses, oxypolishing and heat treatment of ?all Nb? cavities.

  9. Response Surface Analysis of Elemental Composition and Energy Properties of Corn Stover During Torrefaction

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Richard D. Boardman; Christopher T. Wright

    2012-02-01T23:59:59.000Z

    This research studied the effects of torrefaction temperature (250-250 C) and time (30-120 minutes) on elemental composition and energy properties changes in corn stover. Torrefied material was analyzed for moisture content, moisture-free carbon (%), hydrogen (%), nitrogen (%), sulfur (%), and higher heating value (MJ/kg). Results at 350 C and 120 minutes indicated a steep decrease in moisture content to a final value of about 1.48% - a reduction of about 69%. With respect to carbon content, the increase was about 23%, while hydrogen and sulfur content decreased by about 46.82% and 66.6%, respectively. The hydrogen-to-carbon ratio decreased as torrefaction temperature and time increased, with the lowest value of 0.6 observed at 350 C and 120 minutes. Higher heating value measured at 350 C and 60 minutes increased by about 22% and the maximum degree of carbonization observed was about 1.21. Further, the regression models developed for chemical composition in terms of torrefaction temperature and time adequately described the process with coefficient of determination values (R2) in the range of 0.92-0.99 for the elemental composition and energy properties studied. Response surface plots indicated that increasing both torrefaction temperature and time resulted in decreased moisture content, hydrogen content, and the hydrogen to-carbon ratio, and increased carbon content and higher heating value. This effect was more significant at torrefaction temperatures and times >280 C and >30 minutes.

  10. Fracture mechanics analysis of cast duplex stainless steel elbows containing a surface crack

    SciTech Connect (OSTI)

    Delliou, P.A. le; Semete, P. [Electricite de France, Moret Sur Loing (France). Direction des Etudes et Recherches; Ignaccolo, S. [Electricite de France, Villeurbanne (France). Direction de l`Equipement

    1998-12-31T23:59:59.000Z

    Some components of the primary loop of a PWR are made of cast duplex stainless steel. This kind of steel may age even at relatively low temperatures, (below 400 C, which is within the temperature range of PWR service conditions), leading to a significant decrease of its toughness. This is why a large research program was initiated on the fracture behavior of aged duplex stainless steel elbows in France. The main task of this program was to test three 2/3-scale models of aged PWR primary loop elbows. The first two tests (called SEM1 and SEM2) were conducted under in-plane closure bending at 320 C; the third (called SEM3) was conducted under constant internal pressure and in-plane closure bending at 60 C. The first two elbows contained a semi-elliptical notch machined into the outer surface of one flank, oriented either longitudinally (SEM1 test) or circumferentially (SEM2 test); the third elbow contained both notches described above, one on each flank. This paper presents the results of the experiments, the finite element calculations and the ductile fracture mechanics analyses that were performed.

  11. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    SciTech Connect (OSTI)

    Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

    2013-12-15T23:59:59.000Z

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  12. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    SciTech Connect (OSTI)

    None

    1999-09-01T23:59:59.000Z

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan.

  13. Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD

    SciTech Connect (OSTI)

    Karmare, S.V. [Department of Mechanical Engineering, Government College Engineering, Karad 415 124, Maharashtra (India); Shivaji University, Kolhapur, Maharashtra (India); Tikekar, A.N. [Department of Mechanical Engineering, Walchand College of Engineering, Sangli (India); Shivaji University, Kolhapur, Maharashtra (India)

    2010-03-15T23:59:59.000Z

    This paper presents the study of fluid flow and heat transfer in a solar air heater by using Computational Fluid Dynamics (CFD) which reduces time and cost. Lower side of collector plate is made rough with metal ribs of circular, square and triangular cross-section, having 60 inclinations to the air flow. The grit rib elements are fixed on the surface in staggered manner to form defined grid. The system and operating parameters studied are: e/D{sub h} = 0.044, p/e = 17.5 and l/s = 1.72, for the Reynolds number range 3600-17,000. To validate CFD results, experimental investigations were carried out in the laboratory. It is found that experimental and CFD analysis results give the good agreement. The optimization of rib geometry and its angle of attack is also done. The square cross-section ribs with 58 angle of attack give maximum heat transfer. The percentage enhancement in the heat transfer for square plate over smooth surface is 30%. (author)

  14. Functional group analysis in coal and on coal surfaces by NMR spectroscopy

    SciTech Connect (OSTI)

    Verkade, J.G.

    1989-10-01T23:59:59.000Z

    The reaction of Cl{ovr POCH{sub 2}CH{sub 2}O} (2) with moisture in pyridine extracts of Argonne standard coal samples has been found to give results comparable with the ASTM D3302 moisture analyses of these samples. Differences in the two sets of results are discussed. Some exceptionally large solvent effects on {sup 31}P chemical shifts of model compounds derivatized with 2 and 8 have been discovered. Initial experiments aimed at labile hydrogen functional group analysis of solid coal samples with 2 and Me{sub 2}N{ovr POCH{sub 2}CH{sub 2}O} (15) are described. 17 refs., 1 fig., 6 tabs.

  15. Comparison of surface meteorological data representativeness for the Weldon Spring transport and dispersion modeling analysis

    SciTech Connect (OSTI)

    Lazaro, M.

    1989-06-01T23:59:59.000Z

    The US Department of Energy is conducting the Weldon Spring Site Remedial Action Project under the Surplus Facilities Management Program (SFMP). The major goals of the SFMP are to eliminate potential hazards to the public and the environment that associated with contamination at SFMP sites and to make surplus property available for other uses to the extent possible. This report presents the results of analysis of available meteorological data from stations near the Weldon Spring site. Data that are most representative of site conditions are needed to accurately model the transport and dispersion of air pollutants associated with remedial activities. Such modeling will assist the development of mitigative measures. 17 refs., 12 figs., 6 tabs.

  16. Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides

    SciTech Connect (OSTI)

    Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

    2011-04-20T23:59:59.000Z

    Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

  17. A national facility for biological cryo-electron microscopy

    SciTech Connect (OSTI)

    Saibil, Helen R., E-mail: h.saibil@mail.cryst.bbk.ac.uk [Birkbeck College, Malet Street, London WC1E 7HX (United Kingdom); Grünewald, Kay [University of Oxford, Oxford OX3 7BN (United Kingdom); Stuart, David I. [University of Oxford, Oxford OX3 7BN (United Kingdom); Diamond Light Source, Didcot OX11 0DE (United Kingdom); Birkbeck College, Malet Street, London WC1E 7HX (United Kingdom)

    2015-01-01T23:59:59.000Z

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  18. Spectroscopic imaging in electron microscopy

    SciTech Connect (OSTI)

    Pennycook, Stephen J [ORNL; Colliex, C. [Universite Paris Sud, Orsay, France

    2012-01-01T23:59:59.000Z

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  19. Eigenmodes of surface energies for shape analysis Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, and Konrad Polthier

    E-Print Network [OSTI]

    Polthier, Konrad

    of a flat plate (Chladni plates). For curved surfaces more elaborate models are required to describe

  20. Pb nanowire formation on Al/lead zirconate titanate surfaces in high-pressure hydrogen

    SciTech Connect (OSTI)

    Alvine, Kyle J.; Shutthanandan, V.; Arey, Bruce W.; Wang, Chong M.; Bennett, Wendy D.; Pitman, Stan G.

    2012-07-12T23:59:59.000Z

    Thin films of Al on lead zirconate titanate (PZT) annealed in high-pressure hydrogen at 100C exhibit surface Pb nanowire growth. Wire diameter is approximately 80 nm and length can exceed 100 microns. Based on microstructural analysis using electron microscopy and ion scattering, a vapor-solid scheme with hydrogen as a carrier gas was proposed as a growth mechanism. We expect that these observations may lead to controlled Pb nanowires growth through pattering of the Al film.

  1. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01T23:59:59.000Z

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  2. Y-12 Groundwater Protection Program Groundwater and Surface water Sampling and Analysis Plan for Calendar Year 2006

    SciTech Connect (OSTI)

    N /A

    2006-01-01T23:59:59.000Z

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2006 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2006 will be in accordance with DOE Order 540.1 requirements and the following goals: {sm_bullet} to maintain surveillance of existing and potential groundwater contamination sources; {sm_bullet} to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; {sm_bullet} to identify and characterize long-term trends in groundwater quality at Y-12; and ! to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2006 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2006 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2006 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. The monitoring frequency and selection criteria for each sampling location is in Appendix C. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix D. If issued, addenda to this plan will be inserted in Appendix E, and Groundwater Monitoring Schedules (when issued) will be inserted in Appendix F. Guidance for managing purged groundwater is provided in Appendix G.

  3. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2008

    SciTech Connect (OSTI)

    Elvado Environmental LLC

    2007-09-01T23:59:59.000Z

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2008 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2008 will be in accordance with DOE Order 540.1 requirements and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2008 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge, along the boundary of the Oak Ridge Reservation (Figure A.1). Modifications to the CY 2008 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2008 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3; sample collection methods and procedures are described in Section 4; and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E. The updated sampling frequency for each monitoring well is in Appendix F, and an approved Waste Management Plan is provided in Appendix G.

  4. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2011

    SciTech Connect (OSTI)

    Elvado Environmental LLC

    2010-12-01T23:59:59.000Z

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2011 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2011 will be in accordance with requirements of DOE Order 540.1A and the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring during CY 2011 will be performed primarily in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2011 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 GWPP manager and documented as addenda to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2011 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding data summary tables presented in the narrative sections) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2011) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

  5. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    SciTech Connect (OSTI)

    Elvado Environmental, LLC

    2011-09-01T23:59:59.000Z

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2012 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding a data summary table presented in Section 4) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2012) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

  6. In-situ scanning probe microscopy of electrodeposited nickel.

    SciTech Connect (OSTI)

    Kelly, James J.; Dibble, Dean C.

    2004-10-01T23:59:59.000Z

    The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was imaged on Au(l11) terraces as condensed patches without resolved packing structure. AFM measurements of the roughness evolution of nickel films up to 1200 nm thick on polycrystalline gold indicate that saccharin initially increases the roughness and surface skewness of the deposit that at greater thickness becomes smoother than films deposited without saccharin. Faceting of the deposit morphology decreases as saccharin concentration increases even for the thinnest films that have 3-D growth.

  7. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    SciTech Connect (OSTI)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01T23:59:59.000Z

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

  8. Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis of AET and yield predictions under surface and buried drip irrigation systems using) or subsurface drip irrigation systems (SDI) have the ability to increase water productivity (WP result in an interesting tool to help identify the optimal irrigation system design under different soil

  9. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    SciTech Connect (OSTI)

    Pyka, Grzegorz, E-mail: gregory.pyka@mtm.kuleuven.be [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Kerckhofs, Greet [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium); Biomechanics Research Unit, Université de Liege, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Liège (Belgium); Schrooten, Jan; Wevers, Martine [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 – PB2450, B-3001 Leuven (Belgium)

    2014-01-15T23:59:59.000Z

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution on ?CT-based morphological analysis. • Surface properties influence accuracy of ?CT-based morphology of porous structures. • Total porosity was the least sensitive to surface complexity and scan voxel size. • The beam thickness analysis was overestimated by the surface roughness. • Voxel size customization can significantly reduce a cost of the ?CT-based analysis.

  10. Determination of elastic properties of a MnO{sub 2} coating by surface acoustic wave velocity dispersion analysis

    SciTech Connect (OSTI)

    Sermeus, J.; Glorieux, C., E-mail: christ.glorieux@fys.kuleuven.be [Laboratory for Acoustics and Thermal Physics, KU Leuven, University of Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Sinha, R.; Vereecken, P. M. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Center for Surface Chemistry and Catalysis, KU Leuven, University of Leuven, Kasteelpark Arenberg 23, B-3001 Leuven (Belgium); Vanstreels, K. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2014-07-14T23:59:59.000Z

    MnO{sub 2} is a material of interest in the development of high energy-density batteries, specifically as a coating material for internal 3D structures, thus ensuring rapid energy deployment. Its electrochemical properties have been mapped extensively, but there are, to the best of the authors' knowledge, no records of the elastic properties of thin film MnO{sub 2}. Impulsive stimulated thermal scattering (ISTS), also known as the heterodyne diffraction or transient grating technique, was used to determine the Young's modulus (E) and porosity (?) of a 500?nm thick MnO{sub 2} coating on a Si(001) substrate. ISTS is an all optical method that is able to excite and detect surface acoustic waves (SAWs) on opaque samples. From the measured SAW velocity dispersion, the Young's modulus and porosity were determined to be E?=?25?±?1?GPa and ?=42±1%, respectively. These values were confirmed by independent techniques and determined by a most-squares analysis of the carefully fitted SAW velocity dispersion. This study demonstrates the ability of the presented technique to determine the elastic parameters of a thin, porous film on an anisotropic substrate.

  11. Fast scanning two-photon microscopy

    E-Print Network [OSTI]

    Chang, Jeremy T

    2010-01-01T23:59:59.000Z

    Fast scanning two-photon microscopy coupled with the use light activated ion channels provides the basis for fast imaging and stimulation in the characterization of in vivo neural networks. A two-photon microscope capable ...

  12. Introduction to Scanning Microwave Microscopy Mode

    E-Print Network [OSTI]

    Anlage, Steven

    Wenhai Han Introduction to Scanning Microwave Microscopy Mode Application Note Introduction Mapping through" and meanwhile achieve sufficient sensitivity and resolution. With the invention of scanning been developed to probe materials properties. These include scanning near-field to scanning microwave

  13. Scanning Transmission Electron Microscopy for Nanostructure

    E-Print Network [OSTI]

    Pennycook, Steve

    152 6 Scanning Transmission Electron Microscopy for Nanostructure Characterization S. J. Pennycook. Introduction The scanning transmission electron microscope (STEM) is an invaluable tool atom. The STEM works on the same principle as the normal scanning electron microscope (SEM), by forming

  14. Scanning Transmission Electron Microscopy Investigations of Complex...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scanning Transmission Electron Microscopy Investigations of Complex Oxides Monday, May 23, 2011 - 3:30pm SSRL Conference room 137-322 Professor Tom Vogt, NanoCenter & Department of...

  15. Specific adhesion of peptides on semiconductor surfaces in experiment and simulation

    E-Print Network [OSTI]

    Bachmann, Michael

    with distilled water and drying in air, sample surfaces have been investigated by atomic-force microscopy (AFM phases of peptides on inorganic semiconductor surfaces. The peptide-covered surface fraction can differ

  16. In-situ Transmission Electron Microscopy and Spectroscopy Studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and In-situ Transmission Electron Microscopy and Spectroscopy Studies of...

  17. In Situ Photoelectron Emission Microscopy of a Thermally Induced...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloy. In Situ Photoelectron Emission Microscopy of a Thermally Induced...

  18. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

  19. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization Catalyst...

  20. ORNL microscopy pencils patterns in polymers at the nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (865) 574-7308 ORNL microscopy pencils patterns in polymers at the nanoscale Oak Ridge National Laboratory researchers used atomic force microscopy to draw nanoscale patterns in a...

  1. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials Investigations of electrode interface and architecture...

  2. Environmental cell assembly for use in for use in spectroscopy and microscopy applications

    DOE Patents [OSTI]

    Stowe, Ashley Clinton; Smyrl, Norman; Hallman, Jr., Russell L.

    2014-09-02T23:59:59.000Z

    An environmental cell assembly for use in microscopy and spectroscopy applications, including: an environmentally sealed body assembly configured to selectively hold and contain a sample; a plurality of ports manufactured into one or more surfaces of the body assembly for one or more of evacuating the body assembly and injecting a gas into or removing a gas from the body assembly; a port manufactured into a surface of the body assembly for receiving a translating stage configured to move the sample within the body assembly; and a port manufactured into a surface of the body assembly for receiving one or more lenses utilized in a microscopy or spectroscopy application; wherein the one or more lenses are disposed adjacent the sample without intervening structures disposed there between. The cell assembly also includes a port manufactured into a surface of the body assembly for retaining a window and providing visualization of the sample.

  3. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    SciTech Connect (OSTI)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15T23:59:59.000Z

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  4. Defect production in tungsten: A comparison between field-ion microscopy and molecular-dynamics simulations

    E-Print Network [OSTI]

    Nordlund, Kai

    Defect production in tungsten: A comparison between field-ion microscopy and molecular defect production efficiencies obtained by FIM are a consequence of a surface effect, which greatly enhances defect production compared to that in the crystal interior. Comparison of clustering of vacancies

  5. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1992

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-12-31T23:59:59.000Z

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  6. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis

    E-Print Network [OSTI]

    Biggs, Juliet

    Click Here for Full Article Ground surface deformation patterns, magma supply, and magma storage., and S. McNutt (2010), Ground surface deformation patterns, magma supply, and magma storage at Okmok at Okmok volcano and continuing until the start of the 2008 eruption, magma accumulated in a storage zone

  7. Analytical Electron Microscopy examination of uranium contamination at the DOE Fernald operation site

    SciTech Connect (OSTI)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.; Cunnane, J.C.

    1993-02-01T23:59:59.000Z

    Analytical Electron Microscopy (AEM) has been used to identify uranium-bearing phases present in contaminated soils from the DOE Fernald operation site. A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and AEM was used in isolating and characterizing uranium-rich regions of the contaminated soils. Soil samples were prepared for transmission electron microscopy (TEM) by ultramicrotomy using an embedding resin previously employed for aquatic colloids and biological samples. This preparation method allowed direct comparison between SEM and TEM images. At the macroscopic level much of the uranium appears to be associated with clays in the soils; however, electron beam analysis revealed that the uranium is present as discrete phases, including iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Only low levels of uranium were actually within the clay minerals. The distribution of uranium phases was inhomogeneous at the submicron level.

  8. Image Scanning Microscopy Claus B. Muller and Jorg Enderlein*

    E-Print Network [OSTI]

    Enderlein, Jörg

    Image Scanning Microscopy Claus B. Mu¨ller and Jo¨rg Enderlein* III. Institute of Physics, Georg microscopy technique is introduced, image scanning microscopy (ISM), which combines conventional confocal-laser scanning microscopy with fast wide-field CCD detection. The technique allows for doubling the lateral

  9. Summary of ISO/TC 201 Standard: ISO 29081: 2010, Surface Chemical Analysis - Auger Electron Spectroscopy - Reporting of Methods Used for Charge Control and Charge Correction

    SciTech Connect (OSTI)

    Baer, Donald R.

    2011-11-01T23:59:59.000Z

    This international standard specifies the minimum amount of information required for describing the methods of charge control in measurements of Auger electron transitions from insulating specimens by electron-stimulated Auger electron spectroscopy to be reported with the analytical results. Information is provided in an Annex on methods that have been found useful for charge control prior to or during AES analysis. The Annex also includes a summary table of methods or approaches, ordered by simplicity of approach. A similar international standard has been published for x-ray photoelectron spectroscopy (ISO 19318: 2003(E), Surface chemical analysis - X-ray photoelectron spectroscopy - Reporting of methods used for charge control and charge correction).

  10. Fluid accumulation in thin-film fl ows driven by surface tension and gravity (I): Rigorous analysis of a drainage equation

    E-Print Network [OSTI]

    Cuesta, C M

    2011-01-01T23:59:59.000Z

    We derive a boundary layer equation describing accumulation regions within a thin-film approximation framework where gravity and surface tension balance. As part of the analysis of this problem we investigate in detail and rigorously the 'drainage' equation (phi"'+1)phi^3=1. In particular, we prove that all solutions that do not tend to 1 as the independent variable goes to infinity are oscillatory, and that they oscillate in a very specific way. This result and the method of proof will be used in the analysis of solutions of the afore mentioned boundary layer problem.

  11. Potential applications of microscopy for steam coal

    SciTech Connect (OSTI)

    DeVanney, K.F.; Clarkson, R.J.

    1995-08-01T23:59:59.000Z

    Optical microscopy has been an extremely useful tool for many industrial sectors in the past. This paper introduces some of the potential applications of using coal and fly ash carbon microscopy for the combustion process and steam coal industry. Coal and fly ash carbon microscopic classification criteria are described. Plant sample data are presented which demonstrate that these techniques can be useful for coal selection and for problem solving in the coal-fired power plant environment. Practical recommendations for further study are proposed.

  12. Surface Topography Quantification by Integral and Feature-related Parameters

    E-Print Network [OSTI]

    Smid, Michiel

    Surface Topography Quantification by Integral and Feature-related Parameters Quantifizieren von microscopy, the topography of brittle fracture surfaces and wire- eroded surfaces was quantified. The globalÈche, Topometrie 1 Introduction Surface topographies contain information about their gen- eration processes

  13. DeepView: A collaborative framework for distributed microscopy

    SciTech Connect (OSTI)

    Parvin, B.; Taylor, J.; Cong, G.

    1998-08-10T23:59:59.000Z

    This paper outlines the motivation, requirements, and architecture of a collaborative framework for distributed virtual microscopy. In this context, the requirements are specified in terms of (1) functionality, (2) scalability, (3) interactivity, and (4) safety and security. Functionality refers to what and how an instrument does something. Scalability refers to the number of instruments, vendor-specific desktop workstations, analysis programs, and collaborators that can be accessed. Interactivity refers to how well the system can be steered either for static or dynamic experiments. Safety and security refers to safe operation of an instrument coupled with user authentication, privacy, and integrity of data communication. To meet these requirements, we introduce three types of services in the architecture: Instrument Services (IS), Exchange Services (ES), and Computational Services (CS). These services may reside on any host in the distributed system. The IS provide an abstraction for manipulating different types of microscopes; the ES provide common services that are required between different resources; and the CS provide analytical capabilities for data analysis and simulation. These services are brought together through CORBA and its enabling services, e.g., Event Services, Time Services, Naming Services, and Security Services. Two unique applications have been introduced into the CS for analyzing scientific images either for instrument control or recovery of a model for objects of interest. These include: in-situ electron microscopy and recovery of 3D shape from holographic microscopy. The first application provides a near real-time processing of the video-stream for on-line quantitative analysis and the use of that information for closed-loop servo control. The second application reconstructs a 3D representation of an inclusion (a crystal structure in a matrix) from multiple views through holographic electron microscopy. These application require steering external stimuli or computational parameters for a particular result. In a sense, ''computational instruments'' (symmetric multiprocessors) interact closely with data generated from ''experimental instruments'' (unique microscopes) to conduct new experiments and bring new functionalities to these instruments. Both of these features exploit high-performance computing and low-latency networks to bring novel functionalities to unique scientific imaging instruments.

  14. Bonding Structure of Phenylacetylene on Hydrogen-Terminated Si(111) and Si(100): Surface Photoelectron Spectroscopy Analysis and Ab Initio Calculations

    SciTech Connect (OSTI)

    M Kondo; T Mates; D Fischer; F Wudl; E Kramer

    2011-12-31T23:59:59.000Z

    Interfaces between phenylacetylene (PA) monolayers and two silicon surfaces, Si(111) and Si(100), are probed by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and the results are analyzed using ab initio molecular orbital calculations. The monolayer systems are prepared via the surface hydrosilylation reaction between PA and hydrogen-terminated silicon surfaces. The following spectral features are obtained for both of the PA-Si(111) and PA-Si(100) systems: a broad {pi}-{pi}* shakeup peak at 292 eV (XPS), a broad first ionization peak at 3.8 eV (UPS), and a low-energy C 1s {yields} {pi}* resonance peak at 284.3 eV (NEXAFS). These findings are ascribed to a styrene-like {pi}-conjugated molecular structure at the PA-Si interface by comparing the experimental data with theoretical analysis results. A conclusion is drawn that the vinyl group can keep its {pi}-conjugation character on the hydrogen-terminated Si(100) [H:Si(100)] surface composed of the dihydride (SiH{sub 2}) groups as well as on hydrogen-terminated Si(111) having the monohydride (SiH) group. The formation mechanism of the PA-Si(100) interface is investigated within cluster ab initio calculations, and the possible structure of the H:Si(100) surface is discussed based on available data.

  15. Polymer Filler Aging and Failure Studied by Lateral Force Microscopy

    SciTech Connect (OSTI)

    Ratto, T; Saab, A P

    2009-05-27T23:59:59.000Z

    In the present work, we study, via force microscopy, the basic physical interactions of a single bead of silica filler with a PDMS matrix both before and after exposure to gamma radiation. Our goal was to confirm our results from last year, and to explore force microscopy as a means of obtaining particle-scale polymer/filler interactions suitable for use as empirical inputs to a computational model consisting of an ensemble of silica beads embedded in a PDMS matrix. Through careful calibration of a conventional atomic force microscope, we obtained both normal and lateral force data that was fitted to yield adhesion, surface shear modulus, and friction of a 1 {micro}m silica bead in contact with PDMS layers of various thickness. Comparison of these terms before and after gamma exposure indicated that initially, radiation exposure lead to softening of the PDMS, but eventually resulted in stiffening. Simultaneously, adhesion between the polymer and silica decreased. This could indicate a serious failure path for filled PDMS exposed to radiation, whereby stiffening of the bulk polymer leads to loss of compressive elastic behavior, while a decrease in polymer filler adhesion results in an increased likelihood of stress failure under load. In addition to further testing of radiation damaged polymers, we also performed FEA modeling of silica beads in a silicone matrix using the shear modulus and adhesion values isolated from the force microscopy experiments as model inputs. The resulting simulation indicated that as a polymer stiffens due to impinging radiation, it also undergoes weakening of adhesion to the filler. The implication is that radiation induces a compound failure mode in filled polymer systems.

  16. The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces

    SciTech Connect (OSTI)

    Orme, C A; Giocondi, J L

    2007-04-16T23:59:59.000Z

    Over the past decade there has been a natural drive to extend the investigation of dynamic surfaces in fluid environments to higher resolution characterization tools. Various aspects of solution crystal growth have been directly visualized for the first time. These include island nucleation and growth using transmission electron microscopy and scanning tunneling microscopy; elemental step motion using scanning probe microscopy; and the time evolution of interfacial atomic structure using various diffraction techniques. In this lecture we will discuss the use of one such in situ method, scanning probe microscopy, as a means of measuring surface dynamics during crystal growth and dissolution. We will cover both practical aspects of imaging such as environmental control, fluid flow, and electrochemical manipulation, as well as the types of physical measurements that can be made. Measurements such as step motion, critical lengths, nucleation density, and step fluctuations, will be put in context of the information they provide about mechanistic processes at surfaces using examples from metal and mineral crystal growth.

  17. Analysis and optimization of gas pipeline networks and surface production facilities for the Waskom Field--Harrison County, Texas

    E-Print Network [OSTI]

    Pang, Jason Ui-Yong

    1995-01-01T23:59:59.000Z

    in these simulation Surface facilities for the Waskom field include pipelines of varying, sizes, separators, compressors, valves, and production manifolds. After creating and verifying the field model, we determined that the field possesses greater compressor...

  18. Spatial resolution in vector potential photoelectron microscopy

    SciTech Connect (OSTI)

    Browning, R. [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)] [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)

    2014-03-15T23:59:59.000Z

    The experimental spatial resolution of vector potential photoelectron microscopy is found to be much higher than expected because of the cancellation of one of the expected contributions to the point spread function. We present a new calculation of the spatial resolution with support from finite element ray tracing, and experimental results.

  19. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09T23:59:59.000Z

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  20. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ciovati, Gianluigi; Baldwin, Charles; Cheng, Guangfeng; Flood, Roger; Jordan, Kevin; Kneisel, Peter; Morrone, Michael; Nemes, George; Turlington, Larry; Wang, Haipeng; Wilson, Katherine

    2012-03-16T23:59:59.000Z

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  1. Surfaces of Intermetallics: Quasicrystals and Beyond

    SciTech Connect (OSTI)

    Yuen, Chad [Ames Laboratory

    2012-10-26T23:59:59.000Z

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  2. Calibration of fluorescence resonance energy transfer in microscopy

    DOE Patents [OSTI]

    Youvan, Douglas C. (San Jose, CA); Silva, Christopher M. (Sunnyvale, CA); Bylina, Edward J. (San Jose, CA); Coleman, William J. (Moutain View, CA); Dilworth, Michael R. (Santa Cruz, CA); Yang, Mary M. (San Jose, CA)

    2002-09-24T23:59:59.000Z

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  3. Calibration of fluorescence resonance energy transfer in microscopy

    DOE Patents [OSTI]

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09T23:59:59.000Z

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  4. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    SciTech Connect (OSTI)

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01T23:59:59.000Z

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  5. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy

    SciTech Connect (OSTI)

    Loganathan, Muthukumaran; Bristow, Douglas A., E-mail: dbristow@mst.edu [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri 65401 (United States)

    2014-04-15T23:59:59.000Z

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  6. Surface Spectral Albedo Intensive Operational Period at the ARM SGP Site in august 2002: Results, Analysis, and Future Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrialSupportingAlbedo at theSurface Soil Surface

  7. Structural contribution to the roughness of supersmooth crystal surface

    SciTech Connect (OSTI)

    Butashin, A. V.; Muslimov, A. E., E-mail: amuslimov@mail.ru; Kanevsky, V. M.; Deryabin, A. N.; Pavlov, V. A.; Asadchikov, V. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-05-15T23:59:59.000Z

    Technological advances in processing crystals (Si, sapphire {alpha}-Al{sub 2}O{sub 3}, SiC, GaN, LiNbO{sub 3}, SrTiO{sub 3}, etc.) of substrate materials and X-ray optics elements make it possible to obtain supersmooth surfaces with a periodicity characteristic of the crystal structure. These periodic structures are formed by atomically smooth terraces and steps of nano- and subnanometer sizes, respectively. A model surface with such nanostructures is proposed, and the relations between its roughness parameters and the height of atomic steps are determined. The roughness parameters calculated from these relations almost coincide with the experimental atomic force microscopy (AFM) data obtained from 1 Multiplication-Sign 1 and 10 Multiplication-Sign 10 {mu}m areas on the surface of sapphire plates with steps. The minimum roughness parameters for vicinal crystal surfaces, which are due to the structural contribution, are calculated based on the approach proposed. A comparative analysis of the relief and roughness parameters of sapphire plate surfaces with different degrees of polishing is performed. A size effect is established: the relief height distribution changes from stochastic to regular with a decrease in the surface roughness.

  8. Surface forces: Surface roughness in theory and experiment

    SciTech Connect (OSTI)

    Parsons, Drew F., E-mail: Drew.Parsons@anu.edu.au; Walsh, Rick B.; Craig, Vincent S. J. [Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)] [Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-28T23:59:59.000Z

    A method of incorporating surface roughness into theoretical calculations of surface forces is presented. The model contains two chief elements. First, surface roughness is represented as a probability distribution of surface heights around an average surface height. A roughness-averaged force is determined by taking an average of the classic flat-surface force, weighing all possible separation distances against the probability distributions of surface heights. Second the model adds a repulsive contact force due to the elastic contact of asperities. We derive a simple analytic expression for the contact force. The general impact of roughness is to amplify the long range behaviour of noncontact (DLVO) forces. The impact of the elastic contact force is to provide a repulsive wall which is felt at a separation between surfaces that scales with the root-mean-square (RMS) roughness of the surfaces. The model therefore provides a means of distinguishing between “true zero,” where the separation between the average centres of each surface is zero, and “apparent zero,” defined by the onset of the repulsive contact wall. A normal distribution may be assumed for the surface probability distribution, characterised by the RMS roughness measured by atomic force microscopy (AFM). Alternatively the probability distribution may be defined by the histogram of heights measured by AFM. Both methods of treating surface roughness are compared against the classic smooth surface calculation and experimental AFM measurement.

  9. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2014

    SciTech Connect (OSTI)

    none,

    2013-09-01T23:59:59.000Z

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2014 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring is performed by the GWPP during CY 2014 to achieve the following goals: 􀁸 to protect the worker, the public, and the environment; 􀁸 to maintain surveillance of existing and potential groundwater contamination sources; 􀁸 to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; 􀁸 to identify and characterize long-term trends in groundwater quality at Y-12; and 􀁸 to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12.

  10. AUTOMATED 3D MAPPING & SHAPE ANALYSIS OF THE LATERAL VENTRICLES VIA FLUID REGISTRATION OF MULTIPLE SURFACE-BASED ATLASES

    E-Print Network [OSTI]

    Thompson, Paul

    SURFACE-BASED ATLASES Yi-Yu Chou1 , Natasha Leporé1 , Greig I. de Zubicaray2 , Stephen E. Rose2 , Owen T. Carmichael3 , James T. Becker4 , Arthur W. Toga1 , Paul M. Thompson1 1 Laboratory of Neuro Imaging, UCLA Dept

  11. Single particle microscopy with nanometer resolution

    E-Print Network [OSTI]

    Georg Jacob; Karin Groot-Berning; Sebastian Wolf; Stefan Ulm; Luc Couturier; Ulrich G. Poschinger; Ferdinand Schmidt-Kaler; Kilian Singer

    2014-05-26T23:59:59.000Z

    We experimentally demonstrate nanoscopic transmission microscopy relying on a deterministic single particle source. This increases the signal-to-noise ratio with respect to conventional microscopy methods, which employ Poissonian particle sources. We use laser-cooled ions extracted from a Paul trap, and demonstrate remote imaging of transmissive objects with a resolution of 8.6 $\\pm$ 2.0nm and a minimum two-sample deviation of the beam position of 1.5nm. Detector dark counts can be suppressed by 6 orders of magnitudes through gating by the extraction event. The deterministic nature of our source enables an information-gain driven approach to imaging. We demonstrate this by performing efficient beam characterization based on a Bayes experiment design method.

  12. Frontiers of in situ electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01T23:59:59.000Z

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore »this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  13. Scanning electron microscopy of cold gases

    E-Print Network [OSTI]

    Santra, Bodhaditya

    2015-01-01T23:59:59.000Z

    Ultracold quantum gases offer unique possibilities to study interacting many-body quantum systems. Probing and manipulating such systems with ever increasing degree of control requires novel experimental techniques. Scanning electron microscopy is a high resolution technique which can be used for in situ imaging, single site addressing in optical lattices and precision density engineering. Here, we review recent advances and achievements obtained with this technique and discuss future perspectives.

  14. TheElectronMicroscopyCore(EMC) UniversityofMissouriColumbia,MO65211

    E-Print Network [OSTI]

    Noble, James S.

    TheElectronMicroscopyCore(EMC) UniversityofMissouriColumbia,MO65211 The. The EMC houses two field emission SEM's, a Hitachi cold-field SEM (S-4700) and a FEI thermal FE SEM imaging and chemical analysis from their SEM/EDS systems. AdditionalSupportby: FormoreInformationortoregistergoto:http://www.emc

  15. 11/8/09 2:31 PMPrincipal component analysis of potential energy surfaces of large clusters: al..... (DOI: 10.1039/b913802a) Page 1 of 16http://www.rsc.org.proxy.uchicago.edu/delivery/_ArticleLinking/Artic...?JournalCode=CP&Year=2009&ManuscriptID=b913802a&

    E-Print Network [OSTI]

    Berry, R. Stephen

    11/8/09 2:31 PMPrincipal component analysis of potential energy surfaces of large clusters: al Chemical Physics Principal component analysis of potential energy surfaces of large clusters: allowing The analysis of the potential energy surfaces (PES) of clusters has proven to be a useful tool in theoretical

  16. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

  17. Flash Scanning Electron Microscopy Raphael Sznitman, Aurelien Lucchi, Marco Cantoni,

    E-Print Network [OSTI]

    Dalang, Robert C.

    Flash Scanning Electron Microscopy Raphael Sznitman, Aurelien Lucchi, Marco Cantoni, Graham Knott. Scanning Electron Microscopy (SEM) is an invaluable tool for biologists and neuroscientists to study brain earlier methods, we explicitly balance the conflicting requirements of spending enough time scanning

  18. Video-rate Scanning Confocal Microscopy and Microendoscopy

    E-Print Network [OSTI]

    Nichols, Alexander J.

    Confocal microscopy has become an invaluable tool in biology and the biomedical sciences, enabling rapid, high-sensitivity, and high-resolution optical sectioning of complex systems. Confocal microscopy is routinely used, ...

  19. Quantitative imaging of living cells by deep ultraviolet microscopy

    E-Print Network [OSTI]

    Zeskind, Benjamin J

    2006-01-01T23:59:59.000Z

    Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

  20. New Developments in Transmission Electron Microscopy for Nanotechnology**

    E-Print Network [OSTI]

    Wang, Zhong L.

    New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

  1. Theoretical analysis of reflected ray error from surface slope error and their application to the solar concentrated collector

    E-Print Network [OSTI]

    Huang, Weidong

    2011-01-01T23:59:59.000Z

    Surface slope error of concentrator is one of the main factors to influence the performance of the solar concentrated collectors which cause deviation of reflected ray and reduce the intercepted radiation. This paper presents the general equation to calculate the standard deviation of reflected ray error from slope error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 5 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope error is transferred to the reflected ray in more than 2 folds when the incidence angle is more than 0. The equation for reflected ray error is generally fit for all reflection surfaces, and can also be applied to control the error in designing an abaxial optical system.

  2. Quantify shape, angularity and surface texture of aggregates using image analysis and study their effect on performance

    E-Print Network [OSTI]

    Sukhwani, Rajni

    2003-01-01T23:59:59.000Z

    Material Selection. . Gradation. . Mixture Design. Laboratory Tests. . . . . . . . . APA Test. . Hamburg Test. Results. Results and Analysis. . 45 45 47 48 48 49 50 5 VI STATISTICAL ANALYSIS. T-Test Results... . . Hamburg Test Results of all the Three Aggregates. . . . . 47 51 17 APA Test Results of all the Three Aggregates. . . 52 18 Gradient Angularity Results of Fine Aggregates. . . 54 Radius Angularity Results of Fine Aggregates . . 54 FIGURE Page 20 Form...

  3. Electron microscopy of phase and structural transformations in soft magnetic nanocrystalline Fe-Zr-N films

    SciTech Connect (OSTI)

    Zhigalina, O. M., E-mail: zhigal@ns.crys.ras.ru; Khmelenin, D. N. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Sheftel', E. N.; Usmanova, G. Sh. [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation)] [Russian Academy of Sciences, Baikov Institute of Metallurgy and Materials Science (Russian Federation); Vasil'ev, A. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Carlsson, A. [FEI Company (Netherlands)] [FEI Company (Netherlands)

    2013-03-15T23:59:59.000Z

    The effect of deposition conditions (film thickness) on the structure of soft magnetic Fe{sub 80-78}Zr{sub 10}N{sub 10-12} films formed by reactive magnetron deposition on a heat-resistant glass substrate has been investigated by analytical transmission electron microscopy, high-resolution electron microscopy, and diffraction analysis. The processes of evolution of the phase and structural state of films and the film-substrate interface upon annealing in the temperature range of 200-650 Degree-Sign C have been analyzed taking into account the thermodynamic, kinetic, and structural factors and the specific features of the nanocrystalline state.

  4. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    SciTech Connect (OSTI)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08T23:59:59.000Z

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  5. Analytical electron microscopy examination of solid reaction products in long-term test of SRL 200 waste glasses

    SciTech Connect (OSTI)

    Buck, E.C.; Fortner, J.A.; Bates, J.K.; Feng, X.; Dietz, N.L.; Bradley, C.R.; Tani, B.S.

    1993-12-31T23:59:59.000Z

    Alteration phases, found on the leached surfaces and present as colloids in the leachates of 200-based frit (fully active and simulated) nuclear waste glass, reacted under static test conditions, at a surface area to leachate volume ratio of 20,000 m{sup {minus}1} for 15 days to 728 days, have been examined by analytical electron microscopy. The compositions of the secondary phases were determined using x-ray energy dispersive spectroscopy and electron energy loss spectroscopy, and structural analysis was accomplished by electron diffraction. Long-term samples of simulated glass, which had undergone an acceleration of reaction after 182 days, possessed a number of silicate secondary phases, including; smectite (iron silicate and potassium iron alumina-silicate, weeksite (uranium silicate), zeolite (calcium potassium alumino-silicate), tobermorite (calcium silicate), and a pure silica phase. However, uranium silicates and smectite have also been observed in tests, which have not undergone the acceleration of reaction, in both the leachate and leached layer, suggesting that these phases are not responsible for the acceleration of reaction.

  6. Chemically-selective imaging of brain structures with CARS microscopy

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Chemically-selective imaging of brain structures with CARS microscopy Conor L. Evans1§ , Xiaoyin Xu anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy

  7. Investigation of microstructure, surface morphology, and hardness properties of PtIr films by magnetron sputtering

    SciTech Connect (OSTI)

    Lee, Chao-Te; Liu, Bo-Heng; Chang, Chun-Ming; Lin, Yu-Wei [Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu 300, Taiwan (China)

    2010-09-15T23:59:59.000Z

    Pt{sub 1-x}Ir{sub x} films with x varying from 22.76 to 63.25 at. % are deposited on (100) Si wafer substrates at 400 deg. C by magnetron sputtering deposition. The effects of the Ir concentration on the microstructure, morphology, and hardness of PtIr films are investigated by field emission scanning electron microscopy, x-ray diffraction, atomic force microscopy, and nanoindentation system. The columnar structures are observed by field emission scanning electron microscopy. X-ray diffraction analysis reveals that PtIr films have preferred orientation along Pt(111) when the Ir concentration is below 50.84 at. %. When the Ir content is more than 50.84 at. %, the PtIr film shifts to another preferred orientation, Ir(111). The surface morphology is analyzed by atomic force microscopy. The roughness of the PtIr films decreases with increasing Ir content. The hardness of all the PtIr films is below 20 GPa. The maximum hardness of the PtIr films is about 14.9 GPa when the Ir concentration is 57.9 at. %.

  8. Direct measurements of ensemble particle and surface interactions on homogeneous and patterned substrates

    E-Print Network [OSTI]

    Wu, Hung-Jen

    2006-08-16T23:59:59.000Z

    in colloidal ensembles levitated above macroscopic surfaces. TIRM and VM are well established optical microscopy techniques for measuring normal and lateral colloidal excursions near macroscopic planar surfaces. The interactions between particle-particle...

  9. Integrated fiducial sample mount and software for correlated microscopy

    SciTech Connect (OSTI)

    Timothy R McJunkin; Jill R. Scott; Tammy L. Trowbridge; Karen E. Wright

    2014-02-01T23:59:59.000Z

    A novel design sample mount with integrated fiducials and software for assisting operators in easily and efficiently locating points of interest established in previous analytical sessions is described. The sample holder and software were evaluated with experiments to demonstrate the utility and ease of finding the same points of interest in two different microscopy instruments. Also, numerical analysis of expected errors in determining the same position with errors unbiased by a human operator was performed. Based on the results, issues related to acquiring reproducibility and best practices for using the sample mount and software were identified. Overall, the sample mount methodology allows data to be efficiently and easily collected on different instruments for the same sample location.

  10. Materials Characterization Capabilities at the HTML: Surface...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    density analysis of forming samples using advanced characterization techniques Materials Characterization Capabilities at the HTML: SurfaceSub-surface dislocation density...

  11. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    SciTech Connect (OSTI)

    Foxall, W; Vincent, P; Walter, W

    1999-07-23T23:59:59.000Z

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.

  12. Enhanced electrostatic discrimination of proteins on nanoparticle-coated surfaces

    E-Print Network [OSTI]

    Dubin, Paul D.

    Enhanced electrostatic discrimination of proteins on nanoparticle-coated surfaces Yisheng Xu gold nanoparticle (GNP) modified surface was investigated by atomic force microscopy (AFM) and surface-membrane ultraltration,6 and polyelectrolyte-induced phase separation.7 In recent years, nanoparticles (NP) modied

  13. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect (OSTI)

    Marchuk, Kyle

    2013-05-15T23:59:59.000Z

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  14. Interference microscopy and Fourier fringe analysis applied to measuring

    E-Print Network [OSTI]

    Ribak, Erez

    in Fig. 1. It forms an image of the experimental cell that interferes with a plane wave, the two being (Peltier) coolers; 5,

  15. Analysis of confocal microscopy under ultrashort light-pulse illumination

    SciTech Connect (OSTI)

    Kempe, M.; Rudolph, W. (Univ. of New Mexico, Albuquerque (United States))

    1993-02-01T23:59:59.000Z

    The resolution of confocal laser scanning microscopes is analyzed if they are used in measurements that are to combine high spatial and high temporal resoltuion. A generalized Fourier-optical treatment is developed in which the system characteristics contain all necessary information regarding the optical arrangement and the illuminating light pulses. Coherent and incoherent imaging are considered in detail. 10 refs., 8 figs.

  16. Fast electron microscopy via compressive sensing

    DOE Patents [OSTI]

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09T23:59:59.000Z

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  17. New Microscopy Patent Awarded | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNewIdeasofNew Microscopy Patent

  18. Chemistry on the Edge: A Microscopic Analysis of the Intercalation, Exfoliation, Edge Functionalization, and Monolayer Surface Tiling

    E-Print Network [OSTI]

    Chemistry on the Edge: A Microscopic Analysis of the Intercalation, Exfoliation, EdgeVed May 29, 1998 Abstract: The intercalation and exfoliation reactions of R-zirconium phosphate, Zr(HPO4-assembled aperiodic multilayers.3 The exfoliation of clays, alkali transition metal oxides, metal phosphates, graphite

  19. Whole Slide Image Analysis Quantification using Aperio Digital Imaging in a Mouse Lung Metastasis Ronne L. Surface2

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Whole Slide Image Analysis Quantification using Aperio Digital Imaging in a Mouse Lung Metastasis quantitate metastatic mouse lung tumors in a lung section using a H&E stain. Lung sections from a mouse lung of view from each slide representing a whole lung lobe with multiple lung metastases was selected

  20. An In Situ Study of the Martensitic Transformation in Shape Memory Alloys Using Photoemission Electron Microscopy

    SciTech Connect (OSTI)

    Cai, Mingdong; Langford, Stephen C.; Dickinson, J. T.; Xiong, Gang; Droubay, Timothy C.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.

    2007-04-15T23:59:59.000Z

    Thermally-induced martensitic phase transformations in polycrystalline CuZnAl and thin-film NiTiCu shape memory alloys were probed using photoemission electron microscopy (PEEM). Ultra-violet photoelectron spectroscopy shows a reversible change in the apparent work function during transformation, presumably due to the contrasting surface electronic structures of the martensite and austenite phases. In situ PEEM images provide information on the spatial distribution of these phases and the evolution of the surface microstructure during transformation. PEEM offers considerable potential for improving our understanding of martensitic transformations in shape memory alloys in real time.

  1. Imaging of buried phosphorus nanostructures in silicon using scanning tunneling microscopy

    SciTech Connect (OSTI)

    Oberbeck, Lars [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); TOTAL Marketing Services, New Energies, La Défense 10, 92069 Paris La Défense Cedex (France); Reusch, Thilo C. G.; Hallam, Toby; Simmons, Michelle Y., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Schofield, Steven R. [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom); Curson, Neil J., E-mail: n.curson@ucl.ac.uk, E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); London Centre for Nanotechnology, UCL, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE (United Kingdom)

    2014-06-23T23:59:59.000Z

    We demonstrate the locating and imaging of single phosphorus atoms and phosphorus dopant nanostructures, buried beneath the Si(001) surface using scanning tunneling microscopy. The buried dopant nanostructures have been fabricated in a bottom-up approach using scanning tunneling microscope lithography on Si(001). We find that current imaging tunneling spectroscopy is suited to locate and image buried nanostructures at room temperature and with residual surface roughness present. From these studies, we can place an upper limit on the lateral diffusion during encapsulation with low-temperature Si molecular beam epitaxy.

  2. Surface Topography of 'Hotspot' Regions from a Single Cell SRF Cavity

    SciTech Connect (OSTI)

    Xin Zhao, Gianluigi Ciovati, Charles Reece, Andy Wu

    2009-05-01T23:59:59.000Z

    Performance of SRF cavities are limited by non-linear localized effects. The variation of local material characters between "hot" and "cold" spots is thus of intense interest. Such locations were identified in a BCP-etched large-grain single-cell cavity and removed for examination by high resolution electron microscopy (SEM), electron-back scattering diffraction microscopy (EBSD), optical microscopy, and 3D profilometry. Pits with clearly discernable crystal facets were observed in both "hotspot" and "coldspot" specimens. The pits were found in-grain, at bi-crystal boundaries, and on tri-crystal junctions. They are interpreted as etch pits induced by surface crystal defects (e.g. dislocations). All "coldspots" examined had qualitatively low density of etching pits or very shallow tri-crystal boundary junction. EBSD revealed the crystal structure surrounding the pits via crystal phase orientation mapping, while 3D profilometry gave information on the depth and size of the pits. In addition, a survey of the samples by energy dispersive X-ray analysis (EDX) did not show any significant contamination of the samples surface.

  3. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    SciTech Connect (OSTI)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01T23:59:59.000Z

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

  4. Effects of extreme pressure additive chemistry on rolling element bearing surface durability

    SciTech Connect (OSTI)

    Evans, Ryan D. [Timken Company; Nixon, H. P. [Timken Company; Darragh, Craig V. [Timken Company; Howe, Jane Y [ORNL; Coffey, Dorothy W [ORNL

    2007-01-01T23:59:59.000Z

    Lubricant additives have been known to affect rolling element bearing surface durability for many years. Tapered roller bearings were used in fatigue testing of lubricants formulated with gear oil type additive systems. These systems have sulfur- and phosphoruscontaining compounds used for gear protection as well as bearing lubrication. Several variations of a commercially available base additive formulation were tested having modified sulfur components. The variations represent a range of ''active'' extreme pressure (EP) chemistries. The bearing fatigue test results were compared with respect to EP formulation and test conditions. Inner ring near-surface material in selected test bearings was evaluated on two scales: the micrometer scale using optical metallography and the nanometer scale using transmission electron microscopy (TEM). Focused-ion beam (FIB) techniques were used for TEM specimen preparation. Imaging and chemical analysis of the bearing samples revealed near-surface material and tribofilm characteristics. These results are discussed with respect to the relative fatigue lives.

  5. Atomic imaging and modeling of H{sub 2}O{sub 2}(g) surface passivation, functionalization, and atomic layer deposition nucleation on the Ge(100) surface

    SciTech Connect (OSTI)

    Kaufman-Osborn, Tobin [Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093 (United States); Chagarov, Evgueni A. [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States); Kummel, Andrew C., E-mail: akummel@ucsd.edu [Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States)

    2014-05-28T23:59:59.000Z

    Passivation, functionalization, and atomic layer deposition nucleation via H{sub 2}O{sub 2}(g) and trimethylaluminum (TMA) dosing was studied on the clean Ge(100) surface at the atomic level using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Chemical analysis of the surface was performed using x-ray photoelectron spectroscopy, while the bonding of the precursors to the substrate was modeled with density functional theory (DFT). At room temperature, a saturation dose of H{sub 2}O{sub 2}(g) produces a monolayer of a mixture of –OH or –O species bonded to the surface. STS confirms that H{sub 2}O{sub 2}(g) dosing eliminates half-filled dangling bonds on the clean Ge(100) surface. Saturation of the H{sub 2}O{sub 2}(g) dosed Ge(100) surface with TMA followed by a 200?°C anneal produces an ordered monolayer of thermally stable Ge–O–Al bonds. DFT models and STM simulations provide a consistent model of the bonding configuration of the H{sub 2}O{sub 2}(g) and TMA dosed surfaces. STS verifies the TMA/H{sub 2}O{sub 2}/Ge surface has an unpinned Fermi level with no states in the bandgap demonstrating the ability of a Ge–O–Al monolayer to serve as an ideal template for further high-k deposition.

  6. Biomass Surface Characterization Laboratory

    E-Print Network [OSTI]

    the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

  7. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal...

  8. Investigation of wettability by NMR microscopy and spin-lattice relaxation

    SciTech Connect (OSTI)

    Doughty, D.A.; Tomutsa, Liviu

    1993-11-01T23:59:59.000Z

    The wettability of reservoir rock has an important impact on the efficiency of oil recovery processes and the distribution of oil and water within the reservoir. One of the potentially useful tools for wettability measurements is nuclear magnetic resonance (NMR) and spin-lattice relaxation. More recently using NMR microscopy NIPER has developed the capability of imaging one- and two-phase fluid systems in reservoir rock at resolutions to 25 microns. Effects seen in the images of fluids within the pore space of rocks near the rock grain surfaces hinted at the possibility of using NMR microscopy to map the wettability variations at grain sites within the pore space. Investigations were begun using NMR microscopy and spin-lattice relaxation time measurements on rock/fluid systems and on well-defined fractional wet model systems to study these effects. Relaxation data has been modelled using the stretched exponential relationship recently introduced. Comparisons of the NMR microscopy results of the model system with the rock results indicate that the observed effects probably do not reflect actual wettability variations within the pore space. The results of the relaxation time measurements reveal that even in the simple model studied, the behavior of two phases is somewhat ambiguous and much more complex and requires more study.

  9. Chemical Imaging Analysis of Environmental Particles Using the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Analysis of Environmental Particles Using the Focused Ion BeamScanning Electron Microscopy Technique: Chemical Imaging Analysis of Environmental Particles Using the...

  10. Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships

    SciTech Connect (OSTI)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-11-01T23:59:59.000Z

    We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

  11. Introduction to Photoelectron Emission Microscopy: Principles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We surmise that this is due to the highly-selective excitation of surface localized plasmon of silver. To illustrate the utility of PEEM, we also describe an in-situ...

  12. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    SciTech Connect (OSTI)

    Liu Kesong; Li Zhou [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang Weihua [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Jiang Lei [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-12-26T23:59:59.000Z

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  13. Automated Liquid Microjunction Surface Sampling-HPLC-MS/MS Analysis of Drugs and Metabolites in Whole-Body Thin Tissue Sections

    SciTech Connect (OSTI)

    Kertesz, Vilmos [ORNL; Van Berkel, Gary J [ORNL

    2013-01-01T23:59:59.000Z

    A fully automated liquid extraction-based surface sampling system utilizing a commercially available autosampler coupled to high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection is reported. Discrete spots selected for droplet-based sampling and automated sample queue generation for both the autosampler and MS were enabled by using in-house developed software. In addition, co-registration of spatially resolved sampling position and HPLC-MS information to generate heatmaps of compounds monitored for subsequent data analysis was also available in the software. The system was evaluated with whole-body thin tissue sections from propranolol dosed rat. The hands-free operation of the system was demonstrated by creating heatmaps of the parent drug and its hydroxypropranolol glucuronide metabolites with 1 mm resolution in the areas of interest. The sample throughput was approximately 5 min/sample defined by the time needed for chromatographic separation. The spatial distributions of both the drug and its metabolites were consistent with previous studies employing other liquid extraction-based surface sampling methodologies.

  14. Structure of native oligomeric Sprouty2 by electron microscopy and its property of electroconductivity

    SciTech Connect (OSTI)

    Chen, Feng-Jung [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China) [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Lee, Kuan-Wei; Lai, Chun-Chieh [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China)] [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Lee, Sue-Ping [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China)] [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China); Shen, Hsiao-Hsuian [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China)] [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Tsai, Shu-Ping [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China)] [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China); Liu, Bang-Hung [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China)] [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Wang, Ling-Mei [Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China)] [Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Liou, Gunn-Guang, E-mail: bogun@nhri.org.tw [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China) [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2013-09-27T23:59:59.000Z

    Highlights: •Spry2 self-assembles into distinct oligomeric forms. •Self-interaction of Spry2 is detected with a high kinetic affinity in vitro. •The 3D structure of oligomeric Spry2 likes as a donut shape with two lip-cover parts. •Spry2 contains silicon and iron. •Spry2 has a potential to serve as a biological material conductor. -- Abstract: Receptor tyrosine kinases (RTKs) regulate many cellular processes, and Sprouty2 (Spry2) is known as an important regulator of RTK signaling pathways. Therefore, it is worth investigating the properties of Spry2 in more detail. In this study, we found that Spry2 is able to self-assemble into oligomers with a high-affinity KD value of approximately 16 nM, as determined through BIAcore surface plasmon resonance analysis. The three-dimensional (3D) structure of Spry2 was resolved using an electron microscopy (EM) single-particle reconstruction approach, which revealed that Spry2 is donut-shaped with two lip-cover domains. Furthermore, the method of energy dispersive spectrum obtained through EM was analyzed to determine the elements carried by Spry2, and the results demonstrated that Spry2 is a silicon- and iron-containing protein. The silicon may contribute to the electroconductivity of Spry2, and this property exhibits a concentration-dependent feature. This study provides the first report of a silicon- and iron-containing protein, and its 3D structure may allow us (1) to study the potential mechanism through the signal transduction is controlled by switching the electronic transfer on or off and (2) to develop a new type of conductor or even semiconductor using biological or half-biological hybrid materials in the future.

  15. Distance dependence of the phase signal in eddy current microscopy

    E-Print Network [OSTI]

    Roll, Tino; Fischer, Ulrich; Schleberger, Marika

    2008-01-01T23:59:59.000Z

    Atomic force microscopy using a magnetic tip is a promising tool for investigating conductivity on the nano-scale. By the oscillating magnetic tip eddy currents are induced in the conducting parts of the sample which can be detected in the phase signal of the cantilever. However, the origin of the phase signal is still controversial because theoretical calculations using a monopole appoximation for taking the electromagnetic forces acting on the tip into account yield an effect which is too small by more than two orders of magnitude. In order to determine the origin of the signal we used especially prepared gold nano patterns embedded in a non-conducting polycarbonate matrix and measured the distance dependence of the phase signal. Our data clearly shows that the interacting forces are long ranged and therefore, are likely due to the electromagnetic interaction between the magnetic tip and the conducting parts of the surface. Due to the long range character of the interaction a change in conductivity of $\\Del...

  16. In-Situ Transmission Electron Microscopy Probing of Native Oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial...

  17. NATIONAL CENTRE FOR SENSOR RESEARCH (NCSR) Research Engineer Fluorescence Microscopy

    E-Print Network [OSTI]

    Humphrys, Mark

    manuals, prepare standard operating procedures and ensure documentation is maintained. · Manage online projects. · Undertake the commissioning and maintenance of microscopy equipment. · Collate operations

  18. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials In-situ characterization and diagnostics of mechanical degradation in electrodes...

  19. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20T23:59:59.000Z

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  20. Geometric Analysis and General Relativity

    E-Print Network [OSTI]

    Lars Andersson

    2005-12-23T23:59:59.000Z

    This article discusses methods of geometric analysis in general relativity, with special focus on the role of "critical surfaces" such as minimal surfaces, marginal surface, maximal surfaces and null surfaces.

  1. Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning tunneling microscopy study. Preparation of TiO2(110)-(1x1) Surface via UHV Cleavage: An scanning tunneling...

  2. Quantitative analysis of in situ optical diagnostics for inferring particle/aggregate parameters in flames: Implications for soot surface growth and total emissivity

    SciTech Connect (OSTI)

    Koeylue, U.O. [Yale Univ., New Haven, CT (United States). Dept. of Chemical Engineering] [Yale Univ., New Haven, CT (United States). Dept. of Chemical Engineering

    1997-05-01T23:59:59.000Z

    An in situ particulate diagnostic/analysis technique is outlined based on the Rayleigh-Debye-Gans polydisperse fractal aggregate (RDG/PFA) scattering interpretation of absolute angular light scattering and extinction measurements. Using proper particle refractive index, the proposed data analysis method can quantitatively yield all aggregate parameters (particle volume fraction, f{sub v}, fractal dimension, D{sub f}, primary particle diameter, d{sub p}, particle number density, n{sub p}, and aggregate size distribution, pdf(N)) without any prior knowledge about the particle-laden environment. The present optical diagnostic/interpretation technique was applied to two different soot-containing laminar and turbulent ethylene/air nonpremixed flames in order to assess its reliability. The aggregate interpretation of optical measurements yielded D{sub f}, d{sub p}, and pdf(N) that are in excellent agreement with ex situ thermophoretic sampling/transmission electron microscope (TS/TEM) observations within experimental uncertainties. However, volume-equivalent single particle models (Rayleigh/Mie) overestimated d{sub p} by about a factor of 3, causing an order of magnitude underestimation in n{sub p}. Consequently, soot surface areas and growth rates were in error by a factor of 3, emphasizing that aggregation effects need to be taken into account when using optical diagnostics for a reliable understanding of soot formation/evolution mechanism in flames. The results also indicated that total soot emissivities were generally underestimated using Rayleigh analysis (up to 50%), mainly due to the uncertainties in soot refractive indices at infrared wavelengths. This suggests that aggregate considerations may not be essential for reasonable radiation heat transfer predictions from luminous flames because of fortuitous error cancellation, resulting in typically a 10 to 30% net effect.

  3. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect (OSTI)

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01T23:59:59.000Z

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  4. Molecular-scale investigations of structures and surface charge distribution of surfactant aggregates by three-dimensional force mapping

    SciTech Connect (OSTI)

    Suzuki, Kazuhiro; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan)] [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Kobayashi, Kei [The Hakubi Center for Advanced Research, Kyoto University, Katsura, Nishikyo, Kyoto 615-8520 (Japan)] [The Hakubi Center for Advanced Research, Kyoto University, Katsura, Nishikyo, Kyoto 615-8520 (Japan)

    2014-02-07T23:59:59.000Z

    Surface charges on nanoscale structures in liquids, such as biomolecules and nano-micelles, play an essentially important role in their structural stability as well as their chemical activities. These structures interact with each other through electric double layers (EDLs) formed by the counter ions in electrolyte solution. Although static-mode atomic force microscopy (AFM) including colloidal-probe AFM is a powerful technique for surface charge density measurements and EDL analysis on a submicron scale in liquids, precise surface charge density analysis with single-nanometer resolution has not been made because of its limitation of the resolution and the detection sensitivity. Here we demonstrate molecular-scale surface charge measurements of self-assembled micellar structures, molecular hemicylinders of sodium dodecyl sulfate (SDS), by three-dimensional (3D) force mapping based on frequency modulation AFM. The SDS hemicylindrical structures with a diameter of 4.8 nm on a graphite surface were clearly imaged. We have succeeded in visualizing 3D EDL forces on the SDS hemicylinder surfaces and obtaining the molecular-scale charge density for the first time. The results showed that the surface charge on the trench regions between the hemicylinders was much smaller than that on the hemicylinder tops. The method can be applied to a wide variety of local charge distribution studies, such as spatial charge variation on a single protein molecule.

  5. Scanning electron microscopy of intestinal villous structures

    E-Print Network [OSTI]

    Boyer, Edmond

    briefly in running water for 30 minutes and were dehydrated through graded ethanol series (1 hour each in 50, 70, 80, 95 and 100 %). Dehydrated specimens were dried in a carbon dioxide critical point drier to avoid exposure of the specimens to any surface tension forces when drying. The dried specimens were

  6. Out of equilibrium GigaPa Young modulus of water nanobridge probed by Force Feedback Microscopy

    E-Print Network [OSTI]

    Simon Carpentier; Mario S. Rodrigues; Luca Costa; Miguel V. Vitorino; Elisabeth Charlaix; Joel Chevrier

    2015-03-18T23:59:59.000Z

    Because of capillary condensation, water droplets appear in nano/micropores. The large associated surface interactions can deeply influence macroscopic properties as in granular media. We report that dynamical properties of such nanobridge dramatically change when probed at different time scales. Using a novel AFM mode, the Force Feedback Microscopy, the gap between the nanotip and the surface is continuously varied, and we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G"(kg/sec) together with the static force. As the measuring time approaches the microsecond, the liquid droplet exhibits a large positive stiffness (it is small and negative in the long time limit). Although clearly controlled by surface effects, it compares to the stiffness of a solid nanobridge with a 1 GigaPa Young modulus. We argue that as evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile, which explains this behavior.

  7. Out of equilibrium GigaPa Young modulus of water nanobridge probed by Force Feedback Microscopy

    E-Print Network [OSTI]

    Carpentier, Simon; Costa, Luca; Vitorino, Miguel V; Charlaix, Elisabeth; Chevrier, Joel

    2015-01-01T23:59:59.000Z

    Because of capillary condensation, water droplets appear in nano/micropores. The large associated surface interactions can deeply influence macroscopic properties as in granular media. We report that dynamical properties of such nanobridge dramatically change when probed at different time scales. Using a novel AFM mode, the Force Feedback Microscopy, the gap between the nanotip and the surface is continuously varied, and we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G"(kg/sec) together with the static force. As the measuring time approaches the microsecond, the liquid droplet exhibits a large positive stiffness (it is small and negative in the long time limit). Although clearly controlled by surface effects, it compares to the stiffness of a solid nanobridge with a 1 GigaPa Young modulus. We argue that as evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile, which expla...

  8. Comparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells

    E-Print Network [OSTI]

    Bernal, Javier

    - mentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy fluorescence microscopy; k-means cluster; image segmentation; cell edge; bivariate simi- larity index NUMEROUSComparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells Alden A. Dima,1

  9. High-temperature piezoresponse force microscopy B. Bhatia,1

    E-Print Network [OSTI]

    King, William P.

    High-temperature piezoresponse force microscopy B. Bhatia,1 J. Karthik,2 D. G. Cahill,1,2 L. W September 2011; published online 24 October 2011) We report high temperature piezoresponse force microscopy resistive heater allows local temperature control up to 1000 C with minimal electrostatic interactions

  10. Photoacoustic microscopy of tyrosinase reporter gene in vivo

    E-Print Network [OSTI]

    Wang, Lihong

    Photoacoustic microscopy of tyrosinase reporter gene in vivo Arie Krumholz Sarah J. Van microscopy of tyrosinase reporter gene in vivo Arie Krumholz,a Sarah J. VanVickle-Chavez,b Junjie Yao for tyrosinase, the primary enzyme responsible for expression of melanin in melanogenic cells. Optical res

  11. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume II. Data repository and reports published during fiscal year 1979-1980: regional structure, surface structure, surface fractures, hydrology

    SciTech Connect (OSTI)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01T23:59:59.000Z

    This volume comprises appendices giving regional structure data, surface structure data, surface fracture data, and hydrology data. The fracture data covers oriented Devonian shale cores from West Virginia, Ohio, Virginia, Pennsylvania, and Kentucky. The subsurface structure of the Eastern Kentucky gas field is also covered. (DLC)

  12. 1996, Journal of Microscopy 181, 225-237 (and vol 182, p 240.) Multimodal microscopy by digital image processing

    E-Print Network [OSTI]

    Stone, J. V.

    , Blakistone and Kyryk 1990 compared applications of polarised light, bright eld, DIC and scanning electron microscopy SEM in the paper industry. Fluorescence microscopy adds further possible imaging modes to light. 1 #12;1 Introduction Di erent imaging modes with the light microscope convey complementary infor

  13. Application of fluorescence microscopy to coal-derived resid characterization

    SciTech Connect (OSTI)

    Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

    1991-01-01T23:59:59.000Z

    This study evaluates the usefulness of a fluorescence microscopy methodology to analyze coal-derived resids and interpret the data in the light of liquefaction processing conditions, process response, the inferred resid reactivity, and in relation to results of other analytical data. The fluorescence technique utilized has been widely applied to coal and kerogen characterization, albeit with some modifications, but is novel in its application to the characterization of coal liquids. Fluorescence is the emission of light energy which occurs when electrons, having been excited to a higher energy orbital, return to their lower energy ground state. The majority of organic molecules that fluoresce are those with conjugated double bonds (chromophores), such as aromatics, characterized by pi-electrons less strongly bound within the molecule than sigma electrons, that can be excited to anti-bonding pi-orbitals. Increasing the extent of pi-bond conjugation (i.e. larger molecular size) generally imparts a shift in absorption and emission spectra to longer wavelengths. Resid fluorescence largely depends on the concentration and degree of conjugation of aromatic chromophores in the high molecular weight liquids, possibly with ancillary effects from oxygen functionalities. In this context, fluorescence analysis of liquefaction resids can potentially evaluate process performance, since direct liquefaction processes endeavor to break down the macromolecular structure of coal, and reduce the molecular weight of polycondensed aromatics through hydrogenation, the opening of ring structures, and heteroatom removal.

  14. Application of fluorescence microscopy to coal-derived resid characterization

    SciTech Connect (OSTI)

    Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

    1991-12-31T23:59:59.000Z

    This study evaluates the usefulness of a fluorescence microscopy methodology to analyze coal-derived resids and interpret the data in the light of liquefaction processing conditions, process response, the inferred resid reactivity, and in relation to results of other analytical data. The fluorescence technique utilized has been widely applied to coal and kerogen characterization, albeit with some modifications, but is novel in its application to the characterization of coal liquids. Fluorescence is the emission of light energy which occurs when electrons, having been excited to a higher energy orbital, return to their lower energy ground state. The majority of organic molecules that fluoresce are those with conjugated double bonds (chromophores), such as aromatics, characterized by pi-electrons less strongly bound within the molecule than sigma electrons, that can be excited to anti-bonding pi-orbitals. Increasing the extent of pi-bond conjugation (i.e. larger molecular size) generally imparts a shift in absorption and emission spectra to longer wavelengths. Resid fluorescence largely depends on the concentration and degree of conjugation of aromatic chromophores in the high molecular weight liquids, possibly with ancillary effects from oxygen functionalities. In this context, fluorescence analysis of liquefaction resids can potentially evaluate process performance, since direct liquefaction processes endeavor to break down the macromolecular structure of coal, and reduce the molecular weight of polycondensed aromatics through hydrogenation, the opening of ring structures, and heteroatom removal.

  15. Microrheological Studies of Regenerated Silk Fibroin Solution by Video Microscopy

    E-Print Network [OSTI]

    Raghu A; Somashekar R; Sharath Ananthamurthy

    2007-02-01T23:59:59.000Z

    We have carried out studies on the rheological properties of regenerated silk fibroin (RSF) solution using video microscopy. The degummed silk from the Bombyx mori silkworm was used to prepare RSF solution by dissolving it in calcium nitrate tetrahydrate-methanol solvent. Measurements were carried out by tracking the position of an embedded micron-sized polystyrene bead within the RSF solution through video imaging. The time dependent mean squared displacement (MSD) of the bead in solution and hence, the complex shear modulus of this solution was calculated from the bead's position information. An optical tweezer was used to transport and locate the bead at any desired site within the micro-volume of the sample, to facilitate the subsequent free-bead video analysis. We present here the results of rheological measurements of the silk polymer network in solution over a frequency range, whose upper limit is the frame capture rate of our camera, at full resolution. By examining the distribution of MSD of beads at different locations within the sample volume, we demonstrate that this probe technique enables us to detect local inhomogeneties at micrometer length scales, not detectable either by a rheometer or from diffusing wave spectroscopy.

  16. Direct Analysis of Reversed-Phase HPTLC Separated Tryptic Protein Digests using a Liquid Microjunction Surface Sampling Probe/ESI-MS System

    SciTech Connect (OSTI)

    Emory, Joshua F [ORNL; Walworth, Matthew J [ORNL; Van Berkel, Gary J [ORNL; Schulz, Michael [Merck Research Laboratories; Minarik, susanne [Merck Research Laboratories

    2010-01-01T23:59:59.000Z

    The sampling, ionization and detection of tryptic peptides separated in one-dimension on reversed phase HPTLC plates was performed using liquid microjunction surface sampling probe electrospray ionization mass spectrometry. Tryptic digests of five proteins (cytochrome c., myoglobin, beta-casein, lysozyme, and bovine serum albumin) were spotted on reversed phase HPTLC RP-8 F254s and HPTLC RP-18 F254s plates. The plates were then developed using 70/30 methanol/water with 0.1 M ammonium acetate. A dual purpose extraction/electrospray solution containing 70/30/0.1 water/methanol/formic acid was infused through the sampling probe during analysis of the developed lanes. Both full scan mass spectra and data dependent tandem mass spectra were acquired for each development lane to detect and verify the peptide distributions. Data dependent tandem mass spectra provided both protein identification and sequence coverage information. Highest sequence coverages were achieved for cytochrome c. and myoglobin (62.5% and 58.3%, respectively) on reversed phase RP-8 plates. While the tryptic peptides were separated enough for identification, the peptide bands did show some overlap with most peptides located in the lower half of the development lane. Proteins whose peptides were more separated gave higher sequence coverage. Larger proteins such as beta-casein and BSA which were spotted in lower relative amounts gave much lower sequence coverage than the smaller proteins.

  17. Theoretical Studies of Energy and Momentum Exchange in Atomic and Molecular Scattering from Surfaces

    SciTech Connect (OSTI)

    Joseph R. Manson

    2005-06-30T23:59:59.000Z

    The contributions that we have made during the grant period of DE-FG02-98ER45704 can be placed into six different categories: (1) advances in the Theory of Molecule-Surface Scattering, (2) advances in the Theory of Atom-Surface Scattering, (3) utilization of scattering theory to Extract Physical Information about Surfaces, (4) Gas-Surface Interactions, (5) Ion Scattering from surfaces and (6) Scanning Tunneling Microscopy (STM). These six topics are discussed below as individual listings under the title 'IV. Detailed description of research accomplishments'. These advances show that we have made significant progress on several scientific problems in atomic and molecular surface scattering during the course of this grant as well as contributions to other areas. It is also noted that this work, although fundamentally theoretical, is marked by its strong motivation to explain current experimental measurements. This was an important secondary goal in the proposed work. We have developed theory that is useful to experimentalists in the explanation and analysis of their experimental data.

  18. Analysis of output surface damage resulting from single 351 nm, 3 ns pulses on sub-nanosecond laser conditioned KD2PO4 crystals

    SciTech Connect (OSTI)

    Jarboe, J; Adams, J J; Hackel, R

    2007-10-31T23:59:59.000Z

    We observe that by conditioning DKDP using 500 ps laser pulses, the bulk damage threshold becomes essentially equivalent to the surface damage threshold. We report here the findings of our study of laser initiated output surface damage on 500 ps laser conditioned DKDP for test pulses at 351 nm, 3 ns. The relation between surface damage density and damaging fluence (r(f)) is presented for the first time and the morphologies of the surface sites are discussed. The results of this study suggest a surface conditioning effect resulting from exposure to 500 ps laser pulses.

  19. Sub-microsecond-resolution probe microscopy

    DOE Patents [OSTI]

    Ginger, David; Giridharagopal, Rajiv; Moore, David; Rayermann, Glennis; Reid, Obadiah

    2014-04-01T23:59:59.000Z

    Methods and apparatus are provided herein for time-resolved analysis of the effect of a perturbation (e.g., a light or voltage pulse) on a sample. By operating in the time domain, the provided method enables sub-microsecond time-resolved measurement of transient, or time-varying, forces acting on a cantilever.

  20. Effect of surface tension on swell-induced surface instability of substrate-confined hydrogel layers

    E-Print Network [OSTI]

    Huang, Rui

    , the physics of surface instability may be harnessed in the design of responsive ``smart'' surfaces for novel with Biot's periodic surface wave analysis. Several theoretical models have also been proposed for swelling due to inhomogeneous transient state of swelling.16,17 Second, the effect of surface energy or surface

  1. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    SciTech Connect (OSTI)

    Bosse, J. L.; Huey, B. D. [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Tovee, P. D.; Kolosov, O. V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-04-14T23:59:59.000Z

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing ?s time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few ?m{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular benefit of UFM and related methods for nanoscale mapping of stiff materials.

  2. Carmichael's Concise Review Microscopy is Only Skin Deep

    E-Print Network [OSTI]

    Heller, Eric

    Carmichael's Concise Review Microscopy is Only Skin Deep Stephen W. Carmichael Mayo Clinic. Coming Events 2011 EMAS 2011 May 15­19, 2011 Angers, France www.emas-web.net IUMAS-V May 22­27, 2011

  3. advanced microscopy techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Syllabus MSE 581: Advanced Electron Microscopy Course description: Present the theory of...

  4. advanced electron microscopy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Syllabus MSE 581: Advanced Electron Microscopy Course description: Present the theory of...

  5. Scanning Tunneling Microscopy and Theoretical Study of Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Theoretical Study of Water Adsorption on Fe3O4: Implications for Catalysis. Scanning Tunneling Microscopy and Theoretical Study of Water Adsorption on Fe3O4: Implications...

  6. Optical fiber based ultrashort pulse multispectral nonlinear optical microscopy

    E-Print Network [OSTI]

    Larson, Adam Michael

    2009-05-15T23:59:59.000Z

    Nonlinear optical microscopy (NLOM) utilizing femtosecond laser pulses is well suited for imaging living tissues. This work reports on the design and development of an optical fiber based multispectral NLOM developed around a laser generating...

  7. Target-specific contrast agents for magnetic resonance microscopy

    E-Print Network [OSTI]

    Hepler Blackwell, Megan Leticia

    2007-01-01T23:59:59.000Z

    High-resolution ex vivo magnetic resonance microscopy (MRM) can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. The goal ...

  8. Doppler optical coherence microscopy for studies of cochlear mechanics

    E-Print Network [OSTI]

    Hong, Stanley S.

    The possibility of measuring subnanometer motions with micron scale spatial resolution in the intact mammalian cochlea using Doppler optical coherence microscopy (DOCM) is demonstrated. A novel DOCM system is described ...

  9. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys. Rev. Lett. 107, 033904 (2011). Web: http:prl.aps.orgpdfPRLv107i3e033904...

  10. Modulated microwave microscopy and probes used therewith

    DOE Patents [OSTI]

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11T23:59:59.000Z

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  11. Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis

    E-Print Network [OSTI]

    Kang, Jeon Woong

    We have developed a novel multimodal microscopy system that incorporates confocal Raman, confocal reflectance, and quantitative phase microscopy (QPM) into a single imaging entity. Confocal Raman microscopy provides detailed ...

  12. Stuck with the bill, but why? : an analysis of the Portuguese public finance system with respect to surface transportation policy and investments

    E-Print Network [OSTI]

    Nelson, Joshua S

    2008-01-01T23:59:59.000Z

    Despite decentralization progress in other sectors, the Portuguese central government maintains significant administrative and fiscal power over national and sub-national surface transportation operations and infrastructure. ...

  13. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect (OSTI)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01T23:59:59.000Z

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  14. Imaging doped silicon test structures using low energy electron microscopy.

    SciTech Connect (OSTI)

    Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

    2010-01-01T23:59:59.000Z

    This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

  15. Determination and Characterization of Ice Propagation Mechanisms on Surfaces Undergoing Dropwise Condensation

    E-Print Network [OSTI]

    Dooley, Jeffrey B.

    2011-08-08T23:59:59.000Z

    The mechanisms responsible for ice propagation on surfaces undergoing dropwise condensation have been determined and characterized. Based on experimental data acquired non-invasively with high speed quantitative microscopy, the freezing process...

  16. Josephson scanning tunneling microscopy -- a local and direct probe of the superconducting order parameter

    E-Print Network [OSTI]

    Kimura, Hikari

    2010-01-01T23:59:59.000Z

    Title Josephson scanning tunneling microscopy – a local andthe sample using a novel scanning tunneling microscope (STM)discussed. I. INTRODUCTION Scanning tunneling microscopy (

  17. Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source. Soft X-Ray Microscopy and Spectroscopy at the Molecular...

  18. Swept source optical coherence microscopy for pathological assessment of cancerous tissues

    E-Print Network [OSTI]

    Ahsen, Osman Oguz

    2013-01-01T23:59:59.000Z

    Optical coherence microscopy (OCM) combines optical coherence tomography (OCT) with confocal microscopy and enables depth resolved visualization of biological specimens with cellular resolution. OCM offers a suitable ...

  19. On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste

    SciTech Connect (OSTI)

    Trtik, Pavel, E-mail: pavel.trtik@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland); Kaufmann, Josef [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland); Volz, Udo [Bruker Nano GmbH, Mannheim (Germany)

    2012-01-15T23:59:59.000Z

    A surface of epoxy-impregnated hardened cement paste was investigated using a novel atomic force microscopy (AFM) imaging mode that allows for the quantitative mapping of the local elastic modulus. The analyzed surface was previously prepared using focussed ion beam milling. The same surface was also characterized by electron microscopy and energy-dispersive X-ray spectroscopy. We demonstrate the capability of this quantitative nanomechanical mapping to provide information on the local distribution of the elastic modulus (from about 1 to about 100 GPa) with a spatial resolution in the range of decananometers, that corresponds to that of low-keV back-scattered electron imaging. Despite some surface roughness which affects the measured nanomechanical properties it is shown that topography, adhesion and Young's modulus can be clearly distinguished. The quantitative mapping of the local elastic modulus is able to discriminate between phases in the cement paste microstructure that cannot be distinguished from the corresponding back-scattered electron images.

  20. Surface Science Letters Self-assembled growth of ordered Ge nanoclusters on

    E-Print Network [OSTI]

    Gao, Hongjun

    Surface Science Letters Self-assembled growth of ordered Ge nanoclusters on the Si(1 1 1)-(7 Â 7-assembled growth of submonolayer Ge on the Si(1 1 1)-(7 Â 7) surface grown by solid phase epitaxy has been studied using scanning tunneling microscopy. Ordered Ge nanoclusters on the surface are formed by the deposition

  1. Study of the Effects of Surface Morphology and Droplet Growth Dynamics on Condensation Heat Transfer

    E-Print Network [OSTI]

    Yao, Chun-Wei

    2014-04-23T23:59:59.000Z

    system 2 on Sample 3 (50??m micropillar spacing hybrid surface) ............................................................................................... 66 Figure 24. Environmental scanning electron microscopy (ESEM) time- sequence images... tension gradients to promote and induce a droplet removal mechanism. They concluded that their gradient surface exhibited a higher heat transfer coefficient than a hydrophobic silane based surface. More recently, environmental scanning electron...

  2. Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 3) : a scanning tunneling microscopy study.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Atomic and electronic structure of monolayer graphene on 6H-SiC(0001)(3 × 3) : a scanning tunneling of the atomic and electronic structure of graphene monolayer islands on the 6H-SiC(0001)(3×3) (SiC(3×3)) surface reconstruction using scanning tunneling microscopy (STM) and spectroscopy (STS). The orientation of the graphene

  3. Programmable surfaces

    E-Print Network [OSTI]

    Sun, Amy (Amy Teh-Yu)

    2012-01-01T23:59:59.000Z

    Robotic vehicles walk on legs, roll on wheels, are pulled by tracks, pushed by propellers, lifted by wings, and steered by rudders. All of these systems share the common character of momentum transport across their surfaces. ...

  4. Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores

    E-Print Network [OSTI]

    Beauboeuf, Daniel P

    2010-01-01T23:59:59.000Z

    There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

  5. Sub-surface characterization and three dimensional profiling of semiconductors by magnetic resonance force microscopy

    SciTech Connect (OSTI)

    Hammel, P.C.; Moore, G.; Roukes, M.; Zhenyong Zhang

    1996-10-01T23:59:59.000Z

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project successfully developed a magnetic resonance force microscope (MRFM) instrument to mechanically detect magnetic resonance signals. This technique provides an intrinsically subsurface, chemical-species-specific probe of structure, constituent density and other properties of materials. As in conventional magnetic resonance imaging (MRI), an applied magnetic field gradient selects a well defined volume of the sample for study. However mechanical detection allows much greater sensitivity, and this in turn allows the reduction of the size of the minimum resolvable volume. This requires building an instrument designed to achieve nanometer-scale resolution at buried semiconductor interfaces. High-resolution, three-dimensional depth profiling of semiconductors is critical in the development and fabrication of semiconductor devices. Currently, there is no capability for direct, high-resolution observation and characterization of dopant density, and other critical features of semiconductors. The successful development of MRFM in conjunction with modifications to improve resolution will enable for the first time detailed structural and electronic studies in doped semiconductors and multilayered nanoelectronic devices, greatly accelerating the current pace of research and development.

  6. Surface characterization of cross-linked elastomers by shear modulation force microscopy

    E-Print Network [OSTI]

    Colby, Ralph H.

    (isobutylene-co-4-methylstyrene) (BIMS) is a synthetic terpolymer which can be stoichiometrically cross-linked by N agreement with rubber elasticity theory was obtained in both cases. The SMFM was then used to monitor), a synthetic terpolymer of isobutylene (IB), paramethylstyrene (PMS), and parabromomethylstyrene (Br

  7. Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomolecules 

    E-Print Network [OSTI]

    Everett, William Neil

    2009-05-15T23:59:59.000Z

    Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase...

  8. Confocal microscopy studies of colloidal assembly on microfabricated physically templated surfaces

    E-Print Network [OSTI]

    Sharma, Sumit

    2005-02-17T23:59:59.000Z

    deposition, and glass micro machining. Various stages of the process were optimized while selecting reactive ion etch (RIE) and nickel etch mask with a suitable etch recipe for microfabrication of patterns on thin multi-component glass coverslips. Pattern...

  9. Confocal microscopy studies of colloidal assembly on microfabricated physically templated surfaces 

    E-Print Network [OSTI]

    Sharma, Sumit

    2005-02-17T23:59:59.000Z

    deposition, and glass micro machining. Various stages of the process were optimized while selecting reactive ion etch (RIE) and nickel etch mask with a suitable etch recipe for microfabrication of patterns on thin multi-component glass coverslips. Pattern...

  10. Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomolecules

    E-Print Network [OSTI]

    Everett, William Neil

    2009-05-15T23:59:59.000Z

    Spatial and temporal tracking of passively diffusing functionalized colloids continues to be an improving and auspicious approach to measuring weak specific and non-specific biomolecular interactions. Evidence of this is given by the recent increase...

  11. Surface Properties of Photo-Oxidized Bituminous Coals: Final report

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    Natural weathering has a detrimental effect on the hydrophobic nature of coal, which in turn can influence clean-coal recovery during flotation. Few techniques are available that can establish the quality of coal surfaces and that have a short analysis time to provide input for process control. Luminescence emissions which can be quantified with an optical microscope and photometer system, are measurably influenced by degree of weathering as well as by mild storage deterioration. In addition, it has been shown that when vitrinite is irradiated with a relatively high intensity flux of violet- or ultraviolet- light in the presence of air, photo-oxidation of the surface occurs. The combination of measuring the change in luminescence emission intensity with degree of surface oxidation provided the impetus for the current investigation. The principal aim of this research was to determine whether clear correlations could be established among surface oxygen functionality, hydrophobicity induced by photo-oxidation, and measurements of luminescence intensity and alteration. If successful, the project would result in quantitative luminescence techniques based on optical microscopy that would provide a measure of the changes in surface properties as a function of oxidation and relate them to coal cleanability. Two analytical techniques were designed to achieve these goals. Polished surfaces of vitrain bands or a narrow size fraction of powdered vitrain concentrates were photo-oxidized using violet or ultraviolet light fluxes and then changes in surface properties and chemistry were measured using a variety of near-surface analytical techniques. Results from this investigation demonstrate that quantitative luminescence intensity measurements can be performed on fracture surfaces of bituminous rank coals (vitrains) and that the data obtained do reveal significant variations depending upon the level of surface oxidation. Photo-oxidation induced by violet or ultraviolet light fluxes does result in a progressive and significant increase in the amount of near-surface oxygen concentration at about the same level regardless of bituminous coal rank. These incremental changes in oxygen concentration appear to lower the hydrophobicity as shown by contact angle measurements on polished surfaces. Although this influence diminished as coal rank increased, the level of oxygen uptake was about the same, suggesting that the type of oxygen functionality formed during oxidation may be of great importance in modifying surface hydrophobicity. Changes in functional-group chemistry, measured by a variety of near-surface techniques, showed a general increase in the concentration of carbonyl-containing groups while those of CH{sub 2} groups decreased. All of these observations follow the trends observed in previous investigations of naturally weathered coals. The photo-oxidation technique also resulted in the development of phenolic, ester and anhydride moieties instead of the expected emplacement of carboxylic acid groups which are normally associated with naturally weathered coals. The importance of this observation is that esters and anhydrides would result in a more hydrophobic surface in comparison to the more hydrophilic surface resulting from acid functionality. This observation is consistent with the results of film flotation of UV-irradiated powdered vitrain in which floatability was generally observed to increase with increasing photo- oxidation.

  12. Compound and Elemental Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    powder diffraction analysis (XRD), examine specific mineral texturemorphology using Scanning electron microscopy (SEM), and to determine the trace element geochemistry of...

  13. Compound and Elemental Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    powder diffraction analysis (XRD), examine specific mineral texturemorphology using Scanning electron microscopy (SEM), and to determine the trace element geochemistry of...

  14. Summary of ISO/TC 201 Standard: XVIII, ISO 19318: 2004 - Surface...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XVIII, ISO 19318: 2004 - Surface Chemical Analysis - X-Ray Photoelectron Spectroscopy - Summary of ISOTC 201 Standard: XVIII, ISO 19318: 2004 - Surface Chemical Analysis - X-Ray...

  15. Summary of ISO/TC 201 Standard: ISO 29081: 2010, Surface Chemical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ISO 29081: 2010, Surface Chemical Analysis - Auger Electron Spectroscopy - Reporting of Methods Summary of ISOTC 201 Standard: ISO 29081: 2010, Surface Chemical Analysis - Auger...

  16. Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy

    SciTech Connect (OSTI)

    Kent, R.M.; Vary, A.

    1992-01-01T23:59:59.000Z

    A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress versus strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns), yielding and elastic modulus of 401 and 466.8 GPa, respectively.

  17. Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy

    SciTech Connect (OSTI)

    Kent, R.M.; Vary, A.

    1992-08-01T23:59:59.000Z

    A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress vs strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns). 8 refs.

  18. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOE Patents [OSTI]

    Campbell, Ann. N. (13170-B Central SE #188, Albuquerque, NM 87123); Anderson, Richard E. (2800 Tennessee NE, Albuquerque, NM 87110); Cole, Jr., Edward I. (2116 White Cloud NE, Albuquerque, NM 87112)

    1995-01-01T23:59:59.000Z

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  19. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect (OSTI)

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-01-15T23:59:59.000Z

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10?wt. % ozone at temperatures of 150, 250, and 300?°C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  20. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    SciTech Connect (OSTI)

    Van Berkel, Gary J [ORNL; Kertesz, Vilmos [ORNL

    2013-01-01T23:59:59.000Z

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI mode was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.

  1. Domain switching by electron beam irradiation of Z{sup +}-polar surface in Mg-doped lithium niobate

    SciTech Connect (OSTI)

    Shur, V. Ya., E-mail: vladimir.shur@urfu.ru; Chezganov, D. S.; Smirnov, M. M.; Alikin, D. O.; Neradovskiy, M. M.; Kuznetsov, D. K. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2014-08-04T23:59:59.000Z

    The appearance of the static domains with depth above 200??m in the bulk of MgO-doped lithium niobate single crystals as a result of focused electron beam irradiation of Z{sup +}-polar surface was demonstrated. The created domain patterns were visualized by high-resolution methods including piezoresponse force microscopy, scanning electron microscopy, and confocal Raman microscopy. The main stages of the domain structure formation were revealed and explained in terms of the original model.

  2. Atom probe field ion microscopy and related topics: A bibliography 1992

    SciTech Connect (OSTI)

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01T23:59:59.000Z

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  3. 3D rotational diffusion microrheology using 2D video microscopy

    E-Print Network [OSTI]

    Rémy Colin; Minhao Yan; Loudjy Chevry; Jean-François Berret; Bérengère Abou

    2012-01-05T23:59:59.000Z

    We propose a simple way to perform three-dimensional (3D) rotational microrheology using two-dimensional (2D) video microscopy. The 3D rotational brownian motion of micrometric wires in a viscous fluid is deduced from their projection on the focal plane of an optical microscope objective. The rotational diffusion coefficient of the wires of length between 1-100 \\mu m is extracted, as well as their diameter distribution in good agreement with electron microscopy measurements. This is a promising way to characterize soft visco-elastic materials, and probe the dimensions of anisotropic objects.

  4. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities

    SciTech Connect (OSTI)

    Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.; Laskin, Julia; Lai, Jinfeng; Mueller, Karl; Munusamy, Prabhakaran; Thevuthasan, Suntharampillai; Wang, Hongfei; Washton, Nancy [Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352 (United States)] [Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352 (United States); Elder, Alison; Baisch, Brittany L. [Department of Environmental Medicine, University of Rochester, Rochester, New York (United States)] [Department of Environmental Medicine, University of Rochester, Rochester, New York (United States); Karakoti, Ajay; Kuchibhatla, Satyanarayana V. N. T. [Battelle Science and Technology India, Pune, Maharashtra (India); Moon, DaeWon [Daegu Gyeongbuk Institute of Science and Technology, Daeju (Korea, Republic of)] [Daegu Gyeongbuk Institute of Science and Technology, Daeju (Korea, Republic of)

    2013-09-15T23:59:59.000Z

    This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may require instrumentation or expertise not generally available, they can be particularly useful in addressing specific questions, and examples of their use in nanomaterial research are presented.

  5. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure ofIndustrialSupportingAlbedo at theSurface Soil Surface Soil

  6. AiR surface: AiR surface 1

    E-Print Network [OSTI]

    Tanaka, Jiro

    AiR surface: 1 PDA AiR surface 1 1: AiR surface () () 2 [1] [2] 3 AiR surface AiR surface surface surface surface 3.1 surface [3]( 3 ) surface 3.2 surface surface AiR surface 4 AiR surface surface AiR surface: Virtual Touch Panel

  7. Stationary free surface viscous ows without surface tension in three dimensions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stationary free surface viscous ows without surface tension in three dimensions Frederic Abergel owing down a three dimensional channel. In the absence of surface tension, we prove the existence is not elliptic when surface tension is neglected. Hence, analysis such as that made in [4] or [17] fails

  8. Stationary free surface viscous flows without surface tension in three dimensions

    E-Print Network [OSTI]

    Boyer, Edmond

    Stationary free surface viscous flows without surface tension in three dimensions Frederic Abergel dimensional channel. In the absence of surface tension, we prove the existence of a unique stationary solution is not elliptic when surface tension is neglected. Hence, analysis such as that made in [4] or [17] fails

  9. Detection of Percolating Paths in PMMA/CB Segregated Network Composites Using Electrostatic Force Microscopy and Conductive Atomic Force Microscopy

    SciTech Connect (OSTI)

    Waddell, J. [Georgia Institute of Technology; Ou, R. [Georgia Institute of Technology; Gupta, S. [Georgia Institute of Technology; Parker, A. [Georgia Institute of Technology; Gerhardt, Dr. Rosario [Georgia Institute of Technology; Seal, Katyayani [ORNL; Kalinin, Sergei V [ORNL; Baddorf, Arthur P [ORNL

    2009-01-01T23:59:59.000Z

    Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.

  10. In Situ Photoelectron Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloy

    SciTech Connect (OSTI)

    Xiong, Gang; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.; Cai, Mingdong; Langford, Stephen C.; Dickinson, J T.

    2006-02-27T23:59:59.000Z

    Photoemission electron microscopy, in conjunction with photoemission spectroscopy, reflectivity, and surface roughness measurements, is used to study the thermally-induced martensitic transformation in a CuZnAI shape memory alloy. Real-time phase transformation is observed as a nearly instantaneous change of photoelectron intensity, accompanied by microstructural deformation and displacement due to the shape memory effect. The difference in the photoelectron intensity before and after the phase transformation is attributed to the concomitant change of work function as measured by photoelectron spectroscopy. Photoemission electron microscopy is shown to be a valuable new technique facilitating the study of phase transformations in shape memory alloys, and provides real-time information on microstructural changes and phase-dependent electronic properties.

  11. Scanning electron microscopy imaging of hydraulic cement microstructure

    E-Print Network [OSTI]

    Bentz, Dale P.

    Scanning electron microscopy imaging of hydraulic cement microstructure by Paul Stutzman Building Reprinted from Cement and Concrete Composites, Vol. 26, No. 8, 957-966 pp., November 2004. NOTE: This paper;Available online at www.sciencedirect.com SCIENCE@OIRECT@ Cement & Concrete CompositesELSEVIER Cement

  12. Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals

    E-Print Network [OSTI]

    Boyer, Edmond

    the material undergoes a phase transition. Herein, we show that thermotropic phase transitions in 4-Cyano-41 Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals A. Nicholas G-objects in various environments. It uses a photo-induced change in the refractive index of the environment. Taking

  13. Radio-frequency scanning tunnelling microscopy U. Kemiktarak1

    E-Print Network [OSTI]

    LETTERS Radio-frequency scanning tunnelling microscopy U. Kemiktarak1 , T. Ndukum3 , K. C. Schwab3 measurementsinmesoscopicelectronicsandmechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM available from nanoscale optical and electrical displacement detection tech- niques, and the radio

  14. POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH1

    E-Print Network [OSTI]

    Peters, Achim

    1 POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH1 , V. SEMET1 and N. GARCIA2 1 exploited in a compact low-energy electron microscope: the Fresnel Projection Microscope. Images size of the sources. The result is a high-resolution, low-energy electron microscope, the "Fresnel

  15. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

    E-Print Network [OSTI]

    Rosen, Joseph

    Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy Gary, Israel 4 rosen@ee.bgu.ac.il *gbrooker@jhu.edu Abstract: Fresnel Incoherent Correlation Holography (FINCH. Rosen and G. Brooker, "Digital spatially incoherent Fresnel holography," Opt. Lett. 32(8), 912­914 (2007

  16. absorption spectroscopic microscopy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption spectroscopic microscopy First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Confocal light...

  17. Surface Characterization of Nanomaterials and Nanoparticles: important needs and challenging opportunities

    SciTech Connect (OSTI)

    Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.; Laskin, Julia; Lai, Jinfeng; Mueller, Karl T.; Munusamy, Prabhakaran; Thevuthasan, Suntharampillai; Wang, Hongfei; Washton, Nancy M.; Elder, Alison C.; Baisch, Brittany L.; Karakoti, Ajay S.; Kuchibhatla, S. V. N. T.; Moon, DaeWon

    2013-09-01T23:59:59.000Z

    This review examines the characterization challenges inherently associated with understanding nanomaterials and how surface characterization methods can help meet those challenges. In parts of the research community, there is growing recognition that many studies and published reports on the properties and behaviors of nanomaterials have involved inadequate characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. As the importance of nanomaterials in fundamental research and technological applications increases, it is necessary for researchers to recognize the challenges associated with reproducible materials synthesis, maintaining desired materials properties during handling and processing, and the dynamic nature of nanomaterials, especially nanoparticles. Researchers also need to understand how characterization approaches (surface and otherwise) can be used to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. The types of information that can be provided by traditional surface sensitive analysis methods (including X-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy and secondary ion mass spectroscopy) and less common or evolving surface sensitive methods (e.g., nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) are discussed and various of their use in nanomaterial research are presented.

  18. Surface Salt Bridges, Double-Mutant Cycles, and Protein Stability: an Experimental and Computational Analysis of the Interaction of the Asp 23 Side Chain with the

    E-Print Network [OSTI]

    Snow, Christopher

    Surface Salt Bridges, Double-Mutant Cycles, and Protein Stability: an Experimental-mutant cycles have been used to investigate a salt bridge in the N-terminal domain of the protein L9. Aspartic solvent-exposed salt bridge with the protonated N-terminus of the protein. Mutations were studied in which

  19. Dynamic Imaging of Au-nanoparticles via Scanning Electron Microscopy in a Graphene Wet Cell

    E-Print Network [OSTI]

    Wayne Yang; Yuning Zhang; Michael Hilke; Walter Reisner

    2015-06-10T23:59:59.000Z

    High resolution nanoscale imaging in liquid environments is crucial for studying molecular interactions in biological and chemical systems. In particular, electron microscopy is the gold-standard tool for nanoscale imaging, but its high-vacuum requirements make application to in-liquid samples extremely challenging. Here we present a new graphene based wet cell device where high resolution SEM (scanning electron microscope) and Energy Dispersive X-rays (EDX) analysis can be performed directly inside a liquid environment. Graphene is an ideal membrane material as its high transparancy, conductivity and mechanical strength can support the high vacuum and grounding requirements of a SEM while enabling maximal resolution and signal. In particular, we obtain high resolution (graphene wet cell and EDX analysis of nanoparticle composition in the liquid enviornment. Our obtained resolution surpasses current conventional silicon nitride devices imaged in both SEM and TEM under much higher electron doses.

  20. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

    2014-03-26T23:59:59.000Z

    Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

  1. Quantification of Biomass Accumulation on Surfaces Through Simulation of

    E-Print Network [OSTI]

    Su, Xiao

    Chosen surface: Mortar Considerations: Topography Roughness Porosity pH of surface Will it be neutral stain- Acridine Orange Topography of surface 2D images of a 3D surface Stacked images 3D interpolation #12;Surface Topography #12;Topology Estimation #12;Elevation Views #12;Volume Growth Analysis #12

  2. Automated position control of a surface array relative to a liquid microjunction surface sampler

    DOE Patents [OSTI]

    Van Berkel, Gary J. (Clinton, TN); Kertesz, Vilmos (Knoxville, TN); Ford, Michael James (Little Rock, AR)

    2007-11-13T23:59:59.000Z

    A system and method utilizes an image analysis approach for controlling the probe-to-surface distance of a liquid junction-based surface sampling system for use with mass spectrometric detection. Such an approach enables a hands-free formation of the liquid microjunction used to sample solution composition from the surface and for re-optimization, as necessary, of the microjunction thickness during a surface scan to achieve a fully automated surface sampling system.

  3. Thermal analysis of pentaerythritol tetranitrate and development of a powder aging model

    SciTech Connect (OSTI)

    Brown, Geoffrey W [Los Alamos National Laboratory; Sandstrom, Mary M [Los Alamos National Laboratory; Giambra, Anna M [Los Alamos National Laboratory; Archuleta, Jose G [Los Alamos National Laboratory; Monroe, Deirde C [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We have applied a range of different physical and thermal analysis techniques to characterize the thermal evolution of the specific surface area of pentaerythritol tetranitrate (PETN) powders. Using atomic force microscopy we have determined that the mass transfer mechanism leading to powder coarsening is probably sublimation and redeposition of PETN. Using thermogravimetric analysis we have measured vapor pressures of PETN powders whose aging will be simulated in future work. For one specific powder we have constructed an empirical model of the coarsening that is fit to specific surface area measurements at 60 C to 70 C to provide predictive capability of that powder's aging. Modulated differential scanning calorimetry and mass spectroscopy measurements highlight some of the thermal behavior of the powders and suggest that homologue-based eutectics and impurities are localized in the powder particles.

  4. Biological imaging by soft x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shapiro, D. [Stony Brook Univ., Stony Brook, NY (United States); Thibault, P. [Cornell Univ., Ithaca, NY (United States); Beetz, T. [Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab., Upton, NY (United States). Center for Functional Nanomaterials; Elser, V. [Cornell Univ., Ithaca, NY (United States); Howells, M. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Jacobsen, C. [Stony Brook Univ., Stony Brook, NY (United States); Brookhaven National Lab., Upton, NY (United States). Center for Functional Nanomaterials; Kirz, J. [Stony Brook Univ., Stony Brook, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source; Lima, E. [Stony Brook Univ., Stony Brook, NY (United States); Miao, H. [Stony Brook Univ., Stony Brook, NY (United States); Neiman, A. M. [State Univ. of New York at Stony Brook, NY (United States); Sayre, D. [Stony Brook Univ., Stony Brook, NY (United States)

    2005-10-25T23:59:59.000Z

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  5. Microfabricated high-bandpass foucault aperture for electron microscopy

    DOE Patents [OSTI]

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26T23:59:59.000Z

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  6. Biological Imaging by Soft X-ray Diffraction Microscopy

    SciTech Connect (OSTI)

    Shapiro,D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; et al.

    2005-01-01T23:59:59.000Z

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.

  7. Scanning acoustic microscopy for mapping the microstructure of soft materials

    E-Print Network [OSTI]

    N. G. Parker; M. J. W. Povey

    2009-04-30T23:59:59.000Z

    Acoustics provides a powerful modality with which to 'see' the mechanical properties of a wide range of elastic materials. It is particularly adept at probing soft materials where excellent contrast and propagation distance can be achieved. We have constructed a scanning acoustic microscope capable of mapping the microstructure of such materials. We review the general principles of scanning acoustic microscopy and present new examples of its application in imaging biological matter, industrial materials and particulate systems.

  8. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting Microscopy Illuminates Energy Storage

  9. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting Microscopy Illuminates Energy

  10. Surface treated polypropylene (PP) fibres for reinforced concrete

    SciTech Connect (OSTI)

    López-Buendía, Angel M., E-mail: buendia@uv.es [AIDICO Technological Institute of Construction, Benjamin Franklin 17, 46380 Paterna, Valencia (Spain); Romero-Sánchez, María Dolores [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain)] [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain); Climent, Verónica [Lafarge Cementos, Polígono Sepes, Isaac Newton s/n, 46500 Sagunto, Valencia (Spain)] [Lafarge Cementos, Polígono Sepes, Isaac Newton s/n, 46500 Sagunto, Valencia (Spain); Guillem, Celia [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain)] [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain)

    2013-12-15T23:59:59.000Z

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in the mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.

  11. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect (OSTI)

    Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India)] [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany)] [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India)] [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)] [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)

    2014-03-10T23:59:59.000Z

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  12. Surface Science 415 (1998) 2936 Structural studies of sulfur-passivated GaAs (100)

    E-Print Network [OSTI]

    Zhang, Yanchao

    1998-01-01T23:59:59.000Z

    . Keywords: Atomic force microscopy; Gallium arsenide; Low-energy electron diffraction; Roughness; SulfurSurface Science 415 (1998) 29­36 Structural studies of sulfur-passivated GaAs (100) surfaces Abstract We present the results of Auger electron spectroscopy (AES), low-energy electron diffraction (LEED

  13. Surface Science Letters Synthesis of well-ordered ultra-thin titanium oxide films

    E-Print Network [OSTI]

    Goodman, Wayne

    Surface Science Letters Synthesis of well-ordered ultra-thin titanium oxide films on Mo(112) M microscopy (STM); X-ray photoelectron spectroscopy (XPS); Titanium oxide; Surface structure, morphology oxide systems, titanium dioxide has served as the prototypical reducible 0039-6028/$ - see front matter

  14. Wavelength swept spectrally encoded confocal microscopy for biological and clinical applications

    E-Print Network [OSTI]

    Boudoux, Caroline

    2007-01-01T23:59:59.000Z

    Spectrally encoded confocal microscopy (SECM) is a technique that facilitates the incorporation of confocal microscopy into small, portable clinical instruments. This would allow in vivo evaluation of cellular and sub-cellular ...

  15. High throughput 3D optical microscopy : from image cytometry to endomicroscopy

    E-Print Network [OSTI]

    Choi, Heejin

    2014-01-01T23:59:59.000Z

    Optical microscopy is an imaging technique that allows morphological mapping of intracellular structures with submicron resolution. More importantly, optical microscopy is a technique that can readily provide images with ...

  16. Cellular resolution ex vivo imaging of gastrointestinal tissues with coherence microscopy

    E-Print Network [OSTI]

    Fujimoto, James G.

    Optical coherence microscopy (OCM) combines confocal microscopy and optical coherence tomography (OCT) to improve imaging depth and contrast, enabling cellular imaging in human tissues. We aim to investigate OCM for ex ...

  17. Advanced analysis of metal distributions in human hair

    SciTech Connect (OSTI)

    Kempson, Ivan M.; Skinner, William M. (U. South Australia)

    2008-06-09T23:59:59.000Z

    A variety of techniques (secondary electron microscopy with energy dispersive X-ray analysis, time-of-flight-secondary ion mass spectrometry, and synchrotron X-ray fluorescence) were utilized to distinguish metal contamination occurring in hair arising from endogenous uptake from an individual exposed to a polluted environment, in this case a lead smelter. Evidence was sought for elements less affected by contamination and potentially indicative of biogenic activity. The unique combination of surface sensitivity, spatial resolution, and detection limits used here has provided new insight regarding hair analysis. Metals such as Ca, Fe, and Pb appeared to have little representative value of endogenous uptake and were mainly due to contamination. Cu and Zn, however, demonstrate behaviors worthy of further investigation into relating hair concentrations to endogenous function.

  18. Atomic force microscopy and x-ray photoelectron spectroscopy investigations of the morphology and chemistry of a PdCl{sub 2}/SnCl{sub 2} electroless plating catalysis system adsorbed onto shape memory alloy particles

    SciTech Connect (OSTI)

    Silvain, J.F.; Fouassier, O.; Lescaux, S. [Institut de Chimie de la Matiere Condensee de Bordeaux (ICMCB) - CNRS, Universite de Bordeaux 1, 87 Avenue du Dr A. Schweitzer, F-33608 PESSAC (France); Veeco, Z.I. de la Gaudree, 11 Rue Marie Poussepin, F-91412 Dourdain (France)

    2004-11-01T23:59:59.000Z

    A study of the different stages of the electroless deposition of copper on micronic NiTi shape memory alloy particles activated by one-step and two-step methods has been conducted from both a chemical and a morphological point of view. The combination of x-ray photoelectron spectroscopy (XPS) measurements and atomic force microscopy (AFM) imaging has allowed detection of the distribution of the formed compounds and depth quantification and estimation of the surface topographic parameters. For the two-step method, at the sensitization of the early stages, it is observed by AFM that Sn is absorbed in form of clusters that tend to completely cover the surface and form a continuous film. XPS analysis have shown that Sn and Pd are first absorbed in form of oxide (SnO{sub 2} and PdO) and hydroxide [Sn(OH){sub 4}]. After the entire sensitization step, the NiTi substrate is covered with Sn-based compounds. After the sensitization and the activation steps the powder roughness increases. Behavior of the Sn and Pd growth for the one-step method does not follow the behavior found for the two-step method. Indeed, XPS analysis shows a three-dimensional (3D) growth of Pd clusters on top of a mixture of metallic tin, oxide (SnO) and hydroxide [Sn(OH){sub 2}]. These Pd clusters are covered with a thin layer of Pd-oxide contamination induced by the electroless process. The mean roughness for the one-step and two-step processes are equivalent. After copper deposition, the decrease of mean roughness is attributed to a filling of surface valleys, observed after the Sn-Pd coating step.

  19. Effect of flux addition on the microstructure and hardness of TiC-reinforced ferrous surface composite layers fabricated by high-energy electron beam irradiation

    SciTech Connect (OSTI)

    Choo, S.H.; Lee, S.; Kwon, S.J.

    1999-12-01T23:59:59.000Z

    Surface composites reinforced with TiC particulates were fabricated by high-energy electron-beam irradiation. In order to investigate the effects of flux addition on the TiC dispersion in surface composite layers, four kinds of powder mixtures were made by mixing TiC with 5, 10, 20, and 40 wt% of the flux components (MgO-CaO). To fabricate TiC-reinforced surface composites, the TiC-flux mixtures were deposited evenly on a plain carbon steel substrate, which was subjected to electron-beam irradiation. Microstructural analysis was conducted using X-ray diffraction and Moessbauer spectroscopy as well as optical and scanning electron microscopy. The microstructure of the surface composites was composed of a melted region, an interfacial region, a coarse-grained heat-affected zone (HAZ), a fine-grained HAZ, and an unaltered original substrate region. TiC agglomerates and residual pores were found in the melted region of materials processed without flux, but the number of agglomerates and pores are significantly decreased in materials processed with a considerable amount of flux. As a result of irradiation, TiC particles were homogeneously distributed throughout the melted region of 2.5 mm in thickness, whose hardness was greatly increased. The optimum flux amount, which resulted in surface composites containing homogeneously dispersed TiC particles, was found to be in the range of 10 to 20% to obtain excellent surface composites.

  20. Fourier Analysis and Autocorrelation Function Applied to Periodical Nanostructures

    E-Print Network [OSTI]

    Rockett, Angus

    Fourier Analysis and Autocorrelation Function Applied to Periodical Nanostructures E. Cruz Microscopy (AFM) Image Fast Fourier Transformation Autocorrelation Function(AC) Angular Distribution] Fourier Analysis: analytical and geometrical aspects, Bray William O ed. New York: Marcel Dekker, 1994

  1. Detailed study of the influence of surface misorientation on the density of Anti-Phase Boundaries in 3C-SiC layers grown on (001) silicon

    SciTech Connect (OSTI)

    Jiao, S. [Universite Francois Rabelais, Tours, Laboratoire de Microelectronique de Puissance, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Centre de Recherche sur l'Hetero-Epitaxie et ses Applications CNRS-UPR10, rue Bernard Gregory, 06560 Valbonne (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP 267, 73375 Le Bourget du Lac Cedex (France); Roy, S. [Saint Gobain recherche, 39 Quai Lucien Lefranc 93300 Aubervilliers cedex (France); Michaud, J. F.; Alquier, D. [Universite Francois Rabelais, Tours, Laboratoire de Microelectronique de Puissance, 16 rue Pierre et Marie Curie, BP 7155, 37071 Tours Cedex 2 (France); Portail, M. [Centre de Recherche sur l'Hetero-Epitaxie et ses Applications CNRS-UPR10, rue Bernard Gregory, 06560 Valbonne (France)

    2010-11-01T23:59:59.000Z

    In this work we investigated the influence of the Si substrate misorientation and 3C-SiC film thickness on the density of Anti-Phase Boundaries, in order to better understand the mechanism of antiphase domain annihilation. The two highlights in our work are the utilization of [001] orientated Si on-axis wafer with spherical dimples, which gave us access to a continuum of off-cut angles (0 deg. to {approx}11 deg.) and directions, and the deposition of elongated silicon islands on the surface of 3C-SiC epilayers, which improved the detection of APDs by analysis of Scanning Electron Microscopy images. We found that for a given layer thickness the relative surface occupation of one domain increases with the off-cut angle value, leading to single domain film up to a certain angle. This critical value is reduced as the film is thickened.

  2. Scanning Force Microscopy Studies on Molecular Packing and Friction Anisotropy in Thin Films of

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Scanning Force Microscopy Studies on Molecular Packing and Friction Anisotropy in Thin Films in bulk, was studied using differential scanning calorimetry, optical microscopy, magic angle solid were investigated at the molecular level by a combination of multimode scanning force microscopy (SFM

  3. Scanning microscopy using a short-focal-length Fresnel zone plate

    E-Print Network [OSTI]

    Scanning microscopy using a short-focal-length Fresnel zone plate Ethan Schonbrun,* Winnie N. Ye demonstrate a form of scanning microscopy using a short-focal-length Fresnel zone plate and a low-NA relay. In this scheme, parallel scanning microscopy using a Fresnel zone-plate array would require only a single spatial

  4. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    SciTech Connect (OSTI)

    Bietti, Sergio, E-mail: sergio.bietti@mater.unimib.it; Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano [L–NESS and Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, I–20125 Milano (Italy); Fedorov, Alexey [L–NESS and CNR–IFN, via Anzani 42, I-22100 Como (Italy)

    2014-09-21T23:59:59.000Z

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E{sub A}=1.31±0.15 eV, a diffusivity prefactor of D{sub 0}?=?0.53(×2.1±1) cm{sup 2} s{sup ?1} that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  5. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; et al

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore »resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  6. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    E-Print Network [OSTI]

    Dettmer, Simon L; Pagliara, Stefano

    2014-01-01T23:59:59.000Z

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local...

  7. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    SciTech Connect (OSTI)

    Subhash Chandra

    2008-05-30T23:59:59.000Z

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  8. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01T23:59:59.000Z

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. We show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffraction patterns. Wemore »have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.« less

  9. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    SciTech Connect (OSTI)

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19T23:59:59.000Z

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  10. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01T23:59:59.000Z

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. We show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffraction patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.

  11. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  12. Photoemission Electron Microscopy of a Plasmonic Silver Nanoparticle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    near-fields resulting from femtosecond (fs) laser excitation of localized surface plasmon oscillations in the triangular core-shell structure. We demonstrate that the...

  13. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect (OSTI)

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15T23:59:59.000Z

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  14. Confocal Microscopy for Modeling Electron Microbeam Irradiation of Skin

    SciTech Connect (OSTI)

    Miller, John H.; Chrisler, William B.; Wang, Xihai; Sowa, Marianne B.

    2011-08-01T23:59:59.000Z

    For radiation exposures employing targeted sources such as particle microbeams, the deposition of energy and dose will depend on the spatial heterogeneity of the spample. Although cell structural variations are relatively minor for two-dimensional cell cultures, they can vary significantly for fully differential tissues. Employing high-resolution confocal microscopy, we have determined the spatial distribution, size, and shape of epidermal kerantinocyte nuclei for the full-thickness EpiDerm skin model (MatTek, Ashland, VA). Application of these data to claculate the microdosimetry and microdistribution of energy deposition by an electron microbeam is discussed.

  15. Phase modulation mode of scanning ion conductance microscopy

    SciTech Connect (OSTI)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04T23:59:59.000Z

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  16. Entanglement-assisted electron microscopy based on a flux qubit

    SciTech Connect (OSTI)

    Okamoto, Hiroshi, E-mail: okamoto@akita-pu.ac.jp [Department of Electronics and Information Systems, Akita Prefectural University, Yurihonjo 015-0055 (Japan); Nagatani, Yukinori [National Institute for Physiological Sciences, Okazaki 444-8787 (Japan)

    2014-02-10T23:59:59.000Z

    A notorious problem in high-resolution biological electron microscopy is radiation damage caused by probe electrons. Hence, acquisition of data with minimal number of electrons is of critical importance. Quantum approaches may represent the only way to improve the resolution in this context, but all proposed schemes to date demand delicate control of the electron beam in highly unconventional electron optics. Here we propose a scheme that involves a flux qubit based on a radio-frequency superconducting quantum interference device, inserted in a transmission electron microscope. The scheme significantly improves the prospect of realizing a quantum-enhanced electron microscope for radiation-sensitive specimens.

  17. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements Recently Approved Justification Memoranda byRecord-Setting Microscopy

  18. Correlations between surface structure and catalytic activity/selectivity. Progress report, January 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Goodman, D.W.

    1994-09-01T23:59:59.000Z

    The primary focus of this research is to address those issues which are keys to understanding the relationship between surface properties and catalytic activity/selectivity. These issues also impact the understanding of the origins of the enhanced catalytic properties of mixed-metal catalysts. The experimental approach utilizes a microcatalytic reactor contiguous to a surface analysis system, an arrangement which allows in vacuo transfer of the catalyst from one chamber to the other. Surface techniques being used include Auger (AES), ultraviolet and X-ray photoemission spectroscopy (UPS and XPS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS), infrared reflection absorption spectroscopy (IRAS), and scanning tunneling and atomic force microscopy (STM and AFM). This research program builds upon previous experience relating the results of single crystal kinetic measurements with the results obtained with supported analogs. As well, the authors are exploiting recent work on the preparation, the characterization, and the determination of the catalytic properties of ultra-thin metal and metal oxide films. Specifically, the program is proceeding toward three goals: (1) the study of the unique catalytic properties of ultrathin metal films; (2) the investigation of the critical ensemble size requirements for principal catalytic reaction types; and (3) the modelling of supported catalysts using ultra-thin planar oxide surfaces.

  19. Surface Energy,Surface Energy, Surface Tension & Shape of CrystalsSurface Tension & Shape of Crystals

    E-Print Network [OSTI]

    Subramaniam, Anandh

    Surface Energy,Surface Energy, Surface Tension & Shape of CrystalsSurface Tension & Shape of shapes of crystals are important: (i) growth shape and (ii) equilibrium shape Surface/interface energy surfaces. The joining of two phases creates an interface. (Two orientations of the same crystalline phase

  20. Surface profiling interferometer

    DOE Patents [OSTI]

    Takacs, Peter Z. (P.O. Box 385, Upton, NY 11973); Qian, Shi-Nan (Hefei Synchrotron Radiation Laboratory, University of Science and, Hefei, Anhui, CN)

    1989-01-01T23:59:59.000Z

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  1. Comparative analysis of the high-order harmonic generation in the laser ablation plasmas prepared on the surfaces of complex and atomic targets

    SciTech Connect (OSTI)

    Ganeev, R. A. [Scientific Association Akadempribor, Academy of Sciences of Uzbekistan, Akademgorodok, Tashkent 100125 (Uzbekistan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Milosevic, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, 12489 Berlin (Germany)

    2008-07-15T23:59:59.000Z

    We analyzed high-order harmonic generation from the plasma plumes prepared on the surfaces of complex targets. The studies of In-Ag targets showed that the characteristics of the high-order harmonics from the double-target plume were the same as those from the single-target plasmas. For the chromium-tellurium plasma, the enhancements of the 29th and 27th harmonics were obtained, thus indicating the appearance of the enhancement properties from both components of the double-target plasma. These comparative studies also showed higher enhancement of a single harmonic in the case of atomic plasma (Sb) with regard to the molecular one (InSb). The additional component can only decrease the enhancement factor of the medium, due to the change of the oscillator strength and spectral distribution of the transitions involved in the resonance enhancement of the specific harmonic order. The theoretical calculations have shown the enhancement of specific harmonics for the Sb, Te, and Cr plasmas in the double-target configurations.

  2. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01T23:59:59.000Z

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  3. Frontiers of in situ electron microscopy

    SciTech Connect (OSTI)

    Zheng, Haimei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Meng, Shirley Ying [Univ. of California-San Diego, San Diego, CA (United States)

    2015-01-01T23:59:59.000Z

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by in this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.

  4. Collaborative Computational Project for Electron cryo-Microscopy

    SciTech Connect (OSTI)

    Wood, Chris; Burnley, Tom [Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom); Patwardhan, Ardan [European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Scheres, Sjors [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Topf, Maya [University of London, Malet Street, London WC1E 7HX (United Kingdom); Roseman, Alan [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Winn, Martyn, E-mail: martyn.winn@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom)

    2015-01-01T23:59:59.000Z

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  5. Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R [ORNL; Baggetto, Loic [ORNL; Veith, Gabriel M [ORNL; Dudney, Nancy J [ORNL; More, Karren Leslie [ORNL

    2012-01-01T23:59:59.000Z

    Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to an external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].

  6. Non-contact atomic-level interfacial force microscopy

    SciTech Connect (OSTI)

    Houston, J.E.; Fleming, J.G.

    1997-02-01T23:59:59.000Z

    The scanning force microscopies (notably the Atomic Force Microscope--AFM), because of their applicability to nearly all materials, are presently the most widely used of the scanning-probe techniques. However, the AFM uses a deflection sensor to measure sample/probe forces which suffers from an inherent mechanical instability that occurs when the rate of change of the force with respect to the interfacial separation becomes equal to the spring constant of the deflecting member. This instability dramatically limits the breadth of applicability of AFM-type techniques to materials problems. In the course of implementing a DOE sponsored basic research program in interfacial adhesion, a self-balancing force sensor concept has been developed and incorporated into an Interfacial Force Microscopy (IFM) system by Sandia scientists. This sensor eliminates the instability problem and greatly enhances the applicability of the scanning force-probe technique to a broader range of materials and materials parameters. The impact of this Sandia development was recognized in 1993 by a Department of Energy award for potential impact on DOE programs and by an R and D 100 award for one of the most important new products of 1994. However, in its present stage of development, the IFM is strictly a research-level tool and a CRADA was initiated in order to bring this sensor technology into wide-spread availability by making it accessible in the form of a commercial instrument. The present report described the goals, approach and results of this CRADA effort.

  7. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    SciTech Connect (OSTI)

    Yildiz, Bilge; Heski, Clemens

    2013-08-31T23:59:59.000Z

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical origins of this phenomenon is therefore needed for designing cathode materials with optimal surface chemistry. We quantitatively assessed the elastic and electrostatic interactions of the dopant with the surrounding lattice as the key driving forces for segregation on model perovskite compounds, LnMnO3 (host cation Ln=La, Sm). Our approach combines surface chemical analysis with X-ray photoelectron and Auger electron spectroscopy on model dense thin films, and computational analysis with density functional theory (DFT) calculations and analytical models. Elastic energy differences were systematically induced in the system by varying the radius of the selected dopants (Ca, Sr, Ba) with respect to the host cations (La, Sm) while retaining the same charge state. Electrostatic energy differences were introduced by varying the distribution of charged oxygen and cation vacancies in our models. Varying the oxygen chemical potential in our experiments induced changes in both the elastic energy and electrostatic interactions. Our results quantitatively demonstrate that the mechanism of dopant segregation on perovskite oxides includes both the elastic and electrostatic energy contributions. A smaller size mismatch between the host and dopant cations and a chemically expanded lattice were found to reduce the segregation level of the dopant and to enable more stable cathode surfaces. Ca-doped LaMnO3 was found to have the most stable surface composition with the least cation segregation among the compositions surveyed. The diffusion kinetics of the larger dopants, Ba and Sr, was found to be slower, and can kinetically trap the segregation at reduced temperatures despite the larger elastic energy driving force. Lastly, scanning probe image-contrast showed that the surface chemical heterogeneities made of dopant oxides upon segregation were electronically insulating. The consistency between the results obtained from experiments, DFT calculations and analytical theory in this work provides a predictive capability to tailor the cathode surface compositions for high-performance SO

  8. Comparison of Graphene Formation on C-face and Si-face SiC {0001} Surfaces Luxmi, N. Srivastava, Guowei He, and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Comparison of Graphene Formation on C-face and Si-face SiC {0001} Surfaces Luxmi, N. Srivastava of graphene formed on the ( 1000 ) surface (the C-face) and the (0001) surface (the Si-face) of Si) and low-energy electron microscopy (LEEM). The graphene forms due to preferential sublimation of Si from

  9. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    SciTech Connect (OSTI)

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01T23:59:59.000Z

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate-vegetation interactions.

  10. ITB KNAW UTwente Lectures on Free Surface Waves

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    , Acknowledgment Surface waves are phenomena that are characterised by the dynamic interplay between linear.3 Linear Dispersive wave model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Wave groupsITB KNAW UTwente Lectures on Free Surface Waves Brenny van Groesen, Applied Analysis & Mathematical

  11. Electron microscopy and microanalysis Two transmission electron microscopes

    E-Print Network [OSTI]

    distribution (laser scatter- ing) q Powder surface area by gas adsorption (BET) Commercially Available of a failed austenitic stainless steel tube. The failure type is identified as a fatigue failure, due

  12. NEAR-IR TWO PHOTON MICROSCOPY IMAGING OF SILICA NANOPARTICLES FUNCTIONALIZED WITH ISOLATED SENSITIZED Yb(III) CENTERS

    SciTech Connect (OSTI)

    Lapadula, Giuseppe; Bourdolle, Adrien; Allouche, Florian; Conley, Matthew P.; Maron, Laurent; Lukens, Wayne W.; Guyot, Yannick; Andraud, Chantal; Brasselet, Sophie; Copé; ret, Christophe; Maury, Olivier; Andersen, Richard A.

    2013-01-12T23:59:59.000Z

    Bright nano objects emitting in the near infrared with a maximal cross section of 41.4 x 103 GM (Goppert Mayer), were prepared by implanting ca. 180 4,4 diethylaminostyryl 2,2 bipyridine (DEAS) Yb(III) complexes on the surface of 12 nm silica nanoparticles. The surface complexes ([DEAS Ln SiO2], Ln =Y,Yb) were characterized using IR, solid state NMR, UV Vis, EXAFS spectroscopies in combination with the preparation and characterization of similar molecular analogues by analytical techniques (IR, solution NMR, UV Vis, X ray crystallography) as well as DFT calculations. Starting from the partial dehydroxylation of the silica at 700 C on high vacuum having 0.8 OH.nm 2, the grafting of Ln(N(SiMe3)2)3 generate ?SiO Ln(N(SiMe3)2)2, which upon thermal step and coordination of the DEAS chromophore yields (?SiO)3Ln(DEAS). Surface and molecular analogues display similar properties, in terms of DEAS binding constants absorption maxima and luminescence properties (intense emission band assigned to a ligand centered CT fluorescence and life time) in the solid state, consistent with the molecular nature of the surface species. The densely functionalized nanoparticles can be dispersed via ultra-sonication in small ca. 15-20 nm aggregates (1 to 6 elementary particles) that were detected using two photon microscopy imaging at 720 nm excitation, making them promising nano objects for bio imaging.

  13. Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series

    SciTech Connect (OSTI)

    Dahmen, Tim [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; Baudoin, Jean-Pierre G [ORNL] [ORNL; Lupini, Andrew R [ORNL] [ORNL; Kubel, Christian [Karlsruhe Institute of Technology, Leopoldshafen, Germany] [Karlsruhe Institute of Technology, Leopoldshafen, Germany; Slusallek, Phillip [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; De Jonge, Niels [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

  14. Cryo diffraction microscopy: Ice conditions and finite supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miao, H; Downing, K; Huang, X; Kirz, J; Marchesini, S; Nelson, J; Shapiro, D; Steinbrener, J; Stewart, A; Jacobsen, C

    2009-09-01T23:59:59.000Z

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore »using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  15. X-Ray Diffraction Microscopy of Magnetic Structures

    SciTech Connect (OSTI)

    Turner, J.; Lima, E.; Huang, X.; Krupin, O.; Seu, K.; Parks, D.; Kevan, S.; Kisslinger, K.; McNulty, I.; Gambino, R.; Mangin, S.; Roy, S. and Fischer, P.

    2011-07-14T23:59:59.000Z

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L{sub 3} edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  16. Cryo diffraction microscopy: Ice conditions and finite supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miao, H; Downing, K; Huang, X; Kirz, J; Marchesini, S; Nelson, J; Shapiro, D; Steinbrener, J; Stewart, A; Jacobsen, C

    2009-09-01T23:59:59.000Z

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.

  17. Photoionization microscopy in terms of local frame transformation theory

    E-Print Network [OSTI]

    P. Giannakeas; F. Robicheaux; Chris H. Greene

    2014-10-27T23:59:59.000Z

    Two-photon ionization of an alkali-metal atom in the presence of a uniform electric field is investigated using a standardized form of local frame transformation and generalized quantum defect theory. The relevant long-range quantum defect parameters in the combined Coulombic plus Stark potential is calculated with eigenchannel R-matrix theory applied in the downstream parabolic coordinate $\\eta$. The present formulation permits us to express the corresponding microscopy observables in terms of the local frame transformation, and it gives a critical test of the accuracy of the Harmin-Fano theory permitting a scholastic investigation of the claims presented in Zhao {\\it et al.} [Phys. Rev. A 86, 053413 (2012)].

  18. Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Zhu,Y.; Wall, J.

    2008-04-01T23:59:59.000Z

    The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron microscopy techniques in strongly correlated electron systems and nanostructured materials. As a first step, with the support of Materials Science Division, Office of Basic Energy Science, US Department of Energy, and the New York State Office of Science, Technology, and Academic Research, recently we acquired three aberration-corrected electron microscopes from the three major microscope manufacturers, i.e., JEOL, Hitachi, and FEI. The Hitachi HD2700C is equipped with a probe corrector, the FEI Titan 80-300 has an imaging corrector, while the JEOL2200MCO has both. All the correctors are of the dual-hexapole type, designed and manufactured by CEOS GmbH based on the design due to Rose and Haider [3, 18]. All these three are one-of-a-kind in the US, designed for specialized capabilities in characterizing nanoscale structure. In this chapter, we review the performance of these state-of-the art instruments and the new challenges associated with the improved spatial resolution, including the environment requirements of the laboratory that hosts these instruments. Although each instrument we describe here has its own strengths and drawbacks, it is not our intention to rank them in terms of their performance, especially their spatial resolution in imaging.

  19. Handheld and low-cost digital holographic microscopy

    E-Print Network [OSTI]

    Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-01-01T23:59:59.000Z

    This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

  20. Two-Color Ultrafast Photoexcited Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Camillone, N.; Dolocan, A.; Acharya, D.P.; Zahl, P.; Sutter, P.

    2011-05-26T23:59:59.000Z

    We report on two-color two-photon photoexcitation of a metal surface driven by ultrafast laser pulses and detected with a scanning tunneling microscope (STM) tip as a proximate anode. Results are presented for two cases: (i) where the tip is retracted from the surface far enough to prohibit tunneling, and (ii) where the tip is within tunneling range of the surface. A delay-modulation technique is implemented to isolate the two-color photoemission from concurrent one-color two-photon photoemission and provide subpicosecond time-resolved detection. When applied with the tip in tunneling range, this approach effectively isolates the two-photon photoexcited current signal from the conventional tunneling current and enables subpicosecond time-resolved detection of the photoexcited surface electrons. The advantage of the two-color approach is highlighted by comparison with the one-color case where optical interference causes thermal modulation of the STM tip length, resulting in tunneling current modulations that are orders of magnitude larger than the current due to photoexcitation of surface electrons. By completely eliminating this interference, and thereby avoiding thermal modulation of the STM tip length, the two-color approach represents an important step toward the ultimate goal of simultaneous subnanometer and subpicosecond measurements of surface electron dynamics by ultrafast-laser-excited STM.

  1. Scanning Josephson Tunneling Microscopy of Single Crystal Bi2Sr2CaCu2O8+delta with a Conventional Superconducting Tip

    E-Print Network [OSTI]

    Kimura, H.

    2010-01-01T23:59:59.000Z

    Title) Scanning Josephson Tunneling Microscopy of Singlea conventional superconducting scanning tunneling microscopeabstract} (Body) Remarkable scanning tunneling microscopy (

  2. Surface tension and contact with soft elastic solids

    E-Print Network [OSTI]

    Robert W. Style; Callen Hyland; Rostislav Boltyanskiy; John S. Wettlaufer; Eric R. Dufresne

    2013-10-11T23:59:59.000Z

    Johnson-Kendall-Robert (JKR) theory is the basis of modern contact mechanics. It describes how two deformable objects adhere together, driven by adhesion energy and opposed by elasticity. However, it does not include solid surface tension, which also opposes adhesion by acting to flatten the surface of soft solids. We tested JKR theory to see if solid surface tension affects indentation behaviour. Using confocal microscopy, we characterised the indentation of glass particles into soft, silicone substrates. While JKR theory held for particles larger than a critical, elastocapillary lengthscale, it failed for smaller particles. Instead, adhesion of small particles mimicked the adsorption of particles at a fluid interface, with a size-independent contact angle between the undeformed surface and the particle given by a generalised version of Young's law. A simple theory quantitatively captures this behaviour, and explains how solid surface tension dominates elasticity for small-scale indentation of soft materials.

  3. Corrosion protection of ENIG surface finishing using electrochemical methods

    SciTech Connect (OSTI)

    Bui, Q.V.; Nam, N.D.; Choi, D.H.; Lee, J.B.; Lee, C.Y. [Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon 440-746 (Korea, Republic of)] [Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon 440-746 (Korea, Republic of); Kar, A. [National Metallurgical Laboratory (CSIR), Jamshedpur 831007 (India)] [National Metallurgical Laboratory (CSIR), Jamshedpur 831007 (India); Kim, J.G. [Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon 440-746 (Korea, Republic of)] [Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon 440-746 (Korea, Republic of); Jung, S.B., E-mail: sbjung@skku.ac.kr [Department of Advanced Materials Engineering, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon 440-746 (Korea, Republic of)

    2010-03-15T23:59:59.000Z

    Four types of thin film coating were carried out on copper for electronic materials by the electroless plating method at a pH range from 3 to 9. The coating performance was evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization testing in a 3.5 wt.% NaCl solution. In addition, atomic force microscopy and X-ray diffraction were also used to analyze the coating surfaces. The electrochemical behavior of the coatings was improved using the electroless nickel plating solution of pH 5. The electroless nickel/immersion gold on the copper substrate exhibited high protective efficiency, charge transfer resistance and very low porosity, indicating an increase in corrosion resistance. Atomic force microscopy and X-ray diffraction analyses confirmed the surface uniformity and the formation of the crystalline-refined NiP {l_brace}1 2 2{r_brace} phase at pH 5.

  4. Surface texture and specific adsorption sites of sol-gel synthesized anatase TiO{sub 2} nanoparticles

    SciTech Connect (OSTI)

    Zaki, Mohamed I., E-mail: mizaki@link.net [Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519 (Egypt); Mekhemer, Gamal A.H.; Fouad, Nasr E. [Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519 (Egypt)] [Chemistry Department, Faculty of Science, Minia University, El-Minia, 61519 (Egypt); Jagadale, Tushar C. [Physical and Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)] [Physical and Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India); Ogale, Satishchandra B., E-mail: sb.ogale@ncl.res.in [Physical and Materials Chemistry Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)

    2010-10-15T23:59:59.000Z

    The surface properties of sol-gel synthesized anatase titania (TiO{sub 2}) nanoparticles are probed by sorptiometry, infrared absorption spectroscopy, UV-vis diffuse reflectance spectroscopy and high resolution transmission electron microscopy. The results reveal strong correlations of the surface area, porosity, pyridine adsorption capacity and strength, and catalytic methylbutynol decomposition activity.

  5. Atom probe field ion microscopy and related topics: A bibliography 1989

    SciTech Connect (OSTI)

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01T23:59:59.000Z

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

  6. Nanomechanical and topographical imaging of living cells by Atomic Force Microscopy with colloidal probes

    E-Print Network [OSTI]

    Luca Puricelli; Massimiliano Galluzzi; Carsten Schulte; Alessandro Podestà; Paolo Milani

    2015-02-05T23:59:59.000Z

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells' fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cell elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured elastic modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in cell elasticity induced by the action of a cytoskeleton-targeting drug.

  7. Improved LWR Cladding Performance by EPD Surface Modification Technique

    SciTech Connect (OSTI)

    Corradini, Michael; Sridharan, Kumar

    2012-11-26T23:59:59.000Z

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  8. High resolution transmission electron microscopy of melamine-formaldehyde aerogels and silica aerogels

    SciTech Connect (OSTI)

    Ruben, G.C. (Dartmouth Coll., Hanover, NH (United States). Dept. of Biological Sciences)

    1991-09-01T23:59:59.000Z

    The goal of the high resolution transmission electron microscopy (HRTEM) was to image the structure of two tetramethyl orthosilicate (TMOS) and two melamine-formaldehyde (MF) aerogels at the single polymer chain level{sup 1,2}. With this level of structural resolution we hoped to interrelate each aerogel's structure with its physical properties and its method of synthesis. Conventional single-step base catalysed TMOS aerogels show strings of spheroidal particles linked together with minimal necking. The spheroidal particles range from 86--132 {Angstrom} and average 113{plus minus}10 {Angstrom} in diameter{sup 2}. In contrast the TMOS aerogels reported on here were made by a two step method. After extended silica chains are grown in solution under acidic conditions with a substoichiometric amount of water, the reaction is stopped and the methanol hydrolysed from TMOS is removed. Then base catalysis and additional water are added to cause gel formation is a nonalcoholic solvent. The MF aerogels were prepared for HRTEM by fracturing them on a stereo microscope stage with razor knife so that fractured pieces with smooth flat surfaces could be selected for platinum-carbon replication. The two silica (TMOS) aerogels were both transparent and difficult to see. These aerogels were fractured on a stereo microscope stage with tweezers. 6 refs., 4 figs.

  9. Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)

    SciTech Connect (OSTI)

    Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan)] [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan)] [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan)] [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)] [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2012-01-27T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.

  10. Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase

    SciTech Connect (OSTI)

    Taoufyq, A. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache (France); Société CESIGMA—Signals and Systems, 1576 Chemin de La Planquette, F 83 130 LA GARDE (France); Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Benlhachemi, A.; Ezahri, M. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); and others

    2013-07-15T23:59:59.000Z

    The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2?} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2?} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.

  11. Transmission electron microscopy of whiskers and hillocks formed on Al films deposited onto a glass

    SciTech Connect (OSTI)

    Saka, H.; Fujino, S.; Kuroda, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-01 (Japan); Tsujimoto, K.; Tsuji, S. [Display Technology, IBM Japan, Ltd., Shimotsuruma, Yamato, Kanagawa 242 (Japan); Takatsuji, H. [Display Technology, IBM Japan, Ltd., Ichimiyake, Yasu-gun, Shiga 520-23 (Japan)

    1998-01-05T23:59:59.000Z

    Whiskers and hillocks formed on an Al film deposited onto a glass substrate have been observed by means of a variety of transmission electron microscopy technique.

  12. Scanning X-ray Microscopy Investigations into the Electron Beam Exposure Mechanism of Hydrogen Silsesquioxane Resists

    E-Print Network [OSTI]

    Olynick, Deirdre L.; Tivanski, Alexei V.; Gilles, Mary K.; Tyliszczak, Tolek; Salmassi, Farhad; Liddle, J. Alexander

    2006-01-01T23:59:59.000Z

    Scanning X-ray Microscopy Investigations into the Electronchemistry is investigated by Scanning Transmission X-raythe area exposed. 15 Recently, scanning transmission x-ray

  13. Thermal calibration of photodiode sensitivity for atomic force microscopy

    SciTech Connect (OSTI)

    Attard, Phil; Pettersson, Torbjoern; Rutland, Mark W. [School of Chemistry F11, University of Sydney, NSW 2006 Australia (Australia); Department of Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden and Institute for Surface Chemistry, Box 5607, SE-114 86 Stockholm (Sweden)

    2006-11-15T23:59:59.000Z

    The photodiode sensitivity in the atomic force microscope is calibrated by relating the voltage noise to the thermal fluctuations of the cantilever angle. The method accounts for the ratio of the thermal fluctuations measured in the fundamental vibration mode to the total, and also for the tilt and extended tip of the cantilever. The method is noncontact and is suitable for soft or deformable surfaces where the constant compliance method cannot be used. For hard surfaces, the method can also be used to calibrate the cantilever spring constant.

  14. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01T23:59:59.000Z

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  15. Polarization-Modulated Second Harmonic Generation Microscopy in Collagen

    SciTech Connect (OSTI)

    Stoller, P C

    2002-09-30T23:59:59.000Z

    Collagen is a key structural protein in the body; several pathological conditions lead to changes in collagen. Among imaging modalities that can be used in vivo, second harmonic generation (SHG) microscopy has a key advantage: it provides {approx}1 {micro}m resolution information about collagen structure as a function of depth. A new technique--polarization-modulated SHG--is presented: it permits simultaneous measurement of collagen orientation, of a lower bound on the magnitude of the second order nonlinear susceptibility tensor, and of the ratio of the two independent elements in this tensor. It is applied to characterizing SHG in collagen and to determining effects of biologically relevant changes in collagen structure. The magnitude of the second harmonic signal in two dimensional images varies with position even in structurally homogeneous tissue; this phenomenon is due to interference between second harmonic light generated by neighboring fibrils, which are randomly oriented parallel or anti-parallel to each other. Studies in which focal spot size was varied indicated that regions where fibrils are co-oriented are less than {approx}1.5 {micro}m in diameter. A quartz reference was used to determine the spot size as well as a lower limit (d{sub xxx} > 0.3 pm/V) for the magnitude of the second order nonlinear susceptibility. The ratio of the two independent tensor elements ranged between d{sub XYY}/d{sub XXX} = 0.60 and 0.75. SHG magnitude alone was not useful for identifying structural anomalies in collagenous tissue. Instead, changes in the polarization dependence of SHG were used to analyze biologically relevant perturbations in collagen structure. Changes in polarization dependence were observed in dehydrated samples, but not in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable SHG signal. Collagen orientation was measured in thin samples of several different tissues in transmission mode as well as at different depths (up to 200 {micro}m) in thick samples in reflection mode; birefringence had no effect on the measurement. These studies showed that SHG microscopy was capable of detecting pathophysiological changes in collagen structure, suggesting that this technique has potential clinical applications.

  16. Synthesis of High Surface Area Alumina Aerogels without the Use of Alkoxide Precursors

    SciTech Connect (OSTI)

    Baumann, T F; Gash, A E; Chinn, S C; Sawvel, A M; Maxwell, R S; Satcher Jr., J H

    2004-06-25T23:59:59.000Z

    Alumina aerogels were prepared through the addition of propylene oxide to aqueous or ethanolic solutions of hydrated aluminum salts, AlCl{sub 3} {center_dot} 6H{sub 2}O or Al(NO{sub 3}){sub 3} {center_dot} 9H{sub 2}O, followed by drying with supercritical CO{sub 2}. This technique affords low-density (60-130 kg/m{sup 3}), high surface area (600-700 m{sup 2}/g) alumina aerogel monoliths without the use of alkoxide precursors. The dried alumina aerogels were characterized using elemental analysis, high-resolution transmission electron microscopy, powder X-ray diffraction, solid state NMR, acoustic measurements and nitrogen adsorption/desorption analysis. Powder X-ray diffraction and TEM analysis indicated that the aerogel prepared from hydrated AlCl{sub 3} in water or ethanol possessed microstructures containing highly reticulated networks of pseudoboehmite fibers, 2-5 nm in diameter and of varying lengths, while the aerogels prepared from hydrated Al(NO{sub 3}){sub 3} in ethanol were amorphous with microstructures comprised of interconnected spherical particles with diameters in the 5-15 nm range. The difference in microstructure resulted in each type of aerogel displaying distinct physical and mechanical properties. In particular, the alumina aerogels with the weblike microstructure were far more mechanically robust than those with the colloidal network, based on acoustic measurements. Both types of alumina aerogels can be transformed to {gamma}-Al{sub 2}O{sub 3} through calcination at 800 C without a significant loss in surface area or monolithicity.

  17. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28T23:59:59.000Z

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  18. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Kalinin, Sergei V. (Knoxville, TN) [Knoxville, TN

    2010-08-17T23:59:59.000Z

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  19. TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS

    SciTech Connect (OSTI)

    Tosten, M; Michael Morgan, M

    2008-12-12T23:59:59.000Z

    A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similar in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.

  20. Quantitative high dynamic range beam profiling for fluorescence microscopy

    SciTech Connect (OSTI)

    Mitchell, T. J., E-mail: t.j.mitchell@dur.ac.uk; Saunter, C. D.; O’Nions, W.; Girkin, J. M.; Love, G. D. [Centre for Advanced Instrumentation and Biophysical Sciences Institute, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom)

    2014-10-15T23:59:59.000Z

    Modern developmental biology relies on optically sectioning fluorescence microscope techniques to produce non-destructive in vivo images of developing specimens at high resolution in three dimensions. As optimal performance of these techniques is reliant on the three-dimensional (3D) intensity profile of the illumination employed, the ability to directly record and analyze these profiles is of great use to the fluorescence microscopist or instrument builder. Though excitation beam profiles can be measured indirectly using a sample of fluorescent beads and recording the emission along the microscope detection path, we demonstrate an alternative approach where a miniature camera sensor is used directly within the illumination beam. Measurements taken using our approach are solely concerned with the illumination optics as the detection optics are not involved. We present a miniature beam profiling device and high dynamic range flux reconstruction algorithm that together are capable of accurately reproducing quantitative 3D flux maps over a large focal volume. Performance of this beam profiling system is verified within an optical test bench and demonstrated for fluorescence microscopy by profiling the low NA illumination beam of a single plane illumination microscope. The generality and success of this approach showcases a widely flexible beam amplitude diagnostic tool for use within the life sciences.

  1. X-ray diffraction, optical microscopy, and microhardness studies of gas nitrided titanium alloys and titanium aluminide

    SciTech Connect (OSTI)

    Sha, W. [Metals Research Group, School of Planning, Architecture and Civil Engineering, The Queen's University of Belfast, Belfast BT7 1NN (United Kingdom)], E-mail: w.sha@qub.ac.uk; Haji Mat Don, M.A.; Mohamed, A.; Wu, X.; Siliang, B. [Metals Research Group, School of Planning, Architecture and Civil Engineering, The Queen's University of Belfast, Belfast BT7 1NN (United Kingdom); Zhecheva, A. [Sifco Applied Surface Concepts (UK) Ltd., Division of Sifco Industries, Inc., European Headquarters, 38 Walkers Road, Moons Moat North, Redditch, Worcestershire B98 9HD (United Kingdom)

    2008-03-15T23:59:59.000Z

    Thermochemical surface gas nitriding of {beta}21s, Timetal 205 and a Ti-Al alloy was conducted using differential scanning calorimeter equipment, in nominally pure nitrogen at 850 deg. C and 950 deg. C ({beta}21s), 730 deg. C and 830 deg. C (Timetal 205), and 950 deg. C and 1050 deg. C (Ti-Al) for 1 h, 3 h and 5 h. X-ray diffraction analyses showed new phases formed in the nitrided layer, depending on the alloy and the time and the temperature of nitriding. Microstructures were analyzed using optical microscopy. Cross-sectional microhardness profiles of cross-sectional samples after nitriding were obtained using a Knoop indenter.

  2. Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy

    SciTech Connect (OSTI)

    Shur, V. Ya., E-mail: vladimir.shur@urfu.ru; Zelenovskiy, P. S. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2014-08-14T23:59:59.000Z

    The application of the most effective methods of the domain visualization in model uniaxial ferroelectrics of lithium niobate (LN) and lithium tantalate (LT) family, and relaxor strontium-barium niobate (SBN) have been reviewed in this paper. We have demonstrated the synergetic effect of joint usage of optical, confocal Raman, and piezoelectric force microscopies which provide extracting of the unique information about formation of the micro- and nanodomain structures. The methods have been applied for investigation of various types of domain structures with increasing complexity: (1) periodical domain structure in LN and LT, (2) nanodomain structures in LN, LT, and SBN, (3) nanodomain structures in LN with modified surface layer, (4) dendrite domain structure in LN. The self-assembled appearance of quasi-regular nanodomain structures in highly non-equilibrium switching conditions has been considered.

  3. Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

  4. Scanning transmission x-ray microscopy of isolated multiwall carbon A. Felten,a

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Scanning transmission x-ray microscopy of isolated multiwall carbon nanotubes A. Felten,a H. Hody September 2006 Scanning transmission x-ray microscopy STXM has been used to study isolated carbon nanotubes- cations including biological and chemical sensors, nanoelec- tronic devices, tips for scanning probe

  5. Scanning photovoltage microscopy of potential modulations in carbon Marcus Freitag,a

    E-Print Network [OSTI]

    Liu, Jie

    Scanning photovoltage microscopy of potential modulations in carbon nanotubes Marcus Freitag to understand their role in ac- tive devices. Here we use scanning photovoltage microscopy to probe the built. Scanning the laser laterally produces a moving potential step that is capable of inducing a photovoltage

  6. Scanning near-field optical microscopy based on the heterodyne phase-controlled oscillator method

    E-Print Network [OSTI]

    Texas at Austin. University of

    Scanning near-field optical microscopy based on the heterodyne phase-controlled oscillator method G and quality factor of the tip oscillations was used to control the scanning near-field optical microscope SNOM0021-8979 00 04017-2 I. INTRODUCTION Scanning near-field optical microscopy SNOM is in- creasingly

  7. NEAR-FIELD SCANNING MICROWAVE MICROSCOPY: MEASURING LOCAL MICROWAVE PROPERTIES AND ELECTRIC FIELD DISTRIBUTIONS

    E-Print Network [OSTI]

    Anlage, Steven

    WEIF-49 NEAR-FIELD SCANNING MICROWAVE MICROSCOPY: MEASURING LOCAL MICROWAVE PROPERTIES AND ELECTRIC>;ics, University of Maryland, College Park, MD 2OY@-4lll, USA Abstract We describe the near-field scanning methods of scanning probe microscopy have been developed. Generally spea- king one can divide

  8. Near-Field Scanning Optical Microscopy of Temperature-and Thickness-Dependent Morphology and

    E-Print Network [OSTI]

    Buratto, Steve

    Near-Field Scanning Optical Microscopy of Temperature- and Thickness-Dependent Morphology 21, 2000 We use near-field scanning optical microscopy (NSOM) to probe the local optical spectroscopy with bulk techniques such as differ- ential scanning calorimetry (DSC) and X-ray diffractom- etry

  9. ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE-EDGE SCANNING MICROSCOPY

    E-Print Network [OSTI]

    Keyser, John

    ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis Science #12;ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis) ______________________________ ______________________________ Ergun Akleman Valerie Taylor (Member) (Head of Department) December 2003 Major Subject: Computer Science

  10. High spatial resolution subsurface thermal emission microscopy S. B. Ippolito,a)

    E-Print Network [OSTI]

    a total optical power proportional to its absolute temperature to the fourth power. An object that hasHigh spatial resolution subsurface thermal emission microscopy S. B. Ippolito,a) S. A. Thorne, M. G increasing lens technique to subsurface thermal emission microscopy of Si integrated circuits. We achieve

  11. Asbestos, polarized light microscopy, PLM, The Clean Air Act mandates a specific analytical

    E-Print Network [OSTI]

    Ahmad, Sajjad

    75 KEY WORDS Asbestos, polarized light microscopy, PLM, NESHAP ABSTRACT The Clean Air Act of the polarized light microscopy (PLM) test method that re moved the compositing of layers and effectively sought within the sample. In 1994 and again in 1995, the EPA recommended that the 1993 PLM method be used

  12. A Method for Measuring Cerebral Blood Volume of Mouse using Multiphoton Laser Scanning Microscopy

    E-Print Network [OSTI]

    Vial, Jean-Claude

    A Method for Measuring Cerebral Blood Volume of Mouse using Multiphoton Laser Scanning Microscopy P Joseph Fourier,Grenoble, France ABSTRACT Knowledge of the volume of blood per unit volume of brain tissue-photon laser scanning microscopy to obtain the local blood volume in the cortex of the anesthetized mouse. We

  13. Technical note: Characterizing individual milk fat globules with holographic video microscopy

    E-Print Network [OSTI]

    Grier, David

    Technical note: Characterizing individual milk fat globules with holographic video microscopy Fook representation of holographic video microscopy. The sample scatters light from a collimated laser beam. Both to a video camera, which records their interference as a hologram. A typical example of one fat droplet

  14. Size effects in bimetallic nickelgold nanowires: Insight from atomic force microscopy nanoindentation

    E-Print Network [OSTI]

    Sansoz, Frederic

    Size effects in bimetallic nickel­gold nanowires: Insight from atomic force microscopy the local plastic behavior and hardness properties of electrodeposited bimetallic Ni­Au NWs ranging from 60 rights reserved. Keywords: Atomic force microscopy (AFM); Nanowire; Nickel; Gold; Nanoindentation 1

  15. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    E-Print Network [OSTI]

    Rahim, Nur Aida Adbul

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. ...

  16. Level set methods to compute minimal surfaces in a medium with ...

    E-Print Network [OSTI]

    2005-06-06T23:59:59.000Z

    Department of Engineering Science and Applied Mathematics, Northwestern University, ... Computer graphics and image analysis use minimal surfaces.

  17. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure.

    SciTech Connect (OSTI)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-04-05T23:59:59.000Z

    Model systems for studying molecular surface chemistry have evolved from single crystal surfaces at low pressure to colloidal nanoparticles at high pressure. Low pressure surface structure studies of platinum single crystals using molecular beam surface scattering and low energy electron diffraction techniques probe the unique activity of defects, steps and kinks at the surface for dissociation reactions (H-H, C-H, C-C, O{double_bond}O bonds). High-pressure investigations of platinum single crystals using sum frequency generation vibrational spectroscopy have revealed the presence and the nature of reaction intermediates. High pressure scanning tunneling microscopy of platinum single crystal surfaces showed adsorbate mobility during a catalytic reaction. Nanoparticle systems are used to determine the role of metal-oxide interfaces, site blocking and the role of surface structures in reactive surface chemistry. The size, shape and composition of nanoparticles play important roles in determining reaction activity and selectivity.

  18. Structural Investigations of Surfaces and Orientation-SpecificPhenomena in Nanocrystals and Their Assemblies

    SciTech Connect (OSTI)

    Aruguete, Deborah Michiko

    2006-06-17T23:59:59.000Z

    Studies of colloidal nanocrystals and their assemblies are presented. Two of these studies concern the atomic-level structural characterization of the surfaces, interfaces, and interiors present in II-VI semiconductor nanorods. The third study investigates the crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different directions in the nanorod. This orientation-specific probe is used, because it is expected that the presence of specific surfaces in a nanorod might cause bond relaxations specific to different crystallographic directions. Se-Se distances are found to be contracted along the long axis of the nanorod, while Cd-Se distances display no angular dependence, which is different from the bulk. Ab-initio density functional theory calculations upon CdSe nanowires indicate that relaxations on the rod surfaces cause these changes. ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray absorption spectroscopy (XAS). It is hypothesized that there are two major factors influencing the core and shell structures of the nanorods: the large surface area-to-volume ratio, and epitaxial strain. The presence of the surface may induce bond rearrangements or relaxations to minimize surface energy; epitaxial strain might cause the core and shell lattices to contract or expand to minimize strain energy. A marked contraction of Zn-S bonds is observed in the core-shell nanorods, indicating that surface relaxations may dominate the structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the larger CdS or CdSe lattices via bond expansion). EXAFS and X-ray diffraction (XRD) indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a rod-shaped nanocrystal. Ordered self-assembled aggregates of cobalt nanocrystals are examined with transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SAED patterns from multilayered assemblies show that the nanocrystals have preferred crystallographic orientations. It is proposed that the nanocrystals are organized in a vortex-like or ''loop-closing'' arrangement, possibly due to magnetism. SAED and dark-field imaging used to investigate this hypothesis are presented, along with the data analysis. The effects of magnetism and nanocrystal faceting are discussed.

  19. Unified Surface Analysis Manual Weather Prediction Center

    E-Print Network [OSTI]

    -bone in stage IV. The stages in the respective cyclone evolutions are separated by approximately 6­ 24 h's) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over below shows a typical evolution according to both models of cyclone development. Conceptual models

  20. Electron Spectrometer: Scanning Multiprobe Surface Analysis System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single... A...

  1. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si

    SciTech Connect (OSTI)

    Murphy, Ryan D. [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); Torralva, Ben [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Yalisove, Steven M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-09-30T23:59:59.000Z

    Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ?50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

  2. Graphene thickness dependent adhesion force and its correlation to surface roughness

    SciTech Connect (OSTI)

    Pourzand, Hoorad [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Tabib-Azar, Massood, E-mail: azar.m@utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2014-04-28T23:59:59.000Z

    In this paper, adhesion force of graphene layers on 300?nm silicon oxide is studied. A simple model for measuring adhesion force for a flat surface with sub-nanometer roughness was developed and is shown that small surface roughness decreases adhesion force while large roughness results in an effectively larger adhesion forces. We also show that surface roughness over scales comparable to the tip radius increase by nearly a factor of two, the effective adhesion force measured by the atomic force microscopy. Thus, we demonstrate that surface roughness is an important parameter that should be taken into account in analyzing the adhesion force measurement results.

  3. Quantitative proteomics analysis of adsorbed plasma proteins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size Quantitative proteomics analysis of adsorbed plasma proteins...

  4. Surface and ultrastructural characterization of raw and pretreated switchgrass Bryon S. Donohoe a

    E-Print Network [OSTI]

    California at Riverside, University of

    and economic data on leading pretreatments applied to both corn stover (Eggeman and Elander, 2005; KimSurface and ultrastructural characterization of raw and pretreated switchgrass Bryon S. Donohoe: Pretreatment Enzymatic hydrolysis Biomass Switchgrass Microscopy a b s t r a c t The US Department of Energy

  5. Graphene on Carbon-face SiC{0001} Surfaces Formed in a Disilane Environment

    E-Print Network [OSTI]

    Feenstra, Randall

    Graphene on Carbon-face SiC{0001} Surfaces Formed in a Disilane Environment N. Srivastavaa , Guowei-face, graphene, interface structure, low energy electron microscopy, disilane Abstract. The formation of epitaxial graphene on SiC( 1000 ) in a disilane environment is studied. The higher graphitization

  6. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    E-Print Network [OSTI]

    Simon L Dettmer; Ulrich F Keyser; Stefano Pagliara

    2014-08-19T23:59:59.000Z

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g. electrokinetic or dielectrophoretic forces.

  7. Fluorinated silica microchannel surfaces

    DOE Patents [OSTI]

    Kirby, Brian J.; Shepodd, Timothy Jon

    2005-03-15T23:59:59.000Z

    A method for surface modification of microchannels and capillaries. The method produces a chemically inert surface having a lowered surface free energy and improved frictional properties by attaching a fluorinated alkane group to the surface. The coating is produced by hydrolysis of a silane agent that is functionalized with either alkoxy or chloro ligands and an uncharged C.sub.3 -C.sub.10 fluorinated alkane chain. It has been found that the extent of surface coverage can be controlled by controlling the contact time from a minimum of about 2 minutes to a maximum of 120 minutes for complete surface coverage.

  8. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy

    E-Print Network [OSTI]

    Pennycook, Steve

    . Corbin1 , Niklas Dellby1 , Matthew F. Murfitt1 , Christopher S. Own1 , Zoltan S. Szilagyi1 , Mark P

  9. Transmission Electron Microscopy and Theoretical Analysis of AuCu Nanoparticles: Atomic Distribution

    E-Print Network [OSTI]

    Wang, Zhong L.

    de Investigacio´n y Desarrollo de Ductos, Instituto Mexicano del Petroleo, Eje Central La´zaro Ca´rdenas No. 152, Col. San Bartolo Atepehuacan, C.P.07730, Mexico D.F., Mexico 2 Instituto de Fi´sica, Universidad Auto´noma de Puebla, Apdo. Postal J-48, Puebla, Pue. 72570, Mexico 3 Instituto de Investigaciones

  10. Submitted to Microscopy and Analysis (March 2000) On the measurement by EDX

    E-Print Network [OSTI]

    by electrodeposition is analysed, where 2hCu denotes the thickness of the copper layer and hNi that of each Nickel

  11. Submitted to Microscopy and Analysis (March 2000) On the measurement by EDX

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    a Ni/Cu/Ni layered material of overall thickness 2(hCu+hNi) 100µm obtained by electrodeposition is analysed, where 2hCu denotes the thickness of the copper layer and hNi that of each Nickel layer

  12. Computational image analysis of subcellular dynamics in time-lapse fluorescence microscopy

    E-Print Network [OSTI]

    Huang, Austin V., 1980-

    2005-01-01T23:59:59.000Z

    The use of image segmentation and motion tracking algorithms was adapted for analyzing time-lapse data of cells with fluorescently labeled protein. Performance metrics were devised and algorithm parameters were matched to ...

  13. Atomic force and scanning tunneling microscopy analysis of palladium and silver nanophase materials

    E-Print Network [OSTI]

    Sattler, Klaus

    . INTRODUCTION Nanophase materials consolidated from atom clusters produced by the gas condensation method be made by gas condensation, not only at the labo- ratory scale but also in commercial production and properties of nano- phase materials assembled by consolidating gas-condensed atom clusters in vacuum have

  14. Wear Analysis of Wind Turbine Gearbox Bearings

    SciTech Connect (OSTI)

    Blau, Peter Julian [ORNL; Walker, Larry R [ORNL; Xu, Hanbing [ORNL; Parten, Randy J [ORNL; Qu, Jun [ORNL; Geer, Tom [ORNL

    2010-04-01T23:59:59.000Z

    The objective of this effort was to investigate and characterize the nature of surface damage and wear to wind turbine gearbox bearings returned from service in the field. Bearings were supplied for examination by S. Butterfield and J. Johnson of the National Wind Technology Center (NREL), Boulder, Colorado. Studies consisted of visual examination, optical and electron microscopy, dimensional measurements of wear-induced macro-scale and micro-scale features, measurements of macro- and micro-scale hardness, 3D imaging of surface damage, studies of elemental distributions on fracture surfaces, and examinations of polished cross-sections of surfaces under various etched and non-etched conditions.

  15. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors

    SciTech Connect (OSTI)

    Fukumoto, Keiki, E-mail: fukumoto.k.ab@m.titech.ac.jp; Yamada, Yuki; Matsuki, Takashi; Koshihara, Shin-ya [Department of Materials Science, Tokyo Institute of Technology, Oookayama, Meguro-ku, Tokyo 152-8550 (Japan); Japan Science and Technology Agency JST-CREST, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Onda, Ken [Interactive Research Center of Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Japan Science and Technology Agency JST-PRESTO, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Mukuta, Tatsuhiko; Tanaka, Sei-ichi [Department of Materials Science, Tokyo Institute of Technology, Oookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-08-15T23:59:59.000Z

    We constructed an instrument for time-resolved photoemission electron microscopy (TR-PEEM) utilizing femtosecond (fs) laser pulses to visualize the dynamics of photogenerated electrons in semiconductors on ultrasmall and ultrafast scales. The spatial distribution of the excited electrons and their relaxation and/or recombination processes were imaged by the proposed TR-PEEM method with a spatial resolution about 100 nm and an ultrafast temporal resolution defined by the cross-correlation of the fs laser pulses (240 fs). A direct observation of the dynamical behavior of electrons on higher resistivity samples, such as semiconductors, by TR-PEEM has still been facing difficulties because of space and/or sample charging effects originating from the high photon flux of the ultrashort pulsed laser utilized for the photoemission process. Here, a regenerative amplified fs laser with a widely tunable repetition rate has been utilized, and with careful optimization of laser parameters, such as fluence and repetition rate, and consideration for carrier lifetimes, the electron dynamics in semiconductors were visualized. For demonstrating our newly developed TR-PEEM method, the photogenerated carrier lifetimes around a nanoscale defect on a GaAs surface were observed. The obtained lifetimes were on a sub-picosecond time scale, which is much shorter than the lifetimes of carriers observed in the non-defective surrounding regions. Our findings are consistent with the fact that structural defects induce mid-gap states in the forbidden band, and that the electrons captured in these states promptly relax into the ground state.

  16. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, Hugh R. (Livermore, CA); Meltzer, Michael P. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  17. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28T23:59:59.000Z

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  18. Characterization of Porosity Development in Oxidized Graphite using Automated Image Analysis Techniques

    SciTech Connect (OSTI)

    Contescu, Cristian I [ORNL; Burchell, Timothy D [ORNL

    2009-09-01T23:59:59.000Z

    This document reports on initial activities at ORNL aimed at quantitative characterization of porosity development in oxidized graphite specimens using automated image analysis (AIA) techniques. A series of cylindrical shape specimens were machined from nuclear-grade graphite (type PCEA, from GrafTech International). The specimens were oxidized in air to various levels of weight loss (between 5 and 20 %) and at three oxidation temperatures (between 600 and 750 oC). The procedure used for specimen preparation and oxidation was based on ASTM D-7542-09. Oxidized specimens were sectioned, resin-mounted and polished for optical microscopy examination. Mosaic pictures of rectangular stripes (25 mm x 0.4 mm) along a diameter of sectioned specimens were recorded. A commercial software (ImagePro) was evaluated for automated analysis of images. Because oxidized zones in graphite are less reflective in visible light than the pristine, unoxidized material, the microstructural changes induced by oxidation can easily be identified and analyzed. Oxidation at low temperatures contributes to development of numerous fine pores (< 100 m2) distributed more or less uniformly over a certain depth (5-6 mm) from the surface of graphite specimens, while causing no apparent external damage to the specimens. In contrast, oxidation at high temperatures causes dimensional changes and substantial surface damage within a narrow band (< 1 mm) near the exposed graphite surface, but leaves the interior of specimens with little or no changes in the pore structure. Based on these results it appears that weakening and degradation of mechanical properties of graphite materials produced by uniform oxidation at low temperatures is related to the massive development of fine pores in the oxidized zone. It was demonstrated that optical microscopy enhanced by AIA techniques allows accurate determination of oxidant penetration depth and of distribution of porosity in oxidized graphite materials.

  19. Transmission electron microscopy of undermined passive films on stainless steel

    SciTech Connect (OSTI)

    Isaacs, H.S.; Zhu, Y.; Sabatini, R.L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science; Ryan, M.P. [Imperial Coll. of Science, Technology and Medicine, London (United Kingdom). Dept. of Materials

    1999-06-01T23:59:59.000Z

    A study has been made of the passive film remaining over pits on stainless steel using a high resolution transmission electron microscope. Type 305 stainless steel was passivated in a borate buffer solution and pitted in ferric chloride. Passive films formed at 0.2 V relative to a saturated calomel electrode were found to be amorphous. Films formed at higher potentials showed only broad diffraction rings. The passive film was found to cover a remnant lacy structure formed over pits passivated at 0.8 V. The metallic strands of the lace were roughly hemitubular in shape with the curved surface facing the center of the pit.

  20. Dynamic scanning probe microscopy of adsorbed molecules on graphite

    E-Print Network [OSTI]

    N. Berdunov; A. J. Pollard; P. H. Beton

    2009-01-08T23:59:59.000Z

    We have used a combined dynamic scanning tunneling and atomic force microscope to study the organisation of weakly bound adsorbed molecules on a graphite substrate. Specifically we have acquired images of islands of the perylene derivative molecules. These weakly bound molecules may be imaged in dynamic STM, in which the probe is oscillated above the surface. We show that molecular resolution may be readily attained and that a similar mode of imaging may be realised using conventional STM arrangement. We also show, using tunnelling spectroscopy, the presence of an energy gap for the adsorbed molecules confirming a weak molecule-substrate interaction.