National Library of Energy BETA

Sample records for microscopy surface analysis

  1. Application of Surface Spectroscopies and Microscopies to Elucidate Sorption Mechanisms on Oxide Surfaces

    E-Print Network [OSTI]

    Sparks, Donald L.

    -resolution transmission electron microscopy (HRTEM), and surface probing microscopy (SPM) were used to discern

  2. Computational microscopy for sample analysis

    E-Print Network [OSTI]

    Ikoma, Hayato

    2014-01-01

    Computational microscopy is an emerging technology which extends the capabilities of optical microscopy with the help of computation. One of the notable example is super resolution fluorescence microscopy which achieves ...

  3. Intermodulation electrostatic force microscopy for imaging surface photo-voltage

    SciTech Connect (OSTI)

    Borgani, Riccardo Forchheimer, Daniel; Thorén, Per-Anders; Haviland, David B.; Bergqvist, Jonas; Inganäs, Olle

    2014-10-06

    We demonstrate an alternative to Kelvin Probe Force Microscopy for imaging surface potential. The open-loop, single-pass technique applies a low-frequency AC voltage to the atomic force microscopy tip while driving the cantilever near its resonance frequency. Frequency mixing due to the nonlinear capacitance gives intermodulation products of the two drive frequencies near the cantilever resonance, where they are measured with high signal to noise ratio. Analysis of this intermodulation response allows for quantitative reconstruction of the contact potential difference. We derive the theory of the method, validate it with numerical simulation and a control experiment, and we demonstrate its utility for fast imaging of the surface photo-voltage on an organic photo-voltaic material.

  4. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    SciTech Connect (OSTI)

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks on the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.

  5. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks onmore »the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.« less

  6. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    SciTech Connect (OSTI)

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750 (United States)

    2014-10-28

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  7. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    SciTech Connect (OSTI)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  8. Scanning Kelvin probe microscopy of surface electronic structure in GaN grown by hydride vapor phase epitaxy

    E-Print Network [OSTI]

    Yu, Edward T.

    Scanning Kelvin probe microscopy of surface electronic structure in GaN grown by hydride vapor Engineering and Program in Materials Science and Engineering, University of California at San Diego, La Jolla microscopy is used to image surface potential variations in GaN 0001 grown by hydride vapor phase epitaxy

  9. Advanced Multivariate Analysis Tools Applied to Surface Analysis...

    Office of Scientific and Technical Information (OSTI)

    Advanced Multivariate Analysis Tools Applied to Surface Analysis. Citation Details In-Document Search Title: Advanced Multivariate Analysis Tools Applied to Surface Analysis. No...

  10. Detailed scanning probe microscopy tip models determined from simultaneous atom-resolved AFM and STM studies of the TiO2(110) surface

    E-Print Network [OSTI]

    Kühnle, Angelika

    scattering theory, we demonstrate how the state of the scanning probe microscopy SPM tip in the experiments may be determined. The analysis of a large number of experimental SPM images recorded with different-AFM and the tunneling current It images on TiO2 110 surface. The exact state of the SPM tip must, therefore

  11. Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip

    E-Print Network [OSTI]

    Mollet, O; Drezet, A; Huant, S; 10.1016/j.diamond.2011.05.012

    2011-01-01

    Leakage-radiation microscopy of a thin gold film demonstrates the ability of an ensemble of fluorescent diamond nanoparticles attached onto the apex of an optical tip to serve as an efficient near-field surface-plasmon polariton launcher. The implementation of the nanodiamond-based tip in a near-field scanning optical microscope will allow for an accurate control on the launching position, thereby opening the way to scanning plasmonics.

  12. Investigations into Protein-Surface Interactions via Atomic Force Microscopy and Surface Plasmon Resonance

    E-Print Network [OSTI]

    Settle, Jenifer Kaye

    2012-08-31

    performed via surface plasmon resonance (SPR) to investigate the dynamics of this adsorption process on gold, and an amine-, carboxyl-, methyl- and hydroxyl-terminated SAM films. Chapter 4 provides background and investigation into F1-Adenosine triphosphate...

  13. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    SciTech Connect (OSTI)

    Hopf, Juliane [ORNL; Pierce, Eric M [ORNL

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  14. EXPERIMENTAL AND SIMULATED SCANNING TUNNELING MICROSCOPY OF THE CLEAVED Rb1/3WO3 (0001) SURFACE

    E-Print Network [OSTI]

    Rohrer, Gregory S.

    EXPERIMENTAL AND SIMULATED SCANNING TUNNELING MICROSCOPY OF THE CLEAVED Rb1/3WO3 (0001) SURFACE of cleaved (0001) surfaces of the hexagonal tungsten bronze, Rbl/ 3WO3 , show two distinct contrast patterns bronze (HTB), Rbl/ 3WO3 [5]. The structure of this compound, originally determined by Magndli [6

  15. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; et al

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore »environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  16. Atomic-scale electrochemistry on the surface of a manganite by scanning tunneling microscopy

    SciTech Connect (OSTI)

    Vasudevan, Rama K. Tselev, Alexander; Baddorf, Arthur P.; Gianfrancesco, Anthony G.

    2015-04-06

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunneling microscopy (STM), we demonstrate atomic resolution on samples of La{sub 0.625}Ca{sub 0.375}MnO{sub 3} grown on (001) SrTiO{sub 3} by pulsed laser deposition. Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunneling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including formation of oxygen vacancies and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.

  17. Normal-Incidence Photoemission Electron Microscopy (NI-PEEM) for Imaging Surface Plasmon Polaritons

    E-Print Network [OSTI]

    Aeschlimann, Martin

    Philip Kahl & Simone Wall & Christian Witt & Christian Schneider & Daniela Bayer & Alexander Fischer-incidence photoemission microscopy P. Kahl :S. Wall :C. Witt :M. Horn-von Hoegen : F.

  18. Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements

    SciTech Connect (OSTI)

    Xing Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Culbertson, R. J.; Whaley, S. D. [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States); Sell, Clive H.; Kwong, Henry Mark Jr. [Associated Retina Consultants, 7600 N 15th Street, Suite 155, Phoenix, AZ 85020 (United States)

    2011-06-01

    The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several A ring to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV {sup 12}C({alpha}, {alpha}){sup 12}C, 3.045 MeV {sup 16}O({alpha},{alpha}){sup 16}O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 10{sup 18} atom/cm{sup 2} to 10{sup 19} atom/cm{sup 2} gives the silica or silicone surface a roughness of several A ring and a wavelength of 0.16{+-}0.02 {mu}m, and prevents fogging by forming a complete wetting layer during water condensation.

  19. Failure Surface Analysis of Polyimide/Titanium Notched Coating Adhesion Specimens

    SciTech Connect (OSTI)

    GIUNTA,RACHEL K.; KANDER,RONALD G.

    2000-12-18

    Adhesively bonded joints of LaRC{trademark} PETI-5, a phenylethynyl-terminated polyimide, with chromic acid anodized titanium were fabricated and debonded interfacially. The adhesive-substrate failure surfaces were investigated using several surface analysis techniques. From Auger spectroscopy, field emission scanning electron microscopy, and atomic force microscopy studies, polymer appears to be penetrating the pores of the anodized substrate to a depth of approximately 100 nm. From x-ray photoelectron spectroscopy data, the polymer penetrating the pores appears to be in electrical contact with the titanium substrate, leading to differential charging. These analyses confirm that the polymer is becoming mechanically interlocked within the substrate surface.

  20. Application of Surface Analysis Methods to Nanomaterials: Summaryof ISO/TC 201 Technical Report: ISO 14187:2011 -Surface Chemical Analysis- Characterization of Nanomaterials

    SciTech Connect (OSTI)

    Baer, Donald R.

    2012-09-01

    ISO Technical Report (TR) 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials using surface-analysis tools. In addition, both general issues and challenges associated with characterising nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometres, the distinctions among 'bulk', 'surface' and 'particle' analysis blur. This Technical Report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that are in the domain of ISO/TC 201 including Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed.

  1. Phase states of water near the surface of a polymer membrane. Phase microscopy and luminescence spectroscopy experiments

    SciTech Connect (OSTI)

    Bunkin, N. F., E-mail: nbunkin@kapella.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Gorelik, V. S. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Kozlov, V. A., E-mail: v.kozlov@hotmail.com; Shkirin, A. V., E-mail: avshkirin@mephi.ru; Suyazov, N. V., E-mail: nvs@kapella.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2014-11-15

    Phase microscopy is used to show that the refractive index in the near-surface layer of water at the surface of a polymer Nafion membrane increases by a factor of 1.1 as compared to bulk water. Moreover, this layer exhibits birefringence. Experiments on UV irradiation of dry (anhydrous) and water-soaked Nafion are performed in grazing-incidence geometry to study their stimulated luminescence spectra. These spectra are found to be identical in both cases. For dry Nafion, luminescence can only be excited if probing radiation illuminates the polymer surface. The luminescence of water-soaked Nafion can also be excited if the distance between the optical axis and the surface is several hundred micrometers.

  2. Fluorescence Microscopy Evidence for Quasi-Permanent Attachment of Antifreeze Proteins to Ice Surfaces

    E-Print Network [OSTI]

    Wettlaufer, John S.

    Fluorescence Microscopy Evidence for Quasi-Permanent Attachment of Antifreeze Proteins to Ice ABSTRACT Many organisms are protected from freezing by the presence of extracellular antifreeze proteins (AFPs), which bind to ice, modify its morphology, and prevent its further growth. These proteins have

  3. Scanning probe microscopy imaging before and after atomic layer oxide deposition on a compound semiconductor surface

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Scanning probe microscopy imaging before and after atomic layer oxide deposition on a compound fabricated using trimethylaluminum (TMA) and water atomic layer deposition (ALD) for the Al2O3 gate oxide level (Fig 2) suggesting that an ordered monolayer layer might be a requirement for unpinning

  4. Review: Recent Advances and Current Challenges in Scanning Probe Microscopy of Biomolecular Surfaces and Interfaces

    E-Print Network [OSTI]

    Webb, Lauren J.

    States ABSTRACT: The introduction of scanning probe microscopy (SPM) techniques revolutionized the field on biological systems with some success, the biophysical sciences remain on the cusp of a breakthrough with SPM, and complex with the experimental requirements of SPM techniques. However, there are a growing number

  5. AN ELECTRON MICROSCOPY ANALYSIS OF A SIMPLE METAL/CERAMIC INTERFACE

    E-Print Network [OSTI]

    Dahmen, U.

    2010-01-01

    Materials Symposium on "Surfaces and Interfaces in Ceramicand Ceramic-Metal Systems", Lawrence Berkeley Laboratory,ANALYSIS OF A SIMPLE METAL/CERAMIC INTERFACE U. Dahmen, K.H.

  6. Molecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Webb, Lauren J.

    propargylglycine unnatural functional groups 20 Å apart and an alkanethiol self-assembled monolayer (SAM) on a gold-terminated surfaces in which a structured -helical peptide is chemically bonded to an alkanethiol self-assembledMolecularly Resolved Images of Peptide-Functionalized Gold Surfaces by Scanning Tunneling

  7. Evanescent wave and video microscopy methods for directly measuring interactions between surface-immobilized biomolecules 

    E-Print Network [OSTI]

    Everett, William Neil

    2009-05-15

    -specific protein-protein interactions between surface immobilized cadherin fragments demonstrate the potential utility of this experimental system and these methods. Additionally, quantum dot-modified colloids were synthesized and evanescent wave...

  8. In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching

    SciTech Connect (OSTI)

    Fujii, Takashi; Arita, Masashi; Takahashi, Yasuo; Fujiwara, Ichiro

    2011-05-23

    An in situ transmission electron microscopy (TEM) analysis of a solid electrolyte, Cu-GeS, during resistance switching is reported. Real-time observations of the filament formation and disappearance process were performed in the TEM instrument and the conductive-filament-formation model was confirmed experimentally. Narrow conductive filaments were formed corresponding to resistance switching from high- to low-resistance states. When the resistance changed to high-resistance state, the filament disappeared. It was also confirmed by use of selected area diffractometry and energy-dispersive x-ray spectroscopy that the conductive filament was made of nanocrystals composed mainly of Cu.

  9. Modeling atomic force microscopy at LiNbO3 surfaces from first-principles

    E-Print Network [OSTI]

    Schmidt, Wolf Gero

    on different atomic tip models interacting with x-cut and z-cut LiNbO3 surfaces are calculated within density 30 years AFM has become a major tool for imaging and manipulating matter at the atomic scale [5]. Due of the converse piezoelectric effect to excite deformations of the sample with a metal-coated tip under alternat

  10. Molecular beam surface analysis. 1993 Summary report

    SciTech Connect (OSTI)

    Appelhans, A.D.; Ingram, J.C.; Groenewold, G.S.; Dahl, D.A.; Delmore, J.E.

    1993-09-01

    The Molecular Beam Surface Analysis (MBSA) program is developing both laboratory-based and potentially field-portable chemical analyses systems taking advantage of new surface analysis technology developed at the Idaho National Engineering Laboratory (INEL). The objective is to develop the means to rapidly detect and identify, with high specificity and high sensitivity, nonvolatile and low volatile organics found in Chemical Weapons (CW) and High Explosives (HE) feedstocks, agents, and decomposition products on surfaces of plants, rocks, paint chips, filters, smears of buildings, vehicles, equipment, etc.. Ideally, the method would involve no sample preparation and no waste generation, and would have the potential for being implemented as a field-portable instrument. In contrast to existing analytical methods that rely on sample volatility, MBSA is optimized for nonvolatile and low volatile compounds. This makes it amenable for rapidly screening field samples for CW agent decomposition products and feedstock chemicals and perhaps actual agents. In its final configuration (benchtop size) it could be operated in a non-laboratory environment (such as an office building) requiring no sample preparation chemistry or chemical supplies. It could also be included in a mobile laboratory used in on-site, ore remote site cooperative surveys, or in a standard laboratory, where it would provide fast screening of samples at minimal cost.

  11. SCANNING ELECTRON MICROSCOPY AND X-RAY DIFFRACTION ANALYSIS OF TANK 18 SAMPLES

    SciTech Connect (OSTI)

    Hay, M.; O'Rourke, P.; Ajo, H.

    2012-03-08

    The F-Area Tank Farm (FTF) Performance Assessment (PA) utilizes waste speciation in the waste release model used in the FTF fate and transport modeling. The waste release modeling associated with the residual plutonium in Tank 18 has been identified as a primary contributor to the Tank 18 dose uncertainty. In order to reduce the uncertainty related to plutonium in Tank 18, a better understanding of the plutonium speciation in the Tank 18 waste (including the oxidation state and stoichiometry) is desired. Savannah River National Laboratory (SRNL) utilized Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to analyze Tank 18 samples to provide information on the speciation of plutonium in the waste material. XRD analysis of the Tank 18 samples did not identify any plutonium mineral phases in the samples. These indicates the crystalline mineral phases of plutonium are below the detection limits of the XRD method or that the plutonium phase(s) lack long range order and are present as amorphous or microcrystalline solids. SEM analysis of the Tank 18 samples did locate particles containing plutonium. The plutonium was found as small particles, usually <1 {micro}m but ranging up to several micrometers in diameter, associated with particles of an iron matrix and at low concentration in other elemental matrices. This suggests the plutonium has an affinity for the iron matrix. Qualitatively, the particles of plutonium found in the SEM analysis do not appear to account for all of the plutonium in the sample based on concentrations determined from the chemical analysis of the Tank 18 samples. This suggests that plutonium is also distributed throughout the solids in low concentrations.

  12. Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy

    SciTech Connect (OSTI)

    Behrens, R.G.; Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J.

    1995-09-01

    This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO{sub 2}PuO{sub 2{minus}x}, and Pu{sub 4}O{sub 7} phases, of about 1{mu}m or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 {mu}m to liberate the plutonium from the surrounding inert matrix.

  13. Nanometer-scale investigations by atomic force microscopy into the effect of different treatments on the surface structure of hair

    E-Print Network [OSTI]

    Durkan, C.; Wang, N.

    2014-09-15

    left behind by commercial products. Methods Atomic Force Microscopy (AFM) and related techniques. Results It can be directly seen that washing hair using commercial hair-care products removes deposits that naturally form on the shaft, revealing... . The factors determining which products a given consumer purchases include the brand, the cost, the scent and the perceived benefit. Hair shafts have traditionally been studied using scanning or transmission electron microscopy (SEM or TEM) 2...

  14. Surface-Based Analysis of Functional Magnetic Resonance Imaging Data

    E-Print Network [OSTI]

    Thompson, Paul

    Surface-Based Analysis of Functional Magnetic Resonance Imaging Data Theo G.M. van Erp1, Vikas Y School of Medicine, Los Angeles, CA 90095, USA Abstract. Surface-based visualization, atlases the integration of surface-based tech- niques with functional imaging data, combining surface-based nonlinear

  15. Integrated Atomic Force Microscopy Techniques for Analysis of Biomaterials : : Study of Membrane Proteins

    E-Print Network [OSTI]

    Connelly, Laura S.

    2014-01-01

    TECHNIQUES FOR ANALYSIS OF BIOMATERIALS: STUDY OF MEMBRANETECHNIQUES FOR ANALYSIS OF BIOMATERIALS: STUDY OF MEMBRANE

  16. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  17. L.J. van Vliet, F.R. Boddeke, D. Sudar, and I.T. Young, Image Detectors for Digital Image Microscopy, in: M.H.F. Wilkinson, F. Schut (eds.), Digital Image Analysis of Microbes; Imaging, Morphometry,

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    Microscopy, in: M.H.F. Wilkinson, F. Schut (eds.), Digital Image Analysis of Microbes; Imaging, Morphometry

  18. Reflection high-energy electron diffraction and scanning tunneling microscopy study of InP,,001... surface reconstructions

    E-Print Network [OSTI]

    Thibado, Paul M.

    -source, cracked phosphorus, valved effusion cell. Five InP 001 reconstructions are observed with RHEED until the entire device structure is formed. Naturally, surface structure plays an important roleAs there are three dominant techniques for preparing the InP surface: sputter-and-anneal, growth of InP using gas

  19. A simplified system of pressure surfaces for atmospheric analysis 

    E-Print Network [OSTI]

    Shay, Francis Schofield

    1959-01-01

    LIBRARY A g M COLLEGE OF TEXAS A SIMPLIFIED SYSTEM OF PRESSURE SURFACES FOR ATMOSPHERIC ANALYSIS A Thesis By FRANCIS S. SHAY + Captain USAF Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of MASTER OP SCIENCE May 1959 Major Subject: Meteorology A SIMPLIFIED SYSTEM OF PRESSURE SURFACES FOR ATMOSPHERIC ANALYSIS A Thesis By FRANCIS S. SHAY Captain USAF jpp roved j as to style and content...

  20. NREL: Measurements and Characterization - Surface Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial Toolkit The GeospatialSolar EnergyDeviceVoltageSurface

  1. The structures and dynamics of atomic and molecular adsorbates on metal surfaces by scanning tunneling microscopy and low energy electron diffraction

    SciTech Connect (OSTI)

    Yoon, Hyungsuk Alexander

    1996-12-01

    Studies of surface structure and dynamics of atoms and molecules on metal surfaces are presented. My research has focused on understanding the nature of adsorbate-adsorbate and adsorbate-substrate interactions through surface studies of coverage dependency and coadsorption using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The effect of adsorbate coverage on the surface structures of sulfur on Pt(111) and Rh(111) was examined. On Pt(111), sulfur forms p(2x2) at 0.25 ML of sulfur, which transforms into a more compressed ({radical}3x{radical}3)R30{degrees} at 0.33 ML. On both structures, it was found that sulfur adsorbs only in fcc sites. When the coverage of sulfur exceeds 0.33 ML, it formed more complex c({radical}3x7)rect structure with 3 sulfur atoms per unit cell. In this structure, two different adsorption sites for sulfur atoms were observed - two on fcc sites and one on hcp site within the unit cell.

  2. A new technique for imaging Mineralized Fibrils on Bovine Trabecular Bone Fracture Surfaces by Atomic Force Microscopy

    E-Print Network [OSTI]

    Hansma, Paul

    A new technique for imaging Mineralized Fibrils on Bovine Trabecular Bone Fracture Surfaces coated with extrafibrillar mineral particles. The mineral particles are distinctly different in different collagen fibrils. If the observed particles can be verified to be native extrafibrillar mineral, this could

  3. Scanning Tunneling Microscopy and Surface Simulation of Zinc-Blende GaN(001) Intrinsic 4 Reconstruction: Linear Gallium Tetramers?

    E-Print Network [OSTI]

    Reconstruction: Linear Gallium Tetramers? Hamad A. AL-Brithen, Rong Yang, Muhammad B. Haider, Costel Constantin and occupied states, in agreement with surface simulations based on the 4 1 linear tetramer model the existence of linear Ga tetramers. DOI: PACS numbers: 68.35.Bs, 68.37.Ef, 73.20.At Based on both fundamental

  4. Potassium-induced effect on structure and chemical activity of CuxO/Cu(111) (x?2) surface: A combined scanning tunneling microscopy and density functional theory study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Ping; An, Wei; Stacchiola, Dario; Xu, Fang

    2015-10-16

    Potassium (K) plays an essential role in promoting catalytic reaction in many established industrial catalytic processes. Here, we report a combined study using scanning tunneling microscopy (STM) and density functional theory (DFT) in understanding the effect of depositing K on the atomic and electronic structures as well as chemical activities of CuxO/Cu(111) (x?2). The DFT calculations observe a pseudomorphic growth of K on CuxO/Cu(111) up to 0.19 monolayer (ML) of coverage, where K binds the surface via strong ionic interaction with chemisorbed oxygen and the relatively weak electrostatic interactions with copper ions, lower and upper oxygen on the CuxO rings.more »The simulated STM pattern based on the DFT results agrees well with the experimental observations. The deposited K displays great impact on the surface electronic structure of CuxO/Cu(111), which induces significant reduction in work function and leads to a strong electron polarization on the surface. The promotion of K on the surface binding properties is selective. It varies depending on the nature of adsorbates. According to our results, K has little effect on surface acidity, while it enhances the surface basicity significantly. As a consequence, the presence of K does not help for CO adsorption on CuxO/Cu(111), but being able to accelerate the activation of CO2. Thus, such promotion strongly depends on the combinations from both geometric and electronic effects. Our results highlight the origin of promoting effect of alkalis in the design of catalysts for the complex reactions.« less

  5. Note: Artificial neural networks for the automated analysis of force map data in atomic force microscopy

    SciTech Connect (OSTI)

    Braunsmann, Christoph; Schäffer, Tilman E., E-mail: tilman.schaeffer@uni-tuebingen.de [Institute of Applied Physics and LISA, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2014-05-15

    Force curves recorded with the atomic force microscope on structured samples often show an irregular force versus indentation behavior. An analysis of such curves using standard contact models (e.g., the Sneddon model) would generate inaccurate Young's moduli. A critical inspection of the force curve shape is therefore necessary for estimating the reliability of the generated Young's modulus. We used a trained artificial neural network to automatically recognize curves of “good” and of “bad” quality. This is especially useful for improving the analysis of force maps that consist of a large number of force curves.

  6. Knife-Edge Scanning Microscopy: High-throughput Imaging and Analysis of

    E-Print Network [OSTI]

    Choe, Yoonsuck

    : High-throughput Imaging and Analysis of Massive Volumes of Biological Microstructures Author 1 Yoonsuck Choe Author 1 - Address Department of Computer Science, Texas A&M Univ. 3112 TAMU, College Station, TX, 77843-3112, USA Author 1 - Email choe@tamu.edu Author 1 - Tel +1 979 845 5466 Author 2 Louise C. Abbott

  7. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect (OSTI)

    Janssens, K.H.; van Langevelde, F.; Adams, F.C. (Universitaire Instelling Antwerpen, Antwerp (Belgium)); Vis, R.D. (Vrije Univ., Amsterdam (Netherlands)); Sutton, S.R.; Rivers, M.L. (Chicago Univ., IL (United States)); Jones, K.W. (Brookhaven National Lab., Upton, NY (United States)); Bowen, D.K. (Warwick Univ., Coventry (United Kingdom))

    1991-01-01

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  8. Comparison of synchrotron x-ray microanalysis with electron and proton microscopy for individual particle analysis

    SciTech Connect (OSTI)

    Janssens, K.H.; van Langevelde, F.; Adams, F.C. [Universitaire Instelling Antwerpen, Antwerp (Belgium); Vis, R.D. [Vrije Univ., Amsterdam (Netherlands); Sutton, S.R.; Rivers, M.L. [Chicago Univ., IL (United States); Jones, K.W. [Brookhaven National Lab., Upton, NY (United States); Bowen, D.K. [Warwick Univ., Coventry (United Kingdom)

    1991-12-31

    This paper is concerned with the evaluation of the use of synchrotron/radiation induced x-ray fluorescences ({mu}-SRXRF) as implemented at two existing X-ray microprobes for the analysis of individual particles. As representative environmental particulates, National Institutes of Science and Technology (NIST) K227, K309, K441 and K961 glass microspheres were analyzed using two types of X-ray micro probes: the white light microprobe at beamline X26A of the monochromatic (15 keV) X-ray microprobe at station 7.6 of the SRS. For reference, the particles were also analyzed with microanalytical techniques more commonly employed for individual particles analysis such as EPMA and micro-PIXE.

  9. A surface science investigation of silicon carbide: Oxidation, crystal growth and surface structural analysis

    SciTech Connect (OSTI)

    Powers, J.M.

    1991-11-01

    For the semiconductor SiC to fulfill its potential as an electronic material, methods must be developed to produce insulating surface oxide layers in a reproducible fashion. Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and x-ray photoelectron spectroscopy (XPS) were used to investigate the oxidation of single crystal {alpha}-SiC over a wide temperature and O{sub 2} pressure range. The {alpha}-SiC surface becomes graphitic at high temperatures and low O{sub 2} pressures due to Si and SiO sublimation from the surface. Amorphous SiO{sub 2} surface layers from on {alpha}-SiC at elevated O{sub 2} pressures and temperatures. Both the graphitization and oxidation of {alpha}-SiC appears to be enhanced by surface roughness. Chemical vapor deposition (CVD) is currently the preferred method of producing single crystal SiC, although the method is slow and prone to contamination. We have attempted to produce SiC films at lower temperatures and higher deposition rates using plasma enhanced CVD with CH{sub 3}SiH{sub 3}. Scanning AES, XPS and scanning electron microscopy (SEM) were utilized to study the composition and morphology of the deposited Si{sub x}C{sub y}H{sub z} films as a function of substrate temperature, plasma power and ion flux bombardment of the film during deposition. High energy ion bombardment during deposition was found to increase film density and substrate adhesion while simultaneously reducing hydrogen and oxygen incorporation in the film. Under all deposition conditions the Si{sub x}C{sub y}H{sub z} films were found to be amorphous, with the ion bombarded films showing promise as hard protective coatings. Studies with LEED and AES have shown that {beta}-SiC (100) exhibits multiple surface reconstructions, depending on the surface composition. These surface reconstructions possess substantially different surface reactivities at elevated temperatures, which can complicate the fabrication of metal on SiC junctions.

  10. Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces

    SciTech Connect (OSTI)

    Unal, Baris

    2008-12-01

    The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Our STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of their top planes. Hence, we name them as Pd+(with Pd) and Pd-(without Pd). Based on their planer structure and the step height, it can be said that these two families can be viable surface terminations. However, besides the Pd content, these two sets differ in terms of relative densities of their top planes as well as the gap separating the layer from the nearest atomic plane. The experimental data and other arguments lead to the conclusion that the Pd- family is favored over the Pd+. This has an important implication on the interpretation of local motifs seen in the high resolution STM images. In other words, the dark stars are not formed by cut-Bergmans rather they are formed by cut-Mackays.

  11. A combined flood surface and geochemical analysis of metal

    E-Print Network [OSTI]

    Hren, Michael

    A combined flood surface and geochemical analysis of metal fluxes in a historically mined region anthropogenic sediments in a naturally metal-rich region, delin- eating zones of sediments with elevated metal®cally, the distribu- tion of metals in Fisher Creek of the New World Mining District, Montana, suggests the following

  12. Vibration Analysis of Wiresaw Manufacturing Processes and Wafer Surface Measurements

    E-Print Network [OSTI]

    Kao, Imin

    Vibration Analysis of Wiresaw Manufacturing Processes and Wafer Surface Measurements I. Kao (PI), S. Wei, F-P. Chiang Department of Mechanical Engineering, SUNY Stony Brook, NY 11794-2300 Abstract the yield per crystal and to reduce the cost. In this paper, the vibration model of wiresaw system

  13. Experimental thin film deposition and surface analysis techniques

    SciTech Connect (OSTI)

    Collins, W.E.; Rambabu, B.

    1986-01-01

    An attempt has been made to present some of the thin-film deposition and surface analysis techniques which may be useful in growing superionic conducting materials. Emphasis is made on the importance of being careful in selecting process parameters and materials in order to produce films with properties outlined in this article. Also, special care should be given to proper consideration of grain boundary effects.

  14. Scaling law analysis of paraffin thin films on different surfaces

    SciTech Connect (OSTI)

    Dotto, M. E. R.; Camargo, S. S. Jr. [Engenharia Metalurgica e de Materials, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2010-01-15

    The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substrates present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.

  15. Adhesion of Rice Flour-Based Batter to Chicken Drumsticks Evaluated by Laser Scanning Confocal Microscopy and Texture Analysis

    E-Print Network [OSTI]

    Adhesion of Rice Flour-Based Batter to Chicken Drumsticks Evaluated by Laser Scanning Confocal batter formulation. The effects of ingredients used in rice flour-based bat- ters on adhesion viewing. (Key words: rice, chicken drumstick, batter, adhesion, microscopy) 2000 Poultry Science 79

  16. Cryoelectron Microscopy as a Functional Instrument for Systems Biology, Structural Analysis & Experimental Manipulations with Living Cells. A comprehensive review of the current works

    E-Print Network [OSTI]

    Oleg V. Gradov; Margaret A. Gradova

    2015-01-18

    The aim of this paper is to give an introductory review of the cryoelectron microscopy as a complex data source for the most of the system biology branches, including the most perspective non-local approaches known as "localomics" and "dynamomics". A brief summary of various cryoelectron mi-croscopy methods and corresponding system biological ap-proaches is given in the text. The above classification can be considered as a useful framework for the primary comprehen-sions about cryoelectron microscopy aims and instrumental tools. We do not discuss any of these concepts in details, but merely point out that their methodological complexity follows only from the structure-functional complexity of biological systems which are investigated in this manner. We also postu-late that one can employ some of the cryoelectron microscopic techniques not only for observation, but also for modification and structural refunctionalization of some biological and similar soft matter objects and microscopic samples. In other worlds, we start with the cryoelectron microscopy as a tool for the sys-tem biology and progress to its applying as an instrument for system biology and functional biomimetics; i.e. "system cryobi-ology" goes over into "synthetic cryobiology" or "cryogenic biomimetics". All these conclusions can be deduced from the most recent works of the latest years, including just submitted foreign papers. This article provides an up-to-date description of the conceptual basis for the novel view on the computational cryoelectron microscopy (in silico) approaches and the data mining principles which lie at the very foundation of modern structural analysis and reconstruction.

  17. True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy

    SciTech Connect (OSTI)

    Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-09-15

    Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5?nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6?nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

  18. Fourier plane imaging microscopy

    SciTech Connect (OSTI)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  19. Radiation-thermoacoustic microscopy of condensed media

    SciTech Connect (OSTI)

    Lyamshev, L.M.; Chelnokov, B.I.

    1984-07-01

    Possibilities are discussed for the application of scanning radiation-thermoacoustic microscopy, using different types of radiation, for microstructure analysis. (AIP)

  20. Comparative analysis of surface power system architectures for human Mars exploration

    E-Print Network [OSTI]

    Cooper, Chase Allen

    2009-01-01

    This thesis provides a comprehensive analysis of surface power generation and energy storage architectures for human Mars surface missions, including tracking and non-tracking photovoltaic power generation, nuclear fission ...

  1. Exploring the nature of surface barriers on MOF Zn(tbip) by applying IR microscopy in high temporal and spatial resolution

    E-Print Network [OSTI]

    Li, Jing

    ,8­10], surface permeabilities are by far more complicated to be assessed. This complication is related by deviations from the ideal crystal structure which are more likely to occur close to the surface than in the crystal bulk phase. They may give rise to pore narrowing or to total pore blocking at the surface and

  2. Analysis of aircraft surface motion at Boston Logan International Airport

    E-Print Network [OSTI]

    Alhanatis, Robert Elias

    The purpose of this thesis is to examine the nature of aircraft surface motion on the airport surface during normal operations. Twelve hours of radar data, gathered by MIT Lincoln Laboratories from Logan airport in Boston, ...

  3. Linear analysis of surface temperature dynamics and climate sensitivity 

    E-Print Network [OSTI]

    Wu, Wei

    2007-04-25

    Spectral properties of global surface temperature and uncertainties of global climate sensitivity are explored in this work through the medium of Energy Balance Climate Models (EBCMs) and observational surface temperature ...

  4. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    SciTech Connect (OSTI)

    Phillips, D.C.

    2006-05-16

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures ({alpha}-helix and {beta}-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  5. NUMERICAL ANALYSIS OF A FINITE ELEMENT SCHEME FOR THE APPROXIMATION OF HARMONIC MAPS INTO SURFACES

    E-Print Network [OSTI]

    Bartels, Soeren

    NUMERICAL ANALYSIS OF A FINITE ELEMENT SCHEME FOR THE APPROXIMATION OF HARMONIC MAPS INTO SURFACES Geometric partial differential equations and their analysis as well as numerical simulation have recently

  6. On Smoothing Surfaces in Voxel Based Finite Element Analysis of Trabecular Bone

    E-Print Network [OSTI]

    Frey, Pascal

    On Smoothing Surfaces in Voxel Based Finite Element Analysis of Trabecular Bone Peter Arbenz on complicated domains composed of often hundreds of millions of voxel elements. The finite element analysis finite element (FE) analysis. The approach based on the FE analysis leads to linear systems of equations

  7. SUBDIVISION SURFACES: A NEW PARADIGM FOR THIN-SHELL FINITE-ELEMENT ANALYSIS

    E-Print Network [OSTI]

    Desbrun, Mathieu

    SUBDIVISION SURFACES: A NEW PARADIGM FOR THIN-SHELL FINITE-ELEMENT ANALYSIS Fehmi Cirak1 , Michael for thin-shell finite-element analysis based on the use of subdivision surfaces for: i) describing by subdivision are H2 and, consequently, have a finite Kirchhoff-Love energy. The resulting finite elements

  8. Analysis of the scattering by an unbounded rough surface

    E-Print Network [OSTI]

    2012-11-10

    Jun 7, 2012 ... outdoor ground and sea surfaces, optical scattering from the surface of materials in near-field optics or nano-optics, and detection of underwater ... ined by researchers in the engineering community. .... A simple calculation yields an explicit characterization of the norm in ...... Wave Motion 1996; 24:421–433.

  9. Analysis of the Scattering by an Unbounded Rough Surface

    E-Print Network [OSTI]

    2011-11-12

    eling acoustic and electromagnetic wave propagation over outdoor ground and sea surfaces, optical scattering from the ... been intensively examined by researchers in the engineering community. ..... explicit characterization of the norm in H1(?) via Fourier coefficient: ...... rough surfaces, Wave Motion, 24 (1996)

  10. OPTICAL ANALYSIS OF SURFACES BY SECOND HARMONIC GENERATION

    E-Print Network [OSTI]

    Marrucci, Lorenzo

    additives, commonly used in the lubricant industry, whose effect derives from surface adsorption. Moreover resolution (micrometers) and, exploiting pump-and-probe approaches, it allows time-resolved measurements

  11. Design of a robust superhydrophobic surface: thermodynamic and kinetic analysis

    E-Print Network [OSTI]

    Anjishnu Sarkar; Anne-Marie Kietzig

    2014-12-17

    The design of a robust superhydrophobic surface is a widely pursued topic.While many investigations are limited to applications with high impact velocities (for raindrops of the order of a few m/s), the essence of robustness is yet to be analyzed for applications involving quasi-static liquid transfer.To achieve robustness with high impact velocities, the surface parameters (geometrical details, chemistry) have to be selected from a narrow range of permissible values, which often entail additional manufacturing costs.From the dual perspectives of thermodynamics and mechanics, we analyze the significance of robustness for quasi-static drop impact, and present the range of permissible surface characteristics.For surfaces with a Youngs contact angle greater than 90{\\deg} and square micropillar geometry, we show that robustness can be enforced when an intermediate wetting state (sagged state) impedes transition to a wetted state (Wenzel state).From the standpoint of mechanics, we use available scientific data to prove that a surface with any topology must withstand a pressure of 117 Pa to be robust.Finally, permissible values of surface characteristics are determined, which ensure robustness with thermodynamics (formation of sagged state) and mechanics (withstanding 117 Pa).

  12. Functional photoacoustic microscopy 

    E-Print Network [OSTI]

    Zhang, Hao

    2009-06-02

    This dissertation focuses on laser-based noninvasive photoacoustic microscopy of subsurface structures in vivo. Photoacoustic microscopy is a hybrid imaging modality that combines the high-resolution advantage of ultrasonic imaging in deep tissue...

  13. Spectroscopical Analysis of Mechano-chemically Activated Surfaces 

    E-Print Network [OSTI]

    Cooper, Rodrigo

    2012-10-19

    methods. The dynamics and kinetics of mechano-chemically activated surfaces will be studied using x-ray spectroscopy methods. Mechano-chemical interactions can be quantified through the study of electron energies. X-ray spectroscopy is a useful method...

  14. Analysis of surface integrity of grinded gears using Barkhausen noise analysis and x-ray diffraction

    SciTech Connect (OSTI)

    Vrkoslavová, Lucie; Louda, Petr; Malec, Ji?i

    2014-02-18

    The contribution is focused to present results of study grinded gears made of 18CrNiMo7-6 steel used in the wind power plant for support (service) purposes. These gears were case-hardened due to standard hard case and soft core formation. This heat treatment increases wear resistance and fatigue strength of machine parts. During serial production some troubles with surface integrity have occurred. When solving complex problems lots of samples were prepared. For grinding of gears were used different parameters of cutting speed, number of material removal and lots from different subsuppliers. Material characterization was carried out using Barkhausen noise analysis (BNA) device; X-ray diffraction (XRD) measurement of surface residual stresses was done as well. Depth profile of measured characteristics, e.g. magnetoelastic parameter and residual stress was obtained by step by step layers' removing using electrolytic etching. BNA software Viewscan was used to measure magnetizing frequency sweep (MFS) and magnetizing voltage sweep (MVS). Scanning of Magnetoelastic parameter (MP) endwise individual teeth were also carried out with Viewscan. These measurements were done to find problematic surface areas after grinding such as thermal damaged locations. Plots of the hardness and thickness of case-hardened layer on cross sections were measurered as well. Evaluation of structure of subsurface case-hardened layer and core was made on etched metallographic patterns. The aim of performed measurements was to find correlation between conditions of grinding, residual stresses and structural and magnetoelastic parameters. Based on correlation of measured values and technological parameters optimizing the production of gears will be done.

  15. Efficient numerical algorithms for surface formulations of mathematical models for biomolecule analysis and design

    E-Print Network [OSTI]

    Bardhan, Jaydeep Porter, 1978-

    2006-01-01

    This thesis presents a set of numerical techniques that extend and improve computational modeling approaches for biomolecule analysis and design. The presented research focuses on surface formulations of modeling problems ...

  16. An integrated traverse planner and analysis tool for future lunar surface exploration

    E-Print Network [OSTI]

    Johnson, Aaron William

    2010-01-01

    This thesis discusses the Surface Exploration Traverse Analysis and Navigation Tool (SEXTANT), a system designed to help maximize productivity, scientific return, and safety on future lunar and planetary explorations,. The ...

  17. Joint analysis of refractions with surface waves: An inverse solution to the refraction-traveltime problem

    E-Print Network [OSTI]

    Ivanov, Julian; Miller, Richard D.; Xia, Jianghai; Steeples, Don W.; Park, Choon Byong

    2006-11-01

    constraint. The application of the joint analysis of refractions with surface waves (JARS) method provided a more realistic solution than the conventional refraction/tomography methods, which did not benefit from a reference model derived from real data...

  18. Calculation notes for surface leak resulting in pool, TWRS FSAR accident analysis

    SciTech Connect (OSTI)

    Hall, B.W.

    1996-09-25

    This document includes the calculations performed to quantify the risk associated with the unmitigated and mitigated accident scenarios described in the TWRS FSAR for the accident analysis titled: Surface Leaks Resulting in Pool.

  19. Finite element analysis of surface-stress effects in the Si lattice-parameter measurement

    E-Print Network [OSTI]

    Sasso, Carlo; Massa, Enrico; Mana, Giovanni; Kuetgens, Ulrich

    2013-01-01

    A stress exists in solids surfaces, similarly to liquids, also if the underlying bulk material is stress-free. This paper investigates the surface stress effect on the measured value of the Si lattice parameter used to determine the Avogadro constant by counting Si atoms. An elastic-film model has been used to provide a surface load in a finite element analysis of the lattice strain of the x-ray interferometer crystal used to measure the lattice parameter. Eventually, an experiment is proposed to work a lattice parameter measurement out so that there is a visible effect of the surface stress.

  20. Ultrafast scanning tunneling microscopy

    SciTech Connect (OSTI)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  1. Methods, computer readable media, and graphical user interfaces for analysis of frequency selective surfaces

    DOE Patents [OSTI]

    Kotter, Dale K. (Shelley, ID) [Shelley, ID; Rohrbaugh, David T. (Idaho Falls, ID) [Idaho Falls, ID

    2010-09-07

    A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.

  2. Version: 6/16/98 Keywords: wavy surface flow, finite element, longwave analysis, weakly-nonlinear analysis

    E-Print Network [OSTI]

    McCready, Mark J.

    Version: 6/16/98 Keywords: wavy surface flow, finite element, longwave analysis, weakly and drag are found, from finite element calculations, to increase as amplitude to approximately the third wavelength problem is solved numerically with a finite element formulation providing qualitative trends

  3. Visual-servoing optical microscopy

    SciTech Connect (OSTI)

    Callahan, Daniel E; Parvin, Bahram

    2013-10-01

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  4. Visual-servoing optical microscopy

    DOE Patents [OSTI]

    Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Mill Valley, CA)

    2011-05-24

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  5. Visual-servoing optical microscopy

    DOE Patents [OSTI]

    Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Hercules, CA)

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  6. Complete information acquisition in scanning probe microscopy

    SciTech Connect (OSTI)

    Belianinov, Alex [ORNL; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL

    2015-01-01

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  7. Tropical Cyclone Wind Retrievals from the Advanced Microwave Sounding Unit: Application to Surface Wind Analysis

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Tropical Cyclone Wind Retrievals from the Advanced Microwave Sounding Unit: Application to Surface Wind Analysis KOTARO BESSHO Japan Meteorological Agency/Meteorological Research Institute, Tsukuba City winds at 850 hPa from tropical cyclones retrieved using the nonlinear balance equation, where the mass

  8. LASER SCANNING AND NOISE REDUCTION APPLIED TO 3D ROAD SURFACE ANALYSIS

    E-Print Network [OSTI]

    LASER SCANNING AND NOISE REDUCTION APPLIED TO 3D ROAD SURFACE ANALYSIS Thorsten Schulz and Hilmar, EAWAG Email: michele.steiner@eawag.ch Abstract: Terrestrial laser scanning was applied to acquire 3D the catchment area of a road with respect to a pilot plant. As laser scanning requires only a few minutes

  9. Flow rate analysis of a surface tension driven passive micropump{{ Erwin Berthiera

    E-Print Network [OSTI]

    Beebe, David J.

    , causing fluid flow. The behavior of the input drop occurs in two characteristic phases. An analytical value of Re = rU0L0/g # 1, meaning that the flow is very laminar, allowing the use of the Washburn lawFlow rate analysis of a surface tension driven passive micropump{{ Erwin Berthiera and David J

  10. Analysis of seismic waves generated by surface blasting at Indiana coal mines

    E-Print Network [OSTI]

    Polly, David

    Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent implications for understanding different seismic sources, earthquake structures in Indiana, and wave

  11. Polarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface

    E-Print Network [OSTI]

    by nonadditive effects which make it impossible to sufficiently accurately represent the energy of water as a sumPolarizable interaction potential for water from coupled cluster calculations. I. Analysis of dimer potential energy surface Robert Bukowski,1 Krzysztof Szalewicz,1,a Gerrit C. Groenenboom,2 and Ad van der

  12. Nonlinear vibrational microscopy

    DOE Patents [OSTI]

    Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  13. Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems

    SciTech Connect (OSTI)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2005-01-19

    ''Hidden'' geothermal systems are systems devoid of obvious surface hydrothermal manifestations. Emissions of moderate-to-low solubility gases may be one of the primary near-surface signals from these systems. We investigate the potential for CO2 detection and monitoring below and above ground in the near-surface environment as an approach to exploration targeting hidden geothermal systems. We focus on CO2 because it is the dominant noncondensible gas species in most geothermal systems and has moderate solubility in water. We carried out numerical simulations of a CO2 migration scenario to calculate the magnitude of expected fluxes and concentrations. Our results show that CO2 concentrations can reach high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are predominantly controlled by CO2 uptake by photosynthesis, production by root respiration, microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include the infrared gas analyzer, the accumulation chamber method, the eddy covariance method, hyperspectral imaging, and light detection and ranging. To meet the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring techniques with statistical analysis and modeling strategies. The proposed monitoring plan initially focuses on rapid, economical, reliable measurements of CO2 subsurface concentrations and surface fluxes and statistical analysis of the collected data. Based on this analysis, are as with a high probability of containing geothermal CO2 anomalies can be further sampled and analyzed using more expensive chemical and isotopic methods. Integrated analysis of all measurements will determine definitively if CO2 derived from a deep geothermal source is present, and if so, the spatial extent of the anomaly. The suitability of further geophysical measurements, installation of deep wells, and geochemical analyses of deep fluids can then be determined based on the results of the near surface CO2 monitoring program.

  14. Direct Surface Analysis of Time-Resolved Aerosol Impactor Samples with Ultrahigh-Resolution Mass Spectrometry

    E-Print Network [OSTI]

    Fuller, Stephen J.; Zhao, Yongjing; Cliff, Steven S.; Wexler, Anthony S.; Kalberer, Markus

    2012-10-18

    was assumed to be correct. Unfortunately due to the generally low peak intensities of the identified species MS-MS analysis for further structural identification was not possible. Only about 10-15% of the peaks contain a sulfur atom and are not further... 1 Direct surface analysis of time-resolved aerosol impactor samples with ultra-high resolution mass spectrometry Stephen J. Fuller 1, Yongjing Zhao2, Steven S. Cliff2, Anthony S. Wexler2, Markus Kalberer 1* 1 University of Cambridge, Department...

  15. Dynamic Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  16. HotPatch Web Gateway: Statistical Analysis of Unusual Patches on Protein Surfaces

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Pettit, Frank K.; Bowie, James U. [DOE-Molecular Biology Institute

    HotPatch finds unusual patches on the surface of proteins, and computes just how unusual they are (patch rareness), and how likely each patch is to be of functional importance (functional confidence (FC).) The statistical analysis is done by comparing your protein's surface against the surfaces of a large set of proteins whose functional sites are known. Optionally, HotPatch can also write a script that will display the patches on the structure, when the script is loaded into some common molecular visualization programs. HotPatch generates complete statistics (functional confidence and patch rareness) on the most significant patches on your protein. For each property you choose to analyze, you'll receive an email to which will be attached a PDB-format file in which atomic B-factors (temp. factors) are replaced by patch indices; and the PDB file's Header Remarks will give statistical scores and a PDB-format file in which atomic B-factors are replaced by the raw values of the property used for patch analysis (for example, hydrophobicity instead of hydrophobic patches). [Copied with edits from http://hotpatch.mbi.ucla.edu/

  17. Uncertainty Studies of Real Anode Surface Area in Computational Analysis for Molten Salt Electrorefining

    SciTech Connect (OSTI)

    Sungyeol Choi; Jaeyeong Park; Robert O. Hoover; Supathorn Phongikaroon; Michael F. Simpson; Kwang-Rag Kim; Il Soon Hwang

    2011-09-01

    This study examines how much cell potential changes with five differently assumed real anode surface area cases. Determining real anode surface area is a significant issue to be resolved for precisely modeling molten salt electrorefining. Based on a three-dimensional electrorefining model, calculated cell potentials compare with an experimental cell potential variation over 80 hours of operation of the Mark-IV electrorefiner with driver fuel from the Experimental Breeder Reactor II. We succeeded to achieve a good agreement with an overall trend of the experimental data with appropriate selection of a mode for real anode surface area, but there are still local inconsistencies between theoretical calculation and experimental observation. In addition, the results were validated and compared with two-dimensional results to identify possible uncertainty factors that had to be further considered in a computational electrorefining analysis. These uncertainty factors include material properties, heterogeneous material distribution, surface roughness, and current efficiency. Zirconium's abundance and complex behavior have more impact on uncertainty towards the latter period of electrorefining at given batch of fuel. The benchmark results found that anode materials would be dissolved from both axial and radial directions at least for low burn-up metallic fuels after active liquid sodium bonding was dissolved.

  18. Detailed Surface Analysis Of Incremental Centrifugal Barrel Polishing (CBP) Of Single-Crystal Niobium Samples

    SciTech Connect (OSTI)

    Palczewski, Ari D.; Hui Tian; Trofimova, Olga; Reece, Charles E.

    2011-07-01

    We performed Centrifugal Barrel Polishing (CBP) on single crystal niobium samples/coupons housed in a stainless steel sample holder following the polishing recipe developed at Fermi Lab (FNAL) in 2011 \\cite{C. A. Cooper 2011}. Post CBP, the sample coupons were analyzed for surface roughness, crystal composition and structure, and particle contamination. Following the initial analysis each coupon was high pressure rinsed (HRP) and analyzed for the effectiveness of contamination removal. We were able to obtain the mirror like surface finish after the final stage of tumbling, although some defects and embedded particles remained. In addition, standard HPR appears to have little effect on removing embedded particles which remain after each tumbling step, although final polishing media removal was partially affected by standard/extended HPR.

  19. Scanning tunneling microscopy/spectroscopy study of atomic and electronic structures of In2O on InAs and In0.53Ga0.47As,,001...-,,42... surfaces

    E-Print Network [OSTI]

    Kummel, Andrew C.

    Scanning tunneling microscopy/spectroscopy study of atomic and electronic structures of In2O on In trap density.4 On an atomic level, electronic defects result from strong perturbations to the electronic structure of the oxide/ semiconductor interface forming interface trap states. These perturbations

  20. Constrained Parameterization of the Multichannel Analysis of Surface Waves Approach with Application at Yuma Proving Ground, Arizona

    E-Print Network [OSTI]

    Schwenk, Jacob Tyler

    2013-08-31

    Field data from Yuma Proving Ground, Arizona was used to test the feasibility of merging common multichannel analysis of surface waves (MASW) processing routines with mode- consistent shear-wave refraction traveltime ...

  1. Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing

    E-Print Network [OSTI]

    Brunsell, Nathaniel A.; Gillies, Robert R.

    2003-01-01

    thermal measurements. Remote Sens. Rev., 1, 197–247. ——, and F. E. Boland, 1996: Will a doubling of atmospheric carbon dioxide concentration lead to an increase or a decrease in water consumption by crops? Ecol. Modell., 88, 241–246. ——, and D. Ripley.../plain; charset=UTF-8 1212 VOLUME 4J O U R N A L O F H Y D R O M E T E O R O L O G Y q 2003 American Meteorological Society Length Scale Analysis of Surface Energy Fluxes Derived from Remote Sensing NATHANIEL A. BRUNSELL* Department of Plants, Soils...

  2. Reinventing Pocket Microscopy

    E-Print Network [OSTI]

    Kamal, T; Lee, W M

    2015-01-01

    The key to the success of pocket microscopes stems from the convenience for anyone to magnify the fine details (tens of micrometres) of any object on-thespot. The capability with a portable microscope lets us surpass our limited vision and is commonly used in many areas of science, industry, education. The growth of imaging and computing power in smartphones is creating the possibility of converting your smartphone into a high power pocket microscope. In this article, we briefly describe the history of pocket microscopy and elucidate how mobile technologies are set to become the next platform for pocket microscopes

  3. Aware surfaces : large-scale, surface-based sensing for new modes of data collection, analysis, and human interaction

    E-Print Network [OSTI]

    Goodman, Daniel Hayim

    2015-01-01

    This thesis describes the design and construction of pressure sensing matrices for capturing human location and activity data from large surfaces in a space such as the floors, walls, tabletops, countertops, and furniture. ...

  4. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect (OSTI)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  5. Scanning Electron Microscopy Analysis of Fuel/Matrix Interaction Layers in Highly-Irradiated U–Mo Dispersion Fuel Plates with Al and Al–Si Alloy Matrices

    SciTech Connect (OSTI)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Brandon D. Miller; Jian Gan; Adam B. Robinson; Pavel Medvedev; James Madden; Dan Wachs; Mitch Meyer

    2014-04-01

    In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U–7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U–7Mo dispersion fuel elements with pure Al, Al–2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U–7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission-gas bubbles. Additionally, solid-fission-product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U–7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al–Si matrices.

  6. The origin of bimodal luminescence of ?-SiAlON:Eu{sup 2+} phosphors as revealed by fluorescence microscopy and cathodoluminescence analysis

    SciTech Connect (OSTI)

    Gan, Lin; Mao, Zhi-Yong; Zeng, Xiong-Hui; Zhang, Yu-Qiang; Zhao, Yang; Xu, Fang-Fang; Zhu, Ying-Chun; Liu, Xue-Jian

    2014-03-01

    Graphical abstract: - Highlights: • Bimodal emission is originated from ?-SiAlON grains with z ? 2. • Coexistence of two kinds of emission centers in the ?-SiAlON phase is definite. • Fluorescence microscopy shows influence of the z value on emission of ?-SiAlON. - Abstract: Eu{sup 2+}-doped SiAlON phosphors with the composition of Eu{sub x}Si{sub 6?z}Al{sub z}O{sub z}N{sub 8?z} (0.5 ? z ? 3) at a fixed x = 0.01 were synthesized by the gas pressure sintering method. Dependence of luminescence properties on the phase compositions in ?-SiAlON:Eu{sup 2+} phosphors has been examined via fluorescence microscope and scanning electron microscope equipped with a cathodoluminescence spectrometer and an energy dispersive spectrometer. Bimodal emission (green and violet) from ?-SiAlON phase is observed in the samples with z ? 2, indicating co-existence of two different kinds of coordination for Eu{sup 2+} ions in the host lattice.

  7. Evolution of Near-surface Flows Inferred from High-resolution Ring-diagram Analysis

    E-Print Network [OSTI]

    Bogart, Richard S; Baldner,; Basu, Sarbani

    2015-01-01

    Ring-diagram analysis of acoustic waves observed at the photosphere can provide a relatively robust determination of the sub-surface flows at a particular time under a particular region. The depth of penetration of the waves is related to the size of the region, hence the depth extent of the measured flows is inversely proportional to the spatial resolution. Most ring-diagram analysis has focused on regions of extent ~15{\\deg} (180 Mm) or more in order to provide reasonable mode sets for inversions. HMI data analysis also provides a set of ring fit parameters on a scale three times smaller. These provide flow estimates for the outer 1% (7 Mm) of the Sun only, with very limited depth resolution, but with spatial resolution adequate to map structures potentially associated with the belts and regions of magnetic activity. There are a number of systematic effects affecting the determination of flows from local helioseismic analysis of regions over different parts of the observable disk, not all well understood. I...

  8. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    SciTech Connect (OSTI)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  9. Image analysis of jet structure on electrospinning from free liquid surface

    SciTech Connect (OSTI)

    Kula, Jiri Linka, Ales Tunak, Maros; Lukas, David

    2014-06-16

    The work analyses intra-jet distances during electrospinning from a free surface of water based poly(vinyl alcohol) solution confined by two thin metallic plates employed as a spinning electrode. A unique computer vision system and digital image processing were designed in order to track position of every polymer jet. Here, we show that jet position data are in good compliance with theoretically predicted intra-jet distances by linear stability analysis. Jet density is a critical parameter of electrospinning technology, since it determines the process efficiency and homogeneity of produced nanofibrous layer. Achievements made in this research could be used as essential approach to study jetting from two-dimensional spinning electrodes, or as fundamentals for further development of control system related to Nanospider{sup ™} technology.

  10. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    SciTech Connect (OSTI)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

    2013-01-21

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

  11. Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a

    E-Print Network [OSTI]

    Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a , S.N. Renfrow a,b , G. Vizkelethy a,1 Abstract Alternatives to traditional nuclear microprobe analysis (NMA) emerged two years ago with the invention of ion electron emission microscopy (IEEM). With nuclear emission microscopy (NEM) the ion beam

  12. Mapping the U.S. West Coast surface circulation: A multiyear analysis of highfrequency radar observations

    E-Print Network [OSTI]

    Fabrikant, Sara Irina

    capability to monitor and understand coastal ocean dynamics and phenomenology through hourly surface current and reflected by shoreline curvature and bathymetry change and do not penetrate north of Point Conception surface currents resolve coastal surface ocean variability continuously across scales from submesoscale

  13. SURFACE OXIDATION OF DIESEL PARTICULATE MATTER IN PRESENCE OF O3 +NOX: NEW TD/GC/MS ANALYSIS METHOD

    E-Print Network [OSTI]

    Holmén, Britt A.

    SURFACE OXIDATION OF DIESEL PARTICULATE MATTER IN PRESENCE OF O3 +NOX: NEW TD/GC/MS ANALYSIS METHOD+08 2.6e+08 2.8e+08 3e+08 Time--> Abundance TIC: 0914S4.D INTRODUCTION Diesel exhaust is one into the atmosphere diesel particles can be transformed through physical and chemical processes resulting

  14. Filtration method characterizing the reversibility of colloidal fouling layers at a membrane surface: analysis through critical flux and osmotic pressure

    E-Print Network [OSTI]

    Boyer, Edmond

    surface: analysis through critical flux and osmotic pressure Benjamin Espinasse, Patrice Bacchin* , Pierre of the critical flux on these conditions is discussed and analysed through the osmotic pressure of the colloidal dispersion. Keywords: Critical flux, ultrafiltration, colloids, membrane, irreversibility, fouling, osmotic

  15. Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather

    E-Print Network [OSTI]

    Aires, Filipe

    Land surface skin temperatures from a combined analysis of microwave and infrared satellite Microwave/Imager (SSM/I) and International Satellite Cloud Climatology Project (ISCCP) data. In the absence all the expected variations with solar flux, soil characteristics, and cloudiness. During daytime

  16. Probing graphene defects and estimating graphene quality with optical microscopy

    SciTech Connect (OSTI)

    Lai, Shen [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); Kyu Jang, Sung [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Jae Song, Young, E-mail: yjsong@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

    2014-01-27

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

  17. Analysis of the relationship between H{sub 2}S removal capacity and surface properties of unimpregnated activated carbons

    SciTech Connect (OSTI)

    Adib, F.; Bagreev, A.; Bandosz, T.J.

    2000-02-15

    The H{sub 2}S breakthrough capacity was measured on two series of activated carbons of a coconut shell and a bituminous coal origins. To broaden the spectrum of surface features the samples were oxidized using nitric acid or ammonium persulfate under conditions chosen to preserve their pore structures. Then the carbons were characterized using Boehm titration, potentiometric titration, thermal analysis, temperature programmed desorption, sorption of nitrogen, and sorption of water. It was found that the choice of unimpregnated carbon for application as H{sub 2}S adsorbent should be made based on parameters of its acidity such as number of acidic groups, pH of surface, amount of surface groups oxygen, or weight loss associated to decomposition of surface oxygen species. The results obtained from the analyses of six unimpregnated carbon samples suggest that there are certain threshold values of these quantities which, when exceeded, have a dramatic effect on the H{sub 2}S breakthrough capacity.

  18. Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems

    E-Print Network [OSTI]

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2005-01-01

    1977), Chemistry and Geothermal Systems, Academic Press, Newgas species in most geothermal systems and has moderatefor detecting hidden geothermal systems by near-surface gas

  19. Preparation of Samples for Light Microscopy Simple Wax Seal

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    Preparation of Samples for Light Microscopy Simple Wax Seal Materials - Slide - Cover Slip - Paraffin Wax Candle - Pasteur Pipette (suggested size 5 3/4 inch) - Matches Preparation of the Slide - You may want to protect the work surface from melted wax. We use a sheet of aluminum foil taped

  20. Instrument Series: Microscopy Ultra-High Vacuum, Low-

    E-Print Network [OSTI]

    Instrument Series: Microscopy Ultra-High Vacuum, Low- Temperature Scanning Probe Microscope EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM range of surface analytical techniques at low temperature ­ enables ultra-violet/X-ray photoelectron

  1. Transient photoinduced diffractive solid immersion lens for infrared microscopy

    E-Print Network [OSTI]

    Palanker, Daniel

    plate structure on the surfaces of semiconductor wafers with high indices of refraction. Lenses properties were determined. We demonstrate that transient SILs can have lifetimes longer than 50 ps microscopy. A solid immersion lens SIL focuses radiation within a material of a high re- fractive index

  2. Application Prospect Analysis of the Surface Water Source Heat-Pump in China 

    E-Print Network [OSTI]

    Zhang, C.; Zhuang, Z.; Huang, L.; Li, X.; Li, G.; Sun, D.

    2006-01-01

    Surface water resources in China are rather abundant and it can be use as the heat or cool source for heat pump. The winter surface water temperatures of 17 typical cities are investigated in December, and they are all distributed in the interval...

  3. CHARACTERIZATION OF SALT PARTICLE INDUCED CORROSION PROCESSES BY SYNCHROTRON GENERATED X-RAY FLUORESCENCE AND COMPLEMENTARY SURFACE ANALYSIS TOOLS.

    SciTech Connect (OSTI)

    NEUFELD, A.K.; COLE, I.S.; BOND, A.M.; ISAACS, H.S.; FURMAN, S.A.

    2001-03-25

    The benefits of using synchrotron-generated X-rays and X-ray fluorescence analysis in combination with other surface analysis techniques have been demonstrated. In studies of salt-induced corrosion, for example, the detection of Rb ions in the area of secondary spreading when salt-containing micro-droplets are placed on zinc surfaces, further supports a mechanism involving cation transport during the corrosion and spreading of corrosive salt on exposed metal surfaces. Specifically, the new analytical data shows that: (a) cations are transported radially from a primary drop formed from a salt deposit in a thin film of secondary spreading around the drop; (b) subsequently, micro-pools are formed in the area of secondary spreading, and it is likely that cations transported within the thin film accumulate in these micro-pools until the area is dehydrated; (c) the mechanism of cation transport into the area of secondary spreading does not include transport of the anions; and (d) hydroxide is the counter ion formed from oxygen reduction at the metal surface within the spreading layer. Data relevant to iron corrosion is also presented and the distinct differences relative to the zinc situation are discussed.

  4. The future of electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifiesmore »to the importance of modern microscopy.« less

  5. Development of legged, wheeled, and hybrid rover mobility models to facilitate planetary surface exploration mission analysis

    E-Print Network [OSTI]

    McCloskey, Scott H. (Scott Haddon)

    2007-01-01

    This work discusses the Mars Surface Exploration (MSE) tool and its adaptation to model rovers featuring legged, wheeled, and hybrid mobility. MSE is a MATLAB based systems engineering tool that is capable of rapidly ...

  6. Wavefield Analysis of Rayleigh Waves for Near-Surface Shear-Wave Velocity

    E-Print Network [OSTI]

    Zeng, Chong

    2011-05-18

    Shear (S)-wave velocity is a key property of near-surface materials and is the fundamental parameter for many environmental and engineering geophysical studies. Directly acquiring accurate S-wave velocities from a seismic shot gather is usually...

  7. LASER CONFOCAL MICROSCOPY AND GEOGRAPHIC INFORMATION SYSTEMS IN THE STUDY OF DENTAL MORPHOLOGY

    E-Print Network [OSTI]

    Jernvall, Jukka

    LASER CONFOCAL MICROSCOPY AND GEOGRAPHIC INFORMATION SYSTEMS IN THE STUDY OF DENTAL MORPHOLOGY be transferred to geographic information systems (GIS) as well as interpreted by surface rendering computer parameters using geographic information systems (GIS). We then present a laser confocal microscopy technique

  8. Variable temperature electrochemical strain microscopy of Sm-doped ceria

    SciTech Connect (OSTI)

    Jesse, Stephen; Morozovska, A. N.; Kalinin, Sergei V; Eliseev, E. A.; Yang, Nan; Doria, Sandra; Tebano, Antonello

    2013-01-01

    Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

  9. Optimization of THz Microscopy Imaging

    E-Print Network [OSTI]

    Niessen, Katherine A

    2015-01-01

    THz near field microscopy opens a new frontier in material science. High spatial resolution requires the detection crystal to have uniform and reproducible response. We present the THz near field spatial and temporal response of ZnTe and GaP and examine possible properties that give rise to the ZnTe degraded signal.

  10. Holographic microscopy of holographically trapped

    E-Print Network [OSTI]

    Weeks, Eric R.

    . Padgett, "Permanent 3D microstructures in a polymeric host created using holographic optical tweezers," J to organize microscopic materials into three-dimensional structures. In a complementary manner, holographicHolographic microscopy of holographically trapped three-dimensional structures Sang-Hyuk Lee

  11. Thermal expansion recovery microscopy: Practical design considerations

    SciTech Connect (OSTI)

    Mingolo, N. Martínez, O. E.

    2014-01-15

    A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

  12. Open Source Scanning Probe Microscopy Control Software package GXSM

    SciTech Connect (OSTI)

    Zahl, P.; Wagner, T.; Moller, R.; Klust, A.

    2010-05-01

    GXSM is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected to an instrument, it is operating many different flavors of SPM, e.g., scanning tunneling microscopy and atomic force microscopy or, in general, two-dimensional multichannel data acquisition instruments. The GXSM core can handle different data types, e.g., integer and floating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor subsystem runs the feedback loop, generates the scanning signals, and acquires the data during SPM measurements. The programmable GXSM vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy or tip formation. The GXSM software is released under the GNU general public license and can be obtained via the internet.

  13. North Portal Fuel Storage System Fire Hazard Analysis-ESF Surface Design Package ID

    SciTech Connect (OSTI)

    N.M. Ruonavaara

    1995-01-18

    The purpose of the fire hazard analysis is to comprehensively assess the risk from fire within the individual fire areas. This document will only assess the fire hazard analysis within the Exploratory Studies Facility (ESF) Design Package ID, which includes the fuel storage system area of the North Portal facility, and evaluate whether the following objectives are met: 1.1.1--This analysis, performed in accordance with the requirements of this document, will satisfy the requirements for a fire hazard analysis in accordance with U.S. Department of Energy (DOE) Order 5480.7A. 1.1.2--Ensure that property damage from fire and related perils does not exceed an acceptable level. 1.1.3--Provide input to the ESF Basis For Design (BFD) Document. 1.1.4 Provide input to the facility Safety Analysis Report (SAR) (Paragraph 3.8).

  14. Control of the positional relationship between a sample collection instrument and a surface to be analyzed during a sampling procedure with image analysis

    DOE Patents [OSTI]

    Van Berkel, Gary J.; Kertesz, Vilmos

    2011-08-09

    A system and method utilizes an image analysis approach for controlling the collection instrument-to-surface distance in a sampling system for use, for example, with mass spectrometric detection. Such an approach involves the capturing of an image of the collection instrument or the shadow thereof cast across the surface and the utilization of line average brightness (LAB) techniques to determine the actual distance between the collection instrument and the surface. The actual distance is subsequently compared to a target distance for re-optimization, as necessary, of the collection instrument-to-surface during an automated surface sampling operation.

  15. Surface deformation analysis over a hydrocarbon reservoir using InSAR with ALOS-PALSAR data

    E-Print Network [OSTI]

    ?ahin, Sedar Cihan

    2013-01-01

    InSAR has been developed to estimate the temporal change on the surface of Earth by combining multiple SAR images acquired over the same area at different times. In the last two decades, in addition to conventional InSAR, ...

  16. Numerical Analysis on the Generation of Equilibrium Aeolian Sedimentary Bed-Forms From Random Surfaces 

    E-Print Network [OSTI]

    Tankala, Chandan

    2012-10-19

    is a rough sand surface. The numerical model is applied to study the effect of varying the angle, at which the sand bed gets impacted by sand grains, on the evolution of ripples. Ripples are analyzed qualitatively and quantitatively by considering...

  17. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs

    SciTech Connect (OSTI)

    Guo, Genliang; George, S.A.; Lindsey, R.P.

    1997-08-01

    Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

  18. A Spherical Harmonic Transform Spectral Analysis of a Localized Surface Plasmon on a Gold Nano Shell

    E-Print Network [OSTI]

    structure, or the external dielectric environment, in optical experiments. VC 2014 Wiley Periodicals, Inc to calculate the EM interaction and then construct a projection of the near field intensity on the surface of simulation wavelengths. We simulate a nonmagnetic material embedded within a nonmagnetic medium at optical

  19. A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer

    E-Print Network [OSTI]

    Minnesota, University of

    are in natural ecosystems, a forest (Borden Forest, Ontario, Canada) and a grassland (Duolun, China). We found.1029/2011GB004246. 1. Introduction [2] Water vapor is the most important atmospheric greenhouse gas and temporal variability in the isotopic composition of water in the air and also on the land surface (i

  20. Scanning standing-wave illumination microscopy : a path to nanometer resolution in X-ray microscopy

    E-Print Network [OSTI]

    Hong, Stanley Seokjong, 1977-

    2005-01-01

    X-ray microscopy can potentially combine the advantages of light microscopy with resolution approaching that of electron microscopy. In theory, x-ray microscopes can image unsectioned hydrated cells with nanometer resolution. ...

  1. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  2. Surface Localization Determinants of Borrelia burgdorferi Lipoproteins

    E-Print Network [OSTI]

    Kumru, Ozan

    2011-02-25

    these virulence factors reach the spirochetal surface. We observed in previous studies that monomeric red fluorescent protein 1 (mRFP1) fused to specifically mutated outer surface protein A (OspA) lipopeptides could be detected by epifluorescence microscopy...

  3. Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies

    SciTech Connect (OSTI)

    Eliseev, E. A.; Morozovska, A. N.; Ievlev, Anton; Balke, Nina; Maksymovych, Petro; Tselev, Alexander; Kalinin, Sergei V

    2014-01-01

    Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

  4. FOURIER-TRANSFORM ANALYSIS OF NORMAL PHOTOELECTRON DIFFRACTION DATA FOR SURFACE-STRUCTURE DETERMINATION

    E-Print Network [OSTI]

    Hussain, Z.

    2013-01-01

    Physical Review Letters FOURIER-TRANSFORM ANALYSIS OF NORMAL0 eV. (b) Magnitude of the Fourier transform IF(r)l accord·3. l.94A and V 5 eV. Fourier-transform derived distances ZF

  5. FOURIER-TRANSFORM ANALYSIS OF NORMAL PHOTOELECTRON DIFFRACTION DATA FOR SURFACE-STRUCTURE DETERMINATION

    E-Print Network [OSTI]

    Hussain, Z.

    2013-01-01

    Academy of Sciences USA FOURIER-TRANSFORM ANALYSIS OF NORMALeV. (b) Magnitude of the Fourier transform IF(r)l accordingV 0 = 5 eV. Figure 3. Fourier-transform derived distances ZF

  6. An investigation of receiver probe development for magnetic resonance microscopy 

    E-Print Network [OSTI]

    Boyer, Jeffrey Scott

    1995-01-01

    . The objective of the research presented in this thesis is to extend the analysis and design of conventional RF coil systems to that for MR microscopy. Specifically, distinctions in terms of signal and noise are made between conventional RF coils and coils...

  7. Plasma effect on weld pool surface reconstruction by shape-from-polarization analysis

    SciTech Connect (OSTI)

    Coniglio, N.; Mathieu, A.

    2014-03-31

    The polarimetric state of the thermal radiations emitted by the weld metal contains geometric information about the emitting surface. Even though the analysed thermal radiation has a wavelength corresponding to a blind spectral window of the arc plasma, the physical presence of the arc plasma itself interferes with the rays radiated by the weld pool surface before attaining the polarimeter, thus modifying the geometric information transported by the ray. In the present work, the effect of the arc plasma-surrounding zone on the polarimetric state and propagation direction of the radiated ray is analyzed. The interaction with the arc plasma zone induces a drop in ray intensity and a refraction of ray optical path.

  8. Isotopic hydrogen analysis via conventional and surface-enhanced fiber optic Raman spectroscopy

    SciTech Connect (OSTI)

    LASCOLA, ROBERT

    2004-09-23

    This report describes laboratory development and process plant applications of Raman spectroscopy for detection of hydrogen isotopes in the Tritium Facilities at the Savannah River Site (SRS), a U.S. Department of Energy complex. Raman spectroscopy provides a lower-cost, in situ alternative to mass spectrometry techniques currently employed at SRS. Using conventional Raman and fiber optics, we have measured, in the production facility glove boxes, process mixtures of protium and deuterium at various compositions and total pressures ranging from 1000-4000 torr, with detection limits ranging from 1-2 percent for as low as 3-second integration times. We are currently investigating fabrication techniques for SERS surfaces in order to measure trace (0.01-0.1 percent) amounts of one isotope in the presence of the other. These efforts have concentrated on surfaces containing palladium, which promotes hydrogen dissociation and forms metal hydride bonds, essentially providing a chemical enhancement mechanism.

  9. Static SIMS Analysis of Carbonate on Basic Alkali-bearing Surfaces

    SciTech Connect (OSTI)

    Groenewold, Gary Steven; Gianotto, Anita Kay; Cortez, Marnie Michelle; Appelhans, Anthony David; Olsen, J.E.; Shaw, A. D.; Karahan, C.; Avci, R.

    2003-02-01

    Carbonate is a somewhat enigmatic anion in static secondary ion mass spectrometry (SIMS) because abundant ions containing intact CO32- are not detected when analyzing alkaline-earth carbonate minerals common to the geochemical environment. In contrast, carbonate can be observed as an adduct ion when it is bound with alkali cations. In this study, carbonate was detected as the adduct Na2CO3·Na+ in the spectra of sodium carbonate, bicarbonate, hydroxide, oxalate, formate and nitrite and to a lesser extent nitrate. The appearance of the adduct Na2CO3·Na+ on hydroxide, oxalate, formate and nitrite surfaces was interpreted in terms of these basic surfaces fixing CO2 from the ambient atmosphere. The low abundance of Na2CO3·Na+ in the static SIMS spectrum of sodium nitrate, compared with a significantly higher abundance in salts having stronger conjugate bases, suggested that the basicity of the conjugate anions correlated with aggressive CO2 fixation; however, the appearance of Na2CO3·Na+ could not be explained simply in terms of solution basicity constants. The oxide molecular ion Na2O+ and adducts NaOH·Na+ and Na2O·Na+ also constituted part of the carbonate spectral signature, and were observed in spectra from all the salts studied. In addition to the carbonate and oxide ions, a low-abundance oxalate ion series was observed that had the general formula Na2-xHxC2O4·Na+, where 0 < x < 2. Oxalate adsorption from the laboratory atmosphere was demonstrated but the oxalate ion series also was likely to be formed from reductive coupling occurring during the static SIMS bombardment event. The remarkable spectral similarity observed when comparing the sodium salts indicated that their surfaces shared common chemical speciation and that the chemistry of the surfaces was very different from the bulk of the particle. Copyright © 2003 John Wiley & Sons, Ltd.

  10. Surface and grain boundary scattering in nanometric Cu thin films: A quantitative analysis including twin boundaries

    SciTech Connect (OSTI)

    Barmak, Katayun [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 and Department of Materials Science and Engineering and Materials Research Science and Engineering Center, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Darbal, Amith [Department of Materials Science and Engineering and Materials Research Science and Engineering Center, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Ganesh, Kameswaran J.; Ferreira, Paulo J. [Materials Science and Engineering, The University of Texas at Austin, 1 University Station, Austin, Texas 78712 (United States); Rickman, Jeffrey M. [Department of Materials Science and Engineering and Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Sun, Tik; Yao, Bo; Warren, Andrew P.; Coffey, Kevin R., E-mail: kb2612@columbia.edu [Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816 (United States)

    2014-11-01

    The relative contributions of various defects to the measured resistivity in nanocrystalline Cu were investigated, including a quantitative account of twin-boundary scattering. It has been difficult to quantitatively assess the impact twin boundary scattering has on the classical size effect of electrical resistivity, due to limitations in characterizing twin boundaries in nanocrystalline Cu. In this study, crystal orientation maps of nanocrystalline Cu films were obtained via precession-assisted electron diffraction in the transmission electron microscope. These orientation images were used to characterize grain boundaries and to measure the average grain size of a microstructure, with and without considering twin boundaries. The results of these studies indicate that the contribution from grain-boundary scattering is the dominant factor (as compared to surface scattering) leading to enhanced resistivity. The resistivity data can be well-described by the combined Fuchs–Sondheimer surface scattering model and Mayadas–Shatzkes grain-boundary scattering model using Matthiessen's rule with a surface specularity coefficient of p?=?0.48 and a grain-boundary reflection coefficient of R?=?0.26.

  11. A picosecond electron gun for surface analysis M. Aeschlimann,a) E. Hull, J. Cao,b) C. A. Schmuttenmaer, L. G. Jahn,@ Y. Gao,b)

    E-Print Network [OSTI]

    Cao, Jianming

    A picosecond electron gun for surface analysis M. Aeschlimann,a) E. Hull, J. Cao,b) C. A investigations for a new design of an ultrashort pulsed laser activated electron gun for time resolved surface gun, in spite of an unusually long focal length and a small convergence angle of the pulsed electron

  12. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    SciTech Connect (OSTI)

    Kittur, Jayant K.; Herwadkar, T. V. [KLS Gogte Institute of Technology, Belgaum -590 008, Karnataka (India); Parappagoudar, M. B. [Chhatrapati Shivaji Institute of Technology, Durg (C.G)-491001 (India)

    2010-10-26

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  13. Preliminary Analysis of Surface Radiation Measurement Data Quality at the SGP Extended Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document w1.½tankSurface Radiation Measurement

  14. Global heat transfer analysis in Czochralski silicon furnace with radiation on curved specular surfaces

    E-Print Network [OSTI]

    Guo, Zhixiong "James"

    Global heat transfer analysis in Czochralski silicon furnace with radiation on curved specular method are adopted to solve the global heat transfer and the radiative heat exchange, respectively rate QJ diffuse radiation heat transfer rate QX net rate of radiative heat loss QT heat generation rate

  15. Documentation and analysis for packaging for surface moisture measurement system 7A containers

    SciTech Connect (OSTI)

    Clem, D.K.

    1996-06-17

    This documentation and analysis for packaging documents that two, procured, carbon steel 5-gal drums meet all applicable U.S.Department of Transportation-7A requirements. One container will be used to transport a 0.009 Ci 252 Cf source and the other to transport a 1.7 Ci Am-Be source to and from various 200 Area tank farms.

  16. Tracking granules at the Sun's surface and reconstructing velocity fields. II. Error analysis

    E-Print Network [OSTI]

    R. Tkaczuk; M. Rieutord; N. Meunier; T. Roudier

    2007-07-13

    The determination of horizontal velocity fields at the solar surface is crucial to understanding the dynamics and magnetism of the convection zone of the sun. These measurements can be done by tracking granules. Tracking granules from ground-based observations, however, suffers from the Earth's atmospheric turbulence, which induces image distortion. The focus of this paper is to evaluate the influence of this noise on the maps of velocity fields. We use the coherent structure tracking algorithm developed recently and apply it to two independent series of images that contain the same solar signal. We first show that a k-\\omega filtering of the times series of images is highly recommended as a pre-processing to decrease the noise, while, in contrast, using destretching should be avoided. We also demonstrate that the lifetime of granules has a strong influence on the error bars of velocities and that a threshold on the lifetime should be imposed to minimize errors. Finally, although solar flow patterns are easily recognizable and image quality is very good, it turns out that a time sampling of two images every 21 s is not frequent enough, since image distortion still pollutes velocity fields at a 30% level on the 2500 km scale, i.e. the scale on which granules start to behave like passive scalars. The coherent structure tracking algorithm is a useful tool for noise control on the measurement of surface horizontal solar velocity fields when at least two independent series are available.

  17. Analysis of tank 39H (HTF-39-15-61, 62) surface and subsurface supernatant samples in support of corrosion control program

    SciTech Connect (OSTI)

    Oji, L. N.

    2015-08-19

    This report provides the results of analyses on Tanks 39H surface and subsurface supernatant liquid samples in support of the Corrosion Control Program. Analyses included warm acid strike preparation followed by analysis for silicon, aluminum, and sodium and water dilution preparation followed by analysis for anions. Other reported analytical results include analyses results for uranium, Pu-241 and Pu-239.

  18. Surface Preparation in Ultra High Vacuum for Scanning Tunneling Microscopy Surface Preparation in Ultra High Vacuum for Scanning Tunneling Microscopy

    E-Print Network [OSTI]

    Pohl, Karsten

    Department of Physics University of New Hampshire, Durham NH 03824 Ultra High Vacuum environments bring about removing the sample from the vacuum environment. New sets of tools must be developed that are usable within of the tunneling current the feedback electronic keeps the distance between tip and sample constant. Piezo electric

  19. Analysis of alternatives for computing backwater at bridges for free-surface, subcritical flow conditions 

    E-Print Network [OSTI]

    Kaatz, Kelly Jay

    1993-01-01

    . (August 1993) Kelly Jay Kaatz, B. S. , Texas A&M University Chair of Advisory Committee: Dr. Wesley P. James The performance and reliability of four of the more popular methods for one- dimensional flow analysis of bridges were investigated. These four... methods were the HEC-2 Normal Bridge Method, HEC-2 Special Bridge Method, WSPRO, and Modified Bradley Method. The study was based on models of 13 flood events at nine different bridge sites in the southeastern United States. The sites were located...

  20. Analysis of Cloud Variability and Sampling Errors in Surface and Satellite Mesurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TAPropaneandAn OverviewCoalAnalysis of Cloud

  1. Response Surface Analysis of Elemental Composition and Energy Properties of Corn Stover During Torrefaction

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Richard D. Boardman; Christopher T. Wright

    2012-02-01

    This research studied the effects of torrefaction temperature (250-250 C) and time (30-120 minutes) on elemental composition and energy properties changes in corn stover. Torrefied material was analyzed for moisture content, moisture-free carbon (%), hydrogen (%), nitrogen (%), sulfur (%), and higher heating value (MJ/kg). Results at 350 C and 120 minutes indicated a steep decrease in moisture content to a final value of about 1.48% - a reduction of about 69%. With respect to carbon content, the increase was about 23%, while hydrogen and sulfur content decreased by about 46.82% and 66.6%, respectively. The hydrogen-to-carbon ratio decreased as torrefaction temperature and time increased, with the lowest value of 0.6 observed at 350 C and 120 minutes. Higher heating value measured at 350 C and 60 minutes increased by about 22% and the maximum degree of carbonization observed was about 1.21. Further, the regression models developed for chemical composition in terms of torrefaction temperature and time adequately described the process with coefficient of determination values (R2) in the range of 0.92-0.99 for the elemental composition and energy properties studied. Response surface plots indicated that increasing both torrefaction temperature and time resulted in decreased moisture content, hydrogen content, and the hydrogen to-carbon ratio, and increased carbon content and higher heating value. This effect was more significant at torrefaction temperatures and times >280 C and >30 minutes.

  2. Fracture toughness results and preliminary analysis for International Cooperative Test Program on specimens containing surface cracks

    SciTech Connect (OSTI)

    Reuter, W.G.; Elfer, N.C.; Hull, D.A.; Newman, J.C. Jr.; Munz, D.; Panontin, T.L.

    1997-12-31

    Specimens containing surface cracks were tested in either tension or bending to compare the stress intensity factor at failure with plane strain fracture toughness (K{sub Ic}) in an International Cooperative Test Program. The material was heat treated to {sigma}{sub ys} = 1 587 MPa and K{sub Ic} = 54 MPa m{sub 1/2}. Because substantial stable crack growth occurred for some specimens, the test plan was modified to include detecting the onset of crack growth. It is shown that P{sub max} and the original fatigue precrack size cannot be employed to calculate K{sub max} for comparison with K{sub Ic} when significant stable crack growth occurs. However, using P{sub init} (load at which stable crack growth is initiated) and the original fatigue precrack size to calculate K{sub max} or K{sub {phi}=30{degree}} provides a very useful comparison with K{sub Ic}. The influence of variations in fatigue precrack configuration on test results are also discussed.

  3. Automated quadrilateral surface discretization method and apparatus usable to generate mesh in a finite element analysis system

    DOE Patents [OSTI]

    Blacker, Teddy D. (12205 Kashmir, N.E., Albuquerque, NM 87111)

    1994-01-01

    An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.

  4. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization...

  5. Communications Near-Field Fluorescence Microscopy of

    E-Print Network [OSTI]

    ** By Grace M. Credo and Steven K. Buratto* We use near-field scanning optical microscopy (NSOM) to probe. Buratto, G. M. Credo Department of Chemistry U

  6. X-ray microscopy. Beyond ensemble averages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ice, Gene E.; Budai, John D.

    2015-06-23

    This work exemplifies emerging tools to characterize local materials structure and dynamics, made possible by powerful X-ray synchrotron and transmission electron microscopy methods.

  7. Combining Quantitative Electrochemistry and Electron Microscopy...

    Office of Scientific and Technical Information (OSTI)

    Combining Quantitative Electrochemistry and Electron Microscopy to Study Reversible Lithiation of Silicon Nanowires. Citation Details In-Document Search Title: Combining...

  8. ORNL microscopy directly images problematic lithium dendrites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    images of the nucleation and growth of lithium dendrite structures known to degrade lithium-ion batteries. ORNL electron microscopy captured the first real-time nanoscale...

  9. Electron Microscopy Catalysis Projects: Success Stories from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis Projects: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Electron Microscopy Catalysis Projects: Success Stories from the High...

  10. Subwavelength optical microscopy in the far field 

    E-Print Network [OSTI]

    Sun, Qingqing; Al-Amri, M.; Scully, Marlan O.; Zubairy, M. Suhail.

    2011-01-01

    which we can obtain their distance and location information. This procedure also works for atomic separation above one wavelength and therefore provides a seamless microscopy....

  11. Scanning probe microscopy competency development

    SciTech Connect (OSTI)

    Hawley, M.E.; Reagor, D.W.; Jia, Quan Xi

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project collaborators developed an ultra-high vacuum scanning tunneling microscope (UHV-STM) capability, integrated it with existing scanning probe microscopes, and developed new, advanced air-based scanning force techniques (SPMs). Programmatic, basic, and industrially related laboratory research requires the existence of SPMs, as well as expertise capable of providing local nano-scale information. The UHV-STM capability, equipped with load-lock system and several surface science techniques, will allow introduction, examination, and reaction of surfaces prepared under well-controlled vacuum conditions, including the examination of morphology and local bonding associated with the initial stages of film growth under controlled growth conditions. The resulting capabilities will enable the authors to respond to a variety of problems requiring local characterization of conducting and nonconducting surfaces in liquids, air, and UHV.

  12. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2012

    SciTech Connect (OSTI)

    Elvado Environmental, LLC

    2011-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2012 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring performed by the GWPP during CY 2012 is in accordance with the following goals: (1) to protect the worker, the public, and the environment; (2) to maintain surveillance of existing and potential groundwater contamination sources; (3) to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; (4) to identify and characterize long-term trends in groundwater quality at Y-12; and (5) to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley and the Chestnut Ridge Regime is located south of Y-12 (Figure A.1). Additional surface water monitoring will be performed north of Pine Ridge along the boundary of the Oak Ridge Reservation. Modifications to the CY 2012 monitoring program may be necessary during implementation. Changes in programmatic requirements may alter the analytes specified for selected monitoring wells or may add or remove wells from the planned monitoring network. Each modification to the monitoring program will be approved by the Y-12 GWPP manager and documented as an addendum to this sampling and analysis plan. The following sections of this report provide details regarding the CY 2012 groundwater and surface water monitoring activities. Section 2 describes the monitoring locations in each regime and the processes used to select the sampling locations. A description of the field measurements and laboratory analytes is provided in Section 3. Sample collection methods and procedures are described in Section 4, and Section 5 lists the documents cited for more detailed operational and technical information. The narrative sections of the report reference several appendices. Figures (maps and diagrams) and tables (excluding a data summary table presented in Section 4) are in Appendix A and Appendix B, respectively. Groundwater Monitoring Schedules (when issued throughout CY 2012) will be inserted in Appendix C, and addenda to this plan (if issued) will be inserted in Appendix D. Laboratory requirements (bottle lists, holding times, etc.) are provided in Appendix E, and an approved Waste Management Plan is provided in Appendix F.

  13. Microscopy with slow electrons: from LEEM to XPEEM

    ScienceCinema (OSTI)

    Bauer, Ernst [Arizona State University, Phoenix, Arizona, United States

    2010-01-08

    The short penetration and escape depth of electrons with energies below 1 keV make them ideally suited for the study of surfaces and ultrathin films. The combination of the low energy electrons and the high lateral resolution of a microscope produces a powerful method for the characterization of nanostructures on bulk samples, in particular if the microscope is equipped with an imaging energy filter and connected to a synchrotron radiation source. Comprehensive characterization by imaging, diffraction, and spectroscope of the structural, chemical, and magnetic properties is then possible. The Talk will describe the various imaging techniques in using reflected and emitted electrons in low-energy electron microscopy (LEEM) and x-ray photoemission electron microscopy (XPEEM), with an emphasis on magnetic materials with spin-polarized LEEM and x-ray magnetic circular dichroism PEEM. The talk with end with an outlook on future possibilities.

  14. Spectroscopic imaging in electron microscopy

    SciTech Connect (OSTI)

    Pennycook, Stephen J [ORNL; Colliex, C. [Universite Paris Sud, Orsay, France

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  15. A national facility for biological cryo-electron microscopy

    SciTech Connect (OSTI)

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  16. Investigations of the Fundamental Surface Reactions Involved in the Sorption and Desorption of Radionuclides

    SciTech Connect (OSTI)

    Czerwinski, Ken; Heske, Clemens; Moser, Duane; Misra, Mnoranjan; McMillion, Glen

    2011-04-20

    Models for describing solution- and surface-phase reactions have been used for 30 years, but only recently applicable to complex surfaces. Duff et al., using micro-XANES, found that Pu was concentrated on Mn-oxide and smectite phases of zeolitic tuff, providing an evaluation of contaminant speciation on surfaces for modeling. Experiments at Los Alamos demonstrated that actinides display varying surface residence time distributions, probably reflective of mineral surface heterogeneity. We propose to investigate the sorption/desorption behavior of radionuclides from mineral surfaces, as effected by microorganisms, employing isolates from Nevada Test Site deep alluvium as a model system. Characterizations will include surface area, particle size distribution, x-ray diffraction (XRD), microprobe analysis, extractions, and microbiology. Surface interactions will be assessed by electron spectroscopy (XPS), x-ray absorption fine structure spectroscopy (XAFS), X-ray emission spectroscopy, transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). Desert Research Institute (DRI), University of Nevada, Reno (UNR), and University of Nevada, Las Vegas (UNLV) researchers will collaborate to enhance scientific infrastructure and the understanding of contaminant behavior on surfaces, with broader implications for the management of DOE sites.

  17. Nonlinear Dark-Field Microscopy Hayk Harutyunyan,

    E-Print Network [OSTI]

    Novotny, Lukas

    /20/2010 Published on Web: 11/16/2010 FIGURE 1. Illustration of the nonlinear dark-field imaging method. Two incidentNonlinear Dark-Field Microscopy Hayk Harutyunyan, Stefano Palomba, Jan Renger, Romain Quidant Dark-field microscopy is a background-free imaging method that provides high sensitivity and a large

  18. Three-Dimensional Quantification of Cellular Traction Forces and Mechanosensing of Thin Substrata by Fourier Traction Force Microscopy

    E-Print Network [OSTI]

    Juan C del Alamo; Ruedi Meili; Begoña Alvarez-Gonzalez; Baldomero Alonso-Latorre; Effie Bastounis; Richard Firtel; Juan C Lasheras

    2013-06-18

    We introduce a novel three-dimensional (3D) traction force microscopy (TFM) method motivated by the recent discovery that cells adhering on plane surfaces exert both in-plane and out-of-plane traction stresses. We measure the 3D deformation of the substratum on a thin layer near its surface, and input this information into an exact analytical solution of the elastic equilibrium equation. These operations are performed in the Fourier domain with high computational efficiency, allowing to obtain the 3D traction stresses from raw microscopy images virtually in real time. We also characterize the error of previous two-dimensional (2D) TFM methods that neglect the out-of-plane component of the traction stresses. This analysis reveals that, under certain combinations of experimental parameters (\\ie cell size, substratums' thickness and Poisson's ratio), the accuracy of 2D TFM methods is minimally affected by neglecting the out-of-plane component of the traction stresses. Finally, we consider the cell's mechanosensing of substratum thickness by 3D traction stresses, finding that, when cells adhere on thin substrata, their out-of-plane traction stresses can reach four times deeper into the substratum than their in-plane traction stresses. It is also found that the substratum stiffness sensed by applying out-of-plane traction stresses may be up to 10 times larger than the stiffness sensed by applying in-plane traction stresses.

  19. Meso-scale cooling effects of high albedo surfaces: Analysis of meteorological data from White Sands National Monument and White Sands Missile Range

    SciTech Connect (OSTI)

    Fishman, B.; Taha, H.; Akbari, H.

    1994-05-20

    Urban summer daytime temperatures often exceed those of the surrounding rural areas. Summer ``urban heat islands`` are caused by dark roofs and paved surfaces as well as the lack of vegetation. Researchers at Lawrence Berkeley Laboratory are interested in studying the effects of increasing the albedo of roof tops and paved surfaces in order to reduce the impacts of summer urban heat islands. Increasing the albedo of urban surfaces may reduce this heat island effect in two ways, directly and indirectly. The direct effect involves reducing surface temperature and, therefore, heat conduction through the building envelope. This effect of surface albedo on surface temperatures is better understood and has been quantified in several studies. The indirect effect is the impact of high albedo surfaces on the near surface air temperatures. Although the indirect effect has been modeled for the Los Angeles basin by Sailor, direct field observations are required. The objective of this report is to investigate the meso-scale climate of a large high albedo area and identify the effects of albedo on the near surface air temperature. To accomplish this task, data from several surface weather stations at White Sands, New Mexico were analyzed. This report is organized into six sections in addition to this introduction. The first gives the general geological, topographic, and meteorological background of White Sands. The second is a discussion of the basic surface meteorology of the White Sands region. This section is followed by a general discussion of the instrumentation and available data. The fourth section is a description of the method used for data analyis. The fifth section which presents the results of this analysis. Finally, the last section is the summary and conclusion, where a discussion of the results is presented.

  20. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  1. Digital processing of SEM images for the assessment of evaluation indexes of cleaning interventions on Pentelic marble surfaces

    SciTech Connect (OSTI)

    Moropoulou, A. Delegou, E.T.; Vlahakis, V.; Karaviti, E.

    2007-11-15

    In this work, digital processing of scanning-electron-microscopy images utilized to assess cleaning interventions applied on the Pentelic marble surfaces of the National Archaeological Museum and National Library in Athens, Greece. Beside mineralogical and chemical characterization that took place by scanning-electron-microscopy with Energy Dispersive X-ray Spectroscopy, the image-analysis program EDGE was applied for estimating three evaluation indexes of the marble micro-structure. The EDGE program was developed by the U.S. Geological Survey for the evaluation of cleaning interventions applied on Philadelphia City Hall. This computer program analyzes scanning-electron-microscopy images of stone specimens cut in cross-section for measuring the fractal dimension of the exposed surfaces, the stone near-surface fracture density, the shape factor (a surface roughness factor) and the friability index which represents the physico-chemical and physico-mechanical stability of the stone surface. The results indicated that the evaluation of the marble surface micro-structure before and after cleaning is achieved by the suggested indexes, while the performance of cleaning interventions on the marble surfaces can be assessed.

  2. An electron microscopy study of wear in polysilicon microelectromechanical systems.

    SciTech Connect (OSTI)

    Dugger, Michael Thomas; Enachescu, M. (Lawrence Berkeley National Lab); Stach, Eric A. (Lawrence Berkeley National Lab); Alsem, Daan Hein (Lawrence Berkeley National Lab); Ritchie, Robert O. (Lawrence Berkeley National Lab)

    2005-02-01

    Wear is a critical factor in determining the durability of microelectromechanical systems (MEMS). While the reliability of polysilicon MEMS has received extensive attention, the mechanisms responsible for this failure mode at the microscale have yet to be conclusively determined. We have used on-chip polycrystalline silicon side-wall friction MEMS specimens to study active mechanisms during sliding wear in ambient air. Worn parts were examined by analytical scanning and transmission electron microscopy, while local temperature changes were monitored using advanced infrared microscopy. Observations show that small amorphous debris particles ({approx}50-100 nm) are removed by fracture through the silicon grains ({approx}500 nm) and are oxidized during this process. Agglomeration of such debris particles into larger clusters also occurs. Some of these debris particles/clusters create plowing tracks on the beam surface. A nano-crystalline surface layer ({approx}20-200 nm), with higher oxygen content, forms during wear at and below regions of the worn surface; its formation is likely aided by high local stresses. No evidence of dislocation plasticity or of extreme local temperature increases was found, ruling out the possibility of high temperature-assisted wear mechanisms.

  3. Determination of elastic properties of a MnO{sub 2} coating by surface acoustic wave velocity dispersion analysis

    SciTech Connect (OSTI)

    Sermeus, J.; Glorieux, C.; Sinha, R.; Vereecken, P. M.; Vanstreels, K.

    2014-07-14

    MnO{sub 2} is a material of interest in the development of high energy-density batteries, specifically as a coating material for internal 3D structures, thus ensuring rapid energy deployment. Its electrochemical properties have been mapped extensively, but there are, to the best of the authors' knowledge, no records of the elastic properties of thin film MnO{sub 2}. Impulsive stimulated thermal scattering (ISTS), also known as the heterodyne diffraction or transient grating technique, was used to determine the Young's modulus (E) and porosity (?) of a 500?nm thick MnO{sub 2} coating on a Si(001) substrate. ISTS is an all optical method that is able to excite and detect surface acoustic waves (SAWs) on opaque samples. From the measured SAW velocity dispersion, the Young's modulus and porosity were determined to be E?=?25?±?1?GPa and ?=42±1%, respectively. These values were confirmed by independent techniques and determined by a most-squares analysis of the carefully fitted SAW velocity dispersion. This study demonstrates the ability of the presented technique to determine the elastic parameters of a thin, porous film on an anisotropic substrate.

  4. Analytical electron microscopy characterization of uranium-contaminated soils from the Fernald Site, FY1993 report

    SciTech Connect (OSTI)

    Buck, E.C.; Cunnane, J.C.; Brown, N.R.; Dietz, N.L.

    1994-10-01

    A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at the microscopic level.

  5. Photon tunnelling microscopy of polyethylene single crystals

    E-Print Network [OSTI]

    Srinivasarao, Mohan

    Photon tunnelling microscopy of polyethylene single crystals Mohan Srinivasarao* and Richard S:photon tunnellingmicroscopy;single crystals; polyethylene) INTRODUCTION The study of morphology of polymers is an area

  6. Data visualization of biological microscopy image analyses

    E-Print Network [OSTI]

    Scelfo, Tony (Tony W.)

    2006-01-01

    The Open Microscopy Environment (OME) provides biologists with a framework to store, analyze and manipulate large sets of image data. Current microscopes are capable of generating large numbers of images and when coupled ...

  7. Chapter One Microscopy of Soft Materials

    E-Print Network [OSTI]

    Weeks, Eric R.

    . Shaving cream is a common example. · Sand, composed of large solid particles in vacuum, air, or a liquid of these soft systems are often com- patible with conventional video microscopy. For example, consider food

  8. Controlled nanostructure fabrication using atomic force microscopy 

    E-Print Network [OSTI]

    Sapcharoenkun, Chaweewan

    2013-06-29

    Scanning probe microscopy (SPM) nanolithography has been found to be a powerful and low-cost approach for sub-100 nm patterning. In this thesis, the possibility of using a state-of-the-art SPM system to controllably ...

  9. Analysis of tank 39H (HTF-39-15-61, 62) surface and subsurface supernatant samples in support of corrosion control program

    SciTech Connect (OSTI)

    Oji, L. N.

    2015-08-01

    This report provides the results of analyses on Tanks 39H surface and subsurface supernatant liquid samples in support of the Corrosion Control Program. Analyses included warm acid strike preparation followed by analysis for silicon, aluminum, and sodium and water dilution preparation followed by analysis for anions. Other reported analytical results include analyses results for uranium, Pu-241 and Pu-239. The measured sodium concentration averaged, respectively, 4.28E+00 ± 9.30E-02 M and 4.32E+00 ± 1.076E-01 M in the Tank 39H surface sample and Tank 39H subsurface sample. In general, the nitrate, nitrite, free-OH and specific gravity of the Tank 39H surface and subsurface samples were all about the same in magnitude, respectively, averaging 1.98 M, 0.314 M, 1.26 M and 1.24. The measured silicon concentration for the Tank 39H surface and subsurface samples were, respectively, 3.84E+01± 5.51E+00 and 4.14E+01± 1.17E+00 mg/L. Based on the uranium, Pu-241 and Pu-239 concentrations, the calculated U-235 equivalent is 21.41 wt% for the surface sample and 21.32 wt% for the subsurface sample.

  10. Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment

    E-Print Network [OSTI]

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2008-01-01

    in volcanic and geothermal areas. Appl. Geochem. , 13, 543–1977. Chemistry and Geothermal Systems. Academic Press, Newfor detecting hidden geothermal systems by near-surface gas

  11. Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment

    E-Print Network [OSTI]

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2008-01-01

    1977. Chemistry and Geothermal Systems. Academic Press, Newfor detecting hidden geothermal systems by near-surface gasto Detect Hidden Geothermal Systems Based on Monitoring and

  12. Surface Analysis Leader If we are to understand how reliable materials are, and how well they can

    E-Print Network [OSTI]

    Lennard, William N.

    of quality accreditation · Certified to International Organization for Standardization (ISO) 9001 that produce metallic and plastic components analyse and evaluate the surfaces of their materials

  13. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

  14. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization Catalyst...

  15. ORNL microscopy pencils patterns in polymers at the nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (865) 574-7308 ORNL microscopy pencils patterns in polymers at the nanoscale Oak Ridge National Laboratory researchers used atomic force microscopy to draw nanoscale patterns in a...

  16. Environmental cell assembly for use in for use in spectroscopy and microscopy applications

    DOE Patents [OSTI]

    Stowe, Ashley Clinton; Smyrl, Norman; Hallman, Jr., Russell L.

    2014-09-02

    An environmental cell assembly for use in microscopy and spectroscopy applications, including: an environmentally sealed body assembly configured to selectively hold and contain a sample; a plurality of ports manufactured into one or more surfaces of the body assembly for one or more of evacuating the body assembly and injecting a gas into or removing a gas from the body assembly; a port manufactured into a surface of the body assembly for receiving a translating stage configured to move the sample within the body assembly; and a port manufactured into a surface of the body assembly for receiving one or more lenses utilized in a microscopy or spectroscopy application; wherein the one or more lenses are disposed adjacent the sample without intervening structures disposed there between. The cell assembly also includes a port manufactured into a surface of the body assembly for retaining a window and providing visualization of the sample.

  17. Scanning photo-induced impedance microscopy*/an impedance based imaging technique

    E-Print Network [OSTI]

    Moritz, Werner

    Scanning photo-induced impedance microscopy*/an impedance based imaging technique Steffi Krause a technique, scanning photo-induced impedance micro- scopy (SPIM), suitable for the imaging of the complex Photoelectrochemistry has been used widely to study photo-thermally induced current changes at metal surfaces

  18. Topography-Correlated Confocal Raman Microscopy with Cylindrical Vector Beams for Probing Nanoscale Structural Order

    E-Print Network [OSTI]

    Schreiber, Frank

    Topography-Correlated Confocal Raman Microscopy with Cylindrical Vector Beams for Probing Nanoscale, such as radially or azimuthally polarized doughnut beams, are combined with topography studies of pentacene thin in the mirror focus and kept within a nanometer distance from the surface to probe the topography using shear

  19. Nanoscale In Situ Characterization of Li-ion Battery Electrochemistry Via Scanning Ion Conductance Microscopy

    SciTech Connect (OSTI)

    Lipson, Albert L. [Northwestern Univ., Evanston, IL (United States). Department of Materials Science and Engineering, Dept. of Chemistry; Ginder, Ryan S. [Northwestern Univ., Evanston, IL (United States). Department of Materials Science and Engineering, Dept. of Chemistry; Hersam, Mark C. [Northwestern Univ., Evanston, IL (United States). Department of Materials Science and Engineering, Dept. of Chemistry

    2011-12-15

    Scanning ion conductance microscopy imaging of battery electrodes, using the geometry shown in the figure, is a tool for in situ nanoscale mapping of surface topography and local ion current. Images of silicon and tin electrodes show that the combination of topography and ion current provides insight into the local electrochemical phenomena that govern the operation of lithium ion batteries.

  20. Nonlinear Chemical Imaging Microscopy: Near-Field Third Harmonic Generation Imaging of

    E-Print Network [OSTI]

    Cohen, Ronald C.

    radiation in human red blood cells. We show that resonantly enhanced THG is a chemically specific bulk probeNonlinear Chemical Imaging Microscopy: Near-Field Third Harmonic Generation Imaging of Human Red experiments do not produce contrast that is truly surface specific. There is much current interest in the use

  1. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1992

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-12-31

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  2. Rock Joint Surfaces Measurement and Analysis of Aperture Distribution under Different Normal and Shear Loading Using GIS

    E-Print Network [OSTI]

    Sharifzadeh, Mostafa; Esaki, Tetsuro

    2009-01-01

    Geometry of the rock joint is a governing factor for joint mechanical and hydraulic behavior. A new method of evaluating aperture distribution based on measurement of joint surfaces and three dimensional characteristics of each surface is developed. Artificial joint of granite surfaces are measured,processed, analyzed and three dimensional approaches are carried out for surface characterization. Parameters such as asperity's heights, slope angles, and aspects distribution at micro scale,local concentration of elements and their spatial localization at local scale are determined by Geographic Information System (GIS). Changes of aperture distribution at different normal stresses and various shear displacements are visualized and interpreted. Increasing normal load causes negative changes in aperture frequency distribution which indicates high joint matching. However, increasing shear displacement causes a rapid increase in the aperture and positive changes in the aperture frequency distribution which could be ...

  3. Analysis of tank 7 surface supernatant sample (FTF-7-15-26) in support of corrosion control program

    SciTech Connect (OSTI)

    Oji, L. N

    2015-10-01

    This report provides the results of analyses on Savannah River Site Tank 7 surface supernatant liquid sample in support of the Corrosion Control Program (CCP). The measured nitrate, nitrite and free-hydroxide concentrations for the Tank 7 surface sample averaged, 3.74E-01 ± 1.88E-03, 4.17E-01 ± 9.01E-03 and 0.602 ± 0.005 M, respectively. The Tank 7 surface cesium-137, sodium and silicon concentrations were, respectively, 3.99E+08, ± 3.25E+06 dpm/mL, 2.78 M and <3.10 mg/L. The measured aluminum concentration in the Tank 7 surface sample averaged 0.11 M.

  4. Potential contributions of noncontact atomic force microscopy for the future Casimir force measurements

    E-Print Network [OSTI]

    W. J. Kim; U. D. Schwarz

    2010-10-18

    Surface electric noise, i.e., the non-uniform distribution of charges and potentials on a surface, poses a great experimental challenge in modern precision force measurements. Such a challenge is encountered in a number of different experimental circumstances. The scientists employing atomic force microscopy (AFM) have long focused their efforts to understand the surface-related noise issues via variants of AFM techniques, such as Kelvin probe force microscopy or electric force microscopy. Recently, the physicists investigating quantum vacuum fluctuation phenomena between two closely-spaced objects have also begun to collect experimental evidence indicating a presence of surface effects neglected in their previous analyses. It now appears that the two seemingly disparate science communities are encountering effects rooted in the same surface phenomena. In this report, we suggest specific experimental tasks to be performed in the near future that are crucial not only for fostering needed collaborations between the two communities, but also for providing valuable data on the surface effects in order to draw the most realistic conclusion about the actual contribution of the Casimir force (or van der Waals force) between a pair of real materials.

  5. Ion-induced electron emission microscopy

    DOE Patents [OSTI]

    Doyle, Barney L. (Albuquerque, NM); Vizkelethy, Gyorgy (Albuquerque, NM); Weller, Robert A. (Brentwood, TN)

    2001-01-01

    An ion beam analysis system that creates multidimensional maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the secondary electrons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted secondary electrons are collected in a strong electric field perpendicular to the sample surface and (optionally) projected and refocused by the electron lenses found in a photon emission electron microscope, amplified by microchannel plates and then their exact position is sensed by a very sensitive X Y position detector. Position signals from this secondary electron detector are then correlated in time with nuclear, atomic or electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these secondary electrons in the fit place.

  6. Spatially resolved low-frequency noise measured by atomic force microscopy Lynda Cockins, Yoichi Miyahara,* and Peter Grutter

    E-Print Network [OSTI]

    Grütter, Peter

    about the location of each trap even if a single trap is involved. Scanning tunneling microscopy has to traps located near noninsulating surfaces because a tunneling current of at least several picoamperes with surface InAs quantum dots and a buried two-dimensional electron gas. The observed noise exhibits

  7. Physics PhD scholarship available in one the worlds top 10 cities Scanning Tunneling Microscopy studies of rare earth nitrides and related materials

    E-Print Network [OSTI]

    Hickman, Mark

    studies of rare earth nitrides and related materials This is an opportunity to explore how new rare earth nitride materials can be made and how they can be probed using scanning tunneling microscopy. Scanning Tunneling Microscopy is a powerful tool to obtain both atomic resolution imaging of the surface of materials

  8. Polymer Filler Aging and Failure Studied by Lateral Force Microscopy

    SciTech Connect (OSTI)

    Ratto, T; Saab, A P

    2009-05-27

    In the present work, we study, via force microscopy, the basic physical interactions of a single bead of silica filler with a PDMS matrix both before and after exposure to gamma radiation. Our goal was to confirm our results from last year, and to explore force microscopy as a means of obtaining particle-scale polymer/filler interactions suitable for use as empirical inputs to a computational model consisting of an ensemble of silica beads embedded in a PDMS matrix. Through careful calibration of a conventional atomic force microscope, we obtained both normal and lateral force data that was fitted to yield adhesion, surface shear modulus, and friction of a 1 {micro}m silica bead in contact with PDMS layers of various thickness. Comparison of these terms before and after gamma exposure indicated that initially, radiation exposure lead to softening of the PDMS, but eventually resulted in stiffening. Simultaneously, adhesion between the polymer and silica decreased. This could indicate a serious failure path for filled PDMS exposed to radiation, whereby stiffening of the bulk polymer leads to loss of compressive elastic behavior, while a decrease in polymer filler adhesion results in an increased likelihood of stress failure under load. In addition to further testing of radiation damaged polymers, we also performed FEA modeling of silica beads in a silicone matrix using the shear modulus and adhesion values isolated from the force microscopy experiments as model inputs. The resulting simulation indicated that as a polymer stiffens due to impinging radiation, it also undergoes weakening of adhesion to the filler. The implication is that radiation induces a compound failure mode in filled polymer systems.

  9. E. Dan Dahlberg Magnetic Microscopy Center

    E-Print Network [OSTI]

    Dahlberg, E. Dan

    Coating Nanotube Bundle #12;Conventional EBD Topography Magnetism MFM Tip MFM Tip 1 µm Nickel Particles Beam Deposition (Spike) tips - Carbon Nanotube AFM/MFM tips High Resolution Magnetic Force Microscopy #12;Gonzo 500 nm #12;Carbon Nanotube MFM Uncoated Coated After Crash 300nm 6.7 µm 200 nm Multilayer

  10. Four-wave mixing microscopy of nanostructures

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Four-wave mixing microscopy of nanostructures Yong Wang, Chia-Yu Lin, Alexei Nikolaenko, Varun July 14, 2010; accepted July 27, 2010; published September 10, 2010 (Doc. ID 128079) The basics of four-wave. Four-Wave Mixing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2

  11. Femtosecond Optical Spectroscopy and Scanning Probe Microscopy

    E-Print Network [OSTI]

    Scherer, Norbert F.

    microscopy (FOS-SPM), is capable of spatial localization of optically induced phenomenon at intdaces. Spatially localized, time resolved spectroscopicmeasurements are achieved via couplingof the metal SPM tip to an optical field at the interhqe.[2,3] FOS-SPM has been shown to be capable of identqing and differentating

  12. Surface-structure sensitivity of CeO2 nanocrystals in photocatalysis...

    Office of Scientific and Technical Information (OSTI)

    heterogeneous (photo)catalysis. In this study, using aberration-corrected scanning transmission electron microscopy (STEM), the atomic surface structures of well-defined...

  13. Surface Preparation of Gallium Nitride for Atomic Layer Deposition of Aluminum Oxide /

    E-Print Network [OSTI]

    Kerr, Amanda J.

    2014-01-01

    Nitride for Atomic Layer Deposition of Aluminum Oxide AForce Microscopy Atomic Layer Deposition Capacitance-VoltageSurfaces for Atomic Layer Deposition of Aluminum Oxide” x

  14. Multifrequency imaging in the intermittent contact mode of atomic force microscopy: beyond phase imaging

    SciTech Connect (OSTI)

    Guo, Senli; Santiago, Solares D; Mochalin, Vadym; Neitzel, Ioannis; Gogotsi, Yury G.; Kalinin, Sergei V; Jesse, Stephen

    2012-01-01

    Force-based scanning probe microscopies have emerged as a mainstay for probing structural and mechanical properties of materials on the nanometer and molecular scales. Despite tremendous progress achieved to date, the cantilever dynamics in single frequency scanning probe microscopies (SPM) is undefined due to having only two output variables. Here we demonstrate on diamond nanoparticles with different functionalization layers that the use of broad band detection by multiple frequency SPM allows complete information on tip-surface interactions in intermittent contact SPM to be acquired. The obtained data allows sub-3nm resolution even in ambient environment. By tuning the strength of tip-surface interaction, the information on surface state can be obtained.

  15. Y-12 Groundwater Protection Program Groundwater And Surface Water Sampling And Analysis Plan For Calendar Year 2014

    SciTech Connect (OSTI)

    2013-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2014 at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) that will be managed by the Y-12 Groundwater Protection Program (GWPP). Groundwater and surface water monitoring is performed by the GWPP during CY 2014 to achieve the following goals: 􀁸 to protect the worker, the public, and the environment; 􀁸 to maintain surveillance of existing and potential groundwater contamination sources; 􀁸 to provide for the early detection of groundwater contamination and determine the quality of groundwater and surface water where contaminants are most likely to migrate beyond the Oak Ridge Reservation property line; 􀁸 to identify and characterize long-term trends in groundwater quality at Y-12; and 􀁸 to provide data to support decisions concerning the management and protection of groundwater resources. Groundwater and surface water monitoring will be performed in three hydrogeologic regimes at Y-12.

  16. A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer

    SciTech Connect (OSTI)

    Sharma, S.; Gahan, D. Hopkins, M. B.; Kechkar, S.; Daniels, S.

    2014-04-15

    A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placed directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.

  17. AUTOMATED 3D MAPPING & SHAPE ANALYSIS OF THE LATERAL VENTRICLES VIA FLUID REGISTRATION OF MULTIPLE SURFACE-BASED ATLASES

    E-Print Network [OSTI]

    Thompson, Paul

    SURFACE-BASED ATLASES Yi-Yu Chou1 , Natasha Leporé1 , Greig I. de Zubicaray2 , Stephen E. Rose2 , Owen T. Carmichael3 , James T. Becker4 , Arthur W. Toga1 , Paul M. Thompson1 1 Laboratory of Neuro Imaging, UCLA Dept

  18. Surfaces of Intermetallics: Quasicrystals and Beyond

    SciTech Connect (OSTI)

    Yuen, Chad

    2012-10-26

    The goal of this work is to characterize surfaces of intermetallics, including quasicrystals. In this work, surface characterization is primarily focused on composition and structure using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) performed under ultrahigh vacuum (UHV) conditions.

  19. Calibration of fluorescence resonance energy transfer in microscopy

    DOE Patents [OSTI]

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  20. Calibration of fluorescence resonance energy transfer in microscopy

    DOE Patents [OSTI]

    Youvan, Douglas C. (San Jose, CA); Silva, Christopher M. (Sunnyvale, CA); Bylina, Edward J. (San Jose, CA); Coleman, William J. (Moutain View, CA); Dilworth, Michael R. (Santa Cruz, CA); Yang, Mary M. (San Jose, CA)

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  1. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  2. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    SciTech Connect (OSTI)

    Ciovati, Gianluigi; Baldwin, Charles; Cheng, Guangfeng; Flood, Roger; Jordan, Kevin; Kneisel, Peter; Morrone, Michael; Nemes, George; Turlington, Larry; Wang, Haipeng; Wilson, Katherine

    2012-03-16

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  3. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; et al

    2012-03-16

    An apparatus was created to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  4. Energy-work-based numerical manifold seepage analysis with an efficient scheme to locate the phreatic surface

    E-Print Network [OSTI]

    Zhou, Quanlin

    , piping, and hydraulic fracturing) in embankment dams [8­10], for example. The unconfined flow subsurface in geotechnical and hydraulic engineering. The analysis of unconfined seepage is often used

  5. Filtration method characterizing the reversibility of colloidal fouling layers at a membrane surface: analysis through critical flux and osmotic pressure

    E-Print Network [OSTI]

    Benjamin Espinasse; Patrice Bacchin; Pierre Aimar

    2008-01-17

    A filtration procedure was developed to measure the reversibility of fouling during cross-flow filtration based on the square wave of applied pressure. The principle of this method, the apparatus required, and the associated mathematical relationships are detailed. This method allows for differentiating the reversible accumulation of matter on, and the irreversible fouling of, a membrane surface. Distinguishing these two forms of attachment to a membrane surface provides a means by which the critical flux may be determined. To validate this method, experiments were performed with a latex suspension at different degrees of destabilization (obtained by the addition of salt to the suspension) and at different cross-flow velocities. The dependence of the critical flux on these conditions is discussed and analysed through the osmotic pressure of the colloidal dispersion.

  6. Theoretical analysis of reflected ray error from surface slope error and their application to the solar concentrated collector

    E-Print Network [OSTI]

    Huang, Weidong

    2011-01-01

    Surface slope error of concentrator is one of the main factors to influence the performance of the solar concentrated collectors which cause deviation of reflected ray and reduce the intercepted radiation. This paper presents the general equation to calculate the standard deviation of reflected ray error from slope error through geometry optics, applying the equation to calculate the standard deviation of reflected ray error for 5 kinds of solar concentrated reflector, provide typical results. The results indicate that the slope error is transferred to the reflected ray in more than 2 folds when the incidence angle is more than 0. The equation for reflected ray error is generally fit for all reflection surfaces, and can also be applied to control the error in designing an abaxial optical system.

  7. Frontiers of in situ electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore »this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  8. The Electron Microscopy Outreach Program: A Web-Based Resource for Research and Education

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    The Electron Microscopy Outreach Program: A Web-Based Resource for Research and Education Gina E developed a centralized World Wide Web (WWW)-based environment that serves as a resource of software tools microscopes, data, and analysis via the World Wide Web (WWW) (Ellisman et al., 1998; Hadida-Hassan, 1998, 1999

  9. Using differential confocal microscopy to detect the phase transition of lipid vesicle

    E-Print Network [OSTI]

    .1117/1.1401756] Subject terms: differential confocal microscopy; lipid bilayer; bending rigidity; phase transition. Paper of the vesicle membranes. From the deformation we obtain the bending rigidity of membranes with a simple geometric analysis. The bending modulus changes by an order of magnitude as the temperature is changed

  10. Stragegies to Detect Hidden Geothermal Systems Based on Monitoringand Analysis of CO2 in the Near-Surface Environment

    SciTech Connect (OSTI)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2005-03-29

    We investigate the potential for CO2 monitoring in thenear-surface environment as an approach to exploration for hiddengeothermal systems. Numerical simulations of CO2 migration from a modelhidden geothermal system show that CO2 concentrations can reach highlevels in the shallow subsurface even for relatively low CO2 fluxes.Therefore, subsurface measurements offer an advantage over above-groundmeasurements which are affected by winds that rapidly disperse CO2. Tomeet the challenge of detecting geothermal CO2 emissions within thenatural background variability of CO2, we propose an approach thatintegrates available detection and monitoring techniques with statisticalanalysis and modeling.

  11. Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations Yu. M. Koroteev,3,4

    E-Print Network [OSTI]

    Pohl, Karsten

    ,1 J. Sun,2 Yu. M. Koroteev,3,4 G. Bihlmayer,5 J. Wells,1 E. V. Chulkov,3,6 K. Pohl,2 and Ph. Hofmann1, * 1Institute for Storage Ring Facilities, University of Aarhus, 8000 Aarhus C, Denmark 2 structure of Bi 111 was investigated by low-energy electron diffraction LEED intensity analysis

  12. Whole Slide Image Analysis Quantification using Aperio Digital Imaging in a Mouse Lung Metastasis Ronne L. Surface2

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Whole Slide Image Analysis Quantification using Aperio Digital Imaging in a Mouse Lung Metastasis quantitate metastatic mouse lung tumors in a lung section using a H&E stain. Lung sections from a mouse lung of view from each slide representing a whole lung lobe with multiple lung metastases was selected

  13. Analysis of Surface Drag of StromaxTM in Water Alec Ye || Alecye123@yahoo.com

    E-Print Network [OSTI]

    Zhou, Chongwu

    the pressure drag and medium drag the same by having the same air foil design and only changing the experiment learned is data analysis. There is a lot of uncertainty and standard deviation calculated with practical the temperature of the water, temperature of the air, the amount of water in the tank, and the tightness

  14. New Developments in Transmission Electron Microscopy for Nanotechnology**

    E-Print Network [OSTI]

    Wang, Zhong L.

    New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

  15. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es095unocic2011o.pdf More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

  16. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es095unocic2012p.pdf More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

  17. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

  18. Chemically-selective imaging of brain structures with CARS microscopy

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Chemically-selective imaging of brain structures with CARS microscopy Conor L. Evans1§ , Xiaoyin Xu anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy

  19. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    E-Print Network [OSTI]

    Dohnalkova, A.C.

    2012-01-01

    cryogenic (cryo) sample preparation methods have been developed (14, 50). Introduction of the high-pressure freezing

  20. Seismic Velocity Structure and Depth-Dependence of Anisotropy in the Red Sea and Arabian Shield from Surface Wave Analysis

    SciTech Connect (OSTI)

    Hansen, S; Gaherty, J; Schwartz, S; Rodgers, A; Al-Amri, A

    2007-07-25

    We investigate the lithospheric and upper mantle structure as well as the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Love and Rayleigh waves, measured using a cross-correlation procedure, require very slow shear velocities and the presence of anisotropy throughout the upper mantle. Linearized inversion of these data produce path-averaged 1D radially anisotropic models with about 4% anisotropy in the lithosphere, increasing to about 4.8% anisotropy across the lithosphere-asthenosphere boundary (LAB). Models with reasonable crustal velocities in which the mantle lithosphere is isotropic cannot satisfy the data. The lithospheric lid, which ranges in thickness from about 70 km near the Red Sea coast to about 90 km beneath the Arabian Shield, is underlain by a pronounced low-velocity zone with shear velocities as low as 4.1 km/s. Forward models, which are constructed from previously determined shear-wave splitting estimates, can reconcile surface and body wave observations of anisotropy. The low shear velocity values are similar to many other continental rift and oceanic ridge environments. These low velocities combined with the sharp velocity contrast across the LAB may indicate the presence of partial melt beneath Arabia. The anisotropic signature primarily reflects a combination of plate- and density-driven flow associated with active rifting processes in the Red Sea.

  1. Materials Characterization Capabilities at the HTML: Surface...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the HTML: SurfaceSub-surface dislocation density analysis of forming samples using advanced characterization techniques 2011 DOE...

  2. Integrated fiducial sample mount and software for correlated microscopy

    SciTech Connect (OSTI)

    Timothy R McJunkin; Jill R. Scott; Tammy L. Trowbridge; Karen E. Wright

    2014-02-01

    A novel design sample mount with integrated fiducials and software for assisting operators in easily and efficiently locating points of interest established in previous analytical sessions is described. The sample holder and software were evaluated with experiments to demonstrate the utility and ease of finding the same points of interest in two different microscopy instruments. Also, numerical analysis of expected errors in determining the same position with errors unbiased by a human operator was performed. Based on the results, issues related to acquiring reproducibility and best practices for using the sample mount and software were identified. Overall, the sample mount methodology allows data to be efficiently and easily collected on different instruments for the same sample location.

  3. Surface Topography Quantification by Integral and Feature-related Parameters

    E-Print Network [OSTI]

    Smid, Michiel

    Surface Topography Quantification by Integral and Feature-related Parameters Quantifizieren von microscopy, the topography of brittle fracture surfaces and wire- eroded surfaces was quantified. The global-related parameters in topographies, which uses methods of computational geometry. The software was tested using

  4. Fast electron microscopy via compressive sensing

    DOE Patents [OSTI]

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  5. New Microscopy Patent Awarded | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications64 2.251 2.211 2.196 2.172companies atNew Microscopy

  6. The development of optical microscopy techniques for the advancement of single-particle studies

    SciTech Connect (OSTI)

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  7. Surface chemistry of BORAZON: I, Analysis of the three cubic boron nitride materials: Type 1, 510, and 550

    SciTech Connect (OSTI)

    Moddeman, W.E.; Foose, D.S.; Bowling, W.C.; Burke, A.R.; Kasten, L.S.; Cassidy, R.T.

    1992-03-25

    Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface chemistry of three BORAZON* materials: Type I, 510, and 550. Samples were examined in the ``as-received`` condition and following heat treatments in air. Boron oxides were found on the Type I and 550 BORAZON crystals; oxide thicknesses were estimated to be 15A. The titanium-coated product, 510, was found to have a discontinuous titanium coating with a TiO{sub 2} layer that was approximately 20A thick. Following heat treatment at 800{degrees}C for 1 hr in air, the boron oxide layer on the Type I crystals was found to increase in thickness to approximately 30A. The same heat treatment on the 510 crystals yielded a multi-layered structure consisting of an enriched outer layer of B{sub 2}O{sub 3} over a predominantly TiO{sub 2} one. The entire initial titanium coating was oxidized, and segregated patches of B{sub 2}O{sub 3} (``islands``) were observed. The segregated patches can be explained in terms of the coalescence of liquid B{sub 2}O{sub 3} (melting point = 450{degrees}C). The 550 crystals were oxidized at 500{degrees}C. The oxide formed at this temperature was B{sub x}O (x > 0.67). These results were interpreted in terms of their potential use in sealing BORAZON to glass in vitreous bonding.

  8. Automated fit of high-dimensional potential energy surfaces using cluster analysis and interpolation over descriptors of chemical environment

    SciTech Connect (OSTI)

    Fournier, René Orel, Slava

    2013-12-21

    We present a method for fitting high-dimensional potential energy surfaces that is almost fully automated, can be applied to systems with various chemical compositions, and involves no particular choice of function form. We tested it on four systems: Ag{sub 20}, Sn{sub 6}Pb{sub 6}, Si{sub 10}, and Li{sub 8}. The cost for energy evaluation is smaller than the cost of a density functional theory (DFT) energy evaluation by a factor of 1500 for Li{sub 8}, and 60 000 for Ag{sub 20}. We achieved intermediate accuracy (errors of 0.4 to 0.8 eV on atomization energies, or, 1% to 3% on cohesive energies) with rather small datasets (between 240 and 1400 configurations). We demonstrate that this accuracy is sufficient to correctly screen the configurations with lowest DFT energy, making this function potentially very useful in a hybrid global optimization strategy. We show that, as expected, the accuracy of the function improves with an increase in the size of the fitting dataset.

  9. Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships

    SciTech Connect (OSTI)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-11-01

    We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

  10. An Electron Microscopy Investigation of the Transient Stage Oxidation Products in an Fe-22Cr Alloy with Ce and La Additions Exposed to Dry Air at 800 [degrees]C

    SciTech Connect (OSTI)

    Zhu, Jingxi; Fernandez Diaz, Laura M; Holcomb, Gordon R; Jablonski, Paul; Cowen, Christopher; Laughlin, David E; Alman, Dave; Seetharaman, Sridhar

    2011-01-01

    In this study, the effects of Ce (270 ppm) and La (120 ppm) mischmetal additions on the transient oxidation of an Fe-22Cr alloy were investigated. The oxidation process was imaged in situ using a confocal scanning laser microscope. The oxidation microstructures were studied by scanning electron microscopy, energy dispersive X-ray analysis, and transmission electron microscopy with the help of focused ion beam in situ lift-out specimen preparation. The Ce and La, referred to as reactive elements, were found in nonmetallic inclusion particles in the forms of oxides, sulfides, and phosphates. An affected zone formed around rare earth (RE)-containing inclusion particles at the alloy free surface during the transient oxidation. This zone consisted of an internal Cr-oxide formed beneath the particle as well as a thinner external oxide scale on the surface compared with the surroundings. The relation of this microstructure to oxidation kinetics is discussed. With time, the RE elements diffused into the scale from the RE particles on the alloy surface during the high-temperature exposure. A diffusion mechanism is presented to describe these observations.

  11. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    SciTech Connect (OSTI)

    Tittmann, B. R.; Xi, X.

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

  12. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Soil Surface Soil We compare local soil samples with samples collected from northern New Mexico locations that are beyond the range of potential influence from normal...

  13. Biomass Surface Characterization Laboratory

    E-Print Network [OSTI]

    the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

  14. Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties

    SciTech Connect (OSTI)

    Sumant, A. V.; Grierson, D. S.; Carpick, R. W.; Gerbi, J. E.; Carlisle, J. A.; Auciello, O.

    2007-12-15

    We present a comprehensive study of surface composition and nanotribology for ultrananocrystalline diamond (UNCD) surfaces, including the influence of film nucleation on these properties. We describe a methodology to characterize the underside of the films as revealed by sacrificial etching of the underlying substrate. This enables the study of the morphology and composition resulting from the nucleation and initial growth of the films, as well as the characterization of nanotribological properties which are relevant for applications including micro-/nanoelectromechanical systems. We study the surface chemistry, bonding configuration, and nanotribological properties of both the topside and the underside of the film with synchrotron-based x-ray absorption near-edge structure spectroscopy to identify the bonding state of the carbon atoms, x-ray photoelectron spectroscopy to determine the surface chemical composition, Auger electron spectroscopy to further verify the composition and bonding configuration, and quantitative atomic force microscopy to study the nanoscale topography and nanotribological properties. The films were grown on SiO{sub 2} after mechanically polishing the surface with detonation synthesized nanodiamond powder, followed by ultrasonication in a methanol solution containing additional nanodiamond powder. The sp{sup 2} fraction, morphology, and chemistry of the as-etched underside are distinct from the topside, exhibiting a higher sp{sup 2} fraction, some oxidized carbon, and a smoother morphology. The nanoscale single-asperity work of adhesion between a diamond nanotip and the as-etched UNCD underside is far lower than for a silicon-silicon interface (59.2{+-}2 vs 826{+-}186 mJ/m{sup 2}, respectively). Exposure to atomic hydrogen dramatically reduces nanoscale adhesion to 10.2{+-}0.4 mJ/m{sup 2}, at the level of van der Waals' interactions and consistent with recent ab initio calculations. Friction is substantially reduced as well, demonstrating a direct link between the surface chemistry and nanoscale friction. The proposed mechanism, supported by the detailed surface spectroscopic analysis, is the elimination of reactive (e.g., C*-), polar (e.g., C=O), and {pi}-bonded (C=C) surface groups, which are replaced by fully saturated, hydrogen-terminated surface bonds to produce an inert surface that interacts minimally with the contacting counterface.

  15. Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties.

    SciTech Connect (OSTI)

    Sumant, A. V.; Grierson, D. S.; Gerbi, J. E.; Carlisle, J. A.; Auciello, O.; Carpick, R. W.; Univ. of Wisconsin at Madison

    2007-12-01

    We present a comprehensive study of surface composition and nanotribology for ultrananocrystalline diamond (UNCD) surfaces, including the influence of film nucleation on these properties. We describe a methodology to characterize the underside of the films as revealed by sacrificial etching of the underlying substrate. This enables the study of the morphology and composition resulting from the nucleation and initial growth of the films, as well as the characterization of nanotribological properties which are relevant for applications including micro-/nanoelectromechanical systems. We study the surface chemistry, bonding configuration, and nanotribological properties of both the topside and the underside of the film with synchrotron-based x-ray absorption near-edge structure spectroscopy to identify the bonding state of the carbon atoms, x-ray photoelectron spectroscopy to determine the surface chemical composition, Auger electron spectroscopy to further verify the composition and bonding configuration, and quantitative atomic force microscopy to study the nanoscale topography and nanotribological properties. The films were grown on SiO{sub 2} after mechanically polishing the surface with detonation synthesized nanodiamond powder, followed by ultrasonication in a methanol solution containing additional nanodiamond powder. The sp{sup 2} fraction, morphology, and chemistry of the as-etched underside are distinct from the topside, exhibiting a higher sp{sup 2} fraction, some oxidized carbon, and a smoother morphology. The nanoscale single-asperity work of adhesion between a diamond nanotip and the as-etched UNCD underside is far lower than for a silicon-silicon interface (59.2 {+-} 2 vs 826 {+-} 186 mJ/m{sup 2}, respectively). Exposure to atomic hydrogen dramatically reduces nanoscale adhesion to 10.2 {+-} 0.4 mJ/m{sup 2}, at the level of van der Waals interactions and consistent with recent ab initio calculations. Friction is substantially reduced as well, demonstrating a direct link between the surface chemistry and nanoscale friction. The proposed mechanism, supported by the detailed surface spectroscopic analysis, is the elimination of reactive (e.g., C*-), polar (e.g., C-O), and {pi}-bonded (C-C) surface groups, which are replaced by fully saturated, hydrogen-terminated surface bonds to produce an inert surface that interacts minimally with the contacting counterface.

  16. Effects of extreme pressure additive chemistry on rolling element bearing surface durability

    SciTech Connect (OSTI)

    Evans, Ryan D.; Nixon, H. P.; Darragh, Craig V.; Howe, Jane Y; Coffey, Dorothy W

    2007-01-01

    Lubricant additives have been known to affect rolling element bearing surface durability for many years. Tapered roller bearings were used in fatigue testing of lubricants formulated with gear oil type additive systems. These systems have sulfur- and phosphoruscontaining compounds used for gear protection as well as bearing lubrication. Several variations of a commercially available base additive formulation were tested having modified sulfur components. The variations represent a range of ''active'' extreme pressure (EP) chemistries. The bearing fatigue test results were compared with respect to EP formulation and test conditions. Inner ring near-surface material in selected test bearings was evaluated on two scales: the micrometer scale using optical metallography and the nanometer scale using transmission electron microscopy (TEM). Focused-ion beam (FIB) techniques were used for TEM specimen preparation. Imaging and chemical analysis of the bearing samples revealed near-surface material and tribofilm characteristics. These results are discussed with respect to the relative fatigue lives.

  17. Near-eld microscopy of collapsed LangmuirBlodgett lms Steven R. Cordero, Kenneth D. Weston, Steven K. Buratto*

    E-Print Network [OSTI]

    Near-®eld microscopy of collapsed Langmuir±Blodgett ®lms Steven R. Cordero, Kenneth D. Weston-to-one correlation between ¯uorescence contrast and ®lm topography. In particular, ®lms of the phospholipid DPPC in supported ®lms of 100% DiIC12 deposited at high surface pressure. In these ®lms, spatially

  18. Spark-Gap Atomic Emission Microscopy P. G. Van Patten, J. D. Noll, and M. L. Myrick*

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Spark-Gap Atomic Emission Microscopy P. G. Van Patten, J. D. Noll, and M. L. Myrick* Department been developed. The technique is based on spark atomic emission spectroscopy and provides information the sample and cause emission. Spectra from a polished copper electrode surface are presented and discussed

  19. Atomic imaging and modeling of H{sub 2}O{sub 2}(g) surface passivation, functionalization, and atomic layer deposition nucleation on the Ge(100) surface

    SciTech Connect (OSTI)

    Kaufman-Osborn, Tobin [Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093 (United States); Chagarov, Evgueni A. [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States); Kummel, Andrew C., E-mail: akummel@ucsd.edu [Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States)

    2014-05-28

    Passivation, functionalization, and atomic layer deposition nucleation via H{sub 2}O{sub 2}(g) and trimethylaluminum (TMA) dosing was studied on the clean Ge(100) surface at the atomic level using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Chemical analysis of the surface was performed using x-ray photoelectron spectroscopy, while the bonding of the precursors to the substrate was modeled with density functional theory (DFT). At room temperature, a saturation dose of H{sub 2}O{sub 2}(g) produces a monolayer of a mixture of –OH or –O species bonded to the surface. STS confirms that H{sub 2}O{sub 2}(g) dosing eliminates half-filled dangling bonds on the clean Ge(100) surface. Saturation of the H{sub 2}O{sub 2}(g) dosed Ge(100) surface with TMA followed by a 200?°C anneal produces an ordered monolayer of thermally stable Ge–O–Al bonds. DFT models and STM simulations provide a consistent model of the bonding configuration of the H{sub 2}O{sub 2}(g) and TMA dosed surfaces. STS verifies the TMA/H{sub 2}O{sub 2}/Ge surface has an unpinned Fermi level with no states in the bandgap demonstrating the ability of a Ge–O–Al monolayer to serve as an ideal template for further high-k deposition.

  20. Shape reconstruction and height fluctuations of red blood cells using defocusing microscopy

    E-Print Network [OSTI]

    Siman, L; Amaral, F T; Agero, U; Mesquita, O N

    2014-01-01

    In this paper the bright-field defocusing microscopy (DM) technique is presented. DM is able to obtain quantitative information of each plane/surface of pure phase objects, as live unlabeled cells, and its application to red blood cells (RBCs) is demonstrated. Based on contrast, simple methods to obtain thickness profile and three dimensional (3D) total reconstruction of RBCs are proposed and the actual height profiles of upper and lower surface-membranes (lipid bilayer$/$cytoskeleton) of discocyte and stomatocyte red cells are presented as examples. In addition, using the mean square contrast fluctuation and modeling the RBC membranes fluctuations spectra as dependent of a bending modulus $(\\kappa_c)$, a surface tension $(\\sigma)$ and a confining potential $(\\gamma)$ term, slowly varying quantities along the cell radius, a genetic algorithm (GA) is used and the radial height fluctuations of each surface-membrane are accessed, separately. The radial behaviors of $\\kappa_c$, $\\sigma$ and $\\gamma$ are also obta...

  1. Cell shape identification using digital holographic microscopy

    E-Print Network [OSTI]

    Zakrisson, Johan; Andersson, Magnus

    2015-01-01

    We present a cost-effective, simple and fast digital holographic microscopy method based upon Rayleigh-Sommerfeld back propagation for identification of the geometrical shape of a cell. The method was tested using synthetic hologram images generated by ray-tracing software and from experimental images of semi-transparent spherical beads and living red blood cells. Our results show that by only using the real part of the back-reconstructed amplitude the proposed method can provide information of the geometrical shape of the object and at the same time accurately determine the axial position of the object under study. The proposed method can be used in flow chamber assays for pathophysiological studies where fast morphological changes of cells are studied in high numbers and at different heights.

  2. Structure of native oligomeric Sprouty2 by electron microscopy and its property of electroconductivity

    SciTech Connect (OSTI)

    Chen, Feng-Jung [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China) [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Lee, Kuan-Wei; Lai, Chun-Chieh [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China)] [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Lee, Sue-Ping [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China)] [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China); Shen, Hsiao-Hsuian [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China)] [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Tsai, Shu-Ping [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China)] [Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC (China); Liu, Bang-Hung [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China)] [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Wang, Ling-Mei [Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China)] [Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Liou, Gunn-Guang, E-mail: bogun@nhri.org.tw [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China) [Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan, ROC (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan, ROC (China)

    2013-09-27

    Highlights: •Spry2 self-assembles into distinct oligomeric forms. •Self-interaction of Spry2 is detected with a high kinetic affinity in vitro. •The 3D structure of oligomeric Spry2 likes as a donut shape with two lip-cover parts. •Spry2 contains silicon and iron. •Spry2 has a potential to serve as a biological material conductor. -- Abstract: Receptor tyrosine kinases (RTKs) regulate many cellular processes, and Sprouty2 (Spry2) is known as an important regulator of RTK signaling pathways. Therefore, it is worth investigating the properties of Spry2 in more detail. In this study, we found that Spry2 is able to self-assemble into oligomers with a high-affinity KD value of approximately 16 nM, as determined through BIAcore surface plasmon resonance analysis. The three-dimensional (3D) structure of Spry2 was resolved using an electron microscopy (EM) single-particle reconstruction approach, which revealed that Spry2 is donut-shaped with two lip-cover domains. Furthermore, the method of energy dispersive spectrum obtained through EM was analyzed to determine the elements carried by Spry2, and the results demonstrated that Spry2 is a silicon- and iron-containing protein. The silicon may contribute to the electroconductivity of Spry2, and this property exhibits a concentration-dependent feature. This study provides the first report of a silicon- and iron-containing protein, and its 3D structure may allow us (1) to study the potential mechanism through the signal transduction is controlled by switching the electronic transfer on or off and (2) to develop a new type of conductor or even semiconductor using biological or half-biological hybrid materials in the future.

  3. Atomic force microscopy investigation of the giant mimivirus

    SciTech Connect (OSTI)

    Kuznetsov, Yuri G.; Xiao Chuan; Sun Siyang; Raoult, Didier; Rossmann, Michael; McPherson, Alexander

    2010-08-15

    Mimivirus was investigated by atomic force microscopy in its native state following serial degradation by lysozyme and bromelain. The 750-nm diameter virus is coated with a forest of glycosylated protein fibers of lengths about 140 nm with diameters 1.4 nm. Fibers are capped with distinctive ellipsoidal protein heads of estimated Mr = 25 kDa. The surface fibers are attached to the particle through a layer of protein covering the capsid, which is in turn composed of the major capsid protein (MCP). The latter is organized as an open network of hexagonal rings with central depressions separated by 14 nm. The virion exhibits an elaborate apparatus at a unique vertex, visible as a star shaped depression on native particles, but on defibered virions as five arms of 50 nm width and 250 nm length rising above the capsid by 20 nm. The apparatus is integrated into the capsid and not applied atop the icosahedral lattice. Prior to DNA release, the arms of the star disengage from the virion and it opens by folding back five adjacent triangular faces. A membrane sac containing the DNA emerges from the capsid in preparation for fusion with a membrane of the host cell. Also observed from disrupted virions were masses of distinctive fibers of diameter about 1 nm, and having a 7-nm periodicity. These are probably contained within the capsid along with the DNA bearing sac. The fibers were occasionally observed associated with toroidal protein clusters interpreted as processive enzymes modifying the fibers.

  4. Distance dependence of the phase signal in eddy current microscopy

    E-Print Network [OSTI]

    Roll, Tino; Fischer, Ulrich; Schleberger, Marika

    2008-01-01

    Atomic force microscopy using a magnetic tip is a promising tool for investigating conductivity on the nano-scale. By the oscillating magnetic tip eddy currents are induced in the conducting parts of the sample which can be detected in the phase signal of the cantilever. However, the origin of the phase signal is still controversial because theoretical calculations using a monopole appoximation for taking the electromagnetic forces acting on the tip into account yield an effect which is too small by more than two orders of magnitude. In order to determine the origin of the signal we used especially prepared gold nano patterns embedded in a non-conducting polycarbonate matrix and measured the distance dependence of the phase signal. Our data clearly shows that the interacting forces are long ranged and therefore, are likely due to the electromagnetic interaction between the magnetic tip and the conducting parts of the surface. Due to the long range character of the interaction a change in conductivity of $\\Del...

  5. X-Ray Microscopy Reveals How Crystal Mechanics Drive Battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microscopy Reveals How Crystal Mechanics Drive Battery Performance Print Rechargeable lithium-ion batteries power most portable electronics and are becoming more widely used in...

  6. In situ transmission electron microscopy investigation of the...

    Office of Scientific and Technical Information (OSTI)

    In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter Grapes, Michael D. Department of...

  7. In situ transmission electron microscopy investigation of the...

    Office of Scientific and Technical Information (OSTI)

    Published Article: In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter Title: In situ...

  8. Los Alamos: MST: MST-6: EML: Electron Microscopy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is also greater flexibility in choice of standards and ZAF correction schemes. Digital Mapping and Imaging. Automated Stage capable of 1 micron steps. Geller Microscopy Wavelength...

  9. Surface nanobubbles: Seeing is believing

    E-Print Network [OSTI]

    Karpitschka, Stefan; Seddon, James R T; Zandvliet, Harold J W; Lohse, Detlef; Riegler, Hans

    2012-01-01

    The existence of surface nanobubbles has been previously suggested using various experimental techniques, including attenuated total reflection spectroscopy, quartz crystal microbalance, neutron reflectometry, and x-ray reflectivity, but all of these techniques provide a sole number to quantify the existence of gas over (usually) hundreds of square microns. Thus `nanobubbles' are indistinguishable from a `uniform gassy layer' between surface and liquid. Atomic force microscopy, on the other hand, does show the existence of surface nanobubbles, but the highly intrusive nature of the technique means that a uniform gassy layer could break down into nanobubbles \\textit{due to} the motion of the microscope's probe. Here we demonstrate \\textit{optical} visualisation of surface nanobubbles, thus validating their individual existence non-intrusively.

  10. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume II. Data repository and reports published during fiscal year 1979-1980: regional structure, surface structure, surface fractures, hydrology

    SciTech Connect (OSTI)

    Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

    1980-10-01

    This volume comprises appendices giving regional structure data, surface structure data, surface fracture data, and hydrology data. The fracture data covers oriented Devonian shale cores from West Virginia, Ohio, Virginia, Pennsylvania, and Kentucky. The subsurface structure of the Eastern Kentucky gas field is also covered. (DLC)

  11. Molecular-scale investigations of structures and surface charge distribution of surfactant aggregates by three-dimensional force mapping

    SciTech Connect (OSTI)

    Suzuki, Kazuhiro; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan)] [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Kobayashi, Kei [The Hakubi Center for Advanced Research, Kyoto University, Katsura, Nishikyo, Kyoto 615-8520 (Japan)] [The Hakubi Center for Advanced Research, Kyoto University, Katsura, Nishikyo, Kyoto 615-8520 (Japan)

    2014-02-07

    Surface charges on nanoscale structures in liquids, such as biomolecules and nano-micelles, play an essentially important role in their structural stability as well as their chemical activities. These structures interact with each other through electric double layers (EDLs) formed by the counter ions in electrolyte solution. Although static-mode atomic force microscopy (AFM) including colloidal-probe AFM is a powerful technique for surface charge density measurements and EDL analysis on a submicron scale in liquids, precise surface charge density analysis with single-nanometer resolution has not been made because of its limitation of the resolution and the detection sensitivity. Here we demonstrate molecular-scale surface charge measurements of self-assembled micellar structures, molecular hemicylinders of sodium dodecyl sulfate (SDS), by three-dimensional (3D) force mapping based on frequency modulation AFM. The SDS hemicylindrical structures with a diameter of 4.8 nm on a graphite surface were clearly imaged. We have succeeded in visualizing 3D EDL forces on the SDS hemicylinder surfaces and obtaining the molecular-scale charge density for the first time. The results showed that the surface charge on the trench regions between the hemicylinders was much smaller than that on the hemicylinder tops. The method can be applied to a wide variety of local charge distribution studies, such as spatial charge variation on a single protein molecule.

  12. Out of equilibrium GigaPa Young modulus of water nanobridge probed by Force Feedback Microscopy

    E-Print Network [OSTI]

    Carpentier, Simon; Costa, Luca; Vitorino, Miguel V; Charlaix, Elisabeth; Chevrier, Joel

    2015-01-01

    Because of capillary condensation, water droplets appear in nano/micropores. The large associated surface interactions can deeply influence macroscopic properties as in granular media. We report that dynamical properties of such nanobridge dramatically change when probed at different time scales. Using a novel AFM mode, the Force Feedback Microscopy, the gap between the nanotip and the surface is continuously varied, and we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G"(kg/sec) together with the static force. As the measuring time approaches the microsecond, the liquid droplet exhibits a large positive stiffness (it is small and negative in the long time limit). Although clearly controlled by surface effects, it compares to the stiffness of a solid nanobridge with a 1 GigaPa Young modulus. We argue that as evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile, which expla...

  13. Analysis of microroughness evolution in X-ray astronomical multilayer mirrors by surface topography with the MPES program and by X-ray scattering

    E-Print Network [OSTI]

    Canestrari, R; Pareschi, G

    2015-01-01

    Future hard X-ray telescopes (e.g. SIMBOL-X and Constellation-X) will make use of hard X-ray optics with multilayer coatings, with angular resolutions comparable to the achieved ones in the soft X-rays. One of the crucial points in X-ray optics, indeed, is multilayer interfacial microroughness that causes effective area reduction and X-Ray Scattering (XRS). The latter, in particular, is responsible for image quality degradation. Interfacial smoothness deterioration in multilayer deposition processes is commonly observed as a result of substrate profile replication and intrinsic random deposition noise. For this reason, roughness growth should be carefully investigated by surface topographic analysis, X-ray reflectivity and XRS measurements. It is convenient to express the roughness evolution in terms of interface Power Spectral Densities (PSD), that are directly related to XRS and, in turn, in affecting the optic HEW (Half Energy Width). In order to interpret roughness amplification and to help us to predict ...

  14. Differential Dynamic Microscopy to characterize Brownian motion and bacteria motility

    E-Print Network [OSTI]

    David Germain; Mathieu Leocmach; Thomas Gibaud

    2015-11-03

    We have developed a lab work module where we teach undergraduate students how to quantify the dynamics of a suspension of microscopic particles, measuring and analyzing the motion of those particles at the individual level or as a group. Differential Dynamic Microscopy (DDM) is a relatively recent technique that precisely does that and constitutes an alternative method to more classical techniques such as dynamics light scattering (DLS) or video particle tracking (VPT). DDM consists in imaging a particle dispersion with a standard light microscope and a camera. The image analysis requires the students to code and relies on digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM on the textbook case of colloids where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biologic systems such as motile bacteria i.e.bacteria that can self propel, where we not only determine the diffusion coefficient but also the velocity and the fraction of motile bacteria. Finally, so that our paper can be used as a tutorial to the DDM technique, we have joined to this article movies of the colloidal and bacterial suspensions and the DDM algorithm in both Matlab and Python to analyze the movies.

  15. High-resolution electron microscopy of advanced materials

    SciTech Connect (OSTI)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  16. Raman Microscopy of Lithium-Manganese-Rich Cathodes

    SciTech Connect (OSTI)

    Ruther, Rose E [ORNL; Callender, Andrew F. [Tennessee Technological University; Zhou, Hui [ORNL; Martha, Surendra [Indian Institute of Technology, Hyderabad; Nanda, Jagjit [ORNL

    2014-01-01

    Lithium rich, manganese rich composites with general formula xLi2MnO3 (1-x)LiMO2 are promising candidates for high capacity and high voltage cathodes for lithium ion batteries. Lithium rich oxides crystallize as a nanocomposite of layered phases whose structure further evolves with electrochemical cycling. Raman spectroscopy is potentially a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this study Raman microscopy is used to investigate lithium-rich manganese-rich cathodes as a function of average charge and electrochemical cycling. LMR-NMC cycled at elevated temperature (60 C) has a modified crystal structure which may account for some of the observed increase in capacity. Contrary to some reports, no growth of a spinel phase is observed. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. The results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.

  17. Nanoscale Surface and Interface Mechanics of Elastic-Plastic Media with Smooth, Patterned, and Rough Surfaces

    E-Print Network [OSTI]

    Yin, Xi

    2011-01-01

    fractal analysis microelectromechanical systems. J. Tribol.surface adhesion in microelectromechanical systems. Journalof sidewall adhesion in microelectromechanical systems. J.

  18. Momentum-resolved Electron Energy-Loss Spectroscopy Master Thesis, Electron Microscopy Group of Materials Science, Prof. Ute Kaiser

    E-Print Network [OSTI]

    Pfeifer, Holger

    of Materials Science, Prof. Ute Kaiser Background Electron energy-loss spectroscopy (EELS) is a well Microscopy group of Material Sciences in Ulm has gained experience in the acquisition and analysis of energy-loss spectra of two-dimensional materials using an in-column energy filter [1,2]. Aim The aim of the proposed

  19. A NEW APPROACH FOR 3D SEGMENTATION OF CELLULAR TOMOGRAMS OBTAINED USING THREE-DIMENSIONAL ELECTRON MICROSCOPY

    E-Print Network [OSTI]

    Minnesota, University of

    MICROSCOPY A. Bartesaghi and G. Sapiro University of Minnesota Electrical and Computer Engineering of reliable quantitative approaches for interpretation of features in tomograms, is an important problem analysis of HIV particles and selected cellular compartments in electron tomograms recorded from fixed

  20. Theoretical Studies of Energy and Momentum Exchange in Atomic and Molecular Scattering from Surfaces

    SciTech Connect (OSTI)

    Joseph R. Manson

    2005-06-30

    The contributions that we have made during the grant period of DE-FG02-98ER45704 can be placed into six different categories: (1) advances in the Theory of Molecule-Surface Scattering, (2) advances in the Theory of Atom-Surface Scattering, (3) utilization of scattering theory to Extract Physical Information about Surfaces, (4) Gas-Surface Interactions, (5) Ion Scattering from surfaces and (6) Scanning Tunneling Microscopy (STM). These six topics are discussed below as individual listings under the title 'IV. Detailed description of research accomplishments'. These advances show that we have made significant progress on several scientific problems in atomic and molecular surface scattering during the course of this grant as well as contributions to other areas. It is also noted that this work, although fundamentally theoretical, is marked by its strong motivation to explain current experimental measurements. This was an important secondary goal in the proposed work. We have developed theory that is useful to experimentalists in the explanation and analysis of their experimental data.

  1. Sub-microsecond-resolution probe microscopy

    DOE Patents [OSTI]

    Ginger, David; Giridharagopal, Rajiv; Moore, David; Rayermann, Glennis; Reid, Obadiah

    2014-04-01

    Methods and apparatus are provided herein for time-resolved analysis of the effect of a perturbation (e.g., a light or voltage pulse) on a sample. By operating in the time domain, the provided method enables sub-microsecond time-resolved measurement of transient, or time-varying, forces acting on a cantilever.

  2. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - II. Crustal and upper-mantle structure

    E-Print Network [OSTI]

    Yao, H; Beghein, C; Van Der Hilst, RD

    2008-01-01

    M.N. , 2006. Constraining P-wave velocity variations in2005. High- resolution surface wave tomography from ambienterror (? v ) of the shear wave speed along five vertical

  3. Stuck with the bill, but why? : an analysis of the Portuguese public finance system with respect to surface transportation policy and investments

    E-Print Network [OSTI]

    Nelson, Joshua S

    2008-01-01

    Despite decentralization progress in other sectors, the Portuguese central government maintains significant administrative and fiscal power over national and sub-national surface transportation operations and infrastructure. ...

  4. Special Topics PHY 894 (#07177) Room: Clip 132A Surfaces and Surface Analytical Techniques

    E-Print Network [OSTI]

    Microscopy and Spectroscopy, Theory, Techniques, and Applications, 2nd edition, Wiley-Vch. 9. T. Sakurai, Y theory to get the physical basis of the technique and will discuss applications to current research. The methods are fundamental for condensed matter and nanoscience, particularly at surfaces in vacuum. We

  5. Enhanced efficiency in the excitation of higher modes for atomic force microscopy and mechanical sensors operated in liquids

    SciTech Connect (OSTI)

    Penedo, M., E-mail: mapenedo@imm.cnm.csic.es; Hormeño, S.; Fernández-Martínez, I.; Luna, M.; Briones, F. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Raman, A. [Birck Nanotechnology Center and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47904 (United States)

    2014-10-27

    Recent developments in dynamic Atomic Force Microscopy where several eigenmodes are simultaneously excited in liquid media are proving to be an excellent tool in biological studies. Despite its relevance, the search for a reliable, efficient, and strong cantilever excitation method is still in progress. Herein, we present a theoretical modeling and experimental results of different actuation methods compatible with the operation of Atomic Force Microscopy in liquid environments: ideal acoustic, homogeneously distributed force, distributed applied torque (MAC Mode™), photothermal and magnetostrictive excitation. From the analysis of the results, it can be concluded that magnetostriction is the strongest and most efficient technique for higher eigenmode excitation when using soft cantilevers in liquid media.

  6. Modulated microwave microscopy and probes used therewith

    DOE Patents [OSTI]

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  7. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    SciTech Connect (OSTI)

    Bosse, J. L.; Huey, B. D. [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Tovee, P. D.; Kolosov, O. V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-04-14

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing ?s time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few ?m{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular benefit of UFM and related methods for nanoscale mapping of stiff materials.

  8. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  9. Carmichael's Concise Review Microscopy is Only Skin Deep

    E-Print Network [OSTI]

    Heller, Eric

    Carmichael's Concise Review Microscopy is Only Skin Deep Stephen W. Carmichael Mayo Clinic. Coming Events 2011 EMAS 2011 May 15­19, 2011 Angers, France www.emas-web.net IUMAS-V May 22­27, 2011

  10. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    LETTERS Imaging chromophores with undetectable fluorescence by stimulated emission microscopy Wei, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used undetectable fluorescence because the spontaneous emission is dominated by theirfastnon-radiative decay3

  11. Classifying and Segmenting Microscopy Images Using Convolutional Multiple Instance Learning

    E-Print Network [OSTI]

    Oren Z. Kraus; Lei Jimmy Ba; Brendan Frey

    2015-11-17

    Convolutional neural networks (CNN) have achieved state of the art performance on both classification and segmentation tasks. Applying CNNs to microscopy images is challenging due to the lack of datasets labeled at the single cell level. We extend the application of CNNs to microscopy image classification and segmentation using multiple instance learning (MIL). We present the adaptive Noisy-AND MIL pooling function, a new MIL operator that is robust to outliers. Combining CNNs with MIL enables training CNNs using full resolution microscopy images with global labels. We base our approach on the similarity between the aggregation function used in MIL and pooling layers used in CNNs. We show that training MIL CNNs end-to-end outperforms several previous methods on both mammalian and yeast microscopy images without requiring any segmentation steps.

  12. Optical fiber based ultrashort pulse multispectral nonlinear optical microscopy 

    E-Print Network [OSTI]

    Larson, Adam Michael

    2009-05-15

    Nonlinear optical microscopy (NLOM) utilizing femtosecond laser pulses is well suited for imaging living tissues. This work reports on the design and development of an optical fiber based multispectral NLOM developed around ...

  13. Spectroscopic infrared near-field microscopy and x-ray reflectivity studies of order and clustering in lipid membranes

    SciTech Connect (OSTI)

    Generosi, J.; Margaritondo, G.; Sanghera, J. S.; Aggarwal, I. D.; Tolk, N. H.; Piston, D. W.; Castellano, A. Congiu; Cricenti, A.

    2006-12-04

    Lipid membranes were studied by infrared scanning near-field optical microscopy at several wavelengths and by x-ray reflectivity. Together with the x-ray data, the optical images indicate the formation of locally ordered multiple bilayers, and the topographical micrographs reveal the presence of islands at the surface, both critically important features for biotechnology and medical applications such as biosensors and gene therapy.

  14. Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis

    E-Print Network [OSTI]

    Kang, Jeon Woong

    We have developed a novel multimodal microscopy system that incorporates confocal Raman, confocal reflectance, and quantitative phase microscopy (QPM) into a single imaging entity. Confocal Raman microscopy provides detailed ...

  15. Transmission electron microscopy characterization of Zircaloy-4 and ZIRLOTM oxide layers

    E-Print Network [OSTI]

    Motta, Arthur T.

    Transmission electron microscopy characterization of Zircaloy-4 and ZIRLOTM oxide layers Benoit de, and archived before and after the transition, are characterized using transmission electron microscopy improvement. Results obtained from transmission electron microscopy (TEM) samples archived just before

  16. Imaging doped silicon test structures using low energy electron microscopy.

    SciTech Connect (OSTI)

    Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

    2010-01-01

    This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

  17. Cross-sectional electrostatic force microscopy of thin-film solar cells

    SciTech Connect (OSTI)

    Ballif, C.; Moutinho, H. R.; Al-Jassim, M. M.

    2001-01-15

    In a recent work, we showed that atomic force microscopy (AFM) is a powerful technique to image cross sections of polycrystalline thin films. In this work, we apply a modification of AFM, namely, electrostatic force microscopy (EFM), to investigate the electronic properties of cleaved II--VI and multijunction thin-film solar cells. We cleave the devices in such a way that they are still working with their nominal photovoltaic efficiencies and can be polarized for the measurements. This allows us to differentiate between surface effects (work function and surface band bending) and bulk device properties. In the case of polycrystalline CdTe/CdS/SnO{sub 2}/glass solar cells, we find a drop of the EFM signal in the area of the CdTe/CdS interface ({+-}50 nm). This drop varies in amplitude and sign according to the applied external bias and is compatible with an n-CdS/p-CdTe heterojunction model, thereby invalidating the possibility of a deeply buried n-p CdTe homojunction. In the case of a triple-junction GaInP/GaAs/Ge device, we observe a variation of the EFM signal linked to both the material work-function differences and to the voltage bias applied to the cell. We attempt a qualitative explanation of the results and discuss the implications and difficulties of the EFM technique for the study of such thin-film devices.

  18. Programmable surfaces

    E-Print Network [OSTI]

    Sun, Amy (Amy Teh-Yu)

    2012-01-01

    Robotic vehicles walk on legs, roll on wheels, are pulled by tracks, pushed by propellers, lifted by wings, and steered by rudders. All of these systems share the common character of momentum transport across their surfaces. ...

  19. Scanning Tunneling Microscopy and Theoretical Study of Water Adsorption on Fe3O4: Implications for Catalysis

    SciTech Connect (OSTI)

    Rim, Kwang T.; Eom, Daejin; Chan, Siu-Wai; Flytzani-Stephanopoulos, Maria; Flynn, George; Wen, Xiaodong; Batista, Enrique R.

    2012-10-23

    The reduced surface of a natural Hematite single crystal a-Fe2O3(0001) sample has multiple surface domains with di!erent terminations, Fe2O3(0001), FeO(111), and Fe3O4(111). The adsorption of water on this surface was investigated via Scanning Tunneling Microscopy (STM) and first-principle theoretical simulations. Water species are observed only on the Fe-terminated Fe3O4(111) surface at temperatures up to 235 K. Between 235 and 245 K we observed a change in the surface species from intact water molecules and hydroxyl groups bound to the surface to only hydroxyl groups atop the surface terminating FeIII cations. This indicates a low energy barrier for water dissociation on the surface of Fe3O4 that is supported by our theoretical computations. Our first principles simulations con"rm the identity of the surface species proposed from the STM images, finding that the most stable state of a water molecule is the dissociated one (OH + H), with OH atop surface terminating FeIII sites and H atop under-coordinated oxygen sites. Attempts to simulate reaction of the surface OH with coadsorbed CO fail because the only binding sites for CO are the surface FeIII atoms, which are blocked by the much more strongly bound OH. In order to promote this reaction we simulated a surface decorated with gold atoms. The Au adatoms are found to cap the under-coordinated oxygen sites and dosed CO is found to bind to the Au adatom. This newly created binding site for CO not only allows for coexistence of CO and OH on the surface of Fe3O4 but also provides colocation between the two species. These two factors are likely promoters of catalytic activity on Au/Fe3O4(111) surfaces.

  20. Swept source optical coherence microscopy for pathological assessment of cancerous tissues

    E-Print Network [OSTI]

    Ahsen, Osman Oguz

    2013-01-01

    Optical coherence microscopy (OCM) combines optical coherence tomography (OCT) with confocal microscopy and enables depth resolved visualization of biological specimens with cellular resolution. OCM offers a suitable ...

  1. Comparison of the Electrical Properties and Chemical Stability of Crystalline Silicon(111) Surfaces Alkylated Using Grignard Reagents or Olefins with Lewis Acid Catalysts

    E-Print Network [OSTI]

    Webb, Lauren J.

    of electrically active trap sites.1 These surfaces are of great importance because as electronic devices surface bonds using scanning tunneling microscopy (STM) techniques28 or the transition metal

  2. Determination and Characterization of Ice Propagation Mechanisms on Surfaces Undergoing Dropwise Condensation 

    E-Print Network [OSTI]

    Dooley, Jeffrey B.

    2011-08-08

    The mechanisms responsible for ice propagation on surfaces undergoing dropwise condensation have been determined and characterized. Based on experimental data acquired non-invasively with high speed quantitative microscopy, ...

  3. Development of a MALDI-Ion Mobility-Surface-Induced Dissociation-Time-of-flight-mass spectrometer for the analysis of peptides and proteins 

    E-Print Network [OSTI]

    Stone, Earle Gregory

    2004-09-30

    Peptide sequencing by surface-induced dissociation (SID) on a MALDI-Ion Mobility-orthogonal-TOF mass spectrometer is demonstrated. The early version of the instrument used for proof-of-concept experiments achieves a mobility resolution...

  4. Confocal microscopy studies of colloidal assembly on microfabricated physically templated surfaces 

    E-Print Network [OSTI]

    Sharma, Sumit

    2005-02-17

    deposition, and glass micro machining. Various stages of the process were optimized while selecting reactive ion etch (RIE) and nickel etch mask with a suitable etch recipe for microfabrication of patterns on thin multi-component glass coverslips. Pattern...

  5. Microscopy investigations of ash and particulate matter accumulation in diesel particulate filter surface pores

    E-Print Network [OSTI]

    Beauboeuf, Daniel P

    2010-01-01

    There has been increased focus on the environmental impact of automobile emissions in recent years. These environmental concerns have resulted in the creation of more stringent particulate matter emissions regulations in ...

  6. On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste

    SciTech Connect (OSTI)

    Trtik, Pavel, E-mail: pavel.trtik@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland); Kaufmann, Josef [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland); Volz, Udo [Bruker Nano GmbH, Mannheim (Germany)

    2012-01-15

    A surface of epoxy-impregnated hardened cement paste was investigated using a novel atomic force microscopy (AFM) imaging mode that allows for the quantitative mapping of the local elastic modulus. The analyzed surface was previously prepared using focussed ion beam milling. The same surface was also characterized by electron microscopy and energy-dispersive X-ray spectroscopy. We demonstrate the capability of this quantitative nanomechanical mapping to provide information on the local distribution of the elastic modulus (from about 1 to about 100 GPa) with a spatial resolution in the range of decananometers, that corresponds to that of low-keV back-scattered electron imaging. Despite some surface roughness which affects the measured nanomechanical properties it is shown that topography, adhesion and Young's modulus can be clearly distinguished. The quantitative mapping of the local elastic modulus is able to discriminate between phases in the cement paste microstructure that cannot be distinguished from the corresponding back-scattered electron images.

  7. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOE Patents [OSTI]

    Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

    1995-11-07

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

  8. Studying The Kinetics Of Crystalline Silicon Nanoparticle Lithiation With In-Situ Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Mcdowell, Matthew T.; Ryu, Ill; Lee, Seokwoo; Wang, Chong M.; Nix, William D.; Cui, Yi

    2012-11-27

    Silicon is an attractive high-capacity anode material for Li-ion batteries, but a comprehensive understanding of the massive ~300% volume change and fracture during lithiation/delithiation is necessary to reliably employ Si anodes. Here, in-situ transmission electron microscopy (TEM) of the lithiation of crystalline Si nanoparticles reveals that the reaction slows down as it progresses into the particle interior. Analysis suggests that this behavior is due to the influence of mechanical stress at the reaction front on the driving force for the reaction. These experiments give insight into the factors controlling the kinetics of this unique reaction.

  9. Conductive atomic force microscopy study of local electronic transport in ZnTe thin films

    SciTech Connect (OSTI)

    Kshirsagar, Sachin D.; Krishna, M. Ghanashyam; Tewari, Surya P.

    2013-02-05

    ZnTe thin films obtained by the electron beam evaporation technique were subjected to thermal annealing at 500 Degree-Sign C for 2 hours. The as deposited films were amorphous but transformed to the crystalline state under influence of the thermal treatment. There is increase in optical absorption due to the heat treatment caused by increase in free carrier concentration. Conductive atomic force microscopy shows the presence of electronic inhomogeneities in the films. This is attributed to local compositional variations in the films. I-V analysis in these systems indicates formation of Schottky junction at the metal semiconductor (M-S) interface.

  10. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOE Patents [OSTI]

    Campbell, Ann. N. (13170-B Central SE #188, Albuquerque, NM 87123); Anderson, Richard E. (2800 Tennessee NE, Albuquerque, NM 87110); Cole, Jr., Edward I. (2116 White Cloud NE, Albuquerque, NM 87112)

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  11. High tunability of the work function of (001) surface of ReO{sub 3} with O-vacancies: First principles analysis

    SciTech Connect (OSTI)

    Suchitra; Pan, Jaysree; Waghmare, Umesh V.

    2014-07-21

    Physical and chemical properties of transition metal oxides are central to the emerging field of oxide electronics. However, they are greatly influenced by defects, particularly, oxygen vacancies, which are always present in oxides. Here, we show how the control of oxygen vacancies at (001) surface of ReO{sub 3} can be used to tune its work function from 7 to 3?eV, based on first-principles density functional theoretical calculations of its structure, electronic and magnetic properties. The work function is shown to correlate directly with the stability of surface and exhibit a linear dependence on surface energy. We further assess the stability of ReO{sub 3} surface by determining its phonon dispersion, and explain how the surface stresses effectively strengthen structural instability leading to size dependence of its pressure dependent structural phase transitions observed experimentally. Our results highlight how significantly oxygen vacancies alter the work function of a metallic oxide and has important consequences to development of electronic devices and catalysts based on oxide heterostructures.

  12. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect (OSTI)

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang, E-mail: xsun@eng.uwo.ca [Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10?wt. % ozone at temperatures of 150, 250, and 300?°C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  13. Surface Soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1: TotalofSupplySurface Soil Surface Soil We

  14. High surface area neodymium phosphate nano particles by modified aqueous sol-gel method

    SciTech Connect (OSTI)

    Sankar, Sasidharan [Materials Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram 695 019, Kerala (India)] [Materials Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram 695 019, Kerala (India); Warrier, Krishna Gopakumar, E-mail: wwarrierkgk@yahoo.co.in [Materials Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram 695 019, Kerala (India); Komban, Rajesh [Institut fuer Chemie, Anorganische Chemie 1, Universitaet Osnabrueck, Barbarastrasse 7, 49069 Osnabrueck (Germany)] [Institut fuer Chemie, Anorganische Chemie 1, Universitaet Osnabrueck, Barbarastrasse 7, 49069 Osnabrueck (Germany)

    2011-12-15

    Graphical abstract: Synthesis of nano rod shaped neodymium phosphate particles with specific surface area as high as 107 m{sup 2} g{sup -1} and particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m. Highlights: Black-Right-Pointing-Pointer Nano size neodymium phosphate is synthesized and characterized using a novel modified aqueous sol gel process. Black-Right-Pointing-Pointer Specific surface area above 100 m{sup 2} g{sup -1} achieved without the addition of any complexing agents. Black-Right-Pointing-Pointer High sintered density reported than the density obtained for powder synthesized through conventional solid state reaction. Black-Right-Pointing-Pointer The particles are nano sized and have rod shape morphology and are retained at higher temperatures. Black-Right-Pointing-Pointer An average grain size of {approx}1 {mu}m obtained for sintered NdPO{sub 4} after thermal etching at 1400 Degree-Sign C. -- Abstract: Synthesis of nano rod shaped neodymium phosphate (NdPO{sub 4}) particles with specific surface area as high as 107 m{sup 2}g{sup -1} and an average length of 50 nm with aspect ratio 5 was achieved using modified sol gel method. Crystallite size calculated from the X-ray diffraction data by applying Scherer equation was 5 nm for the precursor gel after calcination at 400 Degree-Sign C. NdPO{sub 4} was first precipitated from neodymium nitrate solution using phosphoric acid followed by peptization using dilute nitric acid and further gelation in ammonia atmosphere. The calcined gel powders were further characterized by surface area (Brunauer-Emmet-Teller nitrogen adsorption analysis), Transmission electron microscopy, scanning electron microscopy, UV-vis and FT-IR analysis. Transmission electron microscopy confirms the formation of rod like morphology from the sol, gel and the calcined particles in nano size range. These particles could be compacted and sintered at as low as 1300 Degree-Sign C to a density of 98.5% (theoretical) with an average grain size of {approx}1 {mu}m.

  15. On Surface Approximation using Developable Surfaces

    E-Print Network [OSTI]

    Lee, In-Kwon

    manufacturing, e.g. in shipbuilding. Keywords: computer aided design, computer aided manufacturing, surface ap- proximation, reverse engineering, surface of revolution, developable surface, shipbuilding. 2 #12

  16. Study of Interactions Between Microbes and Minerals by Scanning Transmission X-Ray Microscopy (STXM)

    E-Print Network [OSTI]

    Benzerara, K; Tyliszczak, T

    2007-01-01

    Study of Interactions Between Microbes and Minerals by Scanning Transmission X-Ray Microscopy (STXM)

  17. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    E-Print Network [OSTI]

    Moffet, Ryan C.

    2011-01-01

    polymer photoresists by scanning transmission x-ray microscopy. Journal of Vacuum Science and Technology

  18. Optical, electrical and surface properties of annealed CdO:Mg thin films prepared by spray pyrolysis

    SciTech Connect (OSTI)

    Karakaya, Seniye E-mail: oozbas@ogu.edu.tr; Ozbas, Omer E-mail: oozbas@ogu.edu.tr

    2013-12-16

    The use of transparent conducting oxides in optoelectronic and photovoltaic devices has encouraged research on this field in recent years. Especially, cadmium oxide is a promising material for solar cell application but also for photodiodes and gas sensors. Mg doped CdO (CdO:Mg) films have been prepared on glass substrates by the ultrasonic spray pyrolysis (USP) technique. After the production, the films have been annealed in air atmosphere at 475°C and half hour. Results on surface, optical and electrical properties of the films as a function of the thermal annealing have been reported. Thicknesses of the films have been determined by the filmetrics thin film measurement system. Transmission and absorbance spectra have been taken by UV-vis spectrophotometer. Atomic Force Microscopy (AFM) analysis indicates that the roughness of the surface decreases upon increasing Mg concentration. The minimum resistivity value of the films was 2×10{sup ?3} ? cm.

  19. Surface Salt Bridges, Double-Mutant Cycles, and Protein Stability: an Experimental and Computational Analysis of the Interaction of the Asp 23 Side Chain with the

    E-Print Network [OSTI]

    Snow, Christopher

    Surface Salt Bridges, Double-Mutant Cycles, and Protein Stability: an Experimental-mutant cycles have been used to investigate a salt bridge in the N-terminal domain of the protein L9. Aspartic solvent-exposed salt bridge with the protonated N-terminus of the protein. Mutations were studied in which

  20. Analysis of the aerosol-cloud interactions from aircraft, surface measurements, and cloud parcel model during the March 2000 IOP at the ARM SGP site

    E-Print Network [OSTI]

    Delene, David J.

    model during the March 2000 IOP at the ARM SGP site Delene, D. J. (a), Dong, X. (a), Chen, Y. (b (ARM) Southern Great Plains (SGP) site. Data Aerosol MeasurementsAerosol Measurements years of continuous surface aerosol measurements from the Department of Energy's ARM SGP Cloud

  1. Detection of Percolating Paths in PMMA/CB Segregated Network Composites Using Electrostatic Force Microscopy and Conductive Atomic Force Microscopy

    SciTech Connect (OSTI)

    Waddell, J. [Georgia Institute of Technology; Ou, R. [Georgia Institute of Technology; Gupta, S. [Georgia Institute of Technology; Parker, A. [Georgia Institute of Technology; Gerhardt, Dr. Rosario [Georgia Institute of Technology; Seal, Katyayani [ORNL; Kalinin, Sergei V [ORNL; Baddorf, Arthur P [ORNL

    2009-01-01

    Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.

  2. Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary alloy exposed to high-temperature water.

    SciTech Connect (OSTI)

    Schreiber, Daniel K.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2013-10-30

    Intergranular oxidation of a Ni-4Al alloy exposed to hydrogenated, high-temperature water was characterized using directly correlated transmission electron microscopy and atom probe tomography. These combined analyses revealed that discrete, well-separated oxides (NiAl2O4) precipitated along grain boundaries in the metal. Aluminum was depleted from the grain boundary between oxides and also from one side of the boundary as a result of grain boundary migration. The discrete oxide morphology, disconnected from the continuous surface oxidation, suggests intergranular solid-state internal oxidation of Al. Keywords: oxidation; grain boundaries; nickel alloys; atom probe tomography; transmission electron microscopy (TEM)

  3. Radio-frequency scanning tunnelling microscopy U. Kemiktarak1

    E-Print Network [OSTI]

    LETTERS Radio-frequency scanning tunnelling microscopy U. Kemiktarak1 , T. Ndukum3 , K. C. Schwab3 measurementsinmesoscopicelectronicsandmechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM available from nanoscale optical and electrical displacement detection tech- niques, and the radio

  4. Visualizing Individual Carbon Nanotubes with Optical Microscopy Michael A. Novak,

    E-Print Network [OSTI]

    with Ag or TiO2 nanocrystals.21,22 Although this approach is high throughput, the deposited materialVisualizing Individual Carbon Nanotubes with Optical Microscopy Michael A. Novak, Sumedh Surwade carbon nanotubes (CNTs) on a silicon wafer using a conventional optical microscope. We show

  5. Contact stiffness of layered materials for ultrasonic atomic force microscopy

    E-Print Network [OSTI]

    Contact stiffness of layered materials for ultrasonic atomic force microscopy G. G. Yaralioglu,a) F the contact stiffness between a layered material and an ultrasonic atomic force microscope UAFM tip of the method for modeling defects and power loss due to radiation in layered materials. © 2000 American

  6. POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH1

    E-Print Network [OSTI]

    Peters, Achim

    1 POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH1 , V. SEMET1 and N. GARCIA2 1 exploited in a compact low-energy electron microscope: the Fresnel Projection Microscope. Images size of the sources. The result is a high-resolution, low-energy electron microscope, the "Fresnel

  7. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

    E-Print Network [OSTI]

    Rosen, Joseph

    Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy Gary, Israel 4 rosen@ee.bgu.ac.il *gbrooker@jhu.edu Abstract: Fresnel Incoherent Correlation Holography (FINCH. Rosen and G. Brooker, "Digital spatially incoherent Fresnel holography," Opt. Lett. 32(8), 912­914 (2007

  8. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore »surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less

  9. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    SciTech Connect (OSTI)

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.

  10. An Improved MUSIC Model for Gibbsite Surfaces

    SciTech Connect (OSTI)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.; Rosso, Kevin M.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area was available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.

  11. Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond

    SciTech Connect (OSTI)

    Xu Xiangyang . E-mail: xiangyang.xu@sohu.com; Yu Zhiming; Zhu Yongwei; Wang Baichun

    2005-03-15

    In order to improve the dispersion of detonation nanodiamonds (ND) in aqueous and non-aqueous media, a series of thermal treatments have been conducted in air ambient to modify ND surface. Small angle X-ray scattering (SAXS) technique and high resolution transmission electron microscopy (HRTEM) were introduced to observe the primary size of ND. Differential thermal analysis (DTA), X-ray diffraction (XRD) methodology, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were adopted to analyze the structure, bonds at surfaces of the treated ND. Malvern instrument Zetasizer3000HS was used for measuring the surface electric potential and the size distribution of ND. As thermal treatments can cause graphitization and oxidization of functional groups at the surface, ND treated at high temperature is correspondingly more negatively charged in an aqueous medium, and the increased absolute value of zeta potential ensures the electrostatic stability of ND particles. Specially, after being treated at a temperature more than 850K, ND can be well dispersed in various media.

  12. Analysis of tank 4 (FTF-4-15-22, 23) surface and subsurface supernatant samples in support of enrichment control, corrosion control and evaporator feed qualification programs

    SciTech Connect (OSTI)

    Oji, L. N.

    2015-09-09

    This report provides the results of analyses on Savannah River Site Tank 4 surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program (CCP) and the Evaporator Feed Qualification (EFQ) Program. The purpose of the ECP sample taken from Tank 4 in August 2015 was to determine if the supernatant liquid would be “acceptable feed” to the 2H and 3H evaporator systems.

  13. Imaging and microanalysis of thin ionomer layers by scanning transmission electron microscopy

    SciTech Connect (OSTI)

    Cullen, David A; Koestner, Roland; Kukreja, Ratan; Minko, Sergiy; Trotsenko, Oleksandr; Tokarev, Alexander V; Guetaz, Laure; Meyer III, Harry M; Parish, Chad M; More, Karren Leslie

    2014-01-01

    Improved conditions for imaging and spectroscopic mapping of thin perfluorosulfonic acid (PFSA) ionomer layers in fuel cell electrodes by scanning transmission electron microscopy (STEM) have been investigated. These conditions are first identified on model systems of Nafion ionomer-coated nanostructured thin films and nanoporous Si. The optimized conditions are then applied in a quantitative study of the ionomer through-layer loading for two typical electrode catalyst coatings using electron energy loss and energy dispersive X-ray spectroscopy in the transmission electron microscope. The e-beam induced damage to the perfluorosulfonic acid (PFSA) ionomer is quantified by following the fluorine mass loss with electron exposure and is then mitigated by a few orders of magnitude using cryogenic specimen cooling and a higher incident electron voltage. Multivariate statistical analysis is also applied to the analysis of spectrum images for data denoising and unbiased separation of independent components related to the catalyst, ionomer, and support.

  14. Dynamic Imaging of Au-nanoparticles via Scanning Electron Microscopy in a Graphene Wet Cell

    E-Print Network [OSTI]

    Wayne Yang; Yuning Zhang; Michael Hilke; Walter Reisner

    2015-06-10

    High resolution nanoscale imaging in liquid environments is crucial for studying molecular interactions in biological and chemical systems. In particular, electron microscopy is the gold-standard tool for nanoscale imaging, but its high-vacuum requirements make application to in-liquid samples extremely challenging. Here we present a new graphene based wet cell device where high resolution SEM (scanning electron microscope) and Energy Dispersive X-rays (EDX) analysis can be performed directly inside a liquid environment. Graphene is an ideal membrane material as its high transparancy, conductivity and mechanical strength can support the high vacuum and grounding requirements of a SEM while enabling maximal resolution and signal. In particular, we obtain high resolution (graphene wet cell and EDX analysis of nanoparticle composition in the liquid enviornment. Our obtained resolution surpasses current conventional silicon nitride devices imaged in both SEM and TEM under much higher electron doses.

  15. Investigation of Cellular Interactions of Nanoparticles by Helium Ion Microscopy

    SciTech Connect (OSTI)

    Arey, Bruce W.; Shutthanandan, V.; Xie, Yumei; Tolic, Ana; Williams, Nolann G.; Orr, Galya

    2011-06-01

    The helium ion mircroscope (HIM) probes light elements (e.g. C, N, O, P) with high contrast due to the large variation in secondary electron yield, which minimizes the necessity of specimen staining. A defining characteristic of HIM is its remarkable capability to neutralize charge by the implementation of an electron flood gun, which eliminates the need for coating non-conductive specimens for imaging at high resolution. In addition, the small convergence angle in HeIM offers a large depth of field (~5x FE-SEM), enabling tall structures to be viewed in focus within a single image. Taking advantage of these capabilities, we investigate the interactions of engineered nanoparticles (NPs) at the surface of alveolar type II epithelial cells grown at the air-liquid interface (ALI). The increasing use of nanomaterials in a wide range of commercial applications has the potential to increase human exposure to these materials, but the impact of such exposure on human health is still unclear. One of the main routs of exposure is the respiratory tract, where alveolar epithelial cells present a vulnerable target at the interface with ambient air. Since the cellular interactions of NPs govern the cellular response and ultimately determine the impact on human health, our studies will help delineating relationships between particle properties and cellular interactions and response to better evaluate NP toxicity or biocompatibility. The Rutherford backscattered ion (RBI) is a helium ions imaging mode, which backscatters helium ions from every element except hydrogen, with a backscatter yield that depends on the atomic number of the target. Energy-sensitive backscatter analysis is being developed, which when combined with RBI image information, supports elemental identification at helium ion nanometer resolution. This capability will enable distinguishing NPs from cell surface structures with nanometer resolution.

  16. Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy

    SciTech Connect (OSTI)

    Chen, Qian Nataly; Li, Jiangyu; Adler, Stuart B.

    2014-11-17

    Nanocrystalline ceria exhibits a total conductivity several orders of magnitude higher than microcrystalline ceria in air at high temperature. The most widely accepted theory for this enhancement (based on fitting of conductivity data to various transport and kinetic models) is that relatively immobile positively charged defects and/or impurities accumulate at the grain boundary core, leading to a counterbalancing increase in the number of mobile electrons (small polarons) within a diffuse space charge region adjacent to each grain boundary. In an effort to validate this model, we have applied electrochemical strain microscopy to image the location and relative population of mobile electrons near grain boundaries in polycrystalline Sm-doped ceria in air at 20–200?°C. Our results show the first direct (spatially resolved) evidence that such a diffuse space charge region does exist in ceria, and is localized to both grain boundaries and the gas-exposed surface.

  17. Near-field microwave microscopy of high-? oxides grown on graphene with an organic seeding layer

    SciTech Connect (OSTI)

    Tselev, Alexander Kalinin, Sergei V.; Sangwan, Vinod K.; Jariwala, Deep; Lauhon, Lincoln J.; Marks, Tobin J.; Hersam, Mark C.; Department of Chemistry, Northwestern University, Evanston, Illinois 60208

    2013-12-09

    Near-field scanning microwave microscopy (SMM) is used for non-destructive nanoscale characterization of Al{sub 2}O{sub 3} and HfO{sub 2} films grown on epitaxial graphene on SiC by atomic layer deposition using a self-assembled perylene-3,4,9,10-tetracarboxylic dianhydride seeding layer. SMM allows imaging of buried inhomogeneities in the dielectric layer with a spatial resolution close to 100?nm. The results indicate that, while topographic features on the substrate surface cannot be eliminated as possible sites of defect nucleation, the use of a vertically heterogeneous Al{sub 2}O{sub 3}/HfO{sub 2} stack suppresses formation of large outgrowth defects in the oxide film, ultimately improving lateral uniformity of the dielectric film.

  18. Real-time observation of morphological transformations in II-VI semiconducting nanobelts via environmental transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agarwal, Rahul; Zakharov, Dmitri N.; Krook, Nadia M.; Liu, Wenjing; Berger, Jacob; Stach, Eric A.; Agarwal, Ritesh

    2015-05-01

    It has been observed that wurtzite II–VI semiconducting nanobelts transform into single-crystal, periodically branched nanostructures upon heating. The mechanism of this novel transformation has been elucidated by heating II–VI nanobelts in an environmental transmission electron microscope (ETEM) in oxidizing, reducing and inert atmospheres while observing their structural changes with high spatial resolution. The interplay of surface reconstruction of high-energy surfaces of the wurtzite phase and environment-dependent anisotropic chemical etching of certain crystal surfaces in the branching mechanism of nanobelts has been observed. Understanding of structural and chemical transformations of materials via in situ microscopy techniques and their role in designingmore »new nanostructured materials is discussed.« less

  19. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic Resolution Electron Microscopy and Field Evaporation Simulation

    SciTech Connect (OSTI)

    Devaraj, Arun; Colby, Robert J.; Vurpillot, F.; Thevuthasan, Suntharampillai

    2014-03-26

    Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositional errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.

  20. Surface Science 429 (1999) L509L514 www.elsevier.nl/locate/susc Surface Science Letters

    E-Print Network [OSTI]

    Hasegawa, Shuji

    1999-01-01

    of the Si(111)- 3� 3-Ag surface are studied by first-principles calculations based on the density functional. Keywords: Density functional calculations; Metal­semiconductor interfaces; Scanning tunneling microscopy]. Based upon calculations based on the density functional theory their X-ray diffraction ( XRD) data

  1. Automated position control of a surface array relative to a liquid microjunction surface sampler

    DOE Patents [OSTI]

    Van Berkel, Gary J. (Clinton, TN); Kertesz, Vilmos (Knoxville, TN); Ford, Michael James (Little Rock, AR)

    2007-11-13

    A system and method utilizes an image analysis approach for controlling the probe-to-surface distance of a liquid junction-based surface sampling system for use with mass spectrometric detection. Such an approach enables a hands-free formation of the liquid microjunction used to sample solution composition from the surface and for re-optimization, as necessary, of the microjunction thickness during a surface scan to achieve a fully automated surface sampling system.

  2. Thermal analysis of pentaerythritol tetranitrate and development of a powder aging model

    SciTech Connect (OSTI)

    Brown, Geoffrey W; Sandstrom, Mary M; Giambra, Anna M; Archuleta, Jose G; Monroe, Deirde C

    2009-01-01

    We have applied a range of different physical and thermal analysis techniques to characterize the thermal evolution of the specific surface area of pentaerythritol tetranitrate (PETN) powders. Using atomic force microscopy we have determined that the mass transfer mechanism leading to powder coarsening is probably sublimation and redeposition of PETN. Using thermogravimetric analysis we have measured vapor pressures of PETN powders whose aging will be simulated in future work. For one specific powder we have constructed an empirical model of the coarsening that is fit to specific surface area measurements at 60 C to 70 C to provide predictive capability of that powder's aging. Modulated differential scanning calorimetry and mass spectroscopy measurements highlight some of the thermal behavior of the powders and suggest that homologue-based eutectics and impurities are localized in the powder particles.

  3. Microfabricated high-bandpass foucault aperture for electron microscopy

    DOE Patents [OSTI]

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  4. Biological imaging by soft x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore »microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  5. Studying localized corrosion using liquid cell transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; Duquette, David; Ross, Frances M.; Hull, Robert

    2014-11-07

    Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au+ ions, can modify the corrosion susceptibility of Al films. A discussion on strategies to control the onset of pitting is also presented.

  6. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect (OSTI)

    Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  7. Evaluation of light microscopy and rapid diagnostic test for the detection of malaria under operational field conditions: a household survey in Ethiopia

    E-Print Network [OSTI]

    Endeshaw, Tekola; Gebre, Teshome; Ngondi, Jeremiah; Graves, Patricia M.; Shargie, Estifanos B.; Ejigsemahu, Yeshewamebrat; Ayele, Berhan; Yohannes, Gedeon; Teferi, Tesfaye; Messele, Ayenew; Zerihun, Mulat; Genet, Asrat; Mosher, Aryc W.; Emerson, Paul M.; Richards, Frank O. Jr

    2008-07-03

    of whom 11,504 (82%) were included in the analysis. Overall slide positivity rate was 4.1% (95% confidence interval [CI] 3.4–5.0%) while ParaScreen RDT was positive in 3.3% (95% CI 2.6–4.1%) of those tested. Considering microscopy as the gold standard...

  8. A detailed pore characterization in 2D and 3D by means of optical and fluorescence microscopy combined with high-resolution X-ray CT.

    E-Print Network [OSTI]

    Gent, Universiteit

    A detailed pore characterization in 2D and 3D by means of optical and fluorescence microscopy structure. However, the evolution of techniques like X-ray CT has enabled us to make non-destructive 3D images of materials and thus of rocks. 3D image analysis software enables us to characterize the pore

  9. Measurement of the Penetration Depth and Coherence Length of MgB2 in All Directions Using Transmission Electron Microscopy

    E-Print Network [OSTI]

    Loudon, J. C.; Yazdi, S.; Kasama, T.; Zhigadlo, N. D.; Karpinski, J.

    2015-02-05

    Kongens Lyngby, Denmark 3Laboratory for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, CH-8093, Zurich, Switzerland 4Institute of Condensed Matter Physics, EPFL, 1015-Lausanne, Switzerland (Dated: January 15, 2015) We demonstrate that images of flux... that it was electron-transparent using a 30 kV Ga ion beam. Finally, the specimen surfaces were polished by a low-energy (2kV) Ga ion beam to minimise the damage layer caused by FIB milling. Electron microscopy was undertaken at DTU using an FEI Titan 80-300ST...

  10. Analysis of the toxicity in Rocky Flats Plant surface water through a correlation between the whole effluent toxicity test and the Microtox assay

    SciTech Connect (OSTI)

    Ford, S.M.; Wolaver, H.A.; Figueroa, L.A.

    1992-07-01

    Results were correlated from the Microtox assay and the whole effluent acute toxicity test for effluents from the (1) wastewater treatment plant (WWTP) and (2) terminal ponds located at the Rocky Flats Plant. Literature reviews indicate that Photobacterium phosphoreum (Microtox assay) may be used as screening test for the reaction of Ceriodaphnia dubia and Pimephales promelas to toxins present in effluents. This study indicates that the Microtox is less sensitive to toxins present in the WWTP effluent than other test organisms (Ceriodaphnia dubia and Pimephales promelas). Toxicity appears to be from unionized ammonia. Ten months of data reveal that the surface water effluents which leave Rocky Flats boundaries are non-toxic when judged by all three test organisms.

  11. Analysis of the toxicity in Rocky Flats Plant surface water through a correlation between the whole effluent toxicity test and the Microtox assay

    SciTech Connect (OSTI)

    Ford, S.M.; Wolaver, H.A. ); Figueroa, L.A. )

    1992-01-01

    Results were correlated from the Microtox assay and the whole effluent acute toxicity test for effluents from the (1) wastewater treatment plant (WWTP) and (2) terminal ponds located at the Rocky Flats Plant. Literature reviews indicate that Photobacterium phosphoreum (Microtox assay) may be used as screening test for the reaction of Ceriodaphnia dubia and Pimephales promelas to toxins present in effluents. This study indicates that the Microtox is less sensitive to toxins present in the WWTP effluent than other test organisms (Ceriodaphnia dubia and Pimephales promelas). Toxicity appears to be from unionized ammonia. Ten months of data reveal that the surface water effluents which leave Rocky Flats boundaries are non-toxic when judged by all three test organisms.

  12. THE RADIO SURFACE-BRIGHTNESS-TO-DIAMETER RELATION FOR GALACTIC SUPERNOVA REMNANTS: SAMPLE SELECTION AND ROBUST ANALYSIS WITH VARIOUS FITTING OFFSETS

    SciTech Connect (OSTI)

    Pavlovic, M. Z.; Urosevic, D.; Arbutina, B. [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia); Vukotic, B. [Astronomical Observatory, Volgina 7, 11060 Belgrade 38 (Serbia); Goeker, Ue. D., E-mail: marko@math.rs [Physics Department, Bogazici University, Bebek 34342, Istanbul (Turkey)

    2013-01-15

    In this paper, we present new empirical radio surface-brightness-to-diameter ({Sigma}-D) relations for supernova remnants (SNRs) in our Galaxy. We also present new theoretical derivations of the {Sigma}-D relation based on equipartition or on a constant ratio between cosmic rays and magnetic field energy. A new calibration sample of 60 Galactic SNRs with independently determined distances is created. Instead of (standard) vertical regression, used in previous papers, different fitting procedures are applied to the calibration sample in the log {Sigma}-log D plane. Non-standard regressions are used to satisfy the requirement that values of parameters obtained from the fitting of {Sigma}-D and D-{Sigma} relations should be invariant within estimated uncertainties. We impose symmetry between {Sigma}-D and D-{Sigma} due to the existence of large scatter in both D and {Sigma}. Using four fitting methods that treat {Sigma} and D symmetrically, different {Sigma}-D slopes {beta} are obtained for the calibration sample. Monte Carlo simulations verify that the slopes of the empirical {Sigma}-D relation should be determined by using orthogonal regression because of its good performance in data sets with severe scatter. The slope derived here ({beta} = 4.8) is significantly steeper than those derived in previous studies. This new slope is closer to the updated theoretically predicted surface-brightness-diameter slope in the radio range of the Sedov phase. We also analyze the empirical {Sigma}-D relations for SNRs in a dense environment of molecular clouds and for SNRs evolving in the lower-density interstellar medium. Applying new empirical relations to estimate distances of Galactic SNRs results in a dramatically changed distance scale.

  13. Surface Science 415 (1998) 2936 Structural studies of sulfur-passivated GaAs (100)

    E-Print Network [OSTI]

    Zhang, Yanchao

    1998-01-01

    . Keywords: Atomic force microscopy; Gallium arsenide; Low-energy electron diffraction; Roughness; SulfurSurface Science 415 (1998) 29­36 Structural studies of sulfur-passivated GaAs (100) surfaces Abstract We present the results of Auger electron spectroscopy (AES), low-energy electron diffraction (LEED

  14. Fourier Analysis and Autocorrelation Function Applied to Periodical Nanostructures

    E-Print Network [OSTI]

    Rockett, Angus

    Fourier Analysis and Autocorrelation Function Applied to Periodical Nanostructures E. Cruz Microscopy (AFM) Image Fast Fourier Transformation Autocorrelation Function(AC) Angular Distribution] Fourier Analysis: analytical and geometrical aspects, Bray William O ed. New York: Marcel Dekker, 1994

  15. High throughput 3D optical microscopy : from image cytometry to endomicroscopy

    E-Print Network [OSTI]

    Choi, Heejin

    2014-01-01

    Optical microscopy is an imaging technique that allows morphological mapping of intracellular structures with submicron resolution. More importantly, optical microscopy is a technique that can readily provide images with ...

  16. Cellular resolution ex vivo imaging of gastrointestinal tissues with coherence microscopy

    E-Print Network [OSTI]

    Fujimoto, James G.

    Optical coherence microscopy (OCM) combines confocal microscopy and optical coherence tomography (OCT) to improve imaging depth and contrast, enabling cellular imaging in human tissues. We aim to investigate OCM for ex ...

  17. Electrostatic Force Microscopy Characterization of Trioctylphosphine Oxide Self-assembled Monolayers on Graphite

    E-Print Network [OSTI]

    orientation of SAMs. The invention of the scanning probe microscope (SPM)12,13 has provided scientists resolution by SPM. Electrostatic force microscopy (EFM),16 a variant of atomic force microscopy (AFM),13 can

  18. TECHNICAL ADVANCE Quantification of plant surface metabolites by matrix-assisted

    E-Print Network [OSTI]

    Vertes, Akos

    TECHNICAL ADVANCE Quantification of plant surface metabolites by matrix-assisted laser desorption standards directly on the leaf surface. The A. thaliana leaf surface was found to contain approximately 15 surface analysis, abaxial surface, adaxial surface, technical advance. INTRODUCTION Plant surfaces

  19. Surface-structure sensitivity of CeO2 nanocrystals in photocatalysis and enhancing the reactivity with nanogold

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lei, Wanying; Zhang, Tingting; Gu, Lin; Liu, Ping; Rodriguez, José A.; Liu, Gang; Liu, Minghua

    2015-06-19

    Structure–function correlations are a central theme in heterogeneous (photo)catalysis. In this research, using aberration-corrected scanning transmission electron microscopy (STEM), the atomic surface structures of well-defined one-dimensional (1D) CeO2 nanorods (NRs) and 3D nanocubes (NCs) are directly visualized at subangstrom resolution. CeO2 NCs predominantly expose the {100} facet, with {110} and {111} as minor cutoff facets at the respective edges and corners. Notably, the outermost surface layer of the {100} facet is nearly O-terminated. Neither surface relaxations nor reconstructions on {100} are observed, indicating unusual polarity compensation, which is primarily mediated by near-surface oxygen vacancies. The surface of CeO2 NRs ismore »highly stepped, with the enclosed {110} facet exposing Ce cations and O anions on terraces. On the basis of STEM profile-view imaging and electronic structure analysis, the photoreactivity of CeO2 nanocrystals toward aqueous methyl orange degradation under UV is revealed to be surface-structure-sensitive, following the order: {110} >> {100}. The underlying surface-structure sensitivity can be attributed to the variation in low-coordinate surface cerium cations between {110} and {100} facets. To further enhance light absorption, Au nanoparticles (NPs) are deposited on CeO2 NRs to form Au/CeO2 plasmonic nanocomposites, which dramatically promotes the photoreactivity that is Au particle size- and excitation light wavelength-dependent. The mechanisms responsible for the enhancement of photocatalytic activity are discussed, highlighting the crucial role of photoexcited charge carrier transfer.« less

  20. Atomic force microscopy and x-ray photoelectron spectroscopy investigations of the morphology and chemistry of a PdCl{sub 2}/SnCl{sub 2} electroless plating catalysis system adsorbed onto shape memory alloy particles

    SciTech Connect (OSTI)

    Silvain, J.F.; Fouassier, O.; Lescaux, S. [Institut de Chimie de la Matiere Condensee de Bordeaux (ICMCB) - CNRS, Universite de Bordeaux 1, 87 Avenue du Dr A. Schweitzer, F-33608 PESSAC (France); Veeco, Z.I. de la Gaudree, 11 Rue Marie Poussepin, F-91412 Dourdain (France)

    2004-11-01

    A study of the different stages of the electroless deposition of copper on micronic NiTi shape memory alloy particles activated by one-step and two-step methods has been conducted from both a chemical and a morphological point of view. The combination of x-ray photoelectron spectroscopy (XPS) measurements and atomic force microscopy (AFM) imaging has allowed detection of the distribution of the formed compounds and depth quantification and estimation of the surface topographic parameters. For the two-step method, at the sensitization of the early stages, it is observed by AFM that Sn is absorbed in form of clusters that tend to completely cover the surface and form a continuous film. XPS analysis have shown that Sn and Pd are first absorbed in form of oxide (SnO{sub 2} and PdO) and hydroxide [Sn(OH){sub 4}]. After the entire sensitization step, the NiTi substrate is covered with Sn-based compounds. After the sensitization and the activation steps the powder roughness increases. Behavior of the Sn and Pd growth for the one-step method does not follow the behavior found for the two-step method. Indeed, XPS analysis shows a three-dimensional (3D) growth of Pd clusters on top of a mixture of metallic tin, oxide (SnO) and hydroxide [Sn(OH){sub 2}]. These Pd clusters are covered with a thin layer of Pd-oxide contamination induced by the electroless process. The mean roughness for the one-step and two-step processes are equivalent. After copper deposition, the decrease of mean roughness is attributed to a filling of surface valleys, observed after the Sn-Pd coating step.

  1. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    SciTech Connect (OSTI)

    Bietti, Sergio, E-mail: sergio.bietti@mater.unimib.it; Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano [L–NESS and Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, I–20125 Milano (Italy); Fedorov, Alexey [L–NESS and CNR–IFN, via Anzani 42, I-22100 Como (Italy)

    2014-09-21

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E{sub A}=1.31±0.15 eV, a diffusivity prefactor of D?=0.53(×2.1±1) cm² s?¹ that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  2. Transmission electron microscopy examination of oxide layers formed on Zr alloys

    E-Print Network [OSTI]

    Motta, Arthur T.

    Transmission electron microscopy examination of oxide layers formed on Zr alloys Aylin Yilmazbayhan, United States Received 14 July 2005; accepted 31 October 2005 Abstract A transmission electron microscopy. In this work, cross-sectional transmission electron microscopy was used to determine the morphology

  3. Atomic force microscopy of nickel dot arrays with tuning fork and nanotube probe

    E-Print Network [OSTI]

    Chandrasekhar, Venkat

    Atomic force microscopy of nickel dot arrays with tuning fork and nanotube probe S. Rozhok,a) S microscopy are combined with the unique properties of carbon nanotubes to improve the spatial resolution of atomic force microscopy AFM images of nickel dot arrays. These arrays have high relief features

  4. Scanning microscopy using a short-focal-length Fresnel zone plate

    E-Print Network [OSTI]

    Scanning microscopy using a short-focal-length Fresnel zone plate Ethan Schonbrun,* Winnie N. Ye demonstrate a form of scanning microscopy using a short-focal-length Fresnel zone plate and a low-NA relay. In this scheme, parallel scanning microscopy using a Fresnel zone-plate array would require only a single spatial

  5. Quantitative analysis of magnetic spin and orbital moments from an oxidized iron (1 1 0) surface using electron magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thersleff, Thomas; Rusz, Jan; Rubino, Stefano; Hjörvarsson, Björgvin; Ito, Yasuo; J. Zaluzec, Nestor; Leifer, Klaus

    2015-08-17

    Understanding the ramifications of reduced crystalline symmetry on magnetic behavior is a critical step in improving our understanding of nanoscale and interfacial magnetism. However, investigations of such effects are often controversial largely due to the challenges inherent in directly correlating nanoscale stoichiometry and structure to magnetic behavior. Here, we describe how to use Transmission Electron Microscope (TEM) to obtain Electron Magnetic Circular Dichroism (EMCD) signals as a function of scattering angle to locally probe the magnetic behavior of thin oxide layers grown on an Fe (1 1 0) surface. Experiments and simulations both reveal a strong dependence of the magneticmore »orbital to spin ratio on its scattering vector in reciprocal space. We exploit this variation to extract the magnetic properties of the oxide cladding layer, showing that it locally may exhibit an enhanced orbital to spin moment ratio. This finding is supported here by both spatially and angularly resolved EMCD measurements, opening up the way for compelling investigations into how magnetic properties are affected by nanoscale features.« less

  6. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    E-Print Network [OSTI]

    Dettmer, Simon L; Pagliara, Stefano

    2014-01-01

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local...

  7. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. We show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffraction patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.

  8. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore »resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  9. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. In addition, we show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffractionmore »patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.« less

  10. Dynamics of soft Nanomaterials captured by transmission electron microscopy in liquid water

    SciTech Connect (OSTI)

    Proetto, Maria T.; Rush, Anthony M.; Chien, Miao-Ping; Abellan Baeza, Patricia; Patterson, Joseph P.; Thompson, Matthew P.; Olson, Norman H.; Moore, Curtis E.; Rheingold, Arnold L.; Andolina, Christopher; Millstone, Jill; Howell, Stephen B.; Browning, Nigel D.; Evans, James E.; Gianneschi, Nathan C.

    2014-01-14

    In this paper we present in situ transmission electron microscopy (TEM) of soft, synthetic nanoparticles with a comparative analysis using conventional TEM methods. This comparison is made with the simple aim of describing what is an unprecedented example of in situ imaging by TEM. However, we contend the technique will quickly become essential in the characterization of analogous systems, especially where dynamics are of interest in the solvated state. In this case, particles were studied which were obtained from the direct polymerization of an oxaliplatin analog, designed for an ongoing program in novel chemotherapeutic delivery systems. The resulting nanoparticles provided sufficient contrast for facile imaging in situ, and point toward key design parameters that enable this new characterization approach for organic nanomaterials. We describe the preparation of the synthetic micellar nanoparticles to- gether with their characterization in liquid water.

  11. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect (OSTI)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  12. Simultaneous orientation and thickness mapping in transmission electron microscopy

    SciTech Connect (OSTI)

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and compared to those of other techniques available.

  13. Simultaneous orientation and thickness mapping in transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore »to those of other techniques available.« less

  14. Video Microscopy of Colloidal Suspensions and Colloidal Crystals

    E-Print Network [OSTI]

    Piotr Habdas; Eric R. Weeks

    2002-04-23

    Colloidal suspensions are simple model systems for the study of phase transitions. Video microscopy is capable of directly imaging the structure and dynamics of colloidal suspensions in different phases. Recent results related to crystallization, glasses, and 2D systems complement and extend previous theoretical and experimental studies. Moreover, new techniques allow the details of interactions between individual colloidal particles to be carefully measured. Understanding these details will be crucial for designing novel colloidal phases and new materials, and for manipulating colloidal suspensions for industrial uses.

  15. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts onReal-TimeRecord-Setting Microscopy Illuminates Energy

  16. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts onReal-TimeRecord-Setting Microscopy Illuminates

  17. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us Hanford Site WideRecord-Setting Microscopy

  18. Thin-section microscopy of decayed crystalline marble from the garden sculptures of Schoenbrunn Palace in Vienna

    SciTech Connect (OSTI)

    Weber, J.

    2007-11-15

    Sterzing marble, a crystalline white marble used in the late-Baroque garden sculptures of Schoenbrunn Palace in Vienna, was studied by means of thin-section and scanning electron microscopy in order to obtain a better understanding of its surface decay caused by atmospheric weathering. Following the classification of distinct phenomena of deterioration by visual on-site inspection, the microstructural features including surface erosion, micro-cracking, soiling, black crust formation, and microbiological infestation are exemplified by microscopical images and are briefly discussed. The results proved useful for evaluating and understanding the various types of marble decay for creating a safer basis for establishing the procedural principles aimed at conservation and maintenance of the sculptures.

  19. Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness

    SciTech Connect (OSTI)

    Lau, W. S. Wan, X.; Xu, Y.; Wong, H.; Zhang, J.; Luo, J. K.; Institute of Renewable Energy and Environment Technology, Bolton University, Deane Road, Bolton BL3 5 AB

    2014-02-15

    Previously, Lau (one of the authors) pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD) on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

  20. Ecosystem feedbacks to climate change in California: Development, testing, and analysis using a coupled regional atmosphere and land-surface model (WRF3-CLM3.5)

    SciTech Connect (OSTI)

    Subin, Z.M.; Riley, W.J.; Kueppers, L.M.; Jin, J.; Christianson, D.S.; Torn, M.S.

    2010-11-01

    A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California's climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California's climate was assessed by comparing simulations by WRF3-CLM3.5 and WRF3-Noah to observations from 1982 to 1991. Using WRF3-CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of -0.7 to +1 C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2-1.2 C reductions in summer daily-mean 2-m air temperature and 2.0-3.7 C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate-vegetation interactions.

  1. Culturing photosynthetic bacteria through surface plasmon resonance

    SciTech Connect (OSTI)

    Ooms, Matthew D.; Bajin, Lauren; Sinton, David

    2012-12-17

    In this work, cultivation of photosynthetic microbes in surface plasmon enhanced evanescent fields is demonstrated. Proliferation of Synechococcus elongatus was obtained on gold surfaces excited with surface plasmons. Excitation over three days resulted in 10 {mu}m thick biofilms with maximum cell volume density of 20% vol/vol (2% more total accumulation than control experiments with direct light). Collectively, these results indicate the ability to (1) excite surface-bound cells using plasmonic light fields, and (2) subsequently grow thick biofilms by coupling light from the surface. Plasmonic light delivery presents opportunities for high-density optofluidic photobioreactors for microalgal analysis and solar fuel production.

  2. Frontiers of in situ electron microscopy

    SciTech Connect (OSTI)

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by in this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.

  3. Collaborative Computational Project for Electron cryo-Microscopy

    SciTech Connect (OSTI)

    Wood, Chris; Burnley, Tom [Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom); Patwardhan, Ardan [European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Scheres, Sjors [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Topf, Maya [University of London, Malet Street, London WC1E 7HX (United Kingdom); Roseman, Alan [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Winn, Martyn, E-mail: martyn.winn@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom)

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  4. Generation and Application of Bessel Beams in Electron Microscopy

    E-Print Network [OSTI]

    Vincenzo Grillo; Jérémie Harris; Gian Carlo Gazzadi; Roberto Balboni; Erfan Mafakheri; Mark R. Dennis; Stefano Frabboni; Robert W. Boyd; Ebrahim Karimi

    2015-05-28

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electro-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with efficiencies reaching $37 \\pm 3\\%$. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. Finally, we discuss a specific potential application of electron Bessel beams in scanning transmission electron microscopy.

  5. Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R; Baggetto, Loic; Veith, Gabriel M; Dudney, Nancy J; More, Karren Leslie

    2012-01-01

    Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to an external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].

  6. Open-core screw dislocations in GaN epilayers observed by scanning force microscopy and high-resolution transmission electron microscopy

    E-Print Network [OSTI]

    Rohrer, Gregory S.

    -resolution transmission electron microscopy W. Qian, G. S. Rohrer, and M. Skowronski Department of Materials Science. K. Gaskill Laboratory for Advanced Material Synthesis, Naval Research Laboratory, Washington, DC of organometallic vapor phase epitaxy grown -GaN films using high-resolution transmission electron microscopy

  7. Chemistry of SOFC Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior

    SciTech Connect (OSTI)

    Yildiz, Bilge; Heski, Clemens

    2013-08-31

    1) Electron tunneling characteristics on La0.7Sr0.3MnO3 (LSM) thin-film surfaces were studied up to 580oC in 10-3mbar oxygen pressure, using scanning tunneling microscopy/ spectroscopy (STM/STS). A threshold-like drop in the tunneling current was observed at positive bias in STS, which is interpreted as a unique indicator for the activation polarization in cation oxygen bonding on LSM cathodes. Sr-enrichment was found on the surface at high temperature using Auger electron spectroscopy, and was accompanied by a decrease in tunneling conductance in STS. This suggests that Sr-terminated surfaces are less active for electron transfer in oxygen reduction compared to Mn-terminated surfaces on LSM. 2) Effects of strain on the surface cation chemistry and the electronic structure are important to understand and control for attaining fast oxygen reduction kinetics on transition metal oxides. Here, we demonstrate and mechanistically interpret the strain coupling to Sr segregation, oxygen vacancy formation, and electronic structure on the surface of La0.7Sr0.3MnO3 (LSM) thin films as a model system. Our experimental results from x-ray photoelectron spectroscopy and scanning tunneling spectroscopy are discussed in light of our first principles-based calculations. A stronger Sr enrichment tendency and a more facile oxygen vacancy formation prevail for the tensile strained LSM surface. The electronic structure of the tensile strained LSM surface exhibits a larger band gap at room temperature, however, a higher tunneling conductance near the Fermi level than the compressively strained LSM at elevated temperatures in oxygen. Our findings suggest lattice strain as a key parameter to tune the reactivity of perovskite transition metal oxides with oxygen in solid oxide fuel cell cathodes. 3) Cation segregation on perovskite oxide surfaces affects vastly the oxygen reduction activity and stability of solid oxide fuel cell (SOFC) cathodes. A unified theory that explains the physical origins of this phenomenon is therefore needed for designing cathode materials with optimal surface chemistry. We quantitatively assessed the elastic and electrostatic interactions of the dopant with the surrounding lattice as the key driving forces for segregation on model perovskite compounds, LnMnO3 (host cation Ln=La, Sm). Our approach combines surface chemical analysis with X-ray photoelectron and Auger electron spectroscopy on model dense thin films, and computational analysis with density functional theory (DFT) calculations and analytical models. Elastic energy differences were systematically induced in the system by varying the radius of the selected dopants (Ca, Sr, Ba) with respect to the host cations (La, Sm) while retaining the same charge state. Electrostatic energy differences were introduced by varying the distribution of charged oxygen and cation vacancies in our models. Varying the oxygen chemical potential in our experiments induced changes in both the elastic energy and electrostatic interactions. Our results quantitatively demonstrate that the mechanism of dopant segregation on perovskite oxides includes both the elastic and electrostatic energy contributions. A smaller size mismatch between the host and dopant cations and a chemically expanded lattice were found to reduce the segregation level of the dopant and to enable more stable cathode surfaces. Ca-doped LaMnO3 was found to have the most stable surface composition with the least cation segregation among the compositions surveyed. The diffusion kinetics of the larger dopants, Ba and Sr, was found to be slower, and can kinetically trap the segregation at reduced temperatures despite the larger elastic energy driving force. Lastly, scanning probe image-contrast showed that the surface chemical heterogeneities made of dopant oxides upon segregation were electronically insulating. The consistency between the results obtained from experiments, DFT calculations and analytical theory in this work provides a predictive capability to tailor the cathode surface compositions for high-performance SO

  8. Ion-assisted physical vapor deposition for enhanced film properties on nonflat surfaces

    SciTech Connect (OSTI)

    Alami, J.; Persson, P.O.A.; Music, D.; Gudmundsson, J. T.; Bohlmark, J.; Helmersson, U.

    2005-03-01

    We have synthesized Ta thin films on Si substrates placed along a wall of a 2-cm-deep and 1-cm-wide trench, using both a mostly neutral Ta flux by conventional dc magnetron sputtering (dcMS) and a mostly ionized Ta flux by high-power pulsed magnetron sputtering (HPPMS). Structure of the grown films was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The Ta thin film grown by HPPMS has a smooth surface and a dense crystalline structure with grains oriented perpendicular to the substrate surface, whereas the film grown by dcMS exhibits a rough surface, pores between the grains, and an inclined columnar structure. The improved homogeneity achieved by HPPMS is a direct consequence of the high ion fraction of sputtered species.

  9. Comparison of Graphene Formation on C-face and Si-face SiC {0001} Surfaces Luxmi, N. Srivastava, Guowei He, and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Comparison of Graphene Formation on C-face and Si-face SiC {0001} Surfaces Luxmi, N. Srivastava of graphene formed on the ( 1000 ) surface (the C-face) and the (0001) surface (the Si-face) of Si) and low-energy electron microscopy (LEEM). The graphene forms due to preferential sublimation of Si from

  10. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    SciTech Connect (OSTI)

    Chen, Xiao [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Zhang, Bingsen [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Li, Chuang; Shao, Zhengfeng [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Su, Dangsheng [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Williams, Christopher T. [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States)] [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States); Liang, Changhai, E-mail: changhai@dlut.edu.cn [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2012-03-15

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1}) produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.

  11. Time resolved electron microscopy for in situ experiments

    SciTech Connect (OSTI)

    Campbell, Geoffrey H. McKeown, Joseph T.; Santala, Melissa K.

    2014-12-15

    Transmission electron microscopy has functioned for decades as a platform for in situ observation of materials and processes with high spatial resolution. Yet, the dynamics often remain elusive, as they unfold too fast to discern at these small spatial scales under traditional imaging conditions. Simply shortening the exposure time in hopes of capturing the action has limitations, as the number of electrons will eventually be reduced to the point where noise overtakes the signal in the image. Pulsed electron sources with high instantaneous current have successfully shortened exposure times (thus increasing the temporal resolution) by about six orders of magnitude over conventional sources while providing the necessary signal-to-noise ratio for dynamic imaging. We describe here the development of this new class of microscope and the principles of its operation, with examples of its application to problems in materials science.

  12. Photoionization microscopy in terms of local frame transformation theory

    E-Print Network [OSTI]

    P. Giannakeas; F. Robicheaux; Chris H. Greene

    2014-10-27

    Two-photon ionization of an alkali-metal atom in the presence of a uniform electric field is investigated using a standardized form of local frame transformation and generalized quantum defect theory. The relevant long-range quantum defect parameters in the combined Coulombic plus Stark potential is calculated with eigenchannel R-matrix theory applied in the downstream parabolic coordinate $\\eta$. The present formulation permits us to express the corresponding microscopy observables in terms of the local frame transformation, and it gives a critical test of the accuracy of the Harmin-Fano theory permitting a scholastic investigation of the claims presented in Zhao {\\it et al.} [Phys. Rev. A 86, 053413 (2012)].

  13. Cryo diffraction microscopy: Ice conditions and finite supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miao, H.; Downing, K.; Huang, X.; Kirz, J.; Marchesini, S.; Nelson, J.; Shapiro, D.; Steinbrener, J.; Stewart, A.; Jacobsen, C.

    2009-09-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore »using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  14. Reactor cell assembly for use in spectroscopy and microscopy applications

    DOE Patents [OSTI]

    Grindstaff, Quirinus; Stowe, Ashley Clinton; Smyrl, Norm; Powell, Louis; McLane, Sam

    2015-08-04

    The present disclosure provides a reactor cell assembly that utilizes a novel design and that is wholly or partially manufactured from Aluminum, such that reactions involving Hydrogen, for example, including solid-gas reactions and thermal decomposition reactions, are not affected by any degree of Hydrogen outgassing. This reactor cell assembly can be utilized in a wide range of optical and laser spectroscopy applications, as well as optical microscopy applications, including high-temperature and high-pressure applications. The result is that the elucidation of the role of Hydrogen in the reactions studied can be achieved. Various window assemblies can be utilized, such that high temperatures and high pressures can be accommodated and the signals obtained can be optimized.

  15. Handheld and low-cost digital holographic microscopy

    E-Print Network [OSTI]

    Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-01-01

    This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

  16. Bacterial Immobilization for Imaging by Atomic Force Microscopy

    SciTech Connect (OSTI)

    Allison, David P [ORNL; Sullivan, Claretta [Eastern Virginia Medical School; Mortensen, Ninell P [ORNL; Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

    2011-01-01

    AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved mica surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.

  17. NEAR-IR TWO PHOTON MICROSCOPY IMAGING OF SILICA NANOPARTICLES FUNCTIONALIZED WITH ISOLATED SENSITIZED Yb(III) CENTERS

    SciTech Connect (OSTI)

    Lapadula, Giuseppe; Bourdolle, Adrien; Allouche, Florian; Conley, Matthew P.; Maron, Laurent; Lukens, Wayne W.; Guyot, Yannick; Andraud, Chantal; Brasselet, Sophie; Copé; ret, Christophe; Maury, Olivier; Andersen, Richard A.

    2013-01-12

    Bright nano objects emitting in the near infrared with a maximal cross section of 41.4 x 103 GM (Goppert Mayer), were prepared by implanting ca. 180 4,4 diethylaminostyryl 2,2 bipyridine (DEAS) Yb(III) complexes on the surface of 12 nm silica nanoparticles. The surface complexes ([DEAS Ln SiO2], Ln =Y,Yb) were characterized using IR, solid state NMR, UV Vis, EXAFS spectroscopies in combination with the preparation and characterization of similar molecular analogues by analytical techniques (IR, solution NMR, UV Vis, X ray crystallography) as well as DFT calculations. Starting from the partial dehydroxylation of the silica at 700 C on high vacuum having 0.8 OH.nm 2, the grafting of Ln(N(SiMe3)2)3 generate ?SiO Ln(N(SiMe3)2)2, which upon thermal step and coordination of the DEAS chromophore yields (?SiO)3Ln(DEAS). Surface and molecular analogues display similar properties, in terms of DEAS binding constants absorption maxima and luminescence properties (intense emission band assigned to a ligand centered CT fluorescence and life time) in the solid state, consistent with the molecular nature of the surface species. The densely functionalized nanoparticles can be dispersed via ultra-sonication in small ca. 15-20 nm aggregates (1 to 6 elementary particles) that were detected using two photon microscopy imaging at 720 nm excitation, making them promising nano objects for bio imaging.

  18. Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface

    SciTech Connect (OSTI)

    Kumar Kuntumalla, Mohan; Srikanth, Vadali V. S. S.; Rajamudili, Kuladeep; Rao Desai, Narayana

    2014-04-21

    Deep sub-wavelength (?/??=??0.22) periodic features are induced uniformly on a nanodiamond (ND) thin film surface using femtosecond (fs) laser irradiation (pulse duration?=??110 fs and central wavelength of ?800?nm). The topography of the surface features is controlled by the laser polarization. Orientation of features is perpendicular to laser polarization. Periodicity (spatial periodicity of?surface features is less than the laser wavelength. This work gives an experimental proof of polarization controlled surface plasmon-fs laser coupling mechanism prompting the interaction between fs laser and solid matter (here ND thin film) which in turn is resulting in the periodic surface features. Scanning electron microscopy in conjunction with micro Raman scattering, X-ray diffraction, and atomic force microscopy are carried out to extract surface morphology and phase information of the laser irradiated regions. This work demonstrates an easy and efficient surface fabrication technique.

  19. PHYSICAL REVIEW B 88, 115422 (2013) Charge compensation by long-period reconstruction in strongly polar lithium niobate surfaces

    E-Print Network [OSTI]

    Kühnle, Angelika

    2013-01-01

    force microscopy and first-principles calculations. It is found that the surface reconstructs, wavelength filters, second- harmonic generators, and nonvolatile memories.1 While these applications exploit, the strong electric fields and charges at the surfaces of ferroelectric materials have recently attracted

  20. Nanomechanical and topographical imaging of living cells by Atomic Force Microscopy with colloidal probes

    E-Print Network [OSTI]

    Luca Puricelli; Massimiliano Galluzzi; Carsten Schulte; Alessandro Podestà; Paolo Milani

    2015-02-05

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells' fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cell elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured elastic modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in cell elasticity induced by the action of a cytoskeleton-targeting drug.

  1. X-ray photoemission electron microscopy for the study of semiconductor materials

    SciTech Connect (OSTI)

    Anders, S.; Stammler, T.; Padmore, H.; Terminello, L.J.; Jankowski, A.F.; Stohr, J.; Diaz, J.; Cossy-Gantner, A.

    1998-03-01

    Photoemission Electron Microscopy (PEEM) using X-rays is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper the authors give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments.

  2. Improved LWR Cladding Performance by EPD Surface Modification Technique

    SciTech Connect (OSTI)

    Corradini, Michael; Sridharan, Kumar

    2012-11-26

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  3. Elucidation of Perovskite Film Micro-Orientations Using Two-Photon Total Internal Reflectance Fluorescence Microscopy

    SciTech Connect (OSTI)

    Watson, Brianna R; Yang, Bin; Xiao, Kai; Ma, Yingzhong; Doughty, Benjamin L; Calhoun, Tessa R

    2015-01-01

    The emergence of efficient hybrid organic-inorganic perovskite photovoltaic materials has caused the rapid development of a variety of preparation and processing techniques designed to maximize their performance. As processing methods continue to emerge, it is important to understand how the optical properties of these materials are affected on a microscopic scale. Here polarization resolved two-photon total internal reflectance microscopy (TIRFM) was used to probe changes in transition dipole moment orientation as a function of thermal annealing time in hybrid organic-inorganic lead iodide based perovskite (CH3NH3PbI3) thin films on glass. These results show that as thermal annealing time is increased the distribution of transition moments pointing out-of-plane decreases in favor of forming areas with increased in-plane orientations. It was also shown through the axial sensitivity of TIRFM that the surface topography is manifested in the signal intensity and can be used to survey aspects of morphology in coincidence with the optical properties of these films.

  4. High resolution transmission electron microscopy of melamine-formaldehyde aerogels and silica aerogels

    SciTech Connect (OSTI)

    Ruben, G.C. (Dartmouth Coll., Hanover, NH (United States). Dept. of Biological Sciences)

    1991-09-01

    The goal of the high resolution transmission electron microscopy (HRTEM) was to image the structure of two tetramethyl orthosilicate (TMOS) and two melamine-formaldehyde (MF) aerogels at the single polymer chain level{sup 1,2}. With this level of structural resolution we hoped to interrelate each aerogel's structure with its physical properties and its method of synthesis. Conventional single-step base catalysed TMOS aerogels show strings of spheroidal particles linked together with minimal necking. The spheroidal particles range from 86--132 {Angstrom} and average 113{plus minus}10 {Angstrom} in diameter{sup 2}. In contrast the TMOS aerogels reported on here were made by a two step method. After extended silica chains are grown in solution under acidic conditions with a substoichiometric amount of water, the reaction is stopped and the methanol hydrolysed from TMOS is removed. Then base catalysis and additional water are added to cause gel formation is a nonalcoholic solvent. The MF aerogels were prepared for HRTEM by fracturing them on a stereo microscope stage with razor knife so that fractured pieces with smooth flat surfaces could be selected for platinum-carbon replication. The two silica (TMOS) aerogels were both transparent and difficult to see. These aerogels were fractured on a stereo microscope stage with tweezers. 6 refs., 4 figs.

  5. Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kilina, Svetlana; Yarotski, Dzmitry A.; Talin, A. Alec; Tretiak, Sergei; Taylor, Antoinette J.; Balatsky, Alexander V.

    2011-01-01

    We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM) measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA) constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4 ° and a coiling period of 3.3?nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal ?-stacking between DNA nucleotides andmore »the tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5) CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality. « less

  6. Morphological properties of pillared layered materials investigated by electron microscopy technique 

    E-Print Network [OSTI]

    Navas de Mascianglioli, Margarit

    1993-01-01

    Scanning electron microscopy was used to investigate morphological features of a diverse range of pillared layered materials. Pillared layered zirconium phosphates, zirconium polyimine phosphonates and anion exchanger ...

  7. Transmission electron microscopy of whiskers and hillocks formed on Al films deposited onto a glass

    SciTech Connect (OSTI)

    Saka, H.; Fujino, S.; Kuroda, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-01 (Japan); Tsujimoto, K.; Tsuji, S. [Display Technology, IBM Japan, Ltd., Shimotsuruma, Yamato, Kanagawa 242 (Japan); Takatsuji, H. [Display Technology, IBM Japan, Ltd., Ichimiyake, Yasu-gun, Shiga 520-23 (Japan)

    1998-01-05

    Whiskers and hillocks formed on an Al film deposited onto a glass substrate have been observed by means of a variety of transmission electron microscopy technique.

  8. Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase

    SciTech Connect (OSTI)

    Taoufyq, A. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache (France); Société CESIGMA—Signals and Systems, 1576 Chemin de La Planquette, F 83 130 LA GARDE (France); Ait Ahsaine, H. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); Patout, L. [Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université du Sud Toulon-Var, BP 20132, 83957, La Garde Cedex (France); Benlhachemi, A.; Ezahri, M. [Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc (Morocco); and others

    2013-07-15

    The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2?} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and direct current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2?} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.

  9. Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip

    SciTech Connect (OSTI)

    Ievlev, Anton; Morozovska, A. N.; Shur, Vladimir Ya.; Kalinin, Sergei V

    2015-01-01

    The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction of the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.

  10. Los Alamos: MST-MTM: EML: Electron Microscopy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EDAX Energy-dispersive x-ray spectrometer, with point analysis, line scan, and limited mapping. Imaging with both secondary and backscattered electrons. Digital image acquisition....

  11. Observation of diamond turned OFHC copper using Scanning Tunneling Microscopy

    SciTech Connect (OSTI)

    Grigg, D.A.; Russell, P.E.; Dow, T.A.

    1988-12-01

    Diamond turned OFHC copper samples have been observed within the past few months using the Scanning Tunneling Microscope. Initial results have shown evidence of artifacts which may be used to better understand the diamond turning process. The STM`s high resolution capability and three dimensional data representation allows observation and study of surface features unobtainable with conventional profilometry systems. Also, the STM offers a better quantitative means by which to analyze surface structures than the SEM. This paper discusses findings on several diamond turned OFHC copper samples having different cutting conditions. Each sample has been cross referenced using STM and SEM.

  12. Trend surface analysis of Greenland precipitation

    E-Print Network [OSTI]

    van der Veen, Cornelis J.; Vromwich, D. H.; Csatho, B. M.; Kim, C.

    2001-12-27

    Multivariate regression methods are applied to measurements of accumulation covering much of the interior of the Greenland ice sheet to evaluate the important factors that describe the current distribution of accumulation. ...

  13. Trace element content and magnetic properties of commercial HOPG samples studied by ion beam microscopy and SQUID magnetometry

    SciTech Connect (OSTI)

    Spemann, D. Esquinazi, P. Setzer, A.; Böhlmann, W.

    2014-10-15

    In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearly exceeds the maximum contribution from pure Fe or Fe{sub 3}C. For most samples the temperature dependence of the remanence decreases linearly with T – a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.

  14. John Pendry: His Contributions to the Development of LEED Surface Crystallography

    E-Print Network [OSTI]

    Rous, P.J.

    2008-01-01

    of Surface Structure by LEED (IBM Research Symposia Series)Surface Crystallography by LEED. M.A. Van Hove and S.Y.Surface Science 300(1-3), LEED Analysis of Acetylene and

  15. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  16. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Kalinin, Sergei V. (Knoxville, TN) [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  17. Synthesis of High Surface Area Alumina Aerogels without the Use of Alkoxide Precursors

    SciTech Connect (OSTI)

    Baumann, T F; Gash, A E; Chinn, S C; Sawvel, A M; Maxwell, R S; Satcher Jr., J H

    2004-06-25

    Alumina aerogels were prepared through the addition of propylene oxide to aqueous or ethanolic solutions of hydrated aluminum salts, AlCl{sub 3} {center_dot} 6H{sub 2}O or Al(NO{sub 3}){sub 3} {center_dot} 9H{sub 2}O, followed by drying with supercritical CO{sub 2}. This technique affords low-density (60-130 kg/m{sup 3}), high surface area (600-700 m{sup 2}/g) alumina aerogel monoliths without the use of alkoxide precursors. The dried alumina aerogels were characterized using elemental analysis, high-resolution transmission electron microscopy, powder X-ray diffraction, solid state NMR, acoustic measurements and nitrogen adsorption/desorption analysis. Powder X-ray diffraction and TEM analysis indicated that the aerogel prepared from hydrated AlCl{sub 3} in water or ethanol possessed microstructures containing highly reticulated networks of pseudoboehmite fibers, 2-5 nm in diameter and of varying lengths, while the aerogels prepared from hydrated Al(NO{sub 3}){sub 3} in ethanol were amorphous with microstructures comprised of interconnected spherical particles with diameters in the 5-15 nm range. The difference in microstructure resulted in each type of aerogel displaying distinct physical and mechanical properties. In particular, the alumina aerogels with the weblike microstructure were far more mechanically robust than those with the colloidal network, based on acoustic measurements. Both types of alumina aerogels can be transformed to {gamma}-Al{sub 2}O{sub 3} through calcination at 800 C without a significant loss in surface area or monolithicity.

  18. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    E-Print Network [OSTI]

    Rahim, Nur Aida Adbul

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. ...

  19. Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy

    SciTech Connect (OSTI)

    Shur, V. Ya., E-mail: vladimir.shur@urfu.ru; Zelenovskiy, P. S. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2014-08-14

    The application of the most effective methods of the domain visualization in model uniaxial ferroelectrics of lithium niobate (LN) and lithium tantalate (LT) family, and relaxor strontium-barium niobate (SBN) have been reviewed in this paper. We have demonstrated the synergetic effect of joint usage of optical, confocal Raman, and piezoelectric force microscopies which provide extracting of the unique information about formation of the micro- and nanodomain structures. The methods have been applied for investigation of various types of domain structures with increasing complexity: (1) periodical domain structure in LN and LT, (2) nanodomain structures in LN, LT, and SBN, (3) nanodomain structures in LN with modified surface layer, (4) dendrite domain structure in LN. The self-assembled appearance of quasi-regular nanodomain structures in highly non-equilibrium switching conditions has been considered.

  20. Determination of pigments in colour layers on walls of some selected historical buildings using optical and scanning electron microscopy

    SciTech Connect (OSTI)

    Skapin, A. Sever Ropret, P. Bukovec, P.

    2007-11-15

    For successful restoration of painted walls and painted coloured finishing coats it is necessary to determine the composition of the original colour layers. Identification of the pigments used in The Cistercian Abbey of Sticna and The Manor of Novo Celje was carried out using optical and scanning electron microscopy. Selected samples of wall paintings were inspected by the combined application of an optical microscope and a low-vacuum Scanning Electron Microscope to determine their colour and structural features and to identify the position of individual pigment grains. Energy dispersive spectroscopy was used to determine the elemental distribution on selected surfaces and elemental composition of individual pigments. It was found that the most abundantly used pigments were iron oxide red, cinnabar, green earth, umber, calcium carbonate white, ultramarine, yellow ochre and carbon black. These identifications have allowed us to compare the use of various pigments in buildings from different historical periods.

  1. High-resolution transmission electron microscopy study of carbon deposited on the NiO/MgO solid solution catalysts

    SciTech Connect (OSTI)

    Hu, Y.H.; Ruckenstein, E.

    1999-05-15

    The carbon deposition due to the CH{sub 4} decomposition at 790 C over NiO/MgO catalysts was investigated by high-resolution transmission electron microscopy. While no deposits could be detected over the catalysts with a NiO content smaller than 9.1 wt%, they were detected over the catalysts with NiO contents of 23 and 50 wt%. The carbon deposits are composed of platelets located at distances of about 0.34 nm, corresponding to the graphitic carbon. Various structures of the deposited carbon were observed: (a) carbon consisting of platelets parallel to the surface of the particle, which covers a catalyst particle, (b) nanotubes composed of platelets parallel to their axis, and (c) carbon vortexes consisting of platelets parallel to their axis.

  2. A Hybrid Analog/Digital Phase-Locked Loop for Frequency Mode Non-contact Scanning Probe Microscopy

    E-Print Network [OSTI]

    Mehta, Manan

    2013-01-01

    Non-contact scanning probe microscopy (SPM) has developed into a powerful technique to image many different properties of samples. The conventional method involves monitoring the amplitude, phase or frequency of a cantilever oscillating at or near its resonant frequency as it is scanned across the surface of a sample. For high Q factor cantilevers, monitoring the resonant frequency is the preferred method in order to obtain reasonable scan times. This can be done by using a phase-locked-loop (PLL). PLLs can be obtained as commercial integrated circuits, but these do not have the frequency resolution required for SPM. To increase the resolution, all-digital PLLs requiring sophisticated digital signal processors or field programmable gate arrays have also been implemented. We describe here a hybrid analog/digital PLL where most of the components are implemented using discrete analog integrated circuits, but the frequency resolution is provided by a direct digital synthesis chip controlled by a simple PIC microc...

  3. Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

  4. Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy

    E-Print Network [OSTI]

    Huang, Yanyi

    Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy non-fluorescent nanodiamonds in living cells using transient absorption microscopy. This label of nanodiamonds under various conditions, confirming the endocytosis mechanism. Optical probes for live cell

  5. Spark-gap atomic emission microscopy. II. Improvements in resolution P. G. Van Patten,a)

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Spark-gap atomic emission microscopy. II. Improvements in resolution P. G. Van Patten,a) J. D. Noll which enhance performance in spark-gap atomic emission microscopy SGAEM experiments. SGAEM is a recent as small as 5 V, and intense atomic emission has been observed in such sparks. Small 1 nF , high

  6. Static Stern-Gerlach effect in magnetic force microscopy G. P. Berman,1

    E-Print Network [OSTI]

    Hammel, P. Chris

    Static Stern-Gerlach effect in magnetic force microscopy G. P. Berman,1 G. D. Doolen,1 P. C. Hammel February 2002 We examine static single-spin measurements using magnetic-force microscopy methods. We show, 07.79.Pk I. INTRODUCTION The Stern-Gerlach SG effect, one of the cornerstones of a quantum mechanics

  7. Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices

    E-Print Network [OSTI]

    Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene; accepted 24 July 2007; published online 15 August 2007 Raman microscopy of graphene was carried out over-band frequencies extracted from Raman spectra of the single-layer graphene are - 1.6±0.2 10-2 cm-1 /K and - 3

  8. Deposition and atomic force microscopy of individual phthalocyanine polymers between nanofabricated electrodes

    E-Print Network [OSTI]

    Dekker, Cees

    Deposition and atomic force microscopy of individual phthalocyanine polymers between nanofabricated of cellulose using the Langmuir­Blodgett deposition technique. Atomic force microscopy was used to study- layer of an insulating molecule.6 We show that this method leads to a controlled deposition and strong

  9. Structural Investigations of Surfaces and Orientation-SpecificPhenomena in Nanocrystals and Their Assemblies

    SciTech Connect (OSTI)

    Aruguete, Deborah Michiko

    2006-06-17

    Studies of colloidal nanocrystals and their assemblies are presented. Two of these studies concern the atomic-level structural characterization of the surfaces, interfaces, and interiors present in II-VI semiconductor nanorods. The third study investigates the crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different directions in the nanorod. This orientation-specific probe is used, because it is expected that the presence of specific surfaces in a nanorod might cause bond relaxations specific to different crystallographic directions. Se-Se distances are found to be contracted along the long axis of the nanorod, while Cd-Se distances display no angular dependence, which is different from the bulk. Ab-initio density functional theory calculations upon CdSe nanowires indicate that relaxations on the rod surfaces cause these changes. ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray absorption spectroscopy (XAS). It is hypothesized that there are two major factors influencing the core and shell structures of the nanorods: the large surface area-to-volume ratio, and epitaxial strain. The presence of the surface may induce bond rearrangements or relaxations to minimize surface energy; epitaxial strain might cause the core and shell lattices to contract or expand to minimize strain energy. A marked contraction of Zn-S bonds is observed in the core-shell nanorods, indicating that surface relaxations may dominate the structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the larger CdS or CdSe lattices via bond expansion). EXAFS and X-ray diffraction (XRD) indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a rod-shaped nanocrystal. Ordered self-assembled aggregates of cobalt nanocrystals are examined with transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SAED patterns from multilayered assemblies show that the nanocrystals have preferred crystallographic orientations. It is proposed that the nanocrystals are organized in a vortex-like or ''loop-closing'' arrangement, possibly due to magnetism. SAED and dark-field imaging used to investigate this hypothesis are presented, along with the data analysis. The effects of magnetism and nanocrystal faceting are discussed.

  10. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    SciTech Connect (OSTI)

    Bukreyev, Alexander Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Dorward, David W.; Pickles, Raymond J.; Feldmann, Heinz; Collins, Peter L.

    2009-01-20

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/{delta}F-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/{delta}F-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/{delta}F-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV.

  11. Frontiers in Chemical Physics and Analysis Seminar Series

    E-Print Network [OSTI]

    scanning tunneling microscopy images and spectra, we show that oxygen vacancies act as trapping centresFrontiers in Chemical Physics and Analysis Seminar Series Influence of Wet Electron States

  12. Palladium diffusion into bulk copper via the (100) surface.

    SciTech Connect (OSTI)

    Bussmann, Ezra; Pohl, Karsten; Sun, Jiebing; Kellogg, Gary Lee

    2009-01-01

    Using low-energy electron microscopy, we measure the diffusion of Pd into bulk Cu at the Cu(100) surface. Interdiffusion is tracked by measuring the dissolution of the Cu(100)-c(2 x 2)-Pd surface alloy during annealing (T > 240 C). The activation barrier for Pd diffusion from the surface alloy into the bulk is determined to be (1.8 {+-} 0.6) eV. During annealing, we observe the growth of a new layer of Cu near step edges. Under this new Cu layer, dilute Pd remaining near the surface develops a layered structure similar to the Cu{sub 3}Pd L 1{sub 2} bulk alloy phase.

  13. Topics in living cell miultiphoton laser scanning microscopy (MPLSM) image analysis 

    E-Print Network [OSTI]

    Zhang, Weimin

    2006-10-30

    of segmented data by a Monte Carlo test. Our research shows that the distributions of DHE exhibit a spatially aggregated pattern. We fit two aggregated point pattern models, an area-interaction process model and a Poisson cluster process model, to the data...

  14. The study of organic crystals by atomic force microscopy

    E-Print Network [OSTI]

    Chow, Ernest Ho Hin

    2014-07-01

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.16 2-D and 3-D height images of a chocolate sample obtained at various storage times. . . . . . . . . . . . . . . . . . . . . . . . . 25 2.17 AFM images of the {110} face of paracetamol crystals. . . . . . 26 2.18 AFM images of glycine crystals... BFDH growth morphology of ASA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 AFM 3-D images of ASA (001) surface under dissolution. . . . . 42 3.5 AFM Deflection images of ASA (100) face etched by water, ace- tone, and ethyl...

  15. Fluorinated silica microchannel surfaces

    DOE Patents [OSTI]

    Kirby, Brian J.; Shepodd, Timothy Jon

    2005-03-15

    A method for surface modification of microchannels and capillaries. The method produces a chemically inert surface having a lowered surface free energy and improved frictional properties by attaching a fluorinated alkane group to the surface. The coating is produced by hydrolysis of a silane agent that is functionalized with either alkoxy or chloro ligands and an uncharged C.sub.3 -C.sub.10 fluorinated alkane chain. It has been found that the extent of surface coverage can be controlled by controlling the contact time from a minimum of about 2 minutes to a maximum of 120 minutes for complete surface coverage.

  16. Terahertz imaging of sub-wavelength particles with Zenneck surface waves

    SciTech Connect (OSTI)

    Navarro-Cía, M., E-mail: m.navarro@imperial.ac.uk [Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT (United Kingdom); Centre for Plasmonics and Metamaterials, Imperial College London, London SW7 2AZ (United Kingdom); Centre for Terahertz Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Natrella, M.; Graham, C.; Renaud, C. C.; Seeds, A. J.; Mitrofanov, O., E-mail: o.mitrofanov@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Dominec, F.; Kužel, P., E-mail: kuzelp@fzu.cz [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic); Delagnes, J. C.; Mounaix, P., E-mail: p.mounaix@loma.u-bordeaux1.fr [LOMA, Bordeaux 1 University, CNRS UMR 4798, 351 cours de la Libération, 33405 Talence (France)

    2013-11-25

    Impact of sub-wavelength-size dielectric particles on Zenneck surface waves on planar metallic antennas is investigated at terahertz (THz) frequencies with THz near-field probe microscopy. Perturbations of the surface waves show the particle presence, despite its sub-wavelength size. The experimental configuration, which utilizes excitation of surface waves at metallic edges, is suitable for THz imaging of dielectric sub-wavelength size objects. As a proof of concept, the effects of a small strontium titanate rectangular particle and a titanium dioxide sphere on the surface field of a bow-tie antenna are experimentally detected and verified using full-wave simulations.

  17. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    E-Print Network [OSTI]

    Simon L Dettmer; Ulrich F Keyser; Stefano Pagliara

    2014-08-19

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g. electrokinetic or dielectrophoretic forces.

  18. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  19. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, Hugh R. (Livermore, CA); Meltzer, Michael P. (Livermore, CA)

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  20. Molecular Dynamics of Surface-Moving Thermally Driven Alexei V. Akimov,,

    E-Print Network [OSTI]

    with the qualitative features of the thermally activated migration of the nanocars: the primary pivoting motion observed migration of nanocars over gold crystals as determined by scanning tunneling microscopy. Coarse and sometimes bearing a loading bay. Their thermally initiated migration on the surface of gold crystals

  1. Graphene on Carbon-face SiC{0001} Surfaces Formed in a Disilane Environment

    E-Print Network [OSTI]

    Feenstra, Randall

    Graphene on Carbon-face SiC{0001} Surfaces Formed in a Disilane Environment N. Srivastavaa , Guowei-face, graphene, interface structure, low energy electron microscopy, disilane Abstract. The formation of epitaxial graphene on SiC( 1000 ) in a disilane environment is studied. The higher graphitization

  2. Wear Analysis of Wind Turbine Gearbox Bearings

    SciTech Connect (OSTI)

    Blau, Peter Julian; Walker, Larry R; Xu, Hanbing; Parten, Randy J; Qu, Jun; Geer, Tom

    2010-04-01

    The objective of this effort was to investigate and characterize the nature of surface damage and wear to wind turbine gearbox bearings returned from service in the field. Bearings were supplied for examination by S. Butterfield and J. Johnson of the National Wind Technology Center (NREL), Boulder, Colorado. Studies consisted of visual examination, optical and electron microscopy, dimensional measurements of wear-induced macro-scale and micro-scale features, measurements of macro- and micro-scale hardness, 3D imaging of surface damage, studies of elemental distributions on fracture surfaces, and examinations of polished cross-sections of surfaces under various etched and non-etched conditions.

  3. Surface Tension of Seawater

    E-Print Network [OSTI]

    Nayar, Kishor Govind

    New measurements and a reference correlation for the surface tension of seawater at atmospheric pressure are presented in this paper. Surface tension of seawater was measured across a salinity range of 20 ? S ? 131 g/kg ...

  4. Fresnel versus Kummer surfaces

    E-Print Network [OSTI]

    Peinke, Joachim

    Fresnel versus Kummer surfaces Alberto Favaro & Friedrich W. Hehl Outline Linear media Linear media-you. Fresnel versus Kummer surfaces: geometrical optics in dispersionless linear (meta)materials and vacuum, 19­23 November 2012 Email: favaro@thp.uni-koeln.de #12;Fresnel versus Kummer surfaces Alberto Favaro

  5. Advanced Multivariate Analysis Tools Applied to Surface Analysis.

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563Abuse Tolerance(Conference) |stabilized by(Conference) | SciTech

  6. A TRANSMISSION ELECTRON MICROSCOPY STUDY OF PRESOLAR HIBONITE

    SciTech Connect (OSTI)

    Zega, Thomas J.; Stroud, Rhonda M.; Alexander, Conel M. O'D.; Nittler, Larry R.

    2011-04-01

    We report isotopic and microstructural data on five presolar hibonite grains (KH1, KH2, KH6, KH15, and KH21) identified in an acid residue of the Krymka LL3.1 ordinary chondrite. Isotopic measurements by secondary ion mass spectrometry (SIMS) verified a presolar circumstellar origin for the grains. Transmission electron microscopy (TEM) examination of the crystal structure and chemistry of the grains was enabled by in situ sectioning and lift-out with a focused-ion-beam scanning-electron microscope (FIB-SEM). Comparisons of isotopic compositions with models indicate that four of the five grains formed in low-mass stars that evolved through the red giant/asymptotic giant branches (RGBs/AGBs), whereas one grain formed in the ejecta of a Type II supernova. Selected-area electron-diffraction patterns show that all grains are single crystals of hibonite. Some grains contain minor structural perturbations (stacking faults) and small spreads in orientation that can be attributed to a combination of growth defects and mechanical processing by grain-grain collisions. The similar structure of the supernova grain to those from RGB/AGB stars indicates a similarity in the formation conditions. Radiation damage (e.g., point defects), if present, occurs below our detection limit. Of the five grains we studied, only one has the pure hibonite composition of CaAl{sub 12}O{sub 19}. All others contain minor amounts of Mg, Si, Ti, and Fe. The microstructural data are generally consistent with theoretical predictions, which constrain the circumstellar condensation temperature to a range of 1480-1743 K, assuming a corresponding total gas pressure between 1 x 10{sup -6} and 1 x 10{sup -3} atm. The TEM data were also used to develop a calibration for SIMS determination of Ti contents in oxide grains. Grains with extreme {sup 18}O depletions, indicating deep mixing has occurred in their parent AGB stars, are slightly Ti enriched compared with grains from stars without deep mixing, most likely reflecting differences in grain condensation conditions.

  7. New Insights into Fish Ecology via Nuclear Microscopy of Otoliths

    E-Print Network [OSTI]

    Limburg, Karin E.

    ,4]. Otolith elemental and stable isotopic composition yields information about the habitat, thermal regimes in otoliths, many of them at trace levels [4]. Whereas bulk analysis with methods such as ICP mass at Lund University [10]. PIXE, an accelerator-based technique, combines the analytical breadth of energy

  8. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  9. Atom probe field ion microscopy and related topics: A bibliography 1990

    SciTech Connect (OSTI)

    Russell, K.F.; Miller, M.K.

    1991-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

  10. Simultaneous forward and epi-CARS microscopy with a single detector by time-correlated single photon counting

    E-Print Network [OSTI]

    2008-01-01

    Stokes Raman scattering (CARS) microscopy," Proc Natl Acadenables separation of CARS microscopy data from multiphoton-overlap of the F and E-CARS signals. Due to traveling an

  11. Surface cleanliness measurement procedure

    DOE Patents [OSTI]

    Schroder, Mark Stewart (Hendersonville, NC); Woodmansee, Donald Ernest (Simpsonville, SC); Beadie, Douglas Frank (Greenville, SC)

    2002-01-01

    A procedure and tools for quantifying surface cleanliness are described. Cleanliness of a target surface is quantified by wiping a prescribed area of the surface with a flexible, bright white cloth swatch, preferably mounted on a special tool. The cloth picks up a substantial amount of any particulate surface contamination. The amount of contamination is determined by measuring the reflectivity loss of the cloth before and after wiping on the contaminated system and comparing that loss to a previous calibration with similar contamination. In the alternative, a visual comparison of the contaminated cloth to a contamination key provides an indication of the surface cleanliness.

  12. Observation of dynamic water microadsorption on Au surface

    SciTech Connect (OSTI)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12??m{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  13. The (111) Surface of NaAu2. Structure, Composition, and Stability

    SciTech Connect (OSTI)

    Kwolek, Emma J.; Widmer, Roland; Gröning, Oliver; Deniz, Okan; Walen, Holly; Yuen, Chad D.; Huang, Wenyu; Schlagel, Deborah L.; Wallingford, Mark; Thiel, Patricia A.

    2014-12-17

    The (111) surface of single-crystal NaAu2 is a model for catalytically active, powdered NaAu2. We prepare and characterize this surface with a broad suite of techniques. Preparation in ultrahigh vacuum consists of the traditional approach of ion bombardment (to remove impurities) and thermal annealing (to restore surface order). Both of these steps cause loss of sodium (Na), and repeated treatments eventually trigger conversion of the surface and near-surface regions to crystalline gold. The bulk has a limited ability to repopulate the surface Na. Under conditions where Na depletion is minimized, electron diffraction patterns are consistent with the bulk-terminated structure, and scanning tunneling microscopy reveals mesa-like features with lateral dimensions of a few tens of nanometers. The tops of the mesas do not possess fine structure characteristic of a periodic lattice, suggesting that the surface layer is disordered under the conditions of these experiments.

  14. The (111) Surface of NaAu2. Structure, Composition, and Stability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kwolek, Emma J.; Widmer, Roland; Gröning, Oliver; Deniz, Okan; Walen, Holly; Yuen, Chad D.; Huang, Wenyu; Schlagel, Deborah L.; Wallingford, Mark; Thiel, Patricia A.

    2014-12-17

    The (111) surface of single-crystal NaAu2 is a model for catalytically active, powdered NaAu2. We prepare and characterize this surface with a broad suite of techniques. Preparation in ultrahigh vacuum consists of the traditional approach of ion bombardment (to remove impurities) and thermal annealing (to restore surface order). Both of these steps cause loss of sodium (Na), and repeated treatments eventually trigger conversion of the surface and near-surface regions to crystalline gold. The bulk has a limited ability to repopulate the surface Na. Under conditions where Na depletion is minimized, electron diffraction patterns are consistent with the bulk-terminated structure, andmore »scanning tunneling microscopy reveals mesa-like features with lateral dimensions of a few tens of nanometers. The tops of the mesas do not possess fine structure characteristic of a periodic lattice, suggesting that the surface layer is disordered under the conditions of these experiments.« less

  15. Morphology of the surface of technically pure titanium VT1-0 after electroexplosive carbonization with a weighed zirconium oxide powder sample and electron beam treatment

    SciTech Connect (OSTI)

    Sosnin, Kirill V.; Raykov, Sergey V.; Vaschuk, Ekaterina S.; Budovskikh, Evgenie A. Gromov, Victor E.; Ivanov, Yuri F.

    2014-11-14

    Titanium is carbonized by the electroexplosive method. Formation of a surface alloyed layer and a coating on the treated surface is established by the methods of transmission electron microscopy. The morphology and elemental composition of the alloyed layer are analyzed. A dependence of the structure of the modified layer subjected to electron gun treatment on the absorbed power density is revealed.

  16. URANIUM METAL POWDER PRODUCTION, PARTICLE DISTRIBUTION ANALYSIS, AND REACTION RATE STUDIES OF A HYDRIDE-DEHYDRIDE PROCESS 

    E-Print Network [OSTI]

    Sames, William

    2011-08-08

    Work was done to study a hydride-dehydride method for producing uranium metal powder. Particle distribution analysis was conducted using digital microscopy and grayscale image analysis software. The particle size was found ...

  17. Development of high-speed two-photon microscopy for biological and medical applications

    E-Print Network [OSTI]

    Kim, Ki Hean

    2005-01-01

    Two-photon microscopy (TPM) is one of the most powerful microscopic technologies for in-vivo 3D tissue imaging up to a few hundred micrometers. It has been finding important applications in neuronal imaging, tumor physiology ...

  18. MARKOV CHAIN MONTE CARLO FOR AUTOMATED TRACKING OF GENEALOGY IN MICROSCOPY VIDEOS

    E-Print Network [OSTI]

    MARKOV CHAIN MONTE CARLO FOR AUTOMATED TRACKING OF GENEALOGY IN MICROSCOPY VIDEOS KATHLEEN CHAMPION of the nuclei in the images and their genealogies. Evan Tice '09 has already developed some code that aims

  19. CellVisualizer : exploring hierarchical, multi-dimensional data with applications to high-throughput microscopy

    E-Print Network [OSTI]

    Kang, InHan

    2006-01-01

    In this thesis, we present a system for visualizing hierarchical, multi-dimensional, memory-intensive datasets. Specifically, we designed an interactive system to visualize data collected by high-throughput microscopy and ...

  20. Development of the Ultrashort Pulse Nonlinear Optical Microscopy Spectral Imaging System 

    E-Print Network [OSTI]

    Lee, Anthony Chien-der

    2012-10-19

    by broadband sub-10-fs pulses. This dissertation will discuss the development of two spectral imaging systems using the principles of nonlinear optical microscopy for pixel-by-pixel spectral segmentation of multiple fluorescent spectra. The first spectral...

  1. Experimenting Liver Fibrosis Diagnostic by Two Photon Excitation Microscopy and Bag-of-Features Image Classification

    E-Print Network [OSTI]

    Stanciu, Stefan G.

    The accurate staging of liver fibrosis is of paramount importance to determine the state of disease progression, therapy responses, and to optimize disease treatment strategies. Non-linear optical microscopy techniques ...

  2. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore »freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  3. Shack-Hartmann wavefront-sensor-based adaptive optics system for microscopy

    E-Print Network [OSTI]

    So, Peter T. C.

    The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the ...

  4. Hybrid near-field scanning optical microscopy tips for live cell measurements

    E-Print Network [OSTI]

    Kapkiai, Luka K.; Moore-Nichols, David; Carnell, Jonathan; Krogmeier, Jeffrey R.; Dunn, Robert C.

    2004-03-08

    atomic force microscopy cantilever. Imaging of fluorescent latex spheres suspended in an acetate matrix demonstrates the subdiffraction limited fluorescence and topography capabilities of the tips. The reduced spring constant of the hybrid tip is also...

  5. Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM)

    E-Print Network [OSTI]

    Gillette, Martha U.

    Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed high- throughput topography and refractometry of man-made and biological nanostructures. Quantitative

  6. New insights from in-situ electron microscopy into capacity loss...

    Office of Scientific and Technical Information (OSTI)

    New insights from in-situ electron microscopy into capacity loss mechanisms in Li-ion batteries with Al anodes. Citation Details In-Document Search Title: New insights from in-situ...

  7. Reconstruction of 3D Neuronal Structures from Densely Packed Electron Microscopy Data Stacks 

    E-Print Network [OSTI]

    Yang, Huei-Fang

    2012-10-19

    The goal of fully decoding how the brain works requires a detailed wiring diagram of the brain network that reveals the complete connectivity matrix. Recent advances in high-throughput 3D electron microscopy (EM) image ...

  8. High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe

    E-Print Network [OSTI]

    Aguirre, Aaron Dominic

    Optical coherence microscopy (OCM) is a promising technique for high resolution cellular imaging in human tissues. An OCM system for high-speed en face cellular resolution imaging was developed at 1060 nm wavelength at ...

  9. New insights from in-situ electron microscopy into capacity loss...

    Office of Scientific and Technical Information (OSTI)

    in-situ electron microscopy into capacity loss mechanisms in all-solid-state Li-ion batteries with Al anodes. Citation Details In-Document Search Title: New insights from in-situ...

  10. Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Fisher, Frank

    Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

  11. Method for detecting cancer in a single cell using mitochondrial correlation microscopy

    DOE Patents [OSTI]

    Gourley, Paul L. (Albuquerque, NM)

    2012-03-06

    A method for distinguishing a normal cell from an abnormal cell, such as, for example a cancer cell or diseased cell, of the same tissue type using mitochondrial correlation microscopy.

  12. Method of detecting cancer in a single cell using mitochondrial correlation microscopy

    DOE Patents [OSTI]

    Gourley, Paul L

    2013-06-25

    A method for distinguishing a normal cell from an abnormal cell, such as, for example a cancer cell or diseased cell, of the same tissue type using mitochondrial correlation microscopy.

  13. Ultra-high vacuum scanning tunneling microscopy and theoretical studies of 1-halohexane monolayers

    E-Print Network [OSTI]

    Berne, Bruce J.

    . In accordance with the higher degree of disorder observed in scanning tunneling microscopy images of 1 of the interactions governing 2D self-organization. Simple functionalized hydrocarbon molecules are known to form self

  14. Exciton diffusion in semiconducting single-walled carbon nanotubes studied by transient absorption microscopy

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew; Wang, Rui; Lohrman, Jessica; Ren, Shenqiang; Zhao, Hui

    2012-11-09

    Spatiotemporal dynamics of excitons in isolated semiconducting single-walled carbon nanotubes are studied using transient absorption microscopy. Differential reflection and transmission of an 810-nm probe pulse after excitation by a 750-nm pump...

  15. Thermal and Optical Characterization of Photonic Integrated Circuits by Thermoreflectance Microscopy

    E-Print Network [OSTI]

    Hudgings, Janice A.

    We report high resolution, non-invasive, thermal and optical characterization of semiconductor optical amplifiers (SOAs) and SOA-based photonic integrated circuits (PICs) using thermoreflectance microscopy. Chip-scale ...

  16. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    SciTech Connect (OSTI)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  17. The Application of Fluorescence Lifetime Imaging Microscopy to Quantitatively Map Mixing and Temperature in Microfluidic Systems 

    E-Print Network [OSTI]

    Graham, Emmelyn M

    2008-01-01

    The technique of Fluorescence Lifetime Imaging Microscopy (FLIM) has been employed to quantitatively and spatially map the fluid composition and temperature within microfluidic systems. A molecular probe with a ...

  18. Optimizing and extending light-sculpting microscopy for fast functional imaging in neuroscience

    E-Print Network [OSTI]

    Rupprecht, Peter; Groessl, Florian; Haubensak, Wulf E; Vaziri, Alipasha

    2015-01-01

    A number of questions in systems biology such as understanding how dynamics of neuronal networks are related to brain function require the ability to capture the functional dynamics of large cellular populations at high speed. Recently, this has driven the development of a number of parallel and high speed imaging techniques such as light-sculpting microscopy, which has been used to capture neuronal dynamics at the whole brain and single cell level in small model organism. However, the broader applicability of light-sculpting microscopy is limited by the size of volumes for which high speed imaging can be obtained and scattering in brain tissue. Here, we present strategies for optimizing the present tradeoffs in light-sculpting microscopy. Various scanning modalities in light-sculpting microscopy are theoretically and experimentally evaluated, and strategies to maximize the obtainable volume speeds, and depth penetration in brain tissue using different laser systems are provided. Design-choices, important par...

  19. Behaviour of nanocolloidal particles on mica: investigations using atomic force microscopy 

    E-Print Network [OSTI]

    Walker, Richard John

    2010-01-01

    In this thesis we used atomic force microscopy (AFM) to investigate systematically the behaviour of both electrostatically stabilised silica and sterically stabilised polystyrene (PS) colloidal systems on freshly cleaved ...

  20. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    E-Print Network [OSTI]

    Gray, Alexander

    2011-01-01

    Standing-wave excited soft x-ray photoemission microscopy:excitation with soft x-ray standing-waves generated by Braggmirror substrate. Standing wave is moved vertically through

  1. Super-resolution wide-field optical microscopy by use of Evanescent standing waves

    E-Print Network [OSTI]

    Chung, Euiheon

    2007-01-01

    The development of high resolution, high speed imaging techniques allows the study of dynamical processes in biological systems. Optical fluorescence microscopy is an essential tool for investigations in many disciplines ...

  2. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    SciTech Connect (OSTI)

    Sutter, P. Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  3. Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy

    SciTech Connect (OSTI)

    Volkmer, Andreas; Cheng, Ji-Xin; Sunney Xie, X.

    2001-07-09

    We demonstrate theoretically and experimentally a novel epidetection scheme for coherent anti-Stokes Raman scattering (CARS) microscopy that significantly improves the detection sensitivity. Calculations show that epidetected CARS (E-CARS) signals are present for scatterers smaller than the wavelength of light, whereas the large background signals from the surrounding bulk solvent are suppressed by destructive interference. E-CARS microscopy is capable of revealing small intracellular features that are otherwise buried by the strong water CARS signal.

  4. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    SciTech Connect (OSTI)

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  5. Analysis of Tank 38H (HTF-38-15-47, 49) and Tank 43H (HTF-43-15-51, 53) surface and subsurface supernatant samples in support of enrichment and corrosion control programs

    SciTech Connect (OSTI)

    Oji, L. N.

    2015-06-30

    This report provides the results of analyses on Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP) and the Corrosion Control Program (CCP).

  6. Surface-micromachined microfluidic devices

    DOE Patents [OSTI]

    Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM); Montague, Stephen (Albuquerque, NM); Smith, James H. (Redmond, WA); Paul, Phillip H. (Livermore, CA); Krygowski, Thomas W. (Cortlandt Manor, NY); Allen, James J. (Albuquerque, NM); Nichols, Christopher A. (Hauppauge, NY); Jakubczak, II, Jerome F. (Rio Rancho, NM)

    2003-01-01

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  7. Surface modification to waveguides

    DOE Patents [OSTI]

    Timberlake, John R. (Allentown, NJ); Ruzic, David N. (Kendall Park, NJ); Moore, Richard L. (Princeton, NJ); Cohen, Samuel A. (Pennington, NJ); Manos, Dennis M. (Lawrenceville, NJ)

    1983-01-01

    A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  8. Surface modification to waveguides

    DOE Patents [OSTI]

    Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.

    1982-06-16

    A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  9. Noncommutative Riemann Surfaces

    E-Print Network [OSTI]

    Joakim Arnlind; Martin Bordemann; Laurent Hofer; Jens Hoppe; Hidehiko Shimada

    2007-11-16

    We introduce C-Algebras of compact Riemann surfaces $\\Sigma$ as non-commutative analogues of the Poisson algebra of smooth functions on $\\Sigma$. Representations of these algebras give rise to sequences of matrix-algebras for which matrix-commutators converge to Poisson-brackets as $N\\to\\infty$. For a particular class of surfaces, nicely interpolating between spheres and tori, we completely characterize (even for the intermediate singular surface) all finite dimensional representations of the corresponding C-algebras.

  10. Cross-Sectional Conductive Atomic Force Microscopy of CdTe/CdS Solar Cells: Effects of Etching and Back-Contact Processes; Preprint

    SciTech Connect (OSTI)

    Moutinho, H. R.; Dhere, R. G.; Jiang, C.-S.; Gessert, T. A.; Duda, A. M.; Young, M.; Metzger, W. K.; Li, X.; Al-Jassim, M. M.

    2006-05-01

    We investigated the effects of the etching processes using bromine and nitric-phosphoric acid solutions, as well as of Cu, in the bulk electrical conductivity of CdTe/CdS solar cells using conductive atomic force microscopy (C-AFM). Although the etching process can create a conductive layer on the surface of the CdTe, the layer is very shallow. In contrast, the addition of a thin layer of Cu to the surface creates a conductive layer inside the CdTe that is not uniform in depth, is concentrated at grains boundaries, and may short circuit the device if the CdTe is too thin. The etching process facilitates the Cu diffusion and results in thicker conductive layers. The existence of this inhomogeneous conductive layer directly affects the current transport and is probably the reason for needing thick CdTe in these devices.

  11. SHIPS: A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    E-Print Network [OSTI]

    Meinerzhagen, Florian; Bukowska, Hanna; Bender, Markus; Severin, Daniel; Herder, Matthias; Lebius, Henning; Schleberger, Marika; Wucher, Andreas

    2015-01-01

    The irradiation with fast ions with kinetic energies of > 10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in-situ analysis of differ...

  12. Synthesis of silver particles on copper substrates using ethanol-based solution for surface-enhanced Raman spectroscopy

    SciTech Connect (OSTI)

    Chen, Li Zhang, Zuojun; Chen, Gang; Zhou, Hui; Lai, Chunhong; School of Physics and Electronic Information, China West Normal University, NanChong 637002

    2014-03-15

    The displacement reaction of AgNO{sub 3} and copper metal is an effective and economical way to fabricate Ag-Cu surface enhanced Raman scattering (SERS) substrates. Aqueous solutions of AgNO{sub 3} are usually used for substrate preparation. In this work, a new method for Ag-Cu SERS substrate preparation is proposed, which uses an ethanol solution rather than an aqueous AgNO{sub 3} solution. Analysis of the surface morphologies of sample substrates by field emission scanning electron microscopy (FESEM) showed that the silver nanoparticles prepared by this new method were more regular than those prepared in the traditional aqueous solution. The SERS spectra of Rhodamine 6G (R6G) adsorbed on these Ag-Cu substrates were then investigated and compared. It was found that the Ag-Cu substrates prepared by this method provide significant improvements in Raman signal sensitivity and large-area uniformity. The enhancement factor of this new substrate is about 330 times higher than that prepared using an aqueous AgNO{sub 3} solution under identical experimental conditions. It was also found that 70% of the original sensitivity of the substrate remains after 15 days of exposure to air.

  13. An in-vivo study of electrical charge distribution on the bacterial cell wall by Atomic Force Microscopy in vibrating force mode

    E-Print Network [OSTI]

    Christian Marliere; Samia Dhahri

    2015-04-13

    We report an in-vivo electromechanical Atomic Force Microscopy (AFM) study of charge distribution on the cell wall of Gram plus Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, in physiological conditions. The method presented in this paper relies on a detailed study of AFM approach-retract curves giving the variation of the interaction force versus distance between tip and sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, as bacterial surface charge, was proved to be feasible at a spatial resolution better than few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (higher than 10nm) the repulsive contact zone. The variations of surface stress come from modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both tip and sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid-liquid interface particularly in high-molarity electrolytes when compared to technics focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in-situ biological electrical surface processes involved in numerous practical and fundamental problems as bacterial adhesion, biofilm formation, microbial fuel cell, etc.

  14. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    SciTech Connect (OSTI)

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-04-28

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350?°C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  15. Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.

    2012-01-01

    Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their populationmore »was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.« less

  16. Hyperspectral stimulated emission depletion microscopy and methods of use thereof

    DOE Patents [OSTI]

    Timlin, Jerilyn A; Aaron, Jesse S

    2014-04-01

    A hyperspectral stimulated emission depletion ("STED") microscope system for high-resolution imaging of samples labeled with multiple fluorophores (e.g., two to ten fluorophores). The hyperspectral STED microscope includes a light source, optical systems configured for generating an excitation light beam and a depletion light beam, optical systems configured for focusing the excitation and depletion light beams on a sample, and systems for collecting and processing data generated by interaction of the excitation and depletion light beams with the sample. Hyperspectral STED data may be analyzed using multivariate curve resolution analysis techniques to deconvolute emission from the multiple fluorophores. The hyperspectral STED microscope described herein can be used for multi-color, subdiffraction imaging of samples (e.g., materials and biological materials) and for analyzing a tissue by Forster Resonance Energy Transfer ("FRET").

  17. Solar absorption surface panel

    DOE Patents [OSTI]

    Santala, Teuvo J. (Attleboro, MA)

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  18. Chemical Reactions at Surfaces

    SciTech Connect (OSTI)

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  19. Surface-Micromachined Microfluidic Devices

    DOE Patents [OSTI]

    Galambos, Paul C. (Albuquerque, NM); Okandan, Murat (Albuquerque, NM); Montague, Stephen (Albuquerque, NM); Smith, James H. (Redmond, WA); Paul, Phillip H. (Livermore, CA); Krygowski, Thomas W. (Coutlandt Manor, NY); Allen, James J. (Albuquerque, NM); Nichols, Christopher A. (Hauppauge, NY); Jakubczak, II, Jerome F. (Rio Rancho, NM)

    2004-09-28

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators. Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  20. Screening combinatorial arrays of inorganic materials with spectroscopy or microscopy

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2004-02-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.